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Abstract

Sensitivity analysis, the study of how ecological variables of interest respond to changes in exter-
nal conditions, is a theoretically well-developed and widely applied approach in population ecol-
ogy. Though the application of sensitivity analysis to predicting the response of species-rich
communities to disturbances also has a long history, derivation of a mathematical framework for
understanding the factors leading to robust coexistence has only been a recent undertaking. Here
we suggest that this development opens up a new perspective, providing advances ranging from
the applied to the theoretical. First, it yields a framework to be applied in specific cases for assess-
ing the extinction risk of community modules in the face of environmental change. Second, it can
be used to determine trait combinations allowing for coexistence that is robust to environmental
variation, and limits to diversity in the presence of environmental variation, for specific commu-
nity types. Third, it offers general insights into the nature of communities that are robust to envi-
ronmental variation. We apply recent community-level extensions of mathematical sensitivity
analysis to example models for illustration. We discuss the advantages and limitations of the
method, and some of the empirical questions the theoretical framework could help answer.
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INTRODUCTION

A key approach to understanding the processes shaping com-
munities in nature is to consider them in the context of the
conditions needed for long-term species coexistence. Most
often considered is when coexistence of a set of species is
dynamically stable, meaning that small perturbations of the
population densities are damped and the system returns to
some attractor (Armstrong & McGehee 1980). Similar, useful
dynamical concepts include resilience and reactivity (Neubert
& Caswell 1997), which quantify the rate of return to equilib-
rium and the initial amplification of perturbations respectively.
Here we focus instead on the property of robustness of coexis-

tence (Abrams 2001; Mesz�ena et al. 2006). Robustness refers to
the response of a system’s equilibrium state to altering model
parameters: if the equilibrium state does not change much even
for relatively large parameter perturbations, the system is
robust, otherwise it is unrobust. Note that ‘equilibrium states’
may include fixed points, limit cycles or any other long-term
behaviour. Robustness takes a different focus than stability and
related concepts mentioned above. It considers the response of
variables (e.g. population densities) to changes in parameters
(intrinsic death rates, predator conversion efficiencies, etc.) gov-
erning the system, rather than the response of variables to per-
turbations of the variables themselves with parameters fixed.

Within population ecology, the study of robustness has had
a long and distinguished history, though the approach is better
known as sensitivity analysis (Caswell 2001, chapter 9). Sensi-
tivity analysis focuses on how a variable of interest (such as
population growth rate or density) is expected to change in
response to parameter perturbations. Sensitivity and robustness
express the same information, but are inversely related: a pop-
ulation growth rate or density is sensitive to parameter changes
if it is not robust to them, and vice versa. Sensitivity analysis
in population ecology has led to deep insights both in an
applied context, for population viability analyses, conservation
and management (Crouse et al. 1987; Hochberg et al. 1992;
Silvertown et al. 1993; Noon & McKelvey 1996; Seamans et al.
1999; Fujiwara & Caswell 2001; Hunter et al. 2010), and in a
theoretical context, especially in life history theory (Hamilton
1966; Charlesworth & Leon 1976; Michod 1979; Caswell,
1982,, 1984; Gleeson 1984; P�asztor et al. 1996; Caswell 2011).
The application of sensitivity analysis to communities also

began early, with several different approaches emerging. First,
the concept of robust coexistence and coexistence region
(bandwidth) was introduced by Armstrong (1976) as the range
of parameters allowing for stable coexistence (see also Van-
dermeer 1975). Abrams and co-workers later followed up with
this perspective, using simulations to determine coexistence
regions in various resource consumption (Abrams 1984) and
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predator-prey (Abrams et al. 2003) models, including competi-
tion and resource fluctuations (Abrams & Holt 2002; Abrams
2004), and mutualistic interactions (Abrams & Nakajima
2007).
In a parallel development, Levins (1974) introduced loop

analysis to predict the effects of small perturbations of model
parameters on the equilibrium state of large communities
characterized only by the sign structure of the interactions
between its members. Bender et al. (1984) established the use
of the inverse community matrix (Levins 1968; May 1973) in
calculating the sensitivity of equilibrium population sizes to
press perturbations of abundances (corresponding to a con-
stant rate of influx/outflow of individuals in time). Several
studies have built on this approach ( Yodzis, 1988,, 2000;
Dambacher et al. 2002; Novak et al. 2011), finding very high
sensitivities to press perturbations in large ecological systems,
hampering predictability due to imperfect knowledge of
parameters. Using the technique of generalized modelling
(Yeakel et al. 2011), Aufderheide et al. (2013) developed a
numerical method for estimating the importance of each spe-
cies in a community and thus identifying parameters the com-
munity is especially sensitive to.
Recently, the influence of the presence or absence of species

on communities has also been explored (community viability
analysis; Ebenman & Jonsson 2005), which specifically consid-
ers the sensitivity of community composition to species
removal in terms of the number of resulting secondary extinc-
tions (Ebenman et al. 2004; Allesina & Pascual 2009). Finally,
the study of the sensitivity of model predictions to altering the
form of their ingredient functions has also been an important
approach – for instance, the effect of replacing the Holling
type-II functional response with an Ivlev function in predator-
prey models (Gross et al. 2009; Cordoleani et al. 2011;
Adamson & Morozov 2013).
Despite this lively area of research over a number of dec-

ades, a mathematical framework for understanding the factors
resulting in robust coexistence did not emerge, until recently.
In relation to the problem of competitive exclusion and limit-
ing similarity, Mesz�ena et al. (2006) presented a new approach
for studying the robustness of coexistence and offered a theo-
retical framework for the construction of community-wide
sensitivity formulae which explicitly quantify the response of
population abundances to perturbations of arbitrary model
parameters. Recently, a series of such formulae have been
worked out for non-equilibrium communities and communi-
ties of structured populations within this framework ( Szil�agyi
& Mesz�ena 2009a, b, 2010; Barab�as et al. 2012a, b, 2013;
Barab�as & Ostling 2013; Barab�as et al. 2014).
Here we suggest that this new mathematical framework

opens up a perspective providing both applied and theoretical
advances. Our dual purpose is to show how one can use the
framework in practice, and to demonstrate these advances
and the emerging insights by applying it to model examples.
In particular, we suggest the framework provides: (1) a mathe-
matical framework for assessing the extinction risk of interact-
ing populations in the face of environmental perturbations,
(2) a tool for determining expected trait distribution in and
limits to the diversity of specific community types and (3) gen-
eral insights into the nature of robust communities.

This article is structured as follows. First, we provide a
guide to the mathematical framework of calculating sensitivi-
ties of stationary abundances to parameter perturbations, and
demonstrate its use on a simple pedagogical example. We then
go on to discuss three further examples, each significantly
more complicated than the previous toy model. These both
demonstrate the power of the framework to handle a variety
of complex dynamics (including non-equilibrium behaviour
and population structure), and illustrate its use for assessing
extinction risk and as a tool for determining expected trait
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Figure 1 The relationship between stability and sensitivity. Panel (a) shows

the isoclines of a hypothetical two-species community. Stable/unstable

fixed points are denoted by black/white circles. Notice that near the

rightmost equilibrium the two isoclines are almost parallel, implying weak

stability. On panel (b) some model parameters are allowed to vary slightly,

making the isoclines’ positions fuzzy. These ‘isobands’ do not cross at a

single point, but at a region (darkly shaded areas). The equilibria may be

anywhere within these regions. It is apparent that the first two equilibria

have reasonably well-defined positions (they are robust), but the rightmost

equilibrium’s position is highly indeterminate, and is even touching the N1-

axis, where species 2 is extinct (unrobust equilibrium).
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diversity and limits to similarity. Next, we point out some of
the generalities that emerge from the framework. Irrespective
of model details or the particular mechanisms maintaining
diversity, a biologically easily interpretable geometric picture
emerges for describing community robustness. It can be used
to draw general conclusions about the coexistence of similar
species: beyond some level of similarity, coexistence gets
more sensitive as species get more similar. We close by
pointing out limitations of the framework, and outlining
some of the empirical questions we believe its use could help
answer.

