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Summary. Variable screening has emerged as a crucial first step in the analysis of high-throughput data, but existing
procedures can be computationally cumbersome, difficult to justify theoretically, or inapplicable to certain types of analyses.
Motivated by a high-dimensional censored quantile regression problem in multiple myeloma genomics, this article makes three
contributions. First, we establish a score test-based screening framework, which is widely applicable, extremely computationally
efficient, and relatively simple to justify. Secondly, we propose a resampling-based procedure for selecting the number of
variables to retain after screening according to the principle of reproducibility. Finally, we propose a new iterative score test
screening method which is closely related to sparse regression. In simulations we apply our methods to four different regression
models and show that they can outperform existing procedures. We also apply score test screening to an analysis of gene
expression data from multiple myeloma patients using a censored quantile regression model to identify high-risk genes.
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1. Introduction
High-dimensional datasets are now common in clinical ge-
nomics research. Though regularized estimation can consis-
tently estimate sparse regression parameters even when p > n

(Bühlmann, van de Geer, and Van de Geer, 2011), in prac-
tice these methods still perform poorly if p � n (Fan and Lv,
2008). Variable screening is crucial for quickly reducing tens
of thousands of covariates to a more manageable size. Our
interest in screening is motivated by our work with censored
quantile regression in the study of the genomics of multiple
myeloma, a blood cancer characterized by the hyperprolifer-
ation of plasma cells in the bone marrow. We are interested
in identifying genes highly associated with the 10% quantile
of the conditional survival distribution in order to better un-
derstand the biological basis of high-risk myeloma, in view of
personalized medicine.

Perhaps the most popular screening framework is marginal
screening, where each covariate is individually evaluated for
association with the outcome and those with associations
above some threshold are retained. Currently three major
classes of marginal screening methods have been proposed.
Wald screening retains covariates with the most significant
marginal parameter estimates, and has been theoretically jus-
tified for generalized linear models and the Cox model (Fan
and Lv, 2008; Fan and Song, 2010; Zhao and Li, 2012). Semi-
parametric screening assumes a functional form for the regres-
sion model but not for the probability distribution, and uses
model-free statistics to quantify the associations between co-
variates and the outcome. Such methods have been proposed
for single-index hazard models, linear transformation models,
and general single-index models (Fan and Song, 2010; Zhu
et al., 2011; Li et al., 2012). Finally, nonparametric screening
does not assume a functional form for the regression model
and instead approximates it, using for example a B-spline

basis. It retains covariates whose estimated functional rela-
tionships have the largest L2-norms. Such methods have been
studied for linear additive models and censored quantile re-
gression (Fan, Feng, and Song, 2011; He, Wang, and Hong,
2013). The distance correlation-based screening method of Li,
Zhong, and Zhu (2012) requires very few assumptions about
both the regression model and the probability model. It is
well known that marginal screening can miss covariates that
are only associated with the outcome conditional on other
covariates. To address this difficulty, iterative versions of sev-
eral of these procedures have been proposed, though without
theoretical support.

However, there are several issues that make existing
screening methods unsuitable for application to our multiple
myeloma analysis. Wald screening using censored quantile
regression estimators, such as those of Honore, Khan, and
Powell (2002), Portnoy (2003), Peng and Huang (2008), or
Wang and Wang (2009), has not been theoretically justified.
Semiparametric screening is not appropriate because the
probability model is actually critical in our case: we are
interested only in genes that affect the 0.1 quantile, whereas
semiparametric screening would identify genes that affect any
quantile of the survival distribution. There were no nonpara-
metric screening methods for censored quantile regression
until very recently, with the work of He et al. (2013), but in
practice their approach is still computationally cumbersome,
especially for resampling or cross-validation procedures where
screening must be repeated multiple times. There is also no
efficient iterative screening procedure for this model.

To address these issues, we propose in this article a
marginal score testing framework, where we use score tests
rather than Wald tests to effect variable screening. This has
several advantages. First, score screening is a general ap-
proach which can be applied to any model that can be fit using
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an estimating equation, including censored quantile regres-
sion, as well as to semi- and nonparametric regression models.
Second, theoretical justification for score test screening is
much simpler than for other screening methods and generally
requires only concentration inequalities. Third, because they
only require fitting the null model, score tests are exceedingly
computationally efficient. Finally, the score test perspective
suggests a new method for iterative screening that is easy
to implement and is closely related to sparse regression,
suggesting a possible approach to a theoretical justification.

In this article we make three contributions. First, in Sec-
tion 2 we propose our marginal score test screening procedure
and illustrate its application to several popular models. We
give theoretical justifications for these procedures in Web Ap-
pendix A. Second, in Section 3 we propose a resampling-based
method for choosing the number of covariates to retain after
screening, based on the principle of reproducible screening.
This procedure is only practical because score screening can
be quickly computed. Third, in Section 4 we propose an iter-
ative score test screening procedure based on projected sub-
gradient methods from the numerical optimization literature.
We illustrate our procedures on simulated data in Section 5,
use them in our MM analysis in Section 6, conclude with a
discussion in Section 7.

