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In this online supplement, we provide the missing proofs in the paper. We first prove Lemmas

2 and 3. For easy reference, we state the results again.

Lemma 2. Suppose φi(x, θ) : < × [0, 1] → < is submodular in (x, θ), i = 1, 2; φ1(x, θ) is concave

in x; and φ1(x, θ)− φ2(x, θ) is decreasing in x, then

ψ(x, θ) := max
y≥x
{θφ1(y, θ) + (1− θ)φ2(x, θ)}

is also submodular in (x, θ).

Proof. We prove the submodularity of ψ(x, θ) by definition, i.e., for any x1 < x2 and 0 ≤ θ1 <

θ2 ≤ 1, verify that

ψ(x1, θ1) + ψ(x2, θ2) ≤ ψ(x1, θ2) + ψ(x2, θ1). (23)

Denote x∗(θ) = arg maxx φ1(x, θ). Then, ψ(x, θ) = θφ1(max{x, x∗(θ)}, θ) + (1 − θ)φ2(x, θ).

Since φ1(x, θ) is a submodular function, x∗(θ) is decreasing in θ. Thus, x∗(θ1) ≥ x∗(θ2). In what

follows, we divide the analysis into three cases and separately verify (23) holds under all cases.

Case 1. x1 ≥ x∗(θ1). In this case, x2 ≥ x1 ≥ x∗(θ1) ≥ x∗(θ2). Then, ψ(xi, θj) = θjφ1(xi, θj) +

(1− θj)φ2(xi, θj), i, j = 1, 2. Then,

ψ(x2, θ2)− ψ(x1, θ2) = θ2(φ1(x2, θ2)− φ1(x1, θ2)) + (1− θ2)(φ2(x2, θ2)− φ2(x1, θ2))

≤ θ2(φ1(x2, θ1)− φ1(x1, θ1)) + (1− θ2)(φ2(x2, θ1)− φ2(x1, θ1))

≤ θ1(φ1(x2, θ1)− φ1(x1, θ1)) + (1− θ1)(φ2(x2, θ1)− φ2(x1, θ1))

= ψ(x2, θ1)− ψ(x1, θ1),

where the first inequality is from the submodularity of φ1(x, θ) and φ2(x, θ), and the second one

holds since θ1 < θ2 and φ1(x, θ)− φ2(x, θ) is decreasing in x. Thus, (23) holds in Case 1.
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Case 2. x2 ≤ x∗(θ1). In this case, x∗(θ1) ≥ x2 > x1. Then, ψ(xi, θ1) = θ1φ1(x∗(θ1), θ1) + (1 −

θ1)φ2(xi, θ1), i = 1, 2. Since φ1(x, θ) is concave in x and φ1(x, θ1)− φ2(x, θ1) is decreasing in x, we

have φ1(x2, θ1) ≥ φ1(x1, θ1) and φ2(x2, θ1) ≥ φ2(x1, θ1). Then,

ψ(x2, θ2)− ψ(x1, θ2) = (1− θ2)(φ2(x2, θ2)− φ2(x1, θ2)) + θ2

(
max
y≥x2

φ1(y, θ2)−max
y≥x1

φ1(y, θ2)
)

≤ (1− θ2)(φ2(x2, θ2)− φ2(x1, θ2))

≤ (1− θ1)(φ2(x2, θ1)− φ2(x1, θ1))

= ψ(x2, θ1)− ψ(x1, θ1),

where the first inequality holds since maxy≥x φ1(y, θ2) is decreasing in x and the second inequality

holds since when φ2(x2, θ2) ≤ φ2(x1, θ2), (1−θ2)(φ2(x2, θ2)−φ2(x1, θ2)) ≤ 0 ≤ (1−θ1)(φ2(x2, θ1)−

φ2(x1, θ1)); and when φ2(x2, θ2) > φ2(x1, θ2), (1−θ2)(φ2(x2, θ2)−φ2(x1, θ2)) ≤ (1−θ2)(φ2(x2, θ1)−

φ2(x1, θ1)) ≤ (1 − θ1)(φ2(x2, θ1) − φ2(x1, θ1)) due to the submodularity of φ2(x, θ) and 0 ≤ θ1 <

θ2 ≤ 1. Thus, (23) holds in Case 2.

Case 3. x1 < x∗(θ1) < x2. In this case,

ψ(x2, θ2)− ψ(x2, θ1) ≤ ψ(x∗(θ1), θ2)− ψ(x∗(θ1), θ1) ≤ ψ(x1, θ2)− ψ(x1, θ1),

where the first inequality follows since (23) holds under Case 1 and the second inequality follows

since (23) holds under Case 2. Thus, (23) holds in Case 3.

