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Abstract

Coefficients of variation for spine lengths are not constant over a range of mean values, but show
an inverse relationship with sample means. The nearly hyperbolic relationship is evident in selection
experiments, in seasonal samples from a single lake, and in widely dispersed geographic samples.
The observed inverse relationship could indicate an interesting developmental property (e.g. that
smaller, rudimentary spines are more variable than larger functional ones) or could reflect one of
several possible statistical artifacts or properties.

Detailed examination of Bosmina suggests that the strong inverse trend arises from a combination
of biological and statistical properties; it is not an artifact of measurement error, although mea-
surement error contributes to inflation of small values. Small spines are inherently more variable
than longer spines, and the latter have more uniform component parts. Moreover, there are several
alternative arrangements of components that sum to the same length and hence that achieve nearly
equivalent fitness value. These alternative arrangements lower part-whole correlations within the
population.

The two statistical properties that contribute to observed trends include a version of the central
limit theorem and measurement error. The percentage variation of a character which is the sum
of a number of randomly varying parts will be considerably less (roughly as the inverse square
root of the number of parts) than the mean percentage variation of the parts themselves. Thus a
statistical property of large numbers contributes to the observed inverse trend. In addition, coef-
ficients of variation as fractions are especially sensitive to measurement error, so that precise

measurements are recommended for small defensive spines.

Small planktonic organisms frequently
carry spines or other forms of protection
against larger bodied omnivorous or car-
nivorous invertebrates (Kerfoot 1980, 1987;
Dodson 1984; Havel and Dodson 1984;
Gilbert and Stemberger 1984; Stemberger
and Gilbert 1987). This supplemental
spinelike ornamentation is especially com-
mon in two freshwater taxa, cladocerans and
rotifers, which propagate primarily by clon-
al reproduction. Whereas some of these pro-
tuberances aid evasion (e.g. the helmets of
certain Daphnia: O’Brien and Vinyard 1978;
Barry and Bayly 1985), most spinelike fea-
tures hinder handling by consumers or di-
rectly prevent ingestion (Halbach 1971;
Kerfoot 1978; Havel and Dodson 1984).

Typically, defensive spines are highly
variable in space and time. Although some
clones show little phenotypic variation from
lake to lake and from season to season, many
other, sometimes co-occurring, clones show

t Supported by NSF grants BSR85-01252 (to W. C.
Kerfoot and A. Kluge) and BSR84-00244 (to W. C,
Kerfoot).

pronounced spatial and seasonal sensitivity
to environmental cues (Hutchinson 1967,
Kerfoot 1980; Barry and Bayly 1985). One
possible explanation for phenotypic plastic-
ity is that defensive structures are main-

‘tained at some cost to competitive prowess

and other fitness demands (Kerfoot 1977;
Reissen 1984). A general solution to the
competitive dilemma is to evolve devel-
opmental flexibility. Under this solution,
clones would produce antipredator defenses
when and where risk is greatest. The alter-
native is to suffer great losses when preda-
tors are common or to bear needless ex-
pense when they are scarce. One of the more
intriguing specific evolutionary adaptations
of prey is predator-mediated chemical in-
duction of defenses.

Chemical induction between predator and
prey is widespread in certain taxa (recent
reviews by Havel 1987; Harvel 1986). Ac-
knowledged predator-prey induction pairs
include a diversity of predators that influ-
ence cladoceran and rotifer spine lengths:
Asplanchna-Brachionus (Gilbert 1966), An-
isops-Daphnia (Grant and Bayly 1981),
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Chaoborus-Daphnia (Krueger and Dodson
1981), Mesocyclops-Keratella (Stemberger
and Gilbert 1984), and Epischura-Bosmina
(Kerfoot 1987). Additional freshwater ex-
amples are listed by Havel (1987).

Absolute lengths of mucrones and anten-
nules in Bosmina longirostris are known to
be associated with copepod predation. Mean
lengths vary greatly geographically and sea-
sonally, providing a large range of variation
(Kerfoot 1980; Sprules et al. 1984). In
general, long spines protect individuals, es-
pecially juveniles, from damage during han-
dling by omnivorous and predatory cope-
pods (Kerfoot 1975, 1978, 1987; Wong
1981a,b). A few clones of Bosmina show
dramatic developmental elongation of fea-
tures in the presence of predatory copepods
(Epischura, Mesocyclops), with mucrones
stimulated much more than antennules
(Kerfoot 1987, unpubl. data).

Although spines can be developmentally
fixed or chemically induced, maximum
lengths usually coincide with close prox-
imity to specific predators. For example, in
the predatory copepod-Bosmina interac-
tion, the spatial and temporal incidence of
large spines closely matches the distribution
and abundance patterns of highly efficient
predators such as Epischura (Kerfoot 1975,
1980, 1987; Kerfoot and Peterson 1980;
Sprules et al. 1984). Yet small protuber-
ances are present in low-risk environments,
with the spines diminished in size or mod-
ified in shape to blunt structures.

Most of the previous work has centered
on the fitness relationships of mean spine
length without consideration of variance, per
se. However, my recent work has uncovered
a strong pattern within data sets that treat
the variability of defensive spines. Coeffi-
cients of variation for spine lengths are not
constant over a range of mean values, but
show an inverse relationship with sample
means (Fig. 1). The relationship is evident
in several types of descriptive data (e.g. geo-
graphic, seasonal, and enclosure studies) and
poses some interpretive problems for more
detailed quantitative genetic studies. The
crucial question is whether the property
arises as a real developmental or selected
attribute, or is simply the consequence of
statistical artifacts. If small spines are func-
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tionless, vestigial structures, whereas large
ones are subject to strong selection during
active combat, strong stabilizing selection
on large spines might favor greater devel-
opmental regulation. Alternatively, appar-
ent reductions in developmental C.V. may
arise from developmental correlation pat-
terns (Pearson and Davin 1924; Lande 1977,
Soule 1982) or from various statistical ar-
tifacts (Rohlf et al. 1983).

This contribution introduces the prob-
lem, examines departures from the two-pa-
rameter lognormal, an expected sampling
distribution, and discusses options. The na-
ture of the inverse relationship is examined,
drawing almost exclusively from data on the
small cladoceran B. longirostris.

