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CHAPTER 1
INTRODUCTION

1.1Background

The fast multipole method (FMM) has been selecedha one of the ten most
significant algorithms discovered the in"26entury by the IEEE Computing in Science
and Engineering Society [1]. It was cited alonghwilgorithms such as the FFT,
Quicksort, Monte Carlo methods ...etc. The inventofsFMM, Professors Leslie
Greengard and Vladimir Rokhlin, were the recipiesft2001 Leroy P. Steele Prize for a
Seminal Contribution to Research of the Americarthdmatical Society for their paper
titled “A Fast Algorithm for Particle Simulationg2]. Although their paper focused on
rapid evaluation of gravitational and Coulombicedtals, it comprised the fundamental
ideas permitting the generalization of the methmdh tvariety of applications. The last
decade of 2D century have witnessed wide spread activity megpto the implementation
of the FMM for kernels governing the

¢ Laplace and Poisson equations [3-7],

Helmholtz equation [8, 9],

Maxwell’'s equation [10-12],

0
0
¢ Stokes flow and Navier-Stokes equations [13-15],
¢ N-body problems [2, 16],
¢ Yukawa potentials [17, 18] ...etc.
Implementations of FMM to these kernels make varilBuge-scale scientific and
engineering computations possible in areas suatoagputational astronomy, quantum

mechanics, chemistry, biology, electromagneticectebstatics... and so on. In these



disciplines, large-scale problems become solvabl®ugh rapidly evaluatingN?
interactions by multipole approximations. These rapinations lead to considerable
reductions in the computational complexities of theoblems from O(N?) to
O(NLogN) (or O(N) in some cases).

The fast solution of dynamic problems in electrongtgs calls for the
application of FMMs to the Helmholtz and Maxwelluagions. Prof. Rokhlin proposed
the FMM for 2D Helmholtz equation in 1990 [19]. Thehe extended it to the 3D
Helmholtz equation [9]. That work was followed byhers seeking the solution of
Maxwell equations for the electromagnetic scattgfqmoblem [8, 10, 20]. Soon after,
Prof. Chew’s research group developed a multileeesion of the FMM, known as the
multilevel fast multipole algorithm (MLFMA), and oducted pioneering research on this
topic [11, 12, 21-36]. Moreover, Prof. Michielssemesearch group developed time-
domain counterparts of FMM [37] and MLFMA [38] fure wave equation and applied it
in various real-world time-domain problems [39-43].

1.2 Motivation

MLFMA for the Helmholtz and Maxwell equations adcmete the integral
equation-based iterative solution of acoustic dedtemagnetic scattering problems by
evaluating interactions between sources and obsemve hierarchical framework. The
hierarchical framework requires (i) breaking up foairce constellation into groups, (ii)
computing each group’s far field signature, ang (ianslating these far-field signatures
between group centers to arrive at observer fielte first step which falls out of the
scope of this study can be accomplished by a hasttede algorithm [44]. The second
step, called aggregation, requires a set of steggesed as interpolation, and summation
and shift of far-field signatures, which will beetfocus of this study. The third step based
on the procedures named translation, anterpolgborfiltering), and shift of far-field
signatures will again be the focus of this thelsést two procedures in the third step are

together called as disaggregation.



The MLFMA reduces the computational and memory iregquents for solving
Helmholtz and Maxwell problems fronD(N?) to O(Nlog N). However, there also
exists a multiplicative factor inherited in complyx estimate of MLFMA. This
multiplicative factor heavily depends on effectiiaplementation of the filters used
during interpolation/anterpolation stages as welklee choice of some key parameters,
which are the number of multipolds used to compute MLFMA's translation operators,
the over-sampling ratios used to sample far-field signatures, and the nundfe
interpolation pointsp used while locally interpolating fields during thpward traversal
of the MLFMA tree.

In this thesis, Helmholtz and Maxwell MLFMA are déaiped in detail. Next, the
effective filtering schemes used during interpalatanterpolation stages are discussed.
We noticed that some terms in the formulation it feector spherical filter used in
Maxwell MLFMA are missing in the literature. Herthe formulation of fast vector
spherical filter is derived from the scratch, mgsterms in the literature are pointed out,
and the implementations of vector and scalar sphlefilters are explained in detalil.
Moreover, although some formulas exist for the mptn choice of the key parameters
L, s,andp, they do not yield precise results and are notecorfor many cases. Here,
we propose a self-tuning library for Helmholtz addxwell MLFMA for the optimum
choice of these parameters. The features of tiieusehg library are as follows:

¢ It enables full control of error in MLFMA,

¢ It works for all kinds of cluster sizes and spasiegcountered in MLFMA and
estimates the optimum parameters precisely,

¢ It allows significant memory reduction and time is@g in MLFMA,

¢ It's executed as a preprocessor to the actual MLFIA

¢ It requires negligible time and memory for execntio



1.3 Organization of Chapters

In Chapter 2, surface integral equations for sg@vetectromagnetic scattering
problems are reviewed. Then, the gist of the FMBtdrization of the free-space
Green’s function, is discussed and the implemesriatof the FMM and MLFMA for the
solution of surface integral equations are desdrile addition, an efficient interpolation
scheme is presented to be used for locally intatpng translation operator values in
large-scale problems.

In Chapter 3, scalar and vector spherical filteesiatroduced for calculating field
signatures during upward and downward traversaMIdfMA tree. For scalar spherical
filter used in Helmholtz MLFMA, the formulation aftandard slow method is derived
and its complexity is analyzed. Then, the fast wetlior scalar spherical filtering
procedure as well as its implementation are desdrilsimilarly, vector spherical filter
utilized in Maxwell MLFMA is discussed by first ebgining the standard slow vector
spherical filter. Then, the formulation of fast t@cspherical filter is derived from
scratch by indicating the missing terms in therditere. The implementations of fast
scalar and vector spherical filters are elucidéggroviding the pseudo codes at the end
of the chapter.

Self-tuning library is presented in Chapter 4. Aethistage algorithm for
estimating the optimunh — parameter is introduced after the behavior of fiéotd free-
space Green’s function with respect to varylngs investigated. After the explanation of
three-stage algorithm with pseudo-codes, the nwaleresults that show the accuracy
obtained by L —parameters estimated by the three-stage algorittendamonstrated.

Afterwards, algorithms for estimating optimum-parameter ands— parameter are
introduced. Once the details of the algorithms @mvided, the numerical tests that
demonstrate the accuracy obtained pynd sparameters estimated by the proposed
algorithms are provided.

Extensive test results in multilevel framework previded in Chapter 5.



CHAPTER 2
FMM AND MLFMA

2.1 Introduction

Applications of the FMM to the Helmholtz equationdaMaxwell equation are
somewhat different from its applications in othescgplines cited in previous chapter. In
applications of FMM to the several problems such Nabody problems, Laplace

equation, Poisson equation, etc., the multipoleaegns are applied to smooth and
slowly varying kernels such a;{|r —r’|p, where p is an integer ang=1. In contrast,

the application of FMM to the Helmholtz and Maxweljuations necessitates dealing
with an oscillatory kernel such aék‘r_r"/|r—r'|. This oscillatory kernel requires an

elaborate mathematical analysis compared to theoroiiatory ones [9]. For the rigid
mathematical background of FMM for the Helmholtaziatpn, reader is referred to [9,
19, 45, 46].

The FMM for the scalar wave equation was propose@difmann, Rokhlin, and

Wandzura [8] to reduce the computational time amanory requirement of the method

of moment (MoM) solution of electromagnetic scaitgrproblems fromO(N?) to

O(N%?2). Then it was used to solve the electric field gnté equation (EFIE) [10, 32]
and the combined field integral equation (CFIE) ][X&r solving scattering from
arbitrarily shaped perfect electric conductor (PE@jects. Later on, multilevel
implementation of FMM with the computational comptg and memory requirement of

O(Nlog N) was introduced by Song and Chew [12, 32]. Diffeliemplementations of



MLFMA requiring O(Nlog?® N) operations and storage were presented by Dem¥fiprt,
[47, 48] and Gyure, Stalzer [49].

In this chapter, implementations of FMM and MLFMéthe CFIE are discussed
in detail. The rest of this chapter is organizedf@dkws: the integral equations that
characterize the EM scattering phenomena from a &€t are discussed in the second
subsection. An approximation to the free-space @Bsedunction that leads to
discretization of the integral equations is deriwvedhe third subsection. In the fourth
subsection, the implementation of FMM for solvind-IE is described. Multilevel
implementation of FMM is explained in the fifth sdztion. In the final section, an

efficient interpolation scheme for the translataperators is presented.

2.2 Integral Equations

Integral equations of first kind and second kind $wlving electromagnetic
scattering from an arbitrarily shaped PEC objeetlarefly reviewed before deriving the
formulas for FMM and MLFMA.

Electric field integral equation (EFIE), which chaterizes the time-harmonic
electric field scattering by a PEC, is given by

”<_,7Ax G ! ! =n i
el é|"G(r,r)J(r J)dS =€ (), (2.1)

for r'OS andr OS. Here,i =+/-1, k is the free space wave numbagrjs the intrinsic
impedance of free spac§, is the surface of scattere® is the integration area on the
surface scattererii is the unit normal vector to the surfac® J(r') denotes the
unknown induced surface electric currenix operator indicates the tangential

components of vector fieldE' (r) is the incident electric field vector, and

&(rr '):(r-k_lzmm'jg(r, ), (2.2)



eikR
g(rr’)=—0 . R=f 1. (2.3)

1" represents the unit dyad, a@(r,r') is called the dyadic form of the free space

Green’s function for Helmholtz equatiog(r,r')). The unit dyadl indicates the vector

potential part of EFIE and the terﬂ% 00" represents the scalar potential part of EFIE.

Magnetic field integral equation (MFIE), which fouhates time-harmonic

magnetic field scattering by a closed surface AHEExpressed as

277ﬁ><J(r)—ﬁ><ﬁ><D><IC§(rr')] (')dS =4m™x"H '( ), (2.4)
%

for r approaches t& from outside.H' (r) denotes the incident magnetic field vector.

In theory, MFIE or EFIE can be used to solve thebjam of electromagnetic
scattering from a closed PEC object. However, lidttE and MFIE suffer from internal
resonance problem due to the presence of homogesausions corresponding to
interior cavity modes [50]. A remedy to this cavigsonance problem is the combined
field integral equation [51]. CFIE is the lineamabination of EFIE and MFIE as

C|=|E:aE|:|E+(1—a)iE MFIE, (Oa<]. (2.5)

The choice ofa as 0.2 is proven to be the optimum selection [92je method of
moments can be applied to the CFIE with Galerkiacpedure. To do that, first, the

unknown surface current distribution &is approximated byN basis functions as
N
I(r)=D1f ("), (2.6)
I=1

where I, denotes the unknown expansion coefficiefiffr') denotes thelth basis

function on the surface of scatterer; the basistfans can be chosen as Rao-Wilton-
Glisson (RWG) bases [53], which defines a constdrdrge density on the surface

without charge accumulations on the edges. Sed¢badasis functions used to discretize



the currentf, (r') are tested with the same basis functidpf ), k=1,...,N. Testing

yields a system of linear equations which can biemrin a matrix-vector multiply form

as

NII

V=21, (2.7)

whereV is the excitation vectorN ), Z denotes the impedance matriX ¢ N), | is
the expansion coefficient vector. The impedanceirmalement corresponding to EFIE is

given as

z£ =11 jfk )G ( ') dS ds, (2.8)
S

and that corresponding to MFIE is expressed as

—jf ds+—jf JrxOx [ or f)p( ') dSd.  (2.9)

Since the basis functions are defined tangentighéosurface of scatterer, the tefx
appears in Eqn.(2.1) and Egn.(2.4) is omitted h&m= contributions from EFIE and

MFIE to the impedance matrix of CFIE can be cal@daas
Zy=azg+n(l-a)Zy . (2.10)

The excitation vector element is

(ajf r)ds+n(1- a_[fk( [@ H () ) J (2.11)

The unknown expansion coefficient vectoris to be computed using an iterative
solver (e.g. transpose-free quasi-minimal residomdthod).

In next subsection, in lieu of using diagonal forofstranslation operator for
FMM derivation [9, 45, 46], a simple way that emydoaddition theorem and an

elementary identity is followed to derive multip@pproximation.



2.3 Approximating the Green’s Function

The FMM relies on approximating Green’s functiom 8D Helmholtz equation
with two elementary identities. These identities d@ found in [8, 54-56]. The first
identity is a form of Gegenbauer’s addition thearevhich is an expansion of Green’s
function into an infinite series as

ik|X+d|
S =ikid(k|X +d|
X +d| oo( ) , (2.12)
:iké(_l)l (2+1)j, (kd ) (kX) P(d X)
or alternatively,
eik\x+d\ _ o 4 | _ 1 AV ~
m:.kmz > (-1) (2+1) ] (kd)h (kX)(Ym(d)) (%), (213)

=0 m=-I|

where j (x) denotes the spherical Bessel function of the fiisd, h(x) is the
spherical Hankel function of the first kind} (x) denotes the Legendre polynomial, and
Y™(x) is the spherical harmonics function of the degteand the orderm. The

expansion is valid ford < X, where d =|d| and X =|X| (see Figure 2-1 for the
definitions of vector quantities). In addition, ghexpansion can be used to compute the
field at a receiver location generated by a source at locatidnby simply choosing

d=r-rogH s+ 'X ¥ of < (2.14)

The conditiond < X implies that thelr'—rg|< X/2 and |r -ro| < X/2 and the source

and the observer points andr must be in the close vicinity of the points andrg.
Due to these restrictions, the regions of convergdar both the source and the observer
points are covered by spheres, namely source spmeteobserver sphere which are

centered at the pointg andrg, respectively.



R=r-r'

Figure 2-1: The vector quantities illustrating theetor decomposition between the
source and the observer locations.

The second identity involves expanding the tejrfx) R (x) into an integral over
propagating waves [56] as
-
ji (kd) e(ad):ﬂjék Pk X) dk (2.15)

477S

where the integral is evaluated over unit sphrandk =k /k| denotes the direction of

propagating plane waves. Eqn.(2.15) is substitutem Eqn.(2.12) and the order of the

summation and the integration is changed as
kx|

W—MJ 2ke'k'z "(21+2) B (kX) P(k X ). (2.16)

When the infinite series is truncated at a dedreand the ternjx +d| is written more
explicitly, one can get a very concise expressmrapproximating Green’s function as

eik\r—r {

S je"‘[c” (kX)) g (2.17)

Ir=r| AT

whereT, (k,X) is the translation operator defined as

Tk X)= X (2 ) (00) R X). (2.18)

1=0

In Egn (2.17), the first exponential term represehe incoming waves to the observer

sphere. Similarly, the other exponential term foates the outgoing waves from the
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source sphere. In addition, it is apparent thatinkegral acts on the Legendre function
and exponential terms. In order to find out the trefficient and accurate integration
scheme, the exponential term in Eqn.(2.15) carxpareled in terms of special functions
as [54]

galka) i( ) (21+1) j (kd) R (k d), (2.19)

=0

and
i (kd)l?(aDZ):ﬁi(i)"(zl +1)j. (k) [R(KX) R d)dk, (220)

where the integrand is the product of two Legeridnetions. By using addition theorem

for Legendre functions, the integrand can be exgesn terms of spherical harmonics
functions. An exact and efficient surface integmtscheme for a function defined over
sphere and expanded in terms of spherical harm@igdybrid quadrature scheme that
uses the Gaussian quadrature rule in the elevalioection and the trapezoidal

guadrature rule in the azimuth direction. In thypid quadrature scheme, the choice of
2L +1 equidistant nodes in the azimuth direction dn#éll Gauss-Legendre quadrature

nodes in the elevation direction yields exact mss(dccurate upto machine precision).
The procedure to integrate a functidr(R)on a unit sphere with this hybrid quadrature
scheme can be formulated as

2L+1L+1

[ (k)oK = = 122\/\“( ) (2.21)

S m=1 rFl

where K, = (sind, cosp,, ,si,, siw,, ,cad ), 6, =arccogx,), @, =m(27)/(2L+1),
and x, andw, denote the nodes and weights of Gaussian quaerataing this formula,

Eqn.(2.17) can be rewritten as

gkl ik 2 A I2 W )
] e DIDNT IT (KX ) € L (222

m=1 r=1

Ir=r
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Instead of employing the hybrid quadrature schemmtegrate the function on
unit sphere, another efficient numerical quadragiven in [57] can also be used. Since
the integration over sphere is exact due to thesdmture rules, the approximation error
in FMM results from truncating the infinite seriesa degree.. The optimum choice of
the parameter. will be discussed in detail in Chapter 4. The pater L must be

chosen large enough to ensure the rapid convergehd'@(ldzmn,x)in Egn. (2.22).