In summary, since we have shown (23) holds under all possible cases, ψ(x, θ) is submodular in

(x, θ). The proof is complete. �

Lemma 3. Suppose φ1(x, q) : <×<+ → < is concave and submodular in (x, q) and φ2(x) : < → <

is concave in x. In addition, suppose max(x,q)∈<×<+ φ1(x, q) = maxx∈< φ1(x, 0) and φ1(x, 0)−φ2(x)

is increasing in x. Then,

ψ(x) := max
q≥0

φ1(x, q)−max
q≥0

φ2(x+ q)

is also increasing in x.

Proof. Define x∗1 = arg maxx∈< φ1(x, 0) and x∗2 = arg maxx∈< φ2(x). Then, it follows that

φ1(x∗1, 0)− φ2(x∗1) ≥ φ1(x∗2, 0)− φ2(x∗2).

Since φ1(x, 0)− φ2(x) is increasing in x, we have x∗1 ≥ x∗2.
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We first prove ψ(x) is increasing in x when x ≤ x∗1. By the definition of x∗1 and the assumption

that maxx∈< φ1(x, 0) = max(x,q)∈<×<+ φ1(x, q), we have

max
x∈<

{
max
q≥0

φ1(x, q)
}

= max
x∈<

φ1(x, 0) = φ1(x∗1, 0) ≤ max
q≥0

φ1(x∗1, q). (24)

Thus, maxq≥0 φ1(x, q) achieves its maximization when x = x∗1. Since φ1(x, q) is concave in (x, q),

maxq≥0 φ1(x, q) is also concave in x, and thus, it is increasing in x when x ≤ x∗1. Since maxq≥0 φ2(x+

q) = maxy≥x φ2(y) is decreasing in x, it follows that ψ(x) is increasing in x when x ≤ x∗1.

We next prove ψ(x) is also increasing in x when x ≥ x∗1. Define q∗1(x) = arg maxq≥0 φ1(x, q).

Since φ1(x, q) is submodular in (x, q), then q∗1(x) is decreasing in x. Note from (24) that φ1(x∗1, 0) =

maxq≥0 φ1(x∗1, q). Then, q∗1(x∗1) = 0, and thus, q∗1(x) = 0 for x ≥ x∗1. Since φ2(x) is concave in x

and by the definition of x∗2, maxq≥0 φ2(x+ q) = φ2(max{x, x∗2}). Thus, when x ≥ x∗1,

ψ(x) = φ1(x, q∗1(x))− φ2(max{x∗2, x}) = φ1(x, 0)− φ2(x).

As φ1(x, 0)− φ2(x) is increasing in x, it follows that ψ(x) is increasing in x when x ≥ x∗1. �

Proof of Theorem 2

We prove (a) by induction on t; and (b) will be proved simultaneously. Since VT+1(x, i, j) = 0, (a)

is obviously true for t = T + 1. Now assume inductively that (a) holds for t+ 1 and we shall prove

the theorem holds for t. In what follows, we will only prove the theorem holds for t when k = 1,

and a similar approach can prove the results when k = 2.

We first prove Vt(x, i, j| c1) is decreasing in c1. Since Vt+1(x, i, j| c1) is decreasing in c1 by the

inductive assumption, it follows from (9) and (10) that Lt(x, i, j| c1) and Wt(x, y, i, j| c1) + c1x are

both decreasing in c1. Thus, for any q1 ≥ 0, one can easily verify that the maximand in (15) is

decreasing in c1, and consequently, Vt(x, i, j| c1) is decreasing in c1.

We next prove Vt(x, i, j| c1) is supermodular in (x, c1) and part (b) when k = 1. By replacing

q1, q2, and d with q̃1 = −q1, q̃2 = x + q2 − d and d̃ = x − d, the optimality equation (15) can be

rewritten as

Vt(x, i, j| c1) = max
q̃1≤0,q̃2≥d̃
dt≤x−d̃≤d̄t

{
Rt(x− d̃) + γ1,i[c1d̃+Wt(d̃− q̃1, q̃2 − q̃1, 1, j| c1)]

+(1− γ1,i)[c1d̃+Wt(d̃, q̃2, 0, j| c1)]
}
. (25)
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By the convexity of Gt(·) and the inductively assumption on Vt+1(x, i, j| c1), it can be easily ver-

ified from (9) and Proposition 1 that Lt(x, i, j| c1) is concave in x and supermodular in (x, c1) while

Lt(x, i, j| c1)− c1x is submodular in (x, c1). Thus, it follows from (10) that c1d̃+Wt(d̃, q̃2, 0, j| c1)

is supermodular in (d̃, q̃2, c1). In addition, from (10), we have

c1d̃+Wt(d̃− q̃1, q̃2 − q̃1, 1, j| c1)

=αc2(d̃− q̃1) + γ2,j [c1q̃1 + Lt(q̃2 − q̃1, i, 1| c1)] + (1− γ2,j)[c1q̃1 + Lt(d̃− q̃1, i, 0| c1)].

