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Supplemental Materials: Detailed descriptions of the FHCRC and UMICH 

prostate cancer natural history models and estimation methods 

1. FHCRC model 

The FHCRC model (Gulati et al., 2010, 2013) is designed to simulate a population of men with prostate-

specific antigen (PSA) levels and prostate cancer development, progression, and detection patterns that 

are representative of the general US male population. The model explicitly represents individual PSA 

growth trajectories, with faster PSA growth associated with shorter times to cancer progression and 

detection. Details of the PSA growth and the natural/clinical history model components are described 

below. 

1.1 PSA growth 

1.1.1 Description 

Log PSA for the i th individual at age t  (offset from age 35) is: 

0 1 2log[ ( )] ( ) ( ) ( )i i i i o o iy t t t t I t t tβ β β ε= + + − > +  

where ot  represents age at onset of a preclinical biopsy-detectable tumor (described below), ( )I ⋅  is the 

usual indicator function, and the parameters are drawn from normal (N ) and truncated normal (N +
) 

distributions: 
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and the mean and variance meta-parameters have normal and inverse Gamma prior distributions: 
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1.1.2 Estimation 

Components of the log-linear PSA growth changepoint model were estimated using fairly non-

informative priors and separate linear random effects models for healthy men, for men with Gleason 

score 2–7 cancer, and for men with Gleason score 8–10 cancer using the most recent 2–4 PSA results 

before diagnosis from the placebo arm of the Prostate Cancer Prevention Trial. Components were fit 

using WinBUGS (Medical Research Council Biostatistics Unit, Cambridge, UK, http://www.mrc-

bsu.cam.ac.uk/bugs). Following diagnostic evaluation of results using the R package coda, parameter 

estimates are based on means of 5,000 posterior observations (sampling every 10th) for healthy men 

and 30,000 posterior observations (sampling every 50th) for men diagnosed with cancer after discarding 

10,000 burn-in iterations. 

 

We previously combined estimates from an earlier specification not conditioned on Gleason grade with 

an earlier version of the natural/clinical history model. Based on comparisons between observed and 

predicted test-positive and cancer detection rates in a simulation of the Prostate, Lung, Colorectal, and 
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Ovarian cancer screening trial, we modified estimates of the mean log PSA intercept at age 35 and slope 

before onset (Gulati et al., 2010). However, combining estimates of Gleason grade-dependent post-

onset PSA growth with the current version of the natural/clinical history model (described below), only 

the estimate of the mean log PSA intercept at age 35 was modified from –1.2720 to –1.6094. Final 

estimates are shown in Table 1.1. 

Table 1.1. Results of PSA growth model estimation 

Parameter Estimate 

Mean log PSA intercept at age 35 ( 0µ ) −1.6094 

Mean log PSA slope before onset ( 1µ ) 0.0446 

Mean log PSA slope after onset of Gleason score 2–7 cancer (
2,2 7µ − ) 0.0397 

Mean log PSA slope after onset of Gleason score 8–10 cancer (
2,8 10µ − ) 0.1678 

SD of log PSA intercept at age 35 (
0σ ) 0.2384 

SD of log PSA slope before onset (
1σ ) 0.0430 

SD of log PSA slope after onset of Gleason score 2–7 cancer ( 2,2 7σ − ) 0.0913 

SD of log PSA slope after onset of Gleason score 8–10 cancer ( 2,8 10σ − ) 0.3968 

SD of log PSA noise (τ ) 0.2737 

1.2 Natural/clinical history 
1.2.1 Description 

The hazard of onset of a preclinical biopsy-detectable tumor increases with age according to a Weibull 

distribution: 
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The probability of Gleason score 8–10 cancer at onset increases quadratically with age at onset: 
2
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Hazards of metastasis (i.e., progression from stage M0 to M1) and of non-screen diagnosis (i.e., 

progression from a preclinical to a clinical or symptomatic state) increase with individual PSA: 
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where ( )iy t  represents noise-free PSA at time t  for the i th individual. This formulation of the 

natural/clinical history model reflects several changes since the version described in Gulati et al. (2010). 

Specifically, the hazard of onset now follows a 2-parameter instead of a 1-parameter Weibull 

distribution, the probability of high Gleason score increases quadratically instead of proportionally with 

age at onset, and both (a) post-onset PSA growth and (b) stage-specific hazards of clinical diagnosis 

depend on Gleason score. 

1.2.2 Estimation 
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The model simulates a population of men aged 50–84 in each year in the period 1975–2000 to match 

counts of men in the core 9 catchment areas of the Surveillance, Epidemiology, and End Results (SEER) 

program. Simulated men are assigned ages at other-cause death from US life tables (National Center for 

Health Statistics, various years), PSA growth rates from the PSA growth model, and ages at onset, at 

transition from localized to metastatic stage, and at clinical diagnosis from probability integral 

transforms of the natural/clinical history hazard functions. Men are also assigned PSA screening 

schedules using screening dissemination patterns retrospectively reconstructed by Mariotto et al. (2007) 

based on National Health Interview Survey responses and SEER-Medicare claims. At each screen, noisy 

PSA is observed, men with PSA > 4 ng/mL receive biopsy based on age- and PSA-dependent compliance 

frequencies from the PLCO trial (Pinsky et al., 2005), and a biopsy can detect a latent cancer with 

sensitivity that increases through the 1990s as biopsy schemes evolved to include an increasing number 

of cores (see Gulati et al., 2010, and cited references). 