I thank Dean Kellogg for taking the du-
plicate set of Bosmina measurements (see
Fig. 7c) and Eve Parnell for sampling sev-
eral of the survey lakes. Michael Lynch,
Nelson Hairston, Jr., John Lehman, and
Moshe Braner provided valuable comments
on drafts of the manuscript. This manu-
script is one of a series that was inspired by
work originally done in Union Bay while 1
was an NSF Postdoctoral Fellow and later
Research Associate with W. T. Edmondson
(1972-1975). The environment of Union
Bay and Lake Washington provided an at-
tractive setting, while W.T.E. permitted
great freedom and flexibility within the
postdoctorate. Contact with Tom Zaret,
Nelson Hairston, Bob Pastorok, Barbara
Taylor, and Arni Litt, among others, pro-
vided a stimulating and exciting work at-
mosphere. Both W. T. and Yvette Ed-
mondson encouraged and maintained a level
of excellence that I have grown to respect.
Of course, such timely gatherings of people
and projects are in part a matter of both
chance and design. The cooperative work
with Tom Zaret was a fortunate coinci-
dence, whereas the work environment
around W. T. Edmondson’s lab was of his
own crafting.

Materials and methods

Bosmina longirostris is a widely distrib-
uted, locally abundant, and parthenogenetic
small cladoceran. Each individual possesses
two paired spine-like extensions of the chi-
tinous exoskeleton, the anterior antennules
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Fig. 1. Observed inverse relationship between spine

length and sample C.V. A. Relative spine length and
coefficients of variation for the rotifer Brachionus on
several dates (SL—spine length; BL—body length). B.
Mucro and antennule lengths of the cladoceran Bos-
mina longirostris (E-5, E-6 signify separate replicates;
Kerfoot 1987). C. Helmet and tailspine lengths for a
single size class (0.95+0.025 mm) of Daphnia galeata
(redrawn from Mort 1983).
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Fig. 2. Measurements on Bosmina longirostris
(ML—mucro length; AL—antennule length; suture and
segment counts shown for mucrones and antennules,

respectively).

and the posterior mucrones (Fig. 2). Both
defensive structures are usually at maxi-

‘mum length in first instars and show very

little to no increase in absolute size in sub-
sequent instars—a peculiarity that greatly
simplifies ontogenetic considerations (Ker-
foot 1975, 1980; Black 1980a,b). Mucrones
and antennules are girdled at regular inter-
vals by cell boundary marks (mucro sutures,
antennule segments), allowing discrete
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counts to be taken simultancously with
length measurements.

Length measurements are slightly differ-
ent for the two structures (Fig. 2). For
mucrones, lengths are measured from the
distal tip to the base of the carapace along
a straight line. For antennules, only the dis-
tal portion was measured, below the tooth-
like projection which marks the insertion of
the antennule setae (see Kerfoot 1975, 1980
for more details). Since antennules may be
strongly curved or straight, length was mea-
sured along the outside curvature of the fea-
ture by rotating an ocular micrometer along
the surface. Independent measurements
were made on left and right pairs of these
bilateral structures.

- Coefficients of variation—The primary
measure of morphological variation used
here is the coefficient of variation or vari-
ability. This widely used measure is the
sample standard deviation divided by the
sample mean (C.V. = s/X), often multiplied
by 100 to express the fraction as a percent-
age of the mean value. The index was orig-
inally proposed by Karl Pearson in 1894 as
part of a system of descriptive statistics in
which the mean and standard deviation
played prominent roles. More recently,
especially in morphological studies, coeffi-
cients of variation have been used to re-
move scale effects. When homologous or-
gans from different local populations or from
different species are compared, empirical
studies show that the C.V. is often much
more invariant than either means, vari-
ances, or standard deviations (Haldane
1955; Wright 1968).

However, because the C.V. is a fraction
that includes sample means, it is very sen-
sitive to several kinds of statistical artifacts
(Lande 1977; Rohlf et al. 1983). For ex-
ample, if the standard deviation is constant,
aplot of C.V. against the sample mean would
simply be a plot of I/x against x. If s and %
are bivariate normal and independent, then
the inverse hyperbolic relationship would
arise because a ratio is inversely correlated
with its denominator (Atchley et al. 1976;
Albrecht 1978; Rohlf et al. 1983). The ob-
served decline would be hyperbolic, directly
proportional to I/x; or I/7 if the measure
were a count of equal-sized components ().
However, as pointed out by Rohlf et al.
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(1983), in morphometric measurements §
and X are rarely independent; typically they
are positively correlated with sampling dis-
tributions closely conforming to the bivar-
iate lognormal (e.g. Wright 1968; Kerfoot
and Kluge 1971).

Even when there is agreement with the
lognormal, a second class of artifact can arise
through measurement error. As in the paper
of Rohlf et al. (1983), let us consider that a
variable is lognormally distributed (with pa-
rameters u and o), that the measurement
error is normally distributed (with param-
eters o and ¢,,), and that the measurements
are grouped into classes of width w:

* 1
Je(Y) = Cf_x—(y_ o)

=]
‘expy— Y2

g
-exp[——‘/z(ix—) jl dx.

Om

Here the constant measurement error added
to the system through instrument impreci-
sion will cause s = a + bx, where a comes
from the added extrinsic error (Fig. 3A).
Then C.V. = (a + bx)/X, or C.V. = a/x +
b, which describes a decline to an asymptote
(b) as X — co. Again the pattern is initially
hyperbolic with C.V. o I/X or 1/7. Rohlf et
al. (1983) contended that the observed in-
verse relationship in most morphometric
data sets arises from either measurement
error, in the case of continuous variates, or
from ““grouping error” in the case of discrete
variates. To support their concern, Rohlf et
al. (1983) presented a series of simulation
results. However, to achieve reasonable fit,
these simulations required nearly 20% mea-
surement error to match observed trends in
morphometric variables. This seems unrea-
sonable and suggests that some as yet un-
disclosed process is important in producing
the pattern. Regardless, one simplifying as-
pect is apparent in defensive spines. Since
all the Bosmina measurements and counts
are linear, questions of dimensionality are
not of concern (Lande 1977).
Characteristics of the lognormal—Eval-
uation of statistical properties requires
knowledge of sampling distributions. The

1)
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Fig. 3. Hyperbolic patterns that arise from measurement error or large number properties. A. Case I—simple
two-parameter lognormal; case II—simple two-parameter lognormal pattern plus constant measurement-error,
showing positive y-intercept (specific example to right, intrinsic V = 7%, SD = 1.4, measurement error == 0.2);
and case ITI—positive y-intercept caused by fitting linear regression to Pearson-Davin pattern. B. Example of

Pearson-Davin property discussed in text.

most common intuitive appeal of the C.V.
is that it removes scaling effects, an attribute
recognized as valuable for comparison stud-
ies of animal morphology (in particular,
Simpson et al. 1960).

