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Establishing that a set of population-splitting events occurred at the same time can be a potentially persuasive argument that a

common process affected the populations. Recently, Oaks et al. (2013) assessed the ability of an approximate-Bayesian model-choice

method (msBayes) to estimate such a pattern of simultaneous divergence across taxa, to which Hickerson et al. (2014) responded.

Both papers agree that the primary inference enabled by the method is very sensitive to prior assumptions and often erroneously

supports shared divergences across taxa when prior uncertainty about divergence times is represented by a uniform distribution.

However, the papers differ about the best explanation and solution for this problem. Oaks et al. (2013) suggested the method’s

behavior was caused by the strong weight of uniformly distributed priors on divergence times leading to smaller marginal likeli-

hoods (and thus smaller posterior probabilities) of models with more divergence-time parameters (Hypothesis 1); they proposed

alternative prior probability distributions to avoid such strongly weighted posteriors. Hickerson et al. (2014) suggested numerical-

approximation error causes msBayes analyses to be biased toward models of clustered divergences because the method’s rejection

algorithm is unable to adequately sample the parameter space of richer models within reasonable computational limits when using

broad uniform priors on divergence times (Hypothesis 2). As a potential solution, they proposed a model-averaging approach that

uses narrow, empirically informed uniform priors. Here, we use analyses of simulated and empirical data to demonstrate that the

approach of Hickerson et al. (2014) does not mitigate the method’s tendency to erroneously support models of highly clustered

divergences, and is dangerous in the sense that the empirically derived uniform priors often exclude from consideration the true

values of the divergence-time parameters. Our results also show that the tendency of msBayes analyses to support models of

shared divergences is primarily due to Hypothesis 1, whereas Hypothesis 2 is an untenable explanation for the bias. Overall, this

series of papers demonstrates that if our prior assumptions place too much weight in unlikely regions of parameter space such

that the exact posterior supports the wrong model of evolutionary history, no amount of computation can rescue our inference.

Fortunately, as predicted by fundamental principles of Bayesian model choice, more flexible distributions that accommodate prior

uncertainty about parameters without placing excessive weight in vast regions of parameter space with low likelihood increase

the method’s robustness and power to detect temporal variation in divergences.
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Biogeographers frequently seek to explain population and species

differentiation on geographical phenomena. Establishing that a set

of population-splitting events occurred at the same time can be a

potentially persuasive argument that a set of taxa were affected by

the same geographic events. The approximate-Bayesian method,

msBayes, allows biogeographers to estimate the probabilities of

models in which multiple sets of taxa diverge at the same time

(Hickerson et al. 2006; Huang et al. 2011).

Recently, Oaks et al. (2013) used this model-choice frame-

work to study 22 pairs of vertebrate lineages distributed across

the Philippines; they also studied the behavior of the msBayes

approach using computer simulations. They found the method

is very sensitive to prior assumptions and often supports shared

divergences across taxa that diverged randomly over broad time

periods, to which Hickerson et al. (2014) responded. Oaks et al.

(2013) and Hickerson et al. (2014) agree on the fundamental

methodological point about the model selection performed in

msBayes:

� Representing prior uncertainty about divergence-time parame-

ters with a uniform distribution can lead to spurious support for

models with few divergence events shared across taxa. Thus,

the primary inference enabled by the approach is very sensitive

to the priors on divergence times.

However, the two papers suggest alternative mechanisms by

which the priors on divergence times cause this behavior:

Hypothesis 1: Strongly weighted marginal likelihoods (Oaks

et al. 2013)—The uniform priors on divergence

times lead to very small marginal likelihoods (and

thus smaller posterior probabilities) of models

with many divergence-time parameters. The like-

lihood of these models is “averaged” over a much

greater parameter space in which there is a large

amount of prior weight and small probability of

producing the data (Jeffreys 1939; Lindley 1957).

Hypothesis 2: Numerical-approximation error (Hickerson et al.

2014)—Under broad uniform priors, the rejection

algorithm implemented in msBayes is unable to

adequately sample the space of the models within

reasonable computational time, which leads to bias

toward models with fewer divergence-time param-

eters because they are better sampled.

In Hypothesis 2, the problem is numerical-approximation er-

ror due to insufficient computation. In this scenario, given data

from taxa that diverged randomly through time, the exact (true)

posterior supports a model with many divergence-time parame-

ters, but we are unable to accurately approximate this posterior. In

Hypothesis 1, the problem is more fundamental; given data from

taxa that diverged randomly through time, the exact posterior sup-

ports a model with simultaneous divergences across taxa. That is,

when accommodating prior uncertainty about divergence times

with a uniform distribution, the exact posterior from Bayes’ rule

leads us to the wrong conclusion about evolutionary history. Such

posterior support for simultaneous divergence, even if “correct”

from the perspective of Bayesian model choice, does not pro-

vide the biogeographical insights that a researcher who employs

msBayes seeks to gain.

