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Differences in silica content between marine and

freshwater diatoms

Abstract—Marine diatoms are shown to have
on average one order of magnitude less silica per
unit of biovolume than freshwater species. Silica
content (pmol cell') increases linearly with bio-
volume (um?) in both marine (log,¢[silica con-
tent] = 0.91 log,,[biovolume] — 3.16; r = 0.92;
P < 0.0001; N = 44) and freshwater diatoms
(logyo[silica content] = 1.03 log,,[biovolume] —
2.45;r=0.91; P < 0.0001; N = 62). Therefore,
a first-order estimate of the amount of silica uti-
lized by diatom production can be made from
diatom biovolumes. Si:C molar ratios for ma-
rine diatoms and for freshwater diatoms also are
different and demonstrate that appropriate molar
ratios must be used for marine and freshwaters
in estimating biogenic silica production from pri-
mary production. Among possible reasons for the
disparity are differences in sinking strategy, the
adaptation of marine diatom species to a low
dissolved silica environment, and differences in
salinity between the two environments.

Variation in silica content of diatom cell
walls among species has attracted attention
in a wide variety of scientific fields including
taxonomy, physiology, ecology, and geo-
chemistry. Einsele and Grim (1938) recog-
nized that part of the variation in silica con-
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tent among diatom species is related to cell
size. They also recognized that silica content
varies greatly within a given species—up to
an order of magnitude (Taylor 1985). Vari-
ation in silica content within a species oc-
curs during cell division and with growth
rate, light, nutrient limitation, salinity, and
temperature (e.g. Brzezinski 1985; Taylor
1985; Davis 1976; Paasche 19734, 1980q;
Tuchman et al. 1984; and many others).

A large component of variation in silici-
fication is reflected in differences between
freshwater and marine diatoms. Paasche
(19800) observed that Si : surface area ratios
are somewhat less for marine species than
for freshwater species. However, Werner
(1977) suggested that reported values of dia-
tom silica content for freshwater species,
primarily those of Einsele and Grim (1938),
were overestimates. Sicko-Goad et al. (1984)
argued that reported values of diatom silica
content are confounded by the use of lab-
oratory cultures in the marine studies. They
felt that there has been an unintentional but
systematic bias, by using laboratory cul-
tures, toward diatom species that have rel-
atively thin frustules and thus low silica
contents.

Physiological differences in dissolved sil-
ica utilization also have been observed be-
tween marine and freshwater diatoms.
Paasche (1980b) reported that Monod half-
saturation constants of marine planktonic
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diatoms for dissolved silica were, in general,
an order of magnitude lower than for fresh-
water species. Tilman et al. (1982) sum-
marized available Monod constants for dis-
solved silica of freshwater diatoms and
showed that centric diatoms generally had
lower Monod constants than pennate
species. Most marine species studied to date
have been centric diatoms, so it is possible
that apparent differences between marine
and freshwater diatoms are simply a result
of taxonomic characteristics.

To test the hypothesis that the silica con-
tent of marine diatoms is different from that
of freshwater diatoms, we collected litera-
ture values on silica content and biovolume.
Most literature values for silica content were
from direct analysis on cultured diatoms.
Some values were determined indirectly
from the change in dissolved silica concen-
tration in natural waters in which a known
number of diatoms were produced (e.g.
Sommer and Stabel 1983) or from the vol-
ume of the frustule (e.g. Sicko-Goad et al.
1984). Only data that included direct mea-
surements of cell size or biovolume were
used. Additional data on freshwater silica
content and biovolume for seven clones of
centric diatoms and five clones of pennate
diatoms were obtained from laboratory cul-
tures (Conley et al. unpubl. data).

Silica contents of diatom species varied
over five orders of magnitude (Tables 1-4).
A significant log-log linear relationship (Fig.
1) was obtained between freshwater diatom
silica content and biovolume (r = 0.91; P
< 0.0001; N = 62):

log,o[silica content (pmol cell™!)]
= (1.03 = 0.06)log,,[biovolume (um?3)]
— (2.45 = 0.19). (1)

A significant log-log linear relationship be-
tween marine diatom silica content and
biovolume also was obtained (r = 0.92; P
< 0.0001; N = 44):

log,, [silica content (pmol cell™!)]
= (0.91 = 0.064)log,,[biovolume (um?3)]
- (3.16 = 0.22). (2)

Coefficients from the regression equations
are reported =1 SD. There was no signifi-
cant difference between slopes of the two
regressions (¥, o, = 2.515, n.s. at « = 0.05).

Notes

Because the minimal and maximal bio-
volumes of freshwater and marine diatoms
were of the same orders of magnitude, di-
viding silica content by biovolume should
provide a fair correction for the effect of size
on silica content. In fact, there was no cor-
relation between log silica content per unit
of biovolume and log biovolume over all
diatoms (» = 0.07; n.s. at P < 0.05; N =
106) or within freshwater diatoms (»= 0.10;
n.s. at P < 0.05; N = 62) and only a weak
correlation within marine diatoms (r = 0.46;
P = 0.002; N = 44). As can be seen from
the significantly different intercepts of the
two regressions, marine diatoms averaged
one order of magnitude less silica per unit
of biovolume (0.000502+0.000466 pmol
um~3) than did freshwater diatoms
(0.00558 £0.00400 pmol um™3).