Proportional variation of the mean and
standard deviation is common and forms
the basis of the two-parameter lognormal
distribution; that is, the distribution arises
from the so-called law of proportionate ef-
fect. A variable is said to obey the law of
proportionate effect if the change in the
variable at any step is a random proportion
of its previous value (Aitchison and Brown.
1966), i.e. if

IYj — X = ej(A,j—l): (2)

where the set [¢] is mutually independent
and also independent of the set [X].

The lognormal distribution in its simplest
form, i.e. the two-parameter case, is defined
as the distribution of a variate whose log-
arithm obeys the normal law of probability.
To distinguish the properties of a lognor-
mally distributed variable from those of its
normally distributed logarithmic transfor-
mation, I follow the notation of Aitchison
and Brown (1966). A positive variate X (0
< x < o0) is lognormally distributed in the
two-parameter case if Y = log X is normally
distributed with mean u and variance o2.
Because Y = log X is not defined for X = 0,
X cannot assume 0 values, although in prac-
tice this liability is often overcome by add-
ing a positive number, e.g. Y, = log(X + 1).
The jth moment about the origin (A) is

N, = exp(ju + Y2j%0?) 3)
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from the properties of the moment-gener-
ating function of the normal distribution.
The mean («, first moment) and variance
(8%, second moment) of the lognormal dis-
tribution are then

o = exp(u + Y20?) 4)
and | |
B2 = exp(2u + odexp(o> — 1)

= a?V? (5)
where
V2 = exp(c? — 1). 6)

The standard deviation 8 = aV, and V =
B/a; hence the two-parameter lognormal
distribution describes a linear relationship
~ with slope 8/« between the parametric stan-
dard deviation (8) and mean («) with a zero
intercept (Fig. 3A). The coefficient of vari-
ability is a parameter (V) estimated by a
sample statistic, here termed the coefficient
of variation (C.V.) to separate parametric
values from sample statistics.

Lognormal with measurement error—
Modification of the two-parameter lognor-
mal permits incorporation of measurement
error. In terms of geometry, the problem
involves a simple translation of the two-
parameter case (cf. cases I and II, Fig. 3A).
The intercept on the y-axis represents the
additive contribution of measurement error
to the observed standard deviation.

For correction of measurement error, a
direct method is simply to subtract the
Gaussian measurement error component
from the total variance. This approach is
recommended over the estimation of neg-
ative x-intercepts (e.g. Aitchison and Brown
1966; Kleczkowski 1949).

Confidence limits —For field samples,
confidence limits around coefficients were
determined by the following formula for the
standard error of the C.V.:

272

C.V. C.V.
= 1 + 2 ——

Sl S| o
(Sokal and Rohlf 1981). Note that this for-
mula is only an approximation, since it as-
sumes a normal distribution. However,
agreement is usually very good for low coef-

ficients of variation (Wright 1968). Care was
also taken to avoid very small sample sizes,

Scw.
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since these will also bias the C.V. (Haldane
1955).

Measurements and measurement errors—
Continuous (length) and discrete (mucro su-
tures, antennule segment counts) measure-
ments were recorded from Bosmina. Rou-
tine length measurements were made at
500 x magnification under a Zeiss Univer-
sal compound microscope, on glycerin-water
(50%-50% mixture) mounted individuals.
Sample sizes for seasonal samples were usu-
ally fixed at n» = 40; mean values and 95%
C.L. were graphed by Kerfoot (1987, figure
2). Sample sizes for most geographic sam-
ples were also fixed at » = 40 (range 18-89,
mean 40.1). Under these conditions, mea-
surement error comes from three primary
sources: instrument precision (fineness of
the ocular micrometer scale, magnification
and optical resolution of the microscope at
500 x), preparation error (specimen orien-
tation between cover slip and slide), and
observer error. _

For the Bosmina set, the importance of
measurement error in continuous charac-
ters was estimated through direct measure-
ment (i.e. repeated measurement of speci-
mens) and indirectly by varying instrument
precision. The ocular micrometer scale used
for length measurements had a basic reso-
lution interval of 1.6 um at 500 X, with in-
terpolation possible between marks. In the
precision test, a short-mucroned, high C.V.
sample (Occom Pond) of 40 individuals was
measured under the Zeiss Universal at dif-
ferent magnifications (200-800 x ). If a high
C.V. at 500x is solely an artifact of mea-
surement error, then lowering the magnifi-
cation should increase the C.V. because rel-
ative measurement error is increased; while,
conversely, increasing the magnification
should decrease the C.V. because measure-
ment becomes more precise.

For meristic (countable) characters such
as segment or suture counts, there are ad-
ditional, complicating problems. Inflation
of the C.V. may result from the presence of
zero values (Wright 1968; Lande 1977) or
grouping effects (Thompson 1950, 1951;
Aitchison and Brown 1966). The problem
of truncation and zero values in Bosmina
meristic variables is treated simply by in-
dicating the mean value below which zeros
appear in calculated sample estimates. The
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difficulty with grouping arises because dis-
crete distributions only approximate the
theoretical continuous condition of either
the normal or lognormal distribution, re-
quiring adjustment analogous to Sheppard’s
correction for grouping error in a discrete
normal approximation. Unfortunately, the
lognormal approximation is complicated by
two conditions (grouping in unequal inter-
vals, lack of high contact near the origin in
cases of truncation) that violate the Euler-
MacLaurin formula on which Sheppard’s
correction depends (Thompson 1951). Rohlif
etal. (1983) used simulation studies to solve
for particular values, apparently unaware
that Thompson (1951) had previously pub-
lished tabled corrections for “Sheppard-like”
effects in the discretized lognormal. Assess-
ment of the “‘grouping’ artifact goes beyond
the scope of this paper. However, compar-
ison of coeflicients of variation for contin-
uous (length) and discrete (mucro sutures,
antennule segment counts) measurements
contrast patterns for the two variables.