Although these phenomena are not mutually exclusive, it

is important to distinguish between them to determine how to

improve our ability to estimate shared divergence histories. If

Hypothesis 1 is correct, then the model is sound and we need

to increase our computational effort or improve our Monte Carlo

integration procedures. For example, Markov chain or sequen-

tial Monte Carlo algorithms might sample the posterior more

efficiently than the simple Monte Carlo rejection sampler imple-

mented in msBayes. Rather than alter the sampling algorithm,

Hickerson et al. (2014) tried using narrow, empirically informed

uniform priors in the hope that with less parameter space to sam-

ple, the rejection algorithm would produce better estimates of

the posterior. Here, we discuss theoretical considerations for us-

ing empirically informed priors for Bayesian model choice and

evaluate the approach of Hickerson et al. (2014) as a potential

solution to the biases of msBayes. In their analyses, Hickerson

et al. (2014) made an error by mixing different units of time,

which invalidates the results presented in their response (see Sup-

porting Information for details). We correct this error, but still find

their approach will often support (1) clustered divergence models

when divergences are random, and (2) models that exclude from

consideration the true values of the parameters.

If Hypothesis 1 is correct, we need to correct the model,

because no amount of computation will help; even if we could

calculate the exact posterior, we would still reach the wrong in-

terpretation about evolutionary history. Accordingly, Oaks (2014)

has introduced a method that uses more flexible probability dis-

tributions (e.g., gamma) to accommodate prior uncertainty in di-

vergence times without overly inhibiting the marginal likelihoods

of models with more divergence-time parameters. This greatly

increases the method’s robustness and power to detect temporal

variation in divergences (Oaks 2014). This is not surprising given

the rich statistical literature showing that marginal likelihoods are

very sensitive to the priors used in Bayesian model selection (e.g.,

Jeffreys 1939; Lindley 1957).

We also use analyses of simulated and empirical data to

explore the distinct predictions made by Hypotheses 1 and 2.

We show the behavior of msBayes matches the predictions of

Hypothesis 1, but not Hypothesis 2. This strongly suggests that

the method tends to support models of shared divergences not

because of insufficient computation, but rather due to the larger
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marginal likelihoods of these models under the prior assumption

of uniformly distributed divergence times.

The Potential Implications of
Empirical Bayesian Model Choice
Hickerson et al. (2014) suggest a very narrow, highly informed

uniform prior on divergence times is necessary to avoid the

method’s preference for models with few divergence-time param-

eters. Such an empirical Bayesian approach to model selection

raises some theoretical and practical concerns, some of which

were discussed by Oaks et al. (2013, see the last paragraph of

“Assessing prior sensitivity of msBayes” in Oaks et al. 2013);

we expand on this here.

THEORETICAL IMPLICATIONS OF EMPIRICAL PRIORS

FOR BAYESIAN MODEL CHOICE

Bayesian inference is a method of inductive learning in which

Bayes’ rule is used to update our beliefs about a model M as

new information becomes available. If we let � represent the set

of all possible parameter values for model M , we can define a

prior distribution for all θ ∈ � such that p(θ|M) describes our

belief that any given θ is the true value of the parameter. If we let

X represent all possible datasets then we can define a sampling

model for all θ ∈ � and X ∈ X such that p(X |θ, M) measures

our belief that any dataset X will be generated by any state θ of

model M . After collecting a new dataset Xi , we can use Bayes’

rule to calculate the posterior distribution

p(θ | Xi , M) = p(Xi | θ, M)p(θ | M)

p(Xi | M)
, (1)

as a measure of our beliefs after seeing the new information,

where

p(Xi | M) =
∫

θ

p(Xi | θ, M)p(θ | M)dθ (2)

is the marginal likelihood of the model.

This is an elegant method of updating our beliefs as data

are accumulated. However, this all hinges on the fact that the

prior (p(θ | M)) is defined for all possible parameter values in-

dependently of the new data being analyzed. Any other datasets

or external information can safely be used to inform our beliefs

about p(θ | M). However, if the same data are used to both inform

the prior and calculate the posterior, the prior becomes conditional

on the data, and Bayes’ rule breaks down.

Thus, empirical Bayesian methods have an uncertain theo-

retical basis and do not yield a valid posterior distribution from

Bayes’ rule (e.g., empirical Bayesian estimates of the posterior

are often too narrow, off-center, and incorrectly shaped; Morris

1983; Laird and Louis 1987; Carlin and Gelfand 1990; Efron

2013). This is not to say that empirical Bayesian approaches are

not useful. Empirical Bayes is a well-studied branch of Bayesian

statistics that has given rise to many methods for obtaining param-

eter estimates that often exhibit favorable frequentist properties

(Morris 1983; Laird and Louis 1987, 1989; Carlin and Gelfand

1990; Hwang et al. 2009).

Although empirical Bayesian approaches can provide pow-

erful methods for parameter estimation, a theoretical justification

for empirical Bayesian approaches to model choice is question-

able. In Bayesian model choice, the primary goal is not to estimate

parameters, but to estimate the probabilities of candidate models.

In a simple example with two candidate models, M1 and M2, we

can use Bayes’ rule to calculate the posterior probability of M1 as

p(M1 | Xi ) = p(Xi | M1)p(M1)

p(Xi | M1)p(M1) + p(Xi | M2)p(M2)
. (3)

By comparing equations (1) and (3), we see fundamental differ-

ences between Bayesian parameter estimation and model choice.

