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Patterned turbulence and relaminarization in MHD pipe and duct flows
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We present results of a numerical analysis of relaminarization processes in MHD duct and pipe flows. It is motivated by

Julius Hartmann’s classical experiments on flows of mercury in pipes and ducts under the influence of magnetic fields. The

simulations, conducted both in periodic and non-periodic settings, provide a first detailed view of flow structures that have

not been experimentally accessible. The main novelty of the analysis is very long (tens to hundreds of hydraulic diameters)

computational domains that allows to discover new flow regimes with localized turbulent spots near the side walls parallel to

the magnetic field. The computed critical parameters for transition as well as the friction coefficients are in good agreement

with Hartmann’s data.
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The processes of flow re-laminarization in tubes (i.e. pipes and ducts) were the first MHD phenomena studied experi-

mentally [1]. The experiments were performed for flows in pipes and ducts of different aspect ratios, subjected to a uniform

transverse magnetic field. The flows had moderate values of the Reynolds number Re = 2000 ... 5000 and low-to-moderate

magnetic fields B. Laminarization was detected by measuring the pressure drop in the test section and comparing these val-

ues with theoretical ones for laminar MHD channel flow. It was found that complete flow laminarization occurs in a range of

R ≈ 200...220, where R is the “local” Reynolds number based on the Hartmann layer thickness δHa.

Since then the transition in MHD pipe and duct flows is usually associated with certain, “critical”, value of the Reynolds

number R. This particular role of R as a control parameter has been confirmed in various experimental studies. On the other

hand, theoretical works have not been able to find a plausible explanation of transition in the MHD tube flows so far. One

reason for this is the non-trivial structure of the laminar velocity distribution in tube flows, which is characterized by a flat core

and thin electromagnetic boundary layers: (i) the Hartmann layers at the walls perpendicular to the magnetic field and (ii) the

side layers, called either Shercliff layers (in rectangular ducts) or Roberts layers (in circular pipes), on the walls parallel to the

field. These layers have different nature and, correspondingly, different thickness. For laminar duct flow the Hartmann layers

have a typical thickness of δHa ∼ 1/B, whereas the side layers scale as δSh ∼ 1/B1/2 and are thicker than the Hartmann

layers. Thus the shear, although of different strength, is concentrated in Hartmann and side layers, so that both of these

two regions may support instabilities leading to turbulence. The role of R as decisive parameter for transition points to the

Hartmann layers as origin of transition. This point may receive much favour, as the shear and velocity gradients are stronger

in the Hartmann layers. However, there are indications that instability first develops in the side layers, e.g. by an analysis of

optimal linear perturbations in MHD duct flow [2]. In this work we summarize the results of our prior studies [3,4], where the

experiments of Hartmann & Lazarus [1] on flow relaminarization have been reproduced numerically using fully non-linear

DNS. We also report first results on extending this analysis towards higher Reynolds numbers and stronger fields.

We consider the flow of an incompressible, electrically conducting fluid (e.g. liquid metals) in rectangular duct or circular

pipe subjected to a uniform magnetic field B. MHD effects are considered in the limit of small magnetic Reynolds number,

i.e. the quasi-static approximation [5] is applied. The governing non-dimensional equations and boundary conditions are

given in [3]. The non-dimensional parameters are the Reynolds number Re ≡ Uqa/ν and the magnetic interaction parameter

N ≡ Ha2/Re, where Ha ≡ Ba (σ/ρν)
1/2

is the Hartmann number. Here Uq is the mean flux velocity, a is the half-diameter

(pipe) or half-height (duct) and σ is the electrical conductivity. We also notice that the “local” Reynolds number R, mentioned

above, can be defined as R = UqδHa/ν = Re/Ha. The governing equations are solved numerically by our in-house DNS

solvers, implemented for rectangular (duct) and cylinder (pipe) geometries. The solvers are based on finite-difference method

described in [6]. The spatial discretization of 2nd order is on a non-uniform structured grid formed along the lines of the

Cartesian (duct) or cylindrical (pipe) coordinate system. The time integration uses projection-correction procedure to satisfy

incompressibility. The computational grid can be clustered in the wall-normal (or radial) directions to resolve thin MHD

boundary layers.