 

Total prostate cancer incidence due to screening and clinical presentation in the simulated population is 

compared with observed data from SEER by age, year, stage, and grade in a Poisson likelihood: 
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where 
0 1 2 ,2 7 ,8 10 ,2 7 ,8 10( , , , , , , , , , )L L M Mφ ψ θ θ θ γ χ χ χ χ− − − −Γ =  is the vector of natural/clinical history 

parameters, ( )f Γ  is simulated incidence counts, k  is observed incidence counts, and the product is 

across strata S  defined by combinations of single-year ages 50, ,84…  (inclusive); years 

1975, ,2000…  (inclusive); SEER stages local-regional and distant; and SEER grades I-II and III-IV, which 

we converted to Gleason scores 2–7 and 8–10. Missing stage and/or grade variables were imputed 

assuming they were missing at random. Results are shown in Table 1.2. 

Table 1.2. Results of natural/clinical history model estimation 

Parameter Estimate 

Hazard of onset—Weibull scale parameter (φ ) 0.0012 

Hazard of onset—Weibull shape parameter (ψ ) 1.6499 

Probability of Gleason score 8–10 cancer at onset—intercept ( 0θ ) 0.0501 

Probability of Gleason score 8–10 cancer at onset—linear term ( 1θ ) 0.0000 

Probability of Gleason score 8–10 cancer at onset—quadratic term ( 2θ ) 0.0002 

Hazard of metastasis—proportionality constant for PSA (γ ) 0.00029 

Hazard of clinical diagnosis (Localized, Gleason 2–7)—proportionality 

constant for PSA (
,2 7Lχ − ) 

0.00288 

Hazard of clinical diagnosis (Localized, Gleason 8–10)—proportionality 

constant for PSA (
,8 10Lχ − ) 

0.00031 

Hazard of clinical diagnosis (Metastatic, Gleason 2–7)—proportionality 

constant for PSA (
,2 7Mχ − ) 

0.34852 

Hazard of clinical diagnosis (Metastatic, Gleason 8–10)—proportionality 

constant for PSA (
,8 10Mχ − ) 

0.03768 

Figure 1.1 shows observed (black line) and model-predicted (gray line) incidence rates by age 

and stage for the calibration (1975–2000) and validation (2001–2010) years. 
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Figure  1.1. Observed and model-predicted incidence rates by age and stage. 

1.3 Treatment and survival 

1.3.1 Initial treatment 

Men in the simulated population who are diagnosed can have either localized or metastatic cancer at 

diagnosis. Men who have metastatic cancer at diagnosis are assumed to receive palliative care that does 

not affect cancer-specific survival (described below). Men who have localized cancer at diagnosis are 

randomly assigned initial treatment based on frequencies of treatments (surgery, radiation, or 

conservative management) [from SEER] with or without adjuvant hormones [from the Cancer of the 

Prostate Strategic Urologic Research Endeavor (CaPSURE)] by age, year, stage, and grade at diagnosis. 

The treatment frequencies are frozen in 2010, the most recent year SEER data are available, so that men 

diagnosed with localized cancer after 2010 are assigned initial treatments using the 2010 frequencies. 

1.3.2 Prostate cancer survival and treatment benefit after clinical presentation 

Men who present clinically and who are assigned conservative management or hormone monotherapy 

have cancer-specific survival similar to that for untreated patients observed in SEER in 1983–1986, just 

before the first wave of PSA screening in the US. Men who are assigned surgery or radiation with 

adjuvant hormones receive the same survival improved by a hazard ratio 0.62λ =  (Bill-Axelson et al., 

2011). Men who are assigned radiation without hormones receive survival improved by a hazard ratio 

0.9λ =  before 1990, by a hazard ratio on the straight line between 0.9λ =   and 0.7λ =  in the 

period 1990–1995, and by a hazard ratio 0.7λ =  after 1995 (Etzioni et al., 2012). Formally, cancer-

specific survival after clinical presentation is: 

( | , ) c

c c cT S t a z
λ

∼  

where ca  is patient age, cz  is the stage and grade of the tumor at age ca , and cλ  is the hazard ratio 

representing benefit of initial treatment. For example, a 66-year-old man who is diagnosed with 
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localized cancer with Gleason score 2–7 and who receives surgery has cause-specific survival cT  

randomly drawn from the adjusted SEER survival curve 
0.62( | 66, localized,Gleason 2 7)S t − . 

1.3.3 Overdiagnosis and benefit of early detection 

There are two types of screen detections: (1) early detections, men who would have presented clinically 

in the absence of screening, and (2) overdiagnoses, men who would not have presented clinically in the 

absence of screening. By definition, an overdiagnosed man cannot die of prostate cancer, so his cancer-

specific survival is 1. Also by definition, an early detected man cannot die before his would-be point of 

clinical presentation, so a traditional “stage-shift” assumption implies his cancer-specific survival is: 

1
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where sa  is his age at screen detection ( s ca a≤ ), sz  is the stage and grade of the tumor at age sa , and 

sλ  is the hazard ratio representing benefit of initial treatment, which is generated independently from 

initial treatment at clinical presentation. This is called a “stage-shift” assumption because a man 

diagnosed early by screening has survival corresponding to his age and tumor characteristics at screen 

detection, where much of the benefit comes from detecting a would-be metastatic cancer while it is still 

localized and treatable. 

 

However, there are three potentially unsatisfying aspects of the traditional “stage-shift” assumption. 

First, survival drops to a lower level at onset of metastasis rather than representing a more continuous 

deterioration. Second, it seems more clinically realistic for the benefit of early detection to depend on 

the earliness of detection, e.g., for cancers that are detected much earlier to confer greater benefit than 

for cancers detected closer to the would-be point of clinical presentation. Third, and most importantly, 

the benefit of screening is rigid and cannot be calibrated to data (Wever et al., 2011). 

