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CHAPTER 1  
INTRODUCTION 

1.1 Background 

The fast multipole method (FMM) has been selected as the one of the ten most 

significant algorithms discovered the in 20th century by the IEEE Computing in Science 

and Engineering Society [1]. It was cited along with algorithms such as the FFT, 

Quicksort, Monte Carlo methods …etc. The inventors of FMM, Professors Leslie 

Greengard and Vladimir Rokhlin, were the recipients of 2001 Leroy P. Steele Prize for a 

Seminal Contribution to Research of the American Mathematical Society for their paper 

titled “A Fast Algorithm for Particle Simulations” [2]. Although their paper focused on 

rapid evaluation of gravitational and Coulombic potentials, it comprised the fundamental 

ideas permitting the generalization of the method to a variety of applications. The last 

decade of 20th century have witnessed wide spread activity relating to the implementation 

of the FMM for kernels governing the 

◊ Laplace and Poisson equations [3-7], 

◊ Helmholtz equation [8, 9], 

◊ Maxwell’s equation [10-12], 

◊ Stokes flow and Navier-Stokes equations [13-15], 

◊ N-body problems [2, 16], 

◊ Yukawa potentials [17, 18] …etc. 

Implementations of FMM to these kernels make various large-scale scientific and 

engineering computations possible in areas such as computational astronomy, quantum 

mechanics, chemistry, biology, electromagnetics, electrostatics… and so on. In these 
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disciplines, large-scale problems become solvable through rapidly evaluating 2N  

interactions by multipole approximations. These approximations lead to considerable 

reductions in the computational complexities of the problems from 2( )O N  to 

( Log )O N N  (or ( )O N  in some cases).  

The fast solution of dynamic problems in electromagnetics calls for the 

application of FMMs to the Helmholtz and Maxwell equations. Prof. Rokhlin proposed 

the FMM for 2D Helmholtz equation in 1990 [19]. Then, he extended it to the 3D 

Helmholtz equation [9]. That work was followed by others seeking the solution of 

Maxwell equations for the electromagnetic scattering problem [8, 10, 20]. Soon after, 

Prof. Chew’s research group developed a multilevel version of the FMM, known as the 

multilevel fast multipole algorithm (MLFMA), and conducted pioneering research on this 

topic [11, 12, 21-36]. Moreover, Prof. Michielssen’s research group developed time-

domain counterparts of FMM [37] and MLFMA [38] for the wave equation and applied it 

in various real-world time-domain problems [39-43]. 

1.2  Motivation 

MLFMA for the Helmholtz and Maxwell equations accelerate the integral 

equation-based iterative solution of acoustic and electromagnetic scattering problems by 

evaluating interactions between sources and observers in a hierarchical framework. The 

hierarchical framework requires (i) breaking up the source constellation into groups, (ii) 

computing each group’s far field signature, and (iii) translating these far-field signatures 

between group centers to arrive at observer fields. The first step which falls out of the 

scope of this study can be accomplished by a hashed octree algorithm [44]. The second 

step, called aggregation, requires a set of stages termed as interpolation, and summation 

and shift of far-field signatures, which will be the focus of this study. The third step based 

on the procedures named translation, anterpolation (or filtering), and shift of far-field 

signatures will again be the focus of this thesis. Last two procedures in the third step are 

together called as disaggregation.  
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The MLFMA reduces the computational and memory requirements for solving 

Helmholtz and Maxwell problems from 2( )O N  to ( log )O N N . However, there also 

exists a multiplicative factor inherited in complexity estimate of MLFMA. This 

multiplicative factor heavily depends on effective implementation of the filters used 

during interpolation/anterpolation stages as well as the choice of some key parameters, 

which are the number of multipoles L  used to compute MLFMA’s translation operators, 

the over-sampling ratio s used to sample far-field signatures, and the number of 

interpolation points p  used while locally interpolating fields during the upward traversal 

of the MLFMA tree.  

In this thesis, Helmholtz and Maxwell MLFMA are explained in detail. Next, the 

effective filtering schemes used during interpolation/anterpolation stages are discussed. 

We noticed that some terms in the formulation of fast vector spherical filter used in 

Maxwell MLFMA are missing in the literature. Here, the formulation of fast vector 

spherical filter is derived from the scratch, missing terms in the literature are pointed out, 

and the implementations of vector and scalar spherical filters are explained in detail. 

Moreover, although some formulas exist for the optimum choice of the key parameters 

L , ,s andp , they do not yield precise results and are not correct for many cases. Here, 

we propose a self-tuning library for Helmholtz and Maxwell MLFMA for the optimum 

choice of these parameters. The features of the self-tuning library are as follows: 

◊ It enables full control of error in MLFMA, 

◊ It works for all kinds of cluster sizes and spacings encountered in MLFMA and 

estimates the optimum parameters precisely, 

◊ It allows significant memory reduction and time savings in MLFMA, 

◊ It’s executed as a preprocessor to the actual MLFMA call, 

◊ It requires negligible time and memory for execution. 
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1.3 Organization of Chapters 

In Chapter 2, surface integral equations for solving electromagnetic scattering 

problems are reviewed. Then, the gist of the FMM, factorization of the free-space 

Green’s function, is discussed and the implementations of the FMM and MLFMA for the 

solution of surface integral equations are described. In addition, an efficient interpolation 

scheme is presented to be used for locally interpolating translation operator values in 

large-scale problems. 

In Chapter 3, scalar and vector spherical filters are introduced for calculating field 

signatures during upward and downward traversals of MLFMA tree. For scalar spherical 

filter used in Helmholtz MLFMA, the formulation of standard slow method is derived 

and its complexity is analyzed. Then, the fast method for scalar spherical filtering 

procedure as well as its implementation are described. Similarly, vector spherical filter 

utilized in Maxwell MLFMA is discussed by first explaining the standard slow vector 

spherical filter. Then, the formulation of fast vector spherical filter is derived from 

scratch by indicating the missing terms in the literature. The implementations of fast 

scalar and vector spherical filters are elucidated by providing the pseudo codes at the end 

of the chapter.  

Self-tuning library is presented in Chapter 4. A three-stage algorithm for 

estimating the optimum L − parameter is introduced after the behavior of factorized free-

space Green’s function with respect to varying L  is investigated. After the explanation of 

three-stage algorithm with pseudo-codes, the numerical results that show the accuracy 

obtained by L − parameters estimated by the three-stage algorithm are demonstrated. 

Afterwards, algorithms for estimating optimum p − parameter and s−  parameter are 

introduced. Once the details of the algorithms are provided, the numerical tests that 

demonstrate the accuracy obtained by p and sparameters estimated by the proposed 

algorithms are provided.  

Extensive test results in multilevel framework are provided in Chapter 5.  
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CHAPTER 2  
FMM AND MLFMA 

2.1 Introduction 

Applications of the FMM to the Helmholtz equation and Maxwell equation are 

somewhat different from its applications in other disciplines cited in previous chapter. In 

applications of FMM to the several problems such as N-body problems, Laplace 

equation, Poisson equation, etc., the multipole expansions are applied to smooth and 

slowly varying kernels such as 1
p

r r ′− , where p  is an integer and 1p ≥ . In contrast, 

the application of FMM to the Helmholtz and Maxwell equations necessitates dealing 

with an oscillatory kernel such as ik r re r r
′− ′− . This oscillatory kernel requires an 

elaborate mathematical analysis compared to the non-oscillatory ones [9]. For the rigid 

mathematical background of FMM for the Helmholtz equation, reader is referred to [9, 

19, 45, 46]. 

The FMM for the scalar wave equation was proposed by Coifmann, Rokhlin, and 

Wandzura [8] to reduce the computational time and memory requirement of the method 

of moment (MoM) solution of electromagnetic scattering problems from 2( )O N  to 

3/ 2( )O N . Then it was used to solve the electric field integral equation (EFIE) [10, 32] 

and the combined field integral equation (CFIE) [11] for solving scattering from 

arbitrarily shaped perfect electric conductor (PEC) objects. Later on, multilevel 

implementation of FMM with the computational complexity and memory requirement of 

( log )O N N  was introduced by Song and Chew [12, 32]. Different implementations of 
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MLFMA requiring 2( log )O N N  operations and storage were presented by Dembart, Yip 

[47, 48] and Gyure, Stalzer [49]. 

In this chapter, implementations of FMM and MLFMA to the CFIE are discussed 

in detail. The rest of this chapter is organized as follows: the integral equations that 

characterize the EM scattering phenomena from a PEC object are discussed in the second 

subsection. An approximation to the free-space Green’s function that leads to 

discretization of the integral equations is derived in the third subsection. In the fourth 

subsection, the implementation of FMM for solving CFIE is described. Multilevel 

implementation of FMM is explained in the fifth subsection. In the final section, an 

efficient interpolation scheme for the translation operators is presented.  

2.2 Integral Equations  

Integral equations of first kind and second kind for solving electromagnetic 

scattering from an arbitrarily shaped PEC object are briefly reviewed before deriving the 

formulas for FMM and MLFMA.  

Electric field integral equation (EFIE), which characterizes the time-harmonic 

electric field scattering by a PEC, is given by 

 ( ) ( ) ( )ˆ ˆ,
4

i

S

ik
dS

η
π ′

′ ′ ′× = − ×∫n G r r J r n E r , (2.1) 

for S′ ′∈r  and S∈r . Here, 1i = − , k  is the free space wave number, η  is the intrinsic 

impedance of free space, S  is the surface of scatterer, S′  is the integration area on the 

surface scatterer, ̂n  is the unit normal vector to the surface S , ( )′J r  denotes the 

unknown induced surface electric current, ˆ ×n  operator indicates the tangential 

components of vector fields, ( )iE r  is the incident electric field vector, and  

 ( ) ( )2

1
, ,g

k

 ′ ′ ′= − ∇∇ 
 

G r r I r r , (2.2) 
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 ( ), ,
ikRe

g R
R

′ ′= = −r r r r . (2.3) 

I  represents the unit dyad, and ( ), ′G r r  is called the dyadic form of the free space 

Green’s function for Helmholtz equation (( ),g ′r r ). The unit dyad I  indicates the vector 

potential part of EFIE and the term 
2

1

k
′∇∇  represents the scalar potential part of EFIE.  

Magnetic field integral equation (MFIE), which formulates time-harmonic 

magnetic field scattering by a closed surface PEC, is expressed as   

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ2 , 4 i

S

dSπ π
′

′ ′ ′× − × ×∇× = × ×∫n J r n n G r r J r n n H r , (2.4) 

for r  approaches to S  from outside. ( )iH r  denotes the incident magnetic field vector. 

In theory, MFIE or EFIE can be used to solve the problem of electromagnetic 

scattering from a closed PEC object. However, both EFIE and MFIE suffer from internal 

resonance problem due to the presence of homogenous solutions corresponding to 

interior cavity modes [50]. A remedy to this cavity resonance problem is the combined 

field integral equation [51]. CFIE is the linear combination of EFIE and MFIE as 

 ( ) ( )CFIE EFIE 1 MFIE , 0 1
i

k
α α α= + − < < . (2.5) 

The choice of α  as 0.2 is proven to be the optimum selection [52]. The method of 

moments can be applied to the CFIE with Galerkin procedure. To do that, first, the 

unknown surface current distribution on S  is approximated by N  basis functions as 

 ( ) ( )
1

N

l l
l

I
=

′ ′=∑J r f r , (2.6) 

where lI  denotes the unknown expansion coefficient, ( )l ′f r  denotes the lth  basis 

function on the surface of scatterer; the basis functions can be chosen as Rao-Wilton-

Glisson (RWG) bases [53], which defines a constant charge density on the surface 

without charge accumulations on the edges. Second, the basis functions used to discretize 
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the current ( )l ′f r  are tested with the same basis functions ( )kf r , 1,...,k N= . Testing 

yields a system of linear equations which can be written in a matrix-vector multiply form 

as  

 V Z I= , (2.7) 

where V  is the excitation vector (N ), Z  denotes the impedance matrix (N N× ), I  is 

the expansion coefficient vector. The impedance matrix element corresponding to EFIE is 

given as 

 ( ) ( ) ( ),
4

E
kl k l

S S

ik
Z dS dS

η
π ′

′ ′ ′= ⋅∫ ∫f r G r r f r , (2.8) 

and that corresponding to MFIE is expressed as 

 ( ) ( ) ( ) ( ) ( )1 1
ˆ ,

2 4
H
kl k l k l

S S S

Z dS g dS dS
π ′

′ ′ ′ ′= − ⋅ + ⋅ ×∇×∫ ∫ ∫f r f r f r n r r f r . (2.9) 

Since the basis functions are defined tangential to the surface of scatterer, the term ˆ ×n  

appears in Eqn.(2.1) and Eqn.(2.4) is omitted here. The contributions from EFIE and 

MFIE to the impedance matrix of CFIE can be calculated as  

 ( )1E H
kl kl klZ Z Zα η α= + − . (2.10) 

The excitation vector element is  

 ( ) ( ) ( ) ( ) ( )( )ˆ1i i
k k k

S S

V dS dSα η α
 

= − ⋅ + − ⋅ × 
 
 
∫ ∫f r E r f r n H r . (2.11) 

The unknown expansion coefficient vector I  is to be computed using an iterative 

solver (e.g. transpose-free quasi-minimal residuals method). 

In next subsection, in lieu of using diagonal forms of translation operator for 

FMM derivation [9, 45, 46], a simple way that employs addition theorem and an 

elementary identity is followed to derive multipole approximation.  
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2.3 Approximating the Green’s Function  

The FMM relies on approximating Green’s function for 3D Helmholtz equation 

with two elementary identities. These identities can be found in [8, 54-56]. The first 

identity is a form of Gegenbauer’s addition theorem, which is an expansion of Green’s 

function into an infinite series as 

 

( )

( ) ( ) ( ) ( ) ( )

1
0

1

0

ˆ ˆ1 2 1

ik

l
l l l

l

e
ikh k

ik l j kd h kX P

+

∞

=

= +
+

= − + ⋅∑

X d

X d
X d

d X

, (2.12) 

or alternatively, 

 ( ) ( ) ( ) ( ) ( )( ) ( )*
1

0

ˆ ˆ4 1 2 1
ik l

l m m
l l l l

l m l

e
ik l j kd h kX Y Yπ

+ ∞ +

= =−
= − +

+ ∑ ∑
X d

d X
X d

, (2.13) 

where ( )lj x  denotes the spherical Bessel function of the first kind, ( )1
lh x  is the 

spherical Hankel function of the first kind, ( )lP x  denotes the Legendre polynomial, and 

( )m
lY x  is the spherical harmonics function of the degree l  and the order m. The 

expansion is valid for d X< , where d = d  and X = X  (see Figure 2-1 for the 

definitions of vector quantities). In addition, this expansion can be used to compute the 

field at a receiver location r  generated by a source at location ′r  by simply choosing  

 ,O S O S′= − + − = −d r r r r X r r . (2.14) 

The condition d X<  implies that the 2S X′ − <r r  and 2O X− <r r  and the source 

and the observer points ′r  and r  must be in the close vicinity of the points Sr  and Or . 

Due to these restrictions, the regions of convergence for both the source and the observer 

points are covered by spheres, namely source sphere and observer sphere which are 

centered at the points Sr  and Or , respectively. 
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'r

r

Or

Sr

O S= −X r r

'= −R r r

'r

r

Or

Sr

O S= −X r r

'= −R r r

 

Figure 2-1: The vector quantities illustrating the vector decomposition between the 
source and the observer locations. 

The second identity involves expanding the term ( ) ( )l lj x P x  into an integral over 

propagating waves [56] as 

 ( ) ( ) ( ) ( ) 2ˆ ˆ ˆ ˆ ˆ
4

l
i

l l l
S

i
j kd P e P d

π

−
⋅⋅ = ⋅∫

k dd X k X k , (2.15) 

where the integral is evaluated over unit sphere S  and ˆ =k k k  denotes the direction of 

propagating plane waves. Eqn.(2.15) is substituted into Eqn.(2.12) and the order of the 

summation and the integration is changed as  

 ( ) ( ) ( ) ( )2 1

0

ˆ ˆ ˆ2 1
4

ik
li

l l
lS

e ik
d e i l h kX P

π

+ ∞
⋅

=
= + ⋅

+ ∑∫
X d

k dk k X
X d

. (2.16) 

When the infinite series is truncated at a degree L  and the term +X d  is written more 

explicitly, one can get a very concise expression for approximating Green’s function as  

 ( ) ( ) ( ) 2 ˆ,
4

O S

ik
i i

L
S

e ik
e T e d

π

′−
′⋅ − − ⋅ −≈

′− ∫
r r

k r r k r rk X k
r r

, (2.17) 

where ( ),LT k X  is the translation operator defined as  

 ( ) ( ) ( ) ( )1

0

ˆ ˆ, 2 1
L

l
L l l

l

T i l h kX P
=

= + ⋅∑k X k X . (2.18) 

In Eqn (2.17), the first exponential term represents the incoming waves to the observer 

sphere. Similarly, the other exponential term formulates the outgoing waves from the 
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source sphere. In addition, it is apparent that the integral acts on the Legendre function 

and exponential terms. In order to find out the most efficient and accurate integration 

scheme, the exponential term in Eqn.(2.15) can be expanded in terms of special functions 

as [54] 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ

0

ˆ ˆ2 1
ikd l

l l
l

e i l j kd P
∞⋅

=
= + ⋅∑

k d
k d , (2.19) 

and  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )' 2
' '

' 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ' 1
4

l
l

l l l l l
l S

i
j kd P i l j kd P P d

π

− ∞

=
⋅ = + ⋅ ⋅∑ ∫d X k X k d k , (2.20) 

where the integrand is the product of two Legendre functions. By using addition theorem 

for Legendre functions, the integrand can be expressed in terms of spherical harmonics 

functions. An exact and efficient surface integration scheme for a function defined over 

sphere and expanded in terms of spherical harmonics is a hybrid quadrature scheme that 

uses the Gaussian quadrature rule in the elevation direction and the trapezoidal 

quadrature rule in the azimuth direction. In this hybrid quadrature scheme, the choice of 

2 1L +  equidistant nodes in the azimuth direction and 1L +  Gauss-Legendre quadrature 

nodes in the elevation direction yields exact results (accurate upto machine precision). 