2. Score Test Screening

2.1. Method

Let Xik = (Xik1, . . . , Xikpn
)T be the vector of covariates mea-

sured at the kth observation on the ith subject, where k =
1, . . . , Ki and i = 1, . . . , n, and let β0 be a set of possibly
infinite-dimensional parameters quantifying the association of
the Xik with the outcome. For example, in linear models the
outcome is a function of XT

ikβ0 and β0 is a vector of scalar
coefficients, and in additive models the outcome is a function
of

∑pn

j=1
fj(Xikj) and β0 is the set of functions fj. We will say

that β0j = 0 implies that the jth covariate is not functionally
associated with the outcome and is thus unimportant, though
this is a slight abuse of notation, as β0j for irrelevant covari-
ates would equal the scalar zero in linear models but the zero
function in additive models. Finally, let U(β) be an estimat-
ing equation for β0, such that U(β0) → 0 in probability as
n → ∞.

Denote the set of important covariates by M = {j : β0j �=
0}. We assume that its size |M| = sn is small and fixed or
growing slowly. Our proposed marginal score test screening
proceeds as follows:

(1) Center and standardize each covariate to have mean 0
and variance 1.

(2) For each covariate j, construct an estimating equation
for β0j assuming the marginal model that all other
covariates are unrelated to the outcome. Denote this
marginal estimating equation by UM

j (βj).

(3) Retain the parameters M̂ = {j : |UM
j (0)| ≥ γn} for some

threshold γn.

Each |UM
j (0)| is the numerator of the score test statistic for

H0 : β0j = 0 under the jth marginal model and thus is a sen-
sible screening statistic. We could also screen after dividing

each UM
j (0) by an estimate of its standard deviation. However,

this would add computational complexity to our procedure,
and even without doing so we will be able to achieve good
results and give theoretical performance guarantees. In the
presence of nuisance parameters, such as intercept terms,
we propose using profiled score tests, where we first estimate
the nuisance parameters under the null model and then eval-
uate the UM

j (0) fixing the value of nuisance terms at these
estimates. To avoid theoretical difficulties we will assume
that nuisance parameters are either known, or can be well
estimated in independent datasets, so that in the screening
step they can be treated as constants.

In order for score screening to have desirable theoretical
properties, we need the sample UM

j (0) to quickly approach its
population limit. Let uM

j (βj) be the limiting marginal estimat-
ing equation, such that UM

j (βj) → uM
j (βj).

Condition 1. For κ ∈ (0, 1/2) and c2 > 0, pnP(|UM
j (0) −

uM
j (0)| ≥ c2n

−κ) → 0.

In Web Appendix A we discuss the verification of Condition 1,
which is often a simple consequence of a concentration in-
equality, and explicitly verify it for censored quantile regres-
sion. We also show that under this condition and a few other
mild assumptions:

Theorem 1. If γn = c1n
−κ/2, then P(M ⊆ M̂) → 1.

Theorem 2. If γn = c1n
−κ/2, then P{|M̂| ≤

O(σ∗
maxn

2κ)} → 1, where σ∗
max is related to the largest

singular value of the negative Jacobian of the limiting
estimating equation.

Theorem 1 shows that marginal score testing can capture
all of the important covariates with high probability. This
holds even if pn grows exponentially in n. Theorem 2 shows
that the number of selected covariates is not too large, with
high probability. For example, if σ∗

max increased only polyno-
mially in n, |M̂| would increase polynomially, and the false
positive rate would decrease quickly to zero.

2.2. Examples

When applied to the models studied thus far in the screen-
ing literature, score test screening gives procedures that are
very similar to previously proposed procedures. Through-
out this section we let Ki = 1, with each covariate vector
Xi = (Xi1, . . . , Xipn

)T. We also assume that the Xij have mean
0 and variance 1.

First consider the usual ordinary least squares model stud-
ied by Fan and Lv (2008), where Yi is a continuous outcome.
The full model is E(Yi | Xi) = XT

i β0, so the jth marginal score
equation is UM

j (βj) = n−1
∑

i
Xij(Yi − Xijβj). Score test screen-

ing then retains M̂ = {j : n−1|∑
i
XijYi| ≥ γn}, which is exactly

the correlation screening procedure originally proposed by
Fan and Lv (2008).

Next consider the Cox model. Let Ti be the survival
time, Ci the censoring time, Yi = min(Ti, Ci), δi = I(Ti ≤ Ci),
Ñi(s) = I(Ti ≤ s, δi = 1), and Ỹi(s) = I(Yi ≥ s). The marginal
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score equations are UM
j (βj) =

1

n

n∑
i=1

∫ {
Xij −

∑n

i=1
Xij exp(Xijβj)Ỹi(s)∑n

i=1
exp(Xijβj)Ỹi(s)

}
dÑi(s),

and M̂ = {j : |UM
j (0)| ≥ γn}. This is exactly the screening pro-

cedure used by Gorst-Rasmussen and Scheike (2013).
Finally consider a nonparametric model, where we assume

only that P(Yi < y | Xi) has a continuous distribution function
F0(y;Xi, β0) whose dependence on Xi is parametrized by β0.
Conditional on Xl and Xm, F0(Yl;Xl, β0) and F0(Ym;Xm, β0)
are independent and identically distributed uniform random
variables. This motivates defining U(β) =

1

n2

n∑
m=1

n∑
l=1

Xl

[
I{F0(Yl;Xl, β) < F0(Ym;Xm, β)} − 1

2

]
.