COMMUNITY-WIDE SENSITIVITY ANALYSIS OF

POPULATION ABUNDANCE: A FIELD GUIDE

We start out from a general model of S interacting species:

1

Ni

dNi

dt
¼ ri Rl Nj; t

� �
; E; t

� � ði ¼ 1. . .SÞ; ð1Þ

where Ni is the density of species i, and ri is its per capita
growth rate – the ‘species fitness’ of Chesson (2000) – which is
a function of:

(1) t, time. Any variability in the external environment (the
vagaries of the weather) will result in an explicit time depen-
dence of the ri.

(2) E, the collection of model parameters. Parameters are
characteristics of the system governing species dynamics: they
may include environmental variables (like temperature), heri-
table traits (bill depth in birds) or phenomenological charac-
teristics possibly containing the effects of both (intrinsic death
rates). We use the convention that parameters are never time-
dependent. For instance, if the community is subjected to regu-
larly oscillating weather described by a cos (xt), then E will
include the amplitude a and the frequency x, but the time depen-
dence will be treated as an explicit dependence of the ri on t.
(3) R, the collection of variables mediating density-dependent
effects – which are, therefore, functions of the species abun-
dances Nj. Rl refers to the lth component of this vector. We
call Rl the regulating factors (Levin 1970; Mesz�ena et al.
2006); Rl measures the quantity/concentration of the lth fac-
tor. Regulating factors may include resources, predators,
pathogens, refuge availability or any other thing involved in
the feedback between population densities and growth rates.
The important point is that all interactions in the community
have to be mediated by the Rl. See Box 1 for a more in-depth
look at regulating factors.

Let us assume eqn (1) has a fixed point. Our central question
is how the position of this fixed point is expected to change in
phase space after perturbing the parameters E. At equilibrium

Box 1 Regulating factors

In this work, we stick to the convention that all interactions between individuals within the community are parametrized via
regulating factors. The two major groups of regulating factors are resources and natural enemies, as these not only influence
population growth but are also affected by them. Population regulation may arise from direct or indirect interactions between
individuals. For instance, if the frequency of density-dependent aggressive interactions depends on the average level of stress
hormones in individuals, then its distribution within the population may function as a regulating factor. Also, regulating factors
may be spatiotemporally structured. If two bird species are regulated by the number of available nesting sites and use the exact
same sites but in alternative seasons, then we have effectively two separate factors. Similarly, the same type of resource in differ-
ent spatial locations may function to regulate two populations independently, becoming two factors instead of one.

The concept of regulating factors might appear confusing at first because, importantly, there is no unique way of choosing
them. As long as all interactions are mediated by some set of regulating factors, the choice is valid. A simple procedure to see if
indeed all feedbacks have been considered is this: (1) pretend that all potential regulating factors have fixed values that do not
change, (2) check if now each species in the community is undergoing simple density-independent exponential growth/decline.
Fixing the quantities of the regulating factors amounts to lifting the burden of the checks and balances of nature from the spe-
cies: food food always gets replenished, predators and parasites are kept at bay. In fact, ever since the influential studies of
Birch (1953), such removal of the feedbacks between population densities and growth rates has been the standard practice in
experimental studies determining species’ tolerance curves to environmental factors (such as temperature or pH).

Importantly, the final sensitivities do not depend on the particular choice of regulating factors. The impact and sensitivity
vectors do change, but the generalized community matrix aij is unaffected, as can be seen from any of the equations in Box 3.

What strategy should one follow in choosing the regulating factors for specific models? There are always two ‘trivial’ choices
to go by that always work: (1) choose the population densities themselves, (2) choose the per capita growth rates. The first
choice makes the impact vectors trivial, the second makes the sensitivity vectors trivial, putting all the complications in the other
vector (see the Field Guide section). In implicit, phenomenological models where the underlying mechanisms are not considered
(e.g. Lotka–Volterra models), often this is the only way to go. In this case, nothing is really gained by using regulating factors.

Often however, and especially in more mechanistic, process-based models, it is better to include other regulating variables
and consider the impact and sensitivity vectors separately. To take a very simple example, consider piscivorous fish which will
consume any species of prey as long as the prey’s body size falls within some given range. Let us also assume that none of the
prey exhibits any behavioural patterns that would differentiate them in the eyes of the predator. How should we choose the reg-
ulating variables? One could go by the obvious choice of assigning all prey population densities as separate regulating factors
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all growth rates are zero: riðRlðNjðEÞÞ; EÞ ¼ 0. Since these
equations are inherently nonlinear, there is no general way of
solving them for the equilibrium densities NiðEÞ. It is, however,
possible to determine the response of the fixed point to small
perturbations of E via linearization. This formula reads

ri ¼ �
XS
j¼1

a�1
ij zj ð2Þ

(Mesz�ena et al. 2006). Here ri is the sensitivity of the equilib-
rium abundance of species i to perturbations of the parameter
E, the community matrix aij describes species interactions, a�1

ij

refers to the (i,j)th entry of the inverse of this matrix (and not
to the inverse of the (i,j)th entry), and zj gives the response of
species j’s growth rate to E:

ri ¼ dNi

dE
; aij ¼

X
l

@ri
@Rl

@Rl

@Nj
; zj ¼ @rj

@E
; ð3Þ

where all quantities are evaluated at the unperturbed equilib-
rium. Here E refers to a single model parameter (it is, there-
fore, a scalar); Ni, ri, zj and rj are the ith (jth) entries of

vectors of length S; Rl is the lth entry of a vector whose
length is the number of regulating factors; and aij is the (i,j)th
entry of an S 9 S matrix.
Note that eqn (2) is interpreted differently from the classic,

Lotka–Volterra-based formulation of the Levins school (Levins
1974; Yodzis 1988; Dambacher et al. 2002; Novak et al. 2011):
we use the per capita instead of the total population growth
rates to calculate aij, and since all interactions between individu-
als are mediated through the regulating factors, we assume an
explicit formulation of the model in question. Though using a
slightly different approach and notation, this formula was also
derived by Verdy & Caswell (2008, eqns 29 and 30).
The determinant of aij is the key measure of community

robustness against parameter perturbations: small/large values
of det(aij) imply low/high robustness (high/low sensitivity).
For a set of species coexisting at a stable fixed point, small
det(aij) implies that the position of the point undergoes large
shifts even for small changes in E, possibly moving it out of
the all-positive region of phase space, causing extinctions. See
Box 2 for more details on the relationship between sensitivity,
dynamical stability and det (aij).

and end up with a very complicated model. However, if we realize that from the point of view of the predators all prey species
are the same, we can make the (weighted) sum of all prey densities a single regulating factor, thus reducing the number of vari-
ables and simplifying the problem considerably.

In fact, it is a good general principle to try finding the minimal set of regulating factors for any problem. Not only does this
reduce the number of variables, it also constrains the maximum number of robustly coexisting species, which cannot exceed the
number of regulating factors (see the Field Guide section and the General insights section in the Discussion).

In summary, there is no ‘right’ way of choosing regulating factors, only more or less useful ways of doing so. As long as all
feedbacks between growth rates and densities are taken into account, the formalism will work. At worst, nothing is gained; at
best, one can analyze models via a good choice of regulating factors that otherwise would be impossible to treat. See the section
on the Gross model in the Applications (and the corresponding section in the Supporting Information) for an example where
choosing regulating factors well makes the difference in whether the model can be analyzed.

Box 2 Sensitivity and dynamical stability

Fig. 1 illustrates the basic idea behind the community-wide sensitivity analysis of coexistence and its relationship with conven-
tional dynamical stability. Panel (a) shows the phase space of a two-species community. The isoclines of the two species are
shown; stable/unstable equilibria are indicated by black/white circles (we ignore the ‘trivial’ unstable equilibrium at the origin
where both species are absent).

