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SUMMARY

Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate tem-

poral and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last

stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that

separates daughter cells during somatic cytokinesis. Cell-plate formation in Arabidopsis relies on sterol- and

DYNAMIN-RELATED PROTEIN1A (DRP1A)-dependent endocytosis. However, functional relationships

between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cyto-

kinesis have not been elucidated. Using ratiometric live imaging of lipid order-sensitive fluorescent probes,

we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid-order membrane domain.

The cell-plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol com-

position. Sterols co-localize with DRP1A at the cell plate, and DRP1A accumulates in detergent-resistant

membrane fractions. Modifications of sterol concentration or composition reduce cell-plate membrane order

and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate.

Our findings provide evidence that the cell plate represents a high lipid-order domain, and pave the way to

explore potential feedback between lipid order and function of dynamin-related proteins during cytokinesis.
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INTRODUCTION

Cytokinesis represents the final stage of cell division dur-

ing which the cytoplasm of a single cell is partitioned to

form two daughter cells. A number of differences may be

observed during cytokinesis of various eukaryotes

(J€urgens, 2005; Barr and Gr€uneberg, 2007; Prekeris and

Gould, 2008). However, similarities include the

requirement for membrane fusion to occur at diverse cyto-

kinetic structures, for example at the animal mid-body or

the plant cell plate (J€urgens, 2005; Barr and Gr€uneberg,

2007; Prekeris and Gould, 2008). Precise execution of cyto-

kinesis relies on the correct composition of membrane lip-

ids, including, among others, eukaryotic membrane sterols
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(Wachtler et al., 2003; Fernandez et al., 2004; Men et al.,

2008; Boutt�e et al., 2010). The plant cell plate is a transitory

membrane compartment whose biogenesis requires fusion

of mostly trans-Golgi network-derived secretory vesicles in

the plane of cell division (Samuels et al., 1995; J€urgens,

2005). Vesicle fusion is accomplished by SNARE complex

machineries, of which the KNOLLE syntaxin is a critical

component localized to the cell plate (Lauber et al., 1997).

Expansion of the early cell plate and the final fusion of the

late cell plate with the parental plasma membrane com-

plete separation of daughter cells during cytokinesis of

somatic plant cells (J€urgens, 2005). Cell-plate formation in

Arabidopsis relies on sterol- and DYNAMIN-RELATED PRO-

TEIN1A (DRP1A)-dependent endocytosis (Collings et al.,

2008; Men et al., 2008; Boutt�e et al., 2010). Dynamin also

accumulates at mid-body membranes during animal cyto-

kinesis (Skop et al., 2004). In addition to DRP1A, other

members of the DRP1 family of Arabidopsis thaliana that

contribute to clathrin-mediated endocytosis (CME) are

enriched at the cell plate (Kang et al., 2003a,b; Fujimoto

et al., 2007, 2008) and co-localize with the clathrin light

chain (CLC) at the plasma membrane as well as the cell

plate (Konopka and Bednarek, 2008a; Fujimoto et al.,

2010). The internalization from the cell plate of cargo mole-

cules such as KNOLLE (Boutt�e et al., 2010), which is

enriched in clathrin-coated vesicles (McMichael et al.,

2013), as well as removal of the PIN2 auxin efflux carrier

from the basal epidermal plasma membrane after cytokine-

sis, requires sterol-dependent endocytosis via a clathrin-

and DRP1A-mediated mechanism (Collings et al., 2008;

Men et al., 2008; Boutt�e et al., 2010; Mravec et al., 2011).

Sterols are required for correct execution of cytokinesis in

diverse eukaryotes (Wachtler et al., 2003; Fernandez et al.,

2004; Men et al., 2008). Sterols accumulate in the septum

during cytokinesis of the fission yeast Schizosaccharo-

myces pombe as well as in the cytokinetic furrow of the

sea urchins Strongylocentrotus drobachiensis and Lytechi-

nus pictus (Wachtler et al., 2003; Takeda et al., 2004; Ng

et al., 2005), and the latter has been suggested to be asso-

ciated with high lipid-order membrane domains (Ng et al.,

2005). Similarly, the mammalian mid-body is thought to

represent a sterol-enriched membrane during final stages

of mammalian cytokinesis (Skop et al., 2004), but this has

not been demonstrated. The mid-body has recently been

found to accumulate specific lipids at high levels, including

ceramides, triacylglycerol, phosphatidic acid and phospha-

tidylserine (Atilla-Gokcumen et al., 2014). A high degree of

lipid packing, also referred to as high membrane lipid

order, is a biophysical feature of membrane rafts (Pike,

2006; Simons and Sampaio, 2011). Lipid order may be

probed using fluorescent, lipid order-sensitive probes,

both in artificial membranes in vitro (Jin et al., 2006; Owen

et al., 2006) and in live cells in vivo (Owen et al., 2012).

The fluorescent probe di-4-ANEPPDHQ has been validated

for determining lipid order in extracted plant membranes

and in live imaging of plant cells (Roche et al., 2008; Liu

et al., 2009; Gerbeau-Pissot et al., 2013). Lipid order affects

the fluorescence emission spectrum of di-4-ANEPPDHQ,

with the spectral region between 500 and 580 nm repre-

senting the ordered phase of the membrane, and fluores-

cence between 620 and 750 nm representing the

disordered phase (Owen et al., 2012). The degree of mem-

brane lipid order may thus be quantified by ratiometric

imaging and subsequent calculation of the generalized

polarization (GP) value (Owen et al., 2012). Here, we com-

bine di-4-ANEPPDHQ-based live imaging of lipid order, cell

biological visualization of sterols and cell-plate proteins,

and biochemical as well as functional genetic analyses to

elucidate the relationship between membrane order, sterol

content and DRP1A function in plant cytokinesis. Our

results reveal that the plant cell plate is a high lipid-order

membrane domain whose lipid order strictly relies on cor-

rect sterol composition and DRP1A protein function.

RESULTS

The cell plate is a dynamic, high lipid-order membrane

domain

In order to explore potential differences in lipid order

between membranes in plant roots, we employed ratio-

metric live imaging using the fluorescent lipid-order

probe di-4-ANEPPDHQ to study root epidermal cells of

Arabidopsis seedlings. We monitored two regions of the

emission spectrum of this probe, reflecting the ordered

and disordered phases (Figure 1a), to generate ratiometric

pseudo-colored GP images, in which red and green corre-

spond to high or low GP values reflecting higher and

lower membrane lipid order, respectively (Figure 1b).