The procedure to integrate a function ( )ˆf k on a unit sphere with this hybrid quadrature 

scheme can be formulated as 

 ( ) ( )
2 1 1

1 1

2ˆ ˆ ˆ
2 1

L L

n mn
m nS

f d w f
L

π + +

= =
=

+ ∑ ∑∫ k k k , (2.21) 

where ( )ˆ sin cos ,sin sin ,cosmn n m n m nθ φ θ φ θ=k , ( )arccosn nxθ = , ( ) ( )2 2 1m m Lφ π= + , 

and nx  and nw  denote the nodes and weights of Gaussian quadrature. Using this formula, 

Eqn.(2.17) can be rewritten as 

 ( ) ( ) ( )2 1 1 ˆ ˆ

1 1

2 ˆ ,
4 2 1

mn O mn S

ik L L
ik ik

n L mn
m n

e ik
w e T k e

L

π
π

′− + +
′⋅ − − ⋅ −

= =
≈

′− + ∑ ∑
r r

k r r k r rk X
r r

. (2.22) 
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Instead of employing the hybrid quadrature scheme to integrate the function on 

unit sphere, another efficient numerical quadrature given in [57] can also be used. Since 

the integration over sphere is exact due to these quadrature rules, the approximation error 

in FMM results from truncating the infinite series to a degree L . The optimum choice of 

the parameter L  will be discussed in detail in Chapter 4. The parameter L  must be 

chosen large enough to ensure the rapid convergence of ( )ˆ ,L mnT kk X in Eqn. (2.22). 

Moreover, L − parameter could not be selected very large due to the characteristics of the 

addition theorem and the sampling criteria. In order to satisfy the convergence of partial-

wave expansion, one must choose L kd k ′> = − −r r X . However, it can’t be selected to 

be much larger than kX . This is because the spherical Hankel function ( )lh x  in the 

translation operator becomes highly oscillatory when l kX≫ , causing inaccuracies in the 

numerical integrations on the unit sphere. Another cause of the inaccuracies when L  is 

much larger than kX  is the aliasing due to over-sampling of the far field pattern. On the 

other hand, when L  is smaller than kd , the number of samples selected on the surface is 

not sufficient to recover the actual pattern. As seen from this discussion, there are lower 

and upper bounds for the selection of L −  parameter in order to use the algorithm with a 

desired level of accuracy.  

2.4 Fast Multipole Method for CFIE 

The free space Green’s function was approximated with the partial plane-wave 

expansion (in Eqn.(2.17)) in the previous subsection. In this subsection, implementation 

of Green’s function approximation to the CFIE is discussed. 

The free space Green’s function approximation can be modified to its dyadic form 

as 

 ( ) ( ) ( ) ( ) ( ) 2ˆ ˆ ˆ, ,
4

O Si i
L

S

ik
e T e d

π
′⋅ − − ⋅ −′ ′≈ −∫

k r r k r rG r r I kk k X k . (2.23) 

With the aid of this expression, the radiation pattern of lth  basis function is written as 
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 ( ) ( ) ( ) ( )ˆ ˆ ˆ Si
l l

S

k e dS
′− ⋅ −

′

′ ′ ′= − ⋅ ∫
k r rF k I kk f r , (2.24) 

and the receiving pattern of kth  basis function is stated as 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ ˆ

ˆ ˆ1

O

O

i
k k

S

i
k

S

e dS

e dS

α

α

⋅ −

⋅ −

′ ′= − ⋅

′− − × ×

∫

∫

k r r

k r r

R k I kk f r

k f r n
. (2.25) 

It should be noted that since the first term in Eqn.(2.9) is the self-contribution term, it 

doesn’t appear here. And the receiving and radiation patterns have only θ  and φ  

components. This is because ˆ ˆˆ ˆ ˆ ˆ′− = +I kk θθ φφ  and ( ) ˆˆ ˆ ˆV Vθ φ′− ⋅ = +I kk V θ φ . Impedance 

matrix element is 

 ( ) ( ) ( )
2

2
2

ˆ ˆ ˆ,
16

kl k L l
S

k
Z T d

η
π

−= ∫R k k X F k k . (2.26) 

The excitation vector kV  in Eqn.(2.11) is used here without any change. The acceleration 

in FMM implementation of CFIE comes from the fact that the radiation patterns of 

several basis functions in the same source box are translated to the observer box, where 

several testing functions reside, with the same translation operator. More systematically, 

the first step in implementation is clustering the scatterer into the boxes. Then, the 

translation operators, defined between geometrical centers of boxes, are used to translate 

the radiation patterns of the basis functions within the source boxes into the centers of 

observer boxes (aggregation). Finally, the receiving patterns at the centers of observer 

boxes are distributed to the testing functions belonging to the observer boxes 

(disaggregation). Next, these steps are described in detail.  

The domain of scatterer is partitioned into small boxes by a tree structure 

algorithm. In the beginning, the scatterer is enclosed by a fictitious box. Then, the edges 

of fictitious box are split into two parts along each direction (x, y, and z), resulting in 

eight boxes. Each box is recursively subdivided until the size of the edge of the smallest 

box becomes a fraction of wavelength. Each box contains a number of basis functions 

and keeps the list of basis functions. If it does not contain any basis function, then it 
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should be discarded from the list of interacting boxes. The boxes can be numbered with 

Morton ordering [58]. Figure 2-2 shows the partitioned scatterer (top view).  

1 2 3

4 5 6 7

8 9 10 11

12 13 14

1 2 3

4 5 6 7

8 9 10 11

12 13 14

 

Figure 2-2: The box surrounding the object is subdivided hierarchically in each direction. 
Each numbered box contains basis functions.  

Assume that there exist M  boxes in total and mB , 1 m M≤ ≤ , represents the box 

number. The diameter of the smallest sphere enclosing the smallest box is d . The boxes 

that satisfy the criteria d X<  for approximating Green’s function given in previous 

subsection are in the far field of the box mB . For these boxes, multipole approximation is 

used to calculate far-field contributions. For the remaining boxes in the near-field of the 

box mB , the field contributions are computed with MoM. Therefore, for each box mB , 

the boxes are grouped and recorded in the lists of the near-field interaction and the far-

field interaction according to their proximity to the box mB . For each box, the near-field 

interaction list and the far-field interaction list can be denoted as N
mI ′  and F

mI ′ , 

respectively. For example, the near-field interaction list of the first box in Figure 2-2, 

1
NI ′ , consists of the specifications of the boxes 2 4,B B  and 5B . The far-field interaction 

list of that box, 1
FI ′ , comprises the specifications of the remaining boxes. Once the box 

structure and interaction lists are formed, the rest is only evaluating the interactions 

between boxes. In what follows, the subscription m  is used for the test box and the 

subscription n  denotes the source box in the interactions.  

First, the radiation patterns of the basis functions are calculated and stored in the 

memory. The far field of one box can be calculated by 
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 ( ) ( )ˆ ˆ

n

n l l
l B

I
∈

= ∑F k F kɶ , (2.27) 

where ( )ˆ
lF k  denotes the radiation pattern of each basis function shifted to the geometric 

center of the box nB . Next, the radiation patterns of the boxes classified in the far field 

interaction list of the box mB  are translated to the geometrical center of the box mB  as 

 ( ) ( ) ( )ˆ ˆ,
F

n m

m L n
B I

T
′∈

= ∑G k k X F kɶ , (2.28) 

Finally, the receiving pattern of the box mB  is obtained as  

 ( ) ( )ˆ ˆ

m

m l
l B∈

= ∑R k R kɶ , (2.29) 

where ( )ˆ
lR k  denotes the receiving pattern of each basis function shifted to the 

geometric center of the box mB , is multiplied with the translated pattern and distributed 

on the basis functions residing in the box mB  as 

 ( ) ( ) 2ˆ ˆ ˆfar
l m mkl

S

Z I d= ∫R k G k kɶ . (2.30) 

Contributions from the boxes near to mB  can be added to matrix-vector multiplication as 

 far near
kl l l kl lklZ I Z I Z I≈ + . (2.31) 

While using the iterative method to solve this matrix equation, the matrix vector 

multiply is performed at each iteration. Although, the current expansion coefficients are 

changed at each iteration, the translation operator, the radiation pattern and the receiving 

pattern of each basis functions remain the same.  

The algorithm mentioned above is called single-stage FMM. The analysis in [8, 9] 

showed that the matrix-vector multiplication at each iteration requires 2 1aNM bN M−+  

floating point operations, where a  and b  are the parameters involving with the machine 

specifications and the algorithm implementation. With the choice of 1M bNa−= , the 

overall complexity of the algorithm is computed as 3/ 2( )O N .  
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2.5 The Multilevel Fast Multipole Algorithm for CFIE 

The complexity of FMM can be further reduced to ( log )O N N  by carrying out 

the procedures in a multilevel framework [32, 49, 50, 59]. Consider a multilevel tree 

structure with levels numbered between 1 and maxγ ; the first level 1γ  consists of smallest 

boxes and the last level maxγ  is the level with the largest boxes, obtained after the first 

division of the box surrounding the scatterer. In this hierarchy, nB γ  denotes the thn  box 

at the thγ  level, the father of the box ( 1)mB γ −  if 1γ γ≠  and the son of the box ( 1)mB γ +  if 

maxγ γ≠ . Note that, here and later on m  and n  are used to designate different boxes with 

different numberings. The principal idea behind MLFMA is performing far field 

interactions at each level of the tree and reducing the number of translations between 

boxes. 

For each box in the tree structure, three different lists are to be kept to execute all 

interactions. The first list consists of the specifications of the near field neighbors of the 

box nB γ  at level γ  and denoted as NnI γ′ . The second list F
nI γ′  contains those of the far 

field neighbor boxes at the level γ  whose fathers are the near neighbor of the father of 

the box nB γ . The specifications of the basis functions pertinent to the box nB γ  and the 

sons of the box nB γ  are kept in the third list S
nI γ′ . The interactions between one sample 

observer box denoted as the first box at the first level and the remaining boxes are 

depicted in Figure 2-3 for a three-level FMM. In Figure 2-3 , the sample box is 

interacting with the near neighbors in level 1 in the list 11
NI ′ . The solid diamond boxes are 

the far neighbors of the sample box and their fathers are the near neighbor of the father of 

the sample box. Therefore those are kept in 11
FI ′ . The remaining large boxes are the 

neighbors of the grandfather of the sample box. Therefore, the contributions from larger 

boxes to the basis functions kept in 11
SI ′  are directly converted from the grandfather box 

to the sample box.  
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Near-field neighbor box
(Level 1)

Source box

Far-field neighbor box
(Level 2)

Far-field neighbor box
(Level 3)

Near-field neighbor box
(Level 1)

Source box

Far-field neighbor box
(Level 2)

Far-field neighbor box
(Level 3)

 

Figure 2-3: Multilevel interactions between an observer box and the remaining source 
boxes. The interactions with near field neighbors are directly computed by conventional 

MoM. 

At the initialization of the algorithm, the following pre-computations are 

performed: (i) the near interactions of each box at level 1, 1mB , are computed by 

conventional MoM, (ii) the radiation patterns and the receiving patterns are calculated by 

Eqn. (2.27) and Eqn. (2.29) and stored for the same boxes, (iii) translation operators 

( ),L m nT γ γ−k X X  between boxes at each level are calculated and kept in memory. 

However, computation and storage of translation operators require large computational 

resources when the problem size grows and the number of levels increases. In the next 

subsection, an efficient interpolation scheme is explained to reduce the memory 

requirements and the computational time for computing translation operators at all levels.  

After the pre-computations are finalized, the radiation patterns at the levels other 

than the lowest level can be computed by an interpolator. As the box size becomes larger 

while progressing from the level 1γ −  to the level γ , the number of plane wave 

directions is increased in order to sample the radiation patterns correctly. This up-

sampling procedure can be accomplished by either a local interpolator or a global 

interpolator. The local interpolator with the complexity ( )O N  is based on the local 

interpolation functions such as Lagrange polynomials or the approximate prolate 

spheroidal functions. The global interpolator with the complexity ( log )O N N  is based on 

spherical harmonics transforms, which is discussed in next chapter. Either a local 

interpolator or global interpolator can be used to obtain radiation pattern at the box mB γ  

before the radiation pattern of the box ( 1)nB γ −  is shifted to the center of its father mB γ  as  



 18 

 ( ) ( ) ( )( )( 1)

( 1)1
ˆ ˆm ni

m ne Pγ γ γ
γ γγ

−−
−−= k X X

F k F kɶ ɶ . (2.32) 

where ( )1 .Pγ
γ −  denotes the interpolation operator which interpolates the radiation pattern 

from the level 1γ −  to the level γ . It is clear from the expression that the shifting 

operation only involves with the multiplication of radiation pattern with an exponential 

function and does not require any computational resources. This procedure is called up-

tree traversal and can be summarized with the following expression  

 ( )
( )

( ) ( )( )
max

( 1)

( 1)

( 1)1

ˆ 1

ˆ
ˆ 1

m

m n

S
n m

l l
l B

m i
n

B I

I

e P

γ

γ γ

γ γ

γ γ
γγ

γ

γ−

−

∈

−
−−

′∈

 =

= 
 ≠


∑

∑
k X X

F k

F k
F k

ɶ

ɶ
. (2.33) 

Note that the radiation patterns from the sons of the box ( 1)nB γ −  should be shifted, 

interpolated and summed in order to obtain the radiation pattern at the box mB γ .  

After all radiation patterns at every box are obtained, the next step is sweeping 

from the highest level to the lowest one. This can be achieved by translating and down 

sampling (or filtering) the radiation patterns to the boxes at lower levels. Then the field 

contributions to the basis functions at the lowest level can be obtained. In a succinct way, 

these operations can be outlined as  

 ( )

( ) ( )
( ) ( )( )

( ) ( )
( 1)

max

( 1)1

max

ˆ,

ˆ ˆ

ˆ,

F
n m

m n

F
n m

L m n n
B I

i
m n

L m n n
B I

T

e P

T

γ γ

γ γ

γ γ

γ

γ
γ γγ

γ

γ γ

γ γ

+

′∈

−
++

′∈

 − =


= ′ +
 ≠
 −



∑

∑

k X X

k X X F k

G k G k

k X X F k

ɶ

ɶ

, (2.34) 

where ( )1 .P γ
γ +′  denotes the filtering (or down-sampling) operator which filters the field 

values requiring for level 1γ +  to the field values requiring for level γ . This operator is 

also defined as the inverse of interpolation operator and named as “anterpolation 

operator” in [50]. Although the local interpolator described in [50] scales as ( )O N , a 
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global filter with complexity ( log )O N N  which is used in this study. In addition, using 

the global filter does not affect the overall complexity MLFMA.  

Translated radiation patterns at each level are down sampled to the one coarser 

level, shifted to the center of the corresponding box and summed with the contributions 

from the neighbors of that box. One efficient way that minimizes the number of 

operations requiring in the down-tree traversal is directly down sampling the translated 

radiation patterns to the lowest level (i.e., shifting all down-sampled fields to the centers 

of the corresponding boxes and summing the field contributions). After all contributions 

are added and the integral in Eqn.(2.30) is evaluated for each box , the scattered fields 

due to provided current expansions are obtained. 

2.6 Optimum Local Interpolation Scheme 

The translation operator ( ),LT k X  formulated in Section 2.3 requires 

( ) ( ) ( )2 1 1 1L L L+ + +  operations due to plane wave expansions and infinite series 

truncation. In FMM algorithm, L  is often selected as N  in order to attain 3/ 2( )O N  

overall complexity [8]. Therefore, the computation of translation operator values requires 

3/ 2( )O N  operations. The requiring computational time to compute ( ),LT k X  is 

negligible when N  is small. However, when the problem size grows, the computational 

time required for directly calculating translation operator values increases significantly.  

In lieu of directly computing all translation operator values, an interpolation 

scheme to calculate all translation operator values from a reduced amount of samples 

with a defined precision is presented in this subsection. The scheme has ( )O N  

complexity and is described in detail in [60]. There exist also other schemes used to 

reduce the CPU time for calculating the translation operator [61, 62]. The algorithm in 

[61] which can be used for interpolating translation operator values and is based on 

Legendre expansion on Chebyshev nodes has an intricate procedure. However, the 

scheme presented here is widely used and easy to implement. 
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The interpolation algorithm is based on the approximate prolate spheriodal series 

(APS) [63, 64]. The Lagrange polynomials and the Tschebyscheff sampling series can 

also be employed to interpolate translation operator values. It has been reported in [60] 

that the optimal interpolation of translation operator can be carried out with APS. The 

advantage of APS in terms of the computational time compared to the other interpolators 

has also been proved on a large scale problem in [34]. 