 

These three criticisms can be overcome using a parameterized generalization of the traditional stage-

shift model. In the FHCRC model, an early detected man has post-lead-time cancer-specific survival 

derived from a weighted average of survival times after stage-shifted screen detection and after clinical 

presentation, with greater weight placed on survival after stage-shifted screen detection for men with 

longer lead times (i.e., with longer c sa a= −ℓ ). Formally, an early detected man has post-lead-time 

cancer-specific survival: 

(1 )s s cT w T w T′ = − × + ×  

where the weight exp( )w α= − ×ℓ  decreases exponentially with lead time at rate α . When the lead 

time ℓ  is 0 (i.e., when s ca a= ), the weight w  is 1 and survival time is cT , i.e., there is no early detection 

so no cancer-specific survival benefit. As the lead time ℓ  increases, the weight w  shrinks, and cancer-

specific survival time approaches sT  (i.e., the full “stage-shift” applies). The rate α  controls the rate at 

which the longer lead time translates into greater benefit, and this parameter can be calibrated to an 

observed dataset. 

1.3.4 Estimation 

To estimate the exponential rate α governing the benefit of early detection, we simulated the European 

Randomized Study of Screening for Prostate Cancer (ERSPC) through 11 years of follow-up. Specifically, 

we simulated a population of men ages 55–69 years screened every 4 years up to age 74 with biopsy 

referral for PSA > 3.0 ng/mL; this is an approximation to the protocol used in most centers. A random 
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86% of men referred to biopsy received biopsy, and a random 80% of men with latent cancer who 

received biopsy were diagnosed. We also simulated an identical population under no screening. Given 

total prostate cancer deaths in the two populations after 11 years of follow-up, we used univariate grid 

search to find a value of α  that reproduced the 29% relative mortality reductions due to screening 

reported by ERSPC investigators after correction for non-compliance (Schröder et al., 2012). The same 

approach was used to find a value of α  that reproduced a hypothetical 15% relative mortality reduction 

in the same setting. Results are shown in Table 1.3. 

Table 1.3. Results of early detection model estimation 

Parameter Estimate 

Exponential rate of benefit to reproduce 29% mortality reduction ( 0.29α ) 0.550 

Exponential rate of benefit to reproduce 15% mortality reduction ( 0.15α ) 0.068 
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2. UMICH model 

The UMICH model of prostate cancer natural history is a statistical model built by analytic mathematics 

rather than computer simulation algorithms. It consists of a set of integrated submodels that fold into a 

joint model of cancer incidence, disease presentation (stage and grade) at diagnosis, disease progression 

in screen-detected persons incorporating early detection and treatment benefit, and survival and cancer 

mortality. The system of submodels is designed so they can be fit sequentially to cancer incidence and 

survival data from SEER.  

2.1 Marginal incidence model 

2.1.1. The i-model 

Suppose � = {��, ��, … } are random ages when the subject is screened (a screening schedule). We have 

used a two-stage model for the screening schedule point process �. Let 
��(�, 
) be the hazard of the 

first prostate-specific antigen (PSA) test for a man of age � in year 
. Then the probability that a man 

born in year � will not be tested by age � is  

���(�	|	�) = exp �−� 	�
�

��(�, � + �)���. 

We assume that, in men who already had their first PSA tests, secondary tests {��, � , … } form a non-

homogeneous Poisson process with intensity 
��(�, 
). Both intensities of PSA testing 
�� and 
�� are 

treated as known bivariate functions estimated by approximating the output of a random schedule 

generator developed by the National Cancer Institute (Mariotto et al., 2007). 

The survival function ��!"(�	|	�, y) representing the probability of no screen diagnosis for a subject born 

in year �, with tumor onset at age $, and delay time since onset � is derived in Tsodikov et al. (2006) as  

 ��!"(�	|	�, y) = ���(y + �	|	�) + [1 − ���(y	|	�)]���!"(�	|	�, y, y) + 

 ( 	)� [1 − *(+)],��(y + +	|	�)���!"(� − +	|	�, y + +, y)�+,  

where * is age-dependent screening sensitivity, ,�� is the probability density function (p.d.f.) 

corresponding to 
��, and  

 ���!"(�	|	�, �, y) = exp -−( 	)
./0(123�,�) 
��(� + +, � + � + +)*(+ + � − y)�+4, 

and ( 	5� = 0 for any � ≤ �. The above expressions are a result of averaging over � and the Bernoulli 

outcomes of screening tests with probability of success * within the subject, given $. Using conditional 

independence of the competing risks of cancer diagnosis by screening and clinically, given age at tumor 

onset y, we have  


8(�	|	�) = − �
�� log	<	{�=!"(� − y	|	�, y)��!"(� − y	|	�, y)}, 

where �=!" is the survival function of the sojourn time. 