Intriguingly, the cell plate of meristematic cells consis-

tently displayed a higher GP value than the plasma mem-

brane of wild-type seedlings (Figure 1b), which we

confirmed by quantitative and statistical analyses of GP

values from the cell plate and the plasma membrane at

the single-cell level (Figure 2a). Furthermore, analyzing

GP values from cell plates at various cytokinetic stages

(early stage, middle stage and late stage, n = 15 for each

stage) indicated a progressive decrease in cell-plate lipid

order, but the lipid order of the plasma membrane did

not change during cytokinesis (Figure 2b,c and Tables S1,

S2 and S3). In addition, we calculated the GP values for

the cell plate relative to the GP value of the closest

plasma membrane, and noticed a progressive decrease in

the relative GP values from early to middle and late

stages, with the relative GP values from early and late

stages being highly significantly different (Figure 2d and

Table S1). Consistent with these findings, following indi-

vidual cells over time by ratiometric imaging of GP val-

ues throughout cell-plate maturation revealed a dynamic

© 2014 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2014), 80, 745–757

746 M�arcia Frescatada-Rosa et al.



decrease in cell-plate lipid order, while lipid order of the

plasma membrane remained fairly constant (Figure 2e,f).

The cell plate is a sterol-sensitive, high lipid-order

membrane domain

We confirmed the high lipid order of the cell plate by quantita-

tive analyses of GP values from cell plates and plasma

membranes from large populations of cytokinetic cells

obtained from multiple experiments (Figure 3c and Tables S2

and S3). We used a recently developed membrane lipid order

probe, PY3174 (Kwiatek et al., 2013), in live-cell imaging, and

observed higher GP values for cell plates than for plasma

membranes of cytokinetic cells (Figure S1 and Table S2), very

similar to the results obtained with di-4-ANEPPDHQ.

Together, these findings strongly suggest that the cell plate

represents a high lipid-order membrane domain.

We next assessed whether modifications of the mem-

brane sterol content affect the lipid order of cell-plate

membranes. Membrane order may be modified by the con-

centration and molecular nature of the sterols integrated

into the phospholipid bilayer (Xu et al., 2001; Jin et al.,

2006; Owen et al., 2006; Roche et al., 2008). Genetic and

pharmacological tools allow modulation of sterol concen-

tration and composition in plants. For example, seedlings

defective in the sterol biosynthesis gene CYCLOPROPYLS-

TEROL ISOMERASE1 (CPI1), or treated with the sterol bio-

synthesis inhibitor fenpropimorph (fen), display a

substantially modified sterol profile, primarily accumulat-

ing cyclopropylsterols (He et al., 2003; Men et al., 2008).

We also observed a strong shift of the sterol profile

towards cyclopropylsterols in cpi1-1 mutant root callus,

although the callus retained a significant amount of sitos-

terol (Figure 4a), which was found to be almost completely

absent in seedling roots (Men et al., 2008). The sterol bio-

synthesis inhibitor lovastatin (lov) inhibits the activity of 3-

hydroxy-3-methylglutaryl CoA reductase, causing a reduc-

tion of total sterol concentration (Bach and Lichtenthaler,

1983). Treatment of Arabidopsis seedlings with 1 lM lov or

50 lg ml�1 fen significantly reduced the total amount of

sterols or converted a large proportion of sterols into cy-

clopropylsterols, respectively (Figure 4b). We used the

cpi1-1 mutant and inhibitor treatments to address whether

interference with sterol biosynthesis affects membrane

order as visualized by ratiometric di-4-ANEPPDHQ imag-

ing. Intriguingly, the GP values for cell plates and plasma

membranes of individual cells (Figure 3a) and from large

populations of cytokinetic cells were similar for cytokinetic

cells of the cpi1-1 mutant (Figure 3b,c and Tables S2 and

S3), as well as fen-treated wild-type roots (Figure 3b,c and

Tables S2 and S3). Cells from roots treated with lov also

displayed significantly lower GP values at the cell plate

compared with the dimethylsulfoxide (DMSO)-treated con-

trol (Figure 3c). This is in contrast to the strikingly higher

GP values observed for the cell plates of wild-type cells or

solvent-treated control cells compared to their plasma

membranes (Figure 3b,c and Table S3). Thus, our results

strongly suggest that the cell plate represents a dynamic,

high lipid-order membrane domain that is highly sensitive

to alterations in sterol concentration or composition.

DRP1A and other CME components are enriched in

detergent-resistant membranes and co-localize with

sterols at the cell plate

Membrane rafts act as platforms at which specific proteins

assemble through cooperative interactions between pro-

teins, sterols and sphingolipids (Pike, 2006; Simons and

Sampaio, 2011). A biochemical tool to estimate the

(a)

(b)

Figure 1. The cell plate is a high lipid-order membrane domain.

Ratiometric fluorescence live imaging analysis of membrane lipid order in

cytokinetic cells from 5-day-old Arabidopsis thaliana seedling roots labeled

with the lipid order-sensitive probe di-4-ANEPPDHQ.

(a) Fluorescence properties of di-4-ANEPPDHQ. The dye is excited using a

488 nm laser. The red line corresponds to the spectrum of the dye at the

cell plate (CP), whereas the black line corresponds to the spectrum at the

plasma membrane (PM). Two-channel acquisition is performed in the wave-

length bands indicated by red shading (500–580 nm) and gray shading

(620–750 nm).

(b) Left panels: di-4-ANEPPDHQ fluorescence recorded between 500–
580 nm, representing high lipid order. Middle panels: fluorescence recorded

at 620–750 nm representing low lipid order. Right panels: ratiometric color-

coded GP images obtained after processing images recorded at 500–580
and 620–750 nm as described previously (Owen et al., 2012) and in the

Experimental procedures. Red, high lipid order; black, low lipid order.
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abundance of proteins associated with sterol-enriched

membrane domains involves preparation and extraction of

proteins that co-fractionate in detergent-resistant

membranes (DRMs) (Mongrand et al., 2004; Borner et al.,

2005; Lingwood and Simons, 2007). To determine whether

components of the CME machinery associate with DRMs

from roots, DRMs were prepared from total membrane

fractions obtained from Arabidopsis thaliana wild-type and

(a)

(b)

(c)

(f)

(d)

(e)

Figure 2. Dynamics of high lipid order at the cell plate during cytokinesis.

(a) Histograms showing the percentage of pixels per class of GP values between -0.7 (lower order) and 0.2 (higher order). Values were extracted from a single

cell plate (CP) and the closest plasma membrane (PM) of a cytokinetic Col-0 cell. Note the significant shift of GP values at the CP towards higher order compared

to GP values at the PM. Asterisks indicate a statistically significant difference between the GP value distributions for the PM and for the CP (**P = 0.0011).

(b) GP images of representative cytokinetic stages (early CP, middle CP and late CP) in Col-0. Note the decrease in lipid order (from red to yellow) from early to

late CPs, while the PM order remains lower (green).

(c) Quantitative analysis of mean GP value distributions for CPs and PMs obtained from multiple cells of the early, middle and late cytokinetic stages shown in

(b). Fifteen cells were analyzed per stage. The horizontal lines indicate the means of the non-normal distributions. P values obtained using the non-parametric,

two-tailed Mann–Whitney test indicate that differences between the distributions are highly significant (***P < 0.001) or significant (**P < 0.005). Exact P values

are given in Table S2.

