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ABSTRACT. Latent variable models have been widely used for modelling the dependence
structure of multiple outcomes data. However, the formulation of a latent variable model is often
unknown a priori, the misspecification will distort the dependence structure and lead to unreliable
model inference. Moreover, multiple outcomes with varying types present enormous analytical
challenges. In this paper, we present a class of general latent variable models that can accommodate
mixed types of outcomes. We propose a novel selection approach that simultaneously selects latent
variables and estimates parameters. We show that the proposed estimator is consistent, asymptot-
ically normal and has the oracle property. The practical utility of the methods is confirmed via
simulations as well as an application to the analysis of the World Values Survey, a global research
project that explores peoples’ values and beliefs and the social and personal characteristics that
might influence them.
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1. Introduction

Multiple outcomes that include both continuous and ordinal variables are often collected
in applications where the responses of interest cannot be measured directly, or are difficult
or expensive to measure. Latent variable models (LVMs) are commonly adopted, which
state that different outcomes are conditionally independent measures of the latent variables,
possibly capturing various aspects of them. Thus, unlike conventional random effects, which
are mainly used to address the heterogeneity or dependence among observed outcomes, latent
variables represent theoretical concepts or constructs that cannot be directly assessed by a
single observed variable, but instead are measured through multiple observed variables. In
practice, the formulation of an LVM (e.g. what and how many latent variables should be
included) is often unknown a priori. Misspecification of the model would distort the depen-
dence structure and lead to unreliable model inference (Leek & Storey, 2008). In particular,
overspecified LVMs may result in highly correlated latent variables of which the covariance
matrix becomes singular or nearly singular, leading to both theoretical and computational dif-
ficulties. Hence, a fundamental problem in the analysis of LVMs is model selection, especially
the selection of latent variables that are relevant to substantive study.

The existing work on LVMs focuses on the estimation of model parameters; limited
work has been devoted to the selection of latent variables, predominantly within the framework
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of factor analysis models—the most basic version of LVMs. For example, the Akaike
information criterion (Akaike, 1987), Bayesian information criterion (BIC; Schwarz, 1978)
and Bayesian approaches have been proposed to select the factors in factor analysis models
(Press & Shigemasu, 1989 and 1997; Lee & Song, 2002; Carvalho et al., 2005; Bhattacharya
& Dunson, 2011). However, these methods incur a heavy computational burden and quickly
become infeasible when the number of possible factors becomes even moderately large. In
addition, the large sample model selection results (e.g. model selection consistency and oracle
property) are elusive, making it difficult to evaluate the procedure’s statistical properties.

We propose a new penalized pseudo-likelihood method that selects latent variables and
estimates regression parameters simultaneously for a general LVM. Because the factor analysis
model is a special case of the general LVM, our method can be used to select the factors in
factor analysis models. However, different from existing work on factor selection in factor anal-
ysis models, our method reduces the computational burden in that it does not require a priori
specification of all possible latent variables. Furthermore, our estimator is shown to have desir-
able theoretical properties, including n1=2-consistency, asymptotic normality and the oracle
property—that is, it works as well as if the latent variables were known.

Though related, our context is different from that of random effect selection in random effect
models. Indeed, random effects are mainly introduced to describe the unobserved heterogeneity
and are covariate independent, whereas latent variables represent specific traits associated with
covariates and hence are covariate dependent. As a result, the methods for selecting random
effects cannot be applied to the selection of latent factors (Chen & Dunson, 2003). However,
as described in Section 3, the proposed method can also be used to select random effects.

Analysis of multiple outcomes is further complicated by the fact that the outcomes can
typically be of mixed types (i.e. binary, continuous or ordinal), which presents statistical
challenges, as a natural multivariate distribution for mixed data does not exist. Yang et al.
(2007) and Wagner & Tüchler (2010) considered joint models for Poisson and continuous
data. Muthén (1984) proposed to define ordinal variables using unknown threshold parame-
ters applied to underlying normal continuous variables. However, the literature on underlying
normal models has focused primarily on joint models for low-dimensional ordinal outcomes
and continuous outcomes (Catalano & Ryan, 1992; Cox & Wermuth, 1992; Fitzmaurice &
Laird, 1995; Sammel et al., 1997; Regan & Catalano, 1999; Dunson, 2000; Roy & Lin, 2000;
Gueorguieva & Agresti, 2001). This paper proposes a two-step approach for jointly modelling
continuous, binary and ordinal outcomes data under the underlying normal framework. Our
estimation and selection procedure utilizes a closed-form penalized maximum likelihood (ML)
estimator, which greatly facilitates computation.

The remainder of the paper is organized as follows. We introduce the proposed general LVM
in Section 2. We propose a new penalized pseudo-likelihood method that allows us to select
latent variables and estimate regression and threshold parameters simultaneously in Section 3.
To implement the proposal, we provide a series of estimating equation-based approaches
to draw inference and further propose a BIC-type procedure to select tuning parameters.
In Section 4, we state our estimators’ theoretical properties, including n1=2-consistency,
asymptotic normality and the oracle property. We report in Section 5 simulation results and an
analysis of the World Values Survey, a global research project that explores the social and per-
sonal characteristics that influence people’s values and beliefs. We provide concluding remarks
in Section 6. We defer all proofs to the Supporting Information.

2. General latent variable model

Suppose there are n randomly selected subjects, each with p distinct outcomes. Specifically,
for the ith subject, we observe vectors of covariates Xi and Zi , and a vector of outcomes
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Yi D .Yi1; � � � ; Yip/
0, where the first element of Xi is 1. Without loss of generality, we assume

that the first p1 elements of Yi are continuous and that the remaining p2 D p�p1 elements are
ordinal and are linked to some underlying continuous variables as in Muthén (1984). That is,
Yij D gj .Uij I cj / for j D 1; � � � ; p, where Uij is a continuous underlying variable of Yij . For
the continuous outcomes, we have Yij D Uij , for j D 1; � � � ; p1; for an ordinal outcome Yij 2
¹1; � � � ; dj º, where dj � 2 is a positive integer, we have Yij D Pdj

lD1
lI.cj;l�1 < Uij � cj;l/

for j D p1 C 1; � � � ; p, where cj D .cj;0; � � � ; cj;dj
/0 are thresholds satisfying �1 D cj;0 <

cj;1 < � � � < cj;dj
D 1. In summary, gj .�/ is the identity link for continuous outcomes and

is otherwise a threshold link mapping from R ! ¹1; � � � ; dj º for the j th outcome. Let �i D
.�i1; � � � ; �iq/

0, a q-dimensional random vector of latent variables that represents an individual’s
specific traits, q � p. We then relate the underlying continuous variables Ui D .Ui1; � � � ; Uip/

0

to �i via

Ui D ˇXi C ˛�i C "i ; (2.1)

where ˇ D .ˇ1; � � � ;ˇp/
0 is a regression coefficient matrix, ˛ D .˛1; � � � ;˛p/

0 is a loading
matrix with vector ˛j D .˛j1; � � � ; ˛jq/

0, and "i D ."i1; � � � ; "ip/
0 is a vector of random

errors distributed as N.0;†"/ with †" D diag.�2
"1
; � � � ; �2

"p/. Model (2.1) assumes that mul-
tiple outcomes are independent given latent variables, implying that the correlation among
Yij ; j D 1; � � � ; p is due entirely to the shared latent variables in �i , explaining all the
dependence among responses.