Potential biases in the data set seemingly
cannot account for the differences in silica
content between marine and freshwater dia-
toms. We have not tested for differences
within the marine diatom data set because
there were only limited data for silica con-
tent per unit of biovolume for natural pop-
ulations of marine diatoms. There was no
significant difference between cultured and
natural freshwater diatoms in log silica con-
tent per unit of biovolume (F,5,, = 1.91,
n.s. at & = 0.05). Silica content per unit of
biovolume for Melosira granulata Ehrenb.
(Table 1), the species with the most data for
cultured and natural populations combined,
shows no consistent differences between
cultured or natural specimens. There was a
slight tendency for freshwater pennate dia-
toms to be more heavily silicified than
freshwater centrics, but the difference was
not significant (Fy, 50 = 4.47, ns. at o =
0.05) and very small compared to the dif-
ference between marine and freshwater dia-
toms. Also, some part of the correlation be-
tween biovolume and silica content within
and among freshwater and marine diatoms
may be caused by an allometric relationship
between biovolume and surface area. Ma-
rine and freshwater diatom shapes (and so
surface areas at a given biovolume) are
probably sufficiently similar, however, that
surface area differences cannot account for
the differences in silica content.

Casual observation suggests that benthic
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Table 4. Silica content (pmol cell™') and biovolume (um?) of brackish and marine pennate diatoms.

Clone Silica content Biovolume Reference
Asterionella glacialis 428 1.10 1,100 Brzezinski 1985
Nitzschia sp. 1 117 0.39 1,680 Brzezinski 1985
Nitzschia sp. 2 130 0.06 215 Brzezinski 1985
Surirella sp. 421 2.20 1,660 Brzezinski 1985
Thalassiosionema nitzschioides 415 0.21 501 Brzezinski 1985

diatoms are generally more heavily silicified
than planktonic diatoms. The majority of
marine species for which silica content and
biovolume data were available are probably
true planktonic diatoms. Lowe (1974) clas-
sified 12 of the 32 freshwater species re-
ported here as euplanktonic and only four
species as tychoplanktonic or periphytic; the
remainder were unclassified. Most of our
reported species (centric and pennate) occur
in abundance in the plankton of large, deep
lakes such as the North American Great
Lakes (e.g. Stoermer and Yang 1970). Oc-
casional occurrence in the benthos does not
qualify a diatom as benthic. Although some
freshwater diatoms may spend part of their
life cycle in the sediments during resting
stages (e.g. M. granulata: Sicko-Goad et al.
1986), it is more significant that they spend
the entire vegetatively active part of their
life cycles in the plankton. If there is a ten-
dency to being a true benthic species, in our
experience it is among the pennates; we have
already demonstrated no significant pen-
nate vs. centric difference in silica content
per unit of biovolume.

Differences in sinking strategies between
diatoms from marine and freshwater envi-
ronments might contribute to the variation
in silica content between marine and fresh-
water diatoms. In freshwater, rapid sinking
of diatoms occurs under nutrient limitation
(Titman and Kilham 1976; Sommer and
Stabel 1983) and in physically stable water
columns (Reynolds 1973; Scavia and Fahn-
enstiel 1987). Sinking into the hypolimnion
is not a terminal event for most diatoms in
most lakes. In the oceans on the other hand,
once a diatom is lost from the upper mixed
zone, re-entry into the photic zone is diffi-
cult. Therefore, it may be an advantage to
have a lower silica content, making it less
likely for a diatom to sink out of the photic
zone.

Relative dissolved silica availability might
select for differences in silica content be-
tween marine and freshwater diatoms. In
general, there is a connection between silic-
ification and concentrations of ambient dis-
solved silica (Guillard et al. 1973; Paasche
19805b). In the laboratory, diatoms under
continuous dissolved silica-limited culture
often have low cell silica contents whether
they are marine (Paasche 1973a) or fresh-
water species (Tilman and Kilham 1976).
Although freshwaters may have low con-
centrations of dissolved silica (usually dur-
ing summer), concentrations of dissolved
silica are often well above limiting values
during the seasons of optimal growth. By
contrast, diatoms face low concentrations
of ambient dissolved silica in most regions
of the world ocean. Thus, there might be
selective pressure for less silicification in
most marine planktonic diatoms in order

Log [Si Content (pmol Si)]

J

Log [Biovolume (um3)]

Fig. 1. Relationship of biovolume to silica content
of freshwater diatoms (O and solid line) and of marine
diatoms (M and broken line).
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to compete successfully in an environment
that is low in dissolved silica.

