In search of rare variants: Preliminary results from whole genome sequencing of 1,325 individuals with psychophysiological endophenotypes

SCOTT I. VRIEZE,a STEPHEN M. MALONE,b UMA VAIDYANATHAN,b ALAN KWONG,a HYUN MIN KANG,a XIAOWEI ZHAN,c MATTHEW FLICKINGER,a DANIEL IRONS,b GOO JUN,a ADAM E. LOCKE,a GIORGIO PISTIS,a ELEONORA PORCU,a SHAWN LEVY,b RICHARD M. MYERS,b WILLIAM OETTING,c MATT MCGUE,b GONCALO ABECASIS,a and WILLIAM G. IACONOB

aDepartment of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
bDepartment of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
cHudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
dDepartment of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA

Abstract

Whole genome sequencing was completed on 1,325 individuals from 602 families, identifying 27 million autosomal variants. Genetic association tests were conducted for those individuals who had been assessed for one or more of 17 endophenotypes (N range = 802–1,185). No significant associations were found. These 27 million variants were then imputed into the full sample of individuals with psychophysiological data (N range = 3,088–4,469) and again tested for associations with the 17 endophenotypes. No association was significant. Using a gene-based variable threshold burden test of nonsynonymous variants, we obtained five significant associations. These findings are preliminary and call for additional analysis of this rich sample. We argue that larger samples, alternative study designs, and additional bioinformatics approaches will be necessary to discover associations between these endophenotypes and genomic variation.

Descriptors: Endophenotype, Psychophysiology, Whole genome sequencing, Rare variant, P300, Startle, Antisaccade, EEG

This research was supported by NIH grants DA024417, DA05147, AA09367, DA13240, DA036216, DA034606, HG007022, and HL117626. Dr. Vrieze is now at the Department of Psychology and Neuroscience, and the Institute for Behavioral Genetics, at the University of Colorado Boulder. Address correspondence to: Dr. W. G. Iacono, 75 East River Rd., University of Minnesota, Minneapolis, MN 55455, USA. E-mail: wiacono@umn.edu or Dr. G. Abecasis, Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA. E-mail: goncalo@umich.edu

Five of the companion articles in this special issue describe genome-wide association studies (GWAS) from a fixed genotyping array with a prespecified set of 527,829 variants. Such genotyping arrays are designed primarily to capture common variants, those with a minor allele frequency, or MAF, greater than .05. The other original research article in this issue (Vrieze et al., 2014) describes an association study between the 17 putative endophenotypes and rare nonsynonymous exonic variants specifically, which are variants in coding regions that affect protein structure. In the current study, we extended these analyses by employing whole genome sequencing in an attempt to discover nearly all single nucleotide polymorphisms (SNPs) present in any given individual, including those on the GWAS and exome arrays as well as tens of millions of additional variants. Because all variants are directly measured and genotyped, this results in increased power for common variants and the ability to test rare variants throughout the entire genome on a far larger scale than the other articles in this special issue.

Whole genome sequencing interrogates the entire genome to discover and accurately genotype variants from across the allelic spectrum, from private mutations possessed by a single person (or family), to common variants genotyped on typical microarrays. The past few years have seen significant advances in population genetics and characterization of rare genomic variation, which were only possible with genome sequencing technology. The 1000 Genomes Project, for example, combined exome and whole genome sequencing to discover 38 million SNPs in 1,092 individuals from 14 ancestral populations (1000 Genomes Project Consortium, 2012). The Exome Sequencing Project (Fu et al., 2013) and analogous exome sequencing projects (Nelson et al., 2012) have extensively interrogated exonic regions of the genome and characterized a wide diversity of rare coding variants. In the present study, we found 27.1 million autosomal SNPs, 21.3 million of which have minor allele frequency less than 5%. Almost none of these 21 million variants were tested in the other articles of this special issue.
1000 Genomes, Exome Sequencing Project, ENCODE, and many related projects represent breathtaking technological and analytical achievements, delivering insight into molecular biology, genomics, evolutionary history, migratory patterns, and disease biology, to name a few (Lander, 2011). Genome sequencing has been less widely used in the study of human behavior, with notable exceptions including advances in the genetics of autism (Neale et al., 2012; O’Roak et al., 2011) and schizophrenia (Fromer et al., 2014; Purcell et al., 2014). These studies employed exome sequencing, which interrogates only the exons for each of ~20,000 protein coding genes throughout the genome. The exome is an important, but small, section of the genome, comprising less than 2% of all sequence in the genome. The remainder of the genome, colorfully referred to in the past as “junk DNA,” is everything but that. Work by the ENCODE consortium (ENCODE Project Consortium, 2012) and others have verified that noncoding DNA harbors genetic variation critical to genomic function. While coding variants can affect protein structure, which is undoubtedly important, noncoding DNA can affect which, when, and how frequently genes are expressed, termed “gene regulation” more broadly. Indeed, early work suggests that a majority of disease-associated variants are in noncoding regions, with regulatory regions likely enriched for genome-wide significant variants (Maurano et al., 2012; Pickrell, 2014). Exhaustively interrogating genetic variation in coding and noncoding regions requires whole genome sequencing.

In the accompanying papers in this special issue, we described a variety of genetic association studies in a sample of 4,905 individuals using different genotyping technologies to identify variants associated with 17 psychophysiological phenotypes (for an overview, see Iacono, Malone, Vaidyanathan, & Vrieze, 2014). These endophenotypes include P300 amplitude, antisaccade direction errors, startle eye blink magnitude and modulation by affective stimuli, skin conductance level and responses in a habituation paradigm, and measures of resting EEG.