The simulations have been conducted at Re = 3000 and 5000 and Ha = 0...30 for two different settings: flows periodic

in the streamwise x-direction and flows with non-periodic inlet/exit conditions. Periodic conditions correspond to a fully

developed flow under perfectly uniform magnetic field, whereas the non-periodic formulation is more realistic and allows

us to mimic the experimental flow conditions with entry and exit effects at the test section. Turbulent inflow conditions for

non-periodic simulation are supplied from a periodic DNS running at the same Re and grid spacing. To capture the evolution

of turbulent spots, we have used long computational domains, up to Lx = 128π in terms of the hydraulic radius a.
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604 Section 9: Laminar flows and transition

We start our discussion with comparison of integral quantities. The only available parameter from the H. & L. study [1]

was the pressure drop between two manometers, which can be recalculated in the friction coefficient f = 2a dp/dx/(ρU2).
Fig. 1 shows that the friction coefficient f at Re = 3000 agrees well between experiments and both periodic and non-

periodic simulations. Initially, the friction is reduced because of the magnetic damping of turbulence, then, for Ha > 15 it

increases linearly with Ha. At this point the laminar Hartmann layers provide the dominant contribution to the total friction.

Relaminarization occurs close to the minimum of the friction coefficient, which corresponds to a parameter R ≈ 200.
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Fig. 1: Friction coefficient vs. Hartmann number Ha shown

for the results of simulations and experimental data [1].

Another aspect of our study is the appearence of patterned tur-

bulence in MHD tubes. The phenomenon of patterned turbulence,

i.e. coexistence of laminar and turbulent zones, is known for hy-

drodynamic wall-bounded shear flows (such as puffs and slugs in

pipe flow [7, 8]), however, it has not been clearly demonstrated for

MHD tube flows. In the present study the patterned turbulence has

been identified for MHD pipes and ducts in both periodic and non-

periodic settings. In all our simulations these regimes appear in the

transitional range of Ha numbers, corresponding to R ≈ 220...200,

i.e. at the edge of laminarization as suggested by the dependence

of friction coefficient f on Ha.

The regimes with patterned turbulence are illustrated in figure 2 for non-periodic flow simulations at Re = 3000 and

Ha = 13, 14, 15. Here, the core region and Hartmann boundary layers remain laminar, whereas the turbulent spots, or puffs,

are tightly localized in the sidewall layers. The puffs tend to form staggered patterns, as seen at Ha = 13, although the specific

arrangement is largely influenced by either initial or inlet flow conditions. At Ha = 14 the pattern with visually weaker spots

still develops. Finally, at Ha = 15 the flow becomes essentially laminar at x ≈ 100, although sporadic events can appear, but

these spots die out quickly. For stable puff-patterns one can identify a characteristic length of a single spot Lpuff ≈ 130−150
in terms of the sidewall layer thickness δSh. We have also analyzed the temporal evolution of the puffs and identified multiple

events as, e.g., merging and splitting of two or more neighboring puffs or two opposite-side spots forming a ‘locked’ state and

traveling together.

Fig. 2: Turbulent kinetic energy in the (x, y)-plane at z = 0 (the mid-

plane perpendicular to the magnetic field) at Re = 3000 and Ha =
13, 14, 15 (from top to bottom). The results correspond to the case of

stepwise magnetic field beginning at x ≈ 46.

In this study numerical simulations of MHD duct and pipe

flows have been performed to reproduce the classical experi-

ments by Hartmann & Lazarus [1]. One distinct features that

we have identified is the co-existence of laminar and turbu-

lent regions at the edge of laminarization. The peculiarity of

the MHD flows is the localization of these turbulent zones

in the sidewall layers. The exact re-laminarization threshold

cannot be identified in a clear-cut way, because the specific

flow state – either fluctuating or fully laminar – strongly de-

pends on the initial and/or inlet flow conditions. Instead, one

can talk about a range of Reynolds numbers R = Re/Ha
where the change of flow regime is expected. In our simulations this transitional range is found at R ∼ 200...220, which

is in very good agreement with experiments. The friction coefficient f also agrees with the experiments. It is, however,

important to notice that parameter f provides no indication of the existence of turbulent zones as their impact on the total

friction is very low. This conclusion is particularly well supported by our preliminary simulations performed at Re = 105

and Ha = 450...500 [9]. In this “high-parameter” range the feature of localized turbulent spots is perfectly revealed too. The

puffs are stretched along the magnetic field direction and resemble objects known as “turbulent bands”. They become very

thin and occupy the entire sidewall layer. We conclude that further work is necessary to resolve the details of transition in the

side layers, especially at strong fields, and to explain why the parameter R determines the transition in a broad range of Re and

Ha numbers.
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