We stress that, unlike random effects, the latent variables �i are introduced to reflect an
individual’s unobservable traits, such as ‘life satisfaction’ and ‘job attitude’, which, as in Roy &
Lin (2000) and Skrondal & Rabe-Hesketh (2007), are linked to observed covariates via

�i D �Zi C ei ; (2.2)

where ei D .ei1; � � � ; eiq/
0 � N.0;†e/ is a vector of random errors independent of Zi , and

†e D diag.�2
e1
; � � � ; �2

eq/. Here, � D .�1; � � � ;�q/
0 is a matrix of unknown regression coeffi-

cients with vector �j D .�j1; � � � ; �jm/
0 and is used to describe effects of observed predictors

on latent variables and then on outcomes. We term model (2.2), coupled with model (2.1), a
general LVM as it extends the common LVM by accommodating both continuous and ordinal
outcomes. The covariates in Xi and Zi play different roles in the proposed model; Zi records
the covariates of interest and is used to characterize the latent variables, whereas Xi exclusive
of Zi is used to adjust for subjects’ characteristics that may affect the outcomes. In model (2.2),
the latent variable �ij D � 0

j
Zi Ceij is zero if �ej D 0 and k�j k D 0I �ij is an observed covari-

ate for �ej D 0 if only one �jk ¤ 0 among ¹�jk; k D 1; � � � ;mº and is a linear combination
of observed covariates; otherwise, �ij is a random intercept if �ej ¤ 0 and k�j k D 0I �ij is
a latent variable if �ej ¤ 0 and k�j k ¤ 0 (particularly when �ej ¤ 0; �jk ¤ 0.k 2 A/ and
�jk D 0 .k 62 A/); and �ij is a latent variable characterized by the predictors ¹Zik ; k 2 Aº.
However, the latent variables or random effects to be included in models (2.1) and (2.2) are
often unknown a priori, which present a dilemma: too few latent variables would lead to a
large modelling bias, whereas too many would result in overfitting. This inevitably leads to the
task of selecting important latent variables. On the other hand, as model (2.2) stipulates, cer-
tain predictors influence the responses only through intermediate latent variables, meaning that
latent variables are characterized by subsets of predictors Zi . In practice, identification of such
subsets of latent variables is important in that it facilitates interpretation. Therefore, it is essen-
tial to develop a procedure that automatically selects latent variables and the corresponding
underlying subsets of predictors.
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To proceed, we first discuss the identifiability issue of models (2.1) and (2.2), which can be
rewritten as

Ui D ˇXi C ˛�Zi C ˛ei C "i : (2.3)

Hence Ui � N.ˇXi C ˛�Zi ;†/, where † D ˛†e˛0 C †". Given that only ˛� and ˛†e˛0

are identifiable, we follow the common practice in factor analysis (Anderson & Rubin, 1956;
Lee, 2007; Lee & Song, 2002) to introduce the constraints ˛jk D 0 for all j < k, where
j D 1; � � � ; p, k D 1; � � � ; q � p, to eliminate the indeterminacy of rotation in a model with q
factors, and introduce constraints ˛kk D 1, k D 1; � � � ; q to fix the sign of each column of ˛.
To identify the ordinal variables, we further set ��j D 1 for j > p1 (Dunson, 2000; Shi & Lee,
2000; Lee & Song, 2004) and exclude the intercept term from Xi . This way, all ˛;†e and �

are identifiable.
Although related, the proposed model (2.3) with regressors .XI Z/ and the particular

covariance error structure differs from an ordinary mixed effect model. The random effects in
the latter address the heterogeneity or dependence of the data but have no specific meaning,
whereas the latent variables in model (2.3) represent certain unobservable traits that are char-
acterized by some covariates. Thus, model (2.3) not only addresses the heterogeneity but also
provides insights into the causes and effects of such heterogeneity, consequently increasing its
capability in terms of interpretation.

3. Selection and estimation

3.1. Penalized likelihood function

Let Ui D .U0
i1
;U0

i2
/0, where Ui1 corresponds to the first p1 continuous components— which

are completely observed—and Ui2 is a collection of Uij corresponding to the last p � p1 dis-
crete components. For example, Yij D k implies that Uij falls into Œcj;k�1; cj;k/, where ¹cj;kº
are threshold parameters and need to be estimated. Let Ai D Qp

j Dp1C1
Œcj;Yij �1; cj;Yij

/.
Then the likelihood for the observed data ¹Y1; � � � ;Ynº can be expressed as

Ln.‚/ /
nY

iD1

j†j�1=2

Z
Ui22Ai

exp
�
�1
2

²�
Ui1

Ui2

�
� ˇXi � ˛�Zi

³0

� †�1

��
Ui1

Ui2

�
� ˇXi � ˛�Zi

��
dUi2;

(3.1)

where ‚ D ¹˛; ˇ;†";†e ;�º includes all unknown structural parameters. We assume ¹cj;kº
to be known for now, and we estimate them in Section 3.3.

As explained in Section 2, �ij may be a latent variable, random effect, manifest variable (that
is, observable variable) or zero, depending on whether �ej and k�j k are zero. If �ij is a latent
variable, it is of interest to know the corresponding subset of predictors. The selection of the
subset corresponds to some elements of ¹�jk; k D 1; : : : ;m; j D 1; : : : ; qº being zero, which
leads to the following likelihood with penalties on .�ej ; �jk; k D 1; : : : ;m; j D 1; : : : ; q/0,

Q.‚/ D logLn.‚/ � n
qX

j D1

p�1n
.�ej / � n

qX
j D1

mX
kD1

p�2n
.j�jkj/: (3.2)

Here, p�.�/ is a penalty function, the common choices of which include Lq penalty, p�.jˇj/ D
�jˇjq ; .q > 0/, yielding the well-known ridge regression with q D 2. The smoothly clipped
absolute deviation (SCAD) penalty function (Fan & Li, 2001) takes the form

Pp�.ˇ/ D �

²
I.ˇ � �/C .a� � ˇ/C

.a � 1/� I.ˇ > �/

³
for some a > 2 and ˇ > 0; (3.3)
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with Pp�.0/ D 0, where Pf .t/ D df .t/=dt for any smooth function f . The tuning parameter
a is often taken to be 3:7 as suggested by Fan & Li (2001). As the SCAD penalty has been
shown to render oracle properties in many penalized likelihood settings (Fan et al., 2006), we
adopt it in our ensuing development. However, our method does accommodate more general
penalty functions.

Indeed, by maximizing the penalized likelihood Q.‚/, we can show that there is a positive
probability of some estimated values of �ej and �jk equaling zero and thus of automati-
cally selecting latent variables and corresponding predictors. Thus, the procedure combines the
selection of latent variables and corresponding subsets of predictors, with the estimation of
parameters into one step, reducing the computational burden substantially.