Regression analysis—Regression analysis
(BMD Statistical Package, Univ. Mich.
Amdahl 470) was applied to most standard
deviation/mean plots. The exercise was in-
tended to check for linearity of patterns near
the origin and for estimation of x- and y-in-
tercepts (Kleczkowski 1949; Aitchison and
Brown 1966). Plots of C.V. used either sin-
gle sample coeflicients of variation or, in the
case of multiple estimates, mean coefficients
of variation (V) for reasons cited in Rohlf
et al. (1983). Regression plots for multiple
samples used mean sample standard devia-
tions (5). Regressions were also inspected for
heteroskedasticity (a feature characteristic
of lognormal plots) and for systematic de-
viations from linearity.

Between-individual and within-individual
measures— Another simple test involved
between-individual and within-individual
components of total variance. A real in-
crease in relative variance over time could
relate either to polymorphisms or to devel-
opmental timing effects during induction.
That is, after an episode of spine induction,
the between-individual component might
contribute the majority of variation, while
the within-individual component (e.g. left—
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right asymmetry) might remain much more
conservative. To test this property, I cal-
culated two measures of bilateral asym-
metry: Soule’s (1967) index of fluctuating
asymmetry and an ANOVA estimate of
within-individual variance. Soule’s (1967)
index of asymmetry (d = Z |I| — |r|) was
calculated for left (/) and right (#) mucro and
antennule pairs. However, this index has
several undesirable features and is really just
a two-point estimate of the within-individ-
ual range. Hence, it will be correlated with,
yet larger than, an estimate of the within-
individual standard deviation for the same
character. A much more direct and desir-
able approach used ANOVA techniques.
The ANOVA estimate of within-individ-
ual “developmental noise” is equivalent to
the special environmental variance com-
ponent of Falconer (1981). Paired, bilateral
measurements (i.e. left- and right-hand side
lengths, counts) were treated as replicate
measurements in a nested single classifica-
tion ANOVA scheme (Palmer and Strobeck
1986). For a sample size of 40, each indi-
vidual provided a two-point estimate of the
within-individual standard deviation (2 X
40 = 80 measurements).
Component-whole considerations (Pear-
son-Davin argument)—An alternative ar-
gument for the origin of hyperbolic patterns
was offered initially by Pearson and Davin
(1924) and more recently by Lande (1977)
and Soule (1982). This argument constitutes
a form of null model, since it illustrates how

a marked decline in C.V. can arise from

random variation of components.

Lande’s (1977) argument considered the
comparison of the C.V. of a whole to that
of its parts. This argument is appropriate
for linear structures, like defensive spines,
that are composed of an increasing number
of cells (segments, suture boundaries). Here,
the whole is expressed as the sum of n parts,

S=_2X,.. (8)

Therefore o,; = 2, D, r;0,0; and the C.V.

=1 j=1
of the whole is
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( n n
=1 j=

1/2
A AY )
n

M. %)

i=1

—

Lande noted that only in the extreme case
when the variation of all parts is perfectly
correlated (i.e. r = 1.0), the C.V. of the sum
attains its maximum value, identical to the
average V, of its parts, weighted by their
means

(10)

n n
= 2 A 2 M.
i=1 i=1

Thus the V for a composite measure that
shows less than perfect correlation of com-
ponents would always be less than the
weighted average of the V, for its parts. If
variation in the components is completely
independent, a composite structure of n
identical components (V,), each with a mean
u and a variance o2, would have a C.V. of

(11)

with V, proportional to »=" (Lande 1977,
Soule 1982).

The contrast between poorly and mod-
erately correlated components can be dra-
matic. If components are perfectly corre-
lated, V, remains constant with increasing
number of components, while ¢ increases
directly with »n as a simple scaling argument.
However, reduction in correlation results in
substantial drops for V,, with the rate of
decline most notable near the origin (Fig.
3B). If the components vary independently,
V., declines dramatically as an inverse
square-root function of », while ¢ increases
gradually as a positive square-root function
of n. For example, Fig. 3B illustrates how
parameters change with », the number of
components, as a function of component
correlation. Here V, = 10% at » = 10, with
acomponent V.= 0.316 (i.e.atn=1,C.V.;
and C.V.. would be equivalent). If there is
no component correlation, V, declines hy-
perbolically from its component value (V,
= 0.316 n~"), whereas ¢ increases more
gradually (¢ = 0.316 n—*), both parameters

V, = (ne®)"nu = n~"o/p
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changing 6.7-fold over the range (i.e. 1-45)
relative to initial values.

Note how the increase in ¢ becomes near-
ly linear at high values and with increased
correlation of components. If a linear
regression equation were fit to observed val-
ves removed from the origin, one would
also obtain an imaginary positive intercept
on the y-axis at the origin (Fig. 3A; case III).
The y-intercept would approach the origin
only in cases of high component correlation.

Results

Inverse relationship between coefficients of
variation and sample means— All of the data
sets for defensive structures examined thus
far show an inverse relationship between
C.V. and sample mean. These trends are
especially pronounced in defensive spines
of rotifers and cladocerans and can be il-
lustrated by three examples (Fig. 1). The
first example (Fig. 1A) treats interactions
between a predatory rotifer, Asplanchna
brightwelli, and the small, herbivorous ro-
tifer Brachionus calyciflorus (Halbach and
Jacobs 1971). Asplanchna both selectively
removed short-spined individuals and in-
duced longer spines in Brachionus, while
prey body length remained relatively unaf-
fected. The figure gives spine lengths ob-
tained from a standard laboratory proce-
dure designed to correct for induction. In
the assay, field samples were placed in a
known concentration of Asplanchna-sub-
stance, measured after induction, then the
mean lengths plotted vs. the time of sam-
pling. Field populations showed a progres-
sive increase in mean spine length and a
corresponding reduction in C.V. The in-
crease in mean spine length was attributed
to directional selection, whereas the decline
in C.V. was interpreted as a consequence of
truncation during directional selection
(Halbach and Jacobs 1971).

