PSYCHOPHYSIOLOGY

Psychophysiology, 51 (2014), 1207-1224. Wiley Periodicals, Inc. Printed in the USA.
Copyright © 2014 Society for Psychophysiological Research
DOI: 10.1111/psyp.12343

Genome-wide scans of genetic variants for psychophysiological

endophenotypes: A methodological overview

WILLIAM. G. IACONO,* STEPHEN. M. MALONE,* UMA VAIDYANATHAN,* aND SCOTT I. VRIEZE®

“Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
hDepartment of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA

Abstract

This article provides an introductory overview of the investigative strategy employed to evaluate the genetic basis of 17
endophenotypes examined as part of a 20-year data collection effort from the Minnesota Center for Twin and Family
Research. Included are characterization of the study samples, descriptive statistics for key properties of the
psychophysiological measures, and rationale behind the steps taken in the molecular genetic study design. The statistical
approach included (a) biometric analysis of twin and family data, (b) heritability analysis using 527,829 single nucleotide
polymorphisms (SNPs), (c) genome-wide association analysis of these SNPs and 17,601 autosomal genes, (d) follow-up
analyses of candidate SNPs and genes hypothesized to have an association with each endophenotype, (e) rare variant
analysis of nonsynonymous SNPs in the exome, and (f) whole genome sequencing association analysis using 27 million
genetic variants. These methods were used in the accompanying empirical articles comprising this special issue,
Genome-Wide Scans of Genetic Variants for Psychophysiological Endophenotypes.

Descriptors: Biometric modeling, Genome-wide complex trait analysis, Genome-wide association study, Exome chip,

Whole genome sequencing, Endophenotype

Over the course of its 25-year history, the Minnesota Center for
Twin and Family Research (MCTFR) has been among the leading
contributors to research in developmental psychopathology, taking
advantage of large, genetically informative, prospectively studied
parent-offspring samples to generate insights into the nature of the
genetic liability that underlies risk for the development of mental
disorders. One of the central aims of the MCTFR has been the
evaluation of psychophysiological measures for their potential as
psychiatric endophenotypes. MCTFR studies have examined the
heritability of psychophysiological variables, their degree of asso-
ciation with psychopathology, and the extent to which they identify
those at risk for the development of mental disorders. In 2007,
funding was obtained to procure DNA samples from MCTFR par-
ticipants to enable studies of the molecular genetic basis of psy-
chiatric disorder-relevant traits, including MCTFR candidate
endophenotypes, which has led to the development of this special
issue. This article lays the foundation for the seven accompanying
empirical papers by detailing the analytic methods used and pro-
viding descriptive findings that characterize the candidate
endophenotypes.

Endophenotypes are laboratory-based quantitative measures
indexing genetic risk for a psychiatric disorder. Because they are
presumed to be more proximal to gene effects and thus more
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indicative of the genetic pathways that underlie complex psychiat-
ric disorders, it has been suggested that endophenotypes might
facilitate finding genes relevant to the associated disorder (cf.
Gottesman & Gould, 2003; Iacono & Malone, 2011). Indeed, sub-
stantial interest in endophenotypes has emerged in recent years
in psychophysiological, psychiatric (Braff et al., 2008; Flint &
Munafo, 2007), and molecular genetic (Wood & Neale, 2010)
research. However, the degree to which endophenotypes may
assist gene finding remains an open question (e.g., for contrasting
perspectives, see Flint & Munafo, 2007; Jonas & Markon, 2014)—
one that the current relatively broad-based approach using a large
sample such as the MCTEFR is better designed to address than past
attempts using small samples focused on candidate
genes. Moreover, independent of their status as endophenotypes,
psychophysiological measures tap into neurobiological and
psychological constructs (e.g., arousal mechanisms, attention,
working memory, emotion regulation), the genetic basis of which
are of interest in their own right (e.g., see Anokhin, 2014, who
makes a strong case for the value of understanding how genetic
factors influence psychophysiological measures).

Each of the first five empirical papers in this special issue,
which deal with common genetic variants, is based on a different
measure (P3 amplitude, antisaccade error rate) or set of measures
(electroencephalogram [EEG] characteristics, multiple measures of
electrodermal activity, and modulation of the startle eye blink)
that, to varying degrees can be considered endophenotypes for
different disorders. Each paper reviews evidence for considering a
particular measure as an endophenotype, taking into account (when
possible) criteria we have recently enumerated and that emphasize
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a developmental perspective (Iacono & Malone, 2011). Key criteria
involve heritability, association with one or more clinical pheno-
types believed to share a common genetic liability, presence in
unaffected individuals at high genetic risk, and the ability to predict
prospectively the development of disorder.

Overview of the MCTFR Endophenotypes

At the time the MCTFR was begun 25 years ago, endophenotype
research was in a relatively nascent state, and it was not clear what
psychophysiological measures might best tap into genetic liability
for psychopathology in a general population sample of prospec-
tively studied twin children. Ultimately, the measures chosen were
selected from those reported in the literature to show strong
evidence of heritability and association with psychopathology,
including those derived from established laboratory paradigms that
showed that first-degree relatives of affected individuals scored
outside “normal” range. This led to the selection of measures that,
at the time, had demonstrated potential as endophenotypes for
alcoholism, mood disorders, and schizophrenia (lacono, 1985,
1998; Iacono, Lykken, & McGue, 1996). P3 event-related potential
amplitude, resting EEG spectral characteristics, eye tracking per-
formance, and electrodermal habituation met these criteria and
became part of the standard psychophysiological assessment
battery used for all participants. The acoustic startle reflex and its
affective modulation were added to the battery later, and therefore
were not assessed on all participants. At the time these startle
measures were added, there was scant evidence supporting startle
as an endophenotype. Their addition was instead motivated pri-
marily by research supporting the potential of the startle paradigm
to provide insights into the neurobiology of psychiatric disorder
(Vaidyanathan, Patrick, & Cuthbert, 2009), a feature that has
resulted in its prominence in the National Institute of Mental
Health’s Research Domain Criteria (RDoC, Insel et al., 2010).

The psychophysiological measures and evidence supporting them
as endophenotypes are described in detail in each of the five empi-
rical papers examining their association with common molecular
genetic variants (using genome-wide association study [GWAS]
methods). All 17 are considered together in the two papers dealing
with rare genetic variants (using an exome chip array and sequencing
methods). Box 1 provides a brief description of the five psychophysi-
ological paradigms and the measures derived from each.

Overview of the MCTFR and the Samples Used in
Endophenotype Studies

Characterization of MCTFR Samples

The MCTFR oversees a set of longitudinal investigations focused
on families with twin and adoptive children. Initiated by David
Lykken in 1990, the MCTFR has enrolled and assessed five parent-
offspring samples totaling 9,994 participants (see Figure 1). All these
community-based samples were recruited using epidemiological pro-
cedures intended to maximize inclusiveness and minimize sampling
bias. MCTFR research is ongoing, and continues to track offspring
development into adulthood, with those first enrolled in the project
now being reassessed 24 years after their initial recruitment.

The MCTFR embraces three twin samples comprising the
Minnesota Twin Family Study (MTFS). The MTES began as a
cross-sequential study of preadolescent (younger cohort) and late
adolescent (older cohort) monozygotic (MZ) and same-sex
dizygotic (DZ) twins and their parents (for details, see lacono,
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Carlson, Taylor, Elkins, & McGue, 1999; lacono & McGue, 2002).
Younger cohort families were recruited during the year the twins
turned age 11, and the older cohort was recruited when the twins
turned 17 (see Figure 1). Twin families constituted a statewide
sample identified using Minnesota state birth records. Families
with children whose cognitive ability was insufficient to provide
informed assent or consent were not recruited. No medical, psycho-
logical, or psychiatric exclusionary criteria were used to screen
out participants. These families were broadly representative of
Minnesota families with children living at home according to the
2000 U.S. Census for Minnesota (Holdcraft & Iacono, 2004). Data
collection for a third MTFS twin sample (the Enrichment Sample,
ES) was launched in 2000 (for details, see Iacono, McGue, &
Krueger, 2006; Keyes et al., 2009). ES focused on families with
11-year-old twins, half of whom were selected to be at high risk for
developing substance use disorders, and the other half of whom
were selected using the same methods as were followed in the
MTES. Only participants from these three MTFS studies (younger
cohort, older cohort, and ES) were tested in the psychophysiology
laboratory, and thus only these MTFS families were included in the
evaluation of the molecular genetic basis of the endophenotypes.
MCTER participants from two other studies, the Sibling Inter-
action and Behavior Study (SIBS) and the Adolescent Brain
(AdBrain) Development Study, also provided DNA samples
and were genotyped using the same procedures followed for the
MTES samples (for details, see McGue et al., 2013; Miller et al.,
2012). However, SIBs participants were never evaluated in the
psychophysiology lab, and the AdBrain twins did not undergo the
MTES psychophysiological testing protocol, so neither of these
samples is included in the molecular genetic analyses of the
endophenotypes. Their data was valuable, however, for optimizing
the quality control procedures used to process the genotyped data
in all the papers. In addition, these samples were used to enhance
the accuracy of the imputation of genetic marker variants in this
sequencing study (Vrieze, Malone, Vaidyanathan et al., 2014).
Given their peripheral role in this series of papers, we refer readers
to other publications for additional detail regarding these two
studies (Malone, Luciana et al., 2014; McGue et al., 2007).

How Participants Came to Have Both Psychophysiological
and Molecular Genetic Data

The cohort-sequential nature of the MTFS design is such that the
MTES younger cohort and ES twins were reassessed approxi-
mately 6 years after study intake, and thus these samples, like the
older cohort twins, were seen at age 17. For this series of molecular
genetic investigations, we targeted the age-17 assessment of all
twins for the collection of endophenotype data. This resulted in the
largest possible twin sample and represents a stage of development
when adolescents are on the cusp of adulthood. Most parents com-
pleted an identical laboratory assessment; those who did were
included. Fathers completed the laboratory assessment during the
initial family intake visit to the university. Because mothers were
asked to provide comprehensive information about other family
members at the intake assessment, there was no time available to
accommodate the psychophysiological assessment. For younger
cohort and ES mothers, psychophysiological assessment took place
when they accompanied the twins for their age-14 follow-up visit.
Because the older cohort twins were legal adults when they
returned for their first follow-up at age 20, there was no need for
their mothers to accompany them, so their mothers were never
asked to complete a psychophysiological lab session. In addition,
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Box 1: Endophenotype Brief Descriptions

Antisaccade eye tracking error (Vaidyanathan, Malone, Donnelly et al., 2014). Participants viewed a spot of light in the center of a
computer screen that appeared to move to one side or the other of the screen (the centered dot disappeared and another appeared to the
side). The participant’s task was to override the impulse to direct gaze toward the new target location and to look instead in the opposite
direction, fixating on the approximate mirror image location of the target. Performance was quantified as the proportion of trials on
which the participant generated a saccade in pursuit of the target instead of generating an antisaccade away from it.

EEG measures (Malone, Burwell et al., 2014). Electroencephalographic (EEG) activity was recorded from three electrode locations
while subjects relaxed with eyes closed for 5 min. Five measures were derived from EEG at the vertex electrode Cz: Total EEG
Power = total power between 0.5 and 30 Hz, Alpha EEG Power = power in the alpha band (8 to 13 Hz), Beta EEG Power = power
in the beta band (13.5 to 30 Hz), Theta EEG Power = power between 4 and 7.5 Hz, and Delta EEG Power = power between 0.5 and
4 Hz. In addition, we examined two measures obtained by averaging across two bipolar occipital-parietal electrode derivations (O1-P7
and O2-P8): Alpha EEG Power 0102, defined as for Cz; and Alpha EEG Frequency 0102, defined as the dominant peak frequency
in the alpha band.