The idea of computing translation operator values by an interpolator originates 

from the fact that the translation operator is a band-limited function. This feature of 

translation operator can be revealed by simply letting ˆ ˆ cosθ⋅ =k X  and rewriting 

translation operator as 

 ( ) ( ) ( ) ( )1

0

, 2 1 cos
L

l
L l l

l

T kX i l h kX Pθ θ
=

= +∑ . (2.35) 

This shows that the translation operator is a band-limited function of θ  with order up to 

L  for fixed kX . A rigorous spectrum analysis which has confirmed this feature of 

translation operator is explained in [60]. It should be noted that any band-limited function 

can be uniquely reconstructed from its uniformly spaced samples by using sinc function. 

Nevertheless, computing the function value at one point with sinc interpolator requires 

taking all sampling points in the band into account. For that reason, the sinc interpolator 

is called “global interpolator”. One the other hand, APS interpolator, “local interpolator”, 

allows generating function value at one point by using a few points in the neighborhood 

of that point. Although calculating translation operator values with sinc interpolator costs 

3/ 2( )O N  operations, calculating those values with APS interpolator takes ( )O N  

computational time. It should be stated that local interpolation scheme is approximate. 

However, its approximation error can be fully controllable. By properly setting over-

sampling ratio s  and the number of interpolation points p , the desired level of accuracy 

in interpolation scheme can be obtained. This will be discussed in Chapter 4.  

The formula for interpolating translation operator samples with APS is given as 

[63] 
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 ( ) ( ) ( ) ( )
0

0

0
1

,
m p

L L N M
m m p

T T m S m D mθ θ θ θ θ θ θ
+

= − +
= ∆ − ∆ − ∆∑ɶ , (2.36) 

where ( )MD θ  denotes the periodic sinc function or Dirichlet kernel while ( )0,NS θ θ  is 

the windowing function. The windowing function is defined as 

 ( ) ( )
( )

0
0

0

,
,

0,
N

N
N

R
S

R

θ θ
θ θ

θ
= , (2.37) 

 ( )
( ) ( ) ( )

( ) ( )

1 2 2
0

0 2 2
0

sinh 2 1 sinh sin 2 sin 2
,

sin 2 sin 2
N

N
R

θ θ
θ θ

θ θ

− + −
  =

−
. (2.38) 

The Dirichlet kernel can be expressed as  

 ( ) ( )
( ) ( )
sin 2 1 2

2 1 sin 2M

M
D

M

θ
θ

θ
+  =

+
. (2.39) 

The terms given in the expressions can be more explicitly described as follows: L  

is the truncation number or the polynomial degree of translation operator. M sL=  is the 

total number of sampling points, where s is the over-sampling ratio. Sampling points 

should be equally spaced in the band and the sample spacing must be 

( ) ( )2 2 1Mθ π∆ = + . ( )1N M L s L= − = −  is the number of over-sampling points. 

[ ]0 Intm θ θ= ∆  shows the index of the nearest sampling point to the interpolating point. 

0 pθ θ= ∆  is the width of the window. 2p n=  is the number of interpolation points at 

one side of the interpolating point.  

The choice of over-sampling ratio s  and the number of interpolation points (or 

truncation number) p  is crucial in APS interpolator. Properly choosing these parameters 

yields to perform the interpolation procedure in minimum execution time with a preferred 

level of accuracy. Two algorithms to find the optimum p  and s parameters for a 

provided error tolerance will be presented in Chapter 4.  
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CHAPTER 3  
SCALAR AND VECTOR SPHERICAL FILTERS  

3.1 Introduction 

MLFMA requires the upward and downward conversion of radiated and incoming 

fields between consecutive levels, i.e., aggregation and disaggregation. These 

conversions, from the finer level to the coarser level and from the coarser level to the 

finer level, are performed via interpolation/anterpolation(filtering), shifting, and summing 

operations. Shifting and summing operations are exact and linear operations. They do not 

require significant CPU resources. However, interpolation and filtering operations are 

based upon intricate schemes and require considerable CPU usage. Therefore, accurate 

and efficient schemes for interpolating and filtering fields are of paramount importance 

for the performance and accuracy of aggregation and disaggregation stages. 

As briefly mentioned before, there exist two different schemes for interpolating 

and filtering field patterns: the one is global interpolation and filtering scheme based on 

the spherical harmonic transforms, the other one is local interpolation and anterpolation 

scheme based on local interpolation functions. Although, global interpolation and 

filtering scheme is exact, the local interpolation and anterpolation scheme is an 

approximate approach and error analysis due to this approach becomes non-trivial as the 

problem size grows and the levels of MLFMA tree increases [65]. This is because the 

interpolation and anterpolation procedures are carried out between all consecutive levels 

and the total error due to the aggregation and the disaggregation stages accumulates at 

each interpolation and filtering process.  
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Here, accurate and efficient global interpolation and filtering algorithms are 

revisited. For interpolating and filtering the scalar fields generated by a cluster of point 

sources, encountered in Helmholtz MLFMA, the scalar spherical filter is explained. For 

interpolating and filtering the vector fields due to a cluster of dipoles, which take place in 

Maxwell MLFMA, the vector spherical filter is described. At the end of the chapter, the 

pseudo codes for the fast versions of scalar and vector spherical filters are presented.  

3.2 The Scalar Spherical Filter  

3.2.1 Overview 

Filtering a scalar function defined over a sphere is a common problem in many 

areas such as electromagnetic and acoustic scattering, weather and climate modeling, 

quantum mechanics, geophysics, and several others. Traditionally, filtering a scalar 

function via standard spectral transform procedures requires 3( )O N  operations, where N  

is the number of sampling points in the elevation direction. This computational 

requirement limits the applicability of standard spectral transform procedures to spheres 

with small number of samples. To filter a scalar function defined over a sphere with a 

large number of samples, the researchers have proposed several fast filtering schemes for 

the last decade [61, 66-79] and this research area is still active. The pioneering research 

on this topic has been conducted by Orzsag and Alpert and the first algorithms were 

presented in [73] and [61]. Although these algorithms exhibited high performance in low 

orders and degrees, they suffered from low performance and accuracy at very high orders 

or degrees [77]. The scheme summarized in [67] requires 2 2 2( log ( ))O N N  operations for 

filtering. It has been reported in [74] that although this scheme is exact, it tends to be lack 

of stability. Another filtering scheme based on a wavelet approach with complexity 

2 2( (log( )) log(1/ ))O N N ε , where ε  is the fixed precision, is represented in [71]. 

However, it has been claimed in [74] that the numerical results presented in [71] don’t 

clearly show the efficiency of proposed method. The filtering scheme in [77], based on 

the similar ideas in [70], has the complexity of 2( log( ) log(1/ ))O N N ε , showed a 
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prominent advancement compared to [76], and became a comparable alternative to the 

work in [68], which has computational complexity of 2( log( ))O N N .  

In this subsection, the standard scalar spherical filter (based on standard spectral 

transforms) and its accelerated version (i.e., the fast scalar spherical filter) are elucidated. 

The standard method is explained in next subsection. And the fast method proposed in 

[68] is described in the fast scalar spherical filter subsection.  

3.2.2 The Standard Scalar Spherical Filter 

The scalar spherical harmonics (SSH), ( ),m
nY θ φ , the eigenfunctions of the 

spherical Laplace operator and sometimes called “tesseral harmonics”, of degree 

0,1,2,...n =  and order , 1,..., 1,m n n n n= − − + −  at latitude θ  and longitude φ  are defined 

as [80, 81] 

 ( ) ( )1
, cos

2
m m im

n nY P e φθ φ θ
π

= , (3.1) 

where m
nP  denotes normalized associated Legendre functions (NALF) and consists of 

associated Legendre functions (ALF), m
nP , i.e. 

 ( ) ( ) ( )
( ) ( )!

0.5
!

m m
n n

n m
P n P

n m
µ µ

−
= +

+
, (3.2) 

for [ ]1,1µ ∈ − . The square rooted term is called the normalization constant. ALF is 

defined in terms of the derivatives of Legendre polynomials ( )nP µ  as 
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µ
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where the phase factor ( )1
m−  is referred as the Condon-Shortley phase. By using 

Rodrigues’ formula, 

 ( ) ( )21
1

2 !

n
n

n n n

d
P

n d
µ µ

µ
 = −  

, (3.4) 
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more explicit form of NALF is obtained as 

 ( ) ( ) ( )
( )

( ) ( ) ( )/ 22 2! 1
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n m d
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+
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Before discussing spectral transform extensively, a few observations about the 

algorithms for computing the values of NALF are in order. In literature, a few algorithms 

were proposed for fast calculation of NALF in double precision arithmetic [82-85]. In our 

tests, we see that the algorithm prescribed in [86] doesn’t calculate the NALF values after 

degree 160. Another algorithm available in NETLIB relies on the computational schemes 

given in [83-85] breaks down and stops execution for arguments very near to 1 at the 

degree 500 and order 413. The algorithm described in [82] and provided in web site [87] 

accurately calculates NALF values up to very high degrees and orders (e.g. 2800). The 

algorithm given as built-in function in special function toolbox of MATLAB 7.0, very 

accurate and stable at very high degrees and orders, was converted to Fortran 90 for test 

purposes. It has been validated that the code in [87] is noticeably faster than the 

converted code for calculating all degrees and orders until a requested degree.  

The spectral transform relies on the orthogonal projection of a scalar field 

( ),f θ φ  tabulated at latitude-longitude grid of a sphere onto the space spanned by SSH. 

As a square-integrable and band-limited spherical function defined in intervals 

{( , ) : (0 ,0 2 )}θ φ θ π φ π≤ ≤ ≤ ≤ , the scalar field ( ),f θ φ  can be expanded as a linear 

combination of SSH as 

 ( ) ( )
0

, ,
N n

m m
n n

n m n

f f Yθ φ θ φ
+

= =−

=∑ ∑ , (3.6) 

where N  is the truncation degree and mnf denotes spherical harmonic coefficients. 

Orthogonality relation of SSH, 

 ( ) ( )
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, , sinm m
n n nn mmY Y d d

π π
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can be used to obtain the spherical harmonic coefficients after both sides of Eqn.(3.6) are 

multiplied by ( )* ,m
nY θ φ , where asterisk (* ) denotes the complex conjugate, and 

integrated over the surface of unit sphere, i.e., 

 ( ) ( )
2

'*
'

0 0

, , sinm m
n nf f Y d d

π π

θ φ θ φ θ θ φ= ∫ ∫ . (3.8) 

The procedure to compute the spherical harmonic coefficients via Eqn.(3.8), i.e. 

transformation from grid space to spectral space, is called “spherical harmonics analysis”. 

The spherical harmonics analysis consists of two steps, namely, forward Fourier 

transform and forward Legendre transform. After spherical harmonic coefficients are 

obtained, the operation to compute spherical data over grid points via Eqn.(3.6), i.e. 

transformation from spectral space to grid space, is called as “spherical harmonics 

synthesis”. The spherical harmonics synthesis comprises two steps, specifically, 

backward Legendre transform and backward Fourier transform [88]. The forward Fourier 

transform, the forward Legendre transform, the backward Legendre transform and the 

backward Fourier transform steps will be explained in detail after a truncation method for 

spherical harmonic coefficients is discussed. 

To filter or interpolate a scalar field data (e.g. incoming or outgoing fields in 

Helmholtz MLFMA) from a degree N  to a degree K  via the standard scalar spherical 

filter, one can first calculate spherical harmonic coefficients up to degree N and store 

these in a triangular matrix like  
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. (3.9) 

For filtering grid space data from the degree N  to the degree K , ( N K≥ ), in 

spectral domain, the sub-matrix with dimensions ( 1) (2 1)K K+ × +  whose middle column 

is aligned with 0
nf  column can be assigned as new truncated spectral data m

nf
ɶ . For 

interpolating grid space data from the degree N  to the degree K , ( K N≥ ), in spectral 
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domain, the spectral data matrix m
nf  must be expanded to the dimensions 

( 1) (2 1)K K+ × +  with keeping the relative positions of spherical harmonic coefficients 

the same according to 0nf  column and adding zeros to the rows under the ( 1)N + th row. 

The data in new matrix can be assigned as new truncated spectral data m
nfɶ . For both 

operations (filtering and interpolation), the scalar field values due to the degree K  is 

obtained on a new grid ( , )θ φ′ ′ by performing spherical harmonic synthesis 

 ( ) ( )
0

, ,
K n

m m
n n

n m n

f f Yθ φ θ φ
+

= =−

′ ′ ′ ′=∑ ∑ɶ ɶ . (3.10) 

In practice, spherical harmonics analysis (Eqn.(3.8)), which can more explicitly 

stated as 

 ( ) ( )
2

0 0

1
cos sin ,

2
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π
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can be carried out in two steps: first, performing a forward Fourier transform of scalar 

field values along latitudes  

 ( ) ( )
2

0

1
,

2
m imf f e d

π
φθ θ φ φ

π
−= ∫ , (3.12) 

and second, performing the forward Legendre transform to obtain spherical harmonic 

coefficients as 

 ( ) ( )
0

cos sinm m m
n nf f P d

π

θ θ θ θ= ∫ . (3.13) 

Eqn. (3.12) can be evaluated via trapezoidal quadrature formula  

 ( ) ( )
1

2
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I
imm

i
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f f e
I

φπθ θ φ −

=
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where I  is the number of grid points in one longitude and 2 /i i Iφ π=  for 1,...,i I= . This 

integration is exact for the band-limit N  and the wave numbers m N≤  and can be 
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effectively carried out by the fast Fourier transform (FFT) via the routine provided in 

[89].  

The forward Legendre transform expressed in Eqn.(3.13) can be performed using 

the Gaussian quadrature as 

 ( ) ( )
1

J
m m m

n j n j j
j

f f P wθ µ
=

=∑ , (3.15) 

where J  denotes the number of grid points along one latitude and 1 2, ,..., Jw w w  are the 

Gaussian weights corresponding to the Gaussian nodes cosj jµ θ= . Gaussian quadrature 

is exact for any polynomial of degree 2 1J −  [90].  

After using the abovementioned spectral data truncation method and obtaining the 

truncated coefficientsm
nf
ɶ , the backward Legendre transform is applied to compute 

filtered or interpolated Fourier coefficients as  

 ( ) ( )
K

m m m
n n

n m

f f Pθ µ
=

′ ′= ∑ɶ ɶ . (3.16) 

where cosµ θ′ ′=  is defined in new spherical grid (,θ φ′ ′ ). The interpolated or filtered 

scalar field values can be generated by using a backward fast Fourier transform, 

 ( ) ( )1
,

2

K
m im

m K

f f e φθ φ θ
π

′

=−

′ ′ ′= ∑ɶ ɶ , (3.17) 

that completes spherical harmonics synthesis. Computational complexity analysis can be 

performed for each step in the spherical harmonics analysis and synthesis as follows: (i) 

the forward fast Fourier transforms performed consecutively for all latitudes have cost of 

( log )O JI I , (ii) the forward Legendre transforms for computing all spherical harmonic 

coefficients up to degree N  require 2( )O JN  operations, (iii) the backward Legendre 

transforms up to degree K  scale as 2( )O PK , (iv) the backward fast Fourier transforms 

for all latitudes require ( log )O PQ Q  operations. In practice, the number of points along 

latitude and longitude in the old grid ( , )θ φ  and in the new grid ( , )θ φ′ ′  are selected as 

1,J N= + 2 1I N= +  and 1,P K= + 2 1Q K= + . Overall complexity of the standard 
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scalar spherical filter is of 3( )O N  for filtering and 3( )O K  for interpolation over 2( )O N  

grid points. In next subsection, a method to reduce overall complexity of the algorithm to 

2( log )O M M  is introduced where M K=  or M N=  is for interpolation or filtering. 

3.2.3 The Fast Scalar Spherical Filter 

As clearly seen from the cost analysis of standard scalar spherical filter, the 

forward and backward Legendre transforms require 3( )O N  operations. The Legendre 

transforms become a bottleneck in performance sight of view during performing 

interpolation/filtering operations at high degrees (e.g. 100 and above). Therefore, the 

method for rapid evaluation of Legendre transforms introduced in [68] must be employed 

to reduce the overall complexity of algorithm from 3( )O N  to 2( log )O N N . The method 

is simply based on the combination of the forward and backward Legendre transforms 

and the simplification of sum operator with Christoffel-Darboux formula for NALF. The 

resulting sum is evaluated with the fast multipole method (see [91]), or with the 

generalized fast multipole method proposed in [72]. Since the implementations of direct 

and generalized fast multipole methods for spherical filter are quite technical, the 

explanations of those are not included here.  

