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ABSTRACT

Improving Statistical Image Reconstruction for Cardiac X-ray Computed Tomography
by

Jang Hwan Cho

Chair: Jeffrey A. Fessler

X-ray computed tomography (CT) is one of the most widely used imaging modalities for med-
ical diagnosis. Recent advancements in CT scanner technology have led to increased use of CT in
various applications. Unfortunately, these technological advances in CT imaging pose new chal-
lenges such as increased X-ray radiation dose and complexity of image reconstruction. Statistical
image reconstruction methods use realistic models that incorporate the physics of the measure-
ments and the statistical properties of the measurement noise, and they have potential to pro-
vide better image quality and dose reduction compared to the conventional filtered back-projection
(FBP) method. However, statistical methods face several challenges that should be addressed be-
fore they can replace the FBP method universally. Such challenges include substantial computation
time, anisotropic and nonuniform spatial resolution and noise properties, and other artifacts. In this
thesis, we develop various methods to overcome these challenges of statistical image reconstruc-
tion methods.

Rigorous regularization design methods in Fourier domain were proposed to achieve more
isotropic and uniform spatial resolution or noise properties. The design framework is general so
that users can control the spatial resolution and the noise characteristics of the estimator. Experi-
mental results show the proposed method can achieve its goal with modest computation cost. In ad-
dition, a regularization design method based on the hypothetical geometry concept was introduced
to improve resolution or noise uniformity. Proposed designs using the new concept effectively
improved the spatial resolution or noise uniformity in the reconstructed image. The hypothetical
geometry idea is general enough to be applied to other scan geometries.

We investigated various methods to reduce image artifacts in reconstructed images caused by
the short-scan geometry. Statistical weighting modification, based on how much each detector

xx



element affects insufficiently sampled region, was proposed to reduce the artifacts without degrad-
ing the temporal resolution within the region-of-interest (ROI). We also proposed a new metric
to compare the temporal resolution of the proposed method to that of the short-scan reconstruc-
tion. Another approach using an additional regularization term, that exploits information from the
prior image, was investigated. Both methods effectively removed short-scan artifacts in the recon-
structed image. Experimental results revealed advantages and disadvantages of each approach and
their combination.

We accelerated the family of ordered-subsets algorithms by introducing a double surrogate so
that faster convergence speed can be achieved. Furthermore, we present a variable splitting based
algorithm for motion-compensated image reconstruction (MCIR) problem that provides faster con-
vergence compared to the conjugate gradient (CG) method. Experimental results show that our
proposed methods can achieve significant acceleration. The method was also extended to joint
estimation of the motion parameters and the reconstructed image. A sinogram-based motion esti-
mation method that does not require any additional measurements other than the short-scan amount
of data was introduced to provide decent initial estimates for the joint estimation.

Overall, we proposed various methods that have potential to overcome the major challenges of
statistical image reconstruction methods. They were evaluated using simulation and real patient
data, and showed promising results. Future work will address more detailed investigation and
improvements for these methods. Some of these methods can be combined to generate more
complete solutions for CT imaging.
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CHAPTER I

Introduction

X-ray computed tomography (CT) is one of the most widely used medical imaging modalities
for diagnosis. It provides high-resolution images of anatomical structures of a patient for diagnos-
ing various conditions and frequently replaces investigational surgery for treatment planning and
monitoring. Recent advancements in CT scanner technology have led to increased use of CT in
various applications. For example, state-of-the-art scanners have more than 64 detector rows and
are capable of rotating at 0.35 sec per gantry rotation or faster, which allows them to collect full
volumetric datasets in seconds [56]. Fast gantry speed and multi-slice detectors triggered the re-
cent growth in cardiac imaging applications with conventional CT scanners. Unfortunately, these
technological advances in CT imaging pose new challenges such as increased X-ray radiation dose
and complexity of image reconstruction. Concerns regarding the radiation dose have been grow-
ing [53, 70, 81, 125], and a lot of research focuses on reducing the patient dose without degrading
the diagnostic quality of reconstructed image [137].

Factors affecting the image quality in CT scans are the X-ray source intensity, which affects
patient dose, and the image reconstruction algorithm. Reducing the patient dose can be achieved
with reduced X-ray source intensity, but reconstructed images will become much noisier compared
to that of regular dose unless a more advanced image reconstruction algorithm is used. From a
patient dose and image quality perspective, the major trends of the current research in the field are
the following: (i) to develop methods that provide improved image quality, such as finer spatial
resolution and better visibility of microscopic features, at current X-ray doses [14, 83, 93, 130,
143], (ii) to develop methods that obtain comparable image quality to current standards, but with
significantly lower doses [131, 134, 136, 144]. Statistical image reconstruction (SIR), also known
as model-based image (or iterative) reconstruction (MBIR), is a method that has potential to solve
this problem. This thesis addresses various aspects of statistical image reconstruction methods and
explores ways to overcome the challenges that it is currently facing.
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1.1 Statistical image reconstruction in X-ray CT imaging

Image reconstruction is the mathematical process of computing an image of the object be-
ing measured in an imaging modality. The process involves the measurements obtained by the
modality and their physical characteristics determined by instrument settings. Due to the nature
of the data acquisition in a CT scanner, image reconstruction for CT is prone to image artifacts
and encounters many challenges to generate a clinically acceptable image. These difficulties are
caused by various factors such as the nature of the physics, characteristics of the patient, sub-
optimal system design and its usage, and limitations in the current scanning and reconstruction
technologies [14, 56]. Many of these problems can be mitigated with advanced hardware having
faster gantry speed, better data acquisition system (DAS), etc.. However, modifying the hardware
is expensive and not trivial. The role of image reconstruction methods is very critical for this
reason.

Today, two major families of image reconstruction methods are being used for X-ray CT: the
filtered back-projection (FBP) method and the statistical image reconstruction method. All com-
mercial X-ray CT systems use the FBP method for image reconstruction, and only some of the
state-of-the-art scanners support statistical methods (e.g., GE’s VeoTM). After being mathemati-
cally developed in 1917 [100], FBP method has been the major image reconstruction method in
tomography for almost 50 years [30] by extending its use to more advanced scanning geometries
such as cone-beam and helical. The model for CT systems used in FBP is very idealized in the
sense that it disregards random noise in the measurements. It also assumes the following [56]: (i)
the focal spot is infinitely small and can be approximated by a point, (