P3 event-related potential amplitude measures (Malone, Vaidyanathan et al., 2014). To determine P3 Amplitude, subjects com-
pleted the rotated heads visual oddball task (Begleiter, Porjesz, Bihari, & Kissin, 1984). Interspersed among frequently displayed
stimuli consisting of ovals were infrequently presented superior views of a stylized head displaying the nose and one ear. Subjects
pressed a left button if they saw a left ear and a right button if they saw a right ear. Half of these P3-eliciting oddball targets were
rotated by 180 degrees and presented with the nose facing down. An additional amplitude measure was also calculated, the P3
Genetic Factor Score, which was generated from a twin family-based factor analysis of P3 amplitude using responses recorded
from three parietal electrodes. This measure captures the degree to which the covariance among P3 amplitude measures reflects the
influence of shared genetic effects. Because environmental influences are not included in the genetic factor score, it should provide
a stronger genetic signal than P3 amplitude, possibly conferring an advantage when searching for associated genetic variants.

Electrodermal activity measures (Vaidyanathan, Isen et al., 2014). Electrodermal activity was recorded from the fingertips as part
of a habituation task during which loud tones were intermittently delivered while participants viewed scenes from a closed-captioned
movie. Immediately following the end of the movie presentation, participants rested with eyes closed for 5 min. Skin Conductance
Level provided a measure of the participant’s tonic resting level monitored at the end of the session, when participants can be
expected to be relaxed after having viewed the movie. Skin Conductance Response Frequency provided a count of the number of
tones to which participants responded. Skin Conductance Response Amplitude captured mean response magnitude for trials on
which participants produced an observable response. The Electrodermal Activity Factor Score provided a global measure of
electrodermal activity using a factor score derived from a common factor model fit to the three skin conductance measures.

Acoustic startle response and affective startle modulation (Vaidyanathan, Malone, Miller, McGue, & lacono, 2014). Three
measures were derived from an affective startle modulation paradigm (Vrana, Spence, & Lang, 1988) in which participants viewed a
series of well-standardized images, while their startle eye blink reactions to noise probes were recorded. Overall Startle indexed the
magnitude (in V) of the integrated electromyographic (EMG) response from the orbicularis oculi muscle averaged over all trials,
regardless of image valence. Aversive Difference Startle was defined by the z score difference in mean EMG startle magnitude between
aversive and neutral images and represents a measure of the degree to which startle eye blink is potentiated by aversive stimuli. Pleasant
Difference Startle was defined as the z score difference in startle magnitude between pleasant and neutral images and represents a
measure of the degree to which startle eye blink is attenuated by pleasant stimuli. The startle blink reflex is intensified by aversive
motivational states and diminished by appetitive states.

as a result of adjustments to the design precipitated by a cut in
funding to one of the supporting grants, the majority of mothers of
younger cohort female twins were not asked to complete the
laboratory assessment. Finally, as noted previously, the startle para-
digm was not part of the original MTFS psychophysiological
battery, so some twins (those in the ES study) were evaluated at
other than age 17, and many twins and parents were never evalu-
ated with startle (for additional details, see Vaidyanathan, Malone,
Miller, McGue, & lacono, 2014). Because these aspects of the
design account for the great majority of missing data, these data
can reasonably be treated as missing at random (Little & Rubin,
2002), which can be accommodated in our approaches to statistical
analysis and permits unbiased statistical estimation. All partici-
pants in MCTFR studies gave written informed consent or assent,

if under the age of 18, to participate in the initial study, to provide
a DNA sample, and to allow their phenotype and genotype data
plus a sample of their DNA to be placed in a public repository to be
shared with other researchers.

As Figure 1 illustrates, there were 7,697 participants who pro-
vided DNA and passed our genotyping quality control screening.
Only Caucasian participants were included because ethnic differ-
ences in allele frequencies can create spurious associations in
genetic association studies. Of these 7,697 subjects, 4,905 had data
for at least one endophenotype, with the vast majority of the
remainder not included because they were from the SIBs or
AdBrain samples, and some because they did not have data even
though they were in the MTES (e.g., younger cohort twins who did
not return at age 17). There were 1,715 families, 64.1% of them
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Table 1. Sample Sizes and Family Composition
Sex and family composition

% % % % %
Psychophysiological measure N Female Fathers Mothers Offspring Stepparents
Antisaccade 4,469 442 26.2 133 58.8 1.7
EEG power (o, B, 0, and §) at CZ 3,948 443 25.3 13.6 59.5 1.6
Alpha EEG (power, frequency) at 0102 3,966 44.1 254 135 59.5 1.6
P3 amplitude 4,166 434 26.7 13.4 58.1 1.7
P3 genetic factor 3,088 43.2 33.5 17.1 49.4 0.0
Skin conductance level 3,791 43.0 30.8 15.9 51.3 1.9
Skin conductance response amplitude 4,102 43.6 25.5 12.6 60.3 1.6
Skin conductance response frequency 4,299 43.9 26.0 13.8 58.7 1.6
Electrodermal activity factor 4,424 43.8 26.5 13.7 58.2 1.6
Overall startle 3,323 50.3 17.9 14.8 66.1 1.2
Aversive difference eye blink startle 3,321 50.3 17.9 14.8 66.1 1.2
Pleasant difference eye blink startle 3,322 50.3 17.9 14.8 66.0 1.2

Note. EEG = electroencephalogram; P3 = P300 wave of the event-related potential.

MZ twin families, with the number of individuals in a family
(including stepparents) ranging from 1 to 5. Families with 3
members were most common (48%), and approximately 91% com-
prised 24 members. As can be seen in Table 1, for each
endophenotype, somewhat different subsets of these individuals
provided valid data for the genetic analyses. Most of the partici-
pants were offspring, and as would be expected given that mothers
(unlike fathers) were not always asked to complete a
psychophysiological assessment, about twice as many fathers con-
tributed data as did mothers.

Figure 1 documents that there is some variability across meas-
ures in the total number of individuals with data for each, ranging
from a high of 4,469 for the antisaccade task to a low of 3,323 for
startle. It took over 20 years to collect the psychophysiological data
from all of these MTFS participants. It was not always possible to
obtain data for everyone on each measure (as noted previously, this
was especially true for startle, which was added late to the assess-
ment protocol). In addition, there was also obvious variability
across measures in the likelihood that collected data could be used
in analyses. Our procedure required that data be collected on indi-
viduals who ordinarily would have been excluded for an assess-
ment based on preexisting status (e.g., having a bad cough on the
day of assessment, taking medications or psychoactive substances
that might interfere with psychophysiological recording), or having
a physical problem or condition likely to affect the validity of the
psychophysiological measurement or neurophysiological state at
the time of testing (e.g., serious head injury, neurological disorder).
Adolescents taking medication for attention deficit hyperactivity
disorder (ADHD), such as methylphenidate, were asked to refrain
from doing so the day of their assessment. If any reported taking
these medications, they were excluded from analysis. This
nonexclusionary approach to laboratory assessment was necessi-
tated by privacy concerns (e.g., family members came together and
could easily determine if one member was excluded from a pro-
cedure, raising questions regarding why), the desire to optimize
future participation in our longitudinal research (e.g., by not inad-
vertently creating the impression that some participant data would
not have value), and the need to keep participants occupied and
with staff for the entirety of a day-long assessment. In addition,
someone who might be seen as inappropriate for one procedure
might nevertheless be seen as appropriate for another, making it
awkward to explain why they were qualified for certain procedures

but not others. Finally, participants were also excluded due to
psychophysiological recording problems, which ranged from
excessive artifact and recording equipment malfunction to the
failure of disk storage.

Tables 1 and 2 describe the participant samples and data used in
the five common variant studies as well as the exome chip rare
variant article. Figure 2 provides a heat map representation of the
correlations among the 17 endophenotypes. The heat map shows
that, with a few exceptions, each of the five psychophysiological
protocols yielded variables that were much more strongly corre-
lated with each other than they were with variables from other
protocols. One exception arose with startle where the amplitude of
the overall startle response showed little correlation with aversive
and pleasant startle difference measures, which were derived from
z scores. Another involved the EEG and P3 measures wherein P3
amplitude and the genetic factor score were on average correlated
.19 with the EEG power measures. Alpha frequency showed a
strong negative correlation (averaging —38) with EEG power in all
spectral bands except beta (—.05).

Genotyping and Quality Control

Across all five MCTFR samples (see top of Figure 1), 9,515 par-
ticipants were eligible to provide DNA because they were still
living and had not withdrawn from the MCTFR study in which they
were enrolled. From this group, 7,845 provided DNA, with 7,278
(93%) providing blood and 567 providing saliva samples. However,
when the MZ co-twins of the MZ twins in this sample of 7,845 are
added to the total, more than 88% (N = 8,405) agreed to participate.
Of the 12% who did not, the majority could not be contacted within
the time allocated for obtaining consent or had concerns about
providing a DNA sample. Samples were stored at the Rutgers
University Cell and DNA Repository, which followed standard
procedures to extract DNA. All genotyping, including the Illu-
mina 660W-Quad, [llumina HumanExome, and whole genome
sequencing, was conducted on these DNA samples. The Illumina
660W-Quad (Illumina, 2008-2013) contained 657,366 variants,
561,490 of which were single nucleotide polymorphisms (SNPs;
see Box 2 for a glossary of commonly used terminology), which
are the focus of the first five articles in this special issue (the
remaining 95,876 markers were for copy number variants that were
not analyzed here). The plates used for genotyping contained 96
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Table 2. Means and Standard Deviations for Each Endophenotype, Stratified by Family Member

Male twins Female twins Fathers Mothers

Psychophysiological measure M SD M SD M SD M SD

Antisaccade % error 0.31 (0.22) 0.27 (0.19) 0.34 (0.23) 0.36 (0.23)
Alpha EEG power 5.54 (0.80) 5.83 (0.83) 5.57 (0.87) 5.56 (0.57)
Beta EEG power 2.89 (0.57) 3.22 (0.57) 3.25 (0.66) 3.31 (0.69)
Theta EEG power 5.83 (0.54) 6.03 (0.52) 5.39 (0.63) 5.40 (0.64)
Delta EEG power 6.03 (0.43) 6.12 (0.38) 5.56 (0.51) 5.62 (0.55)
Total EEG power 7.00 (0.47) 7.18 (0.48) 6.72 (0.57) 6.76 (0.56)
Alpha power (0102) 4.95 (1.04) 5.16 (1.02) 4.45 (0.99) 433 (1.00)
Alpha frequency (0102) (Hz) 9.71 (0.54) 9.78 (0.57) 9.78 (0.56) 9.79 (0.53)
P3 amplitude (LV) 23.29 (7.76) 25.98 (8.61) 14.43 (6.58) 15.10 (7.19)
P3 genetic factor —0.05 (0.82) 0.04 (0.93) 0.04 (0.67) -0.07 (0.72)
Skin conductance level (mS'?) 1.93 (0.48) 1.74 (0.48) 1.52 (0.45) 1.20 (0.43)
Skin conductance response amplitude (mS'?) 0.48 0.24) 0.56 0.27) 0.33 (0.15) 0.38 0.17)
Skin conductance Response frequency 9.84 4.77) 9.59 (5.07) 8.46 (5.35) 5.85 (5.31)
Electrodermal activity factor 0.30 (0.76) 0.26 (0.83) -0.22 (0.76) —0.62 (0.78)
Overall startle magnitude (V) 38.94 (35.88) 52.11 (44.86) 26.30 (26.15) 37.82 (38.94)
Aversive difference eye blink startle (z score) 0.16 (0.66) 0.18 (0.65) 0.17 (0.62) 0.24 (0.62)
Pleasant difference eye blink startle (z score) —0.09 (0.64) 0.05 (0.60) 0.05 (0.60) 0.02 (0.60)

Note. For ease of understanding, statistics are given here for the raw (unresidualized) variables. EEG power measures are log-transformed. All are from Cz,
at the vertex, unless otherwise indicated. O102 indicates the average of two bipolar recordings: O1-P7 and O2-P8. Skin conductance amplitude and level
were square-root transformed. EEG = electroencephalogram; P3 = P300 wave of the event-related potential.

wells, and DNA samples were distributed randomly across plates
with two exceptions: each plate included samples from two
members of a three-member family from the Centre d’Etude du
Polymorphisme Humaine (CEPH), the genotypes of whom are
known, with the specific individuals rotated across plates, as well
as a randomly selected MCTFR duplicate sample. These two types
of samples allowed us to assess the accuracy and quality of
genotyping.