Panel (b) shows what happens when certain model parameters are slightly altered. In response to the perturbations, the iso-
clines’ positions change. The two thick bands represent the possible positions of the isoclines after all possible (small) parameter
perturbations, which is relevant because in nature parameters are expected to be continuously perturbed by extrinsic factors. The
width of these ‘isobands’ is not uniform: there is no reason to expect model parameters to influence all parts of the isoclines
equally. Importantly, the equilibria now cease to have well-defined locations: they may be anywhere within the area where the
‘isobands’ cross (shaded regions of overlap). It is apparent that the positions of the two equilibria to the left are not very sensitive
to parameter perturbations. On the other hand, the rightmost equilibrium may be located in a much wider region – and, since
this region touches the horizontal axis, certain parameter changes may even result in the extinction of the second species. The size
of the shaded area measures the sensitivity (robustness) of the equilibrium to parameter perturbations, with the two terms inver-
sely related: a sensitive equilibrium (large area of overlap) is unrobust, while an insensitive one (small overlap) is robust.

Note that it makes perfect sense to measure the sensitivity of the unstable equilibrium (which in this case is quite robust).
Sensitivity and stability are, therefore, separate properties: stability/instability means that small perturbations of the densities
will decay/amplify, while sensitivity measures how much the position of the equilibrium changes in phase space after small per-
turbations of the parameters – regardless of whether the equilibrium is stable or not. Though an unstable equilibrium does not

Box 1 (continued)
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In contrast to earlier approaches to sensitivity analysis in
the community context, Mesz�ena et al. (2006) connected det
(aij) to quantities that are both generally defined and biologi-
cally meaningful:

(1) The effect of species j’s density on the lth regulating fac-
tor. This is the impact vector I j;l.
(2) The effect of the lth regulating factor on species i’s
growth rate. This is the sensitivity vector1 Si;l.

At a fixed point, these vectors are given by

I j;l ¼ @Rl

@Nj
; Si;l ¼ @ri

@Rl
: ð4Þ

Let us now consider not these vectors by themselves, but
the volumes they span, VI and VS. The ‘impact volume’ VI
means the following. Take the impact vectors of all S species.
Each vector has as many components as the number of regu-
lating factors. Starting from the origin, we draw each impact
vector and consider them to be the basal edges of a parallelo-
tope (an ‘S-dimensional parallelogram’). The volume of this
parallelotope in S dimensions is what we mean by VI . The
definition for VS is completely analogous, but with the sensi-
tivity vectors spanning the parallelotope instead (Fig. 2a). See
the Supporting Information for a simple and general recipe
for calculating such volumes.
Armed with these concepts, it turns out the determinant of

aij may always be approximated as

detðaijÞ
�� ���VIVS ð5Þ
(Mesz�ena et al. 2006). In words, the product of the volumes
spanned by the impact and sensitivity vectors puts an upper
bound on the magnitude of aij’s determinant. This implies

(a) (b)

Figure 2 The volume spanned by the impact vectors of two interacting

species. Let us assume there are three regulating factors in the system. We

draw the two impact vectors I 1;l and I 2;l in the space whose axes

correspond to the regulating factors (but what is actually measured along

these axes is the impact on the given regulating factor). Since there are

two species, we are interested in the two-dimensional volume (area) these

vectors span (gray parallelograms). Panel (a) the area spanned by the two

impact vectors is large, indicating robust coexistence. Panel (b) the angle

between the two impact vectors is small, resulting in a much smaller area

and thus reduced robustness.

describe coexistence per se, its sensitivity may still provide useful information about the system. For instance, in classic
predator-prey models an unstable equilibrium is often surrounded by a stable limit cycle. If the unstable equilibrium point is
sensitive enough that it may actually cross one of the coordinate axes, then so will the cycle, meaning that the species are at risk
of extinction.

Observe on Fig. 1 that the isoclines at the rightmost equilibrium point intersect at a very small angle. It is known (Kuznetsov
2004) that the smaller the angle of intersection, the smaller the Jacobian’s determinant at the equilibrium; in the limit of tangen-
tially touching isoclines, the determinant is zero. Since the determinant is the product of the eigenvalues, such an equilibrium
must have at least one eigenvalue very close to zero, signaling weak stability/instability. These weakly stable/unstable equilibria
are also the most sensitive to parameter perturbations, because near-parallel isoclines mean that even a slight thickening of the
isoclines into ‘isobands’ will create large areas of overlap, as seen on Fig. 1. Conversely, strongly stable/unstable equilibria are
robust to parameter perturbations. Note that this is only a tendency: if the isoclines do not thicken appreciably after perturba-
tion, then even near-parallel isoclines will not translate into high sensitivity. For instance, the angle of intersection for the unsta-
ble equilibrium in the middle is not particularly high, and yet it is quite robust because the thickness of the isobands is very
small near that point. eqn (2) formalizes this intuitive relationship between stability and sensitivity, and extends it to an arbi-
trary number of species: aij measures the angle between isoclines, and zj measures the ‘thickening’ of the isoclines near the equi-
librium point.

Finally, note that for simplicity we have considered fixed point equilibria of unstructured populations, but the exact same
conclusions turn out to be valid for limit cycles and/or structured populations (Box 3). Though for these more complicated sce-
narios the matrix aij in eqn (2) cannot be interpreted as a simple Jacobian anymore, the result that a small det(aij) signals an
oversensitive system still holds, irrespective of model details.

Box 2 (continued)

1There is an unfortunate clash of terminology here: the ‘sensitivity vector’ has
nothing to do with sensitivities as in the response of variables to parameter

perturbations. To avoid confusion, we will consistently refer to Si;l as the
‘sensitivity vector’.
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that whenever VIVS is small, all other things being equal,
robustness will also be small. Knowing these volumes, there-
fore, opens up a possible shortcut to exploring community
robustness, a property we will use in the Applications
section.
These volumes provide general measures of ecological

similarity. Their generality is a consequence of the fact that
the impact and sensitivity vectors are well-defined for arbi-
trary ecological situations via eqn (4). Their role in measur-
ing ecological similarity becomes clear when we consider
that: (1) they characterize the way species relate to their
environments, (2) small volumes are a consequence of hav-
ing species with very similar vectors, i.e. vectors with large
overlap. In analogy with classical theory, where the overlap
between resource utilization functions determined interaction
coefficients (MacArthur & Levins 1967), the volumes are a
measure of the aggregate overlap between several species
(Fig. 2).
So far we have only discussed the sensitivity analysis of

fixed point equilibria in continuous time, for communities of
unstructured populations. However, the same methodology
may be extended to more complex dynamical states, like limit
cycles (Barab�as et al. 2012a; Barab�as & Ostling 2013) or ape-
riodic stationary oscillations (Szil�agyi & Mesz�ena 2010), both
in discrete and continuous time. One may also consider com-
munities where the species have complex life cycles, requiring
structured population models (Szil�agyi & Mesz�ena 2009a;
Barab�as et al. 2014). All this extra complexity can be incorpo-
rated into the framework described above. Importantly,
though the particular expressions for ri, aij and zj do change,
the general form of the sensitivity formulae, eqns (2) and (5),
remain the same for all these scenarios, revealing a unified
structure underneath all such calculations. Importantly,
impact and sensitivity vectors can be identified in each. Box 3
summarizes these formulae and gives the proper interpretation
of eqn (2) when various complexities are incorporated. Due to
this common structure, we refer to aij as the ‘generalized com-
munity matrix’, which reduces to the classical community
matrix for point equilibria of unstructured communities, but
may also account for additional complexities such as temporal
fluctuations and population structure.