In equation (1), we see that the posterior density of any state

θ of the model is the prior density updated by the probability of

the data given θ (the likelihood of θ). The marginal likelihood of

the model only appears as a normalizing constant in the denom-

inator. Thus, as long as the prior distribution contains the values

of θ under which the data are probable and the data are strongly

informative relative to the prior, the values of the parameters that

maximize the posterior distribution will be relatively robust to

prior choice, even if the posterior is technically incorrect due to

using the data to inform the priors. However, if we look at equation

(3), we see that in Bayesian model choice it is now the marginal

likelihood of a model that updates the prior to yield the model’s

posterior probability. The integral over the entire parameter space

of the likelihood weighted by the prior density is no longer a nor-

malizing constant, rather it is how the data inform the posterior

probability of the model. Because the prior probability distribu-

tions placed on the model’s parameters have a strong affect on the

integrated, or “average,” likelihood of a model, Bayesian model

choice tends to be much more sensitive to priors than parameter

estimation (Jeffreys 1939; Lindley 1957). Another important dif-

ference of Bayesian model choice illustrated by equation (3) is

that the value of interest, the posterior probability of a model, is

not a function of θ because the parameters are integrated out of

the marginal likelihoods of the candidate models. Thus, unlike pa-

rameter estimates, the estimated posterior probability of a model

is a single value (rather than a distribution) lacking a measure of

posterior uncertainty.

The justification for an empirical Bayesian approach to pa-

rameter estimation is that giving the data more weight relative

to the prior (i.e., using the data twice) will often shift the peak

of the estimated distribution nearer to the true value(s) of the

model’s parameter(s). However, there is no such justification for
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Table 1. Results of the model-averaging approach of Hickerson

et al. (2014) applied to the Philippines dataset of Oaks et al. (2013)

using three sets of prior models.

p(Mi | Bε(S∗))

Model τ prior M∗ = M1 M∗ = M1A M∗ = M1B

M∗ – 0.899 0.821 0.673
M2 U (0, 1) 0.079 0.136 0.251
M3 U (0, 5) 0.013 0.026 0.044
M4 U (0, 10) 0.006 0.012 0.022
M5 U (0, 20) 0.003 0.005 0.010

Notes: All models used priors on population size of θD ∼ U(0.0001, 0.1) and

θA ∼ U(0.0001, 0.05), and differ only in their prior on divergence-time (τ)

parameters. Each set of five models differ only in the divergence-time prior

used for the model with the narrowest prior: M1 (τ ∼ U(0, 0.1)), M1A (τ ∼
U(0, 0.01)), or M1B (τ ∼ U(0, 0.001)). The approximate posterior probability

of each model ( p(Mi | Bε(S∗))) is given for each of the three analyses. The

posterior estimates are based on 10,000 samples retained from 1 × 106 prior

samples from each model.

model selection, because unlike model parameters, the posterior

probabilities of candidate models often have no clear true values.

Model posterior probabilities are inherently measures of our be-

lief in the models after our prior beliefs are updated by the data

being analyzed. This complicates the meaning of model posterior

probabilities when Bayes’ rule is violated by informing priors

with the same data to be analyzed. By using the data twice, we

fail to account for prior uncertainty and mislead our posterior be-

liefs in the models being compared; we will be overconfident in

some models and underconfident in others.

Nonetheless, empirical Bayesian model choice does perform

well for some problems. Particularly, in cases in which large

aggregate datasets are used for many parallel model-choice prob-

lems, pooling information to inform priors can lead to favorable

group-wise frequentist coverage across tests (Efron 2008). How-

ever, this is far removed from the single model-choice problem of

msBayes. In the Supporting Information we use a simple exam-

ple to help highlight the distinctions between Bayesian parameter

estimation and model choice.

PRACTICAL CONCERNS ABOUT EMPIRICALLY

INFORMED UNIFORM PRIORS FOR BAYESIAN MODEL

CHOICE

In addition to the theoretical concerns discussed above, there are

practical problems with using narrow, empirically informed, uni-

form priors. The results of Hickerson et al.’s (2014) reanalysis of

the Philippines dataset strongly favored models with the narrow-

est, empirically informed prior on divergence times, and thus their

model-averaged posterior estimates are dominated by models M1

and M2 (see Table 1 of Hickerson et al. 2014). This is concerning,

because the narrowest τ prior used by Hickerson et al. (2014)

(τ ∼ U (0, 0.1)) likely excludes the true divergence times for at

least some of the Philippines taxa. Hickerson et al. (2014) set this

prior to match the 95% highest posterior density (HPD) interval

for the mean divergence time estimated under one of the priors

used by Oaks et al. (2013, see Tables 2 and 3 of Oaks et al. 2013).

Given this interval estimate is for the mean divergence time across

all 22 taxa, it may be inappropriate to set this as the limit on the

prior, because some of the taxon pairs are expected to have di-

verged at times older than the upper limit. Furthermore, this prior

is excluded from the 95% HPD interval estimates of the mean di-

vergence time under the other two priors explored by Oaks et al.

(2013, under these priors the 95% HPD is approximately 0.3–0.6;

see Table 6 of Oaks et al. 2013).