Then, it can be easily verified from the above expression that c1d̃ + Wt(d̃ − q̃1, q̃2 − q̃1, 1, j| c1)

is supermodular in (d̃, q̃2, q̃2, c1). Since Rt(x − d̃) is supermodular in (x, d̃) from the concavity

of Rt(·), the maximand in (25) is a supermodular function in (x, q̃1, q̃2, d̃, c1). Notice that the

constraint in (25) is a lattice. Thus, by applying Lemma 1, Vt(x, i, j| c1) is supermodular in (x, c1),

and q̃∗1(x, i, j| c1), q̃∗2(x, i, j| c1) and d̃∗(x, i, j| c1) are all increasing in c1.

Note that q̃∗1(x, i, j| c1) = −q∗t,1(x, i, j| c1), q̃∗2(x, i, j| c1) = x+ q∗t,2(x, i, j| c1)− d∗t (x, i, j| c1) and

d̃∗(x, i, j| c1) = x − d∗t (x, i, j| c1). It follows that q∗t,1(x, i, j| c1) and d∗t (x, i, j| c1) are decreasing

in c1 while q∗t,2(x, i, j| c1) − d∗t (x, i, j| c1) is increasing in c1. Since pt(·) is a decreasing function,

p∗t (x, i, j| c1) = pt(d
∗
t (x, i, j| c1)) is increasing in c1. In addition, since q∗t,1(x, i, j| c1) is decreasing

in x from Theorem 1, ξ1t(i, j| c1) = sup{x| q∗t,1(x, i, j| c1) > 0} is also decreasing in c1. Thus, (b)

holds for t when k = 1.

We finally prove that Vt(x, i, j| c1)− c1x is submodular in (x, c1). By replacing q1 and q2 with

q̂1 = x+ q1 and q̂2 = d− q2, (15) can be rewritten as

Vt(x, i, j| − c1) + c1x = max
q̂1≥x,q̂2≤d
dt≤d≤d̄t

{
Rt(d)+γ1,i [c1d+Wt(q̂1 − d, q̂1 − q̂2, 1, j| − c1)]

+ (1− γ1,i) [c1d+Wt(x− d, x− q̂2, 0, j| − c1)]
}
. (26)

From (10), we have

c1d+Wt(q̂1 − d, q̂1 − q̂2, 1, j| − c1)

=αc2(q̂1 − d) + γ2,j [c1q̂1 + Lt(q̂1 − q̂2, 1, 1| − c1)] + (1− γ2,j) [c1q̂1 + Lt(q̂1 − d, 1, 0| − c1)] .

Since Lt(x, i, j| − c1) is concave in x and Lt(−x, i, j| − c1) and Lt(x, i, j| − c1) + c1x are both

supermodular in (x, c1), one can easily verify from the above expression that c1d+Wt(q̂1 − d, q̂1 −

q̂2, 1, j| − c1) is supermodular in (q̂1, q̂2, d, c1). Similarly, c1d+Wt(x− d, x− q̂2, 0, j| − c1) is super-

modular in (x, q̂2, d, c1). Thus, the maximand in (26) is a supermodular function in (x, q̂1, q̂2, d, c1).

36



Since the constraint in (26) is a lattice, by applying Lemma 1, Vt(x, i, j| −c1)+c1x is supermodular

in (x, c1) and thus Vt(x, i, j| c1) − c1x is submodular in (x, c1). In summary, (a) holds for t when

k = 1. The proof is complete. �

Proof of Proposition 2

Since Theorem 2 holds for the case when supplier 1 is perfectly reliable, it follows that Vt+1(x, j| ck)

is supermodular in (x, ck) while Vt+1(x, j| ck)− ckx is submodular in (x, ck), k = 1, 2. Then, from

(4), ft(z, j| c1, c2) is supermodular in (x, c1) but submodular in (x, c2). Therefore, by the definition

of z∗t,2 and by applying Lemma 1, we have z∗t,2(c1, c2) is increasing in c1 while decreasing in c2.