The second example (Fig. 1B) involves
selection by the predatory copepod Epi-
schura lacustris for increased spine length
in the small cladoceran B. longirostris (Ker-
foot 1987). In these enclosure studies, the
C.V. for mucro and antennule lengths de-
chined significantly in the presence of Ep-
ischura as features moved toward greater



1420
A.
60[-
*
}H,”
’ [ W}L{#HH
oO 40J — 8IO
LENGTH (pm)
,60[-
% 4o£
L |
: L H{{ Hl I{ H{H{f&ﬂﬂ
ob—L s a1 S N .

0 40 80 120 160
LENGTH (pm)
B.
60
4
2 sof
<t
©
<>t 401
uw L
(o] .
+ 30} ] ‘
=z
wi L
o
- 20}
w 1
8 o] w{lﬁ H‘#‘W&é W{
S rof &
[ f i
O L i A L o, 1 "'l 1 1 H i 1 'l el
0 4 8 12 16
MEAN COUNT
Fig. 4. Inverse relationship between C.V. and fea-

ture size for seasonal samples. A. Mucro and antennule
lengths plotted separately. B. Mucro suture and anten-
nule segment counts plotted on same graph (2-6, su-
tures; 7-16, segments). Suture coefficients of variation
below a value of 2 are not plotted, as these data contain
zeroes (truncation effects). Vertical lines indicate 95%
ClL.

Kerfoot

mean lengths. As in the previous example,
both directional selection and develop-
mental induction were presumed respon-
sible for mean spine length shifts. The re-
duction in C.V, was attributed to truncation
during directional selection (Kerfoot 1987).

The third and final example is taken from
a study of helmet and tailspine variation in
Daphnia galeata, a moderate-sized herbiv-
orous cladoceran (Fig. 1C). At the study site
in Lake Morey, Vermont, D. galeata under-
went considerable seasonal variation in hel-
met and spine lengths (Mort 1983). Here
the allometric growth of features introduced
complications. However, if coefficients of
variation for a single, restricted size class of
juveniles (0.95+0.025 mm) are plotted vs.
protuberance lengths, there is again a clear
inverse relationship. In this study, the pred-
ators associated with fitness shifts in spine
and helmet lengths were not clearly iden-
tified, although indications pointed toward
Chaoborus punctipennis (Mort 1983, 1986).

All three examples of inverse relation-
ships might be attributable either to trun-
cation during natural selection for increased
spine lengths or to increased stabilizing se-

lection on larger features, both of which are

interesting biological phenomena. Yet, there
may be alternative explanations, ones which
involve statistical properties. In the case of
Bosmina, highly significant inverse rela-
tionships between C.V. and sample mean
also are evident in routine seasonal samples
from a suite of New England lakes and from
broad geographic surveys.

Seasonal samples —Seasonal samples
from three New England lakes (Occom
Pond, Lake Mitchell, Lake Norford; see
Kerfoot 1987) show an almost hyperbolic
inverse relationship between C.V. and size.
Coefhicients of variation for mucro lengths
and suture counts show a more pronounced
inverse relationship and are higher than the
corresponding measurements on anten-

-nules (Fig. 4). When the data are arranged

by absolute mean count, the count set re-
veals a much more orderly transition be-

tween mucro and antennule values, whereas

the length set shows that the C.V. is dis-
tinctly elevated at small values for both fea-
tures. There is also evidence for seasonal
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heterogeneity, as samples with nearly iden-
tical means may have significantly different
coefficients of variation (Fig. 4A).

Increased coeflicients of variation at small
absolute lengths of mucrones and anten-
nules correspond to noticeable differences
in the shape of features between individuals,
especially in the case of antennules where
there is polymorphism. Short-antennuled
individuals may fall into either strongly
“hooked” categories (the “curvirostris” form
of Herbst 1962; the ‘“cornuta” form of
Brooks 1957) or more gently curved cate-
gories (the “brevirostris” forms of Herbst
1962; the typical form of Brooks 1957).
Expression of these alternative phenotypes
is modified by ontogeny, for all individuals
possess gently curved antennules in the first
two immature instars and only show
“hooked,” “straight,” or gently curved forms
in the third and later mature instars. Cor-
responding shape variations in mucrones are
not as pronounced, yet phenotypes range
from blunt, nublike categories to straight,
spinelike forms (Fig. 2).

Geographic samples—Mean coefficients
of variation for widely ranging geographic
samples also show patterns nearly identical
to those evident in the more restricted sea-
sonal set (Fig. 5, Table 1). Again the inverse
relationship between C.V. and sample mean
is more striking for mucrones than for an-
tennules. The two independent measure-
ments (lengths, counts) basically show sim-
ilar patterns, yet again the count data show
a smoother transition with increasing scale,
whereas the length data emphasize in-
creased coeflicients of variation of both small
mucrones and small antennules above over-
all trends.

Mean values of C.V.s for small mucrones
are also much higher than the correspond-
ing values for small antennules. Mean val-
ues of C.V. for small mucrones show greater
scatter of individual values around class
means (Table 1). Increased scatter is ex-
pected for two reasons: scatter of individual
estimates around class means is expected to
be proportional to the mean C.V. (Eq. 7),
and point estimates fall along the region of
steepest decline in the hyperbolic relation-
ship of C.V. to sample mean. Scatter of point
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Fig. 5. Inverse relationship between C.V. and fea-
ture size in geographic samples. A. Mucrones (@) and
antennules (O) of different mean lengths. B. Mucro
suture (@) and antennule segment ((J) counts.

estimates about mean values is indicated by
standard deviations in Table 1. These val-
ues show a marked decline as sample mean
counts or lengths increase. The extremely
high absolute values of C.V. in mucro counts
are attributable to statistical truncation ef-
fects (presence of zeros; see materials and
methods).

Regression analysis—Since the C.V. is a
quotient, it is important to inspect numer-
ator behavior independent of denominator
values. Moreover, trends in sample stan-
dard deviations across different mean val-
ues check agreement with suspected sam-
pling distributions (see materials and
methods). Recall that a positive linear in-
crease is expected in the case of the simple
two-parameter lognormal distribution.

Overall results of regression analysis on
seasonal and geographic data sets were sim-
ilar (Fig. 6, Table 2). In the seasonal set,
regressions of sample standard deviations
on sample means gave highly significant,
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Table 1.

Kerfoot

Patterns in geographic survey data: mean coefficients of variation, mean standard deviations, sites,

and sizes of samples. Site designations are Frains Lake, Michigan (F); Michigan lakes survey (MS); Occom Pond,
New Hampshire (O); Lake Mitchell, Vermont (M); Lake Norford, Vermont (N); and Lake Washington, Wash-
ington (W). Number of samples indicated under N; sample sizes—40 individuals, or between 3,500—4 ,000

individuals per variable.