Although some of these endophenotypes are robust candidates, and despite the hope that endophenotypes would provide increased power to detect associated genes, the investigations described in the companion articles of this special issue yielded few significant findings. In analyses of common variants, only antisaccade error was significantly associated with an individual SNP (Vaidyanathan, Malone, Donnelly et al., 2014). Tests of rare exonic variants also produced one significant association, between a nonsynonymous SNP in PARP3 and electroencephalogram (EEG) theta power (Vrieze et al., 2014). Gene-based tests of common variants, which aggregate the effect of all SNPs within a given gene into a single score, yielded several significant associations. P3 amplitude was associated with MYEF2 (Malone, Vaidyanathan et al., 2014), EEG delta power was associated with three genes (DEFA4, DEFA6, and GABRA1; Malone, Burwell et al., 2014), antisaccade performance was associated with two genes on Chromosome 2—B3GNT7 and NCL—and the aversive difference startle modulation score was associated with the PARP14 gene on Chromosome 3. Gene-based tests of rare exonic variants yielded one significant association with the pleasant difference startle modulation score and PNPLA7 (Vrieze et al., 2014), which was not readily interpretable.

The present article appears last in this special issue because it is our most comprehensive and most powerful attempt to discover novel genetic loci associated with these endophenotypes. In this article, we describe three primary analyses. First, we test for association between 27 million autosomal SNPs and each of the 17 endophenotypes in 1,706 individuals with whole genome sequences. Second, we conduct gene-based tests of nonsynonymous variants in these same 1,706 individuals. Third, we use the combination of genotype arrays and sequences to impute all 27 million variants into the full Minnesota Center for Twin and Family Research (MCTFR) sample with psychophysiological endophenotypes (N = 4,905) and conduct the same single variant and gene-based burden tests in this larger sample.

Methods

A schematic overview of the methodological sequence is displayed in Figure 1.

Participants

Individuals were selected from the Minnesota Twin Family Study (MTFS) for moderate-depth whole genome sequencing. While we originally collected molecular genetic data from 7,845 individuals in the MCTFR (Iacono et al., 2014), we undertook whole genome sequencing for a subsample of 1,328 individuals due to prohibitive costs. Of these, 1,325 individuals from 602 families passed quality control checks and were available for association study. First, 1,038 individuals were sequenced as part of the NIDA Genes, Environment, and Development Initiative (GEDI; McGue et al., 2013). Next, 304 individuals were sequenced as part of a study of bipolar disorder (operating under the acronym BRIDGES and led by M. Boehnke at University of Michigan and R. Myers at HudsonAlpha) that is not yet completed and for which there are no currently available published sources. Sample selection within the MCTFR began by considering only individuals with self-reported European ancestry confirmed by genome-wide principal components, as described previously (Miller et al., 2012). The GEDI sample was selected in an attempt to maximize power to detect associations with measures of alcohol use and externalizing psychopathology (see details in online supporting information). BRIDGES samples had been selected from the MCTFR cohorts to serve as additional controls in a case-control genetic association study of bipolar disorder. As such, these samples happened to have been screened for major forms of psychopathology to be included in the BRIDGES study. BRIDGES selection criteria were at least 23 years of age; no history of mania, major depression, or alcohol dependence; and no first-degree relative with a history of bipolar disorder or major depressive disorder. In addition, the samples were matched for northern European ancestry to other BRIDGES bipolar cases using genetic principal components. Not all of these GEDI- and BRIDGES-selected individuals participated in the psychophysiology lab.

Of these 1,325 individuals, 381 were one member of a monozygotic (MZ) twin pair. Zygosity has been validated in this sample through questionnaire, in-person review of the appearance of the twins by experts, anthropomorphic measurements, DNA concordances for all fraternal twins, and DNA concordances for many MZ twin pairs, resulting in a zygosity diagnosis error rate well under 1%. To maximize the yield of phenotypic data, co-twins of MZ twins who were sequenced were added to the sample. Genotypes were simply copied from the sequenced MZ twin to his/her unsequenced co-twin, under the assumption that the sequence was identical between MZ twins. This is a reasonable assumption here, especially for common and low-frequency SNPs, because differences between members of an MZ twin pair would be indistinguishable from sequencing errors at the sequencing depth.
obtained here (10x). For rare variants, specifically singletons, copying genotypes from one MZ twin to the other will introduce errors due to somatic mutations (Poduri, Evrony, Cai, & Walsh, 2013), which are present only in one MZ twin and not the other. If we assume that each person carries 50 somatic SNP mutations in their genome (Neale et al., 2012), and 3.5 million SNPs (1000 Genomes Project Consortium, 2012), somatic mutations will represent a genotype error rate of approximately 50/3,500,000 = 0.001% in the MZ twins only. In the context of the present study, we suggest that the increase in power obtained by adding 381 individuals outweighs the increased genotype error expected from somatic mutations. Furthermore, we do not evaluate singletons in our single variant tests. Therefore, somatic mutations in the present study will only affect gene-based tests in the exome, where we expect less than one somatic exonic mutation per individual.

After copying genotypes for MZ co-twins, there were 1,706 total sequenced individuals for association analysis. As noted, these individuals were selected to be sequenced based on phenotypic characteristics that were independent of their having been assessed in the psychophysiology lab. Because not all MCTFR participants completed a psychophysiological assessment, overlap between this sample and the sample for the psychophysiology GWAS used here is incomplete. The actual number with both sequences and psychophysiological measurements ranged from 802 to 1,185, depending on the phenotype. See Table 1 for more complete information on the study sample.

Endophenotypes
The endophenotypes examined here are listed below. An overview of all measures is provided in Box 1 in Iacono et al. (2014), while the accompanying five GWAS articles in this special issue provide additional details about each measure, including laboratory procedures and evidence supporting each measure as a candidate endophenotype.