Since E{U(β0)} = 0, this is an unbiased estimating equation
for β0. Though it cannot be used to estimate β0 because the
functional form of F0 is unknown, it is still useful for con-
structing a screening procedure. The marginal score equations
are UM

j (βj) =

1

n2

n∑
m=1

n∑
l=1

Xlj

[
I{F0(Yl;Xlj, βj) < F0(Ym;Xmj, βj)} − 1

2

]
.

When βj = 0, F0(y;Xlj, 0) is a monotone function that does not
depend on Xlj, which implies that UM

j (0)= n−2
∑

lm
Xlj{I(Yl <

Ym) − 1/2} and therefore M̂ = {j : |n−2
∑

lm
XljI(Yl < Ym)| ≥

γn}. This is very similar to proposal of Zhu et al. (2011), who
suggested M̂ = [j : n−1

∑
m
{n−1

∑
l
XljI(Yl < Ym)}2 ≥ γn].

Each of these screening procedures can be implemented as
or more quickly than the corresponding Wald screening. In
addition, the nonparametric screening procedure is impossible
in the Wald framework. Each of these screening procedures
can be theoretically justified by verifying Condition 1 and
applying Theorems 1 and 2.

3. Reproducible Screening Threshold

In practice, it is unclear how best to choose the screening
threshold γn. Fan and Lv (2008) suggested retaining the top
n/ log n covariates. Zhao and Li (2012) proposed a method to
choose γn based on the desired false positive rate of the set of
retained covariates. Similarly, Zhu et al. (2011) suggested sim-
ulating auxiliary variables and setting the threshold so that
no auxiliary variables are retained, and proved that this pro-
cedure controls the false positive rate of screening. Finally,
He and Lin (2011) used the stability selection approach of
Meinshausen and Bühlmann (2010) to retain covariates that
are frequently selected when screening is performed on mul-
tiple subsamples of the data.

Though controlling the false positive rate is important, we
believe that in practice the more relevant issue is the repro-
ducibility of the screening procedure. Let M̂(j) be the top j

variables retained after screening our observed data. Suppose

we had B other independent samples of the same size, from

the same generating distribution, and let M(j)
b be the top j

variables we retain after screening the bth sample. Finally,

let O
(j)
b = |M(j)

b ∩ M̂(j)| be the size of the overlap between

the two sets. We would like to choose j such that the O
(j)
b are

large on average, so that our screening results are reproducible
across different samples. On the other hand, when j is large,

the O
(j)
b will be large even if no variables were truly associated

with the outcome, so reproducibility would be uninformative.
We propose comparing the size of the overlap to the num-

ber we would expect by chance under the null hypothesis that
none of the pn variables are associated with the outcome. The

variables in M(j)
b can then be thought of as having been cho-

sen at random. Conditional on the observed dataset, the O
(j)
b

would therefore follow a hypergeometric distribution, with

EH0(O
(j)
b ) = j2

p
, varH0(O

(j)
b ) = j2(p − j)2

p2(p − 1)
,

where the subscripts indicate that the expectation and vari-
ance are calculated under H0. We propose to retain the top j

variables such that the average of the O
(j)
b shows the greatest

deviation from EH0(O
(j)
b ), standardized by varH0(O

(j)
b ).

Because we do not have B independent datasets, we ap-

proximate the M(j)
b using bootstrap samples of our observed

data. Specifically, our threshold for reproducible screening is
calculated as follows:

(1) Choose a step size s and let J = {is : i ∈ N, 1 ≤ is ≤ pn}.
(2) For each j ∈ J, screen the observed data to obtain

M̂(j).
(3) For each j ∈ J, generate B bootstrap samples and

screen the bth sample to get M(j)
b .

(4) Let O
(j)
b = |M(j)

b ∩ M̂(j)|.
(5) Retain M̂(j∗), where

j∗ = arg max
j∈J

B−1
∑

b
O

(j)
b − EH0(O

(j)
b )

{B−1varH0(O
(j)
b )}−1/2

.

When the step size s = 1, we search for the optimal j across
all j = {1, . . . , pn}. In practice, to reduce computation time we
can search over a smaller subset by taking a larger step size.

Our method is closely related to higher criticism thresh-
olding (Donoho and Jin, 2008). There, the authors also con-
sider the null hypothesis that none of the pn variables are
associated with the outcome. They further assume that the
variables are independent. Under this null the p-values of
association are independent uniform random variables, so
the jth-most significant p-value should approximately be-
have like a normal random variable with mean j/pn and vari-
ance j/pn(1 − j/pn). Higher criticism thresholding finds the
j ∈ {1, . . . , pn} such that the jth-most significant observed p-
value shows the greatest deviation from j/pn, standardized
by the variance. It then retains the top j variables. Higher
criticism thresholding thus focuses on the significance levels
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of individual variables, while our procedure evaluates the re-
producibility of entire sets of retained covariates.

4. Iterative Score Test Screening

When the covariates are highly correlated, marginal screen-
ing may incur a large number of false positives, and may miss
covariates that are only important conditional on other co-
variates. Fan and Lv (2008) and Fan, Samworth, and Wu
(2009) therefore proposed iterative screening: an initial set of
covariates is first identified using marginal screening. Next a
multivariate regularized selection procedure is used to further
select a subset of these covariates. Finally the remaining co-
variates are again screened individually, but this time control-
ling for the covariates in the subset. All selected covariates are
subjected to multivariate selection again, and the procedure
iterates until some stopping rule is achieved.