The marginal incidence model (i-model) describes the risk to be diagnosed with prostate cancer at age 

�8 either clinically (CDx) or by PSA screening tests (SDx). The prostate cancer incidence for > birth cohort 
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(a cohort of men turning 50 in year >) can be written as a complex mixture model where missing data 

include the age at onset �? = $, the screening schedule, and the detection process. The p.d.f. of cancer 

diagnosis at the age �8 given birth year > can be written as 

,8(�8|>) = ( 	�@� ,A($|>),8(�8 − $|>, $)	d$, 

where ,A is the unconditional p.d.f. of age at tumor onset and ,8(�8 − $|>, $) is the p.d.f. of age at 

cancer diagnosis given birth year > and tumor onset time $. Under competing risks, ,8(�8 − $|>, $) can 

be split into two crude densities,  

,8(�8 − $|>, $) = ,=!"C (�8 − $|>, $) + ,�!"C (�8 − $|>, $), 
where  

,=!"C (�8 − $|>, $) = ,=!"(�8 − $|>, $)��!"(�8 − $|>, $) 
 and  

,�!"C (�8 − $|>, $) = ,�!"(�8 − $|>, $)�=!"(�8 − $|>, $). 
Here ,=!"(�8 − $|>, $) and �=!"(�8 − $|>, $) are the p.d.f. and survival function (s.f.) of D=!",, the 

sojourn time distribution, and ,�!"(�8 − $|>, $) and ��!"(�8 − $|>, $) are the p.d.f. and s.f. of D�!", the 

time to PSA diagnosis, respectively, computed as an average over the screening schedule point process 

and the outcomes of screening tests. Integrating out the age at tumor onset $, we have the 

unconditional p.d.f. of age at diagnosis �8  
,8(�8|>) = ,=!"C (�8|>) + ,�!"C (�8|>). 

Note that the unconditional p.d.f. ,=!"(�8|>) is a function of the age of the subject while the conditional 

p.d.f. ,=!"(�8 − $|>, $) is a function of the delay time defined as 
! = �8 − $.  

2.1.3. Estimation 

Maximum likelihood is used to fit the model. Conditional on the birth year >, the likelihood is defined as 

one for a survival model where age at diagnosis serves as the survival time and there is a cross-sectional 

observation structure in which data represent observations of the risk set (SEER male population ages 

50–84 in years 1975–2000) and cases of cancer diagnosis serve as events:  

E = ∑ 	� ∑ 	G H(�, 
){
?5I(�|>)log(
8(�|>)��) − 
8(�|>)��}. 
Here � is age; H(�, 
) is population count with age � and calendar time 
 = � + >; 
?5I = J(�, 
)/H(�, 
) is the observed incidence with J(�, 
) being the count of cancer diagnoses; and �� is 1 year. The 

likelihood is maximized by the method of conjugate gradients. Details and estimates of the model 

parameters can be found in Tsodikov et al. (2006). 

2.1.4 Prediction of the lead time 

Cancer development passes through the disease-free state and the pre-clinical state before being 

detected or censored without a diagnosis. The subject’s age at tumor onset �? represents the duration 
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of the disease-free state. The duration of latent cancer growth in the pre-clinical state is given by the 

delay time �! = � − �?, a backward recurrence time, represented by the period between cancer onset 

at age �? and its diagnosis at age �. Given onset time, cancer diagnosis is a result of two competing 

risks, the potential time to detection by screening, ��!", and the potential time to clinical diagnosis due 

to symptoms of the disease, �=!", so that the delay time is �! = min(��!", �=!"). The time �=!" is 

referred to as the sojourn time. The forward recurrence time  

�O = P�=!" − ��!" , �=!" > ��!" , Screening		diagnosis		(WX>)	0, �=!" ≤ ��!" , Clinical		diagnosis		(JX>)	 Z 
is called the lead time (as adopted here—multiple definitions are available in the literature), and it 

describes how much diagnosis was advanced due to screening. Note that the lead time is zero in 

patients detected clinically. The joint distribution of the lead-time ([ argument) and age at diagnosis � 

(� argument) is given by an average over age at cancer onset �? ($ argument) as  

 ,O\([, �|>) = ( 	�� ,?($|>),=!"(� − $ + [|>, $) P��!"(� − $|>, $), [ = 0,�!"(� − $|>, $), [ > 0Z 	�$,    (1) 

where ,? is a p.d.f. of the age at onset, and ,=!"	and	,�!" are p.d.f.s and �=!"	and	��!" are s.f.s for the 

two competing risks of CDx and SDx (corresponding to random variables �=!" and ��!"), respectively. 

The expression under the integral is a joint p.d.f./p.m.f. ,O\([, �, $|>) of age at onset �? = $, diagnosis 

(any type) at age � = �, and potential clinical diagnosis at � + �O = � + [, if applicable (in case real 

diagnosis is SDx). Note that zero lead time ([ = 0 in (1)) corresponds to observed CDx occurring at age 

� = � and that ,O\ has a mass at this point corresponding to clinical diagnosis (sometimes referred to as  

interval detection to emphasize that CDx occurred in an interval between screens). The conditional lead-

time distribution is obtained from the joint one as  

,O\([|�, >) = ,O\([, �|>),8(�|>) , 
where ,8 is the p.d.f. corresponding to the marginal cancer incidence rate 
8. The conditional age at 

tumor onset []|�, >] serves as a mixed effect in the model of disease presentation at diagnosis 

discussed in the next section. 

2.2. Disease presentation (stage, grade) at diagnosis 

2.2.1. The z-model 

Disease stage is dichotomized into the local-regional (LR) stage and distant (D) stage. Disease grade is 

dichotomized into well or moderately (WM) differentiated (low grade) and poorly differentiated or 

undifferentiated (PU) disease (high grade). We use the random variable ^ to denote four possible 

combinations of binary stage and grade classifications (Localized/Reginal Stage, Low Grade)=LL, 

(Localized/Reginal Stage, High Grade)=LH, (Distant Stage, Low Grade)=DL, (Distant Stage, High 

Grade)=DH. Generally, ^ can be any multivariate mark on the cancer incidence process. The ^-specific 

incidence model describes the probability of being diagnosed with prostate cancer at a certain age and 

with specific stage and grade _. Conditional on birth year >, age at tumor onset $, and age at tumor 
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diagnosis �8, the probability of being diagnosed with stage and grade _ was modeled using a mixed 

multinomial logit model (Chefo and Tsodikov, 2009). Missing data include the delay time between tumor 

onset and diagnosis (a backward recurrence time) and the mode of diagnosis. Calendar time and age are 

treated as fixed effects covariates. Using the ^-specific incidence model, we predict the conditional 

(multinomial) distribution of _, ,8(_|>, �8) given the cohort > and incident age �8. Note that ,8(_|>, �8) is 

a conditional average over tumor onset age ] and mode of diagnosis  

�̀!" = P1, 	a,		WX>	0, 	a,		JX>	. 
Using the model we can update the distribution of ] given the information available at diagnosis. 