Moreover, L — parameter could not be selected very large duleetaharacteristics of the

addition theorem and the sampling criteria. In otdesatisfy the convergence of partial-

wave expansion, one must chodse kd = k|r -r'-X | However, it can’t be selected to

be much larger tharkX . This is because the spherical Hankel functipfix) in the

translation operator becomes highly oscillatory whe> kX , causing inaccuracies in the
numerical integrations on the unit sphere. Anottearse of the inaccuracies whénis
much larger tharkX is the aliasing due to over-sampling of the fatdfipattern. On the
other hand, wherv is smaller tharkd, the number of samples selected on the surface is
not sufficient to recover the actual pattern. Asrs&om this discussion, there are lower
and upper bounds for the selectionlof parameter in order to use the algorithm with a

desired level of accuracy.

2.4 Fast Multipole Method for CFIE

The free space Green’s function was approximatet thie partial plane-wave
expansion (in Eqn.(2.17)) in the previous subsactin this subsection, implementation
of Green’s function approximation to the CFIE isalissed.

The free space Green'’s function approximation aambdified to its dyadic form

as

)@ e
S

With the aid of this expression, the radiation @@ttof Ith basis function is written as

12



R (K)=k(T-Kk") g e™ st ¢ ) a8, (2.24)

p
and the receiving pattern é&th basis function is stated as

Rk(lz)=a(l_—kAkA')EJ'eik[a*°} (') ds

S : 2.25

—(1-a)kx [V, ()i as (22)
S

It should be noted that since the first term in Eg®) is the self-contribution term, it

doesn’'t appear here. And the receiving and radiapatterns have only@ and ¢
components. This is because-kk ' =00 +¢¢ and (T —kAkA')M =V,0 +V, . Impedance

matrix element is
_Kk2 n " "
Z4 =1:_n’27£Rk(k)TL(k,x)F,(k)d%< . (2.26)

The excitation vecto¥, in Eqn.(2.11) is used here without any change. ddueleration

in FMM implementation of CFIE comes from the fabit the radiation patterns of
several basis functions in the same source boxranslated to the observer box, where
several testing functions reside, with the samestedion operator. More systematically,
the first step in implementation is clustering tbeatterer into the boxes. Then, the
translation operators, defined between geometcealers of boxes, are used to translate
the radiation patterns of the basis functions wittie source boxes into the centers of
observer boxes (aggregation). Finally, the recgiypatterns at the centers of observer
boxes are distributed to the testing functions thgilog to the observer boxes

(disaggregation). Next, these steps are describddtail.

The domain of scatterer is partitioned into smallkds by a tree structure
algorithm. In the beginning, the scatterer is esetbby a fictitious box. Then, the edges
of fictitious box are split into two parts alongckadirection %, y, andz), resulting in
eight boxes. Each box is recursively subdividedl tin¢ size of the edge of the smallest
box becomes a fraction of wavelength. Each boxanasta number of basis functions

and keeps the list of basis functions. If it doe$ contain any basis function, then it

13



should be discarded from the list of interactingd® The boxes can be numbered with

Morton ordering [58]. Figure 2-2 shows the partied scatterer (top view).

| —3 3

N\

—
N
a1
(o))
~

\g 13 14

\/

Figure 2-2: The box surrounding the object is suldéid hierarchically in each direction.
Each numbered box contains basis functions.

Assume that there exisfl boxes in total and,,, 1< m< M, represents the box

number. The diameter of the smallest sphere emgldkie smallest box id. The boxes
that satisfy the criteriad < X for approximating Green’s function given in prawso

subsection are in the far field of the bBy,. For these boxes, multipole approximation is

used to calculate far-field contributions. For thenaining boxes in the near-field of the

box B,,, the field contributions are computed with MoM.€Féfore, for each boXB,,,
the boxes are grouped and recorded in the listeeohear-field interaction and the far-
field interaction according to their proximity tbet box B,,. For each box, the near-field
interaction list and the far-field interaction lisan be denoted as™ and I/",
respectively. For example, the near-field inteactiist of the first box in Figure 2-2,

I;N, consists of the specifications of the box&s B, and B;. The far-field interaction

list of that box, IiF , comprises the specifications of the remainingdsoXOnce the box

structure and interaction lists are formed, thd resonly evaluating the interactions
between boxes. In what follows, the subscriptionis used for the test box and the
subscriptionn denotes the source box in the interactions.

First, the radiation patterns of the basis funciane calculated and stored in the

memory. The far field of one box can be calculdigd
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Fa(k)= >R (k) (2.27)

0B,

where F (R) denotes the radiation pattern of each basis fomaiifted to the geometric

center of the box8,. Next, the radiation patterns of the boxes class$iin the far field

interaction list of the boxB,,, are translated to the geometrical center of the g as
Gn(k)= X TL(kX)Faf). (2.28)
Finally, the receiving pattern of the bdg, is obtained as

ﬁm(ﬁ): ZRI(IQ), (2.29)

0B,

where R, (12) denotes the receiving pattern of each basis fomcshifted to the

geometric center of the boR,,, is multiplied with the translated pattern andritsited

on the basis functions residing in the b8y as

25 = [R (k)G (K ) 0% . (2.30)
S

Contributions from the boxes near B), can be added to matrix-vector multiplication as
Zyl =Zd" ) + 23, (2.31)

While using the iterative method to solve this fixaérquation, the matrix vector
multiply is performed at each iteration. Althoughe current expansion coefficients are
changed at each iteration, the translation oper#terradiation pattern and the receiving
pattern of each basis functions remain the same.

The algorithm mentioned above is called singlesstagiM. The analysis in [8, 9]
showed that the matrix-vector multiplication at kederation requiresaNM + bN> M™*

floating point operations, whera and b are the parameters involving with the machine

specifications and the algorithm implementationtiAthe choice ofM =+bNa™, the

overall complexity of the algorithm is computed@6N®'?).
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2.5The Multilevel Fast Multipole Algorithm for CFIE

The complexity of FMM can be further reduced@§Nlog N) by carrying out
the procedures in a multilevel framework [32, 49, 59]. Consider a multilevel tree

structure with levels numbered betwekeand y,,,; the first levely; consists of smallest

boxes and the last levet, ., is the level with the largest boxes, obtainedratte first

division of the box surrounding the scatterer.His thierarchy,B,, denotes the"™ box

at the yth level, the father of the boB, ., if y# )4 and the son of the boB, ., if
Y% Vmax- NOte that, here and later on and n are used to designate different boxes with

different numberings. The principal idea behind N4 is performing far field
interactions at each level of the tree and redutignumber of translations between
boxes.

For each box in the tree structure, three diffelistd are to be kept to execute all

interactions. The first list consists of the spieaifions of the near field neighbors of the
box B, at level y and denoted a$;,}“,‘. The second list ;,}F, contains those of the far
field neighbor boxes at the levgl whose fathers are the near neighbor of the fadher

the box B,,. The specifications of the basis functions pertirte the boxB,, and the

sons of the boxB,,, are kept in the third Iistl’,,}s,. The interactions between one sample

observer box denoted as the first box at the fegel and the remaining boxes are

depicted in Figure 2-3 for a three-level FMM. Inglie 2-3 , the sample box is
interacting with the near neighbors in level 1he tist I,)'. The solid diamond boxes are
the far neighbors of the sample box and their fathee the near neighbor of the father of
the sample box. Therefore those are keptl;in. The remaining large boxes are the
neighbors of the grandfather of the sample boxré&fbee, the contributions from larger
boxes to the basis functions keptlﬁ are directly converted from the grandfather box

to the sample box.
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Source box

Near-field neighbor box
(Level 1)

Far-field neighbor box
(Level 2)

Far-field neighbor box
(Level 3)

Figure 2-3: Multilevel interactions between an alisebox and the remaining source
boxes. The interactions with near field neighboesdirectly computed by conventional
MoM.

At the initialization of the algorithm, the follomy pre-computations are
performed: (i) the near interactions of each boxleael 1, B,;, are computed by

conventional MoM, (ii) the radiation patterns ahe teceiving patterns are calculated by

Eqn. (2.27) and Eqgn. (2.29) and stored for the shmess, (iii) translation operators

TL(k,me—X ny) between boxes at each level are calculated ant ikememory.

However, computation and storage of translatiornraipes require large computational
resources when the problem size grows and the nuaildevels increases. In the next
subsection, an efficient interpolation scheme ipla&red to reduce the memory
requirements and the computational time for conmgutianslation operators at all levels.
After the pre-computations are finalized, the rdrapatterns at the levels other
than the lowest level can be computed by an intatpo As the box size becomes larger
while progressing from the levey—1 to the level y, the number of plane wave
directions is increased in order to sample theatamh patterns correctly. This up-
sampling procedure can be accomplished by eithécal interpolator or a global
interpolator. The local interpolator with the comxity O(N) is based on the local
interpolation functions such as Lagrange polynosniat the approximate prolate

spheroidal functions. The global interpolator wiite complexityO(Nlog N) is based on
spherical harmonics transforms, which is discussedext chapter. Either a local

interpolator or global interpolator can be usedlttain radiation pattern at the b,

before the radiation pattern of the bBY,_,, is shifted to the center of its fathB,, as
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)| e

where P;f/—l(-) denotes the interpolation operator which interfsdhe radiation pattern

from the level y—1 to the level y. It is clear from the expression that the shifting

operation only involves with the multiplication oddiation pattern with an exponential
function and does not require any computationaduees. This procedure is called up-

tree traversal and can be summarized with theviatig expression

lDBZ R (k) y=1
)= s . (2.33)

Z‘E”’S eik(me—X .y ny—l(ﬁn(y—l) (I'(‘)) y#1

Foy (K

Bn(yfl)

Note that the radiation patterns from the sonshef box B, ,_;, should be shifted,

interpolated and summed in order to obtain theatawh pattern at the bok,,,

After all radiation patterns at every box are atdal, the next step is sweeping
from the highest level to the lowest one. This bamachieved by translating and down
sampling (or filtering) the radiation patterns he tboxes at lower levels. Then the field
contributions to the basis functions at the lowegel can be obtained. In a succinct way,
these operations can be outlined as

BED‘TFTL(k,xm—xn)lfrV(A) V=V

Gy (k)= kXX F;{l( n(y+1)( )) , (2.34)
Z T (k X X ( ) yiymax
B, Ol

where Pyi’l() denotes the filtering (or down-sampling) operatdnich filters the field

values requiring for leve)/+1 to the field values requiring for levegt. This operator is

also defined as the inverse of interpolation operaind named as “anterpolation
operator” in [50]. Although the local interpolatdescribed in [50] scales &3(N), a
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global filter with complexityO(Nlog N) which is used in this study. In addition, using
the global filter does not affect the overall coaxily MLFMA.

Translated radiation patterns at each level arendsampled to the one coarser
level, shifted to the center of the corresponding bnd summed with the contributions
from the neighbors of that box. One efficient wdyatt minimizes the number of
operations requiring in the down-tree traversadirectly down sampling the translated
radiation patterns to the lowest level (i.e., shgtall down-sampled fields to the centers
of the corresponding boxes and summing the fieldrdmutions). After all contributions
are added and the integral in Egn.(2.30) is evatl&br each box , the scattered fields

due to provided current expansions are obtained.

2.6 Optimum Local Interpolation Scheme

The translation operatorT, (k,X) formulated in Section 2.3 requires
(2L+2)(L+2(L+1) operations due to plane wave expansions and tefiseries

truncation. In FMM algorithm,L is often selected agN in order to attainO(N®'?)
overall complexity [8]. Therefore, the computatiointranslation operator values requires
O(N3’2) operations. The requiring computational time tompate TL(k,X) IS

negligible whenN is small. However, when the problem size grows,dbmputational
time required for directly calculating translatioperator values increases significantly.

In lieu of directly computing all translation opeya values, an interpolation
scheme to calculate all translation operator valves a reduced amount of samples
with a defined precision is presented in this satise. The scheme ha®(N)
complexity and is described in detail in [60]. Tdexist also other schemes used to
reduce the CPU time for calculating the translatperator [61, 62]. The algorithm in
[61] which can be used for interpolating translatioperator values and is based on
Legendre expansion on Chebyshev nodes has anatetrjgrocedure. However, the

scheme presented here is widely used and eas\pterirant.
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The interpolation algorithm is based on the apprate prolate spheriodal series
(APS) [63, 64]. The Lagrange polynomials and theh&byscheff sampling series can
also be employed to interpolate translation operedtues. It has been reported in [60]
that the optimal interpolation of translation ogeracan be carried out with APS. The
advantage of APS in terms of the computational wompared to the other interpolators
has also been proved on a large scale problemtin [3

The idea of computing translation operator valugsab interpolator originates
from the fact that the translation operator is adstmited function. This feature of

translation operator can be revealed by simplyinlg:ttl?[f(=cos€ and rewriting

translation operator as

T (8.kX) =Y 1 (21+ 1) i (kX) P(co®). (2.35)
1=0

This shows that the translation operator is a damitied function of 8 with order up to
L for fixed kX. A rigorous spectrum analysis which has confirntieid feature of
translation operator is explained in [60]. It slktbbke noted that any band-limited function
can be uniquely reconstructed from its uniformlpacgd samples by using sinc function.
Nevertheless, computing the function value at ooi@tpwith sinc interpolator requires
taking all sampling points in the band into accoditr that reason, the sinc interpolator
is called “global interpolator”. One the other haAdS interpolator, “local interpolator”,
allows generating function value at one point bygs few points in the neighborhood

of that point. Although calculating translation ogt®r values with sinc interpolator costs
O(N%?) operations, calculating those values with APS rjrglator takes O(N)

computational time. It should be stated that lan&trpolation scheme is approximate.
However, its approximation error can be fully cofiaible. By properly setting over-

sampling ratios and the number of interpolation poings the desired level of accuracy

in interpolation scheme can be obtained. This bélldiscussed in Chapter 4.

The formula for interpolating translation operasamples with APS is given as
[63]
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T (6)= %ip T (M) g (6- M6,6,) Iy (6- mo), (2.36)
m=m— ptl

where D, (6) denotes the periodic sinc function or Dirichletried while Sy (6,6,) is

the windowing function. The windowing function iefthed as

_Ru(6.6)
Sy (9190) —m, (2.37)
(0] sinh[(Z\I + 9 sin [ sid(8,/ - siP(8/ )2} -

Jsin? (6,/2) - sirt (6 3
The Dirichlet kernel can be expressed as

Dw (6) = :Z;\E(i/; ;r]])(z; 3] - (2.39)

The terms given in the expressions can be moreogiptiescribed as followst
is the truncation number or the polynomial degre#amslation operatorM =sL is the
total number of sampling points, wheeeis the over-sampling ratio. Sampling points

should be equally spaced in the band and the sangpacing must be

AG=(2m)/(2M +1). N=M-L=(s-1) L is the number of over-sampling points.
m, = Int[H/AH] shows the index of the nearest sampling poinhéairtiterpolating point.

6, = pA@ is the width of the windowp =n/2 is the number of interpolation points at

one side of the interpolating point.
The choice of over-sampling rati® and the number of interpolation points (or

truncation number)p is crucial in APS interpolator. Properly choosthgse parameters

yields to perform the interpolation procedure immum execution time with a preferred

level of accuracy. Two algorithms to find the optim p and s parameters for a

provided error tolerance will be presented in Caagt
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CHAPTER 3
SCALAR AND VECTOR SPHERICAL FILTERS

3.1 Introduction

MLFMA requires the upward and downward conversibradiated and incoming
fields between consecutive levels, i.e., aggregat@and disaggregation. These
conversions, from the finer level to the coarseeleand from the coarser level to the
finer level, are performed via interpolation/antdgtion(filtering), shifting, and summing
operations. Shifting and summing operations aretexad linear operations. They do not
require significant CPU resources. However, intlEfan and filtering operations are
based upon intricate schemes and require conslde@®U usage. Therefore, accurate
and efficient schemes for interpolating and filbgrifields are of paramount importance
for the performance and accuracy of aggregationdesabgregation stages.