- **P300 amplitude** (Malone, Vaidyanathan et al., 2014):
 1. P3 event-related potential (P3)
 2. P3 genetic factor (gP3)
- **Antisaccade eye tracking error rate** (Vaidyanathan, Malone, Donnelly et al., 2014)
- **Electrodermal activity** (Vaidyanathan, Isen et al., 2014)
 3. Skin conductance level (SCL)
 4. Skin conductance response frequency (fSCR)
 5. Skin conductance response amplitude (aSCR)
7. Electrodermal activity factor (EDA), a general factor derived from SCL, fSCR, and aSCR
 - Startle blink reflex and affective startle modulation (Vaidyanathan, Malone, Miller, McGue, & Iacono, 2014)
8. Overall startle (STRTL)
9. Aversive difference startle modulation (aSTRTL)
10. Pleasant difference startle modulation (pSTRTL)
 - Resting state EEG (Malone, Burwell et al., 2014)
11. Total EEG power (totPower)
12. Alpha EEG power (αPower)
13. Beta EEG power (βPower)
14. Theta EEG power (θPower)
15. Delta EEG power (δPower)
16. Alpha EEG power O1O2 (αPowerO1O2)
17. Alpha EEG frequency O1O2 (αFreqO1O2)

Whole Genome Sequences and Concordance with Array Genotypes

All DNA samples used in this sequencing study were whole blood, and were obtained from participants of the MTFS, which is included in the MCTFR. All sequencing was done on Illumina HiSeq technology with 100 or 150 base pair paired-end reads. An introductory overview of sequencing methodology is provided in Box 1, with a more complete description in the online supporting information. Sequencing was conducted at two separate institutions, the University of Michigan Sequencing Core and the HudsonAlpha Institute of Technology. After mapping, duplicate read removal, and clipping of overlapping paired-end reads, average depth was 10.47. The variant-calling pipeline, Genomes on the Cloud (GotCloud; Jun, Wing, Abecasis, & Kang, 2014), discovered 27,103,144 autosomal biallelic SNPs in the sample as a whole (see supporting information Table S1 for additional summary information about the genotype calls).

Genotype concordance was tested between the sequence-based genotypes and the array-based genotypes obtained by integrating the 660W-Quad and HumanExome arrays, as described in detail in a companion article to this special issue (Vrieze et al., 2014). All 1,325 directly sequenced individuals had array genotype data, and autosomal genotypes showed 99.91% concordance between the sequenced and array-based genetic variants. Array-based genotyping technology is highly accurate, and this result indicates that the sequence genotypes were also highly accurate. We expect accuracy to decline for rarer genotypes, which can be seen in Figure 2, where we display genotype concordance between the sequence genotypes and array genotypes across the minor allele frequency spectrum, from rare variants to common variants.

We also examined the power of our 10× sequencing to discover rare genotypes on the integrated array. The 10× sequencing in this sample discovered 7,567 of 10,328 singletons, or SNPs where the rare allele is observed only once (73%), 7,322 of 8,745 doubletons (84%), 8,367 of 8,809 tripletons (95%), and 3,886 of 3,966 quadrupletons (98%) on the integrated array. Of monomorphic sites on the integrated array, sequencing erred in a small fraction of instances, calling 2,515 of 150,329 monomorphic sites on this array as polymorphic (1.7%). While errors in variant discovery are likely due to sequencing errors, it is also possible that these errors are due to incorrect genotype calls on the integrated array, which can be more challenging for rare variants. In summary, 10× whole genome sequencing does reasonably well in genotyping singletons and other rare variants.

Table 1. Description of Sequenced and Imputed Individuals with Psychophysiology Measures

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Abbreviation</th>
<th>Symbol</th>
<th>N sequenced</th>
<th>% Female</th>
<th>% Fathers</th>
<th>% Mothers</th>
<th>% Offspring</th>
<th># Sequenced SNPs with MAC ≥ 3</th>
<th># Imputed SNPs with MAC ≥ 3</th>
<th>% Imputed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3 amplitude reduction</td>
<td>P3</td>
<td>1,149</td>
<td>46.1</td>
<td>21.3</td>
<td>4.4</td>
<td>74.2</td>
<td>14,879,798</td>
<td>4,166</td>
<td>21,426,324</td>
<td></td>
</tr>
<tr>
<td>P3 genetic factor</td>
<td>fP3</td>
<td>802</td>
<td>43.9</td>
<td>28.3</td>
<td>6.1</td>
<td>73.7</td>
<td>12,184,982</td>
<td>3,088</td>
<td>19,284,121</td>
<td></td>
</tr>
<tr>
<td>Antisaccade</td>
<td>SAC</td>
<td>1,185</td>
<td>46.5</td>
<td>21.5</td>
<td>4.8</td>
<td>73.6</td>
<td>15,318,178</td>
<td>3,791</td>
<td>21,086,834</td>
<td></td>
</tr>
<tr>
<td>Skin conductance level</td>
<td>SCL</td>
<td>1,181</td>
<td>46.5</td>
<td>21.6</td>
<td>4.8</td>
<td>73.6</td>
<td>15,318,178</td>
<td>3,791</td>
<td>21,086,834</td>
<td></td>
</tr>
<tr>
<td>Decremental memory factor</td>
<td>DMR</td>
<td>1,859</td>
<td>45.9</td>
<td>21.8</td>
<td>4.8</td>
<td>73.6</td>
<td>15,318,178</td>
<td>3,791</td>
<td>21,086,834</td>
<td></td>
</tr>
<tr>
<td>Aversive difference startle</td>
<td>aSTRTL</td>
<td>1,141</td>
<td>46.5</td>
<td>21.5</td>
<td>4.8</td>
<td>73.6</td>
<td>15,318,178</td>
<td>3,791</td>
<td>21,086,834</td>
<td></td>
</tr>
<tr>
<td>Pleasant difference startle</td>
<td>pSTRTL</td>
<td>1,108</td>
<td>46.7</td>
<td>21.5</td>
<td>4.8</td>
<td>73.6</td>
<td>15,318,178</td>
<td>3,791</td>
<td>21,086,834</td>
<td></td>
</tr>
<tr>
<td>Skin conductance response amplitude at CZ</td>
<td>aSCR</td>
<td>1,108</td>
<td>46.7</td>
<td>21.5</td>
<td>4.8</td>
<td>73.6</td>
<td>15,318,178</td>
<td>3,791</td>
<td>21,086,834</td>
<td></td>
</tr>
<tr>
<td>Skin conductance response amplitude and total power at CZ</td>
<td>aSCR</td>
<td>1,108</td>
<td>46.7</td>
<td>21.5</td>
<td>4.8</td>
<td>73.6</td>
<td>15,318,178</td>
<td>3,791</td>
<td>21,086,834</td>
<td></td>
</tr>
<tr>
<td>Alpha EEG power</td>
<td>αPowerO1O2</td>
<td>1,056</td>
<td>46.1</td>
<td>20.6</td>
<td>4.5</td>
<td>74.9</td>
<td>14,416,605</td>
<td>3,966</td>
<td>21,032,956</td>
<td></td>
</tr>
<tr>
<td>Alpha EEG frequency</td>
<td>αFreqO1O2</td>
<td>1,056</td>
<td>46.1</td>
<td>20.6</td>
<td>4.5</td>
<td>74.9</td>
<td>14,416,605</td>
<td>3,966</td>
<td>21,032,956</td>
<td></td>
</tr>
</tbody>
</table>