A mixed multinomial model is used for the conditional distribution of stage and grade at diagnosis, given 

age at onset, ,(_|�, >, $) = Pr{_|� = �, Birth	year	 = >, Age	at	onset = y}. On taking an average with 

respect to missing age at onset (or lead time), ,(_|�, >) = <	{,(_|�, >, Y)|�, >}, we obtain the factor 

partitioning the marginal incidence 
8 into the _-specific components 

 ,8(_|>, �) = h@(�,i|")
h@(�|") = ( 	jk h@(i|",�,l)h@(�|",l)hm(l|")nl

h@(�|") , 
  
8(�|>) = ∑ 	i 
8(�, _|>),						
8(�, _|>) = 
8(�|>) × ,(_|�, >),  

where the expectation is taken over the conditional distribution of age at cancer onset, ]|�, >, given age 

at diagnosis and birth year. 

2.2.2. Estimation 

Maximum likelihood is used to fit the model. Conditional on the birth year >, the likelihood is defined as 

one for a marked survival model where (a) age at diagnosis serves as the survival time and (b) the 

combination of stage and grade serves as a mark. The conditional likelihood used to estimate the 

submodel for the mark uses age at diagnosis as a covariate and is based on observations of the cases 

only at cancer diagnosis:  

E = ∑ 	� ∑ 	G ∑ 	i J(�, 
)logp,(_|�, >)q,						
 = � + >. 

 

Here � is age, 
 = � + > is calendar time, and J(�, 
) is the count of cancer diagnoses. The likelihood is 

maximized by the method of conjugate gradients. Details and estimates of the model parameters can be 

found in Chefo and Tsodikov (2009). 

2.2.3. Updated prediction of the lead time  

The conditional distribution of age at tumor onset ] can be written as 

]~,8($|>, �8 , _) = ,8(�8 , _, $|>),8(�8 , _|>) = ,8(_|>, �8 , $),8(�8|>, $),A($|>)
( 	�@� ,8(_|>, �8 , $),8(�8|>, $),A($|>)	d$. 

The lead time distribution can then be updated with the additional information on the disease 

presentation index _ observed at diagnosis as  
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,O\([|�, _, >) = ,O\([, �, _|>),8(�|>) ,						,O\([, �, _|>) = � 	�
�
,O\([, �, $|>),(_|�, >, $)	�$. 

Details and estimates are available in Chefo and Tsodikov (2009). The lead time in distant stage disease 

is small as cancers are growing faster and are typically missed by screening. Lead time is largest for men 

around 70 years of age when most prostate cancers are detected. The conditional updated age at tumor 

onset []|�, _, >] serves as a mixed effect in the model of disease progression discussed in the next 

section. Shown in Figure 2.1 are model-based predictions of the mean lead time by the characteristics 

observed at diagnosis. 

  

Figure  2.1. Model-predicted mean lead time by stage, grade, age, and year of diagnosis. 

Note that the i- and z- submodels used in this study were previously described in Tsodikov et al. (2006) 

and Chefo and Tsodikov (2009). The p- submodel, described in the next section, represents an original 

extension to reflect disease progression after screen detection and benefits of early detection and 

primary treatment. 

2.3. Disease progression model post screen diagnosis 

2.3.1. The p-model 

Let ^(�) be the cancer progression process with the time (age of tumor) � counted out from the point of 

cancer onset in the subject. Given the two potential competing risks of clinical (CDx) and screening (SDx) 

diagnosis, we can define the corresponding potential values of the cancer development process ^(��!") 
and ^(�=!") measured on the same subject. The competing character of the two detection mechanisms 
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makes them partially unobserved. At most we can observe age at diagnosis � = ] +min(��!", �=!") 
and the disease characteristics ^(��!") if the observed diagnosis is by screening and ^(�=!") otherwise, 

but not both. Note that since ��!" is undefined for an  unscreened subject, we would not be able to 

treat ��!" as missing data for the subject to define his likelihood contribution. Consequently, we would 

not be able to use a likelihood-based approach to fit the joint model. Let the indicator  

�̀!" = -1, WX>0, JX> = `(�O = 0) 
express the type of observed diagnosis. Let the vector s = (�, _) be the disease presentation at 

diagnosis combining age and the disease severity _ at the point of diagnosis. Conditional on the specific 

type of diagnosis, we have s� = (] + ��!" , ^(��!")) given SDx and s� = (] + �=!", ^(�=!")) given CDx. 

For a screen-detected patient, s� is observed and s� is the unobserved hypothesized disease 

presentation at potential CDx. The stage and grade specific incidence model (z-model) specifies the 

distribution of s = s8tuv  for diagnosis of any type ( �̀!" is random) and explains its variance by the 

heterogeneity of the disease natural history and the screening process preceding diagnosis. 