As briefly mentioned before, there exist two diffiet schemes for interpolating
and filtering field patterns: the one is globaleiolation and filtering scheme based on
the spherical harmonic transforms, the other orleaal interpolation and anterpolation
scheme based on local interpolation functions. dlgh, global interpolation and
filtering scheme is exact, the local interpolatiamd anterpolation scheme is an
approximate approach and error analysis due toaftppsoach becomes non-trivial as the
problem size grows and the levels of MLFMA treer@ases [65]. This is because the
interpolation and anterpolation procedures areedwut between all consecutive levels
and the total error due to the aggregation anddibaggregation stages accumulates at
each interpolation and filtering process.
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Here, accurate and efficient global interpolatiomd diltering algorithms are
revisited. For interpolating and filtering the smafields generated by a cluster of point
sources, encountered in Helmholtz MLFMA, the scalanerical filter is explained. For
interpolating and filtering the vector fields dwed cluster of dipoles, which take place in
Maxwell MLFMA, the vector spherical filter is dedoed. At the end of the chapter, the

pseudo codes for the fast versions of scalar aotbwepherical filters are presented.

3.2The Scalar Spherical Filter

3.2.1 Overview

Filtering a scalar function defined over a sphar@ icommon problem in many
areas such as electromagnetic and acoustic sogttevieather and climate modeling,
guantum mechanics, geophysics, and several othiesslitionally, filtering a scalar
function via standard spectral transform proceduzgsiresO(N®) operations, wheré\
is the number of sampling points in the elevatianeaion. This computational
requirement limits the applicability of standarcespal transform procedures to spheres
with small number of samples. To filter a scalandiion defined over a sphere with a
large number of samples, the researchers have sggds®veral fast filtering schemes for
the last decade [61, 66-79] and this researchiarstll active. The pioneering research
on this topic has been conducted by Orzsag andriAlpel the first algorithms were
presented in [73] and [61]. Although these algonghexhibited high performance in low
orders and degrees, they suffered from low perfaomand accuracy at very high orders
or degrees [77]. The scheme summarized in [67]ires)®(N?log®(N?)) operations for
filtering. It has been reported in [74] that altigbuthis scheme is exact, it tends to be lack
of stability. Another filtering scheme based on avelet approach with complexity
O(N?(log(N))?log(1/¢)), where £ is the fixed precision, is represented in [71].
However, it has been claimed in [74] that the nucaéresults presented in [71] don't

clearly show the efficiency of proposed method. Tiiering scheme in [77], based on

the similar ideas in [70], has the complexity G{N?log(N)log(l/s)), showed a
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prominent advancement compared to [76], and becmemparable alternative to the
work in [68], which has computational complexity @ Nlog(N)).

In this subsection, the standard scalar sphenitat {based on standard spectral
transforms) and its accelerated version (i.e.fasescalar spherical filter) are elucidated.
The standard method is explained in next subsecfiad the fast method proposed in

[68] is described in the fast scalar sphericatfifubsection.

3.2.2 The Standard Scalar Spherical Filter
The scalar spherical harmonics (SSPQT(H,w), the eigenfunctions of the

spherical Laplace operator and sometimes calledsém@l harmonics”, of degree

n=0,12,.. and orderm=-n-n+1,...,n— 1,n at latituded and longitudey are defined

as [80, 81]

xma@=ﬁiﬁwmwwW, (3.1)

where P™ denotes normalized associated Legendre functiNdd k) and consists of

associated Legendre functions (ALP), i.e.

n-m)!
n+m)!

R (1), (3.2)

ﬁm(y)=\/(n+0.5)g

for,uD[—l,]]. The square rooted term is called the normalinatonstant. ALF is

defined in terms of the derivatives of LegendreypomialsP, (,u) as

m2 dm

o ()= ()" (1= 8 (), @2)

where the phase facto@—l)m is referred as the Condon-Shortley phase. By using

Rodrigues’ formula,

P ()= o (=), (3.4)
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more explicit form of NALF is obtained as

—

n—m)! (—1)m ,\m2 gmn , .
n+m)! 2"n (+-4) (#2-1" (3.5)

()= (03

—~

Before discussing spectral transform extensively, a fesevations about the
algorithms for computing the values of NALF are in ordediterature, a few algorithms
were proposed for fast calculation of NALF in doublecmi@n arithmetic [82-85]. In our
tests, we see that the algorithm prescribed in [86] doealttlate the NALF values after
degree 160. Another algorithm available in NETLIB reliegtoscomputational schemes
given in [83-85] breaks down and stops execution fguents very near to 1 at the
degree 500 and order 413. The algorithm describe82hgnd provided in web site [87]
accurately calculates NALF values up to very high deg@nd orders (e.g. 2800). The
algorithm given as built-in function in special function toolb@xMATLAB 7.0, very
accurate and stable at very high degrees and ordassconverted to Fortran 90 for test
purposes. It has been validated that the code in [8#oigxeably faster than the
converted code for calculating all degrees and orderisaurgquested degree.

The spectral transform relies on the orthogonal projectiora cfcalar field
f (6’, (p) tabulated at latitude-longitude grid of a sphem&dhe space spanned by SSH.
As a square-integrable and band-limited spheriaaiction defined in intervals
{(69:(0<s8<m0< @< 2m)}, the scalar fieldf (6,¢) can be expanded as a linear
combination of SSH as

f(6.0)=)

+n
n=0 m=-

f."Y."(6,9), (3.6)

n

where N is the truncation degree and"denotes spherical harmonic coefficients.
Orthogonality relation of SSH,
2

[ [ (6.0) Y™ (6,0) 56 & dp= 5,8 . (3.7)

00
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can be used to obtain the spherical harmonic coefiis after both sides of Eqn.(3.6) are
multiplied by Y," (6,¢), where asterisk "() denotes the complex conjugate, and
integrated over the surface of unit sphere, i.e.,

2mm

fm= j j f(6,9)Y™ (8,9)sin6dd dp. (3.8)
00
The procedure to compute the spherical harmonifficeats via Egn.(3.8), i.e.
transformation from grid space to spectral spacealled “spherical harmonics analysis”.
The spherical harmonics analysis consists of twepsst namely, forward Fourier
transform and forward Legendre transform. After espfal harmonic coefficients are
obtained, the operation to compute spherical datx grid points via Eqn.(3.6), i.e.
transformation from spectral space to grid spasegdlled as “spherical harmonics
synthesis”. The spherical harmonics synthesis cim@prtwo steps, specifically,
backward Legendre transform and backward Four@storm [88]. The forward Fourier
transform, the forward Legendre transform, the beackl Legendre transform and the
backward Fourier transform steps will be explaimedetail after a truncation method for
spherical harmonic coefficients is discussed.
To filter or interpolate a scalar field data (eligcoming or outgoing fields in
Helmholtz MLFMA) from a degreeN to a degreeK via the standard scalar spherical
filter, one can first calculate spherical harmooaefficients up to degre®l and store

these in a triangular matrix like

0 N fOO 0O - .- 0
o f* f° fH o0 :

fm (3.9)

=
I
o

-N 0 N
RN e R e e R

For filtering grid space data from the degre to the degreeK, (N = K), in

spectral domain, the sub-matrix with dimensigKis+1)x (2K + 1) whose middle column

is aligned with f° column can be assigned as new truncated spedcital fq“ For

interpolating grid space data from the degiteto the degreeK, (K = N), in spectral
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domain, the spectral data matri¥," must be expanded to the dimensions
(K+1)x (2K +1) with keeping the relative positions of sphericatrhonic coefficients

the same according t6° column and adding zeros to the rows under(tke-1)™"

The data in new matrix can be assigned as new atedcspectral datd ™. For both

operations (filtering and interpolation), the scdiald values due to the degrd¢ is

obtained on a new gri(¥', ¢) by performing spherical harmonic synthesis

+n

IR AICA] (3.10)

-n

>

n=0

f(e.4)

In practice, spherical harmonics analysis (Egqn)f3\8hich can more explicitly

stated as

f (cosd) smede— j (6pe™dp , (3.11)

0

can be carried out in two steps: first, performamdprward Fourier transform of scalar

field values along latitudes
j (6,9)e™ dg, (3.12)

and second, performing the forward Legendre transfto obtain spherical harmonic

coefficients as

f =] f"(6)R"(cosd) sinbde . (3.13)

|
f"(6)= @Z f(6,9)e™, (3.14)
i=1
where | is the number of grid points in one longitude ame 277 /1 for i =1,...] . This

integration is exact for the band-limil and the wave numbedsds N and can be
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effectively carried out by the fast Fourier tramgio(FFT) via the routine provided in
[89].

The forward Legendre transform expressed in EdiBf3an be performed using
the Gaussian quadrature as

=3 17(0) A" ) w. 3.15)
=

where J denotes the number of grid points along one dditandw,, w,,...,w;, are the
Gaussian weights corresponding to the Gaussiansnade cosd, . Gaussian quadrature
is exact for any polynomial of degréd —1 [90].

After using the abovementioned spectral data trimcanethod and obtaining the
truncated coefficientﬁnm, the backward Legendre transform is applied to mam
filtered or interpolated Fourier coefficients as

fr(e)=

n

K ~ —
f"P"(4). (3.16)

=Inf

where 1/ =cosf is defined in new spherical gridd(¢). The interpolated or filtered

scalar field values can be generated by using lanead fast Fourier transform,

i(@.¢) :%Tz in(g)e™ (3.17)

that completes spherical harmonics synthesis. Ctatipnal complexity analysis can be
performed for each step in the spherical harmoanzdysis and synthesis as follows: (i)
the forward fast Fourier transforms performed conseely for all latitudes have cost of

O(Jllog1), (ii) the forward Legendre transforms for compgtil spherical harmonic
coefficients up to degre® require O(JN?) operations, (iii) the backward Legendre

transforms up to degrek scale asO(PK?), (iv) the backward fast Fourier transforms
for all latitudes requireD(PQlog Q) operations. In practice, the number of points g@lon
latitude and longitude in the old gri@,¢) and in the new gridéd',¢) are selected as
J=N+11=2N+1 and P=K+1, Q=2K+1. Overall complexity of the standard
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scalar spherical filter is o®(N?®) for filtering and O(K®) for interpolation overO(N?)
grid points. In next subsection, a method to rednezall complexity of the algorithm to

O(M?logM) is introduced wherdl =K or M =N is for interpolation or filtering.

3.2.3 The Fast Scalar Spherical Filter

As clearly seen from the cost analysis of standaralar spherical filter, the
forward and backward Legendre transforms req@eN®) operations. The Legendre
transforms become a bottleneck in performance sahtview during performing
interpolation/filtering operations at high degrgesg. 100 and above). Therefore, the
method for rapid evaluation of Legendre transformi®duced in [68] must be employed
to reduce the overall complexity of algorithm fra@{N?®) to O(N?log N). The method
is simply based on the combination of the forwand &ackward Legendre transforms
and the simplification of sum operator with Chri#éDarboux formula for NALF. The
resulting sum is evaluated with the fast multipotethod (see [91]), or with the
generalized fast multipole method proposed in [B2jce the implementations of direct
and generalized fast multipole methods for spheriteer are quite technical, the
explanations of those are not included here.

Combination of the forward and the backward tramsforesults in
~ K ‘] p— —_
fmwj=z( fﬁ@ﬁﬁ@@w}a%My (3.18)
n=[m\| 1
And interchanging the summations yields

f(8)=317(8)w Y. B"(1) R(1). (319

j:]_ n:‘

Inner summation can be simplified by ChristoffelrBaux formula defined for NALF as

P P I COL Y A GO )

K+1

/ . (3.20)
=L (& -u)

29



where Dn”‘:\/(n2 - mz)/(4nz—1) , which is straightforwardly derived by using theete
term recurrence relation [92],
HRY (1) =07 R (1) + 07 RA(4), (3.21)

and the mathematical induction for varying degreee( for example, [93] pg. 318).
Substituting Eqn.(3.20) in Eqn.(3.19) yields

fm(H') :ZJ: ¢ m(Hj)Wj 0 PKnll(/J') R{“(,EJJ?: E)(m(ﬂ') E(Tl(ﬂj) , (3.22)
E 1= 1)
which can be written in a compact form
("(0) _gm (o T ONWR k) o F7(8) W R (H)
=R -P . (3.23
O, 1(ﬂ);zz;‘ (- 1;) ) (ﬂ); (¢ - ;) (329

It is apparent from Eqn.(3.23) that the new forrala based on Christoffel-
Darboux formula requiresO(JK?*) operations. The complexity of this step can be
reduced toO(N?) scale using the direct/generalized fast multipo&hod applied to the

matrix form of Eqn.(3.23). Technical details of $keoperations can be found in [72, 91].

In case u'=y;, the quotient can be evaluated with L'Hopital'e rand the truncated

Fourier coefficients can be obtained via

SOl oo 0 e ()~ ELS: 17(0) ) 029

Ok dy' = d¢ =

where the derivative of NALEIP" (4')/du' is defined as

((n+m+1)(n- )™

_ /J’ DM ! ]
' - ml_ﬂ'Z n (,U)"' (1—#’2)112 ann ('u) (325)

The computations of the Fourier coefficients' (¢) and the truncated Fourier

coefficient f™(¢) are carried out with the forward and backward FESsdescribed
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before. The complexities of these operations areO¢N’log N). So, the overall

complexity of the algorithm is proportional @(N?log N).

3.3The Vector Spherical Filter

3.3.1 Overview

Filtering a vector function defined over a sphean de accomplished via
translating spherical components of that functionhie three Cartesian components and
invoking the scalar standard/fast spherical filierfilter or interpolate all components
individually. However, the vector function expredsegith only its traverse components
(@ and @), which doesn’t have radial componantcan also be filtered via standard/fast
vector spherical filter without translation to tG@artesian coordinates. Filtering the vector
function with only its transverse components allotes gain from the storage and
computational time by a factor 1/3 compared to emtional filtering performed for each
component of Cartesian coordinates.

The idea of filtering a vector function with onlsahsverse components by a fast
scheme was proposed by Professor Michielssen’sefioresearch group [38]. The idea
relies on the projection of a vector function te thector spherical harmonics space and

utilization of the fast scalar spherical filter niened at previous section. The fast vector

spherical filter with complexityO(N?log N) is build upon the formulation of a slow

vector spherical filter with complexityd(N?), which is explained first in this section.

Then, the fast vector spherical filter algorithndisscribed while discussing some minor

modifications in order to make it fully consistemith the fast scalar spherical filter.