3.2. Penalized expectation maximization algorithm

With the likelihood function Ln.‚/ involving a p � p1 dimensional intractable integral, a
direct application of the ML estimation procedure is nearly impossible. We propose later a
penalized expectation maximization algorithm. Given the complexity of the proposed algo-
rithm, we describe the basic steps and computation of the conditional means required for the
maximization in two subsections.

The basic steps of the penalized expectation maximization algorithm. The random variable
eij � N.0; �2

ej
/ if �ej ¤ 0; otherwise, eij � 0. Hence, ei is a mixture of zero and normal

components. For ease of presentation, we rewrite ei D †1=2
e wi , where wi D .wi1; � � � ; wiq/

0 �
N.0; I /. Then, model (2.3) can be rewritten as

Ui D ˇXi C ˛�Zi C ˛†1=2
e wi C "i : (3.4)

To set up a penalized expectation maximization algorithm, consider the random variables Ui2

and wi to be the missing data. The complete data for individual i isDi D ¹Xi ;Zi ;Ui ;wi º. The
penalized complete-data log-likelihood function is

Qc.‚/ D logL.‚/ � n
qX

j D1

p�1n
.�ej /� n

qX
j D1

mX
kD1

p�2n
.j�jkj/; (3.5)

where

logL.‚/ / �1
2

nX
iD1

2
4 pX

j D1

´
log �2

"j C .Uij � X0
i
ˇj � ˛0

j
�Zi � ˛0

j
†1=2

e wi /
2

�2
"j

μ3
5 : (3.6)

In the maximization step, we maximize the conditional expectation of Qc.‚/ given the
observed data. The maximization step depends on the conditional expectation of some func-
tion of Ui2 and wi , which is evaluated in the expectation step. The two steps are iterated
until convergence.

Implementation of the penalized expectation maximization algorithm. Let ıij .‚/ D Uij �
X0

i
ˇj � ˛0

j
�Zi � ˛0

j
†1=2

e wi . For any given threshold parameter cj;k , we estimate ‚

by maximizing E¹Qc.‚/jYi ;Xi ;Zi ; i D 1; � � � ; nº with respect to ‚. Differentiating
E¹Qc.‚/jYi ;Xi ;Zi ; i D 1; � � � ; nº with respect to ‚ and setting the derivatives to zero leads
to the following estimation equations:

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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�2
"j D 1

n

nX
iD1

E
°
ıij .‚/

2jYi ;Xi ;Zi

±
for j D 1; � � � ; p; (3.7)

ˇj D
 

nX
iD1

Xi X0
i

�2
"j

!�1 nX
iD1

XiE.Uij � ˛0
j

�Zi � ˛0
j

†1=2
e wi jYi ;Xi ;Zi /

�2
"j

for j D 1; � � � ; p;

(3.8)

˛jk D
"

nX
iD1

E
®
.Z0

i
�k C �ekwik/

2jYi ;Xi ;Zi

¯
�2

"j

#�1

�
"

nX
iD1

E
®�
Uij �X0

i
ˇj �Pm¤k ˛jm.�

0
mZi C�emwim/

��
Z0

i
�k C�ekwik

�jYi ;Xi ;Zi

¯
�2

"j

#
;

for j D 1; � � � ; p and k < j; (3.9)
nX

iD1

pX
kD1

˛kjZirE ¹ıik.‚/jYi ;Xi ;Zi º
�2

"k

� n Pp�2n
.j�jr j/sgn.�jr / D 0;

for j D 1; � � � ; q; r D 1; � � � ;m; (3.10)
nX

iD1

pX
kD1

˛kjE.wij ıik.‚/jYi ;Xi ;Zi /

�2
"k

j � n Pp�1n
.�ej / D 0 for j D 1; � � � ; q: (3.11)

We estimate � and †e by rewriting (3.10) and (3.11) as

�jr D
 

nX
iD1

pX
kD1

˛2
kj
Z2

ir

�2
"k

C n Pp�2n
.j�jr j/=j�jr j

!�1

�
nX

iD1

pX
kD1

˛kjZir

�2
"k

E

0
@Uik �X0

i ˇk �
X

m¤j

˛km� 0
mZi �

X
l¤r

˛kjZil�jl �˛0
k†1=2

e wijYi;Xi;Zi

1
A;

for j D 1; � � � ; q; r D 1; � � � ;m;
(3.12)

and

�ej D
´

nX
iD1

pX
kD1

˛2
kj
E.w2

ij
jYi ;Xi ;Zi /

�2
"k

C n Pp�1n
.�ej /=�ej

μ�1

�
´

nX
iD1

pX
kD1

˛kjE
�
wij

�
Uik � X0

i
ˇk � ˛0

k
�Zi �P

m¤j ˛km�emwim

� jYi ;Xi ;Zi

	
�2

"k

μ
;

for j D 1; � � � ; q:
(3.13)

Then, we estimate ‚ by repeatedly using (3.7), (3.8), (3.9), (3.12) and (3.13) until ‚ converges.
For each step, ‚ in the left side of the equations is replaced by the value from the last step.

To obtain the estimate of ‚ using the former equations, we need to compute the condi-
tional mean and conditional variance matrices of .Ui2;wi / given .Yi ;Xi ;Zi /, which have

the form of E



U˝r1

i2
˝ w˝r2

i
jYi ;Xi ;Zi

�
for r1 C r2 � 2; r1 D 0; 1; 2, and r2 D 0; 1; 2,

where a˝2 D aa0; a˝1 D a and a ˝ b D ab0. Because E



U˝r1

i2
˝ w˝r2

i
jYi ;Xi ;Zi

�
D
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E
°

U˝r1

i2
˝ E



w˝r2

i
jUi ;Xi ;Zi

�
jYi ;Xi ;Zi

±
, and given Ui ;Xi and Zi ;wi is a normal ran-

dom variable with mean †1=2
e ˛0 .˛†e˛0 C †"/

�1
.Ui � ˇXi � ˛�Zi / and covariance matrix

I �†1=2
e ˛0 .˛†e˛0 C †"/

�1
˛†1=2

e . To calculate E



U˝r1

i2
˝ e˝r2

i
jYi ;Xi ;Zi

�
, it is sufficient

to compute E



U˝r

i2
jYi ;Xi ;Zi

�
, for r D 1; 2, which is

E



U˝r

i2
jYi ;Xi ;Zi

�
D E

°
U˝r

i2
I .Ui2 2 Ai / jUi1;Xi ;Zi

±
=P .Ui2 2 Ai jUi1;Xi ;Zi / ;

where both the numerator and denominator can be approximated with Monte Carlo
simulations.

3.3. Estimation of the threshold parameters

We are now in a position to estimate ¹cj;kº with the iterative series of estimating equations
proposed later. The parameters ‚ are then updated by maximizing the pseudo-likelihood
E¹Qc jYi ;Xi ;Zi ; i D 1; � � � ; nº, with ¹cj;kº replaced by their estimated values. The procedure
is repeated until convergence.