Genotyping produces measures of intensity for each allele
(which we will refer to as A and a), which reflect the degree to
which DNA binds to specific allele probes. When plotted against
one another, the pairs of intensity values ideally yield three dis-
tinct clusters, one cluster corresponding to AA homozygotes,

another to aa homozygotes, and the third to Aa heterozygotes. A
subset of 1,508 SNPs out of the total of 561,490 could not be
called because the clustering of intensity values was not suffi-
ciently distinct to permit identifying the three genotypes reliably.
The remaining markers (559,982) were subjected to a series of
quality control filters and were excluded for any of the following,
if (a) Illumina scientists identified the marker as untrustworthy;
(b) duplicate samples did not yield identical results more than
once; (c) the call rate was less than 99%, indicating that the algo-
rithm used to estimate the probability that a genotype at an indi-
vidual SNP is aa, AA, or Aa failed for a nontrivial number of
DNA samples; (d) the minor allele frequency (MAF) was less
than 1 in 100 subjects; (e) there were more than two Mendelian

Box 2: Glossary

1000 genomes Newer than the HapMap Project, the 1000 Genomes Project describes the genomes of 1,092 individuals from 14 countries
and provides a validated map of 38 million single nucleotide polymorphisms (SNPs) and almost 1.5 million insertions and deletions of
genetic material. It provides a reference panel for imputing SNPs that are not on a genotyping array but are in LD with SNPs on the array.

Allelic stratification (population stratification) This occurs if allele frequencies that vary between ethnic groups are confounded with
ethnic differences in the phenotype, which can create a spurious association.

Biometric model Applied to family members, this statistical procedure provides estimates of the amount of variance in a phenotypic
trait that is accounted for by shared genetic influences (indicating the heritability of the trait), shared environmental experience that
makes family members similar to one another, and unique environmental factors that make family members different from each other.

Common variant A strict definition does not exist, but “common variant” often refers to SNPs whose minor (less frequently occurring)
allele is present in 5% or more of the study population.

Exons These are the sequences of DNA found in genes that directly encode the amino acids that make up proteins. All the exons
combined are referred to as the “exome” and represent perhaps 2% of the total genome sequence.

Exome chip Genotyping array used to identify rare nonsynonymous variants in the exome (protein coding portion of DNA).
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HapMap A catalog of common variants derived from DNA samples from populations of African, Asian, and European ancestry.
Samples were collected from individuals of Northern and Western European ancestry in the United States by the Centre d’Etude du
Polymorphisme Humain (CEPH). This is the reference population for Caucasian subjects in GWAS, abbreviated CEU, and is used by
the VEGAS analytic program to evaluate the strength of association of a gene with a phenotype.

GCTA: Genome-wide complex trait analysis A quantitative method used to estimate the degree to which SNPs in unrelated people
account for their degree of phenotypic similarity. GCTA assumes genetic variance in the phenotype reflects the combined additive effect
of all alleles weighted equally. When carried out on related individuals, estimates are not strictly due to measured genetic variants.
Rather, they are driven by all factors that influence phenotypic similarity, including shared environment, nonadditive genetic effects, and
rare variants not tagged by the genotyping array. A recent development permits modeling, and thereby accounting for, the shared
environmental effects that operate within families.

Genomic control In GWAS, we expect the vast majority of genetic variants to have no discernible association with the phenotype of
interest. Genomic control tests whether the median p value is greater or smaller than expected by chance (i.e., different from the null). If
it deviates too far from expectation, there may be unknown population stratification, familial relatedness, or other problems in the sample.

GWAS: Genome-wide association study A molecular genetic method in which a genotyping array for hundreds of thousands of SNPs
is used to examine the degree to which each is associated with a phenotype. In the current studies, we tested the degree to which each
of 527,829 SNPs was associated with each psychophysiological endophenotype.

Linkage disequilibrium Linkage equilibrium occurs when the genotype present at one locus is independent of that at another locus.
With linkage disequilibrium, there is nonrandom association between two or more alleles/SNPs, suggesting that they are inherited
together and possibly functioning as a unit.

MAC: Minor allele count The number of times the minor allele is present in a sample or population. MAC is typically examined in
studies of rare variants that occur in only a small number of people in a study sample.

MAF: Minor allele frequency The proportion of times the minor allele, or less frequently observed allele, is present in a sample or
population. It is the MAC divided by twice the number of individuals (i.e., the MAC times the number of chromosomes in the sample).

Manbhattan plot A plot of observed p values from a GWAS sorted by chromosome, providing a detailed picture of associations between
SNPs and a phenotype. To better visualize small p values, they are scaled as -log;o(p). Genome-wide significance of 5 X 107 is equal
to 7.30 on this scale.

Nonsynonymous A type of genetic variant that resides within an exon and can alter the amino acid sequence of a protein, making it
nonfunctional.

Q-Q plot Q-Q plots represent a tool for evaluating graphically the fit of observed data to a particular distribution. In GWAS, they plot
observed p values against expected p values under the null distribution. Because the vast majority of SNPs are not expected to be
associated with a given phenotype, observed values should conform closely to expected values, except for significant associations.

RFGLS: Rapid feasible generalized least squares RFGLS is a statistical package developed at the University of Minnesota to account
for the correlated nature of family data in a way that is computationally efficient when running GWAS analyses.

Rare variant While no strict definition exists, these are often SNPs whose minor allele frequencies (MAFs) are present in fewer than
5% of those in a study sample.

SNP: Single nucleotide polymorphism A sequence variation in a single DNA base pair, the configuration of which varies across people.

Tag SNP Common SNPs may not be independent of one another due to linkage disequilibrium. For this reason, one only needs to
genotype a select subset of the total number of common SNPs. If these “tag” SNPs are selected well, then a survey of only several
hundred thousand SNPs provides a cost-effective way to obtain most of the information about common SNPs in the genome.

VEGAS: Versatile gene-based association study A quantitative method in which all the SNPs in every autosomal gene (i.e., a gene
that is not on the sex chromosomes) and its surrounding region are tested in aggregate for their strength of association with a phenotype.
Linkage disequilibrium among the SNPs is accounted for through simulations in generating a p value.

Whole genome sequencing (WGS)A genotyping method that identifies the exact sequence of bases in an entire individual genome, thus
making possible the identification of rare variants.
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Figure 2. Heat map representation of phenotype correlations among the 17 phenotypes. All measures were covariate adjusted (see text). The dendrogram
shows measure clustering based on the correlations. totPower = total EEG power at electrode Cz; [0, B, 6, 8] Power = power in the alpha, beta, theta, and
delta bands at Cz, respectively; aPowerO102 = alpha power at electrodes 01-02; aFreqO102 = alpha frequency at electrodes 01-02; P3 = P300 amplitude;
gP3 = genetic factor score for P300 amplitude; EDA = electrodermal factor score; SCL = skin conductance level; fSCR = skin conductance response
frequency; aSCR =skin conductance response amplitude; aSTRTL = aversive difference startle score; pSTRTL = pleasant difference startle score;
STRTL = overall startle amplitude; SAC = antisaccade eye tracking error rate.

inconsistencies within families, indicating a mismatch of alleles
between parents and offspring; (f) allele frequencies were incon-
sistent with Hardy-Weinberg equilibrium, an indicator of stability
in a population and a necessary precondition for genetic analysis
(p < 107" in the Caucasian subsample); (g) if the marker was asso-
ciated with the particular plate used for processing; or (h) the
marker was associated with sex (also at p < 107), which would
indicate a source of systematic error. This resulted in the elimi-

nation of 32,153 markers (5.7%), leaving 527,829 SNPs for analy-
sis. The majority of SNPs dropped had a MAF less than .01
(19,999, or 3.6% of the total).

The quality of each individual’s DNA sample was assessed
using five criteria, and it was excluded if (1) more than 5,000 SNPs
could not be called, suggesting poor quality of the sample; (2)
GenCall scores produced by Illumina’s BeadStudio software,
indexing confidence in each call, were below an empirically
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derived threshold (Cunningham et al., 2008); (3) samples had
apparently been mixed; (4) a sample was characterized by exces-
sive homozygosity or heterozygosity; or (5) known genetic rela-
tionships could not be confirmed. This process, which took
advantage of the family relationships to identify errors in labeling
samples, eliminated 160 samples. The final sample of 7,278 that
passed all quality-control filters included 1,127 samples from indi-
viduals whose monozygotic twin had not been genotyped, in which
case the genotypes of genotyped twins were assigned to the
nongenotyped identical twin, which resulted in a final sample of
8,405. Five individuals with X chromosome anomalies, such as
Turner syndrome, were subsequently eliminated due to concerns
about potential cognitive correlates.

The Illumina HumanExome BeadChip array was genotyped
in a similar fashion as the 660W-Quad, with additional steps
and filters to deal with the very rare variants genotyped on the
exome array. Details are provided in the relevant article (Vrieze,
Malone, Pankratz etal., 2014). For whole genome sequencing,
we took advantage of the results of our 660W-Quad genoty-
ping to select samples that had quality DNA, genome-wide geno-
types (useful in evaluating sequencing accuracy), and were of
European ancestry. See Vrieze, Malone, Vaidyanathan et al.
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(2014) for a full description of the whole genome sequencing
experiment.

Confounding by Ethnicity

Ethnic differences in allele frequencies are common. They can
be confounded with ethnic differences in mean levels of a pheno-
type or rates of a disorder, in which case a spurious associ-
ation between genetic variants and phenotype can exist. Ethnic
differences in genotype can be assessed by means of multivariate
techniques such as principal component analysis (PCA), which
captures the major sources of genetic variation in a reduced
subspace. Figure 3 depicts the first two components from an
analysis of the entire MCTFR sample using the program
EIGENSTRAT (http://genepath.med.harvard.edu/~reich/Software
.htm) (Price et al., 2006), which detects and corrects for population
stratification in genome-wide association studies. The PCA method
explicitly models ancestry differences along continuous axes of
variation. Close pairwise relationships (e.g., parent-child, siblings)
were avoided when determining the major dimensions of variation,
but the genotypes of those individuals excluded were then proj-
ected onto the components extracted from the unrelated subsample

® African American

Asian/Pacific Islander

Caucasian
® Hispanic
® Mixed/Other
Native American
o
(]
..
(]
°e g ® o

|
0.04

First component

Figure 3. First two components from a principal components analysis of ancestry differences in 4,756 unrelated subjects in the MCTFR genotyped sample
using the program EIGENSTRAT. Each dot represents an individual. Dots are color coded by self-reported ethnicity. The principal axis of variation is
anchored at one end by those of self-reported European ancestry and at the other by East Asians. The second principal dimension differentiates European

ancestry from those who reported African-American ancestry.
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(for additional details, see Miller et al., 2012). The first principal
dimension in Figure 3 consists of a component anchored by indi-
viduals who reported European ancestry at one end and by indi-
viduals whose self-reported ancestry is East Asian (Korean
adoptees from the SIBS project) at the other. The second principal
dimension differentiated individuals of European ancestry from
those who reported African-American ancestry. Because the major-
ity of the MCTFR sample is Caucasian, broadly representative of
the racial composition of the state of Minnesota during the birth
years from which the different samples were drawn, we restricted
genetic analyses to Caucasian individuals of European ancestry
(e.g., Caucasians of Middle Eastern ancestry were not included).
PCA was conducted separately on these subjects in EEIGENSTRAT
to identify the major dimensions of genetic variation in this other-
wise ethnically homogeneous sample. As is common practice, the
10 components (PCs) accounting for the most variance were
included as covariates in our genetic association analyses (cf. Price
etal., 2006) to account for subtle genotypic variation that might
create spurious associations.