3.3.2 The Standard Vector Spherical Filter
The vector spherical harmonics (VSHY¥ (6,¢) and @ (6,¢), of degree

n=0,12,.. and orderm=-n-n+1,...,n— 1,n at latituded and longitudep are defined

as [94]

¥ (6,9) =10Y,"(6.9), (3.26)
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and
O (6,90)=Fx¥(6,0), (3.27)

where Ynm(e,ga) are the scalar spherical harmonics (SSH) as defiredore andr

simply denotes the surface gradient operator iresgdl coordinates. After surface

gradient operator is defined as

- of
rof =0gf :%m_i—%, (3.28)
068 sinfd dgp
the varieties of VSH can be more explicitly stadsd
¥Y"(6,¢) = N (6.8)5, im Y"(6,0) % (3.29)
nA 06 sing " v T
and
m im m O aYnm 97 ~
" (8,9) =y (e,go)e—M(p. (3.30)

sin@ 06

By the assumptions that the varieties of VSH ctusts a complete orthogonal

basis, and the vector fieIEI(H, qo), a square-integrable and band-limited vector spaler

function, defined in intervalg(6 ¢ : (0 <8< 1,0< @< 2m)}, the vector fieldF(6,¢)

can be expanded as the linear combinations oftiesief VSH as

F(8,¢)=F9(9,¢)§+F¢(6,qo)¢
N +n (3.31)
=2 2 arvy(6.9)+ b (6.9)
n=lm=—n

where a' and b are expansion coefficients analogous to the spdlehiarmonics

coefficients f," in Egn.(3.6). Orthogonality relations of VSH,

" (6.9)

27 (W (0,0) ¥ (6,¢)] )
l H‘Dn’“ (6,¢) @ }Smedgd(o‘ (n( 0+ )3, (3.32)
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where asterisk () denotes complex conjugate, can be used to ohgaansion

coefficientsa)" andb" from the samples dF(H, qp). With the knowledge of

2T (6,9) @ (6,9)] _
M{‘I’”‘(H Ay (9,¢)}sm8d9dga— 0, (3.33)

1 n

both sides of Eqn.(3.31) are multiplied (dot pradiy ¥ (0,(0) and integrated over
unit sphere to compute expansion coefficieafs Same procedure is applied to obtain

b by multiplying ®" (6,¢) and resulting expressions are obtained as

anm : 1 2 ‘an* (0’ w) .
= F(6,@) . sinfd&dg. 3.34
e}~ [F(eoh| g (o snocece 5
The procedure to obtain expansion coefficieafs and b' is similar to the

procedure explained in standard scalar spherittat.fiTo this end, this procedure can
also be called as spherical harmonic analysis aandnisists of the same steps, namely,
the forward Fourier transform and the forward Letyentransform, described in Section
3.2.2. After expansion coefficients are computbégytcan be truncated by the spectral

data truncation method explained in Section 3.ZBe new truncated expansion
coefficients &' and ma are transformed to the grid space by sphericambaic

synthesis, which comprises two steps: the backwardendre transform and the
backward Fourier transform. All these steps ardaged in detail as follows.

The spherical harmonic analysis for the vector fiamccan be expressed for each
expansion coefficients individually by explicitlyriting ¥;' (6,¢) and ®," (6,¢) in
Eqn.(3.34) as

060

ahm — 1 ZJ.’T].T 1 (Fg(g’go) aR]m (COSH) e—imszingwdo_'_
00 , (3.35)
F

3 zﬁ - (w(g’Cﬂ)(_-im) ﬁm(cose)e“wj Sid dp
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2nm 1 ( )_ Cimp _
" n+1) M@[ (0:6) g T (cosF) @ J3|n9d9dp (3.36)
ijf L (£ (6,9)20(%%) o |gingan g |
n+1 50 Vo 08

Integrations along latitude act on the scalar fiamcvalues €, (6,¢).F,(6.9)) and the

exponential terms € im¢’). Therefore, they can be separated from integratialong

longitude by defining Fourier coefficients accoglito theta component of vector field,

fg"(6), and phi component of vector field,"(6), as

¢ (3.37)
_\/ZT I {Fg(g,(ﬂ)} —-img
I FR(6.9)
where | is the number of grid points in one longitude apé 275 /1 for i =1,...| . As

stated in Section 4.2.2, Fourier coefficients careffectively calculated via fast Fourier
transform. Substituting Fourier coefficients in H§B5)-(3.36) yields

n+1f 6an§(;038) ;" (6)+ (;ne)ﬁ“ (cosd) £(6) | sigdd, (3.38)
ml(_; _ a—m . .
?:n(nﬂ)I (Silnn;) P"(cosd) fem(e)‘% £,"(6) | siBdd.  (3.39)

Integrations along latitude can be performed viassan quadrature as

L 0B (1) o —im) _ . .
“n(nel ; 64(9 )fg (6,)+ (1_;1)12 Pr(w) tn(6) |w,  (3.40)

i (~im) —m(uj)fgm(a)_aﬁ”‘(ﬂj) o), @y

n+1
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where J denotes the number of grid points along one k¢itandw,, w,,...,w, are the

Gaussian weights corresponding to the Gaussiarsngde coss, .

After utilizing the spectral data truncation methaescribed in Section 4.2.2 and
obtaining the truncated expansion coefficieds and Bn"‘, the backward Legendre
transforms are applied to compute filtered or pdéated Fourier coefficientsfgm(e')

and f;' (), corresponding to scalar componefigd,¢) andF,(¢.¢), as

- K oP™(u/ i _

()= 3 ap 2 W g (T pogyy) (3.42)
= 1-

. K ; _ aP™( 1/

fn(e)= zr:d am 1('_m/3'2 PM(u) - bnm—R’agI ), (3.43)

where K is the truncation degree and =cosé' is defined in new spherical grid'(¢ ).

The interpolated or filtered vector field valuesncaow be generated by using the
backward fast Fourier transforms as

lfg(g',qd) 1 & fgm(ev) .
{ﬁw(é",cd)}_ﬁm;{fm(g)}é : (3.44)

@

This completes spherical harmonics synthesis forovdields. The computational cost of
the forward and backward Fourier transforms is flddr according to total cost of

corresponding steps in standard scalar spherittal.fiThe forward and backward
Legendre transforms require eight tim@gN®) operation and their complexity will be

reduced toO(N?log N) by the algorithm explained in next subsection Whinploys

the method described in fast scalar spherical fligsection.

3.3.3 The Fast Vector Spherical Filter
As seen from the complexity analysis of standaitorespherical filter, Legendre
transforms costO(N3) operations and this renders the filtering and putation

operations impossible at high degrees. Therefofastascheme to interpolate and filter
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vector fields is needed to retain the overall &ficy of MLFMA algorithm. In this
subsection, implementation of the fast scalar sphlefilter to the standard vector
spherical filter is discussed. The correction tetmmake fast scalar spherical filter fully
consistent with the standard vector sphericalrfdre derived.

As seen in spectral data truncation method, thexpotation operation is nothing
more than properly padding zeros to the spectractspm of field data. During
interpolation process, since there is no spectadh ¢ontent modification other than
adding zeros, each scalar component of vectolidltt €an be separately interpolated by
simply calling fast scalar spherical filter. Howevéhe same is not true for filtering
process. Individually employing fast scalar spharidter for each scalar component of
vector field is not sufficient for filtering operan. It requires an additional operation
such as adding proper higher order and degree t@frspgectral data (or correction terms)
to the truncated spectral data. This extra operatauses from the derivatives of
Legendre functions that appear in Legendre transfon Eqn.(3.35)-(3.36)-(3.42)-(3.43)
and is explained in the following paragraphs adieexplicit form of derivative of NALF
is derived.

Some important recurrence relations for associagggendre functions and their
derivative are [54, 56],

0P (cosh) _ mcosd P

-pm™ , 3.45
o0%0) - 90 1 (c0s6) - B co) (2.4

-singP™ (cod) =(n-m) cog B"( cad)-(m ) Fi( c,  (3.46)

ncostRT(cod) = [ (n-m+ LB ( cod)+(m ) B cA]. (347)

To obtain the explicit form of derivative of assateid Legendre function, Eqn.(3.45) can

be multiplied by the ternsinég as

0P (cost)
00

sing =mcoyR"( co#)- siER™( ca). (3.48)

Then, Eqn.(3.46) can be substituted into Eqn.(3.48) Eqn.(3.48) can be

rewritten as
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0P (cosh)

sing =ncoyP"( co#)-(n+ m B ( cos). (3.49)

Third recurrence relation (Eqn.(3.47)) can be ewgioin Eqgn.(3.49) and resulting
expression can be written as

oP"(cosd) _ n(n-m+ 3 -

w30
06 (2n+y) ™ oneq alcod). (3.50)

(0089)_( (2n+

sind
This is the explicit expression for the derivatiwkassociated Legendre functions. To
obtain a similar expression for the derivative ALY, one can simply multiply both
sides of the equation with the normalization faeter

\/(n+o.5) (n=m) Sineaa“gc;)se) :\/(n+ 0.9

(n+m)!

I f o md) n ( co)

(1
(n+m! (2 *1)
- Jnsog {2 (0 g com)

n+m)!  (2n+1)

,(3.51)

and modify the expression in the view of Eqn.(&&)

0P (cosd) _ \/

n+ 0.9

n+lknjr(n—n+).|5m

0P (

n5g Lo (n=m (2] (o)
(
(

(3.52)

(
( .
_\/En+0.5) n-m (n+3( n+ n)ﬁ,Tl(cose)

n-0.5)(n+m (2n+1]

Now, consider only the&g component of vector field and its spherical harimon

representation multiplied by the tersm@, i.e.,

n=lm=-n

sing Fy (6.,9) = % i aﬂ“(sinﬁ%} + bhm( imY,"(6 {p)) , (3.53)

which can be further expanded with the help of B3182) as
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n+0.5)(n+ 1+ m n n- mlr]) (6.9

R (08): Z—ln;n \/En+15)gn+1— m  (2n+3
- m ((n+0.5)(n-m) (mJ(n- ),
Z‘;n;n \/(n 05)(n+ m) (2n+]) Yn_l(H,ga) . (3.54)
+nzzln§nqﬂm(‘m%m(9,¢))

To truncate this expansion at a degke outer summation variables are changed to

by assigningn+1=k for the first summation. For the second and tsuwchmations, the

variables are set ta—1=k andn =k respectively as

Sn0'E (0. 9)=Y Y &,

) +(§1> ék+1\/((k+1 5)(k+1-m) (k+ ( k+ mr ])ykm(g',¢)_(3.55)

Expression can be rewritten in a concise way as

~

-1 +k +K
SN Fy(0.9)= 2 3. aW(6 9)+ 3. (a7+ %) ¥1o @),  (356)

k=0 m=-— -K

~ =M

where the coefficients,", &' and &, are

am = am \/(k-o B)(k+m) (k-J( k= _
5)(

HTAY (kv08)(k-m)  (2k-]
m |(k+1.5)(k+1-m) ( k+ J( k+ m+
+1\/((k+05;§k+1+m))( (2)2(k+3) b, (3.57)
B” (im)

m o Emy .m [(K=05)(K+m)(K-)(K-m

o ('m)+a<‘1\/§K+o.5;EK—mg( (zj)K(—J) )’ (3:58)
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(3.59)

o —am |[(K+0.5)(K +1+m) K(K+1-m)
\/(K+1.5)(K+1—m) (2k+3

Same procedure is applied to tirecomponent of the vector function. The filtered

@ component of the vector field and its spherical harmerpansion can be stated as

+

~

K-1 +k 5 B
Sin@'F, (&, ):zz amr(e @)+ Y (30 W) WTe ¢)  (3.60)
k=0 m=—

-K

7

where the coefficients", f" and .}, are

M A k=-0.5)(k+m) (k=1 ( k-
dy _ak(l ) Q—l\/gk+0_5ggk—m;( (;)IE—]) rr)+

, (3.61)
(k+1.5)(k+1-m) (k+ 2( k+ mr 3
h(+1\/(k+0.5)(k+1+m) (2k+ 3
cm_~mpy =m [(K=05)(K+m) (K-1)(K-m)
'k _aK('m)_q‘l\/(mo.s)(K—m) (k-1 (3:62)
cm _ m [(K+0.5)(K+1+m) K(K+1-m)
ficws =~ \/(K+1.5)(K+1—m) (x+3 (3.63)

First summations at the right hand side of EqngBahd (3.60) can be calculated by fast
scalar spherical filter algorithm described in 88tt3.2.3 . The remaining summation
adds the spherical data contributions (or corract&ms) resulting from the subsequent
two degrees after the degrée in the spectral domain. In case the fast scalaersgal

filter is invoked for filtering at degre& , contributions of the following correction terms

are also be added to grid data

(K+0.5)(K +1+m) K(K+1-m)
1= Bl (im) + 2 \/(K+1.5)(K+l—m) (2k+3 (3.64)
m _am [(K+15)(K+2+m) (K+)(K+ 2=m)
eK+2_8K+1\/(K+2.5)(K+2—m) (%+3 (3.69)
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cm _~m iy em |[(K+0.5)(K+1+m) K(K+1-m)
K+1_a*“l('m)_h(\/(|< +15)(K+1-m) (2K+3 (3.66)
e em [(K+LE)(K+2+m) (K+)(K+ 2-m)
fK+2 =~ K+1\/(K+2.5)(K+ 2_m) (2K+3 y (367)

where m varies between-K and +K for Eqn.(3.64)-(3.66) and betweer{K +1) and
(K +1) for Eqn.(3.65)-(3.67). It's apparent that the aidtion of correction terms calls

for the computation of coefficientay,,, ar,,, b\, and b,,. Note that the square
rooted terms in Eqns.(3.61)-(3.67) are missinchanformulation of fast vector spherical

filter presented in [38].

In spite the fact that the desired degree of trtiocas K, the final spherical data
obtained by combining both direct filtering and reamtion contributions is of degree
K +1. Therefore, the number of grid points along batieaions should be selected due
to the degree&K +1 during spherical harmonic synthesis.

The computational time required to calculate theremion terms is dD(N?).

The overall complexity of algorithm is at the orsleof O(N?log N) with FMM

accelerator, which is the same as the complexith@fast scalar spherical filter.

3.4Implementation

In this section, implementations of the fast scapherical filter and the fast

vector spherical filter are described in detail pgudo codes.
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Algorithm 1 The fast scalar spherical filter for Helmholtz MLEM

Input and Output.
Assumption [The scalar field pattern is sampled dt=N+1 Ilatitudes and
| =2N +1 longitudes. The filtered field pattern is tabuthtg P = K +1 latitudes and
Q=2K +1 longitudes]

Input is the scalar field values sampled at degmde (f(6,4),f(6.9),
1 (6,.8)).
Output is the scalar field values sampled at degkee(f(&,d),f(6,.4),

- E(8.d)).

Pre-computations.

Comment [Compute all data that depend on the degré¢sapd K ) and doesn'’t
depend on the grid dati(6,¢).]

Locate the Gaussian noded and g, (j=1...J, k=1,..,K) in grids (6,¢),
(0.9).

Calculate the Gaussian weights .

Fill out the matricesR (¢, m), B (w1, m), B (4, m), and B (u, m), where
1 =cos(@') and p=cos(d), with NALF values at all orders of degre&s+1 and
K.

Step 1The forward Fourier transform.
Comment [Convert the scalar field valuet(&,¢), f (6,¢,),....f (6, @) into the
Fourier coefficientsf ™ (&),....f ™ (8;), 1 V(&),....t N (6,) ]
do j=1,..J
Perform the fast Fourier transform for the scalaldfvalues at the same latitude
t(6,.a) .1(6.9).

end do
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Step 2 and 3The forward and the backward Legendre transforms.

Comment [Convert the  Fourier coefficients " (4),...f N (6;),
fN*(4),....f N (6y) into the truncated Fourier coefficients ™ (&),....f ™ (6,),
f1&),..t“(6) ]

Perform the operatiofy 4/, - u1; for Gaussian nodes in gri¢#,¢), (¢,¢).
do m=-K,...,+K

Calculate f ™ (Eqn.(3.23)) at each wave number for all nodes.

end do
Step 4The backward Fourier transform.

Comment [Convert the truncated Fourier coefficients ™ (8&),....f (),
f75%(@),....T* (8) into the scalar field value§ (8, 4) .,  (6.4)....T (6 &) ]

do p=1,...,P

Perform the fast backward Fourier transform for tlwacated Fourier coefficients at

the same latitudef € (Hp) fK (Hp)

End of Algorithm
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Algorithm 2 The fast vector spherical filter for Maxwell MLFMA

Input and Output.
Assumption [The vector field pattern is sampled at=N+1 latitudes and
| =2N +1 longitudes. The filtered vector field pattern abtlated atP = (K +1)+1
latitudes andQ = 2(K +1) + 1 longitudes]

Input is the vector field values sampled at degmee (Fy(&4.4).Fy(6L9),

Fe(65.4), Fp(6.4).F,(609)....F,(6,.%)).
Output is the vector field values sampled at degreel (F,(6.d),F,(6L.¢),
o Fo(6h4h). Fp(8.d).Fy(616), ... Fy (65 ).
Step 1The forward Fourier transform.
Comment [Convert the vector field values(8.4).F(6.9,)....Fs(6; @),

F,(6.4) .F,(6.9)....F,(6, @) into the Fourier coefficients f;™(6),

N (6y), TN ), B0 (6y), £, (8) e BN () £, N (), B0 (6)) ]
Call the subroutine written for the first step a$f scalar spherical filter separately for
@ and ¢ components of the vector field.