We next prove the monotonicity results on z∗t,1(j| c1, c2). Based on Lemma 1, it suffices to prove

that gt(z, j| c1, c2) is submodular in (x, c1) while supermodular in (x, c2). We first prove gt(z, j|c1)

is submodular in (z, c1). Notice that (5) can be rewritten as

gt(z, j|c1) = αc2z −Gt(z) + γj max
q̃≤0
{ft(z − q̃, 1|c1)− c1z}+ (1− γj) (f(z, 0|c1)− c1z) . (27)

Since Vt+1(x, j|c1) is supermodular in (x, c1) and Vt+1(x, j|c1) − c1x is submodular in (x, c1),

it follows from (4) that ft(z, j|c1) is supermodular in (z, c1) and ft(z, j|c1)− c1z is submodular in

(z, c1). Thus, ft(z−q̃, 1|−c1)+c1z is supermodular in (z, q̃, c1). Since the constraint {(z, q̃, c1)|q̃ ≤ 0}

is a lattice, by applying Lemma 1, maxq̃≤0{ft(z − q̃, 1| − c1) + c1z} is supermodular in (z, c1) and

thus maxq̃≤0{ft(z − q̃, 1|c1)− c1z} is submodular in (z, c1). Since 0 ≤ γ2,j ≤ 1 and f(z, 0|c1)− c1z

is submodular in (z, c1), it follows from (27) that gt(z, j|c1) is submodular in (z, c1).

We next prove gt(z, j|c2) is supermodular in (z, c2). Note that ft(z, 0| c2) +αc2z = αEVt+1(z−

εt, j| c2) is supermodular in (z, c2). Thus, from (5), it remains to prove

max
z̄≥z

ft(z̄, 1| c2) + αc2z = max
q̃≤0
{ft(z − q̃, 1| c2) + αc2z}

is also supermodular in (z, c2). From the concavity of ft and Theorem 2, it is easy to verify that

ft(z− q̃, 1| c2) +αc2z is supermodular in (z, q̃, c2). Since the constraint set is a lattice, by applying

Lemma 1 we obtain the desired result.

We finally prove q∗t,1(x, j| c2) is increasing in c2. To this end, we rewrite (7) as

q∗t,1(x, j| c2) = max{d̂t + z∗t,1(j| c2)− x, 0}.

Since z∗t,1(j| c2) is increasing in c2, it follows from the above equation that q∗t,1(x, j| c2) is also

increasing in c2. �
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Proof of Theorem 5

We prove (a) by induction; and (b) will be proved simultaneously. Since VT+1(x, i, j) = VT+1(x, j) =

0, (a) is trivially true for t = T + 1. Now assume inductively that (a) holds for t+ 1. To complete

the proof, we shall show that the theorem holds for t.

For convenience, we define

φt(x, q1, i, j) = max
q2≥0

{
γ1,iWt(x+ q1, x+ q1 + q2, 1, j) + (1− γ1,i)Wt(x, x+ q2, 0, j)

}
.

Then, the optimality equations (6) and (15) can be rewritten as

Vt(x, j) = max
dt≤d≤d̄t

{
Rt(d) + c1(x− d) + max

q1≥0
gt(x+ q1 − d, j)

}
; (28)

Vt(x, i, j) = max
dt≤d≤d̄t

{
Rt(d) + c1(x− d) + max

q1≥0
φt(x− d, q1, i, j)

}
. (29)

We first prove Vt(x, i, j) ≤ Vt(x, j). From (28) and (29), it suffices to prove maxq1≥0 φt(x, q1, i, j) ≤

maxq1≥0 gt(x+ q1, j), or equivalently,

max
q2≥0

{
γ1,i max

q1≥0
Wt(x+ q1, x+ q1 + q2, 1, j) + (1− γ1,i)Wt(x, x+ q2, 0, j)

}
≤max

q2≥0

{
max
q1≥0
{−(c1 − αc2)(x+ q1)−Gt(x+ q1) + γ2,jft(x+ q1 + q2, 1) + (1− γ2,j)ft(x+ q1, 0)}

}
.