However, this algorithm requires fitting regularized regres-
sion estimates at each step, which for complicated models can
be difficult to implement and computationally intensive. Fur-
thermore, its theoretical properties are very difficult to ana-
lyze. Zhu et al. (2011) proposed an alternative method which
at each step performs marginal screening on the projections
of each remaining covariate onto the orthogonal complement
of the columns space of the already selected covariates. This
method is akin to forward selection, so a covariate cannot be
dropped from the selected set once it has been added.

Our score-test screening perspective suggests a new ap-
proach to iterative screening:

(1) Set β(0) = 0.
(2) For k = 1, . . . , K:

(a) Let b(k) = β(k−1) − αkU(β(k−1)) for some step size
αk.

(b) Let β(k) = �R(b(k)), where �R : Rpn → R
pn is the

Euclidean projection onto the 	1-ball of radius R.

(3) Retain covariates M̂ = {j : β
(K)
j �= 0}, where β

(k)
j is the

jth component of β(k).

The intuition is that when k = 1, step 2(a) is equivalent to
calculating the marginal score statistics UM

j (0) and step 2(b)
sets all but the largest of them to zero. Thus after a single
iteration, this procedure is identical to score test screening.
When k > 1, step 2(a) controls for the covariates selected in
β(k−1) by using −αkU(β(k−1)) to update the importance of the
covariate. Step 2(b) then again selects only the top covariates.
In the ideal case where the sample size is infinite and β(k−1) =
β0, step 2(a) gives b(k) = β0 and step 2(b) selects the largest
components of β0.

Our algorithm has several advantages. First, it does not
require fitting any regularized regression estimates and is rel-
atively computationally convenient. The evaluations of the
U(β(k−1) are quick to compute, and a simple algorithm for
implementing the projection �R can be found in Daubechies,
Fornasier, and Loris (2008), with a more efficient procedure
proposed by Duchi et al. (2008). Second, covariates can be
dropped from the retained set as the iteration progresses,
which is an improvement over forward selection. Third, our
algorithm exactly corresponds to projected subgradient meth-
ods for minimizing nonsmooth functions. In fact, if U(β) is the

subdifferential of some loss function f (β), it has been shown
that

lim
k→∞

f (β(k)) = inf
‖β‖1≤R

f (β)

for certain choices of αk (Shor, Kiwiel, and Ruszcayski, 1985).
The minimization problem on the right-hand side is exactly
equivalent to the lasso (Tibshirani, 1996) with loss function
f , and this links our iterative screening algorithm to sparse
regression methods. Finally, when f is smooth, Agarwal, Ne-
gahban, and Wainwright (2012) proved that β(k) converges to
β0 under certain conditions, and if a similar result holds for
nonsmooth f , this connection may allow for a theoretical anal-
ysis of iterative score test screening.

There are three tuning parameters we must set when im-
plementing iterative screening: the radius R, the step sizes
αk, and the maximum number of iterations. We can choose R

by guessing the 	1-norm of the true β0. Since our algorithm
can be viewed as a regression estimator, we can also mini-
mize information criteria or cross-validated prediction errors.
Since iterative screening tends to be time-consuming in high-
dimensions, it is easiest to avoid cross-validation and to use a
liberal guess for ‖β0‖1. To set the step sizes, one popular rule
is to let the αk be square summable but not summable, with
αk = γ/k. To choose γ, we first note that it can be shown that

min
k=1,...,K

f (β(k)) − inf
‖β‖1≤R

f (β) ≤ D2 + G2
∑K

k=1
α2

k

2
∑K

k=1
αk

,

where D is the Euclidean distance from β(0) to a point that
minimizes f and G is an upper bound on U(β(k)) for all k

(Shor et al., 1985). When αk = γ/k, this converges to zero as
K → ∞, but fixing K we can derive that the right-hand side is
minimized at γ2 = D2(G2

∑K

k=1
α2

k )
−1 → D2(G2π2/6)−1. We

propose approximating D by R and G by ‖U(β(0))‖2 to
get step sizes αk = R

√
6/{kπ‖U(0)‖2}. Finally, the maximum

number of iterations should ideally be as large as possible,
with the speed of convergence depending on the restricted
convexity and smoothness of f (Agarwal et al., 2012). In prac-
tice we stop after either U(β(k)) ≈ 0, β(k−1) ≈ β(k), or K = 250
iterations. Early stopping can be viewed as another way of
regularizing the regression estimate β.

5. Simulations

5.1. Settings

We illustrate our marginal and iterative score test screening
on data simulated from four models, described below along
with their corresponding estimating equations. We ran 100
simulations, each with n = 400 observations and pn = 10,000
covariates. We compared our methods to the semiparamet-
ric screening of Zhu et al. (2011), and when possible we also
compared to Wald and nonparametric screening.