Step 2

Comment [Calculate the contributions stemming from thereotion terms to the
spherical data Fys (6).4]).Fs (6u.b) ....Fs (6 4). Fy (6.4).F (61.6h).....

FL (0 )]

Compute the coefficientay,;, ay.,, bry, , andby,, by using Eqn.(3.40)-(3.41).
Calculate the coefficient&},;, &7,,, iy, fh, in Eqn.(3.64)-(3.67).

Obtain ;" (¢) and f;"(&') by employing Eqn.(3.42)-(3.43).

Call the subroutine written for the fourth stepfast scalar spherical filter separately

for f5"(¢) and f"(€).
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Multiply the outputs byl/sin@ and obtain the spherical data pertaining to the

correction terms.

Step 3
Comment [Calculate the contributions stemming from the fasalar spherical filter
to the spherical data  Fp (8.4),F (6.¢),...Fy (H'P ,qzb)

Fy(6.4).Fp (6uh) s . F) (60.6h) . ]

Multiply the Fourier coefficientsf;" (8) and f"(8) with sing.

Call the subroutines written for the second, thamtd fourth steps of fast scalar
spherical filter separately fof;"(6) and f,"(6).

Multiply the outputs byl/sing ' and obtain the spherical data by directly emplgyin

the fast scalar spherical filter.

Step 4
Comment [Obtain the filtered vector field values

Fo(61.4).Fo(6108) - Fo 6 #h). Fop(8.4d) Fp (0 8) - Py (6. 00) ]

Combine the contributions from correction teri§ (6',¢f), Fy (6'.¢) and direct
filtering Fy (6.¢), F; (€.4) one by one and obtain the final valuEs(&,¢),
F,(6.4).

End of Algorithm
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CHAPTER 4
MLFMA SELF-TUNING LIBRARY

4.1 Introduction

The MLFMA requires O(Nlog N) computational complexity and memory

requirement. However, there also exists a mul@gpive factor inherited in computational
complexity estimate. The multiplicative factor hidgdepends on the choice of some key
parameters (mentioned above), namely the truncatiomber L, the number of

interpolation pointsp, and the over-sampling rati®. L —parameter is used to truncate
the infinite series expansion of free-space Grekmistion. p—parameter is employed to

determine the number of points in the local int&apon of the far-field signatures.
s—parameter is used to (over-) sample the far-figdthegures. These three parameters
are of paramount importance not only in the acquitad also in the execution time of
the MLFMA. Therefore, these parameters should henaly selected before executing
the MLFMA.

In this chapter, a library comprising robust algums is introduced to set these
parameters automatically. The library is executea greprocessor to the actual call of
MLFMA. It requires negligible time and allows sifjopant MLFMA savings in terms of
time and memory. The library consists of three nagorithms: (i) truncation number

estimator algorithm, (ii) the number of interpotattipoints p estimator algorithm, (iii)

the over-sampling ratig estimator algorithm.
This chapter consists of two sections. In the fsabsection, the truncation

number estimator algorithm is discussed. After tieure of addition theorem is
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discussed in detail, a three-stage algorithm tatkecequiring truncation number is
presented. Test results of the- parameter estimator algorithm are also providedhén

second subsection, estimator algorithms for infatmm parameters,p—-parameter

estimator algorithm and - parameter estimator algorithm, are explained imiteind

numerical test results are provided.

4.2 Truncation Number Estimator Algorithm

4.2.1 Overview

In the numerical implementation of FMM, the numalierrors arise from the
numerical integration, the processes of aggregatmhdisaggregation, and the truncation
of the infinite series. By using the quadratureesuladdressed in Section 2.3, the
numerical integration can be performed exactly.réfuee, the round-off error and the
error due to translation operator are expecteduatenical integration stage [95]. The
interpolation and filtering schemes (without FMMcalerator) described in previous
chapter are exact and global operations for thereggdion and the disaggregation
processes. For that reason, errors inherited isetioperations come from the numerical
errors due to the arithmetic operations. In caseldbal interpolation and anterpolation
schemes are used in these processes, the errbedaily controllable due to the band-
limited nature of radiating fields. Algorithms f@&ffectively controlling error rates at
local interpolation and anterpolation schemes bellpresented in next section. The error
due to the truncation of infinite series (or aduhtitheorem) is hard to control compared
to the other error sources in FMM algorithm. IrstBection, the error control of addition
theorem is discussed in detail.

In order to control the error inherited in the didai theorem, the infinite series in
Eqgn.(2.16) must be carefully truncated. This isdose excessive error due to divergent
nature of the spherical Hankel function and eanfgredue to the late convergence nature
of the spherical Bessel function emerge at diffeteimcation number values and those
should be avoided. It is known that as the ordehefspherical Hankel function increases

and becomes much larger than the arguméns-kX), the values of spherical Hankel
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function grow exponentially and start to oscilldr@amatically. This oscillation results in
numerical instabilities in floating-point arithmetj96]. On the other hand, truncating the
infinite series with a smallL causes a poor approximation and an additionat ere to
the late convergence of the spherical Bessel fonclihe spherical Bessel function starts
to converge aftet. > kd . Therefore, an optimum truncation number shouldddected in
the intervalkX > L> kd due to desired error level.

Previously, the truncation number has been detewuiry semi-empirical formula
[8, 12, 47, 49, 97]. Later on, it was proved thed semi-empirical formula doesn'’t yield
accurate results for many cases and a new forrmalladc“excessive bandwidth” was
derived [50, 98]. The excess bandwidth formula led good error estimate when the
spacing between source and observer clusters éorbtiffer size) is large enough.
However, when the buffer size is small, the exdessdwidth formula lacks of locating
the true truncation number. In order to fix thi®lgem, a novel approach was proposed
in [99]. The approach hinges upon the classificataf the error regions and the
employment of the excess bandwidth formula alontty whe devised formula presented
in [100] in the regions where divergent nature adidaon theorem occurs.

In this study, an algorithmic approach to determthe optimum truncation
number for the desired level of accuracy in FMNpiiesented. By this approach, the error
due to truncation number can be fully controlladiel the optimum truncation number
due to desired error can be determined regardieseduffer size. The approach does
not require any classification of the error regi@msl different approaches for different
buffer sizes; it can be readily used for any sowtgerver configuration. Before
proceeding the detailed explanation of the algorjtthe nature of the diagonal addition

theorem is discussed first in next subsection.

4.2.2 The Nature of the Diagonal Addition Theorem

The error analysis for the truncation of the diagcaddition theorem has been
studied by many researchers [47, 95-98, 101]. Tiagotal addition theorem given in

Chapter 2 can be rewritten as
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where X =ry— ¢ is the vector between cluster centetb=r —-rqo+ g+ ' is the

summation of the local vectors between the cemtiegsoups and the source and observer
points (' andr ). The condition of validity for the theorem ¢s< X . The semi-empirical

formula for truncation is given as [8]
L = kd + Blog(kd+7), 4.2)

where S is the precision constant amdis the diameter of source/observer sphere. When
B =1, the expected accuracy is“10rhe number of significant digits whe=5 and

£ =10 are six and eleven respectively. The excess baltldiormula is [98]

L= kd+1.80%'3(kd)", (4.3)

wherea = Ioglo(l/s) and ¢ is the desired accuracy. It has been reporte80ng8] that
the difference between the estimatedy this formula and the true varies between -1

and 2 forl<kd <500 and10 ! <&<10%. It should be noted that limits &X within
which the formula is valid were not mentioned. Dation of this formula gives a brief
analysis of the truncation error compared to theeioainalyses in [47, 101] and can be
found in [96, 98]. Moreover, here, the prominempstin the derivation are summarized

to grasp the nature of the addition:
(i) the truncation error given by

eik\x+d\ L | . 1 "
eperal~ (Y (2 ) (1) P(31K) =
| (4.4)

> (-3 (2+3 ] (ka) ' (kx) P(d X)

I=L+1

can be approximated by only taking the leadingl terms into the account.
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(i) The relative error due to truncation at te+1)" term,

‘(—1)“1(2('- +1)+ ]) jLa (kd) h%+1( kX) F)|_+1(Ej DA()

= Jkix+d] ; (4.5)
ik|x +d|
can be reduced to
£=jq(kd)(2L+3) (4.6)

by the asymptotic form of spherical Hankel functioith the assumptiokd < L+1< kX
[54, 55, 96].

(ii) By using the asymptotic form of spherical Hah function (for large order and
argument [96, 98]) and performing the proper appnaxions, one can get the excess
bandwidth formula (Eqn.(4.3)).

It should be noted that the relative error is exdato the convergence rate of
spherical Bessel function and its argumdat. After L+1>kd, the spherical Bessel
function starts to converge so does the relativer eaf the addition theorem. However,
the distance between clustekX has also effect on the accuracy of the additi@ordm
because of the ignored spherical Hankel functiothénsecond step. The simplification in
the second step is done with the assumptlah< L+1< kX. Nonetheless, after
L +1>kX, the Hankel function starts to grow exponentigtigcomes a significant factor
in error analysis and can’t be ignored like donthensecond step.

Due to the rapid convergence rate of the sphelBeakel function, the convergent
nature of the spherical Bessel function does nattrmgéth the divergent nature of the
spherical Hankel function before it hits to the mae precision if the buffer size is large
as in Figure 4-1 . Hence, the excess bandwidthdtans valid for large buffer size case.
On the other hand, in case the buffer size is saslliepicted in Figure 4-2, before the
convergent nature of the spherical Bessel funateacthes to the machine precision, it
interferes with the divergent nature of the spladrtankel function and the overall error

starts to grow exponentially. In this case, therfala is not valid after a certain error rate

49



beyond its applicable rangkd < L< kX. The maximum relative error rate and the

estimated relative error rate due to varyingt this case are plotted in Figure 4-3.

source box observer box
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L -—— e o wd
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Figure 4-1: Large buffer case is depicted for tloestvcase analysis in FMM (ten box
buffer). Two fictitious spheres, source sphere @oskrver sphere, enclose the boxes.

source box observer box

- — - —

___________

Figure 4-2: Small buffer case is depicted for tlerst/case analysis in FMM (one box
buffer). Two fictitious spheres, source sphere @oskrver sphere, enclose the boxes.
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Small Buffer Case - kX=40 - kd=20

Maximum Relative Error

10% I i I

1 | 1 |
0 10 20 30 40 50 60 70 80
L-truncation number

Figure 4-3: The relative error of the addition thesn for a source-observer configuration
is plotted with the crosses. Hereg=20 anckX=40 (one box buffer case).

Other than the buffer size and the cluster size,amditional parameter affects the
nature of the diagonal addition theorem. This p&tamis related to the relative positions
of the source and the observer points in the dlsiste order to investigate the effects of
relative positions of the source/observer pointghenerror rate of the diagonal addition
theorem, different source/observer distributions ba tested for the fixed cluster size
and buffer size. At the test setup, the source @gkrver points are located in the

directions of the opposite corners of the boxeg [Qgure 4-4).
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(b)case4 y=0.25

Figure 4-4: Different source/observer distributi@ne presented to investigate the
relative error.

For these four different types of interactionsatige errors due to diagonal
addition theorem are examined for two differentesasf buffer size: small buffer case
and large buffer case. It has been reported intf¢&]the maximum relative error occurs
when the points are located in the opposite dastiand farthest away from the cluster
centers. Consequently, the maximum relative eg@xpected at the case 1 (See Figure

4-4). This prediction is confirmed by the relatemor plots in Figure 4-5 and Figure 4-6.
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Small Buffer Case kX=40 kd=20

Maximum Relative Error

152 L Bandwidth Formula
+  Gamma=1
*  Gamma=0.75
Gamma=0.5
o > Gamma=0.25
10 T T |

1 | 1 |
0 10 20 30 40 50 60 70 80
L-Truncation Number

Figure 4-5: Relative errors of different distrilaris for one buffer case.

Figure 4-5 shows the relative errors of each diistion at test setup (case 1-4) for
small-buffer case. Markers indicate the actualreremd solid line shows the estimate by
excess bandwidth formula. It is clear from the grépat the Bessel's convergent nature
emerge at different truncation number values due rdfative positions of the
source/observer points. Aftdr = kX =40, divergent nature appears and surpasses the

convergent nature. This phenomenon can be clebdgroed at the last casg € 0.25).
The maximum relative error occurs at the first dgse 1) and it can be considered as the

worst case (or the error upper bound) and formssbiasthe algorithmic approach
presented in next subsection. In the algorithmipr@g@ch, the truncation number is

selected at the region where the error is decaying.
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Large Buffer Case kX=220 kd=20

10 T T T

Maximum Relative Error

157 Bandwidth Formula
+  Gamma=1
*  Gamma=0.75
Gamma=0.5
> Gamma=0.25
|

10%°

0 50 100 150 200 250
L-Truncation Number

Figure 4-6: Relative errors of different distritarts for large buffer case.

Figure 4-6 shows the relative error of each cagemumerical test setup for the
large-buffer case. Again, markers show the acteddtive errors and the solid line
indicates the estimated error due to formula. #fgparent that the convergent nature
emerges aftelL =kd, reaches to the machine precision and stays taie L =kX .
Optimum truncation number should be selected bdfwreconvergent nature saturates at
the machine precision level. Upper error boundaggain be determined via the case 1.

In next subsection, a three-stage algorithm fodifig the truncation numbel
due to given error rate will be described. The atgm estimates the truncation number

regardless of the buffer size.

4.2.3 Algorithm

The truncation number estimator algorithm reliestioa utilization of a three-
stage algorithm for any source-observer configaratiAt the initialization of the

algorithm, cluster sizes and buffer size are regagefrom the user. For the provided
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configuration, the worst-case scenarp=1) is maintained by locating the first source

point and the first observer point on the oppagsdkes. In addition, randomly selected ten
points are added over the surface of each sphtmmtibn starts with placing one
additional point over clusters. At each iteratione randomly selected point is added to
the distribution over the surface of each clustet a three-stage algorithm is called to
get the estimated. due to given error-rate for the current sourcesoler distribution. In
case the estimated truncation numbers are the agfive consecutive iterations, then the
algorithm stops execution and outputs the estiméated

As seen in previous subsection, error curve fogatial addition theorem has a
bowl-like behavior. Although curve is not smoottdas noisy, the truncation numbér
due to a desired error level can be estimatedeatdimvergent region of the curve by a
robust three-stage algorithm. The first stage m dtgorithm is bracketing the global
minima of the curve. The second stage is locatieggiobal minimum by golden section
search algorithm. The first two stages are perfdrritee determine the limits of the

convergent regionkd < L<globalminimurr. The third one is finding the estimated

truncation number by the bisection algorithm in ¢tbevergence region.

It should be noted that the convergent part appemd¢o the machine precision
and saturates at this level for the large-buffesec8ecause of the noisy nature of the
saturation region, where locating the true globalimum is nearly impossible, global
minimum at large-buffer case can be considerechagpbint where the curve hits the
machine precision. At small-buffer case, the cogeet nature vanishes before reaching
to the machine precision and yields a bowl-likeveuwhich has a specific global
minimum. At the next two sub-subsection, the bréokeand golden section search
algorithms to obtain the limits of convergent regare described in detail. After tools for
determining the bounds of convergent region arevigeal, the bisection root-finding
algorithm is summarized for locating the trlie corresponding to the desired level of

accuracy in this region.