The strong preference for the narrowest prior on divergence

times suggests the approach of Hickerson et al. (2014) is biased

toward models with less parameter space and, as a consequence,

will estimate model-averaged posteriors dominated by models

that exclude true values of the parameters. We explored this pos-

sibility in two ways. First, we reanalyzed the Philippines dataset

using the model-averaging approach of Hickerson et al. (2014),

but set one of the prior models with a uniform prior on divergence

times that is unrealistically narrow and almost certainly excludes

most, if not all, of the true divergence times of the 22 taxon pairs.

If small likelihoods of large models cause the method to pre-

fer models with less parameter space (Hypothesis 1), we expect

msBayes will preferentially sample from this erroneous prior

yielding a posterior that is misleading (i.e., the model-averaged

posterior will be dominated by a model that excludes the truth).

Second, we generated simulated datasets for which the divergence

times are drawn from an exponential distribution and applied the

approach of Hickerson et al. (2014) to each of them to see how

often the method excludes the truth.

Reanalyses of the Philippines dataset using empirical
Bayesian model averaging
For our reanalyses of the Philippines dataset we followed the

model-averaging approach of Hickerson et al. (2014), but with a

reduced set of prior models to avoid their error of mixing units

of time (see Supporting Information for details). We used five

prior models, all of which had priors on population sizes of θD ∼
U (0.0001, 0.1) and θA ∼ U (0.0001, 0.05). Following Hickerson

et al. (2014), each of these models had the following priors on

divergence times: M1, τ ∼ U (0, 0.1); M2, τ ∼ U (0, 1); M3, τ ∼
U (0, 5); M4, τ ∼ U (0, 10); and M5, τ ∼ U (0, 20). We simulated

1 × 106 random samples from each of the models for a total of

5 × 106 prior samples. For each model, we retained the 10,000

samples with the smallest Euclidean distance from the observed

summary statistics after standardizing the statistics using the prior

means and standard deviations (SDs) of the given model. From the

remaining 50,000 samples, we then retained the 10,000 samples
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with the smallest Euclidean distance from the observed summary

statistics, this time standardizing the statistics using the prior

means and SDs across all five models. We then repeated this

analysis twice, replacing the M1 model with M1A and M1B , which

differ only by having priors on divergence times of τ ∼ U (0, 0.01)

and τ ∼ U (0, 0.001), respectively. Although we suspect the prior

of τ ∼ U (0, 0.1) used by Hickerson et al. (2014) likely excludes

the true divergence times of at least some of the 22 taxa, we are

nearly certain that these narrower priors exclude most, if not all,

of the divergence times of the Philippines taxa.

Our results show that the model-averaging approach of

Hickerson et al. (2014) strongly prefers the prior model with the

narrowest distribution on divergence times across all three of our

analyses, even when this model excludes the true divergence times

of the Philippines taxa (Table 1). Given that the same number of

simuations were sampled from each prior model, this behavior is

not clearly predicted by insufficient computation (Hypothesis 2),

but is a straightforward prediction of Hypothesis 1.

Hickerson et al. (2014) vetted the priors used in their model-

averaging approach via “graphical checks,” in which the summary

statistics from 1000 random samples of each prior model are plot-

ted along the first two orthogonal axes of a principle component

analysis (see Fig. 1 of Hickerson et al. 2014). To determine if such

prior-predictive analyses would indicate the M1A and M1B models

are problematic, we performed these graphical checks on our prior

models. Unfortunately, these prior-predictive checks provide no

warning that these priors are too narrow (Fig. S3). Rather, the

graphs suggest these invalid priors are “better fit” (Fig. S3A–C)

than the valid priors used by Oaks et al. (2013, Fig. S3D–F).

Simulation-based assessment of Hickerson et al.’s (2014)
model averaging over empirical priors
To better quantify the propensity of Hickerson et al.’s (2014)

approach to exclude the truth, we simulated 1000 datasets in

which the divergence times for the 22 population pairs are drawn

randomly from an exponential distribution with a mean of 0.5 (τ ∼
Exp (2)). All other parameters were identically distributed as the

M1–M5 models (Table 1). We then repeated the model-averaging

analysis described above, retaining 1000 posterior samples for

each of the 1000 simulated datasets. For each simulation replicate,

we estimated the Bayes factor in favor of excluding the truth as

the ratio of the posterior to prior odds of excluding the true value

of at least one parameter. Whenever the Bayes factor preferred a

model excluding the truth, we counted the number of the 22 true

divergence times that were excluded by the preferred model.

Our results show that the model-averaging approach of

Hickerson et al. (2014) favors a model that excludes the true values

of parameters in 97% of the replicates (90% with GLM-regression

adjustment), excluding up to 21 of the 22 true divergence times

(Fig. 1). Importantly, the posterior probability of excluding at

least one true parameter value is very high in most replicates

(Fig. 2). Using a Bayes factor of greater than 10 as a criterion for

strong support, 66% of the replicates (87% with GLM-regression

adjustment) strongly support the exclusion of true values (Fig. 2).