(d) Mean relative GP values for each individual cell from the three cytokinetic stages from (c) calculated using the equation (GPPM – GPCP)/(GPPM + GPCP). Fifteen

cells were analyzed per stage. P values obtained using Student’s two-tailed t test for two samples indicate that differences between the distributions are signifi-

cant (**P < 0.01). Exact P values are given in Table S1.

(e) Time series of membrane order represented by eight selected GP images of a cell throughout the various stages of cell-plate formation. Numbers indicate

the time (min) from onset of imaging of an early unfused cell plate until cell-plate fusion.

(f) Quantification of all GP values extracted from the CP and PM for all 12 images acquired during the time series.

Scale bars = 5 lm.
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cpi1-1 mutant root callus cultures and analyzed by immu-

noblotting. This revealed that, in contrast to the DRM-

depleted protein STEROL METHYLTRANSFERASE 1

(SMT1) (Boutt�e et al., 2010), the CME components CLATH-

RIN HEAVY CHAIN (CHC), CLATHRIN LIGHT CHAIN (CLC),

DRP1A (Kang et al., 2003a; Fujimoto et al., 2007, 2010; Kon-

opka and Bednarek, 2008a; Kitakura et al., 2011; Wang

et al., 2013) and ADP-RIBOSYLATION FACTOR1 (ARF1),

which are required for endocytosis (Xu and Scheres, 2005;

Boutt�e et al., 2010), were enriched in DRMs obtained from

both wild-type and cpi1-1-mutant callus (Figure 5a–d). Our
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Figure 3. The high lipid order of cell-plate membranes is sterol-dependent.

(a) Histograms showing the percentage of pixels per class of GP values

between -0.7 (lower order) and 0.2 (higher order). Values were extracted from

a single cell plate (CP) and the closest plasma membrane (PM) of a cytoki-

netic cpi1-1 cell (in the Col-0 background). There was no significant shift of

GP values at the CP compared to GP values at the PM in cpi1-1 (P = 0.972).

(b) GP images of representative cytokinetic cells of the genotypes or treat-

ments: Col-0 (wild-type), cpi1-1 in the Col-0 background (cpi1-1), Col-0 trea-

ted with 0.1% DMSO as a solvent control, Col-0 treated with 1 lM lovastatin

(lov) and Col-0 treated with 50 lg ml�1 fenpropimorph (fen). Note the higher

lipid order (orange/red) at the CP compared to the PM (green) in Col-0 (wild-

type) and Col-0 treated with 0.1% DMSO compared to the lower lipid order at

the CP and PM (green) in cpi1-1 and lov- or fen-treated cells. Scale

bars = 5 lm.

(c) Quantitative analysis of mean GP value distributions for CPs and PMs

obtained from multiple cells of the genotypes or treatments shown in (b).

Forty cells in three to ten imaging experiments were analyzed for Col-0 and

cpi1-1, and 50 cells were analyzed for DMSO, lov and fen treatments. The

horizontal lines indicate the means of the non-normal distributions. P values

obtained using the non-parametric, two-tailed Mann–Whitney test indicate

that differences between distributions are highly significant (**P < 0.001) or

very highly significant (***P < 0.0001). Exact P values are given in Tables S2

and S3.

(a)

(b)

Figure 4. Altered sterol composition in cpi1-1 mutant root callus and in

roots treated with sterol biosynthesis inhibitors.

(a) GC/MS composition analysis of bulk sterols in 3-week-old root callus cul-

tures generated from roots of Ler wild-type and the homozygote cpi1-1

mutant (in the Ler background). Callus of individual cultures was pooled

from callus collections at passage after 3 weeks of culture, when small cal-

lus pieces were transferred to fresh culture plates. Values are means � SD

obtained from n = 4 cultures of Ler and n = 8 cultures of cpi1-1 grown in

parallel. Sterol composition is expressed as lg g�1 fresh weight of callus.

(b) GC/MS composition analysis of bulk sterols from 5-day-old Col-0 seed-

ling roots obtained from seedlings grown on MS agar plates containing

0.1% DMSO (DMSO), 1 lM lovastatin (lov) or 50 lg ml�1 fenpropimorph

(fen). Sterol composition is expressed as lg g�1 fresh weight. Values are

means � SD from five independent biological experiments. Note reduction

of bulk sterol content for sitosterol, stigmasterol and 24-methylcholesterol

(campesterol) upon lov treatment compared to the striking accumulation of

the cyclopropylsterols cycloeucalenol and 24-methylpollinastanol upon fen

treatment.
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finding that DRMs from cpi1-1 mutant callus showed levels

similar to the wild-type callus may partly be due to the fact

that the sterol composition profile of cpi1-1 root callus

(Figure 4a) was not as strongly altered as that of cpi1-1-

mutant roots (Men et al., 2008). Although we did not

observe differences in DRM association of the tested CME

proteins between the cpi1-1-mutant and wild-type root cal-

lus, our results clearly show that several CME components

from Arabidopsis root cells preferentially associate with

DRMs, indicating that they may associate with membrane

rafts.

To assess co-localization of CME components with ste-

rol-rich membranes in roots in situ, we used the 3-b-hy-
droxysterol-specific probe filipin III (Grebe et al., 2003) to

co-label fluorescent filipin–sterol complexes with DRP1A,

DRP2B or CLC 2 fused to GFP (DRP1A–GFP, DRP2B–GFP or

CLC2–GFP). We observed that sterols clearly co-localized

with DRP1A–GFP (Figure 5e–g), DRP2B–GFP (Figure 5h–j)

and CLC2–GFP (Figure 5k–m) at the cell plate. Additionally,

CLC2–GFP and sterols co-localized in some intracellular

compartments (Figure 5k–m), most likely the trans-Golgi

network/early endosome (Ito et al., 2012), whose mem-

branes are sterol-enriched (Boutt�e et al., 2010). Taken

together, several CME components co-localized with ster-

ols at the cell plate in the plane of cell division.

Cell-plate accumulation of DRP1A is sensitive to sterol

composition

Interestingly, specific localization of the KNOLLE syntaxin

in the plane of cell division relies on sterol-dependent

endocytosis in a clathrin- and DRP1A-dependent manner

(Boutt�e et al., 2010). KNOLLE is constrained to the cell

plate and to endomembrane compartments in wild-type,

but is ectopically found at lateral plasma membranes of

late cytokinetic cells in cpi1-1 and drp1a mutants (Boutt�e

et al., 2010). We determined whether loss of function of

the two individual DRP2 genes or the two individual CHC

genes also affects KNOLLE cell-plate localization. However,

we did not observe a deviation of KNOLLE localization

from that of the wild-type in drp2a, drp2b, chc1 and chc2

single mutants (Figure S2a–f). This may be due to the

reported redundancy within these two gene families as

indicated by early lethality of respective double mutants

(Backues et al., 2010; Kitakura et al., 2011).

