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ABSTRACT

Modular systems provide the ability to achieve
product variety through the combination and
standardization of components.  In this paper, a
methodology that combines the Hatley/Pirbhai system
model, integration analysis, and optimization techniques
for development of modular electrical/ electronic
vehicle systems is presented. The approach optimizes
integration and interactions of the electrical/ electronic
system elements and creates functional and physical
modules for the vehicle. The paper illustrates
importance of system modeling in developement of
modular products. Discussion on how to make the
system modeling more attractive to the industry is also
presented.

INTRODUCTION

Modular systems provide the ability to achieve
product variety through the combination and
standardization of components.  Potential benefits of
modularity include (Ulrich 1991):

•  Ecomomies of scale
•  Increased ease of product/component change
•  Increased product variety
•  Reduced time to market
•  Easier product diagnostics, maintenacnce, and

repair.

To develop modular systems, well defined techniques
and methodologies are required to assist the product
development process.  A classical product development
process includes six phases shown in Figure 1.

This research focuses on the design phase of the
product development process.  Several studies have
shown that product cost, quality, and time to market are
most affected in the product design phase.  For
example, a study conducted at Ford Motor Company
shows that only 5% of the manufacturing costs of a car
are for design activities.  However, the decisions made
during the design phase affect 70% of the
manufacturing costs.  In a similar study, Xerox
attributed 50% of the final product cost to the results of
the design phase. Furthermore, 75% of the

manufacturing costs are committed by the end of the
preliminary design phase (Ullman 1992). These studies
give a good indication of the impact of the design on the
product cost.

This paper focuses on the modeling, analysis, and
design of systems and illustrates the importance of
system modeling in development of modular vehicle
systems. The approach presented in this paper creates
modular systems and optimizes integration and
interactions of the system elements.  The application of
the approach is illustrated with an industrial example
from the automotive industry, i.e., design of an
instrument panel (cockpit).  The Hatley/Pirbhai
methodology is used for modeling functional
requirements of the cockpit system of a vehicle.  The
Hatley/Pirbhai requirements model defines the
interfaces (interactions) to support the functions of a
cockpit system.  Once the interfaces among the
functions are identified, integration (cluster) analysis
techniques are used to group the functions in the cockpit
of a vehicle, and create electronic modules.  The
integration analysis approach uses analytical techniques
to optimize interactions between system functions and
group them in such a way that inter-cluster interactions
are minimized (Pimmler 1994).  A Hatley/Pirbhai
architecture model is developed to represent the system
design.  The completed Hatley/Pirbhai system model,
i.e., requirements and architecture, represents the
functional requirements and the physical structure of the
entire system.  The overall system design process is
shown in Figure 2.

SYSTEM DESIGN

In this section, different phases of the system design
processes shown in Figure 2 are discussed.

Requirements Analysis.  In this phase, the functional
decomposition and a detailed system requirements
model for the cockpit is developed.  The Hatley/Pirbhai
methodology is used for modeling the cockpit system.
First, a top level system context diagram is constructed
(see Figure 3).  Once the cockpit system boundaries and
external entities are established, the interactions
between the cockpit system and the external entities are
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identified.  The external entities in the context diagram
are represented as terminators (rectangles).

The electrical/electronic functions of a cockpit
system may be decomposed into six main functions
(processes) shown in Figure 4:

1. Protect Occupants and Cargo
2. Provide Vehicle Motion
3. Provide Information, Communication, and

Entertainment
4. Provide Visibility
5. Provide Interior Comfort
6. Control Power Distribution

All possible features of the cockpit system can be
logically grouped into one of the six main processes
presented above.  Figure 4 is the child diagram of the
context process shown in Figure 3 and presents the
interactions among the six functions of the cockpit
system. Each process in Figure 4 is further decomposed
to the lowest level processes, i.e., primitives (PSPECs).

The functional decomposition and system modeling
allows one to identify the functional elements of the
system and their relationships.  The system model
represents the flow, processing, and transformation of
data, energy, and material within the system.  Once the
Hatley/Pirbhai requirements model is constructed and
the relationships between the functional elements
(primitives) are identified, a function-function incidence
(interaction) matrix for the cockpit system is developed
(discussed next).

Integration Analysis. The Hatley/Pirbhai requirements
model developed in the requirements analysis phase,
identifies all the functional elements of the cockpit
system and defines the interactions (interfaces) between
the elements to support the functions of a cockpit
system.  Once the interactions among the functions are
identified, a function-function interaction matrix of the
interfaces is developed. A function-function interaction
matrix [aij] includes “1”, “blank” entries (see Figure 5),
where an entry “1” indicates the information, material
or energy link (signal flow) between functions i and j,
and the direction of the link (flow) is from j → i.

A function-function interaction matrix in Figure 5
can be restructured using integration (cluster) analysis
techniques to obtain the clusters in the binary
interaction matrix and create functional modules (see
Figure 6). Cluster analysis is concerned with the
grouping of objects into homogeneous clusters (groups)
based on the objects features.  The application of cluster
analysis techniques to the product design problem leads
to the grouping of product functions and components
(Kusiak 1998). In this research, the Extended Cluster
Identification (ECI) algorithm is used to group the
cockpit functions into modules (Kusiak 1987).