The results of the above empirical and simulation analyses

clearly demonstrate the risk of using narrow, empirically guided

uniform priors in a Bayesian model-averaging framework. The

consequence of this approach is obtaining a model-averaged pos-

terior estimate that is heavily weighted toward models that exclude

true values of the parameters. This is not a general critique of

Bayesian model averaging. Rather, model averaging can provide

an elegant way of incorporating model uncertainty in Bayesian

inference. However, as predicted by Hypothesis 1, when aver-

aging over models with narrow and broad uniform priors on a

parameter that is not expected to have a uniformly distributed

likelihood density, the posterior can be dominated by models that

exclude from consideration the true values of parameters due to

their larger marginal likelihoods (these models integrate over less

space with high prior weight and low likelihood).

When using uniformly distributed priors, the alternative to

capturing prior uncertainty is to risk excluding the true values one

seeks to estimate. Fortunately, more flexible continuous distribu-

tions that are better suited as priors for the positive real-valued

parameters of the msBayes model have been shown to greatly

reduce spurious support for clustered divergence models while

allowing prior uncertainty to be accommodated (Oaks 2014).

Assessing the Power of the
Model-Averaging Approach of
Hickerson et al. (2014)
Although our results above clearly demonstrate the risks inher-

ent to the empirical Bayesian model-choice approach used by

Hickerson et al. (2014), one could justify such risk if the ap-

proach does indeed increase power to detect temporal variation

in divergences. We assess this possibility using simulations. Fol-

lowing Oaks et al. (2013), we simulated 1000 datasets with τ for

each of the 22 population pairs randomly drawn from a uniform

distribution, U (0, τmax ), where τmax was set to 0.2, 0.4, 0.6, 0.8,

1.0, and 2.0, in 4NC generations. All other parameters were iden-

tically distributed as the prior models. As above, we generated

5 × 106 samples from prior models M1–M5 (Table 1). For each

of the 6000 simulated datasets, we approximated the posterior by

retaining 1000 samples from the prior.

Our results demonstrate that the approach of Hickerson et al.

(2014) consistently infers highly clustered divergences across all

the τmax we simulated (Figs. 3A–D, S5A–F). The approach often

strongly supports (Bayes factor of greater than 10) the extreme

case of one divergence event across all our simulation conditions

EVOLUTION DECEMBER 2014 3 6 1 1



JAMIE R. OAKS ET AL.

Figure 1. Histograms of the number of true divergence times excluded from the model preferred by the empirically informed model-

averaging approach of Hickerson et al. (2014) when applied to simulated datasets in which divergence times of 22 pairs of populations

are drawn from an exponential distribution, τ ∼ E xp (2). The plots represent (A) unadjusted and (B) GLM-adjusted estimates from 1000

simulation replicates analyzed using 5 × 106 samples from the prior. The proportion of simulation replicates in which at least one true

parameter value is excluded from the preferred model ( p (τ /∈ M̂)) is also given.

Figure 2. Histograms of the support (estimated posterior probabilities) for excluding at least one true divergence time when the

empirically informed model-averaging approach of Hickerson et al. (2014) is applied to simulated datasets in which divergence times of

22 pairs of populations are drawn from an exponential distribution, τ ∼ E xp (2). The plots represent (A) unadjusted and (B) GLM-adjusted

estimates from 1000 simulation replicates analyzed using 5 × 106 samples from the prior. The proportion of simulation replicates in which

there is strong support for at least one true parameter value being excluded from the model ( p (B Fτ /∈M,τ∈M > 10)) is also given.

(Figs. 3E–H, S5G–L). The method also struggles to estimate the

variance of divergence times (�), whether evaluating the unad-

justed (Fig. S4A–F) or GLM-adjusted (Fig. S4G–L) posterior esti-

mates. Overall, the empirical Bayesian model-averaging approach

leads to erroneous support for highly clustered divergences when

populations diverged randomly over the last 8NC generations. For

loci with per-site rates of mutation on the order of 1 × 10−8 and

1 × 10−9 per generation, this translates to 10 million and 100

million generations, respectively.

Also, the results of our power analyses further demon-

strate the propensity of Hickerson et al.’s (2014) approach to

exclude true parameter values. Across all but one of the τmax we

simulated, the method favors a model that excludes the truth in

a large proportion of replicates, and across many of the τmax the

preferred model will exclude a large proportion of the true di-

vergence times (Figs. 4A–D, S6A–F). Importantly, the posterior

probability of excluding at least one true divergence value is also

quite high across many of the τmax (Figs. 4E–H, S6G–L) values.

The Importance of Power Analyses
to Guide Applications of msBayes
Hickerson et al. (2014) presented a power analysis of msBayes

under a narrow uniform divergence-time prior of 0–1 coalescent
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units ago. They found that under these prior conditions msBayes

can, assuming a per-site rate of 1.92 × 10−8 mutations per gen-

eration, detect multiple divergence events among 18 taxa when

the true divergences were random over 150,000 generations or

more. It is important that investigators perform such simulations

to determine the method’s power for their dataset, and decide if

msBayes has sufficient temporal resolution to address their hy-

potheses; in the case of the Philippines dataset, it did not. When

doing so, it is important to consider what prior conditions are

relevant to the empirical system. It is rare for there to be enough

a priori information to be certain that all taxa diverged within the

last 4NC generations (i.e., 0–1 coalescent units). Also, it seems

unlikely that when such prior information is available that being

able to detect more than one divergence event in the face of 18

divergences that were random over 150,000+ generations will

provide much insight into the evolutionary history of the taxa.