We next evaluated whether altered sterol composition

affects the cell-plate localization of CME components. In

wild-type roots, DRP1A mainly localized along and towards

(a)

(c)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(d)

(b)

Figure 5. DRP1A is enriched in DRMs and co-localizes with sterols at the

cell plate.

(a–d) Western blot analysis of DRM fractions from 3-week-old Arabidopsis

callus cultures of wild-type Ler and the cpi1-1 mutant (in the Ler back-

ground). Equal amounts of membrane protein were loaded from the control

fraction mock-extracted at a Triton X-100 detergent/protein (w/w) ratio of 0

(non-DRM) and the DRM fraction extracted at a Triton X-100 detergent/pro-

tein (w/w) ratio of 8 (DRM). Similar results were obtained in three indepen-

dent experiments.

(a) Western blot from DRM extractions probed with anti-DRP1A (isoform-

specific), anti-CLC (generic), anti-ARF1 (generic) and anti-SMT1 (isoform-

specific) antibodies.

(b) Replicate Coomassie Blue gel as a loading control for the blot in (a).

(c) Western blot from DRM extraction probed with anti-CHC (generic) and

anti-SMT1 (isoform-specific) antibodies.

(d) Replicate Coomassie Blue gel as a loading control for the blot in (c).

The results in (a) and (c) indicate enrichment of DRP1A, CLC2, CHC and

ARF1 in DRMs compared to depleted SMT1.

(e–m) Co-localization analyses at the cell plate in late cytokinetic cells: (e,h,

k) filipin-sterol fluorescence (fil, red); (f) DRP1A–GFP, (i) DRP2B–GFP and (l)

CLC2–GFP fluorescence (green). (g,j,m) Merged images of (e) and (f), (h)

and (i), and (k) and (l), respectively. Scale bars = 5 lm.
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the edges of the forming cell plate, and was also present in

endomembrane compartments as well as at the plasma

membrane (Figures 5f and 6a). In comparison with wild-

type (Figure 6a), anti-DRP1A immunolabeling at the cell

plate was enhanced in the cpi1-1 mutant (Figure 6b), as

corroborated by quantitative analysis of DRP1A immuno-

fluorescence intensity at the plane of cell division

(Figure 6c). In contrast, the cell-plate localization of

DRP2B–GFP and CLC2–GFP appeared to be unaffected in

cytokinetic cpi1-1-mutant cells (Figure S2g–r), possibly due

to the abundance of other DRP2 and CHC isoforms at the

cell plate, or due to a differential sterol sensitivity of these

proteins compared to DRP1A.

Both genetic and pharmacological interference with

membrane sterol composition induce mis-localization of

KNOLLE at lateral plasma membranes during late cytokine-

sis (Boutt�e et al., 2010). We obtained similar results for

seedlings treated with 1 lM lov or with a lower fen concen-

tration (50 lg ml�1) than applied in previous studies

(200 lg ml�1) (Boutt�e et al., 2010). When compared with

solvent-treated wild-type (Figure 5d,g), fen and lov treat-

ment induced lateral KNOLLE mis-localization (Figure 6e,f,

h,i), under conditions that reduced cell-plate membrane

lipid order (Figure 3b,c). We previously observed KNOLLE

lateral mis-localization in the cyclopropylsterol-accumulat-

ing cpi1-1 mutant; however, this did not strongly affect the

rate of KNOLLE lateral diffusion (Boutt�e et al., 2010). We

also analyzed lateral diffusion of KNOLLE at the cell plate

of DMSO-treated and lov-treated roots in the presence of

the protein translation inhibitor cycloheximide and energy

inhibitors (sodium azide and 2-deoxy-d-glucose) by fluo-

rescence recovery after photobleaching (FRAP) analyses

(Figure S3). Compared with cells from DMSO-treated roots

(Figure S3a,c), functional YFP–KNOLLE displayed only mar-

ginally faster FRAP at cell plates from lov-treated roots

(Figure S3b,c), suggesting that reduction of total sterol lev-

els by lov treatment hardly affects lateral membrane diffu-

sion of YFP–KNOLLE per se, similar to the results obtained

for GFP–KNOLLE in the cpi1-1 mutant (Boutt�e et al., 2010).

More strikingly, KNOLLE localization is strongly affected by

interference with CME components, and particularly

depends on DRP1A function (Boutt�e et al., 2010). This

prompted us to investigate whether sterol-modulated
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Figure 6. Cell-plate accumulation of DRP1A is sensitive to sterol composi-

tion.

(a,b) anti-DRP1A immunolocalization (red) in late cytokinetic root cells of (a)

wild-type (Ler) and (b) the cpi1-1 mutant (in the Ler background). Blue stain-

ing indicates DAPI-stained DNA.

(c) Quantification of DRP1A immunofluorescence intensity at cell plates

from multiple cells (n = 125–146). Frequency distributions of cells per class

average pixel intensity at the cell plate are shown. The mean pixel intensity

was calculated as described in Experimental procedures. Non-normal distri-

butions were analyzed for significance of differences between distributions

by the non-parametric, two-tailed Mann–Whitney test with a significance

threshold level of P < 0.05. The P value for Ler (n = 146 cells from 50 roots)

versus cpi1-1 (n = 125 cells from 47 roots) is 0.014694 (asterisk).

(d–l) Analyses of 5-day-old root cells from Arabidopsis seedlings grown on

medium supplemented with 0.1% DMSO solvent (d,g,j), 50 lg ml�1 fen (e,h,k)

or 1 lM lov (f,i,l). (d–f) Anti-KNOLLE immunolabeling of late cytokinetic cells

treated with (d) DMSO, (e) fen or (f) lov. (g–i) Functional YFP–KNOLLE

expressed in late cytokinetic root cells of seedlings treated with (g) DMSO,

(h) fen or (i) lov. Labeling of the ectopic lateral membrane by anti-KNOLLE

(e,f) and YFP–KNOLLE (h,i) is indicated by arrowheads. (j–l) DRP1A immuno-

fluorescence labeling of late cytokinetic root cells of seedlings treated with

(j) DMSO, (k) fen or (l) lov. Blue staining indicates DAPI-stained DNA.

(m) Quantification of DRP1A immunofluorescence intensity at the cell plate

from multiple cells of roots from seedlings treated with DMSO, fen or lov.

Frequency distributions of cells per class average pixel intensity at the cell

plate (calculated as described in Experimental procedures) are shown. Dis-

tributions were analyzed for significance of differences by the non-paramet-

ric, two-tailed Mann–Whitney test with a significance threshold level at

P < 0.05. *P = 0.015068 for DMSO (n = 146 cells from 50 roots) versus fen

(n = 100 cells from 31 roots); ***P < 2e-06 for DMSO (n = 95 cells from 25

roots) versus lov (n = 73 cells from 28 roots).