*These Ns are the same as reported in the other empirical papers comprising this special issue, and are characterized in detail in the accompanying methods article (Iacono et al., 2014). Please also see that publication for the breakdown of family structure.

S.I. Vrieze et al.
Box 1: Steps in Whole Genome Sequencing

Overview The goal of sequencing is to identify all the polymorphic variation in an individual genome. The genome comprises three billion base pairs, the vast majority of which are the same for everybody. Sequencing attempts to “read” the 6 billion letters (A,C,T,G) in a person’s genetic code to identify base pairs that show polymorphism when one person is compared to another. It’s not possible to read the entire sequence in one sweep through the genome; to make the task manageable, the DNA is sheared into small fragments, each of which is read separately. The many fragments then need to be linked to each other to reconstruct the genetic code for that individual, a process that is guided by a reference genome, which can be thought of as a single complete genome. Because genotyping errors are made reading the code and in reconstructing a person’s genome from the fragments, this process is repeated with the number of repetitions referred to as sequencing depth. With enough repetitions, it is possible to distinguish errors from true genomic variation. The Illumina sequencing protocol followed in the laboratory for this project proceeded in several steps. These steps are detailed in greater precision in the Supplementary Materials.

Library preparation, barcoding, and multiplexing First, each participant’s DNA is sheared into small fragments, which are pooled together to form a DNA “library” for each individual. Each fragment is joined (ligated) with a unique DNA barcode to link it to the correct participant. These libraries are then multiplexed—they are pooled together, divided and spread out over several flowcells, which are physical lanes in which the DNA fragments move through the sequencing machine to be sequenced. Once the library is multiplexed and put through the flowcell, the sequencer “reads” the DNA fragments (and barcodes), ultimately producing files containing the reads and participant IDs in standard Sanger FASTQ format (see “Read Mapping” below).

Contamination detection DNA contamination occurs when the participant’s tissue sample or DNA sample is accidentally mixed with DNA from another person or a different organism. In our experience DNA contamination is common, and can seriously affect the results of sequencing or genotyping experiments. We used verifyBamID (Jun et al., 2012) to detect contamination before read mapping or other computationally expensive steps, so that contamination problems could be detected immediately and communicated to the sequencing lab for rectification.

Read mapping The FASTQ file format (Cock, Fields, Goto, Heuer, & Rice, 2010) contains each read (essentially just strings of As, Cs, Ts, and Gs) combined with information about the quality of each base. (It is well-known, for example, that bases at the beginning of a read are more reliable than the end of a read.) At this point all one knows is that a particular read came from a particular participant, thanks to the barcode, but it is unknown where in the genome the read was taken. Read mapping, or read alignment, is a process of figuring out where a read came from in a participant’s genome.

The mapping process is complex but basically it takes each read and efficiently scours a reference genome to find a location that matches the read (Li & Durbin, 2010). For the reference genome we used hs37d5, which can be thought of simply as a single person’s entire genome laid out in order by chromosome and position. This particular reference genome also contains “decoy sequences”, which include a variety of non-human or known problematic sequences commonly observed in sequencing experiments. These decoys draw problematic reads to them, avoiding mismatching problem reads to erroneous locations in the genome.

The mapping process must be tolerant of some discrepancies between the reads from our participants’ DNA samples and the reference genome, because we expect our participants’ genomes to differ from the reference in millions of places. If mapping is too tolerant, however, reads will be unable to be uniquely mapped to positions in the reference. (A difference between the participants and the reference could be an error in either, but it also could be naturally occurring genetic variation.) Mapped reads are stored in BAM files, which among other things contain a genomic position, the read at that position, and a score providing information about the mapping quality and read quality.

Genotype calling With BAMs in hand we can proceed to genotype calling, the procedure used to decide, for each individual, what genotype is present at a particular location in the genome. The most common approach for genotype calling is termed “multi-sample” calling. The benefit of multi-sample calling is that to determine if a particular genomic position shows variation in a sample (is polymorphic), it uses all read information for that site, across all participants, where each site in each participant may have been read multiple times. So, for 10x sequencing we expect, for any given participant at any given genomic position, that they will have 10 reads covering that position. If there are 1000 participants, then looking across participants we expect 10,000 reads at any given site, providing high power to detect genetic variation at that site in the genome.

Once all the variant sites across all participants have been discovered, we proceed to estimate whether any given participant is homozygous for the reference allele (i.e., the base that exists in the reference genome), heterozygous, or homozygous for a non-reference allele (also referred to as homozygous alternate), with the non-reference allele simply being any allele not present at that position in the reference genome.
Variant filtering. A significant minority of variant sites discovered in genotype calling are false-positives. There are biases and errors in the sequenced reads themselves, in the mapping process, and these errors affect variant calling. At the variant filtering stage one evaluates a wide variety of variant properties, such as mapping quality, read depth at that site, or allele balance. One approach would be to simply filter out variants that have, for example, low quality, low (or implausibly high) depth, and/or strand bias (e.g., the alternate allele is always found on one DNA strand and not the other). This approach, while straightforward, is far from satisfactory. Therefore, we used a support vector machine to simultaneously consider and weight all aspects of variant quality in deciding whether a variant is good or bad (Jun, Wing, Abecasis, & Kang, 2014).