4.2.3.1The Bracketing Algorithm
Before proceeding to find the global minimum ofrannodal function (See Figure

4-7), the minimum of the function should be braekeby a triplet(a,b,c). In the
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interval bracketed by the triplet, the conditona<b<c ,f(b)<f(a) and

f (b) < f(c) are to be satisfied.

a b c
f(b)< f(a), f(b)< (¢
Figure 4-7: A unimodal function whose minimum istketed by the triple(ta, b, c).
In order to find the valid triplet that bracket®tminima, seeking procedure can
be started from the peak of left hill by an initglessb and proceeded by stepping

downhill. Each step size can be increased by ataonhfactor (defined by golden ratio, as

explained below) or by the result of parabolic agtiation of preceding points. At each

step, the conditionf (c) > f (b) is checked to find out whether the new intervaickets
the minimum or not. If the condition is satisfi¢ken the triplet(a, b, ¢) is to be assigned

as bracketing triplet.
Parabolic extrapolation is used to expedite thppitey procedure in the downhill

direction. Parabolic extrapolation relies on thérapolation of a point on the curve by
fitting a parabola through the tripléa, b, c). The extrapolated point corresponds to the
abscissa of the minimum of the fitted parabolahdf function is nicely fitted by parabola
and the conditionsf (x) < f(c) or f(x)> f(b) (while f(x)> f(¢)) is satisfied, then
triplets bracketing the minima can be obtained wathsingle leap. Otherwise, the

minimum can be searched by magnifying the brackit golden ratios.
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Assume a parabola passes through the p()'fmls, c) and its algebraic expression

f(x)=A+Bx+ CX , (x ab}. (4.7)

Equation provides three linearly independent equatwhich allow to determine

the coefficients A, B,andC . After the coefficients are determined, the alsscief the

minimum of the parabola can be obtained by settsderivative to zero as

df (%)

=0=2Cx+ B, (4.8)
dx
which yields
-B
X=—. 4.9
> (4.9)

For finding the expressions of the coefficierBs and C in terms of function
values and the triplet, one can shift the originh® pointb. By calculating the relative

distances of other points with respect to the pbinthe linear equations can be written

as
f(a)= A+ Bd+ C&
f (b) = A , (4.10)
f(c)= A+ Bd+ C&
where
a=a-b, c¢=cL (4.11)
By using the elimination method, the coefficierds e obtained as
f(a)- f(b))c?—( f(9- () &
5 (1@ 1) ~(1(9- () & w12)
ac -cd
and

(f(a)-f(b))c-( (9~ f(H) & (4.13)
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Hence, the abscissa of the minimum of the parabdtaund at

f(a)— ff(b))dz—( f(9- (D) az_ (4.14)

A routine for obtaining the triplet bracketing the minima whides the default
magnification (golden ratio) and the parabolic extrapolatan follow the procedure

given below.
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Algorithm 1 The bracketing algorithm

Inputs and Outputs.
Inputs:  a, initial point, integer.
b, initial guess for the second point in the brackeeger.

f (x), external real function.

Outputs: a, lower bound of the interval bracketing the minimunteger.
b, interior point of the interval bracketing the mium, integer.
c, upper bound of the interval bracketing the miniminteger.

Pre-definitions.

Golden= (\/5 +1)/2 (golden ratio by which successive intervals anggaexied)

Limit =100 (maximum allowed limit for parabolic fitting)
Core.
Assignc = b+ Golder{ b- 3,
Retrieve the function valuet(a), f (b), f(c).
while ( f (b) < f(c))
Compute the abscissa of the minima of the parakola
Determine an alternative limit for parabolic fitj by X, = b+ Limit(c-b).

I Cases start.

if (b<x<c) then
if ((x)< f(c)) then
The triplet bracketing the minima b, x, c),
Stop execution and output.
else if( f (x)> f (b)) then
The triplet bracketing the minima (b, ¢, x) ,

Stop execution and output.
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end
AsSign X,e,, = ¢+ Golder{ ¢ B ! no parabolic fit (use golden).
else if (c< X< %) then
if (f(x)< f(c)) then
ASSigN X,e,, = C+ Golder{ ¢ B,
The triplet is(C, X, Xew) -
end if
else if (x> %, ) then

! limit the abscissa of minima to the allowed value

AsSIgN X = X, -

else
I'use directly golden ratio, don’t use the parabapproximation
ASSIgN X,e,, = C+ Golder{ ¢ .

end if

thetriplet is (b, C, Xew) -

end while

End of Algorithm
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4.2.3.2The Golden Section Search Algorithm

The golden section search is a widely used oneftiaeal minimum/maximum
searching technique for finding global minimum/maym. It was introduced by Jack
Kiefer in 1953 [102]. The name of the technique eerfrom the fact that the algorithm
narrows the interval bracketing the minimum withga@lden ratio. An approach like
bisection algorithm which reduces the length of ititerval bracketing the root by the
factor of two requires the selection of the midmi@f the interval and the elimination of
the one half of the interval at each iteration. ld@er, golden section which reduces the
length of interval bracketing the minimum by thetta of three (approximately) requires
the selection of two points in the interval and #hetematical minimization of the
bracketing interval until a tolerance provided Isgu

Suppose that the global minimum of a function iacketed by the algorithm
prescribed at previous sub-subsection. The intdskadketing the minima is bounded by
the pointsa and c. Two new pointsl§ and d) are introduced within the interval (See
Figure 4-8).

a d b c

Figure 4-8: Locations of the points in the interbedcketing the global minimum.

Symmetric choice of the interior points leads to
b-a=c-d (4.15)
The distances can be related with a rﬁtic(o <r< 1) as
b-a=l(c-a and c &I(e & (4.16)
This ratio should also be hold for the intervgdsb) and(d, c) as
d-a=F(b-a and c &I(e ¢. (4.17)

Using the first set of equations in the second/dts
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d-a=r*(c-a and c B=r*(e i (4.18)
Furthermore,
b=r?a+(1-r?jc and d=r?e(1-r? (4.19)
The first set of equations can be arranged as
b=(1-T)a+fc and d=(1-T) T (4.20)

The consistency of the last two equation sets agdy be maintained by the
condition

1-r?=r, (4.21)

which yields

Since the roof” =1.618 violates the condition of being a fraction, thaestroot
' =0.618 should be selected as the solution. If the regddeations of the pointe and
d are selected according to ratibs=0.618 and1-T = 0.38z, then, regardless of which
triplet is selected @, d,b) or (d,b,c)) for the next iteration, relative position of the
interior point would remain the same at that brackais case is a direct consequence of
Eqn.(4.17). By using the retained interior poindantroducing a new point in the
selected interval, the procedure can be repeatgidthmm length of the interval reaches to
a tolerance value provided by the user. This tolegavalue couldn’'t be smaller than the
square root of machine precision.

Because of the unimodal property of the functitwe, $election of correct interval

at each iteration can be simply done by compatiegftinction values. Iff (d) < f (b)
then the minimum must lie within the interval chateaized by the triplet(a, d, b).

Otherwise, the minima exists in the interval markgdhe triplet(d, b, c). The algorithm

for determining the valid interval at each iteratiand locating the minimum of the

function can be prescribed by the following proaedu
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Algorithm 2 The golden section search algorithm

Inputs and Output.
Inputs:  a, lower bound of the interval bracketing the minimunteger.
C, upper bound of the interval bracketing the miniminteger.

tol, tolerance, integer.

f (x), external real function.

Output: X, the abscissa of the global minimum, integer.
Pre-definitions.

M= (\/5—1)/2 (golden ratio)
Core.

Assignb=T(c-a)+a, d=(1-T)(c-a)+ a.

Retrieve the function value§(b) and f (d).

while abs( c- g < tol

if (f(o)> f(d)) then

The new bracketing triplet i, d, b).
f (b) = f(d).
Assign(a,d,b, ¢ as(a,a+(1-r)(b-4),d,j.
Retrieve the new value df(d).

else

The new bracketing triplet iad, b, ¢).
f(d)=f(b).

Assign(a,d,b, ¢ as(d,b,d+I(c-d), 9.
Retrieve the new value df(b).

end if
end while
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if (f(b)< f(d)) then

The minimum pointx is b,
else

The minimum pointx is d,

end if

End of Algorithm
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4.2.3.3The Bisection Root Finding Algorithm

Let f (x) be a continuous function in an inter\[al b] , such that
f (a) f(b) <0, (4.23)

then there exists at least one zero of the funcficﬁx) on the interval because the sign

of the function changes. Suppose that the fundtias only one root on the interval as

depicted in Figure 4-9.

Figure 4-9: A smooth continuous function has a mothe intervala,b] . cis the
midpoint of the interval.

This root can be located by successively halving ititerval until a smaller

interval provided by user in whiclr must lie. The procedure is initiated by definihg t

midpoint of the interval asc:(a+ b)/2 and checking the sign of the product
f (c) f(b). In case the sign of the product is minus, thenrtiot resides in the interval

[c.b]. Otherwise, the root is in the intervid, c| . Hence, a new interval containing the

root a is determined. This procedure is repeated unélribw root is located with a

desired precisiorr, that is

la,—h|<e (4.24)
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where the endpoints of theth interval area, andh,. Although the function is assumed

to be smoothly decreasing, the function has a reiffe characteristic and can have a

horizontal tangent near to its root. For this kaictase, inclusion of the stopping criteria

‘f (an)‘<£ (4.25)

expedites the procedure. The first stopping cate(Eqn.(4.24)) guarantees the

convergence to the root with number of iterations,
&
n=log, -2 (4.26)
£

where &, is the size of the initial bracket. The bisectinathod described up to this point

is slow compared to its alternatives, but it prasishe success at many cases at which
the convergence cannot be guaranteed by otheis. dstimator algorithm, the bisection
method is employed after the limits of the conveoge region are drawn by the
algorithms described in Section 4.2.3.1 and Sectdol.3.2. Within these limits,

estimatedL can be located by shifting the threshold to th&rdd accuracy as if the root

sits at a point in the level (x) = £4.41eq iNstead of the levef (x) =0. The outline of the

bisection root-finding algorithm can be provided@ws
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Algorithm 3 The bisection root finding algorithm
Inputs and Output.
Inputs:  a, lower bound of the interval, integer.
b, upper bound of the interval, integer.
tol, tolerance, integer.

Eqesiregr deSired error level, real
f (x), external real function.
Output: X, the abscissa of the rodt (corresponding to desired accuracy), integer.
Pre-definitions.
Jmax: Maximum allowed number of iterations, integer.
Core.
doj=1,..J

max

Assign the midpoint = (b~ a)/2 and retrievef (c).

if (( f (a) = £gesirea) ( T (€) = € desireq < 0) then
The new interval ifa, c).
Assignb=c.
else
The new interval ifc, b).
Assigna=c.
end if
if (b—g <tol or f(a)=-Egesiea<0) then exit the loop

end do

Assign x = a.

End of Algorithm
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4.2.3.4The Accelerators

The algorithms summarized until this point requiegligible time compared to
the overall execution time of the MLFMA algorithimings of algorithm at different
numerical cases are presented in Section 4.2.4d@eshat, the time spent on these
routines can be further reduced by utilizing theederators. Two different kinds of
accelerators can be implemented into existing negti The first one can be developed to
avoid excess steps in bracketing and golden sesganch algorithms. The second one
can be used to expedite the calculation of traioslabperator by spherical harmonics
transforms.

The first kind of accelerator can be implementethwif cases”. Consider the
large-buffer case discussed in Section 4.2.2. lierdase, locating the minimum point of
the curve is actually hard due to noisy naturehef function at machine precision and
needless. In addition, locating the minimum is @asignificant process for many cases
because the FMM algorithm is often executed withabcuracy varying 10through 10
1 and the minimum of the curve would remain welldvelthe desired error level. The
execution of the bracketing algorithm can be stdppter the retrieved values of the
function become smaller than the desired errorl ldugng stepping downhill procedure.
Stopping execution with “if cases” also avoids tepsin the saturation level which
appears at level I8 and below due to the distribution of source/obsepoints. After
the execution is stopped, the bisection algorithen be invoked to obtain the true
truncation number. This accelerator could yieldnsigant time savings in thel
estimator algorithm due to the wanted error rate.

The second kind of accelerator based on spherarahdnics transforms can be
used for rapid calculation of the translation opmraAs mentioned earlier, estimator
algorithm utilizes aforementioned 3-stage algorittuniocate the truncation number for
source/observer distribution at each iteration. iluieach iteration, the routine which
calculates the relative error is called many timéh different truncation numbers. The
relative error computation is performed by caldalgithe relative differences between

the field values obtained by Green’s function amel field values computed with FMM
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approximation. The field values due to Green’s fiomccan be computed and stored at
the beginning of each iteration. However, the fietddues due to FMM approximation
should be calculated for different truncation nurshet each iteration. Since the number
of directions change due to truncation number,dhtgoing/incoming wave expansion
matrices and the translation operator vector appased to be computed at each calling
of relative error routine with different truncationumber. Direct computation of
outgoing/incoming wave expansion matrices is neargsBesides that, the translation
operator values can be calculated in a fast wag logal interpolator after its equispaced
samples are calculated with a spectral domain tgakrexplained below.

The translation operator values can be generateal Ibgal interpolator like far-
field values. Because of the band-limited naturéheftranslation operator, its values can
also be generated via spherical harmonics transfonentioned at previous chapter. By
using the forward spherical harmonics transforme, shherical harmonic coefficients of
translation operator can be obtained. And thes#icieats can be filtered until a degree
K and used in the backward spherical harmonics fvemsto obtain new translation
operator values at polynomial degreless thanL . New polynomial degre¢. should
be smaller than previous degr&e because the spherical harmonics coefficients,tisglec
domain representation of a function at polynomegreéel , are not sufficient to recover
the spherical data at polynomial degri€e(K >L). Therefore, the first step in spectral
domain technique is calculating the spectral donsgimerical harmonic coefficients due
to translation operator values at a very high potgral order, sayL =1500. These
coefficients are kept in memory, filtered and usedbackward spherical harmonic
transforms for generating the translation operat@ues due to different truncation
degrees. It can be claimed that only the zerotlkerosgherical harmonics coefficients are
needed to characterize the translation operatspeéctral domain. This can be directly
proven by the following derivation.

The translation operator given as

T, (cos(6)) = i ( 2+ In' (kX) R( coth)), (4.27)

=0

can be substituted withh (6’, ¢2) in the expression of forward spectral transform as
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z (cos(8)) e ™T, ( cogd)) sifie) o dp

2T
]
- , (4.28)
=—_[ (cos(8)) T ( cog6)) sito) dﬁj €™ dy
Ve,
where the integration along can be analytically evaluated as
J &M = 1-e'?™ _[2m, m= 0, (4.29)
im 0, mzO0

which shows that the zeroth order coefficients tiarie the spectral data. The forward
spectral transform can be further proceeded byi@iplwriting the translation operator

in forward Legendre transform as

m

:\/Zri (2 +2h! kxj (cod8)) R( cofs)) sitw) B, (4.30)

o

where the integration alon§ can be analytically evaluated as

’jTPn(cos(e)) R(co46)) sif6)do= 2%1 n=l (4.31)
0 0 n#l

Hence, the spherical harmonics coefficients carmrytically calculated without FFT

and Gaussian quadrature. The final expressiorptoerscal harmonics coefficients is
L
=22y i'ht (kX). (4.32)
1=0

Once the spherical harmonics coefficients are obthand stored in the memory,
the rest is filtering those coefficients for dedimumber of truncation number and using
those for generating the translation operator \wmliéeedless to say, the backward
spectral transform relates with the operations eabth order of associated Legendre
polynomials and backward Fourier transform. Moreliekly, the backward spherical
transform can be simplified due to zeroth orderffatents as
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Te (cos(8)) =%i RY(cog)) fo. (4.33)

T h=0

The local interpolator described in Section 2.6 tenused after equispaced

samples of translation operator are generatedkgth(4.33).

4.2.4 Numerical Results

Three-stage truncation number estimator algorittas been implemented with
accelerators and tested for many cases. Sometaésests are provided here.

In the worst-case analysis of the large and smdiileb cases, the source and
observer points are positioned on the oppositeereraf the source and observer boxes.
Moreover, in case the source and observer poirgs dastributed over the sphere
enclosing the boxes, this yields a better “worsecanalysis”, provides a safe margin
between actual error and estimated error anddtshe upper bound of estimated error.
For that reason, in the test bf- parameter estimator algorithm, the source and wbser
points are scattered over the surfaces of the spheramely over the grids on the
surfaces. The grid points are defined by outer peodf equispaced +1 points in the
elevation direction and equispaceZN +1 points in the azimuth direction. In the
following tests,N is selected as 7 and totally 120 points are chosen the surface of
each sphere.