Scale bars = 5 lm in (a), (b) and (d–l).
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membrane order may also affect DRP1A localization at the

cell plate. Indeed, compared to solvent-treated control

roots (Figure 6j), higher DRP1A immunofluorescence was

found at the cell plate in fen-treated seedlings (Figure 6k);

this result was supported by quantitative analysis (Fig-

ure 6m). In contrast, reducing sterol concentration by lov

treatment strongly decreased the DRP1A signal (Figure 6l,

m and Figure S2u,v). Similarly, Western blot analysis of

total protein extracts revealed increased DRP1A protein

levels in fen-treated seedlings compared to DMSO-treated

controls, in contrast to the decreased DRP1A protein levels

observed upon lov treatment (Figure S4). Taken together,

our findings reveal differential effects of alterations in ste-

rol composition and concentration on DRP1A localization

at the cell plate.

DRP1A is required for high membrane lipid order at the

cell plate

Previous studies showed that DRP1A and CPI1 function is

required for correct execution of cytokinesis and for endo-

cytosis of cargo proteins such as KNOLLE during late cyto-

kinesis (Boutt�e et al., 2010) or the PIN2 auxin efflux carrier

after cytokinesis, respectively (Men et al., 2008; Mravec

et al., 2011). Moreover, analysis of the drp1a cpi1-1 double

mutant revealed a strong synergistic interaction of the

DRP1A and CPI1 genes (Boutt�e et al., 2010). As interference

with sterol composition and membrane order affected the

cell-plate localization of DRP1A, we determined whether

DRP1A contributes to membrane lipid order as visualized

by di-4-ANEPPDHQ. In striking contrast to the wild-type,

which exhibited a higher mean GP value for the cell plate

than for the plasma membrane, cytokinetic cells in drp1a-

single mutants displayed similar mean GP values for the

cell plate and the plasma membrane (Figure 7a,b), indicat-

ing similar lipid order. Hence, DRP1A localization not only

depends on sterol composition, but its activity may also

feedback on the lipid order of cell-plate membranes.

DISCUSSION

In this study, we provide evidence that the plant cell plate

represents a high lipid-order membrane domain. Sterols

are clearly present in cell-plate membranes but are not

preferentially enriched here compared with the plasma

membrane in cytokinetic cells. However, genetic and phar-

macological interference with sterol biosynthesis strongly

disrupted cell plate-specific membrane order (Figure 8).

This suggests that additional, specifically localized compo-

nents may contribute to membrane order. Strikingly, sev-

eral CME components accumulate at the cell plate (Kang

et al., 2003a,b; Fujimoto et al., 2007, 2008; Boutt�e et al.,

2010; Mravec et al., 2011), and have been found to be

enriched in DRMs from tobacco, Nicotiana tabacum, cells

as well as Arabidopsis leaf plasma membranes (Mongrand

et al., 2004; Minami et al., 2009). Indeed, we found that

CME components were preferentially enriched in DRMs

compared to non-DRMs from Arabidopsis root callus cul-

tures, and observed that DRP1A, DRP2B and CLC2 co-local-

ized with sterols at the cell plate in roots. Thus, sterol-rich,

high lipid-order membranes apparently function as plat-

forms for CME at the cell plate.

The stronger accumulation of DRP1A at the cell plate of

cpi1-1 mutant and fen-treated root cells compared to con-

trol roots, as well as the ectopic accumulation of YFP–

KNOLLE and native KNOLLE at the plasma membrane of

cpi1-1 mutant and fen-treated seedlings during late cytoki-

nesis, are consistent with the increased residence time of

DRP1A foci at the cell cortex in elongated root cells of fen-

treated roots (Konopka and Bednarek, 2008a). Thus, these
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Figure 7. DRP1A is required for high membrane lipid order at the cell plate.

(a) Color-coded GP images from ratiometric fluorescence live imaging

analyses of membrane lipid order in cytokinetic cells of 5-day-old seedling

roots of genotypes Col-0, drp1arsw9 or drp1a060977 labeled with di-4-ANE-

PPDHQ. Red, high lipid order; black, low lipid order.

(b) Quantitative analysis of mean GP value distributions from cell plates

(CP) and plasma membranes (PM) obtained from multiple cells (n = 40) for

each of the genotypes (Col-0, drp1arsw9 or drp1a060977) collected in 3–7
imaging experiments. Horizontal lines indicate means of the non-normal

distributions. P values obtained using the non-parametric, two-tailed Mann–
Whitney test with a significance threshold level at P < 0.05 indicate that dif-

ferences between the indicated distributions are highly significant

(***P < 0.001). Exact P values are given in Tables S2 and S3.

Note the strong difference in cell-plate membrane lipid order between Col-0

and drp1a mutant alleles.

The cells for Col-0 (n = 40) were acquired independently of the Col-0 cells

for which results are shown in Figure 2c.
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results suggest that alterations in sterol composition that

induce accumulation of cyclopropylsterols affect the

release of DRP1A from the membrane during endocytosis

(Figure 8). By comparison, reduction of sterol concentration

by lov treatment reduced the amount of DRP1A at the cell

plate, but also decreased lipid membrane order, similar to

alteration of sterol composition (Figure 8). This implies

that a critical sterol concentration is required for high

membrane order and DRP1A membrane localization. Col-

lectively, our results indicate that DRP1A localization may

be regulated by membrane sterol composition, although it

is possible that alterations of sterol composition affect

overall DRP1A protein abundance, because total DRP1A

levels observed in protein extracts were affected similarly

to DRP1A protein localization at the cell plate as observed

by immunolocalization or use of fluorescent DRP1A fusion

proteins. More intriguingly, DRP1A function itself is

required for high membrane lipid order at the cell plate.

Such potential feedback modulation of membrane lipid

order by DRP1A may occur through its function in endocy-

tosis. DRP1A function in endocytosis is required to restrict

lateral diffusion of KNOLLE to the plane of cell division

(Boutt�e et al., 2010), as well as for selective asymmetric

internalization of PIN auxin efflux carriers after cell division

(Mravec et al., 2011). Interestingly, sterols accumulate at

the contractile actin ring in fission yeast and sea urchins

during cytokinesis (Wachtler et al., 2003; Takeda et al.,

2004; Ng et al., 2005), and membrane raft components

including dynamin are enriched in the mammalian mid-

body (Skop et al., 2004). Our study on plants, which dis-

play a very different mode of cytokinesis, suggests that

evolutionarily diverse organisms use high lipid-order

membrane domains as platforms for execution of cytokine-

sis. Moreover, our findings provide precedence for a func-

tion of dynamin-like proteins in the lipid order of

cytokinetic membranes. Future studies may reveal whether

various eukaryotes employ dynamin-dependent endocyto-

sis to create high lipid-order domains to drive execution of

their diverse modes of cytokinesis.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