Genetic Analyses

The analytic approach for the seven empirical articles in this
special issue is illustrated in the flowchart in Figure 4. We describe

Research Question

L) Is the endophenotype heritable? : Biometric Model
How much phenotypic variance in E
) the endophenotype is accounted for 1 GCTA
) by the combined effect of all ;
genotyped SNPs? :
Are there common DNA variants E GWAS
3) related to any endophenotype? E
Can we aggregate the effects of f
4) these common SNPs Wlthln genes, E VEGAS
to find genes associated with '
endophenotypes? E
.............................................. {..........-.............
Are nonsynonymous SNPs and : Association
5.) other rare SNPs related to our ; Analysis with
endophenotypes? ! Exome Chip
Is any part of DNA (rare, low : Association
frequency, or common SNPs) E Analysis with
6.) associated with any of our 17 1 Whole Genome
endophenotypes? ;

——— >  Analysis ——

g g
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the approach first for the five GWAS articles examining common
variants, then for the exome chip article examining effects of rare
nonsynonymous variants in coding regions, and finally for the
sequencing paper covering rare polymorphic SNPs throughout the
genome.

Associations Between Common Variants and
Endophenotypes: GWAS-Based Analyses

Our approach to assessing the influence of common variants in our
GWAS studies comprised four prongs: biometric, genome-wide
complex trait (GCTA), GWAS, and versatile gene-based association
(VEGAYS) studies. Figure 4 depicts these analyses in a simplified
form; in what follows, we provide a more detailed explication of the
methods and assumptions behind these analyses.

1. Biometric models. First, we conducted biometric model-fitting
analyses for the purpose of estimating the magnitude of herit-
able differences in each measure, using standard biometric
approaches to modeling twin-family data (M. C. Neale, Boker,
Xie, & Maes, 2003). Analyses were conducted using the
OpenMx package (Boker et al., 2011) for the R statistical com-
puting environment (R Development Core Team, 2010). Such
approaches consist of estimating the parameters in latent vari-
able models, which treat the observed values of a phenotype as

Inferences + Supplemental Analyses

GWAS Papers 1 —5: Focus on common variants

How much of the variance in the endophenotype is due to additive
genetic versus common and unique environmental factors?

To what degree does SNP heritability equal the sum of the biometric
estimates of additive genetic and common environmental effects?

How strong is the association of each SNP with the endophenotype using:
(1) 527,829 SNPs with no a priori hypotheses regarding expected effects,
(2) 1180 candidate SNPs hypothetically relevant to disorders related to endophenotypes,
(3) Additional candidate SNPs hypothetically relevant to the endophenotypes

How strong is the association of each gene with the endophenotype using:
(1) 17,601 autosomal genes with no a priori hypotheses regarding expected effects,
(2) 204 candidate genes hypothetically relevant to disorders related to endophenotypes,
(3) 92 candidate genes for schizophrenia and related endophenotypes,
(4) Additional candidate genes hypothetically relevant to the specific endophenotypes

Exome Chip Paper 6: Rare variants in coding
DNA

Many nonsynonymous SNPs are expected to damage gene function.
This analysis tests whether 85,000 of these SNPs, alone or in
combination with other rare SNPs, are associated with any of the 17
endophenotypes.

Sequencing Paper 7: Rare Variants from the entire
genome

We analyzed 27 million SNPs across the entire genome, millions of

which are private ”, or unique to a particular participant family, in a

subset of the MCTFR sample, providing the most comprehensive test
of associations between SNPs and endophenotypes.

Figure 4. Flow chart highlighting the research questions posed and the analytic methods used to address them in the seven accompanying empirical articles.
GCTA = genome-wide complex trait analysis; GWAS = genome-wide association study; VEGAS = versatile gene-based association study; SNP = single
nucleotide polymorphism; MCTFR = Minnesota Center for Twin & Family Research.
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Table 3. Median Within-Family Correlations for the 17
Endophenotypes

Relationship Median r
Mother-father .01
Mother-offspring 23
Father-offspring 18
MZ twins .64
DZ twins .34

Note. Correlations were produced by rapid feasible generalized least
squares (RFGLS), our analytic method for GWAS that is described in the
text, which models within-family correlations. All measures were adjusted
for the same set of covariates: chronological age, gender, generation (ado-
lescent or adult), any task-specific factors that might affect mean levels, and
scores on 10 principal components reflecting residual population stratifica-
tion in our Caucasian sample.

due to (caused by) the influence of four latent variables: additive
genetic influence (A); nonadditive dominance genetic influence
(D), which reflects interactive effects between alleles at the
same locus; common or shared environmental influence (C);
and unique or unshared environmental influence (E). The
observed correlations (or covariances, more commonly) are
compared to the correlations implied by the model, which, given
standard biometric assumptions, are determined by the known
genetic and environmental correlations among family members
with respect to the latent factors. Parents and offspring share
half their genes by descent, whereas DZ twins share half their
segregating genes, on average; the genetic correlation in these
pairs is therefore 0.5. MZ pairs share all genes, yielding a
genetic correlation of 1 for both A and D. By contrast, the
probability that DZ pairs will share both alleles at a locus, which
is necessary for dominance effects, is 1/4; this is the dominance
genetic correlation (0.25). All family members by definition
share the common environment, whereas E reflects environmen-
tal factors that are unique to each individual; it does not con-
tribute to within-family correlations. Our models did not allow
for assortative mating, the tendency for people with similar
characteristics to marry (“like marries like”), as likely influ-
ences on the endophenotypes. That this is a reasonable assump-
tion is supported by the mother-father correlation in Table 3,
which is very close to 0 across the 17 endophenotypes we
examined in this special issue. Similarly, we assumed no
environmentally mediated “vertical” transmission of psycho-
physiological features from parents to offspring. As we indicate
in the Adjusting for Covariates section below, all measures were
adjusted for any effects on mean levels of particularly relevant
covariates, including the first 10 PCs from EIGENSTRAT.
Although the latter might seem to overcorrect familial resem-
blance, it simply adjusts for any effects on mean levels of
unknown stratification factors captured by the 10 PCs. However,
adjusting for covariate effects on mean levels cannot account for
any effects of covariates on phenotypic variances, which we
observed most commonly in relation to gender and age
cohort. Biometric models therefore allowed for gender and age-
cohort effects on variances. For the majority of measures, there
were significant differences between cohorts in the phenotypic
variance. Moderator effects were included in our biometric
models even if they were not significant, however, in order to
maintain consistency across measures, thereby facilitating
comparison.
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In order to adopt a common framework for all five articles, we
began by examining the pattern of within-family correlations.
The aforementioned Table 3 presents the median correlation
across the 17 measures for each family relationship. The MZ twin
correlation was large and approximately twice the magnitude of
the DZ twin correlation. Because the genetic correlation in MZ
pairs is twice the correlation in DZ pairs, this pattern is consistent
with additive genetic influence. Because shared environment is
shared equally by MZ and DZ twins (the equal environments
assumption), a DZ twin correlation exceeding half the MZ twin
correlation is consistent with a shared environmental influence.
The DZ correlation is only slightly greater than half the MZ
correlation, suggesting at best a weak shared environmental
effect. However, the mother-father correlation, which can be due
to shared environment or assortative mating, was effectively 0,
suggesting neither is influencing the endophenotypes. Taking the
pattern of twin and parent correlations into account provides little
support for a shared environmental effect.

Under the additive ACE model, we expect parent-offspring
and DZ twin correlations to be equal, but they are not. In fact, the
DZ twin correlation is larger than the parent-offspring correla-
tion. This is what one might expect if there were dominance
effects. Because dominance effects are 25% shared by DZ twins,
but completely unshared by parents and children, they would lead
to a DZ twin (or sibling) correlation that is higher than the
parent-offspring correlation. However, the parent-offspring cor-
relation can also be deflated for other reasons, including the
special twin environment (which each DZ twin has but the parent
does not (Maes, Neale, & Eaves, 1997), and gene-environment
interaction (also discussed as cryptic genetic variation, Paaby &
Rockman, 2014), which causes different genetic effects to be
expressed at different developmental stages or in different
cohorts (Eaves, Last, Young, & Martin, 1978).

Dominance effects are also suggested when the DZ correla-
tion is much less than half the MZ correlation, but that pattern is
not evident in Table 3. Evidence of dominance effects is thus
weak and inconsistent in the family correlations, and our molecu-
lar genetic heritability analyses (i.e., GCTA, described next) can
only accommodate additive genetic effects. We therefore opted to
focus on ACE models in the accompanying articles. However,
this may cause us to somewhat overestimate the narrow-sense
heritability of our measures (heritability due solely to additive
genes). We therefore also fit ADE models and report the results of
these if they suggest that dominance effects are an important
influence on a particular measure. We also examined ACE and
ADE models fit to the twins only, in part due to concerns about
gene-environment effects in the parental generation, as described
above, and in part to facilitate comparison with the published
findings of other researchers working with twin samples. Our
goal was not careful explication of the structure of these meas-
ures from a biometric perspective, but rather to establish that they
are heritable, and broadly to characterize the magnitude of her-
itable differences, which provides an estimate of the genetic
target in genome-wide analyses of individual genetic variants.
Because our sample is genetically informative, we are able to do
both in the same sample, which provides a relatively unique
opportunity to establish the magnitude of heritability and identify
relevant genetic variants at the same time.

. SNP heritability. As an adjunct to biometric analyses, we

also conducted genome-wide complex trait analysis (GCTA;
Yang, Lee, Goddard, & Visscher, 2011), which, for each endo-
phenotype, assesses the additive effect of all SNPs in linkage
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disequilibrium (LD) with the 527,829 SNPs on the Illumina
genotyping array. LD creates a correlation among SNPs that are
commonly inherited together in a given chromosomal region.
An apparent association between SNPs on the genotyping array
and a phenotype may be due not to the genotyped SNPs, but
rather to variants in LD with those SNPs. GCTA thus estimates
the variance in the phenotype explained by all SNPs in aggre-
gate, rather than estimating associations between each individ-
ual SNP and endophenotype, as is done in GWAS. This is
accomplished by treating each SNP as a random effect in a
linear mixed model. Fixed effects in the model in our analyses,
which are normally of interest in regression analyses, consisted
of the covariates described in the Adjusting for Covariates
section that follows. Each genotype is a standardized count of
the number of minor alleles. A simple reparameterization
expresses the random effects in terms of a matrix of pairwise
genetic relationships among all participants (the genetic relat-
edness matrix). Restricted maximum likelihood is used to esti-
mate the random effect variance, which is the total variance in
the phenotype accounted for by SNPs on the genotyping array
or in LD with them.