Length (m) Site N CV.(SD) 3D Count* Site N CV.(SD) 3D
Mucrones
11.0-20.1 Oo,wW 19 33.5(109) 0.27 0.0-0.5 F 6 152.7(31.6) 0.38
20.1-27.5 O, w 10 31.8(7.0) 0.41 0.6-1.0 F 17 111.725.7) 0.89
27.5-38.4 F, MS 17 22.2(5.5) 0.40 1.1-1.5 F 12 70.8(20.5) 0.89
38.4-45.8 F,M 11 20.2(5.5) 0.47 1.6-2.0 F 10 32.9(4.6) 0.59
45.8-56.7 MS, M, N 8 15.64.2) 0.44 3.0-3.5 M, N 5 20.0(5.1) 0.59
56.7-65.9 MS, M, N 10 10.7(3.1) 0.35 3.54.0 M 5 20.2(2.9) 0.76
65.9-75.0 MS, N 5 8.5(1.6) 0.32 4.5-5.0 M 3 15.2(1.9) 0.72
75.0-82.4 N 4 8.2(0.5) 0.35 5.0-5.5 N 9 15.3(2.2) 0.79
5.5-6.0 N, w 15 15.3(2.6) 0.87
6.0-6.5 W 14 14.3(1.5) 0.90
Antennules
54.9-65.9 O, W 12 1493.0) 0.49 7.1-8.0 O 3 12.7(2.3) 0.99
65.9-75.0 o, W 12 15.4(6.0) 0.59 8.1-9.0 O 6 11.7(2.0) 1.03
75.0-84.2 o, W 7 12.4(2.8) 0.53 9.1-10.L0 F,O,W 36 10.8(3.5) 1.04
84.2-93.3 MS, 0, W 4 17.3(5.6) 0.83 10.1-11.0 F, W 57 9.9(1.7) 1.05
93.3-102.5 F,O,MS, W 4 11.4(1.0) 0.60 11.1-120 F, M, W 30 11.0(2.5) 1.28
102.5-111.6 F,MS 10 9.7(3.6) 0.56 12.1-13.0 F, M, N 9 9.7(1.4) 1.22
111.6-120.8 F,N 7  10.6(2.5) 0.67 13.1-140 M,N 13 9.9(1.8) 1.35
120.8-129.9 F,MS, N 4 11.1(3.1) 0.76 14.1-150 F,M,N 4 10.8(1.3) 1.58
129.9-139.1 F,N 4 8.9(0.7) 0.65
139.1-148.2 F, M, N 5 9.2(3.0) 0.72
148.2-157.4 F, M, N, MS 14 7.6(1.4) 0.63
157.4-166.5 M, N, MS 4 8.1(1.0) 0.71
166.5~173.9 4 8.4(1.1) 0.78
* Mucrones—sutures; antennules--segments.
positive slopes for three separate variables:
mucro lengths (2 = 0.419), mucro sutures 25—
(r? = 0.812), and antennule segments (r> =
0.379). Trends for antennule lengths were 20
not significant (r> = 0.000), because of high 5
standard deviations at low mean values (i.e.
the polymorphism mentioned earlier). If
either the combined length data or count s { g
data are plotted against increasing scale, ° 50 100 150 200um
overall trends with increasing mean values ME AN
are positive and highly significant (lengths, 5
r2 = 0.416; counts, r> = 0.810; Table 2).
Comparable regressions for mean standard DE
deviations in the geographic set gave highly 5 - DDDDD
significant, positive slopes for antennule ,.‘2.3’
segments (2 = 0.854) and lengths (r> = oo
0.325), but positive, nonsignificant slopes 1 2 ;
for mucrone lengths (r? = 0.002) and sutures 0 5 10 15
(r* =0.205, Table 2). When combined length ME AN

or count data were plotted against increas-
ing scale, the overall trends were again pos-
itive and highly significant (length > = 0.627;
counts > = 0.803).

One feature of regressions was pro-

Fig. 6. Regression of average standard deviations
on sample means for the geographic set (Table 2 gives
separate and combined regressions). Note the apparent
imaginary positive y-intercept. Symbols as in Fig. 5;
upper panel—lengths; lower panel —suture or segment
counts,
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Table 2. Regression of sample standard deviations on sample means. Results geparated into two.categon'es:
individual features and combined length or count variables. Other information includes sample size (), F-
value for regression and significance (P,), T-value for SD-intercept, and significance (P,).

N Regression cquation F P, T P,
Individual feature
Seasonal
Mucro length 33 SD = 0.0507X + 3.26 22.4 0.0000 5.9 0.0000
Mucro sutures 33 SD =0.1398X + 0.13 " 134.1 0.0000 3.0 0.0058
Antennule length 33 SD = —-0.0017X + 12.79 0.0 0.9242 6.0 0.0000
Antennule segments 33 SD = 0.0524X + 0.57 18.9 0.0001 3.9 0.0004
Geographic
Mucro length SD = —0.0001X + 0.38 0.0 0.9117 6.2 0.0008
Mucro sutures 10 SD = 0.0358X + 0.62 2.1 0.1884 6.4 0.0002
Antennule length 13 SD = 0.0016X + 0.47 5.3 0.0418 54 0.0002
Antennule segments 8 SD = 0.0774X + 0.34 _ 35.2 0.0010 2.3 0.0587
Combined feature
Seasonal
Length 66 SD =0.0619X + 4.07 45.6 0.0000 4.7 0.0000
Count 66 SD =0.0781X + 0.28 272.5 0.0000 6.8 0.0000
Geographic
Length 21 SD = 0.0520X + 0.30 32.8 0.0000 6.0 0.0000
Count 18 SD = 0.0585X + 0.55 65.3 0.0000 9.3 0.0000

nounced. All regressions had positive in-
tercepts on the y-axis (SD) and consequent-
ly had slopes less than the observed mean
coefficients of variation (Table 2; Fig. 6). In
the seasonal set, slopes +95% C.L. were:
lengths 0.062+0.009, counts 0.078+0.005;
in the geographic set they were: lengths
0.052+0.018, counts 0.058+0.007. The
positive intercepts were significant to highly
significant (Table 2). Thus both lengths and
counts show a positive relationship between
sample standard deviations and means, yet
the positive intercepts on the y-axis and the
disagreement between regression slopes and
coefficients of variation show that the sim-
ple, two-parameter lognormal model does
not fit (see materials and methods). Such
apparent positive intercepts for SD values
at zero mean values are a consequence either
of legitimate increases in inherent variation
of smaller features, statistical properties
mentioned earlier (component-whole con-
siderations), or measurement error.
Measurement errors—Direct estimates of
measurement error, based on multiple mea-
surements over a wide range of spine lengths,
gave average SD values between 0.6 and 1.9
pm (Fig. 7A). The values showed a slight
increase with absolute feature length. For
antennules and for long mucrones, the con-
tribution to total variance is minor (long

antennules, 1-4%; short antennules, 1-3%;
long mucrones 1-4%), but can be moderate
for the smallest mucrones (3-25%, average
~8% of the total variance).