In the first test, the parameters are selectedchs 20 and kX =40 where d
denotes the edge length of the boxes located isgheres again. This configuration has
been shown in Section 4.2.2. Truncation error dué + parameter is plotted in Figure
4-10. Obtained truncation number values for giveorerates¢ are tabulated in Table
4-1 with the computational time consumed in thrages routine. Obviously, time spent
in the routine decreases with the help of accalesatvhile the desired error level is
increased. The routine stops execution for there@sirror rates smaller than@fter it

decides that the desired error rate is not reaehabl
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Truncation Error - kd=20 - kX=40

10 T T T T T T T

Maximum Relative Error

-10 I I i I

I |
0 10 20 30 40 50 60 70 80 90 100
L - Truncation Number

10

Figure 4-10: Truncation error plot f&d=20 andkX=40.

£ L Time(sec) ¢ L Time(sec)
10° 38 0.4389 10 | N/A | 3.7064
10° | 42 0.7038 18 | NJA | 3.7174
10 | 49 1.1568 18 | NJA | 3.7194
10° = 59 1.7627 | 18° | NJ/A | 3.7054
10°  N/A | 37024 @ 10" | N/A | 3.7064

Table 4-1: Truncation number values corresponddgesired error level and
computational time spent in the estimator routiettie configuratiokd=20, kX=40.

In the second test, the parameters involving with dluster size and spacing are
chosen askd =20 and kX =220. This configuration is nothing more than the large
buffer size configuration discussed in Section 2.2Truncation error for this
configuration is demonstrated in Figure 4-11. Re®d truncation numbers from the

routine and execution timings for different errates are tabulated in Table 4-2. It can be
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seen from the table that the routine successfaligtes the optimunh — parameter given

the desired error level.

Truncation Error - kd=20 - kX=220
10 T T T T T T T

Maximum Relative Error

10' | 1 1 1

L |
0 10 20 30 40 50 60 70 80 90 100
L - Truncation Number

Figure 4-11: Truncation error plot f&o=20 andkX=220.

£ L Time(sec) & L Time(sec)
10 | 38 04399 10 | 52 1.6527
10° | 40 0.7178 18 54 1.6987
10* | 44 1.1188 @ 18 | 56 1.6967
10° | 46 1.1268 @ 18° | 58 1.7537
10° | 49 1.1488 | 10" @ 60 1.7727

Table 4-2: Truncation number values corresponddgesired error level and
computational time spent in the estimator routmettfie configuratiokd=20, kX=220.

As the last example, another one box buffer comnfigon is tested. Its

specifications are&kd =40 and kX =80. As seen from the Figure 4-12, the error curve

73



exhibits a very steep incline around the errorll@@¥. Even in this region, the algorithm
exactly locates the optimum truncation number fue error rate 10 and shows the
robustness of the proposed method. The resultsekt nhapter also validate the
robustness of the three-stage algorithm.

Truncation Error - kd=40 - kX=80

10" 4 : 3 : 3
10'2, _ . g - e 0
. h RRE TN |

Maximum Relative Error
)

A1 | | L
10" F 3 104 105 106 107 108
L - Truncation Mumber

1 I 1 ! | 1
20 40 60 80 100 120
L - Truncation Number

Figure 4-12: Truncation error plot f&o=40 andkX=80.

£ L Time(sec) ¢ L Time(sec)
10° | 73 2.6236 10 | 107 | 11.2412
10° 78 3.4264 18 | N/A | 12.0181
10* | 83 4.7842 18 | N/A | 12.7290
10° | 90 5.0492 @ 18° | N/A | 12.6650
10° = 98 53151 = 18" @ N/A | 12.1251

Table 4-3: Truncation number values corresponddgesired error level and
computational time spent in the estimator routiettie configuratioikd=40, kX=80.
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4.3The Local Interpolation Parameters Estimator Algorithms

4.3.1 Overview

In the implementation of MLFMA, the local interpttan procedure is frequently
invoked while interpolating/anterpolating field sggures and translating the outgoing
fields into incoming fields. Since the most of tbemputational time during MLFMA
execution is spent in these operations, the lotalpolator and its parameters are to be
optimally chosen. The parameters of the local pukator, the number of interpolation
points p and the over-sampling rat®, affect the CPU time and accuracy of MLFMA.

The literature involving with the optimum parametlection for the local
interpolator is in short supply, especially for thgproximate prolate spheroidal (APS)
function described in Chapter 2. Due to the erralgsis of the APS function given in
[63, 64], Ohnuki and Chew proposed formulas for th@imum selection of the
interpolation parameters [103]. However, the formsujiven there do not provide precise
results as in this study. Another study was coretidcty Ergul and Gurel [104]. They

tested several cluster sizes and proposed optimums) (pairs due to several error rates

£. Nonetheless, the method proposed here is a gepecedure and suitable to any
randomly selected cluster size and error rate witltonducting any test. The algorithm

provide eitherp—parameter for givers,L, and & or s—parameter due to givep, L
and €. In the rest of this subsection, first, the aifgon for estimatingp —parameter is

discussed. Then the algorithm for findisg parameter is presented.
Before proceeding further, the APS formulation eviewed first. The APS

function is given by [63]

f(e)= > f(mag) g (6- m6,6) R, (6- mé), (4.34)

where D, (6) denotes the periodic sinc function or Dirichletried while Sy (6,6,) is

the windowing function. Windowing function is deéith as

Su (6.6)) R (0.6) '90), (4.35)
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sinhl (2N +3 sinh* [ sif(6/ P~ si(6) )2}

6,6,) = (4.36)
% (0.4) Jsin?(8,/2)- sir? (6/ 2
And the Dirichlet kernel is expressed as
D, (6) = sin[(2m + 16/ 2] (4.37)

(2M +1)sin(g/ 3

The terms given in the expressions can be moreogipbescribed as followst

is the truncation number of addition theorem.=sL is the total number of sampling

points, wheres is the over-sampling ratio. The sample spacingés=(27m)/(2M +1).
N=M-L= (s—l) L is the number of over-sampling points, = Int[B/AH] shows the
index of the nearest sampling point to the intepog point. g, = pA& is the width of

the window. p = /2 is the number of the interpolation points.

4.3.2 The Number of Interpolation Points (p) Estimator Algorithm

4.3.2.1Algorithm
In literature, the formula for estimating the optimn p —parameter is given as

[103]

(4.38)

which is the direct consequence of the formulatterupper bound of the error given as
[63]

1

_dO
10 "™ < sinh(c) (4.39)
where
1
c= n(l—gj p (> 1). (4.40)
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It was proven that the Eqn.(4.38) does not guaeaptecise results and doesn’t
take the argumenL into account which has also effect on the errte,ralbeit not so
much (see Section 4.3.2.2). In order to have aroigo expression for selecting the
optimum p-parameter, consider the windowing function (EqB8%#. which is called
convergence factor in [64]. Tuning the parametdrthe windowing function properly
allows finding the upper and lower bounds of thpragimation error. The parameters of
the windowing function areN , &,, and 8. Since the parametel is related with the
polynomial orderL of the function whose values are generated andsampling ratio
s, it can’'t be changed for the error analysis. Thpraximation error (or convergence
factor) heavily depends on the proper selectiorwofdow width &,. The width of
window can be at leagtd which means that the local interpolation is perfed by only
two points in the neighborhood of the interpolatpaint, or at mostz which means that
whole points on the circumference are taken intooast, i.e. global interpolation

(A@<6<m). The parameted can be at least 0 and at maktbecause of the limits of

the summatior{0< < §,). Whené =0, the convergence factor becomes
6
Sy (0,90) :M:l (4.41)

which constitutes the upper bound of the convergdactor (or the top of main lobe).
When 6 =6,,

_ Ru(:6)
Su (60.60) " R.(08) (4.42)
and
R (6.8 =sinh[(2N +9 sinfit| sif(6,/ - sif(6y/ )2} .

\/sin2(90/2)— sirf (6y/ 2

The Eqn (4.43) is in indeterminate forr@/ (). At this point, the L'Hopital's rule can be

invoked. Taking the limit of expression whéh- &, yields
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Ry (6h.6,) =2N+1. (4.44)
Hence,

2N +1
Ry (0,6,)

that gives the lower bound of the convergence fgctiothe side lobe level). By properly

Sk (6:60) = (4.45)

tuning Eqn.(4.45), the desired level of accuracy ba obtained in interpolation with
APS interpolator.

The algorithm to obtain the optimum - parameter corresponding to given L,

and £ can be summarized in three steps:
(i) The routine checks the maximum and minimum @gence rates by setting

G,=A68 and §,=m. If the desired error is out of the bounds of t@vergence
[ S\ (A6,46), S, (71,7) ], then the routine warns the user and stops executi

(i) If the desired error falls into the convergeriaterval, then the algorithm starts
to seek it by bisection algorithm described in #®ectd.2.3.3. At the end of the search, it

outputs the optimung}, corresponding to gives.

(iii) By using p=6,/A8, the optimump - parameter is determined.

4.3.2.2Numerical Results
The p-parameter estimator algorithm has been tested &mymumerical cases

and five of them which can possibly be encountaatdnany levels of MLFMA are
presented here.
In numerical tests, first, the translation operatalues at equispaced sampling

points in the intervalO, 277] are directly generated. Then, three equally spgoeats
between two consecutive sampling points are chfiseeach two consecutive sampling

pointsg anda,,; (i =1,..., M + 1). Since the distance between two successive sagnpli
points is denoted byA@, the locations of three equispaced points in therval
corresponds to & +(A6/4),3 +(A6/2),3,,—(A6/4)). The values of translation

operator at these interior points are generatedsnyg the interpolator and employing
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directly the translation operator routine. The tig&a differences between interpolated
values and directly calculated values (or interpoaerrors) are plotted. It's predicted
and confirmed that the interpolation error is minmm when the interpolation point is
near to sampling point. As the interpolation pasmat the midpoint of the interval, the
interpolation error is maximum.

For each test, the robustness of fheparameter estimator algorithm is analyzed

through setting the error rates16™*,10°3,10°, and10°°. While the parameters and

s are kept fixed, the optimunp —parameter is calculated for each error rate. Atithee

of each interpolation error plot, the maximum iptdation error encountered at that case
is indicated. In addition, the maximum interpolatierror is compared with the desired
error level.

The first test is conducted on a configuration imick the parametek is chosen
as 40 and that can be encountered in MLFMA at fihegel most frequently. The
interpolation errors at selected points due toutated p—parameterss=2, kL =40
and desired error levels are calculated and dematedtin Figure 4-13 . Note that only
the uppermost portions of the error plots are zabineorder to see how precise the
maximum interpolation errors are obtained. The mmaxn relative errors at each case
except 10 case are below the desired levels of accuracyl®tcase, the maximum
relative error is slightly higher than the desiexdor. Since the procedure described in
algorithm section relies on an approximate appro#uoh error results can deviate one

digit of accuracy and this deviation is tolerable.
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Figure 4-13: Interpolation errors are plotted fdfedent desired error levels with
estimate — parameterd,=40, ands=2.

In the second test, the parameters involving vhth interpolation are chosen as
L =400, s=1.2. For each error level, the optimum-parameter is computed and the
approximation errors on interpolation points arkedated. The maximum relative errors
are also determined. As seen from Figure 4-14afiproximation errors are very near to
the desired error rates and lesser than thoseméans that the algorithm estimates the

true p-—parameter very accurately.
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Figure 4-14: Interpolation errors are plotted fdfedent desired error levels with
estimate — parameterd,=400, ands=1.2.

In the third test, the degree of translation operistincreased up th =1000.The
other parameters are the same as those of prewsstis For each error level, the
approximation errors on interpolation points arkewated due to fixed parametessL
and requiring p—parameter. Note that thp —parameters obtained at previous test are
the same as those of previous test, since thewoitgion error depends on the parameter
s after a certain polynomial degrde. Again, it's apparent from Figure 4-15 that the
approximation errors are close to the desired erates. Also, it's observed in the
extensive tests that the interpolation algorithrd #me estimator algorithm works until
the polynomial degree of 2000 fas=1.2. After this degree, the sinus hyperbolic
function in Eqn. (4.36) causes floating overflowhefefore, the operating limits of the

estimator and the interpolator are bounded withsfiexifications of the machine.
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Figure 4-15: Interpolation errors are plotted fdfedent desired error levels with
estimated — parameterd,=1000, ands=1.2.

In the fourth and fifth tests, the approximationroes due to estimated
p —parameters are compared with the approximatiorrseaocording top —parameters
calculated with the previously used formula givan[103] (Egn.(4.38)). In the fourth
test, the parameters are chosernLas100 and s=1.2. At the fifth one, the parameters
are selected a$ =100 and s=2. For these specifications, the relative errors ttue
p—parameter estimated with the proposed algorithmpdotted in Figure 4-16 and
Figure 4-18. In addition, the approximation errdtge to p—parameters calculated with
Eqn.(4.38) are presented in Figure 4-17 and Figut®. It is apparent from the results
that the previous approach yields poor estimatidtewever, the proposed method

results in very precise approximation errors nedhé desired error rates.
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Figure 4-16: Interpolation errors are plotted fdfedent desired error levels with tipe-
parameters estimated by the proposed algorith00, ands=1.2.

83



Relative Error Relative Error Relative Error

Relative Error

Angle- theta
Desired Error Level=10"-3 p=14 Max. Rel. Error=10"-2.0307

Angle- theta
Desired Error Level=10"-8 p=27 Max. Rel. Error=10"-4.4534

Angle- theta
. Desired Error Level=10"-9 p=40 Max. Rel. Error=10"-6.8405
10 T T T T T T
10°H
dedr g I
0 3 6

Angle- theta

parameters estimated by previously used formu#a00, ands=1.2.

Figure 4-17: Interpolation errors are plotted fdfedent desired error levels with tipe-
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Figure 4-18: Interpolation errors are plotted fdfedent desired error levels with tipe-
parameters estimated by the proposed algoritsh00, ands=2.
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Figure 4-19: Interpolation errors are plotted fdfedent desired error levels with tipe-
parameters estimated by previously used formu#a00, ands=2.

4.3.3 The Over-Sampling Ratio (s) Estimator Algorithm

4.3.3.1Algorithm
In [103], the formula to obtain the optimusi parameter is expressed as

s=_"P_ (4.46)

where ¢ is defined as in (4.40). Likep-parameter expression in Eqn.(4.38),

s—parameter formula also doesn’t yield accurate emstimation. Therefore, the

formulation given for p—parameter estimation is arranged to obtain an ateur

convergence rate formula fa— parameter due to givep and £. The derivation can be

initialized by explicitly writing theg, and N in Eqn.(4.45) as
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(2(s-1)L+ 1)( sin%)}

sinh{ (26- )L+ 1{ sinﬁ( si SpL’i . m

The s—parameter can be minimally equal to 1. At this cdbe convergence factor

Sv (6, 6) = (4.47)

becomes

( | j
_ 2sL+1) _
S\ (6, 60) =— ( iy j—l, (4.48)
SN
2sL+1

which forms the upper bound of the convergence &itwrilarly, whens> p,

prr

S (6,6,)= sih(p)’ (4.49)

that is the lower bound of the convergence rate.

The algorithm to obtain the optimurs—parameter givenp and £ consists of
two steps:

(i) The routine checks the lower bound of conveogerate by Eqn (4.49). If the
desired error is smaller than this amount, it wahesuser and interrupts the execution.

(i) If the desired error rate is greater than libver bound of convergence rate,
first the algorithm seeks it in the intera)10] by bisection algorithm because of the fast
decaying nature of error rate. For the remaining, ppemploys the Newton-Raphson

root-finding algorithm.

4.3.3.2Numerical Results

The s—parameter estimator algorithm has been extensiested and some of
test cases and results are presented here.

The tests of s—parameter estimator algorithm are similar to thetsteof
p—parameter estimator algorithm. Basically, the ti@ien operator values are
generated by both interpolation routine and traimsiaroutine. The relative differences

between generated values are calculated and #rpatation errors on specific points are
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obtained. The maximum of interpolation errors isnpared with the desired error level

and the accuracy of the estimator is evaluatedutirosetting the error rates to

101,1073,107°, and107°.In test routines, first the optimurs— parameter is calculated
due to error ratel. and the parametep . Then the interpolation routine is executed and
resulting approximation errors on interpolationrggsiare plotted.