A SIMPLE EXAMPLE

This section first discusses all necessary steps required to per-
form the community-wide sensitivity analysis of stationary
abundances to parameter perturbations, and then applies this
procedure to a very simple pedagogical example. The list of
steps is as follows.
Step 0: Determine whether the model is in discrete or con-

tinuous time, whether the populations are structured, and
what type of equilibrium (fixed point, limit cycle, . . .) is
under consideration. Step 1: Designate the regulating factors.
Step 2: Based on Step 0, look up the necessary formulae in
Box 3 and calculate the impact and sensitivity vectors of each
species. Step 3: Calculate the volumes VI and VS. A small
product VIVS signals an oversensitive system. For more pre-
cise quantitative estimates, move on to Step 4. Step 4: Calcu-

late aij using the appropriate formula. Step 5: Pick an
arbitrary model parameter E of interest and obtain the vector
zj. Step 6: Calculate the sensitivities from the general equation
eqn (2).
The toy example we look at here is a simple consumer-

resource model with two species and two non-interacting
abiotic resources. The dynamics of the consumers are given
by

ri ¼ 1

Ni

dNi

dt
¼ bi1G1 þ bi2G2 �mi; ð6Þ

where ri, Ni and mi are the per capita growth rate, popula-
tion density and mortality rate of species i respectively; Gl

represents the available concentration of resource l; and bil
is the amount of population growth species i can achieve on
one unit of resource l. The resource dynamics is in turn
given by

dGl

dt
¼ kl Dl � Gl

� �� cl1N1 � cl2N2; ð7Þ

where Dl, kl and cli are respectively the saturation concentra-
tion, turnover rate and species i’s per capita consumption rate
of resource l. We assume kl = 1.
Let us designate specific values for the entries of bil and cli:

bil ¼ 1 0
0 1

� �
; cli ¼ 1 q

q 1

� �
: ð8Þ

The above choice for bil means each consumer can achieve
population growth on only one of the resources. They might
still consume the indigestible resource: this cross-consumption
is measured by the parameter q.
Let us now perform the steps of the analysis outlined

above.
Step 0. We know (Tilman 1982) that this type of consumer-

resource model has a fixed point equilibrium. We can solve
for this equilibrium: due to dGl/dt = 0 the resources satisfy

Gl ¼ Dl � cl1N1 � cl2N2 ð9Þ
(we used kl = 1), and the equilibrium densities are calculated
from eqn (6) by setting ri = 0 and using eqns (8) and (9):

N1 ¼ D1 � qD2

1� q2
; N2 ¼ D2 � qD1

1� q2
: ð10Þ

Here we introduced the quantities Di ¼ Di �mi. Note that mi

is the threshold value for Di above which the ith consumer
can survive in monoculture; Di denotes the excess above this
minimum. These expressions are singular when q = 1, yielding
meaningful equilibrium densities only when D1 is exactly
equal to D2. For q < 1 the conditions for N1,N2 > 0 read

D1 [qD2; D2 [qD1; ð11Þ
or

qD1\D2\
1

q
D1: ð12Þ

These can only be simultaneously satisfied for 0 < q < 1.
Observe that, for D1 fixed, the range of values of D2 allowing
for coexistence shrinks with increasing q (Fig. 3a). One could

© 2014 John Wiley & Sons Ltd/CNRS

1484 G. Barab�as et al. Idea and Perspective



Box 3 Community-wide sensitivity formulae

Below we give a catalog list of the sensitivity formulae for various dynamical scenarios. The general structure of each equation
is given by eqn (2):

ri ¼
PS
j¼1

a�1
ij zj

where a�1
ij is the (i,j)th entry of the inverse matrix, not the inverse of the (i,j)th entry. For each case, we state the applicability

of the given formula, reference where it was originally derived, give the interpretation of ri along with the formulae for aij and
zj , and indicate the impact and sensitivity vectors I j;l and ri,l.

1. Fixed point dynamics, in either discrete or continuous time, for communities of unstructured populations (Mesz�ena et al.
2006):

ri ¼ dNi

dE
; aij ¼

P
l

@ri
@Rl|ffl{zffl}
Si;l

@Rl

@Nj|ffl{zffl}
I j;l

; zj ¼ @rj
@E

(33)

In discrete time, ri is the natural log of species i’s discrete geometric rate of growth from time t to t + 1: ri = log (Ni(t+1)/
Ni(t)). In continuous time, ri is the per capita growth rate of species i: ri = dNi/(Nidt).
2. Limit cycle of fixed period length T in discrete time, for communities of unstructured populations (Barab�as & Ostling 2013):

ri ¼ 1
Nið0Þ

dNið0Þ
dE

; aij ¼ �dij þ
Q0

t¼T�1

 
dij þ

P
l

@riðtÞ
@RlðtÞ|fflfflffl{zfflfflffl}
Si;lðtÞ

@RlðtÞ
@NjðtÞ NjðtÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

I j;lðtÞ

!
; zj ¼

PT�1

t¼0

@rjðtÞ
@E

; (34)

where ri(t) = log (Ni(t+1)/Ni(t)), and dij is the identity matrix (equal to 1 if i = j and to 0 otherwise). The product from
t = T � 1 to 0 above refers to the (i,j)th entry of a product of matrices (taken in decreasing order in time), not to the product
of the (i,j)th entries – see eqns (S12) and (S13) in the Supporting Information for the special case of T = 2. Note that the regu-
lating factors are functions of t within the cycle, so each regulating variable at each moment in time can potentially serve as a
separate regulating factor.
3. Limit cycle of fixed period length T in continuous time, for communities of unstructured populations (Barab�as et al. 2012a):
this is obtained simply from eqn (34) in the limit of infinitely many infinitesimally small discrete time steps Dt (Barab�as & Os-
tling 2013). Note that the resulting formula may also be written in a more compact form (see Barab�as et al. 2012a, eqn 19)
without altering its biological meaning. We do not use the continuous-time limit cycle formula in this work though.
4. Fixed point dynamics in either discrete or continuous time, for communities of structured populations (Szil�agyi & Mesz�ena
2009a, Barab�as et al. 2014):

ri ¼ dNi

dE
; aij ¼

X
l

�X
a;b

vi;a
@Ai;ab

@Rl
wi;b

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Si;l

X
m

dlm � @Gl

@Rm

� ��1�X
c

@Rm

@Nj;c
wj;c

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I j;m

;

zj ¼
X
a;b

vj;a
@Aj;ab

@E
wj;b þ

X
l;m

�X
a;b

vi;a
@Ai;ab

@Rl
wi;b

�
dlm � @Gl

@Rm

� ��1@Gm

@E;

(35)

where Ai,ab is the (a,b)th entry of species i’s projection matrix evaluated at equilibrium; Ni is the weighted total abundance of
species i; dlm is the identity matrix; vi,a, wi,a and Ni,a are the ath component of species i’s leading left and right eigenvectors and
population abundance vector respectively; the inverses always refer to the (l,m)th entries of the inverse matrix as opposed to the
inverse of the (l,m)th entries; and
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also derive a similar condition for positive equilibrium densi-
ties when q > 1; however, these solutions are dynamically
unstable, and therefore of no interest to us.
In this model, we have the benefit of knowing the precise

dependence of the equilibrium densities on the parameters
via eqn (10), therefore, sensitivity analysis is, strictly speak-
ing, not even necessary. However, our purpose here is to
show how the method works in an example where we can
compare the results with the exact solution. The same proce-
dure will then work for problems where we cannot solve for
the equilibrium state explicitly – see the Applications section
for particular examples.
The model is at a fixed point in continuous time, and the

populations are unstructured. Therefore, the ingredients
needed for the analysis are given by eqn (33) in Box 3:

ri ¼ dNi

dE
; aij ¼

X
l

@ri
@Rl|ffl{zffl}
Si;l

@Rl

@Nj|ffl{zffl}
I j;l

; zj ¼ @rj
@E

: ð13Þ

Step 1. We choose the regulating factors for eqn (6).
Remember that the only criterion for this choice is that the
regulating variables have to mediate all density-dependent
interactions (see Box 1). Here we go with Rl ¼ Gl.