Note that maxq1≥0Wt(x+q1, x+q1+q2, 1, j) ≥Wt(x, x+q2, 1, j) ≥Wt(x, x+q2, 0, j) by Proposition

1. Then, to prove the above inequality, it suffices to show that, for any x, q1, and q2,

Wt(x+ q1, x+ q1 + q2, 1, j)

=− (c1 − αc2)(x+ q1)−Gt(x+ q1) + γ2,jLt(x+ q1 + q2, 1, 1) + (1− γ2,j)Lt(x+ q1, 1, 0)

≤− (c1 − αc2)(x+ q1)−Gt(x+ q1) + γ2,jft(x+ q1 + q2, 1) + (1− γ2,j)ft(x+ q1, 0).

Since Vt+1(x, i, j) ≤ Vt+1(x, j) by the inductive assumption, by (4) and (9), Lt(x, 1, j) ≤ ft(x, j),

this shows that the above inequality holds. Hence, Vt(x, i, j) ≤ Vt(x, j).

We next prove Vt(x, i, j)−Vt(x, j) is increasing in x. In what follows, we will first apply Lemma

3 to show that maxq1≥0 φt(x, q1, i, j)−maxq1≥0 gt(x+ q1, j) is increasing in x. To this end, we need

to verify that φt(x, q1, i, j) and gt(x, j) satisfy the following properties:

(a) φt(x, q1, i, j) is concave and submodular in (x, q1), and gt(x, j) is concave in x;

(b) max(x,q1)∈<×<+ φt(x, q1, i, j) = maxx∈< φt(x, 0, i, j); and
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(c) φt(x, 0, i, j)− gt(x, j) is increasing in x.

Firstly, since Wt(x, y, i, j) is concave and separable in (x, y) by (9), (10), and Proposition 1, it

is easily seen that φ1(x, q1, i, j) is concave and submodular in (x, q1). In addition, gt(x, j) is clearly

concave in x.

We next verify max(x,q1)∈<×<+ φt(x, q1, i, j) = maxx∈< φt(x, 0, i, j). Denote

(x∗, q∗1, q
∗
2) = arg max

(x,q1,q2)∈<×<+×<+

{
γ1,iWt(x+ q1, x+ q1 + q2, 1, j) + (1− γ1,i)Wt(x, x+ q2, 0, j)

}
.

Then, by the definition of φt(x, q1, i, j), we have

max
(x,q1)∈<×<+

φt(x, q1, i, j) = γ1,iWt(x
∗ + q∗1, x

∗ + q∗1 + q∗2, 1, j) + (1− γ1,i)Wt(x
∗, x∗ + q∗2, 0, j). (30)

Since Wt(x, x+ q∗2, i, j) is submodular in (x, i) following from Proposition 1 and by the optimality

of q∗1, we have

Wt(x
∗ + q∗1, x+ q∗1 + q∗2, 0, j)−Wt(x

∗, x+ q∗2, 0, j)

≥Wt(x
∗ + q∗1, x+ q∗1 + q∗2, 1, j)−Wt(x

∗, x+ q∗2, 1, j) ≥ 0.

Then, Wt(x
∗ + q∗1, x+ q∗1 + q∗2, 0, j) ≥Wt(x

∗, x+ q∗2, 0, j). According to (30), we have

max
(x,q1)∈<×<+

φt(x, q1, i, j)

≤γ1,iWt(x
∗ + q∗1, x

∗ + q∗1 + q∗2, 1, j) + (1− γ1,i)Wt(x
∗ + q∗1, x

∗ + q∗1 + q∗2, 0, j)

≤φ1(x∗ + q∗1, 0, i, j) ≤ max
x∈<

φt(x, 0, i, j) ≤ max
(x,q1)∈<×<+

φt(x, q1, i, j).

Hence, max(x,q1)∈<×<+ φt(x, q1, i, j) = maxx∈< φt(x, 0, i, j).

We lastly verify that φt(x, 0, i, j)− gt(x, j) is increasing in x. By the definition of φ1(x, q1, i, j)

and Wt(x, y, i, j), we have

φ1(x, 0, i, j) = max
q2≥0

{
γ1,iWt(x, x+ q2, 1, j) + (1− γ1,i)Wt(x, x+ q2, 0, j)

}
= −(c1 − αc2)x−Gt(x) + (1− γ2,j)(γ1,iLt(x, 1, 0) + (1− γ1,i)Lt(x, 0, 0))

+ γ2,j max
q2≥0

{
γ1,iLt(x+ q2, 1, 1) + (1− γ1,i)Lt(x+ q2, 0, 1)

}
. (31)

Then, from (5) and (31), we have

φt(x, 0, i, j)− gt(x, j) = (1− γ2,j)(γ1,iLt(x, 1, 0) + (1− γ1,i)Lt(x, 0, 0)− ft(x, 0))