The disease progression model (p-model) defines the probability of disease progression during the lead-

time in the absence of treatment represented by the transition model [s�	|	s�]. Jointly with the lead-

time distribution, the disease progression model can provide a joint distribution of (s�, s�) for screen -

detected patients. However, s� is observed on one set of patients and s� on another, independent set of 

patients. With population data, �̀!" is also unobserved, so we observe marginal s on patients 

diagnosed in the screening era and s� before screening was introduced in the population. This 

observation structure precludes the traditional approach of fitting a transition model [s�|s�] to 

longitudinal data s�, s�. Nevertheless, the way screening affects the marginal s has information allowing 

one to identify the transition model. For a screen-detected subject, let ,w(s�|s�, >) be the joint 

p.d.f./p.m.f. of the disease presentation at potential CDx (s�) conditional on the observed presentation 

s� at SDx and the birth cohort >. Let the baseline (under the null hypothesis of no interaction between 

screening and treatment, STx) probability x5(_�|_�, �O) describe the the transition probability for the 

disease severity index _ between SDx and potential CDx, given the lead time �O. Then we can expand ,w 

as  

,w(s�|s�, >) = ,O\([|��, _�, >, �O > 0)x5(_�|_�, �O = [), 
where  

,O\([| ⋅, �O > 0) = ,O\([| ⋅)1 − ,O\(0| ⋅) 
is conditional on SDx that is equivalent to a positive lead time, �O > 0. While generally x5 may depend 

on the lead time and other covariates, in the data analysis of this paper we assume they are a set of 

unknown parameters arranged in the form of the so-called progression probability matrix (PPM) with a, z 
elements x5{| = x5(_� = z|_� = a), where a ≤ z, a, z = 1,… ,4 index the four categories of stage and 

grade _. The fact that x5{| = 0	for	a > z reflects the assumption that cancer cannot regress. The PPM is 
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shown in Table 2.1. Under the null hypothesis of no interaction between screening and treatment, the 

baseline PPM probabilities x5 are not affected by treatment applied at the point of SDx. Now consider 

two model predictions:   

1.  _-specific incidence 
8(�, _|¬W) under no screening (	¬W, zero screening sensitivity); and  

2.  the model predicted _-specific incidence 
8(�, _|`W) under ignored screening ( IS ), the patient is left 

undiagnosed until the end of his lead time. 

While the first scenario does not involve the PPM and is expressed by the _-specific incidence model 

prediction under zero screening sensitivity, the second scenario uses PPM to predict stage and grade at 

the end of the lead time. 

The IS  counterfactual scenario operates under the null hypothesis of no interaction between screening 

and treatment (or no benefit of screening regarding cancer progression during the lead time). Then the 

progression model must satisfy  


8(�, _|¬W, >) ≡ 
8(�, _|`W, >),                                                (2) 

where ≡ denotes a uniform equality over �, _, >.  

Distributional characteristics of _-marked cancer incidence under IS  can be deduced from the following 

joint p.d.f.: 

 ,(�, _|`W) = ,(�, _, WX>|`W) + ,(�, _, JX>|`W) 
 = ( 	�� ∑ 	i��i ,(��, _�|W),O\(� − ��|_�, ��)x5(_|_�, � − ��)d��  

 +,(�, _, JX>|W) × ,O\(0|�, _).  

This expression represents an incident cancer under IS  as either an observed CDx with zero lead time 

(p.d.f. ,(�, _, JX>|`W), second term) or an observed SDx (first term) with a potential CDx later, in which 

case possible presentations at SDx prior to the potential CDx are entertained in the first term of the 

sum. The integration over �� and summation over _� represent a formula of total probability exercised 

over natural history of the disease process preceding the occurrence of symptoms at age � and stage _. 

Note that the clinical incidence is the same under the actual screening scenario ( S ) and under the 

hypothetical IS , ,(�, _, JX>|W) ≡ ,(�, _, JX>|`W). 
The progression mechanism under screening (entering the equality (2) through 
8(�, _|`W) that is 

computed using the baseline probabilities x5) characterizes the null hypothesis of treatment effect on 

cancer progression. In case of more general progression models, not necessarily formulated in terms of 

PPM, this represents the null hypothesis expressing the general equivalence of ignored screening ( IS ), 

zero screening sensitivity, and zero treatment effect. In other words, there is no difference between no 

screening, screening with zero sensitivity, or screening combined with ineffective treatment regarding 

the disease presentation s� at the point of symptoms (real or counterfactual CDx). 
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Note that the overall null hypothesis of the combined benefit of screening and treatment involves a 

consideration of survival in addition to cancer progression. An equality similar to (2) for cancer mortality 

can be defined in addition to the cancer progression part or, alternatively, an equality for survival times 

post the guaranteed lead-time survival. The null hypothesis is directly relevant to the so-called active 

surveillance or watchful waiting regimen when aggressive treatment is deferred until signs of 

progression emerge. Assuming this happens at the point of occurrence of symptoms (CDx), the model 

under IS  approximately describes the evolution of a screen-detected patient under such conservative 

management. In this case, treatment may be effective and, applied at CDx, may improve post lead-time 

survival. However, being deferred, it misses the opportunity to affect latent cancer progression (PPM) 

before CDx. Early detection by screening is not a modifier to the treatment effect as far as cancer 

progression goes. 