Step 2. Calculate the impact and sensitivity vectors of each
species based on the definitions in eqn (13):

I j;l ¼ @Rl

@Nj
¼ @

@Nj

�
Dl � cl1N1 � cl2N2

	
¼ �clj; ð14Þ

Si;l ¼ @ri
@Rl

¼ @

@Rl

�
bi1R1 þ bi2R2 �mi

	
¼ bil: ð15Þ

Observe, using eqn (8), that the sensitivity vectors of the two
species, (1, 0) and (0, 1), are markedly different. In con-
trast, the impact vectors (�1, �q) and (�q, �1) are identi-
cal for q = 1 and become increasingly different as q departs
from the value 1.
We could also calculate these vectors for different choices of

the regulating variables. As mentioned in Box 1, different
choices of the regulating factors can change the impact and sen-
sitivity vectors, but will leave aij unchanged. For instance, we
could make the resource depletion levels the regulating factors
instead of the resources themselves: R̂l ¼ P

i cliNi ¼ Dl � Gl

(the hat distinguishing this alternative choice from our original
one). Expressing the growth rates ri as functions of these
factors:

ri ¼ bi1 D1 � R̂1

� �þ bi2 D2 � R̂2

� ��mi: ð16Þ

Gl Rm; Eð Þ ¼
X
j

X
a;b;c

njP
d qj;dwj;d

@Rl

@nj;a

Xsj
k¼2

1

kj � kkj
wk
j;a �

P
e qj;ew

k
j;eP

f qj;fwj;f
wj;a

 !
vkj;b

 !
Aj;bc Rm; Eð Þwj;c (36)

describes the effect of perturbing the species’ population structures on the regulation of the community (the dependence of Gl

on Rm and E comes strictly from Aj,bc; all other quantities are evaluated at the unperturbed equilibrium). Here qj,a is a positive
vector giving the weight of the ath stage class in the weighted total abundance of species j, kj is species j’s leading eigenvalue, sj
is the number of stage classes of species j, and the superscript k means we are considering the kth (non-leading) eigenvalue/
eigenvector. The eigenvectors are normalized so that ∑awi,a = 1 and

P
a v

k
i;aw

l
i;a ¼ dkl for every species i. Though the nature of

the population structure can be arbitrary (age, stage, physiological, spatial,. . .), in the special case of spatial structure a single
regulating factor R can be thought of as splitting up into as many different factors as the number of distinct spatial locations.

(a) (b)

Figure 3 Coexistence regions and sensitivities in the toy model of the Simple Example section. Panel (a) coexistence region for the parameter D2 as a

function of q, based on eqn (12). The value of D1 is fixed at 1 (dashed line). The shaded area represents the D2 values allowing for coexistence. Notice that

this region shrinks to a point at q = 1: here coexistence is only possible by fine-tuning D2 to be exactly equal to D1. Panel (b) sensitivities of species 1 (solid

curve) and 2 (dashed curve) to perturbing D2, given by eqn (23); units are [abundance/resource concentration]. The curves diverge to minus/plus infinity as

q?1, signalling that an arbitrarily small perturbation could knock the species to extinction – in line with the result on panel (a).

Box 3 (continued)
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We can now calculate the alternative vectors:

Îj;l ¼ @R̂l

@Nj
¼ @

@Nj

�
cl1N1 þ cl2N2

	
¼ clj; ð17Þ

Ŝi;l ¼ @ri

@R̂l

¼ @

@R̂l

�
bi1 D1 � R̂1

� �þ bi2 D2 � R̂2

� ��mi

	
¼ �bil: ð18Þ

This alternative choice reverses the direction of the impact
and sensitivity vectors.
Step 3. We calculate the volumes VI and VS, which carry

valuable information on robustness (Field Guide section). In
our case, as I j;l and Si;l happen to form square matrices, the
volume is given by the absolute values of their determinants
(see Supporting Information):

VI ¼ det �clj
� ��� �� ¼ det

�1 �q

�q �1

� �����
���� ¼ 1� q2;

VS ¼ det bil
� ��� �� ¼ det

1 0

0 1

� �����
���� ¼ 1:

ð19Þ

Using eqn (5), VIVS ¼ 1� q2, so without any further calcula-
tions we know that coexistence will get more and more sensi-
tive to parameter perturbations as q approaches 1. At the
point where q is precisely equal to 1, VIVS ¼ 0 and coexis-
tence has infinite sensitivity (zero robustness). This is consis-
tent with eqn (12) and Fig. 3a: the parameter region allowing
for coexistence shrinks with increasing q, and at q = 1
becomes a single point.
Step 4. We calculate the matrix aij from eqn (13):

aij ¼
X2
l¼1

@ri
@Rl

@Rl

@Nj
¼
X2
l¼1

Si;lI j;l ¼ �
X2
l¼1

bilclj

¼ � 1 0

0 1

� �
1 q

q 1

� �
¼ �1 �q

�q �1

� �
:

ð20Þ

We get the exact same result using R̂l, or any other choice of
the regulating factors. Since aij depends on Rl only through
the chain rule, this dependence must ultimately cancel from
the final expression.
Step 5. We pick a model parameter E. Let us choose

E ¼ D2: we are interested in the consequences of increasing
the excess resource supply for Species 2 while keeping it con-
stant for Species 1. Since the original equations are expressed
in terms of Di instead of Di, we rewrite the growth rates at
equilibrium as functions of Di ¼ Di �mi. Substituting eqn (9)
into eqn (6):

0 ¼ rj ¼
X2
k¼1

bjkDk �mj �
X2
l¼1

X2
k¼1

bjlclkNk

¼
X2
k¼1

bjkDk þ
X2
k¼1

bjkmk �mj �
X2
l¼1

X2
k¼1

bjlclkNk; ð21Þ

and now we can calculate zj:

zj ¼ @rj

@D2

¼ @

@D2

X2
k¼1

bjkDk þ
X2
k¼1

bjkmk �mj �
X2
l¼1

X2
k¼1

bjlclkNk

 !

¼ bj2 ¼ 0
1

� �
:

ð22Þ
Step 6. Determine the sensitivities ri of the equilibrium abun-
dances to perturbing D2 using the general formula eqn (2):

ri ¼ dNi

dD2

¼ �
XS
j¼1

a�1
ij zj ¼ � �1 �q

�q �1

� ��1
0
1

� �

¼ 1

1� q2
1 �q
�q 1

� �
0
1

� �
¼ 1

1� q2
�q
1

� �
: ð23Þ

If all went well, we should have gotten the same result as if
we had directly taken the derivative of eqn (10) with respect
to D2 – which is indeed the case. Fig. 3b shows these sensitivi-
ties.
As a side note, observe that the ri are meaningful even for

�1 < q < 0. A negative q means the ith consumer facilitates
the resource it cannot digest. A stable equilibrium still ensues
in this case, but species 1, instead of responding negatively to
an increase in D2, will respond positively due to this facilita-
tion. This is not apparent from looking only at
VIVS ¼ 1 � q2, which is independent of the sign of q. The
volumes do give general information about robustness, but
the numerical details are only given by the full sensitivity for-
mula.
In summary, the key quantity determining the sensitivity of

equilibrium abundances to D2 in this example is q, measuring
the segregation between the two impact vectors. As q
approaches 1 from below, the impact vectors become similar,
and therefore sensitivity towards parameter perturbations
becomes large. Also, the range of D2 values allowing for coex-
istence shrinks to zero gradually as q increases, as shown by
eqn (12) and Fig. 3. For q�1, it becomes very hard to fine-
tune D2 to support coexistence.

Figure 4 Values (black tick marks) and coexistence regions (gray error

bars) for each parameter in the forb-grass competition model. Parameters

are a: competition coefficient; di: species i’s seed mortality; g�i : fraction of

species i’s seeds germinating in good/bad years; k�i : per capita number of

seeds produced by species i in good/bad years. The dashed line separates

parameters measured by the left/right scales (the upper limit for kþ2 is cut-

off due to scale disparity; its value is 128.5). The coexistence regions are

calculated, using the stationary densities in eqn (S5) and the sensitivity

values in Table (S3) in the Supporting Information (also shown on Fig. 5

for bad years), as the most extreme parameter values for which both

species are still persisting with positive abundances.
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APPLICATIONS

This section applies the community-wide sensitivity frame-
work to three different model studies in order to demon-
strate how the machinery outlined above can handle
situations that are significantly more complicated than the
previous toy example, and to demonstrate uses of the
framework for assessing extinction risk and determining spe-
cies traits predicted by a species interaction model. In par-
ticular, there are three complicating factors we consider.
The first is temporal fluctuations in the environment, where
we also show how coexistence regions and extinction risk
can be estimated from sensitivities. The second is spatial
heterogeneity, where we derive effective limits to species

similarity using sensitivities. The third are non-competitive
interactions in a model where stability criteria do not put a
bound on the number of potentially coexisting species, but
sensitivities do. The details of our calculations are found in
the Supporting Information. Importantly, we present each
model with regulating factors already assigned. This is not
to say other choices are not possible (see Box 1), but the
details of how and why we choose them are relegated to
the Supporting Information.