LD refinement. In some cases, these per-individual genotype calls will be made with little read information because, just by chance, there will be some sites in the genome that, for some individual, have no reads or a very small number of reads, while other sites have many more reads. To overcome this limitation we “borrow” information from neighboring variant sites taking advantage of the linkage disequilibrium structure of the genome, similar to what is done in genome imputation (Browning & Browning, 2009; Howie, Fuchsberger, Stephens, Marchini, & Abecasis, 2012; Li, Willer, Ding, Scheet, & Abecasis, 2010). As a result, genotype calls based on even low depth sequencing are highly accurate for common variants, as evidenced in the 1000 Genomes project, which had ~4x depth genome-wide (1000 Genomes Project Consortium, 2012).

Genotype Imputation

As noted, not everyone in the sequenced sample of 1,706 individuals had psychophysiological data. The sequenced individuals who had psychophysiological data for any given endophenotype were a subset of the full 4,905 individuals with psychophysiology data included in the other articles of this special issue (see Figure 1 in Iacono et al., 2014). In addition to conducting association analyses in the sequenced individuals, we also attempted to utilize all available psychophysiological data from as many participants as possible. To do this, we imputed the 27 million sequenced variants into the full array genotyped sample. In imputation, one uses the more complete sequence information to fill in the many millions of variants that were not included on a particular genotype array. Imputation is well known to increase power for association and improve resolution of fine-mapping efforts to pinpoint likely causal variants (Howie, Fuchsberger, Stephens, Marchini, & Abecasis, 2012; Li, Willer, Ding, Scheet, & Abecasis, 2010).

The imputation reference haplotype panel (e.g., 1000 Genomes or, in this case, our sequences) is a critical component of imputation. This is especially true for imputation of less common variants, which is highly sensitive to the degree of ancestry matching between the genotyped sample (to be imputed in) and the reference haplotype panel (e.g., 1000 Genomes), as well as the number of individuals in the reference haplotype panel. The number of individuals in the panel is important because imputation accuracy is in part a function of how many copies of a variant exist in the haplotype panel. If only one copy exists (i.e., a singleton), that variant will likely be difficult to impute accurately. One simple way to increase the number of copies of a variant is to increase the number of individuals in the haplotype panel. Since the number of individuals of European ancestry sequenced in the MTFS was over three times larger than the number of individuals of European ancestry in 1000 Genomes, we expected the use of our MTFS haplotype reference panel to provide significantly greater imputation accuracy over 1000 Genomes.

Through imputation, we were able to take advantage of the moderate-depth sequences we generated, and the wealth of genetic information contained in them: over 27 million autosomal variants, many of which are rare. The first step was to phase the array genotypes for the full sample of 7,278 genotyped individuals in the MCTFR (excluding ungenotyped MZ co-twins). We used the full
MCTFR sample in order to improve phasing accuracy with SHAPEIT (Delaneau, Zagury, & Marchini, 2013) by using as much family information as possible.

For all single variant association analyses, we used the full set of 27 million imputed SNPs. For gene-based burden tests, we restricted the set of imputed variants to those imputed with sufficient accuracy, as judged by an imputation minimac RSQ > .3 (Li et al., 2010).

Evaluation of Imputation Accuracy

We evaluated imputation accuracy in several ways. First, we compared minimac RSQ values between imputation results with MTFS sequences and 1000 Genomes reference sequences. Minimac RSQ is an estimate of the true squared correlation between the imputed allele dosage and the true allele dosage, based on the hidden Markov model in minimac (Li et al., 2010). RSQ > .3 is a conventional cutoff to conclude a variant has been imputed with sufficient accuracy. For instance, variants with RSQ ≤ .3 are commonly excluded in association studies.

In order to provide a more direct comparison of imputation accuracy between the MTFS and 1000 Genomes reference sequences, we compared imputation accuracy using dosage R^2, the squared Pearson correlation between the minor allele genotype count from rare variants on the exome array and the imputed dosage for the intersection of sites in the MTFS sequences, 1000 Genomes, and the exome chip. In this comparison, we restricted phasing and imputation to Chromosome 20 from the 660W-Quad only. We purposefully excluded all variants from the exome array during phasing and imputation, imputed all the exome chip variants that were discovered through sequencing, and then evaluated the accuracy of that imputation. We restricted this subsample to individuals with European ancestry, just as we have throughout this special issue in all association analyses. Finally, we included only one member of each MZ twin pair, because the other member is entirely redundant for purely genetic analyses such as imputation (recall the genotypes are copied from the genotyped twin to his/her co-twin). This resulted in a subsample of 6,610 individuals of European ancestry for 1,369 SNPs, for the sole purpose of evaluating imputation accuracy for rare variants.

Follow-Up Genotyping

Several imputed variants in an intron of the ALK gene were significantly associated with EEG alpha frequency. We genotyped these variants in 48 DNA samples from individuals in 12 families, including 13 putative carriers of the rare allele in at least one site, 10 of whom had endophenotype data. For each sample, 1 ul DNA at 20 ng/ul was genotyped in a 25 ul reaction along with 12.5 ul TaqMan Universal PCR Master Mix (Life Technologies, Grand Island, NY), 0.625 ul of 40X primer/probe mix, and 10.875 ul water. We used a manufacturer-recommended PCR program: an initial step of 95°C for 10 min, then a 15-s step at 92°C, and a 1.5-min step at 60°C. Steps 2 and 3 were cycled through 50 times. Each of the four polymorphisms was amplified separately, and the allelic variants for each polymorphism were labeled with VIC and FAM 5’-fluorescent labels. We used an Applied Biosystems PRISM sequence detection 7500 Real Time PCR System to discriminate between alleles, which uses an optical reading of fluorescent markers following a 1-min period of activation at 60°C to assess the amount of probe sequence product.