Combination of the forward and the backward transforms results in 
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j n j j n
n m j

f f P w Pθ θ µ µ
= =

 
′ ′=  

 
∑ ∑ɶ . (3.18) 

And interchanging the summations yields 

 ( ) ( ) ( ) ( )
1

J K
m m m m

j j n j n
j n m

f f w P Pθ θ µ µ
= =

′ ′=∑ ∑ɶ . (3.19) 

Inner summation can be simplified by Christoffel-Darboux formula defined for NALF as 
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where ( ) ( )2 2 24 1m
n n m n∈ = − − , which is straightforwardly derived by using the three 

term recurrence relation [92], 

 ( ) ( ) ( )1 1 1
m m m m m

n n n n nP P Pµ µ µ µ+ + −=∈ + ∈ , (3.21) 

and the mathematical induction for varying degree (see, for example, [93] pg. 318). 

Substituting Eqn.(3.20) in Eqn.(3.19) yields 
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which can be written in a compact form 
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It is apparent from Eqn.(3.23) that the new formulation based on Christoffel-

Darboux formula requires 2( )O JK  operations. The complexity of this step can be 

reduced to 2( )O N  scale using the direct/generalized fast multipole method applied to the 

matrix form of Eqn.(3.23). Technical details of these operations can be found in [72, 91]. 

In case ' jµ µ= , the quotient can be evaluated with L'Hôpital's rule and the truncated 

Fourier coefficients can be obtained via 
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where the derivative of NALF ( )' 'm
ndP dµ µ  is defined as  
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The computations of the Fourier coefficients ( )mf θ  and the truncated Fourier 

coefficient ( )mf θ ′ɶ  are carried out with the forward and backward FFTs as described 
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before. The complexities of these operations are of 2( log )O N N . So, the overall 

complexity of the algorithm is proportional to 2( log )O N N . 

3.3 The Vector Spherical Filter  

3.3.1 Overview 

Filtering a vector function defined over a sphere can be accomplished via 

translating spherical components of that function to the three Cartesian components and 

invoking the scalar standard/fast spherical filter to filter or interpolate all components 

individually. However, the vector function expressed with only its traverse components 

(θ  and φ ), which doesn’t have radial component r , can also be filtered via standard/fast 

vector spherical filter without translation to the Cartesian coordinates. Filtering the vector 

function with only its transverse components allows to gain from the storage and 

computational time by a factor 1/3 compared to conventional filtering performed for each 

component of Cartesian coordinates. 

The idea of filtering a vector function with only transverse components by a fast 

scheme was proposed by Professor Michielssen’s former research group [38]. The idea 

relies on the projection of a vector function to the vector spherical harmonics space and 

utilization of the fast scalar spherical filter mentioned at previous section. The fast vector 

spherical filter with complexity 2( log )O N N  is build upon the formulation of a slow 

vector spherical filter with complexity 3( )O N , which is explained first in this section. 

Then, the fast vector spherical filter algorithm is described while discussing some minor 

modifications in order to make it fully consistent with the fast scalar spherical filter.  

3.3.2 The Standard Vector Spherical Filter 

The vector spherical harmonics (VSH), ( ),m
n θ φΨ  and ( ),m

n θ φΦ , of  degree 

0,1,2,...n =  and order , 1,..., 1,m n n n n= − − + −  at latitude θ  and longitude φ  are defined 

as [94] 

 ( ) ( ), ,m m
n nr Yθ φ θ φ= ∇Ψ , (3.26) 
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and 

 ( ) ( )ˆ, ,m m
n nθ φ θ φ= ×Φ r Ψ , (3.27) 

where ( ),m
nY θ φ  are the scalar spherical harmonics (SSH) as defined before and r∇  

simply denotes the surface gradient operator in spherical coordinates. After surface 

gradient operator is defined as 
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the varieties of VSH can be more explicitly stated as 
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and 
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By the assumptions that the varieties of VSH constitutes a complete orthogonal 

basis, and the vector field ( ),θ φF , a square-integrable and band-limited vector spherical 

function, defined in intervals {( , ) : (0 ,0 2 )}θ φ θ π φ π≤ ≤ ≤ ≤ , the vector field ( ),θ φF  

can be expanded as the linear combinations of varieties of VSH as 
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where m
na  and m

nb  are expansion coefficients analogous to the spherical harmonics 

coefficients m
nf  in Eqn.(3.6). Orthogonality relations of VSH, 

 
( ) ( )
( ) ( ) ( )( )

*2

' '*
0 0

, ,
sin 1

, ,

m m
n n

nn mmm m
n n

d d n n
π π θ φ θ φ

θ θ φ δ δ
θ φ θ φ

 ⋅  = + ⋅  
∫ ∫

Ψ Ψ

Φ Φ
, (3.32) 



 33 

where asterisk (* ) denotes complex conjugate, can be used to obtain expansion 

coefficients m
na  and m

nb  from the samples of ( ),θ φF . With the knowledge of 
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both sides of Eqn.(3.31) are multiplied (dot product) by ( )* ,m
n θ φΨ  and integrated over 

unit sphere to compute expansion coefficients m
na . Same procedure is applied to obtain 

m
nb  by multiplying ( )* ,m

n θ φΦ  and resulting expressions are obtained as 
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The procedure to obtain expansion coefficients m
na  and m

nb  is similar to the 

procedure explained in standard scalar spherical filter. To this end, this procedure can 

also be called as spherical harmonic analysis and it consists of the same steps, namely, 

the forward Fourier transform and the forward Legendre transform, described in Section 

3.2.2. After expansion coefficients are computed, they can be truncated by the spectral 

data truncation method explained in Section 3.2.2. The new truncated expansion 

coefficients m
naɶ  and m

nbɶ   are transformed to the grid space by spherical harmonic 

synthesis, which comprises two steps: the backward Legendre transform and the 

backward Fourier transform. All these steps are explained in detail as follows. 

The spherical harmonic analysis for the vector function can be expressed for each 

expansion coefficients individually by explicitly writing ( )* ,m
n θ φΨ  and ( )* ,m

n θ φΦ  in 

Eqn.(3.34) as 
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Integrations along latitude act on the scalar function values ( ( ) ( ), , ,F Fθ φθ φ θ φ ) and the 

exponential terms ( ime φ− ). Therefore, they can be separated from integrations along 

longitude by defining Fourier coefficients according to theta component of vector field, 

( )mfθ θ , and phi component of vector field, ( )mfφ θ , as 
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where I  is the number of grid points in one longitude and 2 /i i Iφ π=  for 1,...,i I= . As 

stated in Section 4.2.2, Fourier coefficients can be effectively calculated via fast Fourier 

transform. Substituting Fourier coefficients in Eqn.(3.35)-(3.36) yields  
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Integrations along latitude can be performed via Gaussian quadrature as  
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where J  denotes the number of grid points along one latitude and 1 2, ,..., Jw w w  are the 

Gaussian weights corresponding to the Gaussian nodes cosj jµ θ= . 

After utilizing the spectral data truncation method described in Section 4.2.2 and 

obtaining the truncated expansion coefficients m
naɶ  and m

nbɶ , the backward Legendre 

transforms are applied to compute filtered or interpolated Fourier coefficients, ( )mfθ θ ′ɶ  

and ( )mfφ θ ′ɶ , corresponding to scalar components ( ),Fθ θ φ′ ′ɶ  and ( ),Fφ θ φ′ ′ɶ , as 

 ( ) ( ) ( ) ( )
21 '

mK
nm m m m

n n n
n m

P im
f a b Pθ

µ
θ µ

θ µ=

′∂
′ ′= +

∂ −
∑ɶ , (3.42) 

 ( ) ( ) ( ) ( )
21 '

mK
nm m m m

n n n
n m

im P
f a P bφ

µ
θ µ

θµ=

′∂
′ ′= −

∂−
∑ɶ , (3.43) 

where K  is the truncation degree and cosµ θ′ ′=  is defined in new spherical grid (,θ φ′ ′ ). 

The interpolated or filtered vector field values can now be generated by using the 

backward fast Fourier transforms as  

 
( )
( )

( )
( )

, 1
, 2

mK
im

m
m K

fF
e

F f

θθ φ

φ φ

θθ φ
θ φ π θ

′

=−

 ′ ′ ′   =   ′ ′ ′      
∑

ɶɶ

ɶ ɶ
. (3.44) 

This completes spherical harmonics synthesis for vector fields. The computational cost of 

the forward and backward Fourier transforms is fourfold according to total cost of 

corresponding steps in standard scalar spherical filter. The forward and backward 

Legendre transforms require eight times 3( )O N  operation and their complexity will be 

reduced to 2( log )O N N  by the algorithm explained in next subsection which employs 

the method described in fast scalar spherical filter subsection.  

3.3.3 The Fast Vector Spherical Filter 

As seen from the complexity analysis of standard vector spherical filter, Legendre 

transforms cost 3( )O N operations and this renders the filtering and interpolation 

operations impossible at high degrees. Therefore, a fast scheme to interpolate and filter 
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vector fields is needed to retain the overall efficiency of MLFMA algorithm. In this 

subsection, implementation of the fast scalar spherical filter to the standard vector 

spherical filter is discussed. The correction terms to make fast scalar spherical filter fully 

consistent with the standard vector spherical filter are derived. 

As seen in spectral data truncation method, the interpolation operation is nothing 

more than properly padding zeros to the spectral spectrum of field data. During 

interpolation process, since there is no spectral data content modification other than 

adding zeros, each scalar component of vector far field can be separately interpolated by 

simply calling fast scalar spherical filter. However, the same is not true for filtering 

process. Individually employing fast scalar spherical filter for each scalar component of 

vector field is not sufficient for filtering operation. It requires an additional operation 

such as adding proper higher order and degree terms of spectral data (or correction terms) 

to the truncated spectral data. This extra operation causes from the derivatives of 

Legendre functions that appear in Legendre transforms in Eqn.(3.35)-(3.36)-(3.42)-(3.43) 

and is explained in the following paragraphs after an explicit form of derivative of NALF 

is derived. 

Some important recurrence relations for associated Legendre functions and their 

derivative are [54, 56], 

 
( ) ( ) ( )1cos cos

cos cos
sin

m
n m m

n n

P m
P P

θ θ θ θ
θ θ

+∂
= −

∂
, (3.45) 

 ( ) ( ) ( ) ( ) ( )1
1sin cos cos cos cosm m m

n n nP n m P n m Pθ θ θ θ θ+
−− = − − + , (3.46) 

 ( ) ( ) ( ) ( ) ( )1 1cos cos 1 cos cos
2 1

m m m
n n n

n
n P n m P n m P

n
θ θ θ θ+ − = − + + + +

. (3.47) 

To obtain the explicit form of derivative of associated Legendre function, Eqn.(3.45) can 

be multiplied by the term sinθ  as 

 
( ) ( ) ( )1cos

sin cos cos sin cos
m

n m m
n n

P
m P P

θ
θ θ θ θ θ

θ
+∂

= −
∂

. (3.48) 

Then, Eqn.(3.46) can be substituted into Eqn.(3.48) and Eqn.(3.48) can be 

rewritten as 
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( ) ( ) ( ) ( )1

cos
sin cos cos cos

m
n m m

n n

P
n P n m P

θ
θ θ θ θ

θ −

∂
= − +

∂
. (3.49) 

Third recurrence relation (Eqn.(3.47)) can be employed in Eqn.(3.49) and resulting 

expression can be written as 

 
( ) ( )

( ) ( ) ( ) ( )
( ) ( )1 1

cos 1 1
sin cos cos

2 1 2 1

m
n m m

n n

P n n m n n m
P P

n n

θ
θ θ θ

θ + −

∂ − + + +
= −

∂ + +
. (3.50) 

This is the explicit expression for the derivative of associated Legendre functions. To 

obtain a similar expression for the derivative of NALF, one can simply multiply both 

sides of the equation with the normalization factor as 
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( ) ( )
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( )( )
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1

1

! cos ! 1
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+
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− + +
− +

+ +

,(3.51) 

and modify the expression in the view of Eqn.(3.2) as 

 

( ) ( ) ( )
( )( )
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( ) ( )

( )( )
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1

1

cos 0.5 1 1
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n

m
n
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θ
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+

−

∂ + + + − +
=
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+ − + +
−

− + +

. (3.52) 

Now, consider only the θ  component of vector field and its spherical harmonic 

representation multiplied by the term sinθ , i.e., 

 ( ) ( ) ( )( )
1

,
sin , sin ,

mN n
nm m m

n n n
n m n

Y
F a b imYθ

θ φ
θ θ φ θ θ φ

θ

+

= =−

 ∂
= +  ∂ 
∑ ∑ , (3.53) 

which can be further expanded with the help of Eqn.(3.52) as 
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. (3.54) 

To truncate this expansion at a degree K , outer summation variables are changed to k  

by assigning 1n k+ =  for the first summation. For the second and third summations, the 

variables are set to 1n k− =  and n k=  respectively as  
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.(3.55) 

Expression can be rewritten in a concise way as 

 ( ) ( ) ( ) ( )
1
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0
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K k K
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k k K K K
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where the coefficients mkcɶ , m
Keɶ  and 1

m
Ke +ɶ  are 
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K K K

K K m K K m
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K K m K−
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m m
K K

K K m K K m
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K K m K+
+ + + + −
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ɶ ɶ . (3.59) 

Same procedure is applied to the φ  component of the vector function. The filtered 

φ  component of the vector field and its spherical harmonic expansion can be stated as 

 ( ) ( ) ( ) ( )
1

1
0

sin , , ,
K k K

m m m m m
k k K K K
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F d Y f f Yφθ θ φ θ φ θ φ
− + +
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where the coefficients mkdɶ , m
Kf
ɶ  and 1

m
Kf +
ɶ  are 
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m m

K K

K K m K K m
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K K m K+
+ + + + −
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First summations at the right hand side of Eqn.(3.56) and (3.60) can be calculated by fast 

scalar spherical filter algorithm described in Section 3.2.3 . The remaining summation 

adds the spherical data contributions (or correction terms) resulting from the subsequent 

two degrees after the degree K  in the spectral domain. In case the fast scalar spherical 

filter is invoked for filtering at degree K , contributions of the following correction terms 

are also be added to grid data 

 ( ) ( )( )
( ) ( )

( )
( )1 1

0.5 1 1

1.5 1 2 1
m m m
K K K

K K m K K m
e b im a

K K m K+ +
+ + + + −

= +
+ + − +

ɶɶ ɶ , (3.64) 

 
( ) ( )
( ) ( )

( )( )
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1.5 2 1 2

2.5 2 2 3
m m
K K

K K m K K m
e a

K K m K+ +
+ + + + + −

=
+ + − +
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 ( ) ( )( )
( )( )

( )
( )1 1

0.5 1 1

1.5 1 2 1
m m m

K K K

K K m K K m
f a im b

K K m K+ +
+ + + + −
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( )( )
( )( )

( )( )
( )2 1

1.5 2 1 2

2.5 2 2 3
m m

K K

K K m K K m
f b

K K m K+ +
+ + + + + −

= −
+ + − +

ɶ ɶ , (3.67) 

where m  varies between K−  and K+  for Eqn.(3.64)-(3.66) and between ( )1K− +  and 

( )1K +  for Eqn.(3.65)-(3.67). It’s apparent that the calculation of correction terms calls 

for the computation of coefficients 1
m
Ka +ɶ , 2

m
Ka +ɶ , 1

m
Kb +
ɶ , and 2

m
Kb +
ɶ . Note that the square 

rooted terms in Eqns.(3.61)-(3.67) are missing in the formulation of fast vector spherical 

filter presented in [38].  

In spite the fact that the desired degree of truncation is K , the final spherical data 

obtained by combining both direct filtering and correction contributions is of degree 

1K + . Therefore, the number of grid points along both directions should be selected due 

to the degree 1K +  during spherical harmonic synthesis. 

The computational time required to calculate the correction terms is of 2( )O N . 

The overall complexity of algorithm is at the orders of 2( log )O N N  with FMM 

accelerator, which is the same as the complexity of the fast scalar spherical filter. 

3.4 Implementation 

In this section, implementations of the fast scalar spherical filter and the fast 

vector spherical filter are described in detail via pseudo codes.  
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Algorithm 1 The fast scalar spherical filter for Helmholtz MLFMA 

Input and Output. 

Assumption [The scalar field pattern is sampled at 1J N= +  latitudes and 

2 1I N= +  longitudes. The filtered field pattern is tabulated at 1P K= +  latitudes and 

2 1Q K= +  longitudes]  

Input is the scalar field values sampled at degree N  ( ( ) ( )1 1 1 2, , , ,f fθ φ θ φ  

( )..., ,J If θ φ ). 

Output is the scalar field values sampled at degree K  ( ( ) ( )1 1 1 2, , , ,f fθ φ θ φ′ ′ ′ ′ɶ ɶ  

( )..., ,P Qf θ φ′ ′ɶ ). 

Pre-computations. 

Comment [Compute all data that depend on the degrees (N  and K  ) and doesn’t 

depend on the grid data ( ),f θ φ .] 

Locate the Gaussian nodes jθ  and kθ ′  ( 1,...,j J= , 1,...,k K= ) in grids ( ),θ φ , 

( ),θ φ′ ′ . 

Calculate the Gaussian weights jw . 

Fill out the matrices ( )'
1 ,m

KP mµ+ ′ , ( )1 ,m
KP mµ+ , ( )' ,m

KP mµ′ , and ( ),m
KP mµ , where 

( )cosµ θ′ ′=  and ( )cosµ θ= , with NALF values at all orders of degrees 1K +  and 

K  . 