Inferring more than one divergence time shared across all

taxa does not confirm the method is working well when analyzing

data generated under random temporal variation in divergences

(e.g., an inference of two divergence events could be biogeo-

graphically interesting yet spurious). Thus, it is important that

investigators not limit their assessment of the method’s power to

only differentiating inferences of one event or more (i.e., � = 1

versus � > 1). Rather, looking at the distribution of estimates, as

in Figure 3 and Oaks et al. (2013), provides much more informa-

tion about the behavior of the method.

The Causes of Support for Models
of Co-divergence
To determine how best to improve the behavior of msBayes, it

is important to determine the mechanism by which broad uni-

form priors cause support for clustered models of divergence. It is

well established that vague priors can be problematic in Bayesian

model selection. Models that integrate over more parameter space

characterized by low probability of producing the data and rela-

tively high prior density will have smaller marginal likelihoods

(Jeffreys 1939; Lindley 1957). Given the uniformly distributed

priors on divergence times employed in msBayes, the likelihood

of models with more divergence parameters will be “averaged”

over much greater parameter space, all with equal prior weight,

and much of it with small likelihood (Hypothesis 1). In light of this

fundamental statistical issue, it is not surprising that the method

tends to support simple models.

However, Hickerson et al. (2014) conclude that the bias is

caused by numerical-approximation error due to insufficient com-

putation (Hypothesis 2). They argue the widest of the three priors

on divergence times used by Oaks et al. (2013) would infrequently

produce random samples of parameter values with many indepen-

dent population divergence times as recent as the estimated gene

divergence times presented in Oaks et al. (2013). However, this

sampling-probability argument is based on some questionable as-

sumptions. Oaks et al.’s (2013) gene-tree estimates were intended

to provide only a rough comparison of the gene divergence times

across the 22 taxa and assumed an arbitrary strict per-site rate

of 2 × 10−8 mutations per generation for all taxa. Furthermore,

because the branch-length units of the gene trees are in millions of

years whereas the divergence-time prior of msBayes is in gen-

erations, Hickerson et al. (2014) make the implicit assumption

that all 22 Philippines taxa have a generation time of one year.

More importantly, even if we assume (1) the arbitrary strict clock

is correct, (2) gene divergence times were estimated without er-

ror, and (3) all 22 taxa have 1-year generation times, Hickerson

et al.’s (2014) argument actually demonstrates that the models

used by Oaks et al. (2013) with narrower priors on divergence

times are densely populated with samples with large numbers of

divergence parameters with values younger than the estimated

gene divergence estimates. Thus, if Hickerson et al. (2014) are

correct, analyses under these narrow priors should be much less

biased toward clustered models of divergence. However, the mag-

nitude of the bias is very similar across all three priors explored

by Oaks et al. (2013). Hickerson et al. (2014) point out a case

in which the narrowest prior performs slightly better (panel L of

Figs. S32, S37, S38 of Oaks et al. 2013). However, it is important

to note that these results suffered from a bug in msBayes, and

after Oaks et al. (2013) corrected the bug, there are many cases

in which the narrowest prior performs slightly worse (see panels

D–J of Figs. 3, S12 of Oaks et al. 2013).

To disentangle whether Hypothesis 1 or 2 is the primary cause

of the method’s erroneous support for simple models, we must

look at the different predictions made by these two phenomena.

For example, numerical error due to insufficient prior sampling

(Hypothesis 2) should create large variance among posterior esti-

mates and cause analyses to be highly sensitive to the number of

samples drawn from the prior. Furthermore, if insufficient prior

sampling is biasing estimates toward models with less parameter

space we expect to see support for these models decrease as sam-

pling from the prior increases. Oaks et al. (2013) did not see such

sensitivity when they compared prior sample sizes of 2 × 106,

5 × 106, and 107.

To explore this prediction further, we repeat the analy-

sis of the Philippines dataset under the intermediate prior used

by Oaks et al. (2013; τ ∼ U (0, 10), θD ∼ (0.0005, 0.04), θA ∼
(0.0005, 0.02)), using a very large prior sample size of 108. When

we look at the trace of the estimates of the dispersion index of

divergence times (�) as the prior samples accumulate (Fig. S7)

we do not see the trend predicted by Hypothesis 2. Although ap-

proximation error is always present in any numerical analysis, it

does not appear to be playing a large role in the biases revealed

by the results of Oaks et al. (2013) or presented above.
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Figure 3. The tendency of the empirically informed model-averaging approach of Hickerson et al. (2014) to (A–D) infer clustered

divergences and (E–H) support the extreme model of one divergence when applied to simulated datasets in which the divergence times

of 22 pairs of populations are randomly drawn from the uniform distributions τ ∼ U(0, τmax) indicated at the top of each column of plots

(divergence-time distributions are given in units of millions of generations ago (MGA) assuming a per-site rate of 1×10−8 mutations per

generation). Four of the six τmax we simulated are provided; please see Figure S5 for a summary of all of the results.