Handling temporal fluctuations: assessing extinction risk in a model

of forb-grass competition

Here we perform community-wide sensitivity analysis on a
competition model, proposed by Levine & Rees (2004), to
describe a mechanism of persistence of rare native forbs with
exotic grasses on a California grassland. They proposed that
environmental fluctuations are key for generating coexistence,
with the otherwise rare forbs benefiting from occasional good
years while being buffered against bad years due to their supe-
rior seed banks (storage effect; Chesson & Warner 1981;
Chesson, 1994,, 2000). Their annual plant model can be writ-
ten

Niðtþ 1Þ ¼ ð1� giðtÞÞð1� diÞ þ kiðtÞgiðtÞ
1þ aiRðtÞ

� �
NiðtÞ; ð24Þ

where i may be 1 (forb) or 2 (grass), Ni(t) is the density of
species i’s seeds in the seedbank at time t, ai = (a, 1), and
the time-dependent regulating factor is a linear function of the
densities:

RðtÞ ¼ g1ðtÞN1ðtÞ
a

þ g2ðtÞN2ðtÞ: ð25Þ

Table S1 contains descriptions of the model’s parameters
(see also the caption to Fig. 4); we used the field estimates of
Levine & Rees (2004) for their values. As environmental vari-
ability is needed to generate coexistence (Levine & Rees
2004), we assume that both the fraction of germinating seeds

(a) (b)

Figure 6 The tolerance-fecundity trade-off model. Panel (a) tolerance functions of two species (solid and dashed curves). The abscissa represents stress,

ranging from s1 to sM. The ordinate is the probability that a seed survives the given stress level. The tolerance functions are sigmoid curves with a relatively

abrupt transition from the tolerant to the intolerant regime. The trade-off is implemented by making the species with the higher fecundity f less tolerant.

Panel (b) The volume VS spanned by the sensitivity vectors of two species, as a function of their fecundities; units are [1/time2]. The volume is the largest

where one species has high fecundity and the other an intermediate one. Both species possessing similar fecundities lead to small volumes. We know from

eqn (5) that a small volume is sufficient for making coexistence oversensitive, and therefore unrealistic; only in the high-volume regions is coexistence even

a possibility.

Figure 5 Sensitivities of the Levine–Rees model of forb-grass competition

to each model parameter. The darker bars represent the sensitivity values

of the forb; the lighter bars represent the sensitivity values of the grass.

These sensitivities are valid in bad years. The sensitivities in good years

are qualitatively similar; see Table S3 in the Supporting Information for

their values.
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gi(t) and the annual fecundities ki(t) are fluctuating periodi-
cally between ‘good’ and ‘bad’ years. Knowing the value of
every parameter, we can numerically evaluate the model’s sen-
sitivity to each. These sensitivities can then be used to esti-
mate coexistence regions, which in turn may in principle be
used to make informed management decisions to help prevent
species extinctions.
This is a discrete-time model where the periodically fluctuat-

ing environment generates a limit cycle. We, therefore, take the
appropriate sensitivity formula off the shelf – in our case, eqn
(34) – and use the estimated parameter values to calculate the
sensitivity of each species’ abundances along the limit cycle to
each model parameter. The details of the calculation are in the
Supporting Information; the results are shown in Fig. 5.
These sensitivities may be used to estimate the parameter

ranges allowing for coexistence. Since N
ðnewÞ
i � N

ðoldÞ
i þ riDE,

we calculate how much DE would be needed to make N
ðnewÞ
i

hit zero for at least one of the species. The results are in
Fig. 4. It is immediately seen that there are a handful of
parameters with relatively narrow coexistence regions. For
instance, forb germination in good years and grass fecundity
in bad years have restrictive enough ranges that they might
warrant attention. As long as the model is an accurate
representation of the true dynamics in this system, the impli-
cations would be that careful monitoring of these quantities is
necessary to prevent the extinction of the species.

Handling spatial heterogeneity: trait combinations leading to robust

coexistence in the tolerance-fecundity trade-off model

We now turn our attention to a model where the species have
population structure. This model, the tolerance-fecundity trade-
off, was originally proposed by Muller-Landau (2010) and later
generalized by D’Andrea et al. (2013). It is a mechanistic model
which enjoys empirical support as a potential driver for main-

taining seed size diversity in plant communities (Lonnberg &
Eriksson 2013). In this model, sessile individuals produce seeds
competing for sites of varying environmental stress levels, rang-
ing from s1 (lowest) to sM (highest). The trade-off is realized via
the assumption that the more tolerant a species is to stressful
conditions, the fewer seeds it produces. The stress tolerance of
species i’s seeds is given by the function Ti(s), measuring the
probability of an individual seed of species i surviving on a site
of stress level s. We assume Ti(s) is a sigmoid function: each spe-
cies is really good at tolerating a given range of stress levels,
after which the tolerance quickly falls to low values. One partic-
ular functional form implementing this property is

TiðsÞ ¼
tanh

�
sðsM � fi � sÞ�þ 1

2
; ð26Þ

where the parameter s controls the abruptness of the transi-
tion between the tolerant and intolerant regimes (Fig. 6a).
The governing equation for this model reads

dNi;a

dt
¼
XM
b¼1

�
fiTiðsaÞRðsaÞ �midab

	
Ni;b; ð27Þ

where Ni,a is the abundance of species i across sites of
stress level sa, fi and mi are the adult fecundity and mortal-
ity rates of species i, dab is the identity matrix (equal to 1
if a = b and to 0 otherwise), and the regulating variables
are given by

RðsaÞ ¼ cðsaÞ �
PS

i¼1 Ni;aPS
k¼1 fkNkTkðsaÞ

: ð28Þ

Here c(sa) is the number of sites of stress level sa, and Nk is
the total abundance of species k across all sites. RðsaÞ mea-
sures the effect of crowding in sites of stress level sa, with lar-
ger values corresponding to less crowding (see Supporting
Information).
This model is a continuous-time structured model. Previous

studies show it converges to a fixed point (D’Andrea et al.
2013). We, therefore, take eqn (35) off the shelf for the analy-
sis. In the Supporting Information, we show that the sensitiv-
ity vectors are given by

Si;r ¼ fiTiðsrÞ: ð29Þ
This expression has a very important property: it is indepen-
dent of the equilibrium population distributionsNi,a. Therefore,
it can be evaluated without having to solve for the equilib-
rium state.
By eqn (5), a small VS will lead to small robustness. Let us

consider just two competing species. We can then plot the vol-
ume spanned by S1;r and S2;r as a function of the two fecun-
dities f1 and f2 (Fig. 6b; see Supporting Information for the
calculations). We can see from Fig. 6b that coexistence is
most likely when one species has high fecundity and the other
an intermediate one: that is the portion of the plot where the
volume VS is the largest. Notice also that robustness is always
low near the f1 = f2 line. This property imposes an effective
limit to the similarity of coexisting species: though stable
coexistence of very similar fecundity values is possible, it is
unlikely because of the low associated robustness.

Figure 7 Robustness, measured by
ffiffiffiffiffiffiffiffiffiffiffiffiVIVSS

p
, as a function of the (scaled)

facilitative advantage Nh for various values of the species richness S,

based on eqn (32). Overall, robustness decreases with increasing S. For a

fixed number of species, the most robust scenario always happens at an

intermediate Nh value. The figure underlines the result that coexistence of

more than a handful of species through the cascade of facilitation in the

Gross model is a highly unrobust, and therefore unlikely, outcome.
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Note that we used VS as a proxy for robustness, when in
fact the relevant quantity is VIVS (eqn 5). We show in the
Supporting Information, however, that VI is correlated with
VS, therefore, whenever the latter is small, so is the former.
Also, the result in Fig. 6b is easily generalized to S species by
considering the S-dimensional volume spanned by the vectors
Si;l ¼ fiTiðslÞ – though visualizing the results might prove
challenging for S ≥ 3.