Example 1 (accelerated failure time model). The acceler-
ated failure time model is a useful alternative to the Cox
model for survival outcomes (Wei, 1992) and posits that
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log(Ti) = XT
i β0 + εi, where Ti are the survival times, Xi are

pn × 1 covariate vectors, and εi are independent of Xi. We
only observe follow-up times Yi = min(Ti, Ci) and censoring
indicators δi = I(Ti ≤ Ci), but the β0 can be estimated using
the estimating equation U(β) =

n−1

n∑
l=1

n∑
m=1

(Xm − Xl)I{el(β) ≤ em(β)}δi,

where ei(β) = log(Yi) − XT
i β (Tsiatis, 1996; Jin et al., 2003;

Cai, Huang, and Tian, 2009).
Score test screening retains

M̂ = {j :

∣∣∣∣∑
lm

(Xmj − Xlj)I(Yl ≤ Ym)δl

∣∣∣∣ ≥ γn},

and it is simple to verify Condition 1 for this procedure using
Berstein’s inequality for U-statistics (Hoeffding, 1963). We
implemented Wald test screening using the estimator of Jin
et al. (2003), available in the R package lss. Nonparametric
screening has not been developed for this model.

We generated the covariates from a p-dimensional multi-
variate normal with a covariance matrix whose jkth entry
equaled 0.8|j−k|. We then let β0j = 1.5 for j = 5, 10, 15, 20, 25
and j = 35, 40, 45, 50, β0j = −1.5 for j = 30, and β0j = 0 for
all other j. Under this construction the 30th covariate is
marginally unimportant. We separated the nonzero entries
of β0 so that important covariates would be fairly corre-
lated with a few unimportant covariates. Finally, we gener-
ated εi from a standard normal distribution, Ti according to
the model, and Ci from an exponential distribution with rate
parameter 0.3 to give 30% censoring.

Example 2 (linear censored quantile regression). For a
quantile τ ∈ (0, 1), censored quantile regression models posit
h(Ti) = βint(τ) + XT

i β0(τ) + ei(τ), where the intercept βint(τ)
and the coefficients β0(τ) depend on τ and ei(τ) has τth quan-
tile equal to 0 conditional on Xi. The h function is a known
monotone transformation, and here we let it be the log func-
tion. In contrast to global models such as the Cox or accel-
erated failure time model, this censored quantile regression
directly models the τ conditional quantile and makes no as-
sumptions about the other quantiles. Honore et al. (2002)
proposed the estimating equation U(β) =

1

n

∑
i

XiτI{h(Yi) > βint + XT
i β}

−1

n

∑
i

Xi(1 − τ)Ŝh(C){h(Yi)}−1I{h(Yi)

≤ βint + XT
i β}δiŜh(C)(βint + XT

i β),

where Ŝh(C) is an estimate of Sh(C)(t) = P{h(Ci) ≥ t | Xi}. This
estimate could be obtained by positing a regression model for
h(Ci) conditional on the Xi, but for theoretical and practical
simplicity we will make the common assumption that Ci is
completely independent of Ti and Xi and use the Kaplan-

Meier estimator (see, e.g., Cheng, Wei, and Ying, 1995; Uno
et al., 2011; He et al., 2013).

Score test screening retains the parameters {j : |UM
j (0)| ≥

γn}, where UM
j (0) =

1

n

∑
i

XijτI{h(Yi) > βint}

− 1

n

∑
i

Xij(1 − τ)Ŝh(C){h(Yi)}−1I{h(Yi)

≤ βint}δiŜh(C)(βint).

In Web Appendix A we verify Condition 1 for this screening
procedure. To use score test screening, we first estimated the
nuisance parameter βint under the null model in an indepen-
dently simulated dataset. We implemented Wald screening
using the estimator of Peng and Huang (2008), available in
the package quantreg. He et al. (2013) developed a nonpara-
metric screening method for quantile regression, which we also
applied.

We used the β0 and covariate structure as in Exam-
ple 1, except that we thresholded each Xij to have a mag-
nitude of at most 2. We then simulated log(Ti) = XT

i β0 +
εi{9 + 1.5(Xi,55 − Xi,5)/−1(0.25)}, where εi followed a stan-
dard normal distribution. Under this construction the covari-
ates j ∈ {5, . . . , 50} are associated with the τ = 0.5 conditional
quantile, and j ∈ {10, . . . , 55} are relevant to the τ = 0.25 con-
ditional quantile. Here the 30th covariate is again marginally
unimportant. Finally, we simulated Ci from an exponential
distribution with rate 0.15 to give 30% censoring.

Example 3 (nonlinear censored quantile regression). We
generated survival times from a nonlinear censored quan-
tile regression model adapted from Example 4 of He
et al. (2013). If g1(x) = x, g2(x) = (2x − 1)2, g3(x) =
sin(2πx)/{2 − sin(2πx)}, g4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) +
0.3 sin(2πx)2 + 0.4 cos(2πx)3 + 0.5 sin(2πx)3, we simulated

log(Ti) = 5g1(Xi,1) + 5g1(Xi,2) + 3g2(Xi,3) + 3g2(Xi,4)

+ 4g3(Xi,5) + 4g3(Xi,6) + 6g4(Xi,7) + 6g4(Xi,8) + εi,

where εi followed a standard normal distribution. We gener-
ated the Xi as in Example 1 and log(Ci) from an exponential
distribution with rate 0.15 to give 30% censoring.

Under the null hypothesis the functions gj = 0 for all j, so
the marginal estimating equations UM

j (0) evaluated at zero
are identical to those from Example 2. The theoretical jus-
tifications thus also follow from Example 2. We applied the
nonparametric screening of He et al. (2013) as well, which was
designed for this nonlinear setting.