A straightforward prediction if strongly weighted marginal

likelihoods are causing the preference for simple models (Hypoth-

esis 1) is that the bias should disappear as the model generating the

data converges to the prior. Oaks et al. (2013) tested this prediction

by performing 100,000 simulations to assess the model-choice be-

havior of msBayes when the prior model is correct. The results

confirm the prediction of Hypothesis 1: msBayes estimates the

probability of the one-divergence model quite well (or even un-

derestimates it) when the prior is correct (see Fig. 4 of Oaks et al.

2013). We confirmed this same behavior for the model-averaging

approach used by Hickerson et al. (2014, see Supporting Infor-

mation text and Fig. S8). These results are not clearly predicted if

insufficient computation was causing numerical error (Hypothe-

sis 2). Even when the prior is correct, due to the discrete uniform

prior on the number of divergence events (�) implemented in

msBayes, models with larger numbers of divergence-time pa-

rameters (and thus greater parameter space) will still be far less

densely sampled than those with fewer divergence events (Oaks

et al. 2013). Thus, the results of the simulations of Oaks et al.

(2013) are more consistent with the fundamental sensitivity of

marginal likelihoods to priors (Hypothesis 1).

This is further demonstrated by the results presented herein

that show the model-averaging approach of Hickerson et al. (2014)

prefers models with narrower τ priors (Table 1 and Figs. 1, 2, 4)

and fewer τ parameters (Fig. 3). For these model-averaging anal-

yses, insufficient prior sampling (Hypothesis 2) is an unten-

able explanation for the erroneous support for models with less

parameter space, because (1) all of the prior models share the same

dimensionality, and (2) the same number of random samples were

drawn from each of the prior models. However, these results are

predicted by Hypothesis 1, because the marginal likelihoods will

be higher for models with narrower priors on divergence times

and fewer divergence-time dimensions (these models integrate

over less space with large prior weight and small likelihood).

Improving Inference of Shared
Divergences
In theory, the model-averaging approach of Hickerson et al. (2014)

is appealing. It leverages a great strength of Bayesian statistical

procedures, namely the ability to obtain marginalized estimates

that incorporate uncertainty in nuisance parameters. However,

when sampling over models with narrow-empirical and diffuse

uniform priors for a parameter that is expected to have a very

nonuniform likelihood density, models that exclude the true values

of the parameters we aim to estimate will often have the largest

marginal likelihoods.
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Figure 4. Histograms of the (A–D) number of true divergence times excluded from the preferred model and the (E–H) posterior

probability of excluding at least one true divergence time when the empirically informed model-averaging approach of Hickerson et al.

(2014) is applied to simulated datasets in which divergence times of 22 pairs of populations are randomly drawn from the uniform

distributions τ ∼ U(0, τmax) indicated at the top of each column of plots (divergence-time distributions are given in units of millions of

generations ago (MGA) assuming a per-site rate of 1×10−8 mutations per generation). Four of the six τmax we simulated are provided;

please see Figure S6 for a summary of all of the results.

The recommendations of Oaks et al. (2013) for mitigating the

lack of robustness of msBayes are similar to those of Hickerson

et al. (2014), but avoid the need for imposing an additional dimen-

sion of model choice and using priors that often exclude the truth.

Oaks et al. (2013) suggest that uniform priors may not be ideal

for many parameters of the msBayes model, and recommend

the use of probability distributions from the exponential family. If

we look at the prior distribution on divergence times imposed by

the model-averaging approach of Hickerson et al. (2014) we see

it is a mixture of overlapping uniforms with lower limits of zero

(Fig. S10). This looks very much like an exponential distribution,

except that in any state of the model, all the divergence times are

restricted to the hard bounds of one of the uniform distributions.

Thus, it seems more appropriate to simply place a gamma prior

(the exponential being a special case) on divergence times. This

would capture the prior uncertainty that Hickerson et al. (2014) are

suggesting for divergence times (Fig. S10) while avoiding costly

model-averaging and the constraint that all divergence times must

fall within the hard bounds of the current model state. It also

would allow an investigator to place the majority of the prior den-

sity in regions of parameter space they believe, a priori, are most

plausible, but still capture uncertainty in the tails of distributions

with low density. Indeed, Oaks (2014) has shown that the use

of gamma distributions in place of uniform priors improves the

power of the method to detect temporal variation in divergences

and reduces erroneous support for clustered divergences.

Conclusions
We demonstrate how the approximate-Bayesian model-choice

method implemented inmsBayes can spuriously support models

with less parameter space. This is caused by the use of uniform pri-

ors on divergence times. Uniform distributions necessitate the use

of priors that place high density in unlikely regions of parameter

space, less the risk of excluding the true divergence times a priori.

These broad uniform priors reduce the marginal likelihoods of

models with more divergence-time parameters. We show that the

empirical Bayesian model-averaging approach of Hickerson et al.