Results

Association Analysis in Individuals with Endophenotype Data

We conducted single variant tests on inverse normalized phenotypes in EPACTS using EMMAX (Kang et al., 2010), which produces a genetic kinship matrix that is used to correct for population stratification and familial structure. Depending on the endophenotype, there were approximately 14 million variants with a minor allele count greater than three that were tested for association with an endophenotype, resulting in an approximate Bonferroni correction of 4×10^{-6} to obtain genome-wide significance. At this threshold, no single variant was significant. Q-Q plots and Manhattan plots for each endophenotype are available in the supporting information.

In order to evaluate whether the aggregate effect of rare nonsynonymous variants in genes produced associations with the endophenotypes, we conducted burden tests using a variable threshold count-based method (Price et al., 2010) and the sequence kernel association test (Wu et al., 2011). Variants were annotated using EPACTS (Kang, 2014) against GENCODE v11. All missense and nonsense nonsynonymous SNPs, including essential splice SNPs, were included in all gene-based tests. Depending on the phenotype, we tested from 15,816 (P3 genetic factor) to 16,394 (antisaccade) genes that had at least two nonsynonymous variants and a burden allele count of at least three, considering only variants with MAF < .05, resulting in Bonferroni corrections of $\sim 3.2 \times 10^{-6}$. No gene was associated with any endophenotype at these levels of significance.

Genotype Imputation with Sequences into Full Sample

We then imputed into these 7,278 phased haplotypes with the MCTFR sequences and again separately with the 1000 Genomes as the haplotype reference panels, using minimac with 200 states and 5 rounds (Howie et al., 2012). Imputation accuracy statistics for both reference panels are provided in Table 2. While it may appear that the MTFS sequences perform better than 1000 Genomes because higher minimac RSQ values were obtained, a direct comparison using the summaries in Table 2 is not entirely appropriate. The 1,325 sequenced individuals are included in these estimates and bias them upward—that is, for 1,325 individuals we used their own sequences to conduct imputation into their array genotypes.

Evaluation of Imputation Accuracy with Dosage R^2

For 333 common variants (MAF > 5%), imputation accuracy was comparable between 1000 Genomes and MCTFR sequences (dosage $R^2 = .905$ and .952, respectively). For less common variants, with MAF ≤ 5%, imputation using the MCTFR sequences performed noticeably better, resulting in increases of $\sim .2$–.3 in the dosage R^2 value for SNPs with MAF < 1%. The results are displayed in Figure 3, where one notices that MCTFR outperforms 1000 Genomes for each minor allele frequency bin.

Association Results with Imputed Genotypes

We conducted single variant and burden association tests using the imputed genotypes, in the full sample of individuals with psychophysiological phenotypes reported on in the companion articles in this special issue (N ranging from 3,088 to 4,469). Q-Q plots and Manhattan plots are displayed in the supporting infor-
Table 2. Imputation Accuracy into All Available Individuals of European Ancestry

<table>
<thead>
<tr>
<th>MAF</th>
<th>Imputation with MTFS sequences</th>
<th>Imputation with 1000 Genomes Aug 2011 release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N)</td>
<td>Mean RSQ</td>
</tr>
<tr>
<td>< .001</td>
<td>11,874,879</td>
<td>.479</td>
</tr>
<tr>
<td>MAF [.001–.005)</td>
<td>5,137,513</td>
<td>.639</td>
</tr>
<tr>
<td>MAF (.005–.01)</td>
<td>1,325,092</td>
<td>.764</td>
</tr>
<tr>
<td>MAF (.01–.05)</td>
<td>2,673,865</td>
<td>.862</td>
</tr>
<tr>
<td>MAF ≥ .05</td>
<td>5,872,931</td>
<td>.965</td>
</tr>
</tbody>
</table>

Note. SNPs were selected using the 1000 Genomes imputed minor allele frequency. RSQ = minimac-estimated quality metric based on the imputation hidden Markov model; RSQ > .3 = percentage of variants with minimac RSQ greater than .3, a conventional threshold used to discard poorly imputed variants.

We conducted variable threshold gene-based burden tests for all nonsynonymous variants imputed with MTFS sequences with minimac RSQ > .3, a conventional cutoff. After considering only genes that had at least two called SNPs with a burden allele count of three or greater, the number of genes tested ranged from 16,070 to 16,263, with corresponding Bonferroni cutoffs of ∼2.8e-6. Four genes were significantly associated with an endophenotype and are displayed in Table 4. The variable threshold collapsing and multivariate count (VTMC) test identified two genes, annexin A3 (ANXA3) associated with antisaccade, and solute carrier family 27 (fatty acid transporter) member 6 (SLC27A6) associated with aversive difference startle modulation. The SKAT test also identified two genes, GBX2 and KIF18A, as significantly associated with EEG beta power and pleasant difference startle modulation, respectively.

Discussion

We reported results for association tests between psychophysiological endophenotypes and SNPs discovered through whole genome sequencing. Association results identified no genome-wide significant variants, after accounting for the many millions of tests conducted here. Gene-based burden tests identified four potential signals, in ANXA3, GBX2, KIF18A, and SLC27A6 genes, associated with antisaccade error, EEG beta power, pleasant difference startle modulation, and aversive difference startle modulation, respectively. ANXA3 is part of a signal transduction pathway and the regulation of cell growth, and has not been associated previously with endophenotypes or phenotypes relevant to antisaccade performance. GBX2, gastrulation brain homeobox 2, is involved in brain development in the mid/hindbrain region, and controls the proper expression of other genes during embryogenesis. The GBX2 association was marginally significant, based on only two relatively poorly imputed singletons, and should be interpreted with additional skepticism until replication. SLC27A6 is a solute carrier not expressed in the brain and KIF18A is involved in chromosome congression during mitosis and meiosis, limiting interpretative speculation about their roles in modulated startle.