Varying magnification on a 20-um spine
samplc (Occom Pond) did not have a major
effect on the observed C.V. value. The de-
cline was only ~11% over the magnification
range (200-800 x) and not significant (Ta-
ble 3). Thus direct estimates of measure-
ment error and instrument precision tests
indicate that the major inflation of the C.V.
(4 x) for small spine lengths is real and that
most of the inflation is not attributable to
measurement error.

Within-individual and between-individu-
al contributions—Within-individual varia-
tion (Fig. 7C) increased with an increasing
mean, although values were small and the
relationship was more linear. The ANOVA
estimates for SDs were less than the value
for the Soule index because, as mentioned
earlier (materials and methods), the Soule
index is essentially a two-point estimate of
the range, rather than the standard devia-
tion. The importance of a direct estimation
of the within-individual component is the
clear demonstration that absolute devel-
opmental noise increases with increasing
size, although relative error declines some-
what, and that this component is relatively
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Fig. 7. Relationship between sample standard de-

viations and sample mean length or count. A. Mucro-
nes (O) and antennules (®) compared with estimates
of measurement error (connected dots). B. Mucrone
sutures (below 7) and antennule segments (above 7).
Samples from the three New England lakes (Occom
Pond, Lake Mitchell, and Lake Norford) but expanded
over the seasonal set. C. Between-individual (O, @) and
within-individual (O, B, ANOVA estimate) compo-
nents. Open and closed symbols represent counts by
two independent investigators. Samples come from New
England lake survey studies.

Kerfoot

Table 3. Change in C.V. with increased magnifi-
cation, a test of measurement error. Two samples mea-
sured under different magnifications, i.e. with increas-
ing precision, to see if relative error declines. Source—
Occum Pond, N.H.

Magnifi- +95%
cation N Mean* SD C.V. C.L.}
200 40 0.423 0.121 0.286 0.063

40 0.405 O0.111 0.274  0.060
320 40 0.660 0.195 0.295 0.065
40 0.641 0.173  0.270  0.059
500% 40 1.075 0.324 0.301- 0.066
40 1.080 0.266 0.246 0.054
800 40 1.630 0.420 0.257 0.056
40 1.603 0.404  0.252 0.055

* Microscope units (scale reads to tenths; at 500x, 18.3 times units =
microns).

T None of the coefficients of variation are significantly different from each
other.

1 Typical measurement magnification for mucro length.

minor compared to the contribution of be-
tween-individual variation. Inflation of the
C.V. near the origin is largely attributable
to the between-individual component, not

'to measurement error or to the within-in-

dividual component.

Variation of structural components rela-
tive to the whole— Although measurement
error contributes some to the variance of
small mucrones, real lower variability of an
entire structure relative to its parts can arise
from two principal properties: systematic
decrease in the inherent variability of parts
as the structure gets longer, or random vari-
ation in assembly of parts (either within or
between individuals). In the first case, initial
cells in a sequence are more variable in
length than subsequent ones. As the number
of uniform cells increases, C.V., (the C.V.
component for cell length) will decline, as
well as C. V., (the C.V. component for total
spine length). In the second case, differences
in the component lengths of highly variable
units average out as the sum increases. For
example, a mucro constructed of a short cell
followed by a long cell will sum to the same
total length as a mucro composed of a long

cell followed by a short. For lower corre-

lations between components, both within
and between individuals, C.V.. should re-
main similar, but C.V., for the sum will de-
cline (Pearson-Davin effect: see materials
and methods).

Detailed examination of component/
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Table 4. Component/whole contrasts in coefficients of variation (sample from Third Sister Lake, Michigan).
Coeflicients of variation for component cell lengths (C.V.,) are contrasted with those for the entire spine length
(C.V.,). Symbols follow sample equivalent parameters for Eq. 9. (C.V..—component cell length; C.V.,—sum of
cell lengths, also length of entire structure; r—correlation coeflicient between component cell lcngt}_ls; C.V:mx——
maximum value expected, equal to weighted average of component coefficients of variation). Additional infor-
mation on measurement error is included (measurements at 800 x, recorded in ocular units).

Component/whole contrast
A. One-cell individuals

Side N X C.V..
Left 15 1.49 0.117
Right 14 1.42 0.114
B. Two-cell individuals
Side N X C.V., X, C.V.. r; P Obs. C.V.,, Max C.V.,
Left 23 1.20 0.327 0.70 0.206 0.354 0.09 0.249 0.282
Right 26 1.16 0.275 0.86 0.246 0.228  0.27 0.219 0.264
C. Three-cell individuals '
Obs. Max
Side N % CV. x CV. x CV. iz P i3 P r, P CV. CV.,
Left 21 0.87 0.318 0.71 0.228 0.78 0.197 —0.094 0.8 —0.279 0.2 0.669 0.001 0.074 0.273
Right 19 0.89 0.210 0.70 0.211 0.75 0.156 0.286 0.1 —0.057 0.8 0.087 0.7 0.056 0.193
Measurement error
Relative error
Part x SD CV.. (C.V../CV) % Variance
Component 0.78 0.037 0.047 12.2 14.9
Whole 2.36 0.045 0.019 7.0 6.7

whole variation in samples reveals that both
systematic differences in variability and sta-
tistical properties are contributing to ob-
served trends. Shorter spines are more vari-
able than longer ones, yet the correlations
between components are also low (Table 4).
These patterns are produced in part be-
cause, at short to intermediate spine lengths,
many individuals that possess few cells have
disproportionately elongated those cells.
From the standpoint of ultimate fitness val-
ue, the total length of the spine is important,
not whether it is composed of many small
cells or fewer elongated ones. If the total
lengths are equivalent, the construction de-
tails are relatively unimportant unless con-
struction compromises integrity.