Example 4 (Cox model with measurement error). The Cox
model is the most popular method for modeling the effect of
covariates on survival, but in many cases the covariates may
be measured with errors, where instead of observing Xi we
observe only Wi = Xi + εi. Not accounting for measurement
error can result in bias, and to address this issue Song and
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Table 1
Average runtime (seconds) of different screening methods

Example Wald Score Zhu et al. (2011) He et al. (2013)

1 16533.06 1.91 8.20
2 1206.89 2.42 7.16 123.27
3 0.21 0.88 5.41
4 2.19 5.76

Huang (2005) proposed the corrected score equation U(β) =

1

n

n∑
i=1

∫ [
Wi+D(β)−

∑n

i=1
W̃i(β, s) exp{W̃i(β, s)Tβ}Ỹi(s)∑n

i=1
exp{W̃i(β, s)Tβ}Ỹi(s)

]
dÑi(s),

where W̃i(β, s) = Wi + D(β)dÑi(s), D(β) = E{εi exp(εT
i β)}/

E{exp(εT
i β)} − E(εi), Ñi(s) = I(Ti ≤ s, δi = 1) is the observed

failure process, and Ỹi(s) = I(Yi ≥ s) is the at-risk process. The
D(β) term is unknown in general unless the distribution of εi

is known.
Under the null hypothesis of β0 = 0, D(0) = 0, so score test

screening retains

M̂ =
[
j :

∣∣∣∣∣1n
n∑

i=1

∫ {
Wij −

∑n

i=1
WijỸi(s)∑n

i=1
Ỹi(s)

}
dÑi(s)

∣∣∣∣∣ ≥ γn

]

regardless of the distribution of εi. Condition 1 can be veri-
fied using Lemmas 2 and 3 of Gorst-Rasmussen and Scheike
(2013). Wald screening is not possible without knowing the
distribution of εi, and nonparametric screening has not been
developed for this model.

We generated the covariates and set β0 as in Example 1. We
then generated the Ti from the usual Cox model with baseline
hazard function equal to 1. Next we let Wi = Xi + εi, where
the εi were independent of the Xi and normally distributed

with a compound symmetry covariance matrix with correla-
tion parameter 0.5. We generated log(Ci) from an exponential
distribution with rate parameter 0.3 to give 30% censoring.

5.2. Results

These simulations were run on machines with 2 GHz Intel
Xeon cores with 4 GB of memory per core. Table 1 reports
the average runtimes of these various screening methods and
shows that our marginal score test procedure is by far the
most computationally efficient. In Example 1 it is many orders
of magnitude faster than Wald screening, and in Examples 2
and 3 it is 60 times faster than the nonparametric method of
He et al. (2013). In each example it is also at least twice as
fast as the semiparametric estimator of Zhu et al. (2011).

Table 2 compares score test screening to existing methods
in terms of the minimum number of variables that need to be
retained in order to capture all of the important covariates.
All methods were comparable in Example 1. In Example 2,
score screening was comparable to Wald screening and out-
performed the nonparametric screening of He et al. (2013).
Semiparametric screening performed the best but was unable
to identify the fact that β0,5 was important only to the 0.5
quantile and β0,55 was important only to the 0.25 quantile.
Screening was difficult for all methods in Example 3. In Ex-
ample 4 the only two screening methods that could accommo-
date the unknown measurement error distribution were score
and semiparametric screening, which performed similarly.

Table 3 compares the performance of our threshold for re-
producible screening to the n/ log n rule of Fan and Lv (2008)
and the auxiliary variables method of Zhu et al. (2011). The
calculate our reproducible screening threshold we generated
100 bootstrap samples and searched for the optimal thresh-
old j across j = {10, 20, . . . , pn}. All methods performed well
in Example 1, giving high true positive rates along with sub-
stantial dimension reduction. In Example 2 at τ = 0.5, Wald
and score screening gave the best true positive rates, but
score screening had a higher true discovery rate and frequently

Table 2
Medians (interquartile ranges) of minimum model sizes required to retain the covariates in the second column. In Example 2,

β0,5 is relevant only when τ = 0.5 and β0,55 is relevant only when τ = 0.25. Similarly, in Example 3 β0,5 is relevant only
when τ = 0.5 and β0,25 is relevant only when τ = 0.25.

Covariates Wald Score Zhu et al. (2011) He et al. (2013)

Example 1
All 5699.5 (4231) 5500 (4091) 5645 (5022.25)

Example 2, τ = 0.5
All 6070.5 (4655.75) 6168.5 (3832.5) 5742 (4609.25) 9166 (2057)
β0,5 30.5 (62.75) 36.5 (94.25) 23 (28.25) 3451 (5856.5)
β0,55 2393 (4184.5) 1882.5 (5565.75) 547.5 (1028.25) 3708.5 (5094.5)

Example 2, τ = 0.25
All 5111 (4736.5) 5094 (4104.5) 5742 (4376) 9720 (554)
β0,5 1724.5 (4758.25) 1763 (5112.75) 23 (28.25) 5516.5 (5380.5)
β0,55 67.5 (309) 88.5 (273.5) 547.5 (1028.25) 2381 (6252.5)

Example 3, τ = 0.5
All 9620 (548.25) 9729 (337.75) 9277.5 (361.75) 9945 (243)

Example 4
All 5495.5 (4365.5) 5584.5 (4367.5) 5483 (4237.25)
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Table 3
Performance of different methods for choosing the screening threshold. Methods: RS = reproducible screening, described in
Section 3; Auxiliary = auxiliary variables method of Zhu et al. (2011). Average performance metrics (standard deviation):

TP = true positive rate, TD = true discovery rate. Median size is reported (interquartile range).