Because Uij D X0
i
ˇj C ˛0

j
�Zi C ˛0

j
ei C "ij , for any given j > p1; k 2 ¹1; � � � ; dj º;Xi and

Zi , we have

P r.Yij D kjXi ;Zi /Dˆ

8̂<
:̂
cj;k �



X0

i
ˇj C ˛0

j
�Zi

�
q

˛0
j

†e˛j C 1

9>=
>;�ˆ

8̂<
:̂
cj;k�1 �



X0

i
ˇj C ˛0

j
�Zi

�
q

˛0
j

†e˛j C 1

9>=
>;;

where ˆ.�/ is the cumulative distribution function of the standard normal random variable.
With cj;0 D �1, we estimate cj;1; � � � ; cj;dj �1, one at a time, using

nX
iD1

2
64I.Yij D k/ �ˆ

8̂<
:̂
cj;k �



X0

i
ˇj C ˛0

j
�Zi

�
q

˛0
j

†e˛j C 1

9>=
>;Cˆ

8̂<
:̂
cj;k�1�



X0

i
ˇj C˛0

j
�Zi

�
q

˛0
j

†e˛j C 1

9>=
>;
3
75D0;

(3.14)

for k D 1; � � � ; dj � 1.

3.4. Selection of tuning parameters

We select the tuning parameters �1n and �2n using a BIC-based procedure. As shown by Wang
et al. (2007), such a procedure typically yields model selection consistency for linear regres-
sion models. Specifically, we choose �1n and �2n separately as they control the complexity of
two separate components of models. First, noting that �2n controls the number of non-zero
elements in �, we rewrite model (2.3) as

Ui D ˇXi C ˛�Zi C Q"i ; (3.15)

where Q"i D ˛ei C "i � N.0;†/. The parameters � are the regression coefficients. We then
select the optimal �2n by maximizing

BIC2 D logLn.‚/� 1

2
DF�2n

log.np/; (3.16)
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where Ln.‚/ is the observed-data likelihood function defined by model (3.1), andDF�2n
is the

generalized degree of freedom, which can be consistently estimated by
Pq

j D1

Pm
kD1 I.j O�jk j ¤

0/ C Pp

j D1

Pq

kD1
I. Ǫjk ¤ 0/ C Pq

j D1
I. O�ej ¤ 0/, the number of nonzero coefficients; see

Zhang et al. (2010) for models with generalized linear structure.
We now discuss choice of �1n, which controls the dimension of the random effect ei —that

is, the number of non-zero elements in †e D diag.�2
e1
; � � � ; �2

eq/. Model (3.4) shows that †1=2
e

is the regression effect of wi . To select ˙ e, we thus consider the random variable wi and the
covariates Xi and Zi as input variables in model (2.3) and only "i as random noise. We then
select the optimal �1n by maximizing

BIC1 D E¹logL.‚/jYi ;Xi ;Zi ; i D 1; � � � ; nº � 1

2
DF�1n

log.np/; (3.17)

where L.‚/ is the complete-data likelihood function defined by (3.6), DF�1n
is the weighted

generalized degree of freedom DF�1n
D Pq

iD1
wiI. O�ei ¤ 0/CPq

j D1

Pm
kD1 I.j O�jk j ¤ 0/CPp

j D1

Pq

kD1
I. Ǫjk ¤ 0/ with wi D 1= O� ini

ei
, and O� ini

ei
is the estimate of �ei without penalty.

Here, we replace the complete data likelihood with the conditional expectation of the complete
data likelihood, because the complete data likelihood depends on the missing data wi and is
useless in the estimation of �1n. However, the conditional expectation of the complete data
likelihood is a reasonable estimator for the complete data likelihood. We test the performance
of our tuning procedure via simulation studies in Section 5. In simulation studies and in the
analysis of actual data, we perform the selection of both �1n and �2n on grids of the tuning
parameters.

4. Large sample properties

We now establish the consistency and asymptotic normality of the proposed estimator. For
ease of presentation, we rewrite ‚ D .‚0

1;�
0
e; E� 0

/0 as the vectorial form of the collection of all

unknown parameters. Here ‚1 D . Ę 0
; Ě 0

;� 0
"/

0. Throughout, we use the subscript ‘0’ to repre-
sent the true value. Without loss of generality, let � e0 D .� 0

e.1/0
;� 0

e.2/0
/0; E�0 D .� 0

.1/0
;� 0

.2/0
/0

and � e.2/0 D 0 and �.2/0 D 0. Define � e D .� 0
e.1/

;� 0
e.2/

/0, E� D .� 0
.1/
;� 0

.2/
/0 to have the

corresponding decompositions.
Considering a more generalized non-concave penalty function, we set an1 D

maxj ¹ Pp�1n
.�ej 0/ W �ej 0 ¤ 0º; an2 D maxj;k¹ Pp�2n

.j�jk0j/ W j�jk0j ¤ 0º and an D
max¹an1; an2º. Let Rg.t/ D d2g.t/=dt2. The following theorems summarize the large sample
properties of the proposed estimator; their proofs are deferred to the Supporting Information,
and the related regularity conditions are given in Appendix B.

Theorem 1. Under conditions 1�3 stated in Appendix B, if maxj ¹j Rp�1n
.�ej 0/j W �ej 0 ¤ 0º ! 0

and maxj;k¹j Rp�2n
.j�jk0j/j W j�jk0j ¤ 0º ! 0, then, as n ! 1,

(1) for any j D p1 C 1; � � � ; p, k 2 ¹1; � � � ; dj º, we have

Ocj;k !P cj;k0 and k Ocj;k � cj;k0k D Op.n
�1=2 C an/: (4.1)

(2) There is a maximizer O‚ D . O‚0

1; O� 0
e;

OE� 0/0 of Q.‚/ such that

k O� e � � e0k DOp.n
�1=2 C an1/; k O� � �0k D Op.n

�1=2 C an2/;

and k O‚1 � ‚10k D Op.n
�1=2/:

(4.2)
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Clearly, using the SCAD penalty defined in (3.3) with � ! 0 and ˇ > 0, we have Pp�.ˇ/ D
�
°

.a��ˇ/C

.a�1/�

±
D .a��ˇ/C

.a�1/
D 0. Hence, with � D �1n ! 0 and � D �2n ! 0, we obtain an1 D

0 and an2 D 0, respectively. Therefore, there exists a root-n consistent penalized estimator for
the parameters ‚ and the threshold parameters c. Next, we show that the penalized estimator
demonstrates the oracle property.

Theorem 2. Assume that the penalty function, p�1n
.�/ and p�2n

.�/, satisfies

lim inf
n!1

lim inf
�!0C

Pp�1n
.�/=�1n > 0; and lim inf

n!1
lim inf
�!0C

Pp�2n
.�/=�2n > 0:

Under conditions 1�3 in Appendix B, if as n ! 1; �1n ! 0;
p
n�1n ! 1; �2n ! 0 andp

n�2n ! 1, the root-n consistent local maximizers O� e D . O� 0
e.1/; O� 0

e.2//
0 and OE� D . OE�.1/;

OE�.2//
0

in Theorem 1 must satisfy the following properties:

(a) Sparsity: O� e.2/ D 0 and OE�.2/ D 0.

