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Oaks, J. R., C. W. Linkem, and J. Sukumaran. Implications of uniformly distributed,
empirically informed priors for phylogeographical model selection: A reply to Hickerson
et al.

1 An error in Hickerson et al.’s re-analysis of the Philip-
pines data

Hickerson et al. (2014) re-analyzed the dataset of Oaks et al. (2013) using a model-
averaging approach, where they placed a discrete uniform prior over eight different prior
models (see Table 1 of Hickerson et al. (2014)). However, there was an error in their method-
ology; their model mixes different units of time.

Each of the eight prior models used in the re-analysis by Hickerson et al. (2014) has
one of two priors on the mean size of the descendant populations of each taxon pair: p ~
U(0.0001,0.1) or 8p ~ U(0.0005,0.04). As described in Oaks et al. (2013), the divergence-
time parameters in the model implemented in msBayes are in generations scaled relative to
a constant reference-population size, f-. This reference-population size is defined in terms
of the upper limit of the uniform prior on the mean size of the descendant populations,
0p, such that for the prior Op ~ Ul(ag,, by, ), the size of the constant reference population
is ¢ = by, /2. Thus, the model used by Hickerson et al. (2014) mixes two different units
of time. In other words, some of their prior and posterior samples are in units of 0.05/u
generations, whereas others are in units of 0.02/u generations.

A fundamental assumption of the msBayes model and post hoc regression adjustment is
that all possible values of the parameter of interest (divergence times) are in the same units.
Thus, the results in sections “Using ABC Model Comparison to Weight Alternative Priors
for the Philippine Vertebrate Data” and “Improved Sampling Efficiency by Prior Weighting
Supports Asynchronous and Recent Divergence for the Philippines Vertebrate Data” and
presented in Figure 2 of Hickerson et al. (2014) are invalid and should be disregarded. The
error is easily illustrated by re-plotting their results with the different time units indicated
(Figure S2).

2 Theoretical implications of empirical priors for Bayesian
model choice—A simple example

The distinctions between Bayesian parameter estimation and model choice discussed in
the main text can be illustrated with a simple example. Let us say we are interested in the
fairness of a particular coin, and we denote the unknown probability of it landing heads as
0. More specifically, we are interested in the probability of two models, M; and Ms. In
both models the outcomes of flipping the coin are assumed to be binomially distributed, but
under M; the coin is weighted toward landing heads (i.e., > 0.5)), whereas under Ms, the
coin is weighted toward landing tails (i.e., 8 < 0.5). We already have data from flipping a
different coin 20 times that landed both heads and tails 10 times each, and so we decide to

1



use these data in specifying a beta prior on fairness of the new coin of beta(a = 10,5 = 10)
(Figure S1). We collect data by flipping the coin of interest N = 10 times, y = 3 of which
land heads. Given the beta distribution is a conjugate prior for a binomial likelihood, the
posterior distribution has the nice analytical form 6|y, N ~ beta(a + y,b + N — y), which
for the new dataset is simply beta(13,17) (Figure S1). The maximum a posteriori (MAP)
estimate of the probability of heads is 0.429, and following Equation 2 in the main text the
marginal likelihoods of our models of interest are

1

ply =3, N = 10| M) = / p(y = 3. N = 100, My)p(6 | My)do ~ 0.029, ()
0.5
and
0.5
ply=3,N =10| M) = / ply = 3,N =106, Mo)p(6| Ms)dé ~ 0.097. (5)
0

Given the models have equal probability under our prior, we can calculate the posterior
probability of Model 1 as

ply=3,N =10| M)
ply=3,N=10|M;)+p(y =3, N = 10| M»)

p(My|y=3,N=10) = ~ 0.23. (6)
This is the correct posterior probability of Model 1 given our prior and data.

To give the data more weight relative to the prior, we could use it twice, and calculate
an empirical Bayes estimate using a prior of beta(13,17). This results in a “posterior” dis-
tribution of beta(16,24) (Figure S1), with a MAP estimate of 0.395, and p(M; |y = 3, N =
10) = 0.10. The estimated posterior distribution of the parameter, and resulting MAP esti-
mate, is similar whether or not an empirically informed prior is used. However, the posterior
probability of Model 1 is very sensitive to the empirical prior, decreasing by 56%. By using
the empirically informed prior, we ignored prior uncertainty, leading to an underestimate of
our posterior uncertainty (Figure S1). While this did not greatly affect our estimate of 6, it
misled us to be overconfident in Model 2.