2.3.2. Estimation 

Motivated by the above discussion, to estimate the PPM we treat the equality of counterfactual hazards 

as an equation for the unknown x5 patrameters. The idea is to deduce the disease progression model 

from the marginal one by making the two predictions on both sides of (2) as close as possible. The target 

function to be minimized for the estimate of the disease progression model, E, can be written as the 

Poisson likelihood “distance” between the two predictions. The main difficulty in estimating PPM is 

rooted in the fact that CDx and SDx are not observed on the same subject. So there is no direct subject-

specific data on the disease progression. To estimate the PPM, we notice the equality of the model 

predictions in the following two counterfactual scenarios: (1) under no screening (	¬W, zero screening 

sensitivity) and (2) the model prediction as if screening were ignored (`W) and the patient was left 

undiagnosed until the end of his lead time. While the first scenario does not involve the PPM, the 

second counterfactual scenario uses PPM to predict stage and grade at the end of lead time. The idea is 

then to deduce the disease progression model from the marginal one by making the two counterfactual 

predictions as close as possible. The target function to be minimized for the estimate of the disease 

progression model, E, can be written as the Poisson likelihood “distance” between the two predictions 

treating one of them as “observed” data (	¬W) and the other as expected (`W). 

Let �{  and _{, a = 0,1, be age and stage/grade at CDx and SDx, respectively. Conditional on the birth 

year, >, define a target function to be maximized as  

E = ∑ 	�k ∑ 	G ∑ 	ik H(��, 
, _�){
A(��, _�|¬W)log
�(��, _�|aW) − 
�(��, _�|aW)}, 
where H(��, 
, _�) is the population count with age ��, stage and grade _� in calendar year 
, and 
� is 

deduced from the corresponding joint p.d.f.  

 ,(��, _�|aW) = ,(��, _�, WX>|aW) + ,(��, _�, JX>|aW) 
 = ( 	�� ∑ 	i��ik ,(��, _�|W),O\(�� − ��|_�, ��)x(_�|_�, �� − ��)d�� 
 +,(��, _�|W) × ,O\(0|��, _�). 

Standard errors of the estimates are obtained by bootstrap. 
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Table 2.1. Results of the Estimated Progression Probability Matrix (PPM) 

  Counterfactual Clinical Diagnosis 

 

 

 

Screening  

Diagnosis  

 Stage/Grade   LR/L (1)   LR/H (2)   D/L (3)   D/H (4)  

 LR/L   

 x5��=0.893   x5��=0.051   x5� =0.056   x5��=0  

 (0.879,0.906)    (0.039,0.062)   (0.049,0.064)   (0,0)  

 LR/H 

 0   x5��=0.717   0   x5��=0.283  

   (0.676, 0.757)     (0.243, 0.324)  

 D/L   

 0   0   x5  =1   x5 �=0  

     (1,1)   (0,0)  

 D/H   0   0   0   1  

Stage: LR=Local/Regional, D=Distant. Grade: L=Low (WM), H=High (PU). 95% confidence intervals are in 

parentheses 

Figure 2.2 shows observed (black line) and model-predicted (gray line) incidence rates by age 

and stage for the calibration (1975–2000) and validation (2001–2010) years. 

 

 
Figure  2.2. Observed and model-predicted incidence rates by age and stage. 
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The progression model was fit to SEER data (Table 2.1). Only 5% to 6% of patients progress in 

stage/grade respectively in the localized stage, low grade group at SDx. No progression from the best 

category (local stage and low grade) to the worst category (distant stage and high grade) occurs, 

perhaps due to the long time frame required for such a big transition compared to the lead time. 

Localized stage, high -grade patients are more likely to progress. About 28% potentially progress to 

distant stage. There is no grade progression in the distant stage patients likely because their lead time is 

too short for the grade to change. 

2.3.3. Screening benefit. Treatment effect on disease progression after screen diagnosis. 

If treatment had an effect, the baseline probabilities x5 would be transformed by a categorical 

regression model with treatment as a covariate and x5 corresponding to the baseline of no treatment 

effect. Consider a cumulative logit regression (proportional odds, PO) model working with a row of the 

PPM matrix corresponding to certain observed disease characteristics at SDx. Let �\" be the cumulative 

odds ratio expressing the difference between the conditional distribution of _�|_� with vs without 

treatment, the latter given by x5(z�|_�). Under the PO, model the transition probability under the 

treatment effect is  

x{| = Pr(^� = z|^� = a, D>) = x5{|�\"x5{|(�\" − 1) + 1 , z > a, 
where _�,� is stage-grade response at CDx and SDx, respectively. 

In the cumulative logit model, let �x5 be the cumulative baseline transition probability. The cumulative 

transition probability given the treatment effect is  

�x{| = Pr(_� ≤ z|_� = a, D>) = C����/��v
C����(�/��v3�)�� , z ≥ a, 

and x{| = �x{| − �x{(|3�). 
When there is no treatment effect on the probabilities (i.e., �\" = 1), x{| = x5{|. When the treatment 

effect is really large (i.e., �\" → 0), the PPM will become an identity matrix corresponding to the full 

stage-shift when the stage and grade carry over from the screen diagnosis to the counterfactual clinical 

diagnosis. 

In the extreme, treatment applied at the point of SDx may completely arrest cancer progression, in 

which case PPM would be an identity matrix corresponding to the full stage-shift assumption. 

The treatment model describes the probability of receiving a certain treatment combination at the time 

of cancer diagnosis. Using SEER data, we classified treatments into three major categories: conservative 

management (CM), radiation therapy (RT), and radical prostatectomy (RP). Hormone therapy (HT) is 

commonly used as an adjuvant therapy following one of those three primary treatments, RT most 

commonly. Note that HT information is not available in cancer registries, hence we used a two-stage 

model to predict treatment allocations. In the first stage, we modeled the probability of receiving one of 

the three treatments defined in SEER data conditional on birth year >, age at diagnosis �8, and grade 
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using multinomial logit model. In the second stage, we conditioned on the treatment obtained from the 

first stage, birth year >, age at diagnosis �8, and grade and used logistic regression to model the 

probability of receiving the additional adjuvant hormone therapy. 