In the first test, the parameters are selected at0 and p=10. It should be
noted that the selection of the number of the pukation points as one forth of the
polynomial degree does not yield significant sasiing computational time for this test

procedure. However, the parameter should minimally be selected & due to

Eqn.(4.49) in order to maintain the minimum ermerl 0.

The interpolation errors are plotted in Figure 4480 above given error rates.
Again, the maximum error parts of the error plote @oomed as inp—parameter
estimator tests and one digit deviation from theiree error level is acceptable. It's
apparent from the graph that the maximum approxanaerror is well below the
threshold for each error case.
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Figure 4-20: Interpolation errors are plotted fdfedent desired error levels with
estimateds — parameterd,=40, ando=10.

In the second and third tests, the polynomial degjege increased up &0 and

1000 respectively. Thep —parameter is kept fixed at both testsl&s It's claimed that
optimum s—parameters for error cases will be smaller thasehaf previous test since
the p-parameter is increased fib. And the s—parameters will not change in both
cases due to independency of the error estimate tfee polynomial degree after a
certain polynomial degree. These expectations atenith the reality in Figure 4-21 and
Figure 4-22. Like in previous test, the approximaterrors are close to the desired error
rates and lesser than those; this means thatdbethin estimates the trug— parameter

very accurately.
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Figure 4-21: Interpolation errors are plotted fdfedent desired error levels with
estimateds — parameterd,=400, andp=15.
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Figure 4-22: Interpolation errors are plotted fdfedent desired error levels with
estimateds — parameterd,=1000, ang=15.

In the last two tests, the interpolation errorsoading to estimated— parameters
are compared with the interpolation errors duestoparameters calculated with the
formula provided in [103] (Eqn.(4.46)). In the fthuttest, the parameters are chosen as
L =100 and p=8. In the fifth test, the parameters are selectetl a100 and p = 25.

For these parameters, the interpolation errors tdus—parameter estimated with the
proposed algorithm are demonstrated in Figure 423 Figure 4-25. In addition, the
interpolation errors due te-— parameters calculated with Eqn.(4.46) are preseimed
Figure 4-24 and Figure 4-26. The last case in Eigi23 is an exceptional case and
shows how the proposed estimator accurately fitds dptimum s— parameter. The

overall results show that the previous approacHdyieoor results. However, the

proposed method estimates the tateparameter very precisely.
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Figure 4-23: Interpolation errors are plotted fofedent desired error levels with tise-
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Figure 4-24: Interpolation errors are plotted fofedent desired error levels with tise-
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Figure 4-25: Interpolation errors are plotted fofedent desired error levels with tise-
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Figure 4-26: Interpolation errors are plotted fofedent desired error levels with tise-
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CHAPTER 5
NUMERICAL RESULTS

5.1 Introduction

In this chapter, results of extensive tests coretudty Helmholtz MLFMA and
Maxwell MLFMA with self-tuning library are presemteln these tests, our first goal is to
see how accurate MLFMA results are obtained bygusglif-tuning library. The second
purpose of these tests is to check the limits efdlyorithms, i.e. to see how large the
cluster size can be used during the executionseohlgorithms.

The test setups are constructed for one-level FMM tavo-level FMM. At each
test setup, the source/observer points for Helmhmibblem or source/observer dipoles
for Maxwell problem are selected over the surfagk€lusters. Totally, one hundred
twenty points or dipoles are distributed on equalhaced grid over each cluster. The
cluster sizes or spacings are changed to examinkntits of algorithms during tests. At
each test, four different error rates are examifiéese error rates are 3,0.0°, 10°, and
10°. In addition, relative differences between fieldlues at observer points/dipoles

calculated by exact Green’s function expressionEvi approximation are plotted.

5.20ne-Level FMM

One-level FMM test configuration is given in Figugel. With this test
configuration, Helmholtz MLFMA and Maxwell MLFMA artested and the results are

presented in next subsections. In order to exasnmedl-buffer case in this configuration,
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the spacing between cluster centers is set@d at one of tests. All other tests are
conducted with the spacing @aD0OOA . In all tests below, MLFMA results are obtained

with desired levels of accuracy.

Z A

source|sphere

observer sphere

(0,0,0) X (10001,0,0

; O

Figure 5-1: One-level FMM test configuration.

Y
X

5.2.1 Results for Helmholtz MLFMA

In the first test, the cluster radii are selected4d and the spacing between
clusters is set tdlOOO . At this configuration, optimumL and p parameters are
estimated with self-tuning library. Over-samplingtio is selected as 1.5. Results are
plotted for different desired error rates (See Fegb+-2). It can be seen from the results

that the desired error rates are achieved predisedugh the self-tuning library.
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Figure 5-2: Relative errors of field values at alise points at one-level FMM for the
configurationd =44 and X =10001 .

In second test, the cluster radii are kept as @vipus test. The observer cluster is
placed at(164,0,0) (one-sphere buffer). At this configuration, optmmuL and p

parameters whers=1.5 are estimated with self-tuning library. Resulte afotted for

different desired error rates (See Figure 5-3¢ah be seen from the results that desired

MLFMA error rates are achieved.
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Figure 5-3: Relative errors of field values at aglise points at one-level FMM for the
configurationd =44 and X =164.

In the following two tests, the spacing between thlsters is fixed td0004 and
various cluster sizes are examined. In the thidi fanrth tests, cluster radii are selected
as 401 and15Q1 respectively. The fourth test also shows the cdatmnal limits of the
algorithm in our workstation that has 16 GB RAMoaie CPU. The results at both tests

are satisfactory.
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Figure 5-4: Relative errors of field values at aglise points at one-level FMM for the

configurationd =404 and X =10001.
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Figure 5-5: Relative errors of field values at aglise points at one-level FMM for the

configurationd =1501 and X =10001.

Finally yet importantly, the first test is repeatetth the parameters estimated
with the formulas presented in literature. It isid@ed that the proposed method in this

thesis yields very accurate results (in Figure 8éthpared to results in Figure 5-6.
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Figure 5-6: Relative errors of field values at aglise points at one-level FMM for the
configurationd =44 and X =10004 (with formulas in literature).

5.2.2 Results for Maxwell MLFMA

The tests for the Helmholtz MLFMA are repeated Herevlaxwell MLFMA. In
the first test, the cluster radii are assignedtdsand X =10004 . At this configuration,
optimum L and p parameters are estimated with self-tuning librérghould be stated
that the L — parameter estimating algorithm is modified for eoypohg source/observer
dipoles over the surfaces of clusters instead afcgdobserver points. Over-sampling
ratio is again set to 1.5. Results are plottedigufe 5-7 for different desired error rates.
It can be seen from the results that the desiremt esites are achieved precisely through

the self-tuning library.
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Figure 5-7: Relative errors of field values at alise dipoles at one-level FMM for the

configurationd =44 and X =10001 .

In the second test, the cluster radii are keptnaprevious test. The observer

cluster is located afL64, 0, 0) (one-sphere buffer). At this configuration, optimi. and

p parameters are estimated with self-tuning librahen s=1.5 . Results are shown in

Figure 5-7. It can be seen from the results that-MRA error rates are as precise as

desired.
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Figure 5-8: Relative errors of field values at alise dipoles at one-level FMM for the

In the last two tests, the spacing between clustaters is set ta000/ . In the

third test, radii of clusters are selected4®d . In the fourth test, the radii of clusters are

assigned asb1 which is the upper limit for the computation inroworkstation for

Maxwell MLFMA implementation. In both tests, thesudts are as precise as expected

before.
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Figure 5-9: Relative errors of field values at aliee dipoles at one-level FMM for the
configurationd =404 and X =10001.
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Figure 5-10: Relative errors of field values atatser dipoles at one-level FMM for the
configurationd =654 and X =10001.

Like in Helmholtz tests, the first test is repeatath the parameters obtained with

the formulas in literature. In addition, the acteress of the method proposed in this

study is confirmed again.
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Figure 5-11: Relative errors of field values atatsr dipoles at one-level FMM for the
configurationd =44 and X =10004 (with formulas in literature).

5.3Two-Level FMM

Two-level FMM test configuration is depicted in Brg 5-12. With this test
configuration, Helmholtz MLFMA and Maxwell MLFMA arexamined and the results
are presented in next subsections. In this cordigum, all source spheres enclosed by the
sphere located at the origin interact with the ob=espheres enclosed by the sphere
located at(10001,0,0. However, the fields at only one sphere that essiat the upper-
left portion of the big observer cluster are comedarin order to examine small-buffer
case in this configuration, the spacing betweerchigter centers is set 88.621 at one
of tests. All other tests are conducted with thacspy of 10001. In all tests below,

MLFMA results are obtained with desired levels of@acy.
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source|spheres observer spheres

d(1++/2) d(1++/2)

Figure 5-12: Two-level FMM test configuration.

5.3.1 Results for Helmholtz MLFMA

In the first test, the small cluster radii are selected adl and the spacing

between clusters i40001. In this configuration, optimuni and p parameters are

estimated with self-tuning library. Over-sampliredio is set to 1.5. Approximation error
at the field points located over the surface ofardpft sphere in the big observer cluster
is plotted for different desired error rates (Segufe 5-13). Desired results are obtained
through the self-tuning library and those are betbe desired error rates. It should be
also noted that the approximation errors are lebsar those of the one-level FMM. This
is because the estimation calculations are perfdratethe worst case in which it is
assumed that the source/observer points sit oeesulfaces. However, source/observer
points reside within the big clusters in two-leveMM. Therefore, the results are

expected well below the desired level.
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Figure 5-13: Relative errors of field values atater points at two-level FMM for the

configurationd =44 and X =10001 .

In the second test of this part, the spacing beatvedester centers is set 88.621

(one big cluster buffer case). In addition, thestdu radii are kept as same as in previous

test. The approximation errors on observer poinésdemonstrated for different error

rates (See Figure 5-14). The results are satisfacto

109



Desired Error Level=10*-3___ | =61,L2=133__ p=8__ s=1.5__ Max. Rel. Error=10"-3.7427

[

S 10 T T T T T T T T T
E 107 ++++ Hy 7, e
= ax L
5 . L ﬁ++#++++++ ++4++¢+++ ++++++ g +++++++++++ - +++++ +++++++FH+HH+HHH
[} 10 [ I | 1 1 [
T 10 20 30 40 50 60 70 80 90 100 110 120
Observer Point Index

7 Desired Error Level=10"-5__ | =66,L2=142__ p=14__ s=1.5__ Max. Rel. Error=10"-5.8526
§ 10 T T T T T T T T T T T
E 10°F e . + ‘ ++ 7
=} Magst =+

s +++ + e H+HH+H+¢+|--
5 io* | + Y T +#+ ++_er++++++ ﬂ++F+1+ +T+ HH +F+++++++ ey +++++
T 10 20 30 40 50 60 70 80 90 100 110 120
Observer Point Index

s Desired Error Level=10*-7___ 1 =70,L2=149__ p=18__ s=1.5__ Max. Rel. Error=10"-7.8669
'é 10 T T T T T T T T T T T
[NN]

-8
10 et +
= LA o |
g . i ++4jr+++4+ ] ++ +++4++++4+++++++ +++++ + 4}++++++++++F++ I ++4++++ﬂ+ H_++H+H+Mw+r
E 10 i I Lt I T I i

10 20 30 40 50 60 70 80 90 100 110 120
Observer Point Index
] Desired Error Level=10%-8__ | =752=157__ p=23__ s=1.5__ Max. Rel. Error=10"-10.2137
10 T T T T T T T T T T T

-10
o 7
et ++
-f“ﬁrﬂ + ﬁ##ﬁﬁ-m++ﬁ++w "##*Jr + +_F; +++*+ ++H=,++ -o+++++ -

10 20 30 40 50 60 70 80 90 100 110 120
Observer Point Index

Relative Error
-
(=)

Figure 5-14: Relative errors of field values atater points at two-level FMM for the
configurationd =41 and X =38.621.

In the last two tests for Helmholtz MLFMA, the desspacing is set td0001 .
The radii of small clusters are assignedd@d for the third test and00A for the fourth
test. At the configurations, approximation errocs tlifferent desired error rates are
calculated and plotted in Figure 5-15 and Figurg654n the last test, the translation
operation is performed at very high degrees su@idg. This shows that the routines in

MLFMA implementations generate precise resultseay nigh degrees.
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Figure 5-15: Relative errors of field values atatver points at two-level FMM for the
configurationd =404 and X =10001.
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Figure 5-16: Relative errors of field values atater points at two-level FMM for the
configurationd =101 and X =10001.

5.3.2 Results for Maxwell MLFMA

The tests for the Helmholtz MLFMA for two-level arepeated here for Maxwell
MLFMA. In the first test, the cluster small radiieaassigned adA and X =10001. In
the second test, the spacing between big clusteerseis set t88.624 and small cluster
radius is4A . In the third and fourth test{ =10001 and the small cluster radii aOA
and 604 respectively. The results of these tests are shovwkigure 5-17, Figure 5-18,
Figure 5-19, and Figure 5-20. The last test shtnescomputational limit of algorithm in

existing workstation. All test results are satisbayg as before.
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Figure 5-17: Relative errors of field values atatser dipoles at two-level FMM for the

configurationd =44 and X =10001 .
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Figure 5-18: Relative errors of field values atatser dipoles at two-level FMM for the

configurationd =44 and X =38.621.
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Figure 5-19: Relative errors of field values atater dipoles at two-level FMM for the

configurationd =404 and X =10001.
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Figure 5-20: Relative errors of field values atatser dipoles at two-level FMM for the

configurationd =604 and X =10001.
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SUMMARY AND FUTURE WORK

In this thesis, efficient and accurate numericehiteques for determining the key
parameters in MLFMA are presented. The scalar asxtov spherical filters, which
significantly affect the accuracy and performant®8bFMA, are extensively discussed.
In addition, numerical implementations of FMM and.IMMA to electromagnetic surface
scattering problem are provided.

Prior to this study, key parameters in MLFMA, thember of multipolesL , the

number of interpolation pointp, and the over-sampling rat®, were being determined

through some heuristic formulas, which don't eitinmark in all possible cases or yield
precise results. The well-known excess bandwidtméta [98] to determine the number
of multipoles fails in the cases where the spabieigveen interacting clusters isn't large

enough. And the formulas to determine the locarpulation parametersp( and s) in

[103] give rise to poor estimations. Estimated peaters by these formulas yield the
maximum error rates very below or above the desrear rates. Consequently, who uses
existing formulas in literature to determine thekey parameters can encounter
unexpected overall error rates at the end of MLF&&&cutions. By using the self-tuning
library presented in this study, these key pararaetan be accurately estimated and
MLFMA can be fully error controllable. The resufisesented in Chapter 4 and Chapter 5
show the power of estimator algorithms and the @teness of the expected overall error
rates at the end of MLFMA execution.

Scalar and vector spherical filters used in upwand downward traversal in
Helmholtz MLFMA and Maxwell MLFMA are discussed ersively in Chapter 3. After

the standard (slow) scalar spherical filtering pehae is described, the fast spherical
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filtering procedure introduced in literature is wided with its complexity analysis.
Although the literature for scalar spherical filisr abundant, that for vector spherical
filter is scarce. Existing formulation for the fastctor spherical filter is incorrect and
explanation of its implementation is hard to conmgred. Here, the correct derivation of
vector spherical filter is provided by first revimg the vector spherical harmonics bases
and the standard vector filtering procedure. Thiea,implementation details of the fast
vector spherical filter along with the fast scadpherical filter are provided to ease the
workload of who would like to implement fast vecgpherical filter.

In Chapter 2, implementations of FMM and MLFMA toFKE to solve
electromagnetic surface scattering problem area@xgii comprehensively. After the
integral equations are reviewed, the core of theVFapproach, approximating the free-
space Green’s function, is discussed. Once theoappate expression is derived, its
utilization in CFIE is discussed. Multilevel implemtation of FMM for CFIE is also
explained. At the end of the chapter, an optimahlanterpolation scheme for locally
interpolating the translation operator values inNFlsind MLFMA is elucidated.

By the accomplished work in this study, Helmholt &Maxwell problems can be
solved with a desired precision level. MLFMA can biized for integral equations
based on free-space kernels. Present code canrakelpged for solving large-scale
problems [105].
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