In samples comprising families, estimates of the additive
genetic variance in a phenotype are driven by the phenotypic
correlations among family members, which can be influenced
by common environmental effects and nonadditive genetic
effects, thus leading to biased estimates. Estimates of additive
genetic variance can also be influenced by other classes of
genetic variation (e.g., rare variants). Thus, the GCTA estimates
derived from families will reflect all causal variants, including
rare variants not well tagged by SNPs on the genotyping array,
rather than only those on the array itself or in LD with SNPs on
the array. GCTA results based on families thus have a very
different interpretation than results obtained in unrelated indi-
viduals. Yang and colleagues therefore recommend filtering
family samples using several values of genetic relatedness to
exclude close relatives, which ideally yields stable estimates
across different thresholds. Because the choice of a cutoff is
arbitrary, we used values of .025, .05, and .10, the most stringent
of which (.025) corresponds to approximately third to fourth
cousins. Because SNP heritability estimates can be inflated by
SNPs in LD with “causal” variants (Speed, Hemani, Johnson, &
Balding, 2012), in addition to the commonly employed GCTA
procedure of Yang etal. (2011), we also used the program
LDAK to derive LD-adjusted kinship coefficients that weight
SNPs by local LD patterns (http://dougspeed.com/ldak). Hence,
each article provides GCTA estimates based on the use of three
different cutoffs, using both the GCTA approach most com-
monly employed in the literature, and a less commonly
employed version that has the advantage of taking into account
LD patterns. Our goal was thus not to provide a single GCTA
point estimate for each endophenotype, but rather to examine
how the estimates vary using different procedures, providing us
with the opportunity to examine the extent to which our results
depend on the assumptions inherent to each. Of particular inter-
est was the degree to which convergence was evident in point
estimate across the six analyses.

In addition to analyses based on subsamples of unrelated
individuals, we conducted two different GCTA analyses using
the whole sample. One used the procedure of Yang et al. (2011)
without filtering subjects on the basis of genetic relatedness.
GCTA estimates produced by this approach are driven by phe-
notypic relationships, including effects of shared environment
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(the C latent variable in biometric models). We also carried out
a second analysis of the whole sample using a method recom-
mended by Yang and colleagues (Yang, Lee, Goddard, &
Visscher, 2013) for simultaneously modeling the genetic and
environmental influences shared by family members. This pro-
duces an estimate unconfounded by the contribution of C. It also
provides an estimate of C effects, which offers an opportunity to
corroborate or disconfirm biometric model-fitting results. (We
do not report these estimates, however, because they can be
inferred from the magnitude of the difference in GCTA esti-
mates from the two family-based models.) To summarize, we
examined SNP heritability using three different versions of
GCTA, and where possible, different cutoffs for relatedness in
our sample. The online supporting information for this paper
provides further details regarding exactly how the different
GCTA models were applied for the analyses carried out in each
of the empirical papers.

GCTA is essentially descriptive; its purpose is not to identify
specific SNPs that influence a trait. As such, it complements the
biometric model-fitting analyses by focusing on the molecular-
genetic basis of phenotypic similarity rather than fitting models
based on phenotypic covariances. It tells us to what extent
biometric heritability can be accounted for by a truly additive
model of one class of genetic variants, common SNPs (and
everything in LD with these SNPs). This in turn gives us some
insight into the utility of additional investigations into other
types of genetic variants, such as copy number variants, variable
nucleotide repeats, insertions and deletions, rare SNPs,
epistasis, or dominance, none of which is accounted for by
GCTA despite possibly contributing to biometric heritability.

. Analysis of individual SNPs in GWAS papers of common

variants. The third prong in our analytic strategy was to
conduct genome-wide association studies (GWAS). In the
GWAS, we conducted regression analyses of effects on each
psychophysiological measure of each of the 527,829 SNPs on
the Illumina 660W-Quad genotyping array that survived quality
control filters. Whereas GCTA considers all SNPs together,
GWAS considers each SNP alone. The focus of GWAS is often
on relatively common SNPs—typically those with a MAF of at
least 5% (those with a MAF less than 1% were discarded as part
of our quality control procedure). A focus on common SNPs is
consistent with the “common disease—common variant” model
(for a review of the development of this concept, see Visscher,
Brown, McCarthy, & Yang, 2012). For this model, the underly-
ing genetic architecture differs between common and rare dis-
orders, with common disorders (here, more appropriately, an
endophenotype for a common disorder) thought to be heavily
influenced by variants that are relatively common in the popu-
lation, although this does not exclude the possibility that rare
variants may also be involved. This model was influenced by
discoveries of susceptibility variants for common diseases that
have large MAFs, such as alleles in the apolipoprotein E gene
(APOE) that confer risk for Alzheimer’s disease and alleles in
the PPARG gene that confer risk for type II diabetes (Bush &
Moore, 2012). Importantly, these procedures were not those
used in the exome chip and sequencing papers to appropriately
analyze large numbers of rare variants (see the next section for
details and Vrieze, Malone, Pankratz et al., 2014; Vrieze,
Malone, Vaidyanathan et al., 2014).

GWAS using MCTFR data is complicated by the nested
structure of our sample, which induces a correlation among
family members. To account for the lack of independence in
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family data, we used rapid feasible generalized least squares
(RFGLS:; X. Li, Basu, Miller, Iacono, & McGue, 2011). RFGLS
is a computationally efficient form of generalized least squares
(GLS). GLS can be appropriate when residuals are correlated
(or heteroskedastic). GLS assumes that the residual covariance
structure (e.g., within higher-order units, in our case, families) is
known. If it is not, the observed variances and covariances can
be used as an estimate of the unknown covariance structure, an
approach known as feasible GLS (FGLS). In the present case,
data were clustered in families comprising one to four members,
with three family types: MZ and DZ families and stepparents.
RFGLS estimates the residual covariance matrix separately for
each type. FGLS would require us to estimate the residual
covariance structure conditional on model covariates and a
given SNP for each of the 527,829 SNPs, which is computa-
tionally inefficient. RFGLS estimates the residual covariance
matrix once, conditional only on model covariates, based on the
assumption that SNP effects on the residual covariances will be
negligible. This produces significant savings in computational
time and minimal bias or loss of power (X. Li etal., 2011).
Constraints are imposed on several elements of the residual
covariance matrix in order to reduce the number of parameters
to be estimated, thereby avoiding problems with algorithm
convergence. The mother-offspring and father-offspring corre-
lations are constrained equal, as are variances for the two
members of a twin pair. In all, four correlations (MZ or DZ twin
pair, mother-offspring, father-offspring, mother-father) and four
variances (twin, mother, father, stepparent) were estimated in
the investigations described here. The independent variable in
each analysis was a count of the number of minor alleles (0, 1,
or 2) for each SNP, with the variables described below as
covariates. The causal model implicit in using a count of minor
alleles is that SNP effects are additive. Each SNP association
was assessed via a test with 1 df.

We used the conventional p-value threshold of 5x 1078, a
genome-wide significance criterion used in GWAS that is con-
sidered robust to false positives because it tightly controls the
familywise error rate arising from the testing of hundreds of
thousands of SNPs. This is based on the notion of genome-wide
significance, which corrects for the total number of effective
independent regions in the genome, based on LD patterns in a
particular population. Although the threshold adopted is strin-
gent, we are applying it on a per phenotype and per experiment
basis instead of correcting for all the possible different pheno-
types we are evaluating across all the different papers. We
believe there is an advantage to adopting this approach when all
the tests we are conducting appear as part of a collection of
papers presented together (as opposed to publishing each inde-
pendently in different sources spread out over an extended
period of time) because it allows the reader to make an informed
opinion about the evidence for association in the context of a
transparent overall approach. Nevertheless, for each tested
endophenotype, there undoubtedly will be SNPs that are related
to the endophenotypes that do not cross this stringent but nec-
essary significance threshold. Therefore, we point out “sugges-
tive” associations with each measure, although we do not
interpret them. In this vein, each GWAS paper is accompanied
by a supplement, which includes a list of SNPs associated with
that paper’s endophenotype(s) at a significance level of p < 107
Although many of the SNPs with p values this small will rep-
resent false positives, a small subset is likely to constitute a valid
signal in the genetic pathway mediating the development of a
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particular endophenotype. It is here that future molecular
genetic investigators interested in a psychophysiological
measure might look for evidence that their small p-value find-
ings overlap with and are in effect replicated by ours.

In addition to this genome-wide scan, we used GWAS results
to explicitly assess associations for two sets of candidate SNPs.
The first set comprised 1,180 SNPs related to disorders or traits
that are likely a priori to be associated with the different
endophenotypes. These were identified through MEDLINE and
included meta- and mega-analyses of alcohol (Wang et al., 2011)
and drug (C. Y. Li etal., 2011) dependence, cocaine abuse
(Clarke etal,, 2013), smoking and nicotine dependence
(Belsky et al., 2013; Bierut et al., 2008; Furberg et al., 2010; Liu,
Tozzi et al., 2010; Thorgeirsson et al., 2010), ADHD (B. M.
Neale et al., 2010), schizophrenia, bipolar disorder, and major
depression (Greenwood et al., 2011; Hek et al., 2013; Ripke
et al., 2012; Smoller et al., 2013; Sullivan, Daly, & O’Donovan,
2012), or related phenotypes, such as heavy drinking (Heath
etal., 2011) and the maximum number of drinks consumed
at one time (Kapoor et al., 2013; Pan et al., 2013), and the
personality characteristic of excitement seeking (Terracciano
etal., 2011).

The second candidate SNP set was different for each investi-
gation, consisting of SNPs that have been reported in previous
research to be associated with the specific endophenotypes inves-
tigated. SNPs in either of these two sets that were not on the
Illumina array were imputed, using the program Minimac
(Howie, Fuchsberger, Stephens, Marchini, & Abecasis, 2012),
after genotypes had first been phased using Beagle (Browning
& Browning, 2009), which uses known familial structure to
improve phasing accuracy. Genotypes were imputed with
1000 Genomes reference haplotypes (1000 Genomes Project
Consortium, 2012). Imputation produces an allele dosage for
each variant site in 1000 Genomes, which is a weighted count of
the minor allele; each genotype (AA, Aa, and aa, represented as
0, 1, and 2, respectively) is weighted by the posterior probability
of that genotype as estimated by the imputation algorithm.
Analyses of imputed SNPs used the allele dosage as the inde-
pendent variable. We only used SNPs that had been imputed
accurately, with an imputation 7> of at least .30 (http://www
.ncbi.nlm.nih.gov/pubmed/21058334). A Bonferroni-corrected
significance threshold was adopted for both candidate sets, which
corresponded to o0 = 4.24 x 107 for the set of 1,180 SNPs and a
different value for the second set of candidate SNPs that varied
from one endophenotype to another.

. Aggregating SNPs within a gene. The fourth aspect of our

analysis strategy consisted of testing associations between indi-
vidual genes and the endophenotypes, using VEGAS, which
stands for a “versatile gene-based association study” (Liu,
McRae et al., 2010). VEGAS combines into a single score evi-
dence of association between all SNPs in a gene and a phenotype.
This approach can be particularly powerful when several SNPs
located in a gene are causally related to the phenotype, in which
case the p value associated with any of them may not be small
enough to be distinguishable from noise. VEGAS assigns SNPs
to a gene by reference to the UCSC Genome Browser assembly,
including all SNPs within 50 kilobases of the 3’ and 5’
untranslated region of a given gene in order to capture regulatory
SNPs and SNPs in LD with those in the gene itself. Individual p
values for each SNP are converted into chi-squared statistics with
1 df and summed. Although other gene-based approaches exist,
VEGAS easily accommodates the clustered nature of our sample
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because the p values it uses were produced by RFGLS and
accurately reflect the nested structure of our data. LD between
SNPs causes the SNPs and their p values to be correlated.
Therefore, the null distribution of the gene score in the presence
of LD must be determined. VEGAS uses Monte Carlo methods
and the LD structure of a reference sample from the International
HapMap Project (International HapMap Consortium, 2005). We
selected the CEPH sample of Utah residents of European ances-
try in HapMap (CEU) for this purpose.