(b) Asymptotic normality:
p
n .ƒ2CU1/

°
O� e.1/ � � e.1/0 C .ƒ2 C U1/

�1 .C21b1 C C22b2/
±

! N.0;A2/ and
p
n .ƒ3 C U2/

° OE�.1/ � E�.1/0 C .ƒ3 C U2/
�1 .C31b1 C C32b2/

±
!

N .0;A3/, where ƒ2;ƒ3;U1;U2; b1; b2; C21; C22; C31; C32; A2 and A3 are defined in
Appendix A.

Theorem 3. When n ! 1, if all conditions of Theorem 2 are satisfied, we have

p
nƒ1

° O‚1 � ‚10 C ƒ�1
1 .C11b1 C C12b2/

±
! N.0;A1/;

where ƒ1; C11; C12 and A1 are defined in Appendix A.

Theorem 4. When n ! 1, if satisfying all the conditions of Theorem 2, we have

p
n ¹ Ocj;k � cj;k0 C C4j1.k/b1 C C4j 2.k/b2º ! N ¹0;A4j .k/º;

where C4j1.k/; C4j 2.k/ and A4j .k/ are defined in Appendix A.

For the SCAD penalty function, if �1n ! 0 and �2n ! 0, then an1 D an2 D 0; b1 D 0;

b2 D 0;U1 D 0 and U2 D 0. Theorems 2–4 imply that the SCAD-based penalized likelihood
estimators for � e;� ;‚1 and cj;k have the oracle property—that is, when the true parameters
contain zero components, they are estimated as 0, with the probability approaching 1,
and the non-zero components are estimated as well as in the case where zero components
are known.

In practice, to approximate the distribution and construct the confidence interval for O‚.1/ D
. O‚0

1; O� 0
e.1/;

OE� 0
.1/
/0, the estimators of non-zero parameters, we need to estimate the variances of

O‚.1/. However, the complex form of the limiting covariance matrix of O‚.1/ in Theorems 2 and
3 prohibits direct use. Instead, we propose using the resampling method of Jin et al. (2001) to
estimate the variance. First, we generate n exponential random variables Vi ; i D 1; � � � ; n with
mean 1 and variance 1. Then, we solve the following Vi -weighted estimation equations and
denote the solutions as ‚�

.1/ and c�:
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nX
iD1

Vi

@ log¹Li .‚I c/º
@‚.1/

j� e.2/D0;E�.2/D0 D 0 and

nX
iD1

Vi

2
64I.Yij D k/ �ˆ

8̂<
:̂
cj;k �



X0

i
ˇj C ˛0

j
�Zi

�
q

˛0
j

†e˛j C 1

9>=
>;

C ˆ

8̂<
:̂
cj;k�1 �



X0

i
ˇj C ˛0

j
�Zi

�
q

˛0
j

†e˛j C 1

9>=
>;
3
75 j� e.2/D0;E�.2/D0 D 0; for

k D 1; � � � ; dj � 1
j D p1 C 1; � � � ; p ;

with cj;0 D �1, where Li.‚I c/ is the observed-data likelihood function (3.1) for
subject i . The estimates ‚�

.1/ and c� can be obtained using the same algorithm proposed
in Sections 3.1–3.3. Using Theorems 2–4, the validity of the proposed resampling method
is established as the following theorem. We omit its proof, as the arguments follow
Jin et al. (2001).

Theorem 5. Under the conditions of Theorem 2, the conditional distribution of n1=2.‚�
.1/� O‚.1//

given the observed data converges almost exactly to the asymptotic distribution of n1=2. O‚.1/ �
‚.10//, where ‚.10/ is the true value of ‚.1/ D .‚0

1;�
0
e.1/

; E� 0
.1//

0.

By repeatedly generating V1; � � � ; Vn, we obtain a large number of realizations of ‚�
.1/. The

variance estimate of O‚.1/ can be approximated by the empirical variance of ‚�
.1/.

5. Simulation study

We have conducted extensive simulations to investigate the effect of misspecifying latent vari-
ables on the mean and the variance structure. Specifically, we consider the model with two latent
variables, denoted as LV2. In practice, the model selection procedure might reduce a latent
variable to a manifest variable or a random effect. We hence compare the estimates from the
proposed method with those from the following misspecified models: (1) the LV1MV1, where
the variance of one latent variable is misspecified to 0–that is, one of latent variables is misspec-
ified as a manifest variable; and (2) the LV1RV1, where the regression coefficients of one latent
variable are misspecified to 0–that is, one of the latent variables is misspecified as random effect.

We simulated 1000 data sets, each with n D 200 observations. For each subject, the
latent variable is generated by the model �ij D Z0

i
�j C eij ; j D 1; 2, where Zi D

.Zi1; Zi2; Zi3/
0; Zij ; j D 1; 2; 3, is independently drawn from a standard normal random

variable, �1 D .2; 0; 0/0 ;�2 D .0; 2; 0/0 ; ei D .ei1; ei2/
0 is a normal random vector with

mean zero, and the covariance †e D diag.�2
e1
; �2

e2
/ D diag.1; 1/:ei and Zi are indepen-

dent. The outcomes Yi D .Yi1; Yi2; Yi3; Yi4/
0 are generated from the models Yij D X 0

ij
ˇj C

˛j1�i1 C ˛j 2�i2 C "ij ; j D 1; 2; 3; 4, where ˇ1 D .ˇ11; ˇ12/
0 D .1; 2/0;ˇ2 D .ˇ21; ˇ22/

0 D
.2; 2/0;ˇ3 D .ˇ31; ˇ32/

0 D .1; 1/0;ˇ4 D .ˇ41; ˇ42/
0 D .1:5; 2/0 ; Xij D .1;Xij 2/

0, and Xij 2 is
independently generated from a standard normal variable. Note that "i D ."i1; "i2; "i3; "i4/

0

are normal random vectors with mean zero and covariance †" � diag.�2
"1
; �2

"2
; �2

"3
; �2

"4
/ D

diag.1; 1; 1; 1/. ˛0 �
 
˛11 ˛21 ˛31 ˛41

˛12 ˛22 ˛32 ˛42

!
D
 
1 0:8 0:8 0:8

0 1 0:8 0:8

!
. For each simulated data set,

we fit data with the LV2, LV1MV1 and LV1RV1 models and estimate the related unknown
parameters using the ML method. The bias and empirical standard deviations (SDs) of the
estimators are reported in Table 1, where #CF is the number of convergence failures from 1000
simulation runs.
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Table 1. Estimation results for Simulation 1

LV 2.true/ LV 1MV 1 LV 1RV 1

#CF 0 2 33

Bias (SD) Bias (SD) Bias (SD)

ˇ11 �0.003(0.097) �0.003(0.097) �0.006(0.133)
ˇ12 �0.002(0.102) �0.002(0.102) 0.001(0.139)
ˇ21 0.001(0.112) 0.002(0.113) 0.005(0.119)
ˇ22 �0.003(0.116) �0.003(0.117) �0.004(0.123)
ˇ31 0.000(0.106) 0.000(0.107) 0.002(0.109)
ˇ32 �0.002(0.106) �0.002(0.107) �0.003(0.109)
ˇ41 0.001(0.104) 0.001(0.105) 0.003(0.107)
ˇ42 0.000(0.107) 0.000(0.108) �0.001(0.110)