We used the Arabidopsis thaliana L. Heyn. ecotypes Landsberg
erecta (Ler) and Columbia-0 (Col-0), and the following mutants:
cpi1-1 in the Ler background (Men et al., 2008) and cpi1-1 out-
crossed seven times to the Col-0 background, herein referred to
as cpi1-1 in the Col-0 background, drp1arsw9 (Collings et al.,
2008) and drp1a069077 (SALK_069077) in the Col-0 background
(Collings et al., 2008; Boutt�e et al., 2010), drp2a-1 and drp2b-2
(Backues et al., 2010), and chc1-2, chc2-1 and chc2-2 (Kitakura
et al., 2011) in the Col-0 background. Molecular characterization
of the cpi1-1, drp1a, drp2a-1, drp2b-2, chc1-2, chc2-1 and chc2-
2 mutants was performed by PCR-based genotyping as
described previously (Collings et al., 2008; Men et al., 2008;
Backues et al., 2010; Boutt�e et al., 2010; Kitakura et al., 2011). In
addition, we used the fluorescent protein marker lines
pKNOLLE:YFP-KNOLLE in the Ler/Niederzenz-0 background (El
Kasmi et al., 2013), pDRP1A:DRP1A-tagRFP;pDRP2B:DRP2B-GFP
in the Col-0 background (Fujimoto et al., 2010), and pDRP1A:
DRP1A-mGFP5 (Kang et al., 2003a) and pCLC2:CLC2-GFP (Kon-
opka and Bednarek, 2008b) in the Wassilewskija background.
Plant growth conditions were as described previously (Fischer
et al., 2006). For DRM extraction and sterol analyses of root cal-
lus, 3-week-old callus cultures of Ler and cpi1-1 (in the Ler
background) were grown as described previously (Encina et al.,
2001) at 22°C, 60% humidity, in the dark.

Drug treatments

For inhibitor treatments, fenpropimorph (Pestanal, Sigma, http://
www.sigmaaldrich.com/) was dissolved in DMSO to give a stock
solution of 200 mg ml�1, and lovastatin (Mevinolin, Sigma) was
dissolved in DMSO to 2 mM, respectively. Seedlings were grown
on MS agar plates containing 50 lg ml�1 fenpropimorph (fen) or
1 lM lovastatin (lov), or on control plates containing an equal
amount of 0.1% DMSO. Analyses were performed on 5-day-old
seedlings.

Sterol analysis from roots and root callus cultures of

Arabidopsis

Sterol extraction and subsequent analysis of sterols derived
from roots dissected from 5-day-old seedlings grown on MS

Figure 8. Model for sterol and DRP1A action on cell-plate membrane lipid

order.

Alteration of sterol composition by cpi1-1 mutation or fenpropimorph (fen)

treatment induces a decrease in lipid order at the cell plate (CP) and

increased DRP1A accumulation at the CP. The decreased sterol concentra-

tion caused by lovastatin (lov) treatment induces a decrease in lipid order at

the CP and DRP1A residence at the CP. The lipid order of CP membranes is

also decreased in the drp1a mutant, suggesting that DRP1A is needed for

high lipid order. The mode(s) of sterol action on DRP1A requires further

mechanistic analysis, and may include effects in addition to those on lipid

order.
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agar plates containing DMSO, 50 lg ml�1 fen or 1 lM lov was
performed by GC/TOF MS exactly as previously described (Men
et al., 2008), except that five independent biological experi-
ments were performed. Sterol analyses from root callus cul-
tures were performed using 20 mg fresh weight of 3-week-old
callus for each individual wild-type and mutant line tested.

Detergent-resistant membrane analysis

All steps of the DRM extraction were performed at 4°C as
described previously (Borner et al., 2005; Boutt�e et al., 2010). In
brief, root callus tissue derived from roots of 3-week-old Ler or
the cpi1-1 mutant (in the Ler background) was ground in two
volumes of homogenization buffer (12% w/v sucrose, 100 mM

Tris/HCl pH 8.0, 1 mM EDTA), and total membrane was col-
lected as described previously (Borner et al., 2005). Protein
quantification was performed using a bicinchoninic acid (BCA)
protein assay kit (Thermo Scientific, http://www.thermoscienti-
fic.com/) and a Spectra-MAX190 multichannel spectrophotome-
ter (Molecular Devices, http://www.moleculardevices.com/). A
total of 2.5 mg total membrane protein was incubated without
Triton X-100 (ratio 0) or with 20 mg Triton X-100 (ratio 8) for
35 min under agitation (100 rpm). The final volume was kept
constant for the two ratios so that the percentage of Triton X-
100 did not exceed 3% at ratio 8. After sucrose step-gradient
centrifugation, DRMs were collected as described previously
(Borner et al., 2005), and their protein concentration was deter-
mined using the BCA kit. Equal amounts of protein from vari-
ous fractions (5–7 lg) were separated by SDS–PAGE using a
Bio-Rad (http://www.bio-rad.com/) Mini-Protean� 3 system, and
subjected to Western blotting. The primary antibodies and dilu-
tions used were: rabbit anti-KNOLLE, 1:1000 (Lauber et al.,
1997); rabbit anti-SMT1, 1:100 (Agrisera, http://www.agrisera.
com/) (Boutt�e et al., 2010); rabbit anti-CLC2, 1:10 000 (Wang
et al., 2013); mouse anti-CHC-4A8, 1:1000 (ab33474, Abcam,
http://www.abcam.com/); rabbit anti-DRP1A, 1:250 (Backues and
Bednarek, 2010); rabbit anti-ARF1, 1:1000 (Agrisera). The sec-
ondary antibodies used were horseradish peroxidase-conjugated
goat anti-mouse IgG, 1:3000 (Bio-Rad), and ECL horseradish
peroxidase-linked donkey anti-rabbit IgG whole antibody,
1:10 000 (Amersham, http://www.gelifesciences.com/). An ECL
Western blotting detection reagent kit (Amersham) was used
for chemiluminescent detection.

Filipin-sterol fluorescence labeling and detection

Five-day-old seedlings were completely submerged in a filipin
III (225 lM; Sigma)/4% w/v paraformaldehyde fixative solution in
microtubule-stabilizing buffer (MTSB) comprising 50 mM PIPES,
5 mM EGTA, 5 mM MgSO4, pH 7.0 (Grebe et al., 2003). In a con-
ventional microwave oven (Electrolux, http://www.electrolux.
com), specimens were pulsed six or seven times for 30 sec at
90 W with an interval of at least 1 min between each pulse
(Boutt�e et al., 2011). Staining/fixation were continued for 1 h at
room temperature in the dark, after which the seedlings were
washed three times for 5 min each with sterile distilled water.
In the case of co-labeling with CLC–GFP, the microwave step
was omitted, and the seedlings were stained/fixed for 2 h at
room temperature instead. Root tips were dissected and
mounted in a drop of Citifluor AF1 (Citifluor Ltd, http://citifluor.
com/). Fluorescence was detected by confocal laser scanning
microscopy using a Leica TCS SP2 AOBS (http://www.leica-
microsystems.com/) spectral system mounted on a Leica DM
IRE2 inverted microscope. Image acquisition settings were as
described previously (Boutt�e et al., 2011). The excitation wave-

lengths used were 364 nm (argon UV laser) for filipin-sterol flu-
orescence, 488 nm (argon laser) for GFP and 561 nm (diode
laser) for tagRFP (Figure S2). Fluorescence emission was
detected between 400 and 484 nm, 492 and 557 nm and 580
and 700 nm, respectively. Pictures were overlaid and assembled
using Adobe Illustrator CS6 (http://www.adobe.com/).