We used VEGAS to conduct gene-based tests of association
in amanner parallel to our analyses of individual SNPs. We tested
the association between each of 17,601 autosomal genes and our
endophenotypes in a genome-wide scan comparable to our
GWAS of SNPs. The VEGAS algorithm we used did not consider
allosomes. A threshold of p = 2.84 x 107° was used for determin-
ing statistical significance, which corrects for the number of
different genes. In addition, we evaluated three sets of candidate
genes. The first set comprised 204 genes selected because they
are likely a priori to be related to the endophenotypes by virtue of
particular characteristics: they belong to one of the major neuro-
transmitter or neuromodulatory systems (dopamine, noradrena-
line, acetylcholine, GABA, glutamate, and serotonin), they
belong to the endogenous opioid or cannabinoid systems, or they
are implicated in metabolizing alcohol and nicotine. Relevant
genes were identified through the NeuroSNP database (https://
zork5.wustl.edu/nida/neurosnp.html). A threshold of 2.45 x 107
was used for determining the significance of any genes in this set.
The second set consisted of 92 autosomal candidate genes iden-
tified by the Consortium on the Genetics of Schizophrenia
(Greenwood et al., 2011), which reported evidence of association
between these genes and some candidate endophenotypes
broadly similar to those studied here. The third set was unique to
each article, consisting of any candidate genes that have been
found in previous research to be associated with the particular
endophenotype examined.

Adjusting for Covariates

The measures we examined in these seven articles are potentially
influenced by several demographic-related characteristics. For
instance, gender differences in mean levels are sometimes observed
for these measures considered as a group. Moreover, the sample
comprises two age cohorts: adolescent twins and their parents,
who are primarily middle aged. The actual ages vary within each
cohort, and all of our measures are likely to change somewhat in
mean level over the course of the life span, including during the
late-adolescent period spanned by twins in this sample. We there-
fore adjusted all measures for these covariates in order to remove
them as potential sources of confounding in our analyses. The
covariate set, which was common to the five investigations of
common variants, also included the 10 genetic PCs derived from
EIGENSTRAT to adjust for any effects of unknown population
stratification factors, in addition to age cohort, gender, and chrono-
logical age. Because data for these investigations were collected
over a span of approximately 20 years, there were sometimes
changes in protocol or recording system. The covariate set for each
investigation therefore included dummy variables as necessary to
accommodate variation in procedure or differences between proto-
cols that might be specific to an experimental task. With the excep-
tion of the 10 genetic PCs, the same covariates were used in the two
papers examining rare variants.
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Associations Between Rare Variants and Endophenotypes:
Exome Chip Analysis

Whereas the first five papers in this special issue examine the role
of common variants in accounting for variance in the different
putative endophenotypes, the sixth empirical report focuses on rare
variants. In general, results from the common variant papers indi-
cated that estimates of SNP heritability from GCTA were less than
estimates of phenotypic heritability from fitting biometric models.
This pattern suggests that not all of the genetic influence on these
endophenotypes is accounted for by the common variants on the
Illumina genotyping array. This finding is common in medical and
psychiatric genetics, and it has led many to consider the role
of rare variants (Zuk et al., 2014). In the investigation described
in this paper, we examined associations between ~ 85,000
nonsynonymous SNPs and all 17 endophenotypes. Nonsy-
nonymous SNPs are located in coding regions of the genome (the
exome); they are therefore exonic variants, and they also tend to be
rare. The different alleles of nonsynonymous SNPs change the
amino acid sequence of a protein, the effects of which can range
from benign to lethal. Even in less extreme cases, however, their
impact on phenotypic development is hypothesized to be greater,
on average, than the impact of SNPs, which do not directly affect
protein structure. This stands in sharp contrast to the (common)
SNPs assessed in GWAS, which are selected for characteristics
such as their ability to tag other SNPs and not necessarily for any
functional relevance. We also conducted gene-based burden tests,
in which the effects of individual variants within a gene are com-
bined into a single score, similar to the VEGAS approach.
Although the variants examined differ between the first five papers
and the sixth, we nevertheless were able to specifically examine
rare variants in the 204 NeuroSNP candidate genes from the
common-variant analyses (described above).

The methods used in this paper are necessarily different from
those used in the five papers on common variants, and they are
described in detail in the paper itself. As in the papers on common
variants, all putative endophenotypes were adjusted for the relevant
covariates: gender, age cohort, chronological age, and any dummy
variables representing task-specific factors that might affect
observed levels. Unlike the approach adopted in the other papers,
they were not adjusted for population stratification by means of the
10 PCs produced by EIGENSTRAT. Instead, a linear mixed model
EMMAX (Kang etal., 2010), implemented in the program
EPACTS (Kang, 2014), was used to estimate an empirical kinship
matrix, analogous to the genetic relatedness matrix in GCTA. The
empirical kinship matrix allowed us to adjust for familial resem-
blance and population stratification simultaneously.

Associations Between (Nearly) All SNPs and
Endophenotypes: Whole Genome Sequencing

The final empirical article in this special issue (Vrieze, Malone,
Vaidyanathan et al., 2014) represents our most comprehensive
attempt to discover rare, or common, variant associations with the 17
endophenotypes. We use whole genome sequencing to search the
entire genome for SNPs, whether common or rare. We found 27
million autosomal SNPs, which includes the vast majority of all
SNPs genotyped on the 660W-Quad genome-wide array and the
exome array described previously. Each SNP is then tested for
association with each endophenotype. We also conduct gene-based
burden tests, just as in the exome chip article. We describe the
sequencing methodology in the sequencing article itself and do not
repeat it here. Instead, we provide a brief overview of how the
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sequencing article complements the other articles in this special
issue, and some of the challenges associated with sequence analysis.

The other six articles used fixed arrays to genotype individuals;
such arrays only genotype variants that have already been discov-
ered in other individuals. Whole genome sequencing can identify
novel rare variants, never seen before in any individual. Indeed,
some of the variants we describe in the sequencing article are
exclusive to the MCTFR participants, and have never been reported
previously, in any study. Such comprehensive genotypic informa-
tion allows for comprehensive genetic association tests. It is well
known, for example, that increased genotyping density increases
power to discover associations, even for common variants (Y. Li,
Willer, Ding, Scheet, & Abecasis, 2010). Sequencing also allows
accurate genotyping of rarer variants completely missed on any
commercially available array.

This wealth of genetic variation carries with it a variety of
challenges. First, genotype accuracy from sequencing is strongly
related to the depth of sequencing; the deeper the sequencing, the
more accurate the genotypes. Very shallow sequencing of 1x or 2x
(i.e., the base sequence in the genome is “read” 1 or 2 times) is
sufficient to accurately capture the vast majority of common variants
in the genome (Y. Li, Sidore, Kang, Boehnke, & Abecasis, 2011).
However, the human genome contains some 3 billion base pairs, the
“reading” of which can be expected to produce occasional
genotyping error that cannot easily be differentiated from a rare
variant that shows up in the occasional subject. Deep sequencing,
such as 30x, provides high power to detect variants so rare that only
a single copy of the minor allele is observed in the sample (i.e.,
appears in just one person, a “singleton”). This accuracy is achieved
because reading the base pair sequence 30x makes it possible to
separate sequencing errors (which might produce different values
for a single base across the 30 reads) from reproducible signal
(producing the same value for the base all 30 times). However,
higher depth sequencing is more costly. At low depths, many par-
ticipants can be sequenced for some fixed cost but high depth is more
expensive per person, such that only a few individuals can be
sequenced for the same fixed cost. That is, low depth sacrifices
genotype precision for sample size, and high depth sacrifices sample
size for precision. Our sequencing study attempted to balance these
competing outcomes, simultaneously obtaining good power to accu-
rately genotype rarer variants in a relatively large sample size. In the
end, we settled on a depth of 10x, which, according to our results,
provided about 75% power to discover singletons.

Second, knowledge about genomic function outside of the
exome is less well developed than our knowledge of that within the
exome. Noncoding function can also be highly tissue specific, and
the availability of such information in relevant brain tissue is only
now being released through ROADMAP (Bernstein et al., 2010;
Chadwick, 2012), ENCODE (The ENCODE Project Consortium,
2012), and GTEx (GTEx Consortium, 2013). Therefore, in the
present work, we refrain from using functional annotation outside
of coding regions, and conduct burden tests within the exome only.
However, most disease- and trait-associated SNPs are not found in
coding regions (Maurano et al., 2012). Noncoding regions, which
comprise over 98% of the genome, are clearly important in genome
function (The ENCODE Project Consortium, 2012), and we are
keen to use noncoding functional information, as it becomes avail-
able, in the future for the sequences we have generated.

Third, whole genome sequencing remains relatively expensive
(over $1,000 per individual in our work), so the available sample
size is only a portion of that available in the MCTFR. This limits
statistical power in a sample that is likely already underpowered to
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detect small genetic effects. To increase our sample, while main-
taining the genotype density afforded us by sequencing, we used
the sequences to impute into the full available MCTFR sample. We
observed an increase in imputation accuracy over that obtained
through imputation with 1000 Genomes (cf. Pistis et al., 2014), the
current standard in imputation. The imputation procedure allowed
us to retest all 27 million sequenced variants in all 4,905 individ-
uals with psychophysiological endophenotypes, and the increase in
statistical power associated with that increased sample size.

Linear Mixed Models in Rare Variant Association Studies

In both the exome chip (Vrieze, Malone, Pankratz et al., 2014) and
sequencing articles (Vrieze, Malone, Vaidyanathan et al., 2014) we
used a linear mixed model called EMMAX (Kang et al., 2010) to
account for population stratification and familial clustering in
genetic association tests. Such models have become standard prac-
tice for these purposes (Yang, Zaitlen, Goddard, Visscher, & Price,
2014). The linear mixed model is similar to GCTA, in that one uses
a kinship matrix representing all pairwise familial relationships
estimated on the available genetic data. This matrix is entered as a
random effect of a linear mixed model to account for variance in the
phenotype due to familial and population structure. Linear mixed
models are not without their pitfalls, and thus used incorrectly can
lead to spurious results (Yang et al., 2014). One concern noted
elsewhere that does apply, however, is in the use of linear mixed
models in analysis of rare variants. When the empirical kinship
matrix is computed on genome-wide common variants, it may not
reflect small pockets of population stratification that are due to
evolutionarily recent rare variants. In this case, there may be residual
population stratification due to rare variants that are confounded
with nongenetic influences (e.g., environment, cultural practices). In
this case, the residual population structure can exert a spurious
influence on test statistics, and this influence is not corrected for
by the common variant empirical kinship matrix (Mathieson &
McVean, 2013). Although rare variant stratification is theoretically
possible and certainly worth scrutiny, the authors present no real-
world examples of the kind of stratification they propose could be
problematic. Indeed, we observe no inflation in our rare variant tests
here that would lead us to believe that rare variant stratification is
playing more than a negligible role in our results; neither have we
observed spurious results in prior research that used linear mixed
models in rare variant association tests (Vrieze et al., 2013).