˛21 �0.000(0.054) 0.940(0.248) 0.758(0.278)
˛31 0.000(0.050) 0.758(0.200) 0.618(0.229)
˛41 �0.000(0.049) 0.754(0.202) 0.613(0.226)
˛32 0.000(0.045) 0.003(0.046) �0.085(0.291)
˛42 �0.003(0.043) �0.000(0.044) �0.076(0.300)

�11 �0.000(0.094) �0.010(0.098) �0.719(0.262)
�12 0.006(0.099) 0.004(0.101) 0.950(0.102)
�13 0(0) 0.002(0.101) 0.003(0.066)
�21 0(0) �1.868(0.509) N/A
�22 �0.001(0.111) �0.009(0.172) N/A
�23 0.002(0.097) �0.003(0.168) N/A

�2
"1 �0.030(0.173) 0.471(0.157) 2.119(0.472)

�2
"2 �0.028(0.153) 0.035(0.152) �0.007(0.225)

�2
"3 �0.021(0.127) �0.031(0.127) �0.029(0.147)

�2
"4 �0.023(0.131) �0.033(0.131) �0.033(0.157)

�2
e1 �0.017(0.180) �0.466(0.138) �0.760(0.149)

�2
e2 �0.022(0.207) N/A 0.472(0.809)

SD, standard deviation; N/A, not applicable.

Using the data presented in Table 1, we make the following conclusions. (1) The estimate of
the fixed effect in the measurement models are reported in the first part of Table 1. All esti-
mators are unbiased, and LV2 has the smallest variance. The first part of Table 1 shows that
misspecification of latent variables will lead to a slight loss of efficiency for ˇ. Misspecifica-
tion of latent variables has a relatively minor effect on the parameters in the mean part. (2)
The second part of Table 1 displays estimators of ˛ and �. A useful rule to keep in mind when
checking bias, as suggested by Olsen & Schafer (2001), is that biases do not have a substantial
negative effect on inference unless standardized bias (bias over SD) exceeds 0.4. By this rule,
LV2 is unbiased, and LV1MV1 and LV1RV1 are seriously biased. Table 2 in the Supporting
Information shows that misspecification of latent variables leads to biased estimators of ˛ and
�, the regression coefficients of the latent variable. (3) The third part of Table 1 shows the esti-
mators of variances in the measurement and latent variable models. As shown, LV2 is unbiased
and has the smallest variance; LV1RV1 and LV1MV1 are biased for the variance parameters in
both the measurement and latent variable models.

In summary, misspecification of latent variables has a minor effect on the estimators of the
parameters in the mean structure but may lead to biased estimators of the components of the
covariance structure, including ˛;� and the variances of the error and the latent variables.
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Table 2. Estimates of �1; : : : ; �9 for World Values Survey data

�1 �2 �3

Proposed Non-p Proposed Non-p Proposed Non-p

Z1 0 �0.130(0.121) 0 �0.136(0.090) 0 0.143(0.087)
Z2 0 0.060(0.090) 0 �0.032(0.079) 0 0.018(0.065)
Z3 0 0.143(0.086) 0 0.041(0.076) 0 0.010(0.078)
Z4 0 �0.104(0.093) 0 0.096(0.081) 0 �0.121(0.076)
Z5 0 �0.207(0.101) 0.546(0.070) 0.567(0.078) 0 �0.073(0.138)
Z6 0 0.390(0.096) 0 0.220(0.097) 0 0.066(0.097)

�4 �5 �6

Proposed Non-p Proposed Non-p Proposed Non-p

Z1 0 0.094(0.092) 0 0.022(0.096) 0 �0.109(0.124)
Z2 0 �0.039(0.073) 0 �0.061(0.063) 0 �0.119(0.119)
Z3 0 �0.014(0.063) 0 0.079(0.075) 0 0.129(0.106)
Z4 0 �0.090(0.064) 0 0.046(0.086) 0 �0.137(0.114)
Z5 0 0.257(0.107) 0 �0.009(0.111) 0 0.176(0.177)
Z6 0 0.023(0.080) 0.511(0.082) 0.485(0.096) 0 0.113(0.149)

�7 �8 �9

Proposed Non-p Proposed Non-p Proposed Non-p

Z1 0 �0.233(0.112) 0 �0.080(0.173) 0 0.032(0.138)
Z2 0 �0.085(0.092) 0 �0.087(0.133) 0 0.146(0.099)
Z3 0 �0.051(0.106) 0 0.110(0.116) 0 0.021(0.115)
Z4 0 �0.093(0.128) 0 �0.076(0.125) 0 0.060(0.104)
Z5 0 �0.240(0.162) 0 0.007(0.178) 0 �0.345(0.150)
Z6 0 �0.167(0.140) 0 �0.039(0.145) 0 0.046(0.170)

As reported in the Supporting Information, we have conducted further simulation studies
(denoted as Simulation 2) to assess the finite-sample performance of the proposed method
in terms of bias and empirical SD. We also examine the performance of criteria (3.16) and
(3.17) in selecting �1n and �2n. We have also conducted simulations (denoted as Simulation 3)
to check the performance of the proposed procedure when the signal is not sufficient and to
investigate the validity of treating an ordinal response as a continuous variable, which is the
approach taken when we apply the analysis to real data. All the results point to the good perfor-
mance of the proposed method and hint at the appropriateness of data analysis reported in the
next section.

6. Application of the latent variable model

The World Values Survey gathers information from participants around the world on contem-
porary societal issues such as individuals’ attitudes about their work and religious beliefs. The
goal of the survey is to enable a cross-national, cross-cultural comparison and surveillance of
respondents’ core values. Namely, participants’ responses help identify what or how social and
personal factors affect individuals’ core values. For this application, we use data from the India
cohort .n D 759/; our specific aim is to investigate whether respondents’ financial situation
and attitudes about their job (adjusted for demographic factors) influence their core values, as
gauged by the following nine questions:

Y1: How important is God in your life? (1 D not at all, 10 D very)
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Y2: Overall, how satisfied or dissatisfied are you with your home life? (1 D dissatisfied,
10 D very satisfied)

Y3: All things considered, how satisfied are you with your life as a whole in these days?
(1 D dissatisfied, 10 D very satisfied)

Y4: How satisfied are you with the financial situation of your household? (1 D dissatisfied,
10 D very satisfied)

Y5: Overall, how satisfied or dissatisfied are you with your job? (1 D dissatisfied,
10 D very satisfied)

Y6: Individuals should take more responsibility for providing for themselves. (1 D agree
completely, 10 D disagree completely)

Y7: Competition is good. It simulates people to work hard and develop new ideas. (1 D agree
completely, 10 D disagree completely)

Y8: In the long run, hard work usually brings about a better life. (1 D agree completely,
10 D disagree completely)

Y9: How much pride, if any, do you take in the work that you do? (1 D a great deal,
2 D some, 3 D little, 4 D none)