Whole genome sequences provide an immense amount of information about genomic variation that is only beginning to be tapped in the present article, and we consider the present results preliminary. Nevertheless, the results suggest that hunting for genes associated with complex phenotypes, including complex endophenotypes, will require alternative approaches to those considered here. The present article is the largest and most comprehensive test of genetic association for psychophysiological endophenotypes undertaken to date. The study sample is richly phenotyped and genotyped, but clearly naïve single variant analyses and gene-based tests with nonsynonymous annotation will not be sufficient to
discover strong genetic signals in a sample of this size. The results should bring pause to arguments about the utility of endophenotypes, or intermediate phenotypes, to dramatically increase power to detect individual variants or genes associated with them, or with their relevant clinical phenotypes. Of course, it is possible and perhaps likely that some endophenotypes will serve this purpose in samples of this size, but those are not among our 17.

The endophenotypes described in this special section were initially conceived and selected two decades ago, around the time the Human Genome Project began. Nevertheless, many of our endophenotypes were as much measures of basic brain function then as they are now. We therefore contend that the present findings are highly relevant to current endophenotypic research including exciting new efforts to identify neural systems involved in behavior and psychiatric disorder such as the RDoC (Insel et al., 2010), insofar as investigators attempt to understand the genetic architecture of those systems.

In aggregate, there were fewer significant and biologically plausible associations than might be expected, if one assumes that endophenotypes will provide greater power to identify genes relevant for psychiatric disease or behavioral traits. Given the results reported in this special issue, this assumption may be unrealistic for these psychophysiological endophenotypes, although one might contend that they remain relatively complex and genetically distal measures of basic brain function and task-related brain activity. At the very least, one may conclude the endophenotypic increase in power to detect genes is not great enough to be observed in a sample of the size reported here (N < 4,500).

There was some reason to expect that these endophenotypes would provide sufficient power to detect at least a handful of variants in our sample of between 3,088 and 4,469 individuals. More direct measures of biological function, for example, have shown greater power in detecting associated loci in prior work. As we noted in the accompanying method paper (Iacono et al., 2014), genetic association studies of bone mineral density, cholesterol levels, and QT interval all identified genetic associations in samples of fewer than 5,000 individuals (e.g., see Figure 2b in Visscher, Brown, McCarthy, & Yang, 2012). In contrast, investigations of more distal phenotypes, such as height and body mass index, required closer to 20,000 individuals before any significant and replicable loci were discovered.

Limitations and future directions. The present article represents a first and preliminary step. We have conducted here a variety of obvious initial analyses but much remains to be done with the data available here, by us and by external investigators interested in working with these data. The present sequencing study is ongoing. We are expanding our sample: increasing the number of sequencing reads for a large minority of individuals, refining genotype calls, and extending variant calling to indels, structural variants, and the sex chromosomes. Structural variants and indels have been implicated in autism (Glessner et al., 2009) and schizophrenia (Rees et al., 2014), and represent an additional source of genetic variation of potential value. Plans are also underway to evaluate naturally occurring knockouts (e.g., stop-gains) in great detail in individuals who are homozygous, heterozygous, or compound heterozygous. Indeed, even in the present study with 1,325 sequences there were 54 stop-gain variants (almost entirely rare) in 195 autosomal candidate genes identified by the NIDA Center for Genetic Studies discussed elsewhere in this special issue (https://zork5.wustl.edu/nida/neurosnp.html). Finally, we will leverage the whole genome sequences to conduct enrichment tests of regulatory regions using publicly available epigenomic data. Each of these endeavors is a natural extension of the results reported here.

One major, but necessary, obstacle encountered in the current article is the strong multiple test correction. It is tempting to bypass this restriction by conducting targeted analyses of candidate genes, correcting only for the number of tests conducted on those genes. Indeed, targeted sequencing has produced important results in prior work (Bevilacqua et al., 2010), but it remains to be seen whether new sequencing technologies will overcome the known limitations of the candidate gene approach (Hirschhorn, Lohmueller, Byrne, & Hirschhorn, 2002; Sullivan, 2007). Without strong a priori evidence for a candidate gene–phenotype association, and clear genomic

Table 3. Single Variant Results for Imputed Variants with \(p < 5 \times 10^{-8} \) and Imputation RSQ > .3

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Chr</th>
<th>Base Pair</th>
<th>Ref</th>
<th>Alt</th>
<th>N</th>
<th>Dosage AC</th>
<th>RSQ</th>
<th>Genotype counts (REF/HE/TALT)*</th>
<th>MAF</th>
<th>Beta</th>
<th>Bonferroni threshold</th>
<th>(p) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>aSCR</td>
<td>14</td>
<td>78792316</td>
<td>C</td>
<td>T</td>
<td>4,102</td>
<td>1,552.36</td>
<td>.984</td>
<td>2713/1222/167</td>
<td>.1892</td>
<td>-0.17</td>
<td>2.3e-9</td>
<td>3.7e-8</td>
</tr>
<tr>
<td>SAC</td>
<td>2</td>
<td>23296002</td>
<td>C</td>
<td>T</td>
<td>4,469</td>
<td>2,751.04</td>
<td>.989</td>
<td>2138/1910/421</td>
<td>.3078</td>
<td>0.14</td>
<td>2.3e-9</td>
<td>3.8e-8</td>
</tr>
<tr>
<td>STRTL</td>
<td>2</td>
<td>81204732</td>
<td>A</td>
<td>C</td>
<td>3,323</td>
<td>53.25</td>
<td>.645</td>
<td>3278/45/0</td>
<td>.0080</td>
<td>-1.06</td>
<td>2.5e-9</td>
<td>3.0e-9</td>
</tr>
<tr>
<td>aSTRTL</td>
<td>3</td>
<td>117162298</td>
<td>C</td>
<td>T</td>
<td>3,321</td>
<td>11.9</td>
<td>.747</td>
<td>3310/11/0</td>
<td>.0018</td>
<td>-1.86</td>
<td>2.5e-9</td>
<td>3.2e-8</td>
</tr>
<tr>
<td>SAC</td>
<td>3</td>
<td>232296082</td>
<td>C</td>
<td>T</td>
<td>4,469</td>
<td>2,751.04</td>
<td>.989</td>
<td>2138/1910/421</td>
<td>.3078</td>
<td>0.14</td>
<td>2.3e-9</td>
<td>3.8e-8</td>
</tr>
<tr>
<td>STRTL</td>
<td>3</td>
<td>122371714</td>
<td>G</td>
<td>A</td>
<td>3,323</td>
<td>11.9</td>
<td>.747</td>
<td>3310/11/0</td>
<td>.0018</td>
<td>-1.86</td>
<td>2.5e-9</td>
<td>3.2e-8</td>
</tr>
</tbody>
</table>