Handling non-competitive interactions: stability vs. robustness of

coexistence in the Gross model of interspecific facilitation

For our final example, we analyze a model of interspecific facili-
tation proposed by Gross (2008). There have been ongoing
efforts to incorporate facilitation into ecological theory in a
general way for more than a decade now (Bruno et al. 2003),
and the model of Gross (2008) is an important step in this direc-
tion. This example demonstrates how large a difference it makes
to shift the emphasis from the stability of coexistence to its
robustness against varying parameters. If one only considers
stability, expected diversity is in fact unlimited. Taking sensitivi-
ties into account, the maximum number of species turns out to
be strongly limited.
The Gross model is one of intraguild mutualism (Crowley &

Cox 2011), where several consumer species compete for a sin-
gle resource. Facilitation is included via the assumption that
an increase in the abundance of one competitor reduces the
death rate of another. Empirical examples include plant species
providing cushion for others (Cerfonteyn et al. 2011; McIntire
& Fajardo 2014), and M€ullerian mimicry rings in butterflies
(Elias et al. 2008) or catfish (Alexandrou et al. 2011), where
joining the ring confers an advantage to otherwise competing
species by reducing non-regulatory predation pressure.
In the simplest version of the model, only two species

compete: in this case, the coexistence condition is that the
mutualistic effects must confer enough advantage on the spe-
cies to turn their invasion growth rates positive when the
other species is resident. When generalizing the model to sev-
eral species, the facilitation network may in principle be
arbitrarily complicated, but Gross (2008) made a simplifying
assumption to keep the model tractable: facilitation was
assumed to be hierarchical. This means species 1 is not facil-
itated by anyone, species 2 is facilitated only by species 1,
species 3 is facilitated by species 1 and 2 and so on. This
assumption actually allows for more coexistence on average
than random facilitation networks (Gross 2008). The equa-
tions for this model read

1

Ni

dNi

dt
¼ fiðRÞ �m0

i þ di 1� exp �h
X
k\i

Nk

 ! !
ði ¼ 1. . .SÞ

ð30Þ

for the consumers, and

dR

dt
¼ gðRÞ �

XS
i¼1

cifiðRÞNi ð31Þ

for the resource (Supporting Information). Here S is the total
number of consumer species, Ni is the density of species i,
fi(R) is its per capita resource-dependent growth rate, m0

i its

baseline mortality, di the maximum advantage it can gain
from facilitation (we assume di � m0

i ), h measures the facilita-
tive advantage conferred by a single species, R is the resource,
g(R) the resource supply rate, and ci the species’ consumption
rates.
The consequences of this facilitation on coexistence are

drastic: Gross (2008) has proven that an arbitrary number of
species may coexist on the single resource. His proof relies on
demonstrating that, given a community of S species, one can
always choose parameters such that an (S + 1)th species can
be added without causing any extinctions. In dynamical terms:
if there was a stable equilibrium point for S species, there will
also be one for S + 1 species as well.
Stable coexistence of an arbitrary number of species is,

therefore, possible. However, one can also ask how sensitive
this non-trivial stable fixed point is to altering parameters. As
proven in the Supporting Information, increasing the number
of species will make the community ever more sensitive to
parameter changes. The asymptotic robustness of the commu-
nity, for large S, is shown to beffiffiffiffiffiffiffiffiffiffiffiffi

VIVSS
p

�Nh exp �NhS=2ð Þ; ð32Þ

where N is the smallest of the equilibrium densities of the con-
sumer species. Taking the Sth root of VIVS makes robustness
comparable across different values of S; see Supporting Infor-
mation for details.
This demonstrates that robustness decays exponentially with

the number of species: any S substantially larger than
Smax�1/(Nh) will make this expression exponentially small.
Fig. 7 shows robustness as a function of S and Nh: clearly,
we cannot realistically expect more than a handful of species.
Robustness considerations, therefore, significantly alter the
level of expected diversity compared with estimates based on
stability criteria, which do not put a limit on the number of
species at all.
The theory is thus in line with the empirical observation

that facilitation leads to the evolutionary convergence of traits
acting to reduce non-regulatory predation (Elias et al. 2008),
and also with the fact that robustness of coexistence is
enhanced by divergence along other trait dimensions. Since
we have seen that the maintenance of very many species via
pure facilitation with a single limiting resource is not possible,
one should expect segregation along other regulating factors
as well in species-rich communities – as was aptly demon-
strated by Alexandrou et al. (2011).

DISCUSSION

General insights regarding robust coexistence

In this work, we have attempted to demonstrate through a
handful of examples the kinds of benefits a new way of ana-
lyzing the sensitivity of coexistence might hold for ecology.
The examples were aimed at covering a diverse range of dif-
ferent situations: fluctuation-mediated coexistence, spatially
structured communities and non-competitive interactions. Yet
behind the diversity of applications underlies a fundamental
unity in how the problems are approached and what methods
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are employed. This unified perspective is achieved through the
consideration of regulating factors, and through the introduc-
tion of impact and sensitivity vectors describing species’ inter-
actions with these factors. Just as in the context of
population-level sensitivity analyses (Caswell 2008), having
explicit sensitivity formulae means one can gain general
insights not accessible via purely simulation-based
approaches.
The generality and flexibility of the concept of regulating

factors allow for the common treatment of seemingly very dif-
ferent types of interactions. Traditional resource competition,
predator-mediated effects (such as apparent competition),
facilitation, spatial effects and temporal segregation are all
handled on the same footing: the details do change (Box 3),
but both their underlying mathematical structure and their
basic biological interpretation remain the same.
The mathematical framework presented here further shows

that species’ impact and sensitivity vectors characterize the
system’s sensitivity to environmental perturbations, regardless
of whether the system is at equilibrium or not, or whether
there is spatial structure, or non-competitive interactions. Spe-
cifically, the volumes spanned by these vectors are key in
determining sensitivity via eqn (5): large volumes imply low
sensitivity, while small volumes imply high sensitivity. Hence,
high environmental variability coupled with small volumes is
expected to lead to extinctions, making it less likely that such
communities would be observed. This provides a general
understanding of the distribution of species traits expected in
robust communities, and reveals constraints that robustness
requirements may put on communities, beyond those imposed
by stability.
What causes impact and sensitivity vectors to span small vol-

umes? There are two options. First, volumes will be small if the
vectors are short, i.e. the regulating interactions of the popula-
tions are weak. Second, volumes will be small if the vectors
spanning them are nearly collinear or, more generally, linearly
dependent (Fig. 2): that is, when the regulating interactions of
the different species are not differentiated sufficiently.
This second possibility is nothing else than the classical idea

of limiting similarity, formulated in a precise way. Sensitivity
analysis adds precision in three ways. First, it clarifies that
coexistence of similar species is not impossible, just unlikely,
requiring a narrow set of environmental parameters. Second,
it yields a quantitative estimate of this parameter range.
Third, it clarifies that the property in which species must dif-
fer for robust coexistence is their way of being regulated,
described by the impact and sensitivity vectors.
When the number of regulating factors is smaller than the

number of species, the framework shows that not only is it
impossible for all of the species to coexist stably (Levin 1970),
it is also impossible for them to coexist robustly, since VI (or
VS) will be zero. Moreover, even when the number of regulat-
ing factors is infinite (the tolerance-fecundity model) or
unbounded (the Gross model), in which case consideration of
stability alone would suggest that coexistence of infinitely
many species is at least possible, sensitivity analysis shows
infinite diversity is not expected, because too much coexistence
leads to overly similar impact and sensitivity vectors. We saw
this explicitly in the results of our analysis of the tolerance-