Because the outcomes Y1; � � � ; Y8 are measured on a scale from 1 to 10, and Y9 takes values of
1 to 4, we treat the first eight outcomes as continuous variables and the last outcome as ordinal.
With nine outcomes, it is reasonable to consider at most nine latent variables �1; � � � ; �9 in the
proposed model:

Yk D bk C
9X

j D1

˛kj �j C "k; k D 1; : : : ; 8;

U9 D b9 C
9X

j D1

˛9j �j C "9;

�k D Z0�k C ek; k D 1; : : : ; 9;

where Y9 D I.U9 � c1/ C 2I.c1 < U9 � c2/ C 3I.c2 < U9 � c3/ C 4I.c3 < U9/ and
Z D .Z1; : : : ; Z6/

0, in which .Z1; Z2/ D marriage ((1,0), more than once; .0; 0/, only once;
(0,1), never), Z3 D age,Z4 D gender (1, male; 0, female); Z5 D income (1: <12,000 rupees per
year; 2: 12,001–18,000; 3: 18,001–24,000; 4: 24,001–30,000; 5: 30,001–36,000; 6: 36,001–48,000;
7: 48,001–60,000; 8: 60,001–90,000; 9: 90,001–120,000; and 10: >120,000); and Z6 D freedom
of decision-making on the job (1, none at all; 10, a great deal). To unify scales of covariates,
we standardize the elements in Z before analysis. For identifiability, the matrix ˛ is assumed
to be a lower triangular matrix, with 1’s as diagonal entries, b9 D 0 and �"9 D 1. The tun-
ing parameter �1n D 0:2 and �2n D 0:1 are chosen by maximizing (3.16) and (3.17). We
also consider the method without selection of the latent variables and the predictor variables
(Non-p); Tables 2–4 display point estimates and the estimated SDs (in parenthesis). We used
1000 Monte Carlo replications to approximate conditional means. We calculated the SDs via
the resampling method described in Section 4, with 1000 replications. We decided on a sample
size of 1000 by monitoring the stability of the SDs; we found that when the bootstrap sam-
ple size was between 500 and 1000, the resulting SDs stabilized, and the difference was only
marginal. For the proposed method, the algorithm failed to converge in 76 of the 1000 replica-
tions; the results from the proposed method are based on 924 replications. The Non-p method
did not fit the data properly, resulting in about 665 of 1000 runs failing to converge; the results
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Table 3. Estimates of c and variance for World Values Survey data

Proposed(SD) Non-p(SD) Proposed(SD) Non-p(SD)

c1 0.140(0.053) 0.299(0.107) c2 1.506(0.082) 3.209(0.662)
c3 2.624(0.156) 5.590(1.133)

�2
"1 4.487(0.951) 3.875(0.548) �2

e1 2.025(0.860) 2.368(0.523)
�2

"2 1.515(0.468) 0.902(0.539) �2
e2 1.368(0.462) 2.150(0.668)

�2
"3 1.979(0.323) 1.307(0.614) �2

e3 0.705(0.345) 1.598(0.905)
�2

"4 2.135(0.432) 1.731(0.694) �2
e4 0 0.780(0.848)

�2
"5 1.907(0.863) 1.360(0.775) �2

e5 1.052(0.904) 1.652(0.888)
�2

"6 3.760(2.330) 3.815(1.880) �2
e6 3.120(2.336) 2.995(1.998)

�2
"7 1.981(1.188) 2.224(0.899) �2

e7 2.054(1.534) 2.004(1.313)
�2

"8 3.221(1.732) 3.478(1.223) �2
e8 0.603(1.966) 0.617(1.644)

�2
"9 1 1 �2

e9 0 3.587(1.591)

SD, standard deviation.

Table 4. Estimates of ˛ for World Values Survey data

Proposed(SD) Non-p(SD) Proposed(SD) Non-p(SD)

˛21 0.742(0.316) 0.540(0.114) ˛42 1.015(0.144) 0.627(0.192)
˛31 0.581(0.278) 0.351(0.123) ˛52 0.609(0.129) 0.430(0.136)
˛41 0.369(0.217) 0.312(0.098) ˛62 0.205(0.170) �0.030(0.108)
˛51 0.385(0.163) 0.310(0.103) ˛72 �0.187(0.128) �0.137(0.099)
˛61 0.039(0.141) 0.126(0.108) ˛82 0.128(0.146) 0.013(0.108)
˛71 �0.218(0.123) �0.178(0.100) ˛92 �0.253(0.093) �0.320(0.091)
˛81 �0.447(0.148) �0.358(0.112) ˛43 0.739(0.350) 0.531(0.149)
˛91 �0.237(0.079) �0.463(0.098) ˛53 0.598(0.353) 0.362(0.190)
˛32 0.896(0.148) 0.750(0.208) ˛63 �0.369(0.367) �0.108(0.196)

˛73 0.447(0.331) 0.094(0.175) ˛75 �0.228(0.149) �0.082(0.193)
˛83 �0.504(0.367) �0.295(0.258) ˛85 �0.227(0.186) �0.091(0.210)
˛93 �0.272(0.179) �0.412(0.155) ˛95 �0.486(0.125) �0.770(0.222)
˛54 0 0.386(0.292) ˛76 0.500(0.299) 0.456(0.330)
˛64 0 0.227(0.456) ˛86 0.299(0.284) 0.337(0.295)
˛74 0 0.244(0.442) ˛96 0.030(0.052) 0.060(0.113)
˛84 0 0.271(0.417) ˛87 0.853(0.269) 0.762(0.281)
˛94 0 �0.047(0.249) ˛97 0.063(0.067) 0.154(0.142)
˛65 0.048(0.153) �0.101(0.190) ˛98 �0.123(0.140) 0.003(0.290)

SD, standard deviation.

from the Non-p method are based on 335 replications. Hence, given the low number of repli-
cations, the SDs of the Non-p estimator displayed in Tables 2–4 are likely not representative of
the SDs that would result from 1000 runs.

Our penalized method enables the estimates of k�j k; j D 1; 3; 4; 6; 7; 8; 9 (Table 2), �e4 and
�e9 (Table 3) to be exactly zero. As discussed in Section 2, ¹�e4 D 0; k�4k D 0º and ¹�e9 D
0; k�9k D 0º imply that �4 and �9 are zero and can be ignored completely; ¹�ej ¤ 0; k�j k D 0,
j D 1; 3; 6; 7; 8} imply that �j ; j D 1; 3; 6; 7; 8 are simply random effects; ¹�e2 ¤ 0; k�2k ¤ 0º
and ¹�e5 ¤ 0; k�5k ¤ 0º imply that �2 and �5 are indeed latent variables, characterized by
income and job freedom separately.