3 Validation analyses

Following Oaks et al. (2013), we characterize the model-choice behavior of the model-
averaging approach of Hickerson et al. (2014) under the ideal conditions where the prior is
correct (i.e., the data are generated from parameters drawn from the same prior distributions
used in the analysis). We used the same prior models as above (M;—Ms; Table 1), and
simulated 50,000 datasets under this prior (10,000 from each model). We used a simulated
data structure of eight population pairs, with a single 1000 base-pair locus sampled from 10
individuals from each population. We then analyzed each of these replicate datasets using the
same prior with 2.5 million samples (500,000 from each of the five prior models), retaining
1000 posterior samples. Our results are very similar to Oaks et al. (2013), but we note
that they are not directly comparable as our simulations contained eight population pairs
rather than 10 (Figure 8). We find that the approach of Hickerson et al. (2014) estimates
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the posterior probability of divergence models reasonably well when all assumptions of the
method are met (i.e., the prior is correct) and the unadjusted posterior estimates are used.
Similar to Oaks et al. (2013), we find that the regression-adjusted estimates of the model
probabilities are biased.

4 A difficult inference problem

In the main text, we discuss how the prior assumption of uniformly distributed divergence
times in msBayes leads to posteriors that are difficult to interpret. However, it is also
important to consider the difficult inference problem with which msBayes is faced. When
applying msBayes to the dataset of Oaks et al. (2013) with 22 taxon pairs, there are 581-602
free parameters that model highly stochastic coalescent and mutational processes. Under this
rich stochastic model, the method is estimating the probability of 1002 divergence models
(i.e., the number of integer partitions of Y = 22; Oaks et al., 2013). Furthermore, all the
information in the sequence alignment of each taxon pair is distilled into four summary
statistics. This gives us a total of 88 summary statistics (four from each of the 22 taxon
pairs) that contain minimal information about many of the &~ 600 parameters in the model.
More summary statistics can be used in msBayes, but most are highly correlated with the
four default statistics, and thus contribute little additional information about the parameters
from the sequence data. The large number of parameters and divergence models relative to
the amount of information in the data is undoubtedly another reason the method lacks
robustness to prior conditions.

5 Additional clarifications from Hickerson et al. (2014)

5.1 Saturation of summary statistics

Hickerson et al. (2014) claim the priors used by Oaks et al. (2013) “cause much of the
explored parameter space to be beyond the threshold of saturation in most mtDNA genes.”
To explore this possibility, we simulated datasets under prior settings that match two of the
three priors used by Oaks et al. (2013): 6p ~ U(0.0005,0.04) and 64 ~ U(0.0005,0.02). Un-
der this prior, we randomly sample divergence-time parameters from a uniform distribution
of U(0,20) coalescent units, simulate datasets, and plot the 7 values against the summary
statistics calculated from the resulting datasets (Figure 9). Clearly, the priors used by Oaks
et al. (2013) with upper limits on 7 of five and 10 coalescent units suffered little to no ef-
fect from saturation. Even at divergence times of 20 coalescent units, there is still signal
in the summary statistics used by msBayes (Figure 9). Thus, the assertion of Hickerson
et al. (2014) that the priors used by Oaks et al. (2013) sample parameter space in which
the mtDNA alignments are saturated by substitutions is incorrect and, as a result, does not
explain the bias they found.



5.2 Graphical prior comparisons

Hickerson et al. (2014) advocate the use graphical checks of prior models. This prior-
predictive approach entails generating a small number (1000) of random samples from the
prior and plotting the resulting summary statistics in comparison to the observed statistics
to see if they coincide (see Figure 1 of Hickerson et al. (2014)). Given the richness of the
msBayes model (& 600 parameters for the Philippine dataset analyzed by Hickerson et al.
(2014)), we do not expect that 1000 random draws from the vast prior parameter space will
yield data and summary statistics consistent with the observed data. In fact, when such
random draws are tightly clustered around the observed statistics, this can be an indication
that the prior is over-fit, as we show in the main text (Table 1 and Figure S3). Thus, using
such plots to select priors should be avoided, and the use of posterior-predictive analyses
would be much more informative about the overall fit of models.

5.3 Differing utilities of ¥ and (2 in msBayes

The primary component of the msBayes model is the vector of divergence times for each
of the taxon pairs, 7 = {7,...,7v} (Oaks et al., 2013). Hickerson et al. (2014) argue that
the dispersion index of this vector, 2, is a better model-choice estimator than the number of
divergence-time parameters within the vector, ¥. They present a plot of ¥ against 2 (Fig. S1
of Hickerson et al. (2014)), which is essentially a plot of sample size versus variance. This
plot shows that €2 has very little information about the number of divergences among taxa.
Nonetheless, Hickerson et al. (2014) conclude €2 is more informative and biogeographically
relevant than . However, the number of divergence-time parameters within the vector and
their values contains all of the information about the temporal distribution of divergences,
and is much more informative than the variance (i.e., the dispersion index is not a sufficient
statistic for 7). Hickerson et al. (2014) also argue that msBayes can estimate 2 much better
than W. However, Oaks et al. (2013) demonstrate that even when all assumptions of the
model are met, €2 is a poor model-choice estimator (see plots B, D & F of Figure 4 in Oaks
et al. (2013)), whereas ¥ performs better.