Screening Threshold TP TD Size

Example 1
Wald n/ log n 90 (0) 13.64 (0) 66 (0)
Score RS 86.2 (7.49) 22.84 (1.52) 40 (0)
Zhu et al. (2011) Auxiliary 89.4 (2.39) 21.02 (1.46) 43 (4)

Example 2, τ = 0.5
Wald n/ log n 68.9 (13.25) 10.44 (2.01) 66 (0)
Score RS 62.9 (27.35) 13.26 (13) 30 (1602.5)
Zhu et al. (2011) Auxiliary 40.7 (17.25) 31.18 (15.09) 15 (10.25)
He et al. (2013) n/ log n 3.9 (5.84) 0.59 (0.89) 66 (0)

Example 2, τ = 0.25
Wald n/ log n 62.8 (12.56) 9.52 (1.9) 66 (0)
Score RS 72 (25.74) 7.73 (12.06) 1540 (1642.5)
Zhu et al. (2011) Auxiliary 36.9 (15.87) 28.66 (15.87) 15 (10.25)
He et al. (2013) n/ log n 5.5 (8.57) 0.83 (1.3) 66 (0)

Example 3, τ = 0.5
Score RS 62.38 (15.02) 29.76 (22.56) 10 (130)
Zhu et al. (2011) Auxiliary 16.38 (17.65) 49.49 (44.36) 2 (2)
He et al. (2013) n/ log n 56.25 (22.86) 6.82 (2.77) 66 (0)

Example 4
Score RS 68 (15.04) 26.26 (6.76) 30 (10)
Zhu et al. (2011) Auxiliary 72.4 (14.36) 25.15 (4.23) 30.5 (12)

retained fewer covariates. On the other hand, at τ = 0.25 the
final model sizes after score screening were close to 2000. How-
ever, even retaining 2000 covariates still represents an 80% re-
duction in dimension. Screening procedures are designed to be
followed by a second sparse regression step like lasso, and 2000
covariates is very manageable by these follow-up procedures.
In Examples 3 and 4, score screening was able to retain very
few covariates while still giving very high true positive rates.

Table 4 reports the performance of our iterative screening
procedure from Section 4, which we applied to the parametric
models in Examples 1 and 2 with R = 20. In those models the
30th covariate had a nonzero coefficient in the true model but

Table 4
Performance of iterative screening. The second column

reports the average percentage of times (SD) the marginally
unimportant variables (see Section 5.1) were capture by

iterative screening. Average performance metrics (standard
deviation): TP = true positive rate, TD = true discovery

rate. Median size is reported (interquartile range).

Hidden TP TD Size

Example 1
91 (28.76) 95.9 (6.21) 1.66 (0.42) 652 (259.5)

Example 2, τ = 0.5
1 (10) 79.8 (11.97) 2.71 (0.73) 282 (44.25)

Example 2, τ = 0.25
1 (10) 71.7 (10.83) 3.29 (0.93) 210 (64.5)

was marginally unassociated with the outcome. In Example 1
iterative screening was able to capture that covariate in nearly
all of the simulations. In Example 2, iterative screening was
still to capture the variable after retaining only around 200-
300 variables, as opposed to marginal score screening, which
had to retain thousands of variables. However, the hidden co-
variate was only captured in very few simulations, indicating
that variable screening for Example 2 is a difficult problem.

6. Data Analysis

6.1. Analysis Methods

We were interested in identifying genes highly associated with
the 10% conditional quantile of the survival distribution of
MM patients, because these genes are likely to important in
high-risk MM. Previous studies have searched for genes asso-
ciated with patient survival (Shaughnessy et al., 2007; Decaux
et al., 2008), but their analyses did not recognize that some
genes may only affect certain quantiles of the conditional sur-
vival distribution.

We used gene expression and survival outcome data from
newly diagnosed multiple myeloma patients who were re-
cruited into clinical trials UARK 98-026 and UARK 2003-33,
which studied the total therapy II (TT2) and total therapy
III (TT3) treatment regimes, respectively. These data are de-
scribed in Zhan et al. (2006) and Shaughnessy et al. (2007),
and can be obtained through the MicroArray Quality Con-
trol Consortium II study (Shi et al., 2010), available on GEO
(GSE24080). Gene expression profiling was performed using
Affymetrix U133Plus2.0 microarrays, and we averaged the ex-
pression levels of probesets corresponding to the same gene,
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Table 5
Final regression models for the 0.1 conditional quantile of MM patient survival. Validation metrics: PE = prediction error

(1); t-statistic = t-statistic of the regression of the true 0.1 quantile on the predicted quantile, using Peng and Huang (2008).