Summary and Conclusion

Our approach involves applying the same set of analytic procedures
to each of 17 candidate endophenotypes derived from five different
psychophysiological protocols assessing constructs of broad inter-
est in psychophysiological research. It includes elements that are
both agnostic (genome-wide analyses) and hypothesis driven (plau-
sibly relevant candidate SNPs and genes) regarding the expected
results. Consistent with current convention designed to lessen the
likelihood of the types of false-positive outcomes that are generally
believed to be common in molecular genetic research, we adopted
conservative p-value thresholds in our analyses. In reporting
results, we interpreted as significant findings that exceeded these
thresholds while also noting our strongest nonsignificant findings,
with the hope that both are likely to be of value to investigators also
interested in the genetic basis of the measures we examined. Also
included are biometric analyses of the same phenotypes using the
participants in the molecular genetic studies. Although our inves-
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tigations are not unique in this regard, this is not a common feature
of genome-wide studies of complex traits. Besides providing evi-
dence regarding the strength of genetic influence on our measures,
because MZ twins are in effect parallel forms of the same person,
the MZ twin correlations provide an index of measurement reli-
ability, also an important aspect of an endophenotype.

Although the two decades it took to acquire our study subjects
produced samples that are large by standards commonly employed
in psychophysiology, they are small when compared against what
molecular geneticists believe are well suited to identify genetic
variants associated with complex traits. However, there is no way to
know what sample size is necessary to achieve success with these
candidate endophenotypes in the absence of the type of evaluative
investigation we have undertaken. In a review of the first 5 years of
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GWAS discovery for complex traits, Visscher et al. (2012) graphi-
cally showed (see their Figure 2A) that the number of discovered
genetic variants was strongly correlated with sample size, such that
samples of 20,000 or larger have been required to obtain hits for
easy-to-measure-accurately but genetically distal traits like body
mass index and height. More difficult to measure but biologically
relevant traits with presumed more proximal genetic influences, like
the Q-T interval in the electrocardiogram (and HDL cholesterol and
bone mineral density), produced verifiable hits with sample sizes in
the 2,000-5,000 range, similar to those available in the MCTFR. It
is because of such findings that we launched these special issue
studies with some optimism regarding the likelihood of identifying
causal variants for the endophenotypes we investigated.

References

1000 Genomes Project Consortium. (2012). An integrated map of genetic
variation from 1,092 human genomes. Nature, 491, 56-65. doi:
10.1038/nature 11632

Anokhin, A. P. (2014). Genetic psychophysiology: Advances, problems,
and future directions. International Journal of Psychophysiology, 93,
173-197.

Begleiter, H., Porjesz, B., Bihari, B., & Kissin, B. (1984). Event-related
brain potentials in boys at risk for alcoholism. Science, 225, 1493—
1496.

Belsky, D. W., Moffitt, T. E., Baker, T. B., Biddle, A. K., Evans, J. P,
Harrington, H., . .. Caspi, A. (2013). Polygenic risk and the develop-
mental progression to heavy, persistent smoking and nicotine depend-
ence: Evidence from a 4-decade longitudinal study. JAMA Psychiatry,
70, 534-542. doi: 10.1001/jamapsychiatry.2013.736

Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B.,
Milosavljevic, A., Meissner, A., ... Thomson, J. A. (2010). The NIH
Roadmap Epigenomics Mapping Consortium. Nature Biotechnology,
28, 1045-1048. doi: 10.1038/Nbt1010-1045

Bierut, L. J., Stitzel, J. A., Wang, J. C., Hinrichs, A. L., Grucza, R. A., Xuei,
X.,...Goate, A. M. (2008). Variants in nicotinic receptors and risk for
nicotine dependence. American Journal of Psychiatry, 165, 1163-1171.
doi: 10.1176/appi.ajp.2008.07111711

Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., . . . Fox,
J. (2011). OpenMx: An open source extended structural equation mod-
eling framework. Psychometrika, 76, 306-317. doi: 10.1007/s11336-
010-9200-6

Braff, D. L., Greenwood, T. A., Swerdlow, N. R., Light, G. A., Schork,
N. J., & Investigators of the Consortium on the Genetics of Schizophre-
nia. (2008). Advances in endophenotyping schizophrenia. World Psy-
chiatry, 7, 11-18.

Browning, B. L., & Browning, S. R. (2009). A unified approach to genotype
imputation and haplotype-phase inference for large data sets of trios and
unrelated individuals. American Journal of Human Genetics, 84, 210—
223. doi: 10.1016/j.ajhg.2009.01.005

Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-wide association
studies. PLoS Computational Biology, 8, €1002822. doi: 10.1371/
journal.pcbi. 1002822

Chadwick, L. H. (2012). The NIH Roadmap Epigenomics Program data
resource. Epigenomics, 4, 317-324. doi: 10.2217/Epi.12.18

Clarke, T. K., Bloch, P. J., Ambrose-Lanci, L. M., Ferraro, T. N., Berrettini,
W. H., Kampman, K. M., . . . Lohoff, E. W. (2013). Further evidence for
association of polymorphisms in the CNR1 gene with cocaine addic-
tion: confirmation in an independent sample and meta-analysis. Addic-
tion Biology, 18, 702-708. doi: 10.1111/j.1369-1600.2011.00346.x

Cunningham, J. M., Sellers, T. A., Schildkraut, J. M., Fredericksen, Z. S.,
Vierkant, R. A., Kelemen, L. E., . .. Goode, E. L. (2008). Performance
of amplified DNA in an Illumina GoldenGate BeadArray assay. Cancer
Epidemiology, Biomarkers and Prevention, 17, 1781-1789. doi:
10.1158/1055-9965.EPI-07-2849

Eaves, L. J., Last, K. A., Young, P. A., & Martin, N. G. (1978). Model-fitting
approaches to the analysis of human behaviour. Heredity, 41, 249-320.

Flint, J., & Munafo, M. R. (2007). The endophenotype concept in psychi-
atric genetics. Psychological Medicine, 37, 163—180. doi: 10.1017/
$0033291706008750

Furberg, H., Kim, Y., Dackor, J., Boerwinkle, E., Franceschini, N.,
Ardissino, D., ... Merlini, P. A. (2010). Genome-wide meta-analyses
identify multiple loci associated with smoking behavior. Nature Genet-
ics, 42, 441-447.

Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in
psychiatry: Etymology and strategic intentions. American Journal of
Psychiatry, 160, 636-645.

Greenwood, T. A., Lazzeroni, L. C., Murray, S. S., Cadenhead, K. S.,
Calkins, M. E., Dobie, D. J., ... Hardiman, G. (2011). Analysis of 94
candidate genes and 12 endophenotypes for schizophrenia from the
Consortium on the Genetics of Schizophrenia. American Journal of
Psychiatry, 168, 930-946.

GTEx Consortium. (2013). The Genotype-Tissue Expression (GTEx)
project. Nature Genetics, 45, 580-585. doi: 10.1038/ng.2653

Heath, A. C., Whitfield, J. B., Martin, N. G., Pergadia, M. L., Goate, A. M.,
Lind, P. A, . . . Montgomery, G. W. (2011). A quantitative-trait genome-
wide association study of alcoholism risk in the community: Findings
and implications. Biological Psychiatry, 70, 513-518. doi: 10.1016/
j-biopsych.2011.02.028

Hek, K., Demirkan, A., Lahti, J., Terracciano, A., Teumer, A., Cornelis,
M. C., ... Murabito, J. (2013). A genome-wide association study of
depressive symptoms. Biological Psychiatry, 73, 667-678. doi:
10.1016/j.biopsych.2012.09.033

Holdcraft, L. C., & Iacono, W. G. (2004). Cross-generational effects on
gender differences in psychoactive drug abuse and dependence. Drug
and Alcohol Dependence, 74, 147-158. doi: 10.1016/j.drugalcdep
.2003.11.016

Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., & Abecasis, G. R.
(2012). Fast and accurate genotype imputation in genome-wide asso-
ciation studies through pre-phasing. Nature Genetics, 44, 955-959. doi:
10.1038/ng.2354

Tacono, W. G. (1985). Psychophysiologic markers of psychopathology: A
review. Canadian Psychology, 26, 96-112.

Tacono, W. G. (1998). Identifying psychophysiological risk for psychopa-
thology: Examples from substance abuse and schizophrenia research.
Psychophysiology, 35, 621-637.

Tacono, W. G., Carlson, S. R., Taylor, J., Elkins, I. J., & McGue, M. (1999).
Behavioral disinhibition and the development of substance use disor-
ders: Findings from the Minnesota Twin Family Study. Development
and Psychopathology, 11, 869-900.

Tacono, W. G., Lykken, D. T., & McGue, M. (1996). Psychophysiological
prediction of substance abuse. In H. W. Gordon & M. D. Glanz
(Eds.), Individual differences in the biobehavioral etiology of drug
abuse (pp. 129-160). Washington, DC: National Institute on Drug
Abuse.

Tacono, W. G., & Malone, S. M. (2011). Developmental endophenotypes:
Indexing genetic risk for substance abuse with the P300 brain event-
related potential. Child Development Perspectives, 5, 239-247. doi:
10.1111/5.1750-8606.2011.00205.x

Tacono, W. G., & McGue, M. (2002). Minnesota Twin Family Study. Tivin
Research and Human Genetics, 5, 482-487.

Tacono, W. G., McGue, M., & Krueger, R. F. (2006). Minnesota Center for
Twin and Family Research. Twin Research and Human Genetics, 9,
978-984. doi: 10.1375/183242706779462642



Genome-wide scan methods

Iumina. (2008-2013). GenomeStudio Data Analysis Software [Computer
software]. San Diego, CA: Illumina Inc.

Insel, T. R., Cuthbert, B. N., Garvey, M., Heinssen, R., Pine, D. S., Quinn,
K., ... Wang, P. (2010). Research Domain Criteria (RDoC): Toward a
new classification framework for research on mental disorders. Ameri-
can Journal of Psychiatry, 167, 748-751. doi: 10.1176/appi.ajp.2010
.09091379

International HapMap Consortium. (2005). A haplotype map of the human
genome. Nature, 437, 1299-1320.

Jonas, K. G., & Markon, K. E. (2014). A meta-analytic evaluation of the
endophenotype hypothesis: Effects of measurement paradigm in the
psychiatric genetics of impulsivity. Journal of Abnormal Psychology,
123, 660-675. doi: 10.1037/a0037094

Kang, H. M. (2014). Efficient and parallelizable association container
toolbox (EPACTS). Retrieved from http://genome.sph.umich.edu/wiki/
EPACTS

Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S.Y., Freimer,
N. B., ... Eskin, E. (2010). Variance component model to account for
sample structure in genome-wide association studies. Nature Genetics,
42, 348-354. doi: 10.1038/Ng.548

Kapoor, M., Wang, J. C., Wetherill, L., Le, N., Bertelsen, S., Hinrichs,
A. L., ... Goate, A. (2013). A meta-analysis of two genome-wide
association studies to identify novel loci for maximum number of alco-
holic drinks. Human Genetics, 132, 1141-1151. doi: 10.1007/s00439-
013-1318-z

Keyes, M. A., Malone, S. M., Elkins, I. J., Legrand, L. N., McGue, M., &
Tacono, W. G. (2009). The enrichment study of the Minnesota Twin
Family Study: Increasing the yield of twin families at high risk for
externalizing psychopathology. Twin Research and Human Genetics,
12, 489-501. doi: 10.1375/twin.12.5.489

Li, C. Y., Zhou, W. Z., Zhang, P. W., Johnson, C., Wei, L., & Uhl, G. R.
(2011). Meta-analysis and genome-wide interpretation of genetic sus-
ceptibility to drug addiction. BMC Genomics, 12, 508. doi: 1471-2164-
12-508

Li, X., Basu, S., Miller, M. B., Tacono, W. G., & McGue, M. (2011). A rapid
generalized least squares model for a genome-wide quantitative trait
association analysis in families. Human Heredity, 71, 67-82. doi:
10.1159/000324839

Li, Y., Sidore, C., Kang, H. M., Boehnke, M., & Abecasis, G. R. (2011).
Low-coverage sequencing: Implications for design of complex trait
association studies. Genome Research, 21, 940-951. doi: 10.1101/
gr.117259.110

Li, Y., Willer, C. J., Ding, J., Scheet, P., & Abecasis, G. R. (2010). MaCH:
Using sequence and genotype data to estimate haplotypes and unob-
served genotypes. Genetic Epidemiology, 34, 816-834. doi: 10.1002/
Gepi.20533

Little, R.J. A., & Rubin, D. B. (2002). Statistical analysis with missing data
(2nd ed.). Hoboken, NJ: John Wiley & Sons, Inc.