Improvement steps for the ECI algorithm is developed
to maximize functional integration and minimize the
interaction between the system functional  modules.
The application of the ECI algorithm and the
improvement steps is explained next.

The ECI algorithm is an extension of the cluster
identification algorithm (Iri 1968).  The cluster
identification algorithm identifies mutually separable
clusters in the function-function interaction matrix.  The
ECI algorithm first checks for the existence of mutually
separable clusters in the interaction matrix and if such a
solution does not exist, heuristically solves the problem
by randomly removing the bottleneck
functions/interactions from the interaction matrix.  A
function (interaction) is considered a bottleneck, when
it does not allow the decomposition of the function-
function interaction matrix into mutually separable
clusters.

In the modularity matrix [aij], two types of
bottleneck functions are possible: upper diagonal and
lower diagonal (see Figure 7).  Each bottleneck
function, i.e., entry xij = 1 in matrix [aij] not belonging to
any cluster (module) in the matrix [aij], interacts with
only two clusters (modules), i.e., m(1) and m(2) in
matrix [aij].  The improvement steps developed in this
research moves the bottleneck function (interaction) xij

= 1 to module m(1) or m(2) if such an assignment
improves the functional modularity of the system, i.e.,
maximizes interactions within the modules and
minimizes interactions between the modules.

The two steps performed in the integration analysis
phase are as follows:
1. Construct function - function interaction matrix

The Hatley/Pirbhai requirements model identifies
the relationships between the functional elements,
primitives.  In essence, the model can be thought of as a
huge network of primitive processes linked together by
their flows (Hatley 1987).  Once the system functions
and their relationships are obtained, a function –
function interaction matrix for the system is
constructed.
2. Construct modularity matrix

Apply the ECI algorithm and the improvement
steps to obtain the modularity matrix.

Design Analysis. In this phase, the system design is
completed. The Hatley/Pirbhai architecture model is
developed to allocate the functional requirements and
interactions from the Hatley/Pirbhai requirements
model to the modules identified in the modularity
matrix of cockpit system.

The application of the ECI algorithm and the
improvement steps resulted in seven functional modules
for the cockpit system (see Figures 8 and 9).  The seven
modules are shown in the cockpit architecture flow
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diagram (AFD) in Figure 8 and as follows:

1. Locking module
2. Climate Control module
3. Lighting module
4. Driver Information module
5. Entertainment module
6. Power pedal module
7. Ignition module

Each of the data flow lines shown in Figure 8
represent an interaction between functions contained
within a module from the cockpit modularity matrix.
For example, the entertainment module has an
interaction with the locking module known as “RADIO
PRESENT” and is represented as a data flow line in
Figure 8.

Figure 9 shows the cockpit architecture
interconnect diagram (AID). The AID represents the
communication channels that exist between the cockpit
architecture modules shown in Figure 8.  The AID in
Figure 9 has the same architecture modules as the AFD
and shows the physical means by which the cockpit
modules communicate (channels).

DISCUSSION

Today’s systems are too complex to depend on the
ability of a few overworked engineers to keep the
various subsystems consistent.  Systems have reached a
point at which the interactions between the
systems/subsystems are at least as complex as the
subsystems themselves (Hatley 1987).  Therefore,
system models should be used to represent information
that is gathered about the system in the requirements
and design analysis phases.

The TurboCase/SYS software tool from Structsoft,
Inc. was used for the development of the Hatley/Pirbhai
requirements and architecture models.  The
TurboCase/SYS tool facilitates the allocation of
functional elements in the requirements model to
physical entities in the architecture model.  System
modeling tools can become even more attractive to the
industry by integrating integration analysis techniques
(i.e., ECI algorithm and improvement steps). The latter
should allow the user, i.e., product developement
engineers, to automatically determine the optimal
number of modules and allocation of functions into each
module.

CONCLUSION

This research developed a methodology that
combined the system modeling, integration analysis,
and optimization techniques for development of
modular electrical/electronic systems. The approach
optimized integration and interactions of the system

elements and created functional and physical modules
for the cockpit system.

The approaches presented in literature concentrate
in partitioning simple products into physical modules
without considering functional requirements of the
system.  This research demonstrated the importance of
functional decomposition and system modeling of a
complex system.  The component analysis is very
valuable at the detailed design phase.  However,
focusing on the functional analysis of the system allows
one to develop several different system architecture and
partitioning alternatives.
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Figure 1: Phases of Product Development Process

Figure 2: System Design Process
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Figure 3: Cockpit System Context Diagram

Figure 4: Provide Electrical/Electronic Functions of a Cockpit System
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Figure 5: Function- Function Interaction Matrix

Figure 6: Modularity Matrix

Figure 7: Upper/Lower Diagonal Bottleneck Functions
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Figure 8: Cockpit Architecture Flow Diagram

Figure 9: Cockpit Architecture Interconnect Diagram
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