Ratiometric di-4-ANEPPDHQ fluorescence microscopy

imaging of membrane lipid order

Di-4-ANEPPDHQ (D36802, Molecular Probes, http://www.lifetech-
nologies.com/) was dissolved in 300 ll DMSO to create a stock
solution of 5 mM, and stored sealed in an air-tight, light-proof
vial at room temperature (21°C) for up to 6 months. Staining solu-
tion was prepared by dissolving 2 ll of di-4-ANEPPDHQ stock solu-
tion in 2 ml of MS medium. Five-day-old seedlings were
submerged in staining solution for 90 min at room temperature.
Specimens were washed three times for 1 min at room tempera-
ture in MS medium, and roots were mounted for observation by
confocal laser scanning microscopy using a Zeiss LSM 780 Axio
Observer inverted microscope (http://www.zeiss.com/microscopy/
en_de/home.html) and a water-corrected Plan-Apochromat 409/
1.20 DIC M27 objective (Zeiss; http://www.zeiss.com/microscopy/
en_de/home.html). Di-4-ANEPPDHQ fluorescence was excited at
488 nm, and fluorescence intensity images were recorded simulta-
neously in the ranges 500–580 and 620–750 nm.

The calculation of the GP images obtained from ratiometric
di-4-ANEPPDHQ fluorescence imaging was performed using
ImageJ (http://imagej.nih.gov/ij/) following the procedure
described by Owen et al. (2012) and using their custom-written
macro. The ordered (500–580 nm) and disordered (620–750 nm)
phase fluorescence channels were assigned ch00 and ch01,
respectively. The threshold value for the analysis was fixed at
15, the color scale for the output GP images was set to ‘grays’,
and no immunofluorescence mask was selected. The ImageJ
macro for GP analysis generates GP images from ordered and
disordered channel images based on the following equation:

GP ¼ I500 580 �GI620 750

I500 580 þGI620 750

where I represents the intensity in each pixel in the image
acquired in the indicated spectral channel (numbers in nm). To
compensate for differences in the efficiency of collection in the
two channels, GP values were corrected using a G factor. In order
to obtain the G factor, the same microscope set-up employed for
imaging root samples was used to image the fluorescence of a
drop of undiluted di-4-ANEPPDHQ stock solution (2 ll) at three
laser powers (0.3%, 0.5% and 1%). The mean pixel intensities of
the channels ch00 (ordered) and ch01 (disordered) were extracted
in ImageJ, and corresponding GPmes values were calculated
(using the previous equation with G = 1). The G factor was then
calculated according to the equation:

G ¼ GPref þGPref GPmes �GPmes � 1

GPmes þGPref GPmes �GPref � 1

GPref is a reference value for di-4-ANEPPDHQ in DMSO, here fixed
at -0.85 (Owen et al., 2012). In this study, the G factor was defined
as G = �0.35.

GP values were calculated and pseudo-colored, ratiometric
images were generated in ImageJ. The mean GP values were cal-
culated for fluorescence at the cell plate (CP) and at the closest
plasma membrane (PM) from cytokinetic root tip cells of Col-0
(two independent sets of cells, n = 50 and n = 40), cpi1-1 (in the
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Col-0 background) (n = 40), drp1arsw9 (n = 40) and drp1A060977

(n = 40), as well as cells from Col-0 seedlings grown on plates
containing 0.1% DMSO (n = 50), 50 lg ml�1 fen (n = 50 cells) or
1 lM lov (n = 50). As distributions of the measured populations of
cells did not follow a normal distribution, the non-parametric,
two-tailed Mann–Whitney U rank order sum test (http://ele
gans.som.vcu.edu/~leon/stats/utest.html) was used to test for sig-
nificance of difference between the distribution of GP values of CP
and PM. First, the difference between the distribution of GP values
in the CP and PM was tested within the same line. Second, the dif-
ference between the distributions of GP values for the CP and GP
values for the PM was compared between Col-0 and the mutant
lines cpi1-1 in the Col-0 background, drp1arsw9 and drp1A060977, or
between Col-0 treated with DMSO and cells from seedlings treated
with fen or lov.

Ratiometric PY3174 fluorescence microscopy imaging of

membrane lipid order

PY3174 was employed using a similar procedure as for di-4-ANE-
PPDHQ. Stock solution for PY3174 (Kwiatek et al., 2013) was
prepared by dissolving 2 mg of the probe in ethanol to a final con-
centration of 6.57 mg ml�1. Staining solution was prepared by
dissolving 1 ll of PY3174 stock solution in 2 ml of MS medium.
PY3174 fluorescence was excited at 488 nm, and fluorescence
intensity images were recorded simultaneously in the ranges 505–
590 and 620–690 nm. The ratiometric calculation of the GP images
obtained from PY3174 fluorescence was performed as described
above except that the G factor was defined as G = 0.82. The signif-
icance of the difference between the distribution of GP values for
CP and PM was tested on n = 66 GP values each using a two-
tailed Mann–Whitney U rank order sum test (http://ele
gans.som.vcu.edu/~leon/stats/utest.html).

Immunolocalization and confocal laser-scanning

microscopy

Whole-mount immunofluorescence localization was performed as
described previously (Fischer et al., 2006; Men et al., 2008; Boutt�e
et al., 2010). In brief, 5-day-old seedlings were fixed in 4% parafor-
maldehyde in MTSB for 1 h, then washed three times with MTSB,
followed by three washes with sterile distilled water. Root tips were
dissected, transferred to polylysine microscope slides (Menzel
Gl€aser, http://www.menzel.de/), and dried at room temperature. Per-
meabilization was achieved by 35 min incubation in 2% Driselase
(Sigma) at room temperature, followed by treatment for 1 h in 10%
DMSO, 3% IPEGAL (Sigma) in MTSB (pH 7.0) at room temperature.
After blocking with 5% normal donkey serum (Jackson ImmunoRe-
search, https://www.jacksonimmuno.com/) in MTSB, primary and
secondary antibodies were applied. Washes were performed as
described previously (Fischer et al., 2006). Prior to mounting in Citi-
fluor AF1, root tips were stained with 2 lg ml�1 4’,6-diamidino-2-
phenylindole (DAPI, Sigma) for 30 min. The primary antibodies and
dilutions usedwere: rabbit anti-KNOLLE, 1:4000 (Lauber et al., 1997)
and rabbit anti-DRP1A, 1:500 (Backues and Bednarek, 2010). Sec-
ondary antibodies were diluted as follows: fluorescein isothiocya-
nate-coupled donkey anti-rabbit, 1:250 (Jackson ImmunoResearch),
Cy5-coupled donkey anti-rabbit IgG, 1:300 (Jackson ImmunoRe-
search) and Dylight 649-conjugated affiniPure donkey anti-rabbit
IgG (H+L), 1:800 (Jackson ImmunoResearch). Whole-mount immu-
nolabeling detection and live imaging were performed by confocal
laser scanningmicroscopy using either a Leica TCS SP2 AOBS spec-
tral confocal laser scanning microscope mounted on a Leica DM
IRE2 invertedmicroscope or a Zeiss LSM 780Axio Observer inverted
microscope. An oil-corrected 639 objective (NA = 1.4, HCX PL APO