Perhaps differences between marine and
freshwater diatom silica contents are the re-
sult of salinity differences between the two
habitats. Olsen and Paasche (1986) found
that Thalassiosira pseudonana cells at a sa-
linity of 24%o had lower silica contents than
cells grown in a freshwater medium. Tuch-
man et al. (1984) found that cells of Cyclo-
tella meneghiniana Kutz. from cultures with
higher NaCl concentrations (660—-400 mg
liter~! Cl) had lower silica contents than cells
grown at low concentrations of NaCl, even
though initial concentrations of ambient
dissolved silica were identical. It is not
known, however, whether salinity effects on
silicification are due directly to the effects
of salt, osmotic pressure, or other factors
(Olsen and Paasche 1986).

Paasche (19800) observed that half-sat-
uration constants for the uptake of dis-
solved silica for some marine species were
an order of magnitude lower than those for
many freshwater species. Olsen and Paasche
(1986) found over an order of magnitude
difference in the half-saturation constant for
dissolved silica-limited growth of 7. pseu-
donana Hasle and Heimdal at high and low
salinities (0.04 mol liter! in a marine me-
dium and 8.6 mol liter~! in a freshwater
medium). If uptake rates are expressed as a
function of the calculated concentration of
the monovalent conjugate base, Si(OH);0™,
rather than total silica (Riedel and Nelson
1985), differences in half-saturation con-
stants may not be as great, because pH dif-
ferences between marine and freshwaters
influence silica speciation.

Given that marine diatoms contain one
order of magnitude less silica per unit of
biovolume than freshwater diatoms, the
Si:C molar ratio also should be different.
Brzezinski (1985) determined a Si: C molar
ratio of 0.13+0.04 from 27 species of cul-
tured marine diatoms. By contrast, Sicko-
Goad et al. (1984) determined a Si : C molar
ratio of 0.79x£0.43 from 12 freshwater
species collected from natural waters. Si: C
molar ratios of particulate matter in dis-
solved silica-rich surface waters of the Ant-
arctic Ocean, where many heavily silicified
marine diatoms occur (E. Theriot pers. obs.),
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are intermediate between those of the two
studies, with a Si:C molar ratio of 0.40
(Copin-Montegut and Copin-Montegut
1978).

Diatom Si: C molar ratios and estimates
of primary production have been used to
estimate biogenic silica production (Calvert
1968; Lisitzin et al. 1972; Heath 1974; Nel-
son and Gordon 1982; Jennings et al. 1984).
Different and appropriate molar ratios must
be used for marine and freshwaters in es-
timating biogenic silica production. An es-
timate of the amount of silica used by a
diatom assemblage can be calculated from
the regression equations (Eq. 1 and 2) if the
abundances and biovolumes of the com-
ponent species are known. This estimate is
only first order, however, because silica con-
tent per unit of biovolume of a diatom may
vary by an order of magnitude. It is clear
that additional data are needed for Si: C at
different salinities if accurate stoichiometric
indices are to be useful for estimating dia-
tom production.

In summary, the order-of-magnitude dif-
ference we report between silica contents of
marine and freshwater diatoms cannot be
accounted for by any reasonable adjustment
for biovolume or unit surface area. The data
show that marine diatoms average one or-
der of magnitude less silica per unit of bio-
volume than freshwater species. Other po-
tential correlations (i.e. cultured vs. natural
populations and centric vs. pennate dia-
toms) contribute relatively little to the
overall variation observed. Whether the dif-
ferences in silica contents are genetic ad-
aptations or merely the results of salinity or
other factors is not known, but is a fruitful
area for research.
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University of Michigan
Ann Arbor 48109
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oratories, University of Maryland, P.O. Box 775, Cam-
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[Methyl-*H]thymidine macromolecular incorporation and lipid labeling:
Their significance to DNA labeling during measurements of

aquatic bacterial growth rate

Abstract—Tt is essential during measurements
of aquatic bacterial production with [methyl-
3H]thymidine (Tdr) that only labeled DNA is
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measured. We found in 12 freshwater and marine
systems that DNA labeling represented a variable
proportion of total macromolecular labeling. Up
to 87% of label appearing in precipitated labeled
macromolecules from acid-base hydrolysis treat-
ments was soluble in ethanol. Reverse-phase,
high-pressure liquid chromatography showed that
the composition of labeled molecules in the eth-
anol was 78-88% [*H]Tdr. The rate of labeling
of the ethanol-soluble fraction was significantly
correlated with the rate of total macromolecular
labeling (r = 0.88, n = 40, P < 0.001) and less
strongly with the DNA labeling rate (r = 0.49, n
= 28, P = 0.005). Experiments in which bacterial
cells were labeled with [*H]Tdr or *2PQ,*>~ showed
that above a total macromolecular labeling rate
of ~1 pmol Tdr liter ! h™!, bacterial cells bind
Tdr but do not incorporate it into phospholipids
in the cell envelope.