Step 1 The forward Fourier transform. 

Comment [Convert the scalar field values ( ) ( ) ( )1 1 1 2, , , ,..., ,J If f fθ φ θ φ θ φ  into the 

Fourier coefficients ( ) ( )1 ,..., ,N N
Jf fθ θ− −  ( ) ( )1

1 ,...,N N
Jf fθ θ− + .] 

do 1,...,j J=  

Perform the fast Fourier transform for the scalar field values at the same latitude 

( )1, ,jf θ φ ( )..., ,j If θ φ . 

end do 
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Step 2 and 3 The forward and the backward Legendre transforms. 

Comment [Convert the Fourier coefficients ( ) ( )1 ,..., ,N N
Jf fθ θ− −  

( ) ( )1
1 ,...,N N

Jf fθ θ− +  into the truncated Fourier coefficients ( ) ( )1 ,..., ,K K
Pf fθ θ− −′ ′ɶ ɶ  

( ) ( )1
1 ,...,K K

Pf fθ θ− + ′ ′ɶ ɶ .] 

Perform the operation 1 p jµ µ′ −  for Gaussian nodes in grids ( ),θ φ , ( ),θ φ′ ′ . 

do ,...,m K K= − +  

Calculate mfɶ  (Eqn.(3.23)) at each wave number for all nodes.  

end do 

Step 4 The backward Fourier transform. 

Comment [Convert the truncated Fourier coefficients ( ) ( )1 ,..., ,K K
Pf fθ θ− −′ ′ɶ ɶ  

( ) ( )1
1 ,...,K K

Pf fθ θ− + ′ ′ɶ ɶ  into the scalar field values ( ) ( ) ( )1 1 1 2, , , ,..., ,P Qf f fθ φ θ φ θ φ′ ′ ′ ′ ′ ′ɶ ɶ ɶ .] 

do 1,...,p P=  

Perform the fast backward Fourier transform for the truncated Fourier coefficients at 

the same latitude ( ) ( ),...,K K
p pf fθ θ− ′ ′ɶ ɶ . 

end do 

End of Algorithm  
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Algorithm 2 The fast vector spherical filter for Maxwell MLFMA 

Input and Output. 

Assumption [The vector field pattern is sampled at 1J N= +  latitudes and 

2 1I N= +  longitudes. The filtered vector field pattern is tabulated at ( )1 1P K= + +  

latitudes and ( )2 1 1Q K= + +  longitudes]  

Input is the vector field values sampled at degree N  ( ( ) ( )1 1 1 2, , , ,F Fθ θθ φ θ φ  

( )..., ,J IFθ θ φ , ( ) ( )1 1 1 2, , , ,F Fφ φθ φ θ φ ( )..., ,J IFφ θ φ ). 

Output is the vector field values sampled at degree 1K +  ( ( ) ( )1 1 1 2, , , ,F Fθ θθ φ θ φ′ ′ ′ ′ɶ ɶ  

( )..., ,P QFθ θ φ′ ′ɶ , ( ) ( )1 1 1 2, , , ,F Fφ φθ φ θ φ′ ′ ′ ′ɶ ɶ ( )..., ,P QFφ θ φ′ ′ɶ ). 

Step 1 The forward Fourier transform. 

Comment [Convert the vector field values ( ) ( ) ( )1 1 1 2, , , , ,..., ,J IF F Fθ θ θθ φ θ φ θ φ , 

( ) ( ) ( )1 1 1 2, , , ,..., ,J IF F Fφ φ φθ φ θ φ θ φ  into the Fourier coefficients ( )1 ,Nfθ θ−  

( )..., ,N
Jfθ θ− ( ) ( )1

1 ,...,N N
Jf fθ θθ θ− + , ( ) ( )1 ,..., ,N N

Jf fφ φθ θ− − ( ) ( )1
1 ,...,N N

Jf fφ φθ θ− + .] 

Call the subroutine written for the first step of fast scalar spherical filter separately for 

θ  and φ  components of the vector field. 

Step 2  

Comment [Calculate the contributions stemming from the correction terms to the 

spherical data ( ) ( ) ( )1 1 1 2, , , ,..., ,C C C
P QF F Fθ θ θθ φ θ φ θ φ′ ′ ′ ′ ′ ′ɶ ɶ ɶ , ( ) ( )1 1 1 2, , , ,...,C CF Fφ φθ φ θ φ′ ′ ′ ′ɶ ɶ  

( )..., ,C
P QFφ θ φ′ ′ɶ . ] 

Compute the coefficients 1
m
Ka +ɶ , 2

m
Ka +ɶ , 1

m
Kb +
ɶ , and 2

m
Kb +
ɶ  by using Eqn.(3.40)-(3.41). 

Calculate the coefficients 1
m
Ke +ɶ , 2

m
Ke +ɶ , 1

m
Kf +
ɶ , 2

m
Kf +
ɶ  in Eqn.(3.64)-(3.67). 

Obtain ( )mfθ θ ′ɶ  and ( )mfφ θ ′ɶ  by employing Eqn.(3.42)-(3.43). 

Call the subroutine written for the fourth step of fast scalar spherical filter separately 

for ( )mfθ θ ′ɶ  and ( )mfφ θ ′ɶ .  
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Multiply the outputs by 1 sinθ ′  and obtain the spherical data pertaining to the 

correction terms. 

Step 3 

Comment [Calculate the contributions stemming from the fast scalar spherical filter 

to the spherical data ( ) ( ) ( )1 1 1 2, , , ,..., ,D D D
P QF F Fθ θ θθ φ θ φ θ φ′ ′ ′ ′ ′ ′ɶ ɶ ɶ , 

( ) ( )1 1 1 2, , , ,...,D DF Fφ φθ φ θ φ′ ′ ′ ′ɶ ɶ  ( )..., ,D
P QFφ θ φ′ ′ɶ . ] 

Multiply the Fourier coefficients ( )mfθ θ  and ( )mfφ θ  with sinθ . 

Call the subroutines written for the second, third and fourth steps of fast scalar 

spherical filter separately for ( )mfθ θ  and ( )mfφ θ . 

Multiply the outputs by 1 sin 'θ  and obtain the spherical data by directly employing 

the fast scalar spherical filter. 

 Step 4 

Comment [Obtain the filtered vector field values 

( ) ( ) ( )1 1 1 2, , , ,..., ,P QF F Fθ θ θθ φ θ φ θ φ′ ′ ′ ′ ′ ′ɶ ɶ ɶ , ( ) ( )1 1 1 2, , , ,...,F Fφ φθ φ θ φ′ ′ ′ ′ɶ ɶ ( ),P QFφ θ φ′ ′ɶ .] 

Combine the contributions from correction terms ( ),CFθ θ φ′ ′ɶ , ( ),CFφ θ φ′ ′ɶ  and direct 

filtering ( ),DFθ θ φ′ ′ɶ , ( ),DFφ θ φ′ ′ɶ  one by one and obtain the final values ( ),Fθ θ φ′ ′ɶ , 

( ),Fφ θ φ′ ′ɶ . 

End of Algorithm  
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CHAPTER 4  
MLFMA SELF-TUNING LIBRARY  

4.1 Introduction 

The MLFMA requires ( log )O N N  computational complexity and memory 

requirement. However, there also exists a multiplicative factor inherited in computational 

complexity estimate. The multiplicative factor heavily depends on the choice of some key 

parameters (mentioned above), namely the truncation number L , the number of 

interpolation points p , and the over-sampling ratio s. L − parameter is used to truncate 

the infinite series expansion of free-space Green’s function. p − parameter is employed to 

determine the number of points in the local interpolation of the far-field signatures. 

s− parameter is used to (over-) sample the far-field signatures. These three parameters 

are of paramount importance not only in the accuracy but also in the execution time of 

the MLFMA. Therefore, these parameters should be optimally selected before executing 

the MLFMA.  

In this chapter, a library comprising robust algorithms is introduced to set these 

parameters automatically. The library is executed as a preprocessor to the actual call of 

MLFMA. It requires negligible time and allows significant MLFMA savings in terms of 

time and memory. The library consists of three main algorithms: (i) truncation number L  

estimator algorithm, (ii) the number of interpolation points p  estimator algorithm, (iii) 

the over-sampling ratio s estimator algorithm.  

This chapter consists of two sections. In the first subsection, the truncation 

number estimator algorithm is discussed. After the nature of addition theorem is 
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discussed in detail, a three-stage algorithm to locate requiring truncation number L  is 

presented. Test results of the L − parameter estimator algorithm are also provided. In the 

second subsection, estimator algorithms for interpolation parameters, p − parameter 

estimator algorithm and s− parameter estimator algorithm, are explained in detail and 

numerical test results are provided.  

4.2 Truncation Number Estimator Algorithm  

4.2.1 Overview 

In the numerical implementation of FMM, the numerical errors arise from the 

numerical integration, the processes of aggregation and disaggregation, and the truncation 

of the infinite series. By using the quadrature rules addressed in Section 2.3, the 

numerical integration can be performed exactly. Therefore, the round-off error and the 

error due to translation operator are expected at numerical integration stage [95]. The 

interpolation and filtering schemes (without FMM accelerator) described in previous 

chapter are exact and global operations for the aggregation and the disaggregation 

processes. For that reason, errors inherited in these operations come from the numerical 

errors due to the arithmetic operations. In case the local interpolation and anterpolation 

schemes are used in these processes, the error can be fully controllable due to the band-

limited nature of radiating fields. Algorithms for effectively controlling error rates at 

local interpolation and anterpolation schemes will be presented in next section. The error 

due to the truncation of infinite series (or addition theorem) is hard to control compared 

to the other error sources in FMM algorithm. In this section, the error control of addition 

theorem is discussed in detail.  

In order to control the error inherited in the addition theorem, the infinite series in 

Eqn.(2.16) must be carefully truncated. This is because excessive error due to divergent 

nature of the spherical Hankel function and early error due to the late convergence nature 

of the spherical Bessel function emerge at different truncation number values and those 

should be avoided. It is known that as the order of the spherical Hankel function increases 

and becomes much larger than the argument (L kX≫ ), the values of spherical Hankel 
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function grow exponentially and start to oscillate dramatically. This oscillation results in 

numerical instabilities in floating-point arithmetic [96]. On the other hand, truncating the 

infinite series with a small L  causes a poor approximation and an additional error due to 

the late convergence of the spherical Bessel function. The spherical Bessel function starts 

to converge after L kd> . Therefore, an optimum truncation number should be selected in 

the interval kX L kd>≫  due to desired error level. 

Previously, the truncation number has been determined by semi-empirical formula 

[8, 12, 47, 49, 97]. Later on, it was proved that the semi-empirical formula doesn’t yield 

accurate results for many cases and a new formula called “excessive bandwidth” was 

derived [50, 98]. The excess bandwidth formula provided good error estimate when the 

spacing between source and observer clusters (or the buffer size) is large enough. 

However, when the buffer size is small, the excess bandwidth formula lacks of locating 

the true truncation number. In order to fix this problem, a novel approach was proposed 

in [99]. The approach hinges upon the classification of the error regions and the 

employment of the excess bandwidth formula along with the devised formula presented 

in [100] in the regions where divergent nature of addition theorem occurs. 

In this study, an algorithmic approach to determine the optimum truncation 

number for the desired level of accuracy in FMM is presented. By this approach, the error 

due to truncation number can be fully controllable and the optimum truncation number 

due to desired error can be determined regardless of the buffer size. The approach does 

not require any classification of the error regions and different approaches for different 

buffer sizes; it can be readily used for any source-observer configuration. Before 

proceeding the detailed explanation of the algorithm, the nature of the diagonal addition 

theorem is discussed first in next subsection.  

4.2.2 The Nature of the Diagonal Addition Theorem 

The error analysis for the truncation of the diagonal addition theorem has been 

studied by many researchers [47, 95-98, 101]. The diagonal addition theorem given in 

Chapter 2 can be rewritten as 
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where O S= −X r r  is the vector between cluster centers, O S ′= − + −d r r r r  is the 

summation of the local vectors between the centers of groups and the source and observer 

points ( ′r and r ). The condition of validity for the theorem is d X< . The semi-empirical 

formula for truncation is given as [8] 

 ( )logL kd kdβ π≈ + + , (4.2) 

where β  is the precision constant and d  is the diameter of source/observer sphere. When 

1β = , the expected accuracy is 10-1. The number of significant digits when 5β =  and 

10β =  are six and eleven respectively. The excess bandwidth formula is [98]  

 ( )1/ 32 /31.8L kd kdα≈ + , (4.3) 

where ( )10log 1α ε=  and ε  is the desired accuracy. It has been reported in [50, 98] that 

the difference between the estimated L  by this formula and the true L  varies between -1 

and 2 for 1 500kd< <  and 1 1010 10ε− −< < . It should be noted that limits of kX  within 

which the formula is valid were not mentioned. Derivation of this formula gives a brief 

analysis of the truncation error compared to the other analyses in [47, 101] and can be 

found in [96, 98]. Moreover, here, the prominent steps in the derivation are summarized 

to grasp the nature of the addition: 

(i) the truncation error given by 
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 (4.4) 

can be approximated by only taking the leading 1L +  terms into the account. 
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(ii) The relative error due to truncation at the ( 1)thL +  term, 

 
( ) ( )( ) ( ) ( ) ( )1 1

1 1 1
ˆ ˆ1 2 1 1

L
L L L

ik

L j kd h kX P

e

ik

ε
+

+ + +
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− + + ⋅
=

+

X d

d X

X d

, (4.5) 

can be reduced to  

 ( )( )1 2 3Lj kd Lε +≈ +  (4.6) 

by the asymptotic form of spherical Hankel function with the assumption 1kd L kX< + <  

[54, 55, 96]. 

(iii) By using the asymptotic form of spherical Hankel function (for large order and 

argument [96, 98]) and performing the proper approximations, one can get the excess 

bandwidth formula (Eqn.(4.3)).  

It should be noted that the relative error is related to the convergence rate of 

spherical Bessel function and its argument kd . After 1L kd+ > , the spherical Bessel 

function starts to converge so does the relative error of the addition theorem. However, 

the distance between clusters kX  has also effect on the accuracy of the addition theorem 

because of the ignored spherical Hankel function in the second step. The simplification in 

the second step is done with the assumption 1kd L kX< + < . Nonetheless, after 

1L kX+ > , the Hankel function starts to grow exponentially, becomes a significant factor 

in error analysis and can’t be ignored like done in the second step.  

Due to the rapid convergence rate of the spherical Bessel function, the convergent 

nature of the spherical Bessel function does not meet with the divergent nature of the 

spherical Hankel function before it hits to the machine precision if the buffer size is large 

as in Figure 4-1 . Hence, the excess bandwidth formula is valid for large buffer size case. 

On the other hand, in case the buffer size is small as depicted in Figure 4-2, before the 

convergent nature of the spherical Bessel function reaches to the machine precision, it 

interferes with the divergent nature of the spherical Hankel function and the overall error 

starts to grow exponentially. In this case, the formula is not valid after a certain error rate 
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beyond its applicable range kd L kX< < . The maximum relative error rate and the 

estimated relative error rate due to varying L  at this case are plotted in Figure 4-3. 
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Figure 4-1: Large buffer case is depicted for the worst case analysis in FMM (ten box 
buffer). Two fictitious spheres, source sphere and observer sphere, enclose the boxes.   
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Figure 4-2: Small buffer case is depicted for the worst case analysis in FMM (one box 
buffer). Two fictitious spheres, source sphere and observer sphere, enclose the boxes.  
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Figure 4-3: The relative error of the addition theorem for a source-observer configuration 
is plotted with the crosses. Here,  kd=20 and kX=40 (one box buffer case).  

Other than the buffer size and the cluster size, one additional parameter affects the 

nature of the diagonal addition theorem. This parameter is related to the relative positions 

of the source and the observer points in the clusters. In order to investigate the effects of 

relative positions of the source/observer points on the error rate of the diagonal addition 

theorem, different source/observer distributions can be tested for the fixed cluster size 

and buffer size. At the test setup, the source and observer points are located in the 

directions of the opposite corners of the boxes (See Figure 4-4). 
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Figure 4-4: Different source/observer distributions are presented to investigate the 
relative error.  

For these four different types of interactions, relative errors due to diagonal 

addition theorem are examined for two different cases of buffer size: small buffer case 

and large buffer case. It has been reported in [95] that the maximum relative error occurs 

when the points are located in the opposite directions and farthest away from the cluster 

centers. Consequently, the maximum relative error is expected at the case 1 (See Figure 

4-4). This prediction is confirmed by the relative error plots in Figure 4-5 and Figure 4-6. 
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Figure 4-5: Relative errors of different distributions for one buffer case.  

Figure 4-5 shows the relative errors of each distribution at test setup (case 1-4) for 

small-buffer case. Markers indicate the actual errors and solid line shows the estimate by 

excess bandwidth formula. It is clear from the graph that the Bessel’s convergent nature 

emerge at different truncation number values due to relative positions of the 

source/observer points. After 40L kX= = , divergent nature appears and surpasses the 

convergent nature. This phenomenon can be clearly observed at the last case ( 0.25γ = ). 