By combining first and second stage, we can obtain the probability of actual treatment received given 

birth year >, age at diagnosis �8, and grade. These model-based predicted probabilities and empirical 

SEER estimates are shown in Figure 2.3. 

 

  

Figure  2.3. Observed and model-predicted probabilities of SEER treatment by age at diagnosis and 

grade in localized disease. 

2.4. Survival and mortality 

2.4.1. The s-model 

The survival function � describes the time spent in the clinical state (from diagnosis to cancer-specific 

death in the absence of other causes) conditional on age at incidence �8, year of diagnosis 
 (
 = > +
�8), stage and grade ^, and treatment D>.  

The generalized stage-shift model is motivated by the traditional stage-shift model by allowing disease 

progression during the lead time. Two adjustments were made in the survival model during the PSA era. 

First, lead -time adjustment was made to make sure survival times are always measured from the time 

of clinical diagnosis to time of death, implying a guaranteed lead-time benefit. Additionally, survival is 

conditional on the stage and grade at the time of clinical diagnosis, the latter being unobserved if the 

patient is screen-detected. Three treatment effects were included in the model. The treatment main 
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effect �\" describes how treatment affects post-lead-time survival, conditional on stage and grade at 

the end of the lead time. The treatment effect applied to the disease progression ( �\", estimated as 0.3 

for the ERSPC-sized effect) measures how treatment prevents stage and grade progression during the 

lead time (an unobserved process in a screen-detected person). Finally, even if the patient progresses 

during the lead time, the one treated earlier could still be better off than the one treated close to the 

point of symptoms, and this is represented by the treatment-by-lead-time interaction effect, �\"×O\, in 

the s.f. � post real or counterfactual CDx. In this paper, the latter effect is not used.  

With all the above assumptions, the adjusted survival function for patients diagnosed in the screening 

era becomes 

�(
I|�8 , 
, _, D>) = �O\(
I|�8 , 
, _)                                                     Guaranteed survival during lead time 

       +		,O\(0|�8 , 
, _)�5(
I|�8 , 
, _, D>)                              Survival after clinical diagnosis 

+( 	G��� ∑ 	ik�i Pr(_�|_, D>),O\(�|�8 , 
, _)�5(
I − �|�8 + �, 
, _�, D>)	d�    Survival after screen diagnosis 

where 

�5(
I − �|�8 + �, 
, _�, D>, �) = ��(
I|�8 , 
, _�)������v��v×�� 

and �� is the model under a reference group under conservative management estimated using SEER 

survival before screening was introduced (1988). 

2.4.1. Prediction of cancer mortality 

Let A  and Z  be the age and tumor characteristics at the time of diagnosis, respectively. In the UMICH 

model, Z  represents all four possible combinations of stage (SEER local-regional and distant) and grade 

(Gleason score 2–7 and 8–10). 

 

Let ( | , )G F a z  denote the survival function at F  years of follow-up averaged over the distribution of 

treatment and adjusted for the lead time. This function combines lead time (W ) and screening and 

treatment benefits. Cancer mortality is deduced from the cause-specific cancer survival probability at 

age MA  averaged over possible incident cancer: 

{ }( ) E ( | , )M M MG a G A A A Z= − , 

where expectation is taken over A  and Z , and ( | , ) 1G F A Z =  when 0F < . Explicit expression of 

screening benefit requires that S  be spelled out in detail through the s-model adjusted survival function � as �(�	|	�, ^) = <[�(�	|	�, ^, D>)	|	�, ^], averaged over the distribution of treatment applied for the 

patient diagnosed with characteristics Z  at age A . 

 

Conditional on birth year >, cancer mortality is a hazard function, 
�, of the age at prostate cancer 

death, ��. By definition,  


�(��|>) = ,�(��|>)W�(��|>), 
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where  ,�(��|>) is the p.d.f. and W�(��|>) is the s.f. averaged over the whole patient history from 

birth, including possible cancer incidence by screening or clinical diagnosis, disease characteristics at 

diagnosis, treatment applied, progression during the lead time (if screen-diagnosed), and survival post 

lead time. For a man in birth cohort >, the probability of prostate cancer-specific survival in the absence 

of other causes at age �� can be written as  

W�(��|>) = ( 	��� ,8(�8|>) ×                                              Incident cancer at age �8 
																																	∑ 	i ,8(_|>, �8) ×                                          Disease presentation with characteristics z 

																																								∑ 	\" ,\"(D>|>, �8 , _) ×                        Treatment applied 

																																			�(�� − �8|>, �8 , _, D>)d�8 +   Lead-time adjusted post-diagnosis survival 

																										�8(��|>).                                                             No incident cancer 

The parts of the equation describe the probability for a man who had prostate cancer diagnosed at age 

�8 (before age ��) with stage and grade _, received treatment D> at the time of diagnosis, and survived 

at least �� − �8 years after the diagnosis, and the probability for the man who has never been 

diagnosed with prostate cancer. Mortality is a convolution of five models addressing the development of 

the disease under screening and treatment interactions: Marginal incidence (i-model), Z-specific 

incidence (disease presentation at diagnosis, z-model), treatment, disease progression between 

screening and counterfactual clinical diagnosis (p-model), and survival model (s-model).  

Mortality 
�(��|>) is deduced from W�(��|>) using the well-known relationship between hazard and 

survival functions in survival analysis: 


�(��|>) = − �
��� log W�(��|>) . 
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