(2014) does not mitigate this bias, but rather causes it to manifest

by sampling predominantly from models that often exclude the

true values of the divergence times. Our results show that it is

difficult to choose an uniformly distributed prior on divergence

times that is broad enough to confidently contain the true values of

parameters while being narrow enough to avoid strongly weighted

and misleading posterior support for models with less parameter

space. More generally, it is important to carefully choose prior as-

sumptions about parameters in Bayesian model selection, because
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they can strongly influence the posterior probabilities of the mod-

els we seek to compare. No amount of computation can rescue

our inference if our prior assumptions place too much weight in

unlikely regions of parameter space such that the exact posterior

supports the wrong model of evolutionary history.

The common inference of temporally clustered historical

events (Hickerson et al. 2006; Leaché et al. 2007; Carnaval et al.

2009; Plouviez et al. 2009; Voje et al. 2009; Barber and Klicka

2010; Daza et al. 2010; Lawson 2010; Chan et al. 2011, 2014;

Huang et al. 2011; Bell et al. 2012; Stone et al. 2012), when not

accompanied with the necessary analyses to assess the robustness

and temporal resolution of such results, should be treated with

caution because msBayes has been shown to erroneously in-

fer clustered events over a range of prior conditions. Fortunately,

Oaks (2014) has shown that alternative probability distributions

allow prior uncertainty to be accommodated while avoiding ex-

cessive prior density in regions of low likelihood, which greatly

improves inference of shared divergence histories.

The work presented herein follows the principles of Open

Notebook Science. All aspects of the work were recorded in real-

time via version-control software and are publicly available at

https://github.com/joaks1/msbayes-experiments. All information

necessary to reproduce our results is provided there.

ACKNOWLEDGMENTS
We thank M. Callahan, J. Esselstyn, C. Siler, M. Holder, R. Brown, E.
McTavish, D. Money, J. Koch, A. Leaché, V. Minin, L. Harmon, and three
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Figure S1. A plot of three beta probability density functions that represent a prior (black; beta(10, 10)), posterior (blue; beta(13, 17)), and empirical
Bayes density (red; beta(16, 24)) for a dataset of 10 coin flips, three of which are successes.
Figure S2. The joint posterior of the mean (E(τ)) and dispersion index (� = V ar (τ)/E(τ)) of divergence times for 22 vertebrate taxon pairs as estimated
by Hickerson et al. (2014, see Fig. 2 B of Hickerson et al. 2014).
Figure S3. The prior predictive graphical checks recommended by Hickerson et al. (2014) for six prior models: (A) M1 (τ ∼ U (0, 0.1)), (B) M1A

(τ ∼ U (0, 0.01)), (C) M1B (τ ∼ U (0, 0.001)), (D) M3 (τ ∼ U (0, 5)), (E) M4 (τ ∼ U (0, 10)), and (F) M5 (τ ∼ U (0, 20)).
Figure S4. The accuracy of (A–F) unadjusted and (G–L) GLM-adjusted estimates of the dispersion index of divergence times (�) when the empirically
informed model-averaging approach of Hickerson et al. (2014) is applied to simulated datasets in which divergence times of 22 pairs of populations are
randomly drawn from the uniform distributions τ ∼ U (0, τmax ) indicated at the top of each column of plots (divergence-time distributions are given in
units of millions of generations ago (MGA) assuming a per-site rate of 1 × 10−8 mutations per generation).
Figure S5. The tendency of the empirically informed model-averaging approach of Hickerson et al. (2014) to (A–F) infer clustered divergences and (G–L)
support the extreme model of one divergence when applied to simulated datasets in which the divergence times of 22 pairs of populations are randomly
drawn from the uniform distributions τ ∼ U (0, τmax ) indicated at the top of each column of plots (divergence-time distributions are given in units of
millions of generations ago (MGA) assuming a per-site rate of 1 × 10−8 mutations per generation).
Figure S6. Histograms of the (A–F) number of true divergence times excluded from the preferred model and the (G–L) posterior probability of excluding
at least one true divergence time when the empirically informed model-averaging approach of Hickerson et al. (2014) is applied to simlated datasets
in which divergence times of 22 pairs of populations are randomly drawn from the uniform distributions τ ∼ U (0, τmax ) indicated at the top of each
column of plots (divergence-time distributions are given in units of millions of generations ago (MGA) assuming a per-site rate of 1 × 10−8 mutations
per generation).
Figure S7. Traces of the estimated lower and upper limits of the 95% highest posterior density (HPD) interval of � (the dispersion index of divergence
times) as 100 million prior samples are accumulated.
Figure S8. An assessment of the approximate-Bayesian model-averageing approach of Hickerson et al. (2014) under the ideal conditions when the prior
model is correct (i.e., the datasets are simulated from parameters drawn from the same prior distributions used in the analysis).
Figure S9. The summary statistics π (Tajima 1983) and πnet (Takahata and Nei 1985) as a function of divergence time between populations.
Figure S10. The prior distribution on divergence times imposed by the model-averaging prior comprised of five models with different uniform priors on
τ: M1 (τ ∼ U (0, 0.1)), M2 (τ ∼ U (0, 1)), M3 (τ ∼ U (0, 5)), M4 (τ ∼ U (0, 10)), M5 (τ ∼ U (0, 20)).
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