The maximum relative error occurs at the first case ( 1γ = ) and it can be considered as the 

worst case (or the error upper bound) and forms basis in the algorithmic approach 

presented in next subsection. In the algorithmic approach, the truncation number is 

selected at the region where the error is decaying. 
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Figure 4-6: Relative errors of different distributions for large buffer case. 

Figure 4-6 shows the relative error of each case in the numerical test setup for the 

large-buffer case. Again, markers show the actual relative errors and the solid line 

indicates the estimated error due to formula. It’s apparent that the convergent nature 

emerges after L kd= , reaches to the machine precision and stays there until L kX= . 

Optimum truncation number should be selected before the convergent nature saturates at 

the machine precision level. Upper error bound can again be determined via the case 1. 

In next subsection, a three-stage algorithm for finding the truncation number L  

due to given error rate will be described. The algorithm estimates the truncation number 

regardless of the buffer size.  

4.2.3 Algorithm 

The truncation number estimator algorithm relies on the utilization of a three-

stage algorithm for any source-observer configuration. At the initialization of the 

algorithm, cluster sizes and buffer size are requested from the user. For the provided 
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configuration, the worst-case scenario (1γ = ) is maintained by locating the first source 

point and the first observer point on the opposite poles. In addition, randomly selected ten 

points are added over the surface of each sphere. Iteration starts with placing one 

additional point over clusters. At each iteration, one randomly selected point is added to 

the distribution over the surface of each cluster and a three-stage algorithm is called to 

get the estimated L  due to given error-rate for the current source-observer distribution. In 

case the estimated truncation numbers are the same at five consecutive iterations, then the 

algorithm stops execution and outputs the estimated L . 

As seen in previous subsection, error curve for diagonal addition theorem has a 

bowl-like behavior. Although curve is not smooth and is noisy, the truncation number L  

due to a desired error level can be estimated at the convergent region of the curve by a 

robust three-stage algorithm. The first stage in the algorithm is bracketing the global 

minima of the curve. The second stage is locating the global minimum by golden section 

search algorithm. The first two stages are performed to determine the limits of the 

convergent region, globalminimumkd L< < . The third one is finding the estimated 

truncation number by the bisection algorithm in the convergence region.  

It should be noted that the convergent part approaches to the machine precision 

and saturates at this level for the large-buffer case. Because of the noisy nature of the 

saturation region, where locating the true global minimum is nearly impossible, global 

minimum at large-buffer case can be considered as the point where the curve hits the 

machine precision. At small-buffer case, the convergent nature vanishes before reaching 

to the machine precision and yields a bowl-like curve which has a specific global 

minimum. At the next two sub-subsection, the bracketing and golden section search 

algorithms to obtain the limits of convergent region are described in detail. After tools for 

determining the bounds of convergent region are provided, the bisection root-finding 

algorithm is summarized for locating the true L  corresponding to the desired level of 

accuracy in this region. 

4.2.3.1 The Bracketing Algorithm 

Before proceeding to find the global minimum of a unimodal function (See Figure 

4-7), the minimum of the function should be bracketed by a triplet ( ), ,a b c . In the 



 56 

interval bracketed by the triplet, the conditions a b c< <  , ( ) ( )f b f a<  and 

( ) ( )f b f c<  are to be satisfied.  

x

( ) ( ) ( ) ( ),f b f a f b f c< <

( )f x

( )f a

( )f b

( )f c

a b c
x

( ) ( ) ( ) ( ),f b f a f b f c< <

( )f x

( )f a

( )f b

( )f c

a b c

 

Figure 4-7: A unimodal function whose minimum is bracketed by the triplet ( ), ,a b c . 

In order to find the valid triplet that brackets the minima, seeking procedure can 

be started from the peak of left hill by an initial guess b  and proceeded by stepping 

downhill. Each step size can be increased by a constant factor (defined by golden ratio, as 

explained below) or by the result of parabolic extrapolation of preceding points. At each 

step, the condition ( ) ( )f c f b>  is checked to find out whether the new interval brackets 

the minimum or not. If the condition is satisfied, then the triplet ( ), ,a b c  is to be assigned 

as bracketing triplet.  

Parabolic extrapolation is used to expedite the stepping procedure in the downhill 

direction. Parabolic extrapolation relies on the extrapolation of a point on the curve by 

fitting a parabola through the triplet ( ), ,a b c . The extrapolated point corresponds to the 

abscissa of the minimum of the fitted parabola. If the function is nicely fitted by parabola 

and the conditions ( ) ( )f x f c<  or ( ) ( ) ( ) ( )( )while f x f b f x f c> >  is satisfied, then 

triplets bracketing the minima can be obtained with a single leap. Otherwise, the 

minimum can be searched by magnifying the bracket with golden ratios.  
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Assume a parabola passes through the points ( ), ,a b c  and its algebraic expression 

is  

 ( ) ( )2 , , ,f x A Bx Cx x a b c= + + = . (4.7) 

Equation provides three linearly independent equations which allow to determine 

the coefficients , ,A B andC . After the coefficients are determined, the abscissa of the 

minimum of the parabola can be obtained by setting its derivative to zero as 

 
( )

0 2
df x

Cx B
dx

= = + , (4.8) 

which yields 

 
2

B
x

C

−= . (4.9) 

For finding the expressions of the coefficients B  and C  in terms of function 

values and the triplet, one can shift the origin to the point b . By calculating the relative 

distances of other points with respect to the point b , the linear equations can be written 

as 
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, (4.10) 

where 

 ,a a b c c b′ ′= − = − . (4.11) 

By using the elimination method, the coefficients can be obtained as  
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Hence, the abscissa of the minimum of the parabola is found at  

 
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 2
1

2 2

f a f b c f c f b aB
x

C f a f b c f c f b a

′ ′− − −−= =
′ ′− − −

. (4.14) 

A routine for obtaining the triplet bracketing the minima which uses the default 

magnification (golden ratio) and the parabolic extrapolation can follow the procedure 

given below. 
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Algorithm 1 The bracketing algorithm  

Inputs and Outputs. 

Inputs:  a , initial point, integer. 

  b , initial guess for the second point in the bracket, integer. 

  ( )f x , external real function. 

 

Outputs:  a , lower bound of the interval bracketing the minimum, integer. 

  b , interior point of the interval bracketing the minimum, integer. 

  c , upper bound of the interval bracketing the minimum, integer. 

Pre-definitions. 

( )5 1 2Golden= +  (golden ratio by which successive intervals are expanded) 

100Limit =  (maximum allowed limit for parabolic fitting) 

Core. 

Assign ( )c b Golden b a= + − , 

Retrieve the function values ( )f a , ( )f b , ( )f c . 

while ( ) ( )( )f b f c<  

 Compute the abscissa of the minima of the parabola x , 

 Determine an alternative limit for parabolic fitting by ( )limx b Limit c b= + − . 

 ! Cases start. 

  if ( )b x c< <  then 

   if ( ) ( )( )f x f c<  then  

    The triplet bracketing the minima is ( ), ,b x c , 

    Stop execution and output. 

   else if ( ) ( )( )f x f b>  then 

    The triplet bracketing the minima is ( ), ,b c x , 

    Stop execution and output. 
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   end 

   Assign ( )newx c Golden c b= + −  ! no parabolic fit (use golden). 

  else if  ( )limc x x< <  then 

   if ( ) ( )( )f x f c<  then 

    Assign ( )newx c Golden c b= + − , 

    The triplet is ( ), , newc x x . 

   end if  

  else if  ( )limx x>  then 

   ! limit the abscissa of minima to the allowed value 

   Assign limx x= . 

  else 

   ! use directly golden ratio, don’t use the parabolic approximation 

   Assign ( )newx c Golden c b= + − . 

  end if 

  the triplet is ( ), , newb c x . 

end while  

End of Algorithm  
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4.2.3.2 The Golden Section Search Algorithm 

The golden section search is a widely used one-dimensional minimum/maximum 

searching technique for finding global minimum/maximum. It was introduced by Jack 

Kiefer in 1953 [102]. The name of the technique comes from the fact that the algorithm 

narrows the interval bracketing the minimum with a golden ratio. An approach like 

bisection algorithm which reduces the length of the interval bracketing the root by the 

factor of two requires the selection of the mid-point of the interval and the elimination of 

the one half of the interval at each iteration. However, golden section which reduces the 

length of interval bracketing the minimum by the factor of three (approximately) requires 

the selection of two points in the interval and the systematical minimization of the 

bracketing interval until a tolerance provided by user. 

Suppose that the global minimum of a function is bracketed by the algorithm 

prescribed at previous sub-subsection. The interval bracketing the minima is bounded by 

the points a  and c . Two new points (b  and d ) are introduced within the interval (See 

Figure 4-8). 

 

a b cda b cd  

Figure 4-8: Locations of the points in the interval bracketing the global minimum. 

Symmetric choice of the interior points leads to  

 b a c d− = −  (4.15) 

The distances can be related with a ratio Γ  ( )0 1< Γ <  as  

 ( ) ( )b a c a and c d c a− = Γ − − = Γ − . (4.16) 

This ratio should also be hold for the intervals ( ),a b  and ( ),d c  as 

 ( ) ( )d a b a and c b c d− = Γ − − = Γ − . (4.17) 

Using the first set of equations in the second set yields  
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 ( ) ( )2 2d a c a and c b c a− = Γ − − = Γ − . (4.18) 

Furthermore, 

 ( ) ( )2 2 2 21 1b a c and d c a= Γ + − Γ = Γ + − Γ . (4.19) 

The first set of equations can be arranged as  

 ( ) ( )1 1b a c and d c a= − Γ + Γ = − Γ + Γ . (4.20) 

The consistency of the last two equation sets can only be maintained by the 

condition 

 21− Γ = Γ , (4.21) 

which yields  

 
5 1

2

±Γ = . (4.22) 

Since the root 1.618Γ =  violates the condition of being a fraction, the other root 

0.618Γ =  should be selected as the solution. If the relative locations of the points b  and 

d  are selected according to ratios 0.618Γ =  and 1 0.382− Γ = , then, regardless of which 

triplet is selected ((, ,a d b) or ( , ,d b c)) for the next iteration, relative position of the 

interior point would remain the same at that bracket. This case is a direct consequence of  

Eqn.(4.17). By using the retained interior point and introducing a new point in the 

selected interval, the procedure can be repeated until the length of the interval reaches to 

a tolerance value provided by the user. This tolerance value couldn’t be smaller than the 

square root of machine precision.  

Because of the unimodal property of the function, the selection of correct interval 

at each iteration can be simply done by comparing the function values. If ( ) ( )f d f b<  

then the minimum must lie within the interval characterized by the triplet ( ), ,a d b . 

Otherwise, the minima exists in the interval marked by the triplet ( ), ,d b c . The algorithm 

for determining the valid interval at each iteration and locating the minimum of the 

function can be prescribed by the following procedure. 
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Algorithm 2 The golden section search algorithm 

Inputs and Output. 

Inputs:  a , lower bound of the interval bracketing the minimum, integer. 

  c , upper bound of the interval bracketing the minimum, integer. 

  tol , tolerance, integer. 

  ( )f x , external real function. 

Output:  x , the abscissa of the global minimum, integer. 

Pre-definitions. 

( )5 1 2Γ = −  (golden ratio) 

Core. 

Assign ( )b c a a= Γ − + , ( ) ( )1d c a a= − Γ − + . 

Retrieve the function values ( )f b  and ( )f d . 

while ( )abs c a tol− <  

 if ( ) ( )( )f b f d>  then 

  The new bracketing triplet is ( ), ,a d b . 

  ( ) ( )f b f d= . 

  Assign ( ), , ,a d b c  as ( )( )( ), 1 , ,a a b a d b+ − Γ − . 

  Retrieve the new value of ( )f d . 

 else 

  The new bracketing triplet is ( ), ,d b c . 

  ( ) ( )f d f b= . 

  Assign ( ), , ,a d b c  as ( )( ), , ,d b d c d c+ Γ − . 

  Retrieve the new value of ( )f b . 

end if 

end while 
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if ( ) ( )( )f b f d<  then  

 The minimum point x  is b , 

else  

 The minimum point x  is d , 

end if   

End of Algorithm  
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4.2.3.3 The Bisection Root Finding Algorithm 

Let ( )f x  be a continuous function in an interval [ ],a b , such that  

 ( ) ( ) 0f a f b < , (4.23) 

 then there exists at least one zero of the function ( )f x  on the interval because the sign 

of the function changes. Suppose that the function has only one root on the interval as 

depicted in Figure 4-9.  

x
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( )f b

( )f c
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bcα x
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( )f b

( )f c

a
bcα

 

Figure 4-9: A smooth continuous function has a root on the interval [a,b]  . c is the 
midpoint of the interval. 

This root can be located by successively halving the interval until a smaller 

interval provided by user in which α  must lie. The procedure is initiated by defining the 

midpoint of the interval as ( ) 2c a b= +  and checking the sign of the product 

( ) ( )f c f b . In case the sign of the product is minus, then the root resides in the interval 

[ ],c b . Otherwise, the root is in the interval [ ],a c . Hence, a new interval containing the 

root α  is determined. This procedure is repeated until the new root is located with a 

desired precision ε , that is  

 n na b ε− <  (4.24) 
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where the endpoints of the nth interval are na  and nb . Although the function is assumed 

to be smoothly decreasing, the function has a different characteristic and can have a 

horizontal tangent near to its root. For this kind of case, inclusion of the stopping criteria  

 ( )nf a ε<  (4.25) 

expedites the procedure. The first stopping criteria (Eqn.(4.24)) guarantees the 

convergence to the root with n  number of iterations, 

 0
2logn

ε
ε

=  (4.26) 

where 0ε  is the size of the initial bracket. The bisection method described up to this point 

is slow compared to its alternatives, but it promises the success at many cases at which 

the convergence cannot be guaranteed by others. In L  estimator algorithm, the bisection 

method is employed after the limits of the convergence region are drawn by the 

algorithms described in Section 4.2.3.1 and Section 4.2.3.2. Within these limits, 

estimated L  can be located by shifting the threshold to the desired accuracy as if the root 

sits at a point in the level ( ) desiredf x ε=  instead of the level ( ) 0f x = . The outline of the 

bisection root-finding algorithm can be provided as follows 
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Algorithm 3 The bisection root finding algorithm 

Inputs and Output. 

Inputs:  a , lower bound of the interval, integer. 

  b , upper bound of the interval, integer. 

  tol , tolerance, integer. 

  desiredε , desired error level, real 

  ( )f x , external real function. 

Output:  x , the abscissa of the root (L  corresponding to desired accuracy), integer. 

Pre-definitions. 

maxJ , maximum allowed number of iterations, integer. 

Core. 

do max1,...,j J=  

 Assign the midpoint ( ) / 2c b a= −  and retrieve ( )f c . 

 if ( )( ) ( )( )( )0desired desiredf a f cε ε− − <  then 

  The new interval is ( ),a c . 

  Assign b c= . 

 else 

The new interval is ( ),c b . 

  Assign a c= . 

end if 

 if ( )( )or 0desiredb a tol f a ε− < − <  then exit the loop 

end do 

Assign x a= . 

End of Algorithm  
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4.2.3.4 The Accelerators 

The algorithms summarized until this point require negligible time compared to 

the overall execution time of the MLFMA algorithm. Timings of algorithm at different 

numerical cases are presented in Section 4.2.4. Besides that, the time spent on these 

routines can be further reduced by utilizing the accelerators. Two different kinds of 

accelerators can be implemented into existing routines. The first one can be developed to 

avoid excess steps in bracketing and golden section search algorithms. The second one 

can be used to expedite the calculation of translation operator by spherical harmonics 

transforms. 

The first kind of accelerator can be implemented with “if cases”. Consider the 

large-buffer case discussed in Section 4.2.2. For this case, locating the minimum point of 

the curve is actually hard due to noisy nature of the function at machine precision and 

needless. In addition, locating the minimum is an insignificant process for many cases 

because the FMM algorithm is often executed with the accuracy varying 10-1 through 10-

11 and the minimum of the curve would remain well below the desired error level. The 

execution of the bracketing algorithm can be stopped after the retrieved values of the 

function become smaller than the desired error level during stepping downhill procedure. 

Stopping execution with “if cases” also avoids to step in the saturation level which 

appears at level 10-13 and below due to the distribution of source/observer points. After 

the execution is stopped, the bisection algorithm can be invoked to obtain the true 

truncation number. This accelerator could yield significant time savings in the L  

estimator algorithm due to the wanted error rate.  

The second kind of accelerator based on spherical harmonics transforms can be 

used for rapid calculation of the translation operator. As mentioned earlier, L  estimator 

algorithm utilizes aforementioned 3-stage algorithm to locate the truncation number for 

source/observer distribution at each iteration. During each iteration, the routine which 

calculates the relative error is called many times with different truncation numbers. The 

relative error computation is performed by calculating the relative differences between 

the field values obtained by Green’s function and the field values computed with FMM 
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approximation. The field values due to Green’s function can be computed and stored at 

the beginning of each iteration. However, the field values due to FMM approximation 

should be calculated for different truncation numbers at each iteration. Since the number 

of directions change due to truncation number, the outgoing/incoming wave expansion 

matrices and the translation operator vector are supposed to be computed at each calling 

of relative error routine with different truncation number. Direct computation of 

outgoing/incoming wave expansion matrices is necessary. Besides that, the translation 

operator values can be calculated in a fast way by a local interpolator after its equispaced 

samples are calculated with a spectral domain technique explained below.  