Although model (3.4) reveals that the dependence among the nine outcomes is explained
jointly by random effects and latent variables ¹�2; �5º, the two latent constructs add
more new insights. First, the significantly positive estimates of factor loadings Ǫ32 D
0:896 .0:148/; Ǫ42 D 1:015 .0:144/ and Ǫ52 D 0:609 .0:129/ (Table 4) imply that respondents’
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income level has positive effects on outcomes Y3; Y4 and Y5 (life, finance and job satisfac-
tion). Second, the significantly negative estimates of factor loadings Ǫ92 D �0:253 .0:093/ and
Ǫ95 D �0:486 .0:125/ (Table 4) reveal that both income and job freedom have positive effects
on respondents’ feelings of pride in their job, given a reversed coding of Y9. Third, insignifi-
cant factor loadings ¹˛62; ˛72; ˛82º and ¹˛65; ˛75; ˛85º (Table 4) indicate negligible effects of
income and job freedom on outcomes Y6, Y7 and Y8 (sense of responsibility, competitiveness
and work intensity). Finally, the two latent constructs help in the interpretation of the het-
erogeneities among subjects. For example, people with similar levels of income and perceived
job freedom tend to give similar answers to questions Y3, Y4, Y5 and Y9 (life, finance, job
satisfaction and pride in work). In summary, our results render statistical evidence for some
well-known but hard-to-measure social psychology phenomena.

Unlike ordinary multiple regression models, which account for the effects of covariates
on outcomes separately, the general LVM proposed in this study groups multiple outcomes
into two latent constructs, which reduces the model dimension, simultaneously accommo-
dates dependence between outcomes and heterogeneity between subjects and provides simpler
interpretation of the associations among multidimensional outcomes.

7. Discussion

We have proposed a penalized ML estimator to develop a general framework of latent variable
selection. The proposed method is able to select latent variables and estimate parameters simul-
taneously. Under mild conditions, the estimator is n1=2-consistent and asymptotically normal.
Given an appropriate choice of regularization parameters, the proposed estimator demon-
strates the oracle property. We suggest using a BIC-type tuning parameter selection method to
select the regular parameters.

We have focused on mixed outcomes with ordinal and continuous variables under the linear
regression framework. Because the assumption of normality may not always be practical, our
future work will extend our methods to other regression frameworks (e.g. generalized linear
regression) for non-normal responses. Moreover, we have focused on selecting important latent
variables, but one can easily extend the proposed method to simultaneously select manifest
variables and latent variables.
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Appendix A: Notation

Let the parameter ‚ D .‚0
1;‚

0
2;‚

0
3/

0, where ‚1 D . Ę 0
; Ě 0

;� 0
"/

0;‚2 D .‚21; � � � ;‚2q/
0 D

� e and ‚3 D .‚31; � � � ;‚3;q�m/
0 D E�;m is the length of Zi . Let threshold cj .y/ D

cj;y; cj 0.y/ D cj;y0,

dkj .y/ D
E�



cj 0.y/�Wij .‚/

�j

� °
@Wij .‚/

@‚k
C �

cj 0.y/ �Wij .‚/
	 @ log.�j /

@‚k

±
E�



cj 0.y/�Wij .‚/

�j

� j‚D‚0
;

where dkj .y/ is the derivative of Ocj .‚Iy/ with respect to ‚k at ‚ D ‚0; Ocj .‚Iy/ is the

estimator of cj .y/ given ‚; 	j D
q

˛0
j

†e˛j C 1 and Wij .‚/ D X0
i
ˇj C ˛0

j
�Zi .

Similar to � e D .� 0
e.1/

;� 0
e.2/

/0 or E� D . E� 0
.1/; E� 0

.2//
0, let ‚2 D .‚0

2.1/
;‚0

2.2/
/0;‚3 D

.‚0
3.1/

;‚0
3.2/

/0; d2j .y/ D .d2j.1/.y/
0; d2j.2/.y/

0/0 and d3j .y/ D .d3j.1/.y/
0; d3j.2/.y/

0/0. Let

B.rs/ DE
 
@2 logLi .‚0I c0/

@‚r.1/@‚
0
s.1/

C
pX

j Dp1C1

 
@2 logLi .‚0I c0/

@‚r.1/@cj .Yij /
d 0

sj.1/.Yij /C @2 logLi.‚0I c0/

@‚r.1/@cj .Yij � 1/d
0
sj.1/.Yij �1/

!1A and

Brs DE
 
@2 logLi .‚0I c0/

@‚r@‚
0
s

C
pX

j Dp1C1

 
@2 logLi .‚0I c0/

@‚r@cj .Yij /
d 0

sj .Yij /C @2 logLi .‚0I c0/

@‚r@cj .Yij � 1/ d
0
sj .Yij � 1/

!1A ;
(A1)

where Li .‚I c/ is the observed-data likelihood function for subject i . The matrix B D .Brs/ is
the mean of the Hessian matrix of logLn.‚I Oc.‚// with respect to ‚, and the matrix .B.rs//

is B corresponding to non-zero components of ‚.
Let

U1 D diag¹ Rp�1n
.�e10/; : : : ; Rp�1n

.�es0/ºI b1 D . Pp�1n
.�e10/; : : : ; Pp�1n

.�es0//
0 ;

U2 D diag
® Rp�2n

.j�110j/; � � � ; Rp�2n
.j�1;h1;0j/; � � � ; Rp�2n

.j�q;1;0j/; � � � ; Rp�2n
.j�q;hq ;0j/¯ ;

b2 D � Pp�2n
.j�110j/sgn.�110/; : : : ; Pp�2n

.j�1;h1;0j/sgn.�1;h1;0/;

� � � ; Pp�2n
.j�q10j/sgn.�q10/; : : : Pp�2n

.j�q;hq ;0j/sgn.�q;hq ;0/
�0
:

U1 and U2 are used to express the uncertainty due to adding the penalties on †e and �,
respectively, whereas b1 and b2 are corresponding biases.
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Denote

B.rs:k/ D B.rs/ � B.rk/B
�1
.kk/B.ks/; B

�
.rs:k/ D B.rs/ � B.rk/

�
B.kk/ � U1

��1
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��1
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��1
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��1
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Ak ; k D 1; 2; 3 and A4j .y/ are defined as

Ak D E
h�
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(A2)

where ƒ�1
1 A1.ƒ

0
1/

�1;ƒ�1
2 A2.ƒ

0
2/

�1;ƒ�1
3 A3.ƒ

0
3/

�1 and A4j .y/ are asymptotic standard

errors of
p
n. O‚1 � ‚10/;

p
n. O� e.1/ � � e.1/0/;

p
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respectively, when zero components are known, and
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where 	j 0 is the true value of 	j ; 'rj1;.k/ and 'rj 2;.k/ are the corresponding parts of 'rj1;k

and 'rj 2;k to non-zero parameters, respectively.

Finally, let C21 D C32 D 1; C12 D �B�
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Appendix B: Conditions

(1) The matrix B D .Brs/r;sD1;2;3 defined by (A1) is negative definite.
(2) A1; A2; A3 and A4j .k/ defined by (A2) are positive definite matrices.
(3) Xi and Zi are bounded.

Condition (1) is an identifiability condition for ‚. A1; A2; A3 and A4j .k/ are asymptotic

variances of
p
nƒ1. O‚1 � ‚10/;

p
nƒ2. O� e.1/ � � e.1/0/;

p
nƒ3.

OE�.1/ � E�.1/0/ and
p
n. Ocj;k �

cj;k0/, respectively.
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