Importantly, €2 is limited to estimating the probability of only a single model (the one-
divergence model), and thus its utility for model-choice is very limited. L.e., it can only be
informative about the probability of whether there is one divergence shared among the taxa
(2 = 0.0) or there is greater than one divergence (£2 > 0.0). As a result, not only is its
model-choice utility limited, but it is also very difficult to estimate. €2 can range from zero to
infinity, and the point density that it is at its lower limit of zero will always be zero. Thus, an
arbitrary threshold (0.01 is used throughout the msBayes literature) must be chosen to make
the probability of “simultaneous” divergence estimable. Even with this arbitrary threshold,
it is still not surprising to see that it is numerically difficult to obtain reliable estimates of
the probability that €2 is “near” its lower limit of zero. It is easier, less subjective, and more
interpretable to estimate the probability of the model with one divergence-time parameter
(i.e., ¥ = 1). Thus, it is not surprising that Oaks et al. (2013) find that ¥ is a better
estimator of model probability than 2.
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Figure S1: A plot of three beta probability density functions that represent a prior (black;

beta(10,10)), posterior (blue; beta(13,17)), and empirical Bayes density (red; beta(16,24))
for a dataset of 10 coin flips, three of which are successes.
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Figure S2: The joint posterior of the mean (F(7)) and dispersion index (2 = Var(7)/E(7))
of divergence times for 22 vertebrate taxon pairs as estimated by Hickerson et al. (2014)
(see Figure 2B of Hickerson et al. (2014)). The posterior samples are color-coded to indicate
the erroneous mixture of timescales in the analysis of Hickerson et al. (2014); grey = 0.05/p
generations and black = 0.02/u generations.
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Figure S3: The prior predictive graphical checks recommended by Hickerson et al. (2014)
for six prior models: (A) M; (1 ~ U(0,0.1)), (B) Mya (7 ~ U(0,0.01)), (C) My (7 ~
U(0,0.001)), (D) M3 (r ~ U(0,5)), (E) My (7 ~ U(0,10)), and (F) M5 (7 ~ U(0,20)).
The three models that likely exclude true values of some divergence times of the 22 pairs of
Philippine taxa (A—C) appear to have a “better fit” than the valid priors that likely cover the
true divergence times (D-F). The plots project the summary statistics from 1000 random
samples from each model onto the first two orthogonal axes of a principle component analysis,
with the blue dot representing the observed summary statistics from the 22 population pairs
of Philippine vertebrates.
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Figure S7: Traces of the estimated lower and upper limits of the 95% highest posterior
density (HPD) interval of © (the dispersion index of divergence times) as 100 million prior
samples are accumulated. Each pair of points is based on 1000 posterior samples retained
from the prior. Both (A) unadjusted and (B) GLM-regression-adjusted estimates are shown.
The data analyzed were the 22 pairs of Philippine taxa from Oaks et al. (2013). Prior settings
were 7 ~ U(0,10), 0p ~ U(0.0005,0.04), and 04 ~ U(0.0005,0.02).
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Figure S8: An assessment of the approximate Bayesian model-averageing approach of Hicker-
son et al. (2014) under the ideal conditions when the prior model is correct (i.e., the datasets
are simulated from parameters drawn from the same prior distributions used in the analysis).
The plots show the relationship between the estimated posterior and true probability of (A &
C) ¥ =1and (B& D) < 0.01, based on 50,000 simulations. The results summarize the (A
& B) unadjusted and (C & D) GLM-adjusted posterior estimate from each simulation repli-
cate. The prior settings for all replicates included five prior models with 6, ~ U(0.0001,0.1)
and 04 ~ U(0.0001,0.05) for all five models, and M; : 7 ~ U(0,0.1), My : 7 ~ U(0,1),
Ms 7~ U(0,5), My : 7~ U(0,10), and M5 : 7 ~ U(0,20). The number of samples from
the prior was 2.5 x 10%. The simulated data structure was 8 population pairs, with a single
1000 bp locus sampled from 10 individuals from each population. The 50,000 estimates of
the posterior probability of one divergence event were assigned to 20 bins of width 0.05. The
estimated posterior probability of each bin is plotted against the proportion of replicates in
that bin with a true value consistent with one divergence event (i.e., ¥ =1 or Q < 0.01).
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Figure S9: The summary statistics 7 (Tajima, 1983) and m,. (Takahata and Nei, 1985)
as a function of divergence time between populations. Each plot represents 1100 pairs of
parameter draws and summary statistics calculated from the simulated data. Prior settings
for the simulations were 7~ U(0, 20), 6p ~ U(0.0005,0.04), and 64 ~ U(0.0005,0.02).
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Figure S10: The prior distribution on divergence times imposed by the model-averaging
prior comprised of five models with different uniform priors on 71 M; (7 ~ U(0,0.1)), M,
(1~ U(0,1)), M3 (1~ U(0,5)), My (T ~U(0,10)), M5 (1 ~ U(0,20)).
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