fecundity trade-off model (Fig. 6b): robustness is zero along
the line of identical fecundities f1 = f2. This is because the sen-
sitivity vectors of identical species are the same, so they point
in the same direction, leading to VS ¼ 0. Robustness is still
very small if the two fecundities are nearly equal. Importantly,
what we see on Fig. 6b reflects a property we will observe in
all cases, because VI and VS are continuous functions of the
impact and sensitivity vectors. Therefore, near-identical spe-
cies will always have near-zero robustness.
In this way, the community-wide sensitivity analysis of

coexistence essentially recreates what usually goes under the
umbrella of ‘niche theory’ (Case 2000, p. 368): avoiding com-
petitive exclusion requires limited niche overlap as measured
by impact and sensitivity vectors. Though the expectation of
strict limits to similarity is mathematically and biologically
naive, sensitivity analysis leads to the conclusion that effective
limits to similarity are still the expected rule of thumb (Szab�o
& Mesz�ena 2006; Barab�as & Mesz�ena 2009; Barab�as et al.
2012b).
The robustness perspective naturally leads to the empirical

question of how robust natural communities tend to be. As
we have seen, sensitivities, coupled with a knowledge of the
size of typical environmental perturbations, yield viable
parameter regions. How wide do these regions tend to be in
natural communities compared to what is strictly required for
the community’s persistence? Put another way, does the
regime of environmental variation have a big influence on
community structure, or do other forces governing community
structure (e.g. selection for trait differences among species) act
to generate communities even more robust than required? One
study by Adler et al. (2010) in a perennial plant community
suggests the stabilization of coexistence is quite strong (much
stronger than strictly necessary to compensate for fitness dif-
ferences between the species), suggesting it should also be
quite robust. However, the parameter region allowing for
coexistence must be compared with the range of environmen-
tal fluctuations in this system if we are to get a definitive
answer.
In fact, one may wonder whether community robustness

tends to vary systematically along environmental gradients.
Certain environments are relatively constant; some are more
variable, which in general means more perturbed. More per-
turbed communities require, ceteris paribus, a wider coexis-
tence region. Does this actually play out in nature? And if so,
what consequences does it have for expected community and
diversity patterns? We believe that the community-wide sensi-
tivity framework will help answer these and similar empirical
questions.

Limitations of the framework

Though the presented method does provide the applied and
theoretical advantages outlined above, it also comes with its
inevitable drawbacks and caveats. The most important draw-
back is that the method is based on linearization: sensitivity
values are accurate only for small parameter perturbations.
Therefore, extrapolations to large parameter changes should
be treated with care, which will only be accurate if the sensi-
tivities themselves are not very sensitive. If they are heavily
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convex/concave functions, or if the analyzed equilibria
undergo saddle-node bifurcations between their current loca-
tions and zero (signalling a potential catastrophic shift), the
linear extrapolations will be unreliable. Then, the method’s
safest domain of application is looking at the response of sys-
tems strictly to small parameter changes. This is an important
point in the context of the Levine–Rees model, where the
coexistence regions of Fig. 4 are all derived using linear
extrapolation.
Fortunately, a common experience in performing sensitivity

analyses is that extrapolations based on sensitivities yield sur-
prisingly accurate results even for large perturbations, both in
a population (de Kroon et al. 2000) and a community-wide
(Barab�as & Ostling 2013; Barab�as et al. 2014) context. Under
what circumstances we may expect such accuracy is an open
question. However, use of the linear approximation means
our methods are ill-suited for studying the effects of species
removal on communities (Ebenman et al. 2004; Ebenman &
Jonsson 2005; Allesina & Pascual 2009), because such pertur-
bations involve very large changes in the system.
Another issue is that all parameter estimates possess a level

of uncertainty. How can we know the degree to which mea-
surement errors affect sensitivity results? There are two
aspects to this problem. First, as mentioned above, if the lin-
ear approximation is not very good, sensitivity values might
themselves sensitively depend on measured parameter values.
Second, even if sensitivities are accurate for a wide range of
parameters, predictive power may be hampered if their values
are very large: then, even a small error in measurement would
mean a large error in prediction.
How can one deal with this problem in practice? First, it

can be approached in the same way as any other kind of
uncertainty: by considering the confidence intervals of param-
eter estimates, and repeating the sensitivity calculations for
various randomly chosen parameter values within the parame-
ters’ confidence intervals. This way, one obtains a distribution
of sensitivities instead of a single sensitivity value. See Ba-
rab�as & Ostling (2013) and Barab�as et al. (2014) for how this
is done in practice. The same procedure could then be
applied, for instance, to the Levine–Rees model if we had data
on parameter error estimates.
Second, note that, in contrast to experience with smaller

communities (Barab�as & Ostling 2013; Barab�as et al. 2014),
several studies (Yodzis 1988; Dambacher et al. 2002; Novak
et al. 2011) have found very high sensitivities of equilibrium
abundances to press perturbations when analyzing large
ensembles of species. Systematic application of our methods
to large systems is work in progress, but if we believe these
results to be general (i.e. large communities are more sensi-
tive), then one possibility for avoiding the problem of overly
high sensitivities is to concentrate on smaller community com-
partments which can be thought of as independent mesocosms
consisting of just a handful of species (Krause et al. 2003;
Guimer�a et al. 2010; Stouffer & Bascompte 2011).
Yet another caveat comes with using the volumetric

approach, based on VI and VS, to gain insight into the
robustness of coexistence. As we have seen, these volumes can
provide a shortcut to robustness calculations. They are, how-
ever, only part of the story because in eqn (2) the vector zj

also plays a role. Though the volumes may be small, the vec-
tor zj may also be small, and therefore robustness may not be
as weak as it appears based on the volumes alone (or vice
versa). In an extreme case, imagine that the growth rates are
at a local extremum with respect to E; then zj ¼ @rj=@E ¼ 0,
so sensitivity is zero regardless of VIVS. In the Simple Exam-
ple section for instance, VIVS was insensitive to the sign of q,
but the sensitivities were not. The volumes do reveal general
information, but not the numerical details.
Moreover, though the presented framework can already

treat a variety of dynamics, the list is far from complete. We
do not yet have formulae for the sensitivity of general, aperi-
odic stationary oscillations (with or without population struc-
ture) or formulae for the sensitivity of transients instead of
stationary states. Transient sensitivities would enable us to
assess the short-term consequences of parameter changes, an
endeavor just as important as being able to calculate long-
term consequences.
Finally, a note about the procedure outlined in the Simple

Example section for performing sensitivity analyses (which we
consistently follow in the main text and the Supporting Infor-
mation as well). Although it looks straightforward, this does
not mean all case studies will look the same. To take an anal-
ogy, consider conventional sensitivity analysis of structured
populations. One could say it is very simple: (1) construct the
life cycle graph, (2) estimate the transition probabilities and
fecundities, (3) calculate the leading eigenvalue, (4) calculate
the corresponding left and right eigenvectors, (5) create their
tensor product to obtain the sensitivity matrix. But, as Ca-
swell himself pointed out: ‘Every population analysis that I
have been involved with has required some unique methodo-
logical twists and turns’ (Caswell 2001, p. 107). What we pro-
vided is merely an outline, which does not imply that
particular models can have no ‘special needs’ in their analy-
ses.

CONCLUSION

The recently developed mathematical framework for the sensi-
tivity analysis of stationary abundances of interacting species
to parameter perturbations provides an important new per-
spective in community ecology. It opens up the possibility of
an analytical approach to estimating extinction risk. It pro-
vides a tool for understanding how diversity and community
patterns may be influenced by environmental variation, in
addition to stability constraints. Finally, it yields insight into
the nature of the interaction between robustly coexisting spe-
cies, in terms of species’ interactions with regulating factors.
These insights apply fairly generally, even to models with
complex dynamics, and provide a new perspective on the con-
cept of niche differentiation in ecology. Here we have guided
the reader on the use of this new mathematical framework
and illustrated its potential through application to a variety of
models. Although the framework has limitations – most nota-
bly in that it is based on a linear approximation – its applica-
tion could help answer a set of empirical questions in
community ecology regarding the degree to which environ-
mental fluctuations and robustness constraints determine the
structure of communities.
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