Two examples illustrate operation of the
above two properties (Fig. 8). Here the com-
ponent lengths are the distances between
suture boundaries on mucrones, presum-
ably indicating cell lengths that comprise
the total length of the defensive spine. In
the Third Sister Lake sample, notice that
length variation in all the component parts
is quite high, C.V..=0.41 for left cell lengths

and 0.36 for right, whereas it is lower in the
Lake Norford sample. If the position of cells
is numbered sequentially from 1 (basal cell)
to 7, then the C. V., for successive sums along
the mucrones can be compared with com-
ponent values (C.V.,). In the Third Sister
Lake sample, the decline is substantial from
the initial basal value (0-1), to the sum of
the lengths for the first two cells (0-2), to
finally the sum of three cell lengths (0-3).
C.V., declines from a component value of
0.36-0.28 to a final sum value 0f 0.11-0.10,
mirroring the observed decline for seasonal
and geographic samples (Fig. 8 A). The total
number of individuals in the sum totals also
declines because fewer individuals possess
higher cell counts. Comparison of compo-
nent values in three-celled individuals shows
that additional cells are more uniform, al-
though component values never achieve the
very low values of entire sums of either
three-celled or six-celled individuals (Fig.
8B). Longer featured clones generally have
more uniform mucrones, as shown in both
samples. The component parts of mucrones
are less variable in the Lake Norford sam-
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Fig. 8. Component/whole relationships of mucrones in two field samples (intermediates, Third Sister Lake,

Michigan; long-featured, Lake Norford, Vermont) illustrating summation (C.V.,) and component (C.V.,) declines
in coefficients of variation. A. Effects of summation on cell lengths. Note how C.V., declines as more cells are
measured (horizontal and vertical lines indicate V=95% C.L.; dots record absolute length of components, sums,
or entire spines). B. Component C.V. for three-celled Third Sister Lake individuals and entire Lake Norford
sample. Note how component C.V. declines progressively as more cells are added.

ple, yet again there is a significant decline
due to summation and the central limit
theorem.

In these samples, the systematic decrease
in C.V., arises also because the additional
cells in longer spines are more uniform in
size. Basal cell lengths seem more highly
variable in the intermediate-length sample.
In this sample there is a noticeable inverse
relationship between cell size and cell num-
ber, for the cell lengths of one-celled (1.45
units, SD = 0.19, n = 17) and two-celled
mucrones (1.19 units, SD = 0.41, n = 36)
are much longer than those of three-celled
mucrones (0.94 units, SD = 0.28, n = 26).
Certain individuals, and presumably clones,
elongate their cells to approach more closely
the total length of multicelled individuals.
This compensation is also evident in left-

right side comparisons, e.g. if the left mucro
contains fewer cells, those cells will be lon-
ger. Perhaps in Bosmina the original im-
petus for induction arose from such devel-
opmental compensations.

Discussion

The use of coeflicients of variation to
characterize morphological variation in
zooplankton defensive spines revealed some
strong, but initially puzzling, patterns. Se-
lection for increased spine length in field
populations (the rotifer Brachionus; the
cladocerans Bosmina and Daphnia) pro-
duced significant declines in C.V. There was
also remarkable similarity between cases, as
coefficients of variation of small spines were
initially near 30%, then declined to around
7-8%.
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Fig. 8. Continued.

Detailed examination of Bosmina mucro-
nes and antennules disclosed an almost hy-
perbolic inverse relationship between C.V.
and mean spine length. The relationship was
evident in selection experiments, seasonal
and geographical survey data. Trends were
similar for both length measurements and
cell counts (sutures, segments), although
polymorphism in antennules elevated coef-
ficients of variation for small length mea-
surements.

In Bosmina, the general trends seem at-
tributable to a combination of two inter-
esting biological and statistical properties.
Although confidence limits around C.V.
make discrimination between different
models difficult, precise measurements
demonstrate that small spines are inherent-
ly more variable than longer ones. Small

mucrones show greater proportional vari-
ation in size, shape, and internal cell pattern
than their longer, functional counterparts.
These small spines seem to be rudimentary
structures, at least in many cases. Initial
within-individual vs. between-individual
comparisons suggest that the elevated C.V.
values in small- to intermediate length
mucrones are attributable to both devel-
opmental ‘“noise” and between-clonal dif-
ferences, with the latter contributing most
of the variance.

There are alternative ways for develop-
ment to achieve small to intermediate spine
lengths. Certain clones lengthen mucrones
and antennules by adding cells, while others
elongate existing cells. Some even produce
spikelike mucrones composed of elongated
single or double cells (Kerfoot 1987). As
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long as their component parts sum to the
same length and the spines retain integrity,
the degree of protection should be equiva-
lent.

For short-featured forms, morphological
variation probably has little influence on
overall fitness. There is presumably little
direct selection from predatory copepods,
as clones adapted to low mortality coexist
with regressed inducible clones. At inter-
mediate spine lengths, natural selection per-
mits moderate variation (alternative devel-
opmental pathways) because the internal
construction of a spine is less important than
its eventual length. Under intense selection,
there is probably loss of genetic variance
because so few clones can produce ex-
tremely long mucrones and antennules.

The alternative construction patterns of
spines and the random variation of parts
has repercussions on particular statistical
properties. The sampling relationship be-
tween the standard deviation and mean dif-
fers in notable respects from that expected
in a simple two-parameter lognormal dis-
tribution. Within-individual measures (bi-
lateral asymmetry) show that absolute de-
velopmental ““noise” increases with longer
features, yet the increase in within-individ-
ual and between-individual measures is less
than expected, i.e. it is not directly propor-
tional to the absolute mean length.

The statistical basis of this pattern is gen-
eral and probably applies to many morpho-
metric characters. In Bosmina, the elements
that make up the mucrones and antennules
are more variable in length than their sum,
i.e. the entire structure itself. If the sizes of
the units that comprise larger structures are
poorly correlated with each other (both
within and between clones), then the longer
the structure, the lower the expected C.V.
If elements are truly random, which they
are not, then the C.V. is expected to decline
proportional to the square root of length or
count (Pearson and Davin 1924; Lande
1977; Soule 1982). If there is some corre-
lation, the initial decline is still marked, but
longer structures show less decline in C.V.
Attempts to fit linear regressions to ob-
served data produce lower slopes than ex-
pected from mean C.V.,, with positive (ar-
tifactual) intercepts on the y-axis (Fig. 3A).

Kerfoot

This pattern is characteristic of most data
sets and is attributed to a combination of
real reduction in inherent variation and to
a statistical property of large, random num-
bers known as the central limit theorem.
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