Note. \(p \) values reported for \(f \)reqO1O2 are computed taking into account follow-up genotyping described in the Method. Ref = reference allele reported on GRCh37 reference genome; Alt = alternate allele, or nonreference allele; N = samples size with genotypes and phenotypes; Dosage AC = the number of expected minor alleles determined from imputation, which helps account for statistical uncertainty in the imputation procedure; RSQ = minicim position, a measure of imputation accuracy. A conventional RSQ threshold to exclude clearly bad variants is RSC < .3. MAF = minor allele frequency. Beta = standardized effect size.

*Genotype counts are organized as homozygote RERference/HEterozygote/homozygote ALternate genotypes.
<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Test</th>
<th>Gene</th>
<th>Gene-based p value</th>
<th>N</th>
<th>CHR</th>
<th>Position</th>
<th>REF</th>
<th>ALT</th>
<th>Dosage AC</th>
<th>RSQ</th>
<th>REF/HET/ALT</th>
<th>MAF</th>
<th>Beta (SE)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>βPower SKAT</td>
<td>GBX2</td>
<td>2.9e-6</td>
<td>3948</td>
<td>2</td>
<td>397074980</td>
<td>G</td>
<td>T</td>
<td>1.89</td>
<td>0.461</td>
<td>3947/1/0</td>
<td>.0002</td>
<td>-3.23 (.86)</td>
<td>1.8e-4</td>
<td></td>
</tr>
<tr>
<td>pSTRTL SKAT</td>
<td>KIF18A</td>
<td>1.1e-6</td>
<td>3322</td>
<td>11</td>
<td>328072950</td>
<td>G</td>
<td>A</td>
<td>2.35</td>
<td>0.533</td>
<td>3320/2/0</td>
<td>.0004</td>
<td>-0.06 (.73)</td>
<td>.94</td>
<td></td>
</tr>
<tr>
<td>SAC VTCMC ANXA3</td>
<td>ANXA3</td>
<td>2.3e-6</td>
<td>4469</td>
<td>4</td>
<td>39500235</td>
<td>G</td>
<td>A</td>
<td>2.92</td>
<td>.670*</td>
<td>4465/0/0</td>
<td>.0002</td>
<td>-0.041 (.82)</td>
<td>.96</td>
<td></td>
</tr>
<tr>
<td>aSTRTL VTCMC SLC27A6</td>
<td>SLC27A6</td>
<td>2.5e-6</td>
<td>3321</td>
<td>5</td>
<td>128301391</td>
<td>G</td>
<td>A</td>
<td>2.02</td>
<td>.621</td>
<td>3320/1/0</td>
<td>.0003</td>
<td>2.19 (.97)</td>
<td>.02</td>
<td></td>
</tr>
</tbody>
</table>

Note: Variants in bold are those included in the variable threshold burden test. The minor allele threshold determined from the VTCMC method was 4 for SLC27A6 and 111 for ANXA3. Variants that fell below this threshold were included in the VTCMC test, and are in bold. The Bonferroni correction for gene-based p values was 2.9e-6. SKAT = sequence kernel association test; VTCMC = variable threshold collapsing and multivariate count test. All other abbreviations are defined in Table 3.

*Variants were directly genotyped on either the 660W-Quad or HumanExome array.
function of candidate variants within that gene, we caution that targeted approaches with relaxed statistical or experimental control should be interpreted with circumspection until consistently replicated. If statistical stringency or gene candidacy criteria were relaxed, we would expect a bevy of false-positive association results, and the use of valuable resources to falsify those erroneous findings. The problem is compounded in whole genome sequencing by the large number of protein-coding genes in the human genome and the many different ways to annotate variants within and around these genes. Despite these concerns, we believe that analysis of whole genome sequence data is not complete until a variety of sensible analyses are attempted and subjected to replication, including detailed study of strong candidate genes as we have argued elsewhere (Vrieze, Iacono, & McGue, 2012).

Conclusion
We tested 27 million SNPs for association with 17 endophenotypes in a moderately sized study sample. No single variant was significant. Gene-based tests identified four associated genes, and replication is required. The findings suggest that these endophenotypes may not provide sufficient power to discover individual variants or genes relevant to clinical phenomena, at least in a sample of this size using the brute force analytical methods presented here. However, additional analyses are underway and remain to be done, leveraging additional genomic variation, structure, function, and experimental design to test the utility of this sample to detect genetic variants relevant for these endophenotypes.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figure S1: Distribution of GEDI (N = 1251) and BRIDGES (N = 303) participants, including MZ co-twins who were not directly sequenced, on the drinking index used to select GEDI samples for sequencing.

Figures S2–S35: Q-Q plots and Manhattan plots are provided for single variant tests for each of the 17 phenotypes.

Table S1: Quality Control Metrics across 1339 Samples with Contamination < 3%

Table S2: Autosomal Variants that Passed and Failed SVM Filtering.

Table S3: Features Used by SVM to Predict Whether a Variant Sites True or False Positive.