lbd.BL 63.0 9 1.40 oil; Leica) or a Plan-Apochromat 639/1.40 oil DIC
M27 in the Zeiss LSM 780, or a water-corrected 639 objective
NA = 1.2 (HCX PL APO 63.0 9 1.20WBD UV, Leica) were used. Exci-
tation wavelengths were 405 nm (blue diode laser) for DAPI,
488 nm for GFP and fluorescein isothiocyanate, 514 nm (argon
laser) for YFP, 561 nm for tagRFP and 633 nm (helium/neon lasers)
for Cy5/Dylight 649 fluorescence. Fluorescence emission was
detected at 410–510 nm for DAPI, 490–595 nm for GFP (or 497–
550 nm when imaged together with tagRFP), 500–550 nm for fluo-
rescein isothiocyanate, 525–600 nm for YFP, 580–680 nm for tag-
RFP, 638-690 nm for Cy5, and 644–759 nm for Dylight 649. In multi-
labeling studies, detection was performed in sequential line-scan-
ning mode with a line average of 8 for the Leica confocal laser scan-
ning microscope or a line average of 4 for the Zeiss confocal laser
scanning microscope. Pictures from sequential scans were overlaid
and assembled using Adobe Illustrator CS6.

Quantitative analyses of fluorescence intensity

Transmitted light images obtained in parallel with DRP1A fluores-
cence enabled delineation of the cell plate in cells that had low
levels of DRP1A label. Intensity measurements of DRP1A immuno-
fluorescence or DRP1A–GFP were performed using ImageJ. The
cell plate for each cytokinetic cell was encircled using the ‘Polygon
selection’ tool, and the pixel intensity at the cell division plane
was obtained using the ‘histogram’ option of the ‘Analyze’ menu.
The mean pixel intensity was obtained by multiplying each inten-
sity level (0–255) by the number of pixels displaying that corre-
sponding intensity. Subsequently, the sum of all pixel intensity
values was divided by the total number of pixels. Additionally, the
same selection tool was used to define a region in the back-
ground, and the mean pixel intensity was measured in this area.
For each cell, the mean pixel intensity at the cell division plane
was corrected for background fluorescence. Values obtained were
divided into classes, and these classes were plotted on a graph to
obtain the distribution per genotype or treatment. Measurements
were obtained for wild-type and cpi1-1 mutant seedlings immuno-
stained with anti-DRP1A antiserum. In addition, we quantified the
DRP1A immunofluorescence in wild-type seedlings treated with
fen, lov or DMSO, as described above. Furthermore, GFP fluores-
cence was quantified in DRP1A–GFP-expressing seedlings treated
with fen, lov or DMSO. Statistical significances were calculated
using the non-parametric two-tailed Mann–Whitney U rank order
sum test (http://elegans.som.vcu.edu/~leon/stats/utest.html).

FRAP analyses

FRAP analyses were performed using a Zeiss LSM 780 Axio Obser-
ver inverted confocal laser scanning microscope with a water-cor-
rected 409/1.2 C-Apochromat M27 objective (Zeiss). Pre-bleach and
post-bleach signals of YFP–KNOLLE fluorescence were detected at
1% laser power for the 514 nm laser excitation line and 510–
620 nm emission settings. One bleach frame of 2 lm diameter at
the membrane was placed in the middle of the cell division plane.
Photobleaching was performed using ten 3.64 s bleach scan peri-
ods and 100%main laser power for the 514 nm excitation laser line.
Values from the plane of cell division were normalized for loss of
fluorescence caused by photobleaching by correcting for differ-
ences between pre- and post-bleach values observed in neighbor-
ing cells. For each treatment condition, 13 cells from 13 individual
roots were analyzed. Values were normalized to pre-bleach values
and post-bleach values corresponding to 100% and 0%, respec-
tively. The half-time (t½) required for fluorescence in the photo-
bleached region to recover to 50% of the recovery asymptote was
15 min. The significance of the subtle deviations observed between

© 2014 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2014), 80, 745–757

DRP1A and membrane order during plant cytokinesis 755

http://elegans.som.vcu.edu/~leon/stats/utest.html
http://elegans.som.vcu.edu/~leon/stats/utest.html
http://elegans.som.vcu.edu/~leon/stats/utest.html
http://elegans.som.vcu.edu/~leon/stats/utest.html
http://www.menzel.de/
https://www.jacksonimmuno.com/
http://elegans.som.vcu.edu/~leon/stats/utest.html


DMSO- and lov-treated cell populations analyzed by FRAP was
determined using Student’s two-tailed, two-sample t test assuming
equal variance.

Western blot analysis of total protein extracts

Total protein was extracted from 5-day-old seedlings grown on
MS agar plates containing 50 lg ml�1 fen or 1 lM lov, or control
plates containing an equal volume of 0.1% DMSO compared to
the fen- and lov-containing plates. Seedlings were frozen in liquid
nitrogen and ground with a fine pestle in 200 ll extraction buffer
per 20 seedlings. The extraction buffer comprised 25 mM Tris/HCl
pH 7.5, 10 mM MgCl2, 5 mM EGTA, 10% glycerol, 100 mM NaCl,
0.2% Tween-20, 10 ll ml�1 proteinase inhibitor cocktail (Sigma
Aldrich) and 2 mM dithiothreitol. Supernatants were collected after
10 min centrifugation at 11 000 g, and used for Western blot
analyses. Protein quantification was performed using Bradford
reagent (Bio-Rad). Equal amounts of protein (30 lg) were sepa-
rated by SDS–PAGE using a Bio-Rad Mini-Protean� 3 system, and
subjected to Western blotting. The primary antibodies and dilu-
tions used were: mouse monoclonal anti-Hsc70 antibody and
plant ER BiP (endoplasmic reticulum Binding Protein), 1:1000
(Nordic Biosite AB, http://www.nordicbiosite.com/), rabbit anti-
DRP1A, 1:500 (Backues and Bednarek, 2010) and rabbit anti-
KNOLLE, 1:1000 (Lauber et al., 1997). The secondary antibodies
were horseradish peroxidase-conjugated goat anti-mouse IgG
(Bio-Rad), 1:3000 and horseradish peroxidase-linked ECL donkey
anti-rabbit IgG whole antibody, 1:10000 (Amersham). An ECL Wes-
tern blotting detection reagent kit (Amersham) was used for
chemiluminescent detection.
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