+ γ2,j

(
max
q2≥0

{
γ1,iLt(x+ q2, 1, 1) + (1− γ1,i)Lt(x+ q2, 0, 1)

}
−max

q2≥0
ft(x+ q2, 1)

)
.
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By the inductive assumption, Vt+1(x, i, j)−Vt+1(x, j) is increasing in x. Then, it follows from (4)

and (9) that Lt(x, i, j)−ft(x, j) is increasing in x. Then, γ1,iLt(x, 1, j)+(1−γ1,i)Lt(x, 0, j)−ft(x, j)

is also increasing in x. Notice that γ1,iLt(x, 1, 1)+(1−γ1,i)Lt(x, 0, 1) and ft(x, 1) are both concave

in x. Thus, one can easily verify that

max
q2≥0

{
γ1,iLt(x+ q2, 1, 1) + (1− γ1,i)Lt(x+ q2, 0, 1)

}
−max

q2≥0
ft(x+ q2, 1)

is increasing in x. Hence, φt(x, 0, i, j)− gt(x, j) is increasing in x.

In summary, since φt(x, q1, i, j) and gt(x, j) satisfy the properties (a)-(c), by applying Lemma

3, we conclude that maxq1≥0 φt(x, q1, i, j)−maxq1≥0 gt(x+ q1, j) is increasing in x.

Now we prove Vt(x, i, j)− Vt(x, j) is increasing in x and d∗t (x, i, j) ≤ d∗t (x, j). Define

Vt(x, i, j, n) := max
dt≤d≤d̄t

{
Rt(d) + c1(x− d) + V̂t(x− d, i, j, n)

}
, (32)

where V̂t(x, i, j, 1) := maxq1≥0 φt(x, q1, i, j) and V̂t(x, i, j, 0) := maxq1≥0 gt(x+q1, j). Then, V̂t(x, i, j, n)

is supermodular in (x, n). By replacing d as d̂ = x− d, (32) can be rewritten as

Vt(x, i, j, n) = max
dt≤x−d̂≤d̄t

{
Rt(x− d̂) + c1d̂+ V̂t(d̂, i, j, n)

}
.

Since Rt(·) is a concave function, the maximand in the above optimization problem is supermodular

in (x, d̂, n). Since the constraint is a lattice, by applying Lemma 1, Vt(x, i, j, n) is supermodular

in (x, n) and d̂∗(x, i, j, n) is increasing in n. By the definition of Vt(x, i, j, n) and V̂t(x, i, j, n), then

Vt(x, i, j) − Vt(x, j) is increasing in x and d∗t (x, i, j) ≤ d∗t (x, j). Furthermore, p∗t (x, i, j) ≥ p∗t (x, j).

The proof of Theorem 5 thus completed. �

Numerical studies on additive-multiplicative demand

We report some of the results of the numerical studies conducted on models with additive-multiplicative

demand. Suppose T = 4, c1 = 5, c2 = 3, α = 0.97, h = 1, b = 8, and

Dt(p) = wt(100− 10p) + εt,

where wt, εt, 1 ≤ t ≤ T are independent random variables with Pr(wt = 0.5) = Pr(wt = 1.5) = 0.5,

εt ∼ Uniform[−10, 10], p
t

= 4, p̄t = 8, γ1,0 = γ1,1 = 1, γ2,0 = 0.3, and γ2,1 = 0.9. The current

period t = 1.

In the following, Figure 6 shows the impact of adding a second supplier on the firm’s expected

total discounted revenue and optimal pricing when the firm originally only sources from supplier 1.
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From this figure, it can be seen that both the firm and its customers benefit from dual sourcing, and

the benefits decrease when supplier 2 becomes less reliable or when it charges higher unit ordering

cost. Figure 7 illustrates the impact of unit ordering cost c1 on the optimal order quantity from

supplier 2, and it demonstrates that supplier 2 may receive less orders when supplier 1 becomes

more expensive, implying that supplier 2 may receive more orders when supplier 1 is added into

the firm’s sourcing system. Finally, Figure 8 shows that supplier 2 may receive less orders when it

becomes more reliable.
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Figure 6: Impact of dual sourcing on firm’s revenue and price when (x, i, j) = (70, 0, 0)
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Figure 7: Optimal order quantity from supplier 2 when (i, j) = (0, 1)
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Figure 8: Optimal order quantity from supplier 2 when γ1,0 = 0.6, γ1,1 = 0.9, and (i, j) = (0, 1)
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