The translation operator values can be generated by a local interpolator like far-

field values. Because of the band-limited nature of the translation operator, its values can 

also be generated via spherical harmonics transforms mentioned at previous chapter. By 

using the forward spherical harmonics transform, the spherical harmonic coefficients of 

translation operator can be obtained. And these coefficients can be filtered until a degree 

K  and used in the backward spherical harmonics transform to obtain new translation 

operator values at polynomial degree K  less than L . New polynomial degree L  should 

be smaller than previous degree K  because the spherical harmonics coefficients, spectral 

domain representation of a function at polynomial degree L , are not sufficient to recover 

the spherical data at polynomial degree K  ( K L> ). Therefore, the first step in spectral 

domain technique is calculating the spectral domain spherical harmonic coefficients due 

to translation operator values at a very high polynomial order, say 1500L = . These 

coefficients are kept in memory, filtered and used in backward spherical harmonic 

transforms for generating the translation operator values due to different truncation 

degrees. It can be claimed that only the zeroth order spherical harmonics coefficients are 

needed to characterize the translation operator in spectral domain. This can be directly 

proven by the following derivation.  

The translation operator given as 

 ( )( ) ( ) ( ) ( )( )1

0

cos 2 1 cos
L

l
L l l

l

T i l h kX Pθ θ
=

= +∑ , (4.27) 

can be substituted with ( ),f θ φ  in the expression of forward spectral transform as 
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where the integration along φ  can be analytically evaluated as  
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which shows that the zeroth order coefficients constitute the spectral data. The forward 

spectral transform can be further proceeded by explicitly writing the translation operator 

in forward Legendre transform as  

 ( ) ( ) ( )( ) ( )( ) ( )0 1

0 0

2 2 1 cos cos sin
L

l
n l n l

l

f i l h kX P P d
π

π θ θ θ θ
=

= +∑ ∫ , (4.30) 

 where the integration along θ  can be analytically evaluated as  
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θ θ θ θ

 == +
 ≠

∫ . (4.31) 

Hence, the spherical harmonics coefficients can be analytically calculated without FFT 

and Gaussian quadrature. The final expression for spherical harmonics coefficients is 

 ( )0 1

0

2 2
L

l
n l

l

f i h kXπ
=

= ∑ . (4.32) 

Once the spherical harmonics coefficients are obtained and stored in the memory, 

the rest is filtering those coefficients for desired number of truncation number and using 

those for generating the translation operator values. Needless to say, the backward 

spectral transform relates with the operations at zeroth order of associated Legendre 

polynomials and backward Fourier transform. More explicitly, the backward spherical 

transform can be simplified due to zeroth order coefficients as 
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The local interpolator described in Section 2.6 can be used after equispaced 

samples of translation operator are generated with Eqn.(4.33). 

4.2.4 Numerical Results 

Three-stage truncation number estimator algorithm has been implemented with 

accelerators and tested for many cases. Some of test results are provided here. 

In the worst-case analysis of the large and small buffer cases, the source and 

observer points are positioned on the opposite corners of the source and observer boxes. 

Moreover, in case the source and observer points are distributed over the sphere 

enclosing the boxes, this yields a better “worst case analysis”, provides a safe margin 

between actual error and estimated error and lifts up the upper bound of estimated error. 

For that reason, in the test of L − parameter estimator algorithm, the source and observer 

points are scattered over the surfaces of the spheres, namely over the grids on the 

surfaces. The grid points are defined by outer product of equispaced 1N +  points in the 

elevation direction and equispaced 2 1N +  points in the azimuth direction. In the 

following tests, N  is selected as 7 and totally 120 points are chosen over the surface of 

each sphere.  

In the first test, the parameters are selected as 20kd =  and 40kX =  where d  

denotes the edge length of the boxes located in the spheres again. This configuration has 

been shown in Section 4.2.2. Truncation error due to L − parameter is plotted in Figure 

4-10. Obtained truncation number values for given error rates ε  are tabulated in Table 

4-1 with the computational time consumed in three-stage routine. Obviously, time spent 

in the routine decreases with the help of accelerators while the desired error level is 

increased. The routine stops execution for the desired error rates smaller than 10-5 after it 

decides that the desired error rate is not reachable.  
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Figure 4-10: Truncation error plot for kd=20 and kX=40. 

ε  L  Time(sec) ε  L  Time(sec) 

10-2 38 0.4389 10-7 N/A 3.7064 

10-3 42 0.7038 10-8 N/A 3.7174 

10-4 49 1.1568 10-9 N/A 3.7194 

10-5 59 1.7627 10-10 N/A 3.7054 

10-6 N/A 3.7024 10-11 N/A 3.7064 

  

Table 4-1: Truncation number values corresponding to desired error level and 
computational time spent in the estimator routine for the configuration kd=20, kX=40. 

In the second test, the parameters involving with the cluster size and spacing are 

chosen as 20kd =  and 220kX = . This configuration is nothing more than the large-

buffer size configuration discussed in Section 4.2.2. Truncation error for this 

configuration is demonstrated in Figure 4-11. Retrieved truncation numbers from the 

routine and execution timings for different error rates are tabulated in Table 4-2. It can be 
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seen from the table that the routine successfully locates the optimum L − parameter given 

the desired error level. 

 

Figure 4-11: Truncation error plot for kd=20 and kX=220. 

ε  L  Time(sec) ε  L  Time(sec) 

10-2 38 0.4399 10-7 52 1.6527 

10-3 40 0.7178 10-8 54 1.6987 

10-4 44 1.1188 10-9 56 1.6967 

10-5 46 1.1268 10-10 58 1.7537 

10-6 49 1.1488 10-11 60 1.7727 

  

Table 4-2: Truncation number values corresponding to desired error level and 
computational time spent in the estimator routine for the configuration kd=20, kX=220. 

As the last example, another one box buffer configuration is tested. Its 

specifications are 40kd =  and 80kX = . As seen from the Figure 4-12, the error curve 
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exhibits a very steep incline around the error level 10-7. Even in this region, the algorithm 

exactly locates the optimum truncation number for the error rate 10-7 and shows the 

robustness of the proposed method. The results in next chapter also validate the 

robustness of the three-stage algorithm. 

 

Figure 4-12: Truncation error plot for kd=40 and kX=80. 

ε  L  Time(sec) ε  L  Time(sec) 

10-2 73 2.6236 10-7 107 11.2412 

10-3 78 3.4264 10-8 N/A 12.0181 

10-4 83 4.7842 10-9 N/A 12.7290 

10-5 90 5.0492 10-10 N/A 12.6650 

10-6 98 5.3151 10-11 N/A 12.1251 

  

Table 4-3: Truncation number values corresponding to desired error level and 
computational time spent in the estimator routine for the configuration kd=40, kX=80. 
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4.3 The Local Interpolation Parameters Estimator Algorithms 

4.3.1 Overview 

In the implementation of MLFMA, the local interpolation procedure is frequently 

invoked while interpolating/anterpolating field signatures and translating the outgoing 

fields into incoming fields. Since the most of the computational time during MLFMA 

execution is spent in these operations, the local interpolator and its parameters are to be 

optimally chosen. The parameters of the local interpolator, the number of interpolation 

points p  and the over-sampling ratio s, affect the CPU time and accuracy of MLFMA. 

The literature involving with the optimum parameter selection for the local 

interpolator is in short supply, especially for the approximate prolate spheroidal (APS) 

function described in Chapter 2. Due to the error analysis of the APS function given in 

[63, 64], Ohnuki and Chew proposed formulas for the optimum selection of the  

interpolation parameters [103]. However, the formulas given there do not provide precise 

results as in this study. Another study was conducted by Ergul and Gurel [104]. They 

tested several cluster sizes and proposed optimum (,p s) pairs due to several error rates 

ε . Nonetheless, the method proposed here is a generic procedure and suitable to any 

randomly selected cluster size and error rate without conducting any test. The algorithm 

provide either p − parameter for given s , L , and ε  or s− parameter due to given p , L  

and ε .  In the rest of this subsection, first, the algorithm for estimating p − parameter is 

discussed. Then the algorithm for finding s− parameter is presented.  

Before proceeding further, the APS formulation is reviewed first. The APS 

function is given by [63] 

 ( ) ( ) ( ) ( )
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0
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,
m p

N M
m m p

f f m S m D mθ θ θ θ θ θ θ
+

= − +
= ∆ − ∆ − ∆∑ɶ , (4.34) 

where ( )MD θ  denotes the periodic sinc function or Dirichlet kernel while ( )0,NS θ θ  is 

the windowing function. Windowing function is defined as 
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And the Dirichlet kernel is expressed as  

 ( ) ( )
( ) ( )
sin 2 1 2

2 1 sin 2M

M
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θ
θ

θ
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+
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The terms given in the expressions can be more explicitly described as follows: L  

is the truncation number of addition theorem. M sL=  is the total number of sampling 

points, where s is the over-sampling ratio. The sample spacing is ( ) ( )2 2 1Mθ π∆ = + . 

( )1N M L s L= − = −  is the number of over-sampling points. [ ]0 Intm θ θ= ∆  shows the 

index of the nearest sampling point to the interpolating point. 0 pθ θ= ∆  is the width of 

the window. 2p n=  is the number of the interpolation points.  

4.3.2 The Number of Interpolation Points (p) Estimator Algorithm 

4.3.2.1 Algorithm 

In literature, the formula for estimating the optimum p − parameter is given as 

[103] 

 
( )1

cs
p

sπ
=

−
 (4.38) 

which is the direct consequence of the formula for the upper bound of the error given as 

[63] 

 ( )
0

1
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− <  (4.39) 

where  
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It was proven that the Eqn.(4.38) does not guarantee precise results and doesn’t 

take the argument L  into account which has also effect on the error rate, albeit not so 

much (see Section 4.3.2.2). In order to have a rigorous expression for selecting the 

optimum p − parameter, consider the windowing function (Eqn.(4.35)) which is called 

convergence factor in [64]. Tuning the parameters of the windowing function properly 

allows finding the upper and lower bounds of the approximation error. The parameters of 

the windowing function are N , 0θ , and θ . Since the parameter N  is related with the 

polynomial order L  of the function whose values are generated and over-sampling ratio 

s, it can’t be changed for the error analysis. The approximation error (or convergence 

factor) heavily depends on the proper selection of window width 0θ . The width of 

window can be at least θ∆  which means that the local interpolation is performed by only 

two points in the neighborhood of the interpolating point, or at most π  which means that 

whole points on the circumference are taken into account, i.e. global interpolation 

( )θ θ π∆ < < . The parameter θ  can be at least 0 and at most 0θ  because of the limits of 

the summation ( )00 θ θ< < . When 0θ = , the convergence factor becomes  

 ( ) ( )
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which constitutes the upper bound of the convergence factor (or the top of main lobe). 

When 0θ θ= ,  

 ( ) ( )
( )

0 0
0 0

0

,
,

0,
N

N
N

R
S

R

θ θ
θ θ

θ
= , (4.42) 

and  
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The Eqn (4.43) is in indeterminate form (0 0). At this point, the L'Hôpital's rule can be 

invoked. Taking the limit of expression when 0θ θ→  yields  
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 ( )0 0, 2 1NR Nθ θ = + . (4.44) 

Hence, 
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that gives the lower bound of the convergence factor (or the side lobe level). By properly 

tuning Eqn.(4.45), the desired level of accuracy can be obtained in interpolation with 

APS interpolator.  

The algorithm to obtain the optimum p − parameter corresponding to given s, L , 

and ε  can be summarized in three steps: 

(i) The routine checks the maximum and minimum convergence rates by setting 

0θ θ= ∆  and 0θ π= . If the desired error is out of the bounds of the convergence 

( ) ( ), , ,N NS Sθ θ π π∆ ∆   , then the routine warns the user and stops execution. 

(ii) If the desired error falls into the convergence interval, then the algorithm starts 

to seek it by bisection algorithm described in Section 4.2.3.3. At the end of the search, it 

outputs the optimum 0θ  corresponding to given ε . 

(iii) By using 0p θ θ= ∆ , the optimum p − parameter is determined. 

4.3.2.2 Numerical Results 

The p − parameter estimator algorithm has been tested for many numerical cases 

and five of them which can possibly be encountered at many levels of MLFMA are 

presented here. 

In numerical tests, first, the translation operator values at equispaced sampling 

points in the interval [0,2 ]π  are directly generated. Then, three equally spaced points 

between two consecutive sampling points are chosen for each two consecutive sampling 

points ia  and 1ia +  ( 1,...,2 1i M= + ). Since the distance between two successive sampling 

points is denoted by θ∆ , the locations of three equispaced points in the interval 

corresponds to ( ( )4ia θ+ ∆ , ( )2ia θ+ ∆ , ( )1 4ia θ+ − ∆ ). The values of translation 

operator at these interior points are generated by using the interpolator and employing 
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directly the translation operator routine. The relative differences between interpolated 

values and directly calculated values (or interpolation errors) are plotted. It’s predicted 

and confirmed that the interpolation error is minimum when the interpolation point is 

near to sampling point. As the interpolation point is at the midpoint of the interval, the 

interpolation error is maximum.  

For each test, the robustness of the p − parameter estimator algorithm is analyzed 

through setting the error rates to 110− , 310− , 610− , and 910− . While the parameters L  and 

s are kept fixed, the optimum p− parameter is calculated for each error rate. At the title 

of each interpolation error plot, the maximum interpolation error encountered at that case 

is indicated. In addition, the maximum interpolation error is compared with the desired 

error level.  

The first test is conducted on a configuration in which the parameter L  is chosen 

as 40 and that can be encountered in MLFMA at finest level most frequently. The 

interpolation errors at selected points due to calculated p − parameters, 2s = , k 40L =  

and desired error levels are calculated and demonstrated in Figure 4-13 . Note that only 

the uppermost portions of the error plots are zoomed in order to see how precise the 

maximum interpolation errors are obtained. The maximum relative errors at each case 

except 10-1 case are below the desired levels of accuracy. At 10-1 case, the maximum 

relative error is slightly higher than the desired error. Since the procedure described in 

algorithm section relies on an approximate approach, the error results can deviate one 

digit of accuracy and this deviation is tolerable.  
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Figure 4-13: Interpolation errors are plotted for different desired error levels with 
estimated p – parameters, L=40, and s=2. 

In the second test, the parameters involving with the interpolation are chosen as 

400L = , 1.2s = . For each error level, the optimum p − parameter is computed and the 

approximation errors on interpolation points are calculated. The maximum relative errors 

are also determined. As seen from Figure 4-14, the approximation errors are very near to 

the desired error rates and lesser than those; this means that the algorithm estimates the 

true p − parameter very accurately. 
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Figure 4-14: Interpolation errors are plotted for different desired error levels with 
estimated p – parameters, L=400, and s=1.2. 

In the third test, the degree of translation operator is increased up to 1000L = .The 

other parameters are the same as those of previous test. For each error level, the 

approximation errors on interpolation points are calculated due to fixed parameters ,s L  

and requiring p − parameter. Note that the p − parameters obtained at previous test are 

the same as those of previous test, since the interpolation error depends on the parameter 

s after a certain polynomial degree L . Again, it’s apparent from Figure 4-15 that the 

approximation errors are close to the desired error rates. Also, it’s observed in the 

extensive tests that the interpolation algorithm and the estimator algorithm works until 

the polynomial degree of 2000 for 1.2s = . After this degree, the sinus hyperbolic 

function in Eqn. (4.36) causes floating overflow. Therefore, the operating limits of the 

estimator and the interpolator are bounded with the specifications of the machine.  
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Figure 4-15: Interpolation errors are plotted for different desired error levels with 
estimated p – parameters, L=1000, and s=1.2. 

In the fourth and fifth tests, the approximation errors due to estimated 

p− parameters are compared with the approximation errors according to p− parameters 

calculated with the previously used formula given in [103] (Eqn.(4.38)). In the fourth 

test, the parameters are chosen as 100L =  and 1.2s = . At the fifth one, the parameters 

are selected as 100L =  and 2s = . For these specifications, the relative errors due to 

p− parameter estimated with the proposed algorithm are plotted in Figure 4-16 and 

Figure 4-18. In addition, the approximation errors due to p − parameters calculated with 

Eqn.(4.38) are presented in Figure 4-17 and Figure 4-19. It is apparent from the results 

that the previous approach yields poor estimations. However, the proposed method 

results in very precise approximation errors near to the desired error rates.  



 83 

 

Figure 4-16: Interpolation errors are plotted for different desired error levels with the p – 
parameters estimated by the proposed algorithm, L=100, and s=1.2. 
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Figure 4-17: Interpolation errors are plotted for different desired error levels with the p – 
parameters estimated by previously used formula, L=100, and s=1.2. 
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Figure 4-18: Interpolation errors are plotted for different desired error levels with the p – 
parameters estimated by the proposed algorithm, L=100, and s=2. 
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Figure 4-19: Interpolation errors are plotted for different desired error levels with the p – 
parameters estimated by previously used formula, L=100, and s=2. 