Validation Wald Zhu et al. (2011) He et al. (2013) Iterative Score

CDK13 ADAR ATP6 hnRNPK hnRNPK
MAPKAP1 ATP6V0E1 CARD8 hnRNPKP4 hnRNPK4
PEX11B DPY30 CTCF MATR3 MATR3
VCP HNRNPU DDX3X OAZ1 OAZ1

NOLC1 RAB10 RAP10
RPS3A RPS3A
SPCS1 SPCS1
SPCS2 SPCS2
SUMO2 SUMO2
TMBIM4 TMBIM4
UBC UBC

SERP1
PE 0.660 1.158 0.430 0.079 0.083
t-Statistic −1.133 −0.515 1.319 1.690 1.731

resulting in 33,326 covariates. We used the TT2 arm as a
training set, giving us 340 subjects and 126 observed deaths,
we validated the results on the TT3 arm.

To identify these high-risk genes we used the censored quan-
tile regression of Honore et al. (2002), described earlier in
Example 2 in Section 5.1, with the transformation function
h = log. First, in the screening step we compared Wald screen-
ing with the estimator of Peng and Huang (2008), marginal
score screening, the semiparametric method of Zhu et al.
(2011), the nonparametric method of He et al. (2013), and
iterative score screening. In the score screening procedures
we estimated the nuisance intercept parameter from another
MM dataset collected by Avet-Loiseau et al. (2009). For iter-
ative score screening we set R = 20.

Second, to set a screening threshold we retained the top
n/ log n covariates from Wald and nonparametric screening,
used our reproducible screening threshold for score screening,
and used the auxiliary variables procedure of Zhu et al. (2011)
for semiparametric screening. For reproducible screening we
generated 100 bootstrap samples and searched for the optimal
threshold j across j = {10, 20, . . . , pn}, as in the simulations.

Finally, we used the screened covariates to estimate
regression models. To our knowledge there do not exist any
computationally convenient procedures for censored quantile
regression for arbitrary quantiles that can be computed
in high-dimensions, so we used our projected subgradient
method from Section 4 to serve as a regression estimator.
We tuned the procedure by selecting the value of R that
minimized an approximate Bayesian Information Criterion,
which we calculated as ‖nU(β̂R)‖2

2 + ‖β̂R‖0 log n with U

the estimating equation of Honore et al. (2002) and β̂R the
regression estimate for a given value of R.

6.2. Results

Wald screening required 930 seconds, the nonparametric
screening of He et al. (2013) required 240 seconds, itera-
tive score screening required 84 seconds, the semiparamet-
ric screening of Zhu et al. (2011) required 44 seconds, and
marginal score screening took only 5 seconds. Because of the

computational efficiency of score screening, calculating the
reproducible screening threshold required only 934 seconds,
which was still just as fast as Wald screening.

Table 5 reports the genes selected in the final censored
quantile regression models. Iterative and reproducible score
screening behaved very similarly, giving nearly identical final
models. However, they shared no genes in common with the
results of the other screening methods. One possible reason
is that the correlations between the selected genes were not
low. For example, among the top 100 genes selected by Wald
screening, 20% of the pairwise correlations were above 0.25
and the largest reached 0.73, and for score screening 20% of
the correlations were at least 0.58 and reached 0.99. In other
words, the different screening methods most likely selected
blocks of correlated covariates together, and the same covari-
ates could be ranked very differently by different methods if
they were in different blocks. This highlights the importance
of reproducibility.

To choose between the four models, we used the fitted re-
gression models to predict the 0.1 conditional quantiles in
the TT3 arm and calculated validation metrics in two ways.
First, to estimate the quantile prediction error we used the
loss function

n−1
∑

i

δi

Ŝh(C){h(Yi)}
{τ − I(Yi − Ŷi < 0)}Yi, (1)

where δi is the censoring indicator, Yi is the observed follow-
up time, τ = 0.1 is the target quantile, and Ŷi is the predicted
τ conditional quantile. A similar loss function was described
by Honore et al. (2002). Second, we used the censored quan-
tile regression approach of Peng and Huang (2008) to esti-
mate the associations between the predicted quantiles and
the true 0.1 quantile. We report the t-statistics of association.
Table 5 shows that the models selected after score screening
performed the best under both validation metrics, followed by
semiparametric screening. In contrast, the quantiles predicted
after Wald and semiparametric screening were actually nega-
tively associated with the true quantile. This suggests that the
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true relationship between the genes and the quantile may be
significantly nonlinear. This nonlinearity can still be detected
by the score screening methods.

7. Discussion

Motivated by our analysis of genomic factors influencing the
high risk multiple myeloma patients, we introduced a new
framework for variable screening based on score tests. Score
screening is widely applicable to parametric, semiparamet-
ric, and nonparametric models, relatively easy to theoretically
justify, and computationally efficient. Using score test screen-
ing in our MM analysis resulted in a predictive model for the
conditional 10% quantile (high risk group) which was more
accurate the models obtained using other screening methods.

We introduced a method for selecting the number of covari-
ates to retain based on the principle of reproducible screen-
ing. It would be interesting to investigate the sure screening
and false positive control properties of this procedure, in the
context of Theorems 1 and 2. Our score testing framework
also suggested a new approach to iterative screening based on
projected subgradient methods, which can be applied even to
nonsmooth estimating equations. It is related to sparse re-
gression techniques and it is possible that this connection can
lead to better a theoretical understanding of iterative screen-
ing, which is still elusive.

8. Supplementary Materials

Web Appendix A, which contains the theoretical justification
of score screening and is referenced in Section 2, is available
with this paper at the Biometrics website on Wiley Online
Library. We also provide a zip file including an R implemen-
tation of our screening methods, a simulation example, and
instructions.
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