Liu, J. Z., McRae, A. F,, Nyholt, D. R., Medland, S. E., Wray, N. R., &
Brown, K. M. (2010). A versatile gene-based test for genome-wide
association studies. American Journal of Human Genetics, 87, 139-145.

Liu, J. Z., Tozzi, F., Waterworth, D. M., Pillai, S. G., Muglia, P., Middleton,
L., ... Marchini, J. (2010). Meta-analysis and imputation refines the
association of 15q25 with smoking quantity. Nature Genetics, 42, 436—
440. doi: 10.1038/ng.572

Maes, H. H., Neale, M. C., & Eaves, L. J. (1997). Genetic and environmen-
tal factors in relative body weight and human adiposity. Behavior
Genetics, 27, 325-351.

Malone, S. M., Burwell, S. J., Vaidyanathan, U., Miller, M. B., McGue, M.,
& Tacono, W. G. (2014). Heritability and molecular genetic basis of
resting EEG activity: A genome-wide association  study.
Psychophysiology, 51, 1225-1245.

Malone, S. M., Luciana, M., Wilson, S., Sparks, J. C., Hunt, R. H., Thomas,
K. M., & Tacono, W. G. (2014). Adolescent drinking and motivated
decision-making: A cotwin-control investigation with monozygotic
twins. Behavior Genetics, 44, 407-418.

Malone, S. M., Vaidyanathan, U., Basu, S., Miller, M. B., McGue, M., &
Tacono, W. G. (2014). Heritability and molecular genetic basis of P3
event-related brain potential amplitude: A genome-wide association
study. Psychophysiology, 51, 1246—1258.

Mathieson, 1., & McVean, G. (2013). FaST-LMM-Select for addressing
confounding from spatial structure and rare variants Reply. Nature
Genetics, 45, 471. doi: 10.1038/Ng.2619

Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E.,
Wang, H., ... Stamatoyannopoulos, J. A. (2012). Systematic localiza-

1223

tion of common disease-associated variation in regulatory DNA.
Science, 337, 1190-1195. doi: 10.1126/science.1222794

McGue, M., Keyes, M., Sharma, A., Elkins, I., Legrand, L., Johnson, W., &
Iacono, W. G. (2007). The environments of adopted and non-adopted
youth: Evidence on range restriction from the Sibling Interaction and
Behavior Study (SIBS). Behavior Genetics, 37, 449-462. doi: 10.1007/
s10519-007-9142-7

McGue, M., Zhang, Y., Miller, M. B., Basu, S., Vrieze, S., Hicks, B., ...
Tacono, W. G. (2013). A genome-wide association study of behavioral
disinhibition. Behavior Genetics, 43, 363-373.

Miller, M. B., Basu, S., Cunningham, J., Eskin, E., Malone, S. M., Oetting,
W. S., ... McGue, M. (2012). The Minnesota Center for Twin and
Family Research genome-wide association study. Twin Research and
Human Genetics, 15, 767-774.

Neale, B. M., Medland, S. E., Ripke, S., Asherson, P., Franke, B., Lesch,
K.P.,...Psychiatric, G. C. A. S. (2010). Meta-analysis of genome-wide
association studies of attention-deficit/hyperactivity disorder. Journal of
the American Academy of Child and Adolescent Psychiatry, 49, 884—
897. doi: 10.1016/j.jaac.2010.06.008

Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical
modeling (6th ed.). Richmond, VA: Department of Psychiatry, Virginia
Commonwealth University.

Paaby, A. B., & Rockman, M. V. (2014). Cryptic genetic variation: Evol-
ution’s hidden substrate. Nature Reviews Genetics, 15, 247-258. doi:
10.1038/nrg3688

Pan, Y., Luo, X,, Liu, X., Wu, L. Y., Zhang, Q., Wang, L., . . . Wang, K. S.
(2013). Genome-wide association studies of maximum number of
drinks. Journal of Psychiatric Research, 47, 1717-1724. doi: 10.1016/
jjpsychires.2013.07.013

Pistis, G., Porcu, E., Vrieze, S. 1., Sidore, C., Steri, M., Danjou, F, ...
Sanna, S. (2014). Toward optimally cost-effective designs for genotype
imputation in sequencing based genome-wide association studies.
Manuscript submitted for publication.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick,
N. A., & Reich, D. (2006). Principal components analysis corrects for
stratification in genome-wide association studies. Nature Genetics, 38,
904-909.

R Development Core Team. (2010). R: A language and environment for
statistical computing. R: Foundation for Statistical Computing, Vienna,
Austria. Retrieved from http://www.R-project.org

Ripke, S., Wray, N. R., Lewis, C. M., Hamilton, S. P., Weissman, M. M.,
Breen, G., ... Sullivan, P. F. (2012). A mega-analysis of genome-wide
association studies for major depressive disorder. Molecular Psychiatry,
18, 497-511. doi: 10.1038/mp.2012.21

Smoller, J. W., Kendler, K., Craddock, N. J., Lee, P. H., Neale, B. M.,
Nurnberger, J. L., ... Sklar, P. (2013). Identification of risk loci with
shared effects on five major psychiatric disorders: A genome-wide
analysis. Lancet, 381, 1371-1379.

Speed, D., Hemani, G., Johnson, M. R., & Balding, D. J. (2012). Improved
heritability estimation from genome-wide SNPs. American Journal
of Human Genetics, 91, 1011-1021. doi: 10.1016/j.ajhg.2012
.10.010

Sullivan, P. F,, Daly, M. J., & O’Donovan, M. (2012). Genetic architectures
of psychiatric disorders: The emerging picture and its implications.
Nature Reviews Genetics, 13, 537-551. doi: 10.1038/nrg3240

Terracciano, A., Esko, T., Sutin, A. R., de Moor, M. H., Meirelles, O., Zhu,
G., ... Uda, M. (2011). Meta-analysis of genome-wide association
studies identifies common variants in CTNNA2 associated with
excitement-seeking. Translational Psychiatry, 1, e49. doi: 10.1038/
tp.2011.42

The ENCODE Project Consortium. (2012). An integrated encyclopedia of
DNA elements in the human genome. Nature, 489, 57-74. doi: 10.1038/
nature11247

Thorgeirsson, T. E., Gudbjartsson, D. F.,, Surakka, I., Vink, J. M., Amin, N.,
Geller, F., ... Stefansson, K. (2010). Sequence variants at CHRNB3-
CHRNAG6 and CYP2AG6 affect smoking behavior. Nature Genetics, 42,
448-453. doi: 10.1038/ng.573

Vaidyanathan, U., Isen, J. D., Malone, S. M., Miller, M. B., McGue, M., &
Tacono, W. G. (2014). Heritability and molecular genetic basis of
electrodermal  activity: A genome-wide  association  study.
Psychophysiology, 51, 1259-1271.

Vaidyanathan, U., Malone, S. M., Donnelly, J. M., Hammer, M. A., Miller,
M. B., McGue, M., & Iacono, W. G. (2014). Heritability and molecular
genetic basis of antisaccade eye tracking error rate: A genome-wide
association study. Psychophysiology, 51, 1272—1284.



1224

Vaidyanathan, U., Malone, S. M., Miller, M. B., McGue, M., & Iacono,
W. G. (2014). Heritability and molecular genetic basis of acoustic startle
eye blink and affectively modulated startle response: A genome-wide
association study. Psychophysiology, 51, 1285-1299.

Vaidyanathan, U., Patrick, C. J., & Cuthbert, B. N. (2009). Linking dimen-
sional models of internalizing psychopathology to neurobiological
systems: Affect-modulated startle as an indicator of fear and distress
disorders and affiliated traits. Psychological Bulletin, 135, 909-942.
doi: 10.1037/a0017222

Visscher, P. M., Brown, M. A., McCarthy, M. 1., & Yang, J. (2012). Five
years of GWAS discovery. American Journal of Human Genetics, 90,
7-24. doi: 10.1016/j.ajhg.2011.11.029

Vrana, S. R., Spence, E. L., & Lang, P. J. (1988). The startle probe response:
A new measure of emotion? Journal of Abnormal Psychology, 97,
487-491.

Vrieze, S. 1., Feng, S., Miller, M. B., Hicks, B. M., Pankratz, N., Abecasis,
G. R, ... McGue, M. (2013). Non-synonymous exonic variants in
addiction and behavioral disinhibition. Biological Psychiatry, 75, 783—
789. doi: 10.1016/j.biopsych.2013.08.027

Vrieze, S. 1., Malone, S. M., Pankratz, N., Vaidyanathan, U., Miller, M. B.,
Kang, H. M., ... Jacono, W. G. (2014). Genetic associations
of nonsynonymous exonic variants with psychophysiological endoph-
enotypes. Psychophysiology, 51, 1300-1308.

Vrieze, S. 1., Malone, S. M., Vaidyanathan, U., Kwong, A., Kang, H. M.,
Zhan, X., . .. Iacono, W. G. (2014). In search of rare variants: Prelimi-
nary results from whole genome sequencing of 1325 individuals with
psychophysiological endophenotypes. Psychophysiology, 51, 1309—
1320.

Wang, K.-S., Liu, X., Zhang, Q., Pan, Y., Aragam, N., & Zeng, M. (2011).
A meta-analysis of two genome-wide association studies identifies 3
new loci for alcohol dependence. Journal of Psychiatric Research, 45,
1419-1425. doi: 10.1016/j.jpsychires.2011.06.005

W.G. lacono et al.

Wood, A. C., & Neale, M. C. (2010). Twin studies and their implica-
tions for molecular genetic studies: Endophenotypes integrate
quantitative and molecular genetics in ADHD research. Journal
of the American Academy of Child and Adolescent Psychiatry, 49,
874-883.

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A
tool for genome-wide complex trait analysis. American Journal of
Human Genetics, 88, 76-82. doi: 10.1016/j.ajhg.2010.11.011

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2013). Genome-
wide complex trait analysis (GCTA): Methods, data analyses, and
interpretations. Genome-wide association studies and genomic predic-
tion (Vol. 1019, pp. 215-236). New York, NY: Humana Press.

Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M., & Price, A. L.
(2014). Advantages and pitfalls in the application of mixed-model
association methods. Nature Genetics, 46, 100-106. doi: 10.1038/ng.
2876

Zuk, O., Schaffner, S. F., Samocha, K., Do, R., Hechter, E., Kathiresan, S.,
... Lander, E. S. (2014). Searching for missing heritability: Designing
rare variant association studies. Proceedings of the National Academy of
Sciences of the United States of America, 111, E4A55-E464. doi:
10.1073/pnas.1322563111

Supporting Information

Additional supporting information may be found in the online
version of this article:

GCTA Methodology Supplement: Genome-wide scans of genetic
variants for psychophysiological endophenotypes: A methodologi-
cal overview