4.3.3 The Over-Sampling Ratio (s) Estimator Algorithm 

4.3.3.1 Algorithm 

In [103], the formula to obtain the optimum s− parameter is expressed as 

 
p

s
p c

π
π

=
−

, (4.46) 

where c  is defined as in (4.40). Like p − parameter expression in Eqn.(4.38), 

s− parameter formula also doesn’t yield accurate error estimation. Therefore, the 

formulation given for p− parameter estimation is arranged to obtain an accurate 

convergence rate formula for s− parameter due to given p  and ε . The derivation can be 

initialized by explicitly writing the 0θ  and N  in Eqn.(4.45) as  
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The s− parameter can be minimally equal to 1. At this case, the convergence factor 

becomes 
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which forms the upper bound of the convergence rate. Similarly, when s p≫ , 
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that is the lower bound of the convergence rate.  

The algorithm to obtain the optimum s− parameter given p  and ε  consists of 

two steps:  

(i) The routine checks the lower bound of convergence rate by Eqn (4.49). If the 

desired error is smaller than this amount, it warns the user and interrupts the execution.  

(ii) If the desired error rate is greater than the lower bound of convergence rate, 

first the algorithm seeks it in the interval [1,10] by bisection algorithm because of the fast 

decaying nature of error rate. For the remaining part, it employs the Newton-Raphson 

root-finding algorithm. 

4.3.3.2 Numerical Results 

The s− parameter estimator algorithm has been extensively tested and some of 

test cases and results are presented here.  

The tests of s− parameter estimator algorithm are similar to the tests of 

p − parameter estimator algorithm. Basically, the translation operator values are 

generated by both interpolation routine and translation routine. The relative differences 

between generated values are calculated and the interpolation errors on specific points are 
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obtained. The maximum of interpolation errors is compared with the desired error level 

and the accuracy of the estimator is evaluated through setting the error rates to 

110− , 310− , 610− , and 910− .In test routines, first the optimum s− parameter is calculated 

due to error rate, L  and the parameter p . Then the interpolation routine is executed and 

resulting approximation errors on interpolation points are plotted. 

In the first test, the parameters are selected as 40L =  and 10p = . It should be 

noted that the selection of the number of the interpolation points as one forth of the 

polynomial degree does not yield significant savings in computational time for this test 

procedure. However, the parameter p  should minimally be selected as 8  due to 

Eqn.(4.49) in order to maintain the minimum error rate 910− . 

The interpolation errors are plotted in Figure 4-20 for above given error rates. 

Again, the maximum error parts of the error plots are zoomed as in p − parameter 

estimator tests and one digit deviation from the desired error level is acceptable. It’s 

apparent from the graph that the maximum approximation error is well below the 

threshold for each error case. 
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Figure 4-20: Interpolation errors are plotted for different desired error levels with 
estimated s – parameters, L=40, and p=10. 

In the second and third tests, the polynomial degrees are increased up to 400 and 

1000 respectively. The p− parameter is kept fixed at both tests as 15. It’s claimed that 

optimum s− parameters for error cases will be smaller than those of previous test since 

the p − parameter is increased to 15. And the s− parameters will not change in both 

cases due to independency of the error estimate from the polynomial degree after a 

certain polynomial degree. These expectations are met with the reality in Figure 4-21 and 

Figure 4-22. Like in previous test, the approximation errors are close to the desired error 

rates and lesser than those; this means that the algorithm estimates the true s− parameter 

very accurately. 
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Figure 4-21: Interpolation errors are plotted for different desired error levels with 
estimated s – parameters, L=400, and p=15. 
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Figure 4-22: Interpolation errors are plotted for different desired error levels with 
estimated s – parameters, L=1000, and p=15. 

In the last two tests, the interpolation errors according to estimated s− parameters 

are compared with the interpolation errors due to s− parameters calculated with the 

formula provided in [103] (Eqn.(4.46)). In the fourth test, the parameters are chosen as 

100L =  and 8p = . In the fifth test, the parameters are selected as 100L =  and 25p = . 

For these parameters, the interpolation errors due to s− parameter estimated with the 

proposed algorithm are demonstrated in Figure 4-23 and Figure 4-25. In addition, the 

interpolation errors due to s− parameters calculated with Eqn.(4.46) are presented in 

Figure 4-24 and Figure 4-26. The last case in Figure 4-23 is an exceptional case and 

shows how the proposed estimator accurately finds the optimum s− parameter. The 

overall results show that the previous approach yields poor results. However, the 

proposed method estimates the true s− parameter very precisely.  
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Figure 4-23: Interpolation errors are plotted for different desired error levels with the s – 
parameters estimated by the proposed algorithm, L=100, and p=8. 
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Figure 4-24: Interpolation errors are plotted for different desired error levels with the s – 
parameters estimated by previously used formula, L=100, and p=8. 
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Figure 4-25: Interpolation errors are plotted for different desired error levels with the s – 
parameters estimated by the proposed algorithm, L=100, and p=25. 
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Figure 4-26: Interpolation errors are plotted for different desired error levels with the s – 
parameters estimated by previously used formula, L=100, and p=25. 
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CHAPTER 5  
NUMERICAL RESULTS 

5.1 Introduction 

In this chapter, results of extensive tests conducted by Helmholtz MLFMA and 

Maxwell MLFMA with self-tuning library are presented. In these tests, our first goal is to 

see how accurate MLFMA results are obtained by using self-tuning library. The second 

purpose of these tests is to check the limits of the algorithms, i.e. to see how large the 

cluster size can be used during the executions of the algorithms. 

The test setups are constructed for one-level FMM and two-level FMM. At each 

test setup, the source/observer points for Helmholtz problem or source/observer dipoles 

for Maxwell problem are selected over the surfaces of clusters. Totally, one hundred 

twenty points or dipoles are distributed on equally spaced grid over each cluster. The 

cluster sizes or spacings are changed to examine the limits of algorithms during tests. At 

each test, four different error rates are examined. These error rates are 10-3, 10-5, 10-7, and 

10-9. In addition, relative differences between field values at observer points/dipoles 

calculated by exact Green’s function expression and FMM approximation are plotted. 

5.2 One-Level FMM 

One-level FMM test configuration is given in Figure 5-1. With this test 

configuration, Helmholtz MLFMA and Maxwell MLFMA are tested and the results are 

presented in next subsections. In order to examine small-buffer case in this configuration, 
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the spacing between cluster centers is set to 16λ  at one of tests. All other tests are 

conducted with the spacing of 1000λ . In all tests below, MLFMA results are obtained 

with desired levels of accuracy. 

x

y

z

(0,0,0) (1000 ,0,0)λ

d d

X

source sphere observer sphere

x

y

z

(0,0,0) (1000 ,0,0)λ

d d

X

source sphere observer sphere

 

Figure 5-1: One-level FMM test configuration. 

5.2.1 Results for Helmholtz MLFMA 

In the first test, the cluster radii are selected as 4λ  and the spacing between 

clusters is set to 1000λ . At this configuration, optimum L  and p  parameters are 

estimated with self-tuning library. Over-sampling ratio is selected as 1.5. Results are 

plotted for different desired error rates (See Figure 5-2). It can be seen from the results 

that the desired error rates are achieved precisely through the self-tuning library.  
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Figure 5-2: Relative errors of field values at observer points at one-level FMM for the 
configuration 4d λ=  and 1000X λ= . 

In second test, the cluster radii are kept as in previous test. The observer cluster is 

placed at (16 ,0,0)λ  (one-sphere buffer). At this configuration, optimum L  and p  

parameters when 1.5s =  are estimated with self-tuning library. Results are plotted for 

different desired error rates (See Figure 5-3). It can be seen from the results that desired 

MLFMA error rates are achieved.  
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Figure 5-3: Relative errors of field values at observer points at one-level FMM for the 
configuration 4d λ=  and 16X λ= . 

In the following two tests, the spacing between two clusters is fixed to 1000λ  and 

various cluster sizes are examined. In the third and fourth tests, cluster radii are selected 

as 40λ  and 150λ  respectively. The fourth test also shows the computational limits of the 

algorithm in our workstation that has 16 GB RAM at one CPU. The results at both tests 

are satisfactory. 
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Figure 5-4: Relative errors of field values at observer points at one-level FMM for the 
configuration 40d λ=  and 1000X λ= . 
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Figure 5-5: Relative errors of field values at observer points at one-level FMM for the 
configuration 150d λ=  and 1000X λ= . 

Finally yet importantly, the first test is repeated with the parameters estimated 

with the formulas presented in literature. It is validated that the proposed method in this 

thesis yields very accurate results (in Figure 5-2) compared to results in Figure 5-6.  
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Figure 5-6: Relative errors of field values at observer points at one-level FMM for the 
configuration 4d λ=  and 1000X λ=  (with formulas in literature). 

5.2.2 Results for Maxwell MLFMA 

The tests for the Helmholtz MLFMA are repeated here for Maxwell MLFMA. In 

the first test, the cluster radii are assigned as 4λ  and 1000X λ= . At this configuration, 

optimum L  and p  parameters are estimated with self-tuning library. It should be stated 

that the L − parameter estimating algorithm is modified for employing source/observer 

dipoles over the surfaces of clusters instead of source/observer points. Over-sampling 

ratio is again set to 1.5. Results are plotted in Figure 5-7 for different desired error rates. 

It can be seen from the results that the desired error rates are achieved precisely through 

the self-tuning library.  
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Figure 5-7: Relative errors of field values at observer dipoles at one-level FMM for the 
configuration 4d λ=  and 1000X λ= . 

In the second test, the cluster radii are kept as in previous test. The observer 

cluster is located at (16 ,0,0)λ  (one-sphere buffer). At this configuration, optimum L  and 

p  parameters are estimated with self-tuning library when 1.5s =  . Results are shown in 

Figure 5-7. It can be seen from the results that MLFMA error rates are as precise as 

desired.  
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Figure 5-8: Relative errors of field values at observer dipoles at one-level FMM for the 
configuration 4d λ=  and 16X λ= . 

In the last two tests, the spacing between cluster centers is set to 1000λ . In the 

third test, radii of clusters are selected as 40λ . In the fourth test, the radii of clusters are 

assigned as 65λ  which is the upper limit for the computation in our workstation for 

Maxwell MLFMA implementation. In both tests, the results are as precise as expected 

before. 
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Figure 5-9: Relative errors of field values at observer dipoles at one-level FMM for the 
configuration 40d λ=  and 1000X λ= . 
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Figure 5-10: Relative errors of field values at observer dipoles at one-level FMM for the 
configuration 65d λ=  and 1000X λ= . 

Like in Helmholtz tests, the first test is repeated with the parameters obtained with 

the formulas in literature. In addition, the accurateness of the method proposed in this 

study is confirmed again.  
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Figure 5-11: Relative errors of field values at observer dipoles at one-level FMM for the 
configuration 4d λ=  and 1000X λ=  (with formulas in literature). 

5.3 Two-Level FMM 

Two-level FMM test configuration is depicted in Figure 5-12. With this test 

configuration, Helmholtz MLFMA and Maxwell MLFMA are examined and the results 

are presented in next subsections. In this configuration, all source spheres enclosed by the 

sphere located at the origin interact with the observer spheres enclosed by the sphere 

located at (1000 ,0,0)λ . However, the fields at only one sphere that resides at the upper-

left portion of the big observer cluster are compared. In order to examine small-buffer 

case in this configuration, the spacing between big cluster centers is set to 38.62λ  at one 

of tests. All other tests are conducted with the spacing of 1000λ . In all tests below, 

MLFMA results are obtained with desired levels of accuracy. 
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Figure 5-12: Two-level FMM test configuration. 

5.3.1 Results for Helmholtz MLFMA 

In the first test, the small cluster radii d  are selected as 4λ  and the spacing 

between clusters is 1000λ . In this configuration, optimum L  and p  parameters are 

estimated with self-tuning library. Over-sampling ratio is set to 1.5. Approximation error 

at the field points located over the surface of upper-left sphere in the big observer cluster 

is plotted for different desired error rates (See Figure 5-13). Desired results are obtained 

through the self-tuning library and those are below the desired error rates. It should be 

also noted that the approximation errors are lesser than those of the one-level FMM. This 

is because the estimation calculations are performed at the worst case in which it is 

assumed that the source/observer points sit over the surfaces. However, source/observer 

points reside within the big clusters in two-level FMM. Therefore, the results are 

expected well below the desired level. 
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Figure 5-13: Relative errors of field values at observer points at two-level FMM for the 
configuration 4d λ=  and 1000X λ= . 

In the second test of this part, the spacing between cluster centers is set to 38.62λ  

(one big cluster buffer case). In addition, the cluster radii are kept as same as in previous 

test. The approximation errors on observer points are demonstrated for different error 

rates (See Figure 5-14). The results are satisfactory  
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Figure 5-14: Relative errors of field values at observer points at two-level FMM for the 
configuration 4d λ=  and 38.62X λ= . 

In the last two tests for Helmholtz MLFMA, the cluster spacing is set to 1000λ . 

The radii of small clusters are assigned as 40λ  for the third test and 100λ  for the fourth 

test. At the configurations, approximation errors for different desired error rates are 

calculated and plotted in Figure 5-15 and Figure 5-16. In the last test, the translation 

operation is performed at very high degrees such as 3147. This shows that the routines in 

MLFMA implementations generate precise results at very high degrees.  
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Figure 5-15: Relative errors of field values at observer points at two-level FMM for the 
configuration 40d λ=  and 1000X λ= . 
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Figure 5-16: Relative errors of field values at observer points at two-level FMM for the 
configuration 100d λ=  and 1000X λ= . 

5.3.2 Results for Maxwell MLFMA 

The tests for the Helmholtz MLFMA for two-level are repeated here for Maxwell 

MLFMA. In the first test, the cluster small radii are assigned as 4λ  and 1000X λ= . In 

the second test, the spacing between big cluster centers is set to 38.62λ  and small cluster 

radius is 4λ . In the third and fourth tests, 1000X λ=  and the small cluster radii are 40λ  

and 60λ  respectively. The results of these tests are shown in Figure 5-17, Figure 5-18, 

Figure 5-19, and Figure 5-20. The last test shows the computational limit of algorithm in 

existing workstation. All test results are satisfactory as before. 
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Figure 5-17: Relative errors of field values at observer dipoles at two-level FMM for the 
configuration 4d λ=  and 1000X λ= . 
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Figure 5-18: Relative errors of field values at observer dipoles at two-level FMM for the 
configuration 4d λ=  and 38.62X λ= . 
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Figure 5-19: Relative errors of field values at observer dipoles at two-level FMM for the 
configuration 40d λ=  and 1000X λ= . 
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Figure 5-20: Relative errors of field values at observer dipoles at two-level FMM for the 
configuration 60d λ=  and 1000X λ= . 
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SUMMARY AND FUTURE WORK 

In this thesis, efficient and accurate numerical techniques for determining the key 

parameters in MLFMA are presented. The scalar and vector spherical filters, which 

significantly affect the accuracy and performance of MLFMA, are extensively discussed. 

In addition, numerical implementations of FMM and MLFMA to electromagnetic surface 

scattering problem are provided. 

Prior to this study, key parameters in MLFMA, the number of multipoles L , the 

number of interpolation points p , and the over-sampling ratio s, were being determined 

through some heuristic formulas, which don’t either work in all possible cases or yield 

precise results. The well-known excess bandwidth formula [98] to determine the number 

of multipoles fails in the cases where the spacing between interacting clusters isn’t large 

enough. And the formulas to determine the local interpolation parameters (p  and s) in 

[103] give rise to poor estimations. Estimated parameters by these formulas yield the 

maximum error rates very below or above the desired error rates. Consequently, who uses 

existing formulas in literature to determine these key parameters can encounter 

unexpected overall error rates at the end of MLFMA executions. By using the self-tuning 

library presented in this study, these key parameters can be accurately estimated and 

MLFMA can be fully error controllable. The results presented in Chapter 4 and Chapter 5 

show the power of estimator algorithms and the accurateness of the expected overall error 

rates at the end of MLFMA execution.  

Scalar and vector spherical filters used in upward and downward traversal in 

Helmholtz MLFMA and Maxwell MLFMA are discussed extensively in Chapter 3. After 

the standard (slow) scalar spherical filtering procedure is described, the fast spherical 
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filtering procedure introduced in literature is provided with its complexity analysis. 

Although the literature for scalar spherical filter is abundant, that for vector spherical 

filter is scarce. Existing formulation for the fast vector spherical filter is incorrect and 

explanation of its implementation is hard to comprehend. Here, the correct derivation of 

vector spherical filter is provided by first reviewing the vector spherical harmonics bases 

and the standard vector filtering procedure. Then, the implementation details of the fast 

vector spherical filter along with the fast scalar spherical filter are provided to ease the 

workload of who would like to implement fast vector spherical filter. 

In Chapter 2, implementations of FMM and MLFMA to CFIE to solve 

electromagnetic surface scattering problem are explained comprehensively. After the 

integral equations are reviewed, the core of the FMM approach, approximating the free-

space Green’s function, is discussed. Once the approximate expression is derived, its 

utilization in CFIE is discussed. Multilevel implementation of FMM for CFIE is also 

explained. At the end of the chapter, an optimal local interpolation scheme for locally 

interpolating the translation operator values in FMM and MLFMA is elucidated. 

By the accomplished work in this study, Helmholtz and Maxwell problems can be 

solved with a desired precision level. MLFMA can be utilized for integral equations 

based on free-space kernels. Present code can be parallelized for solving large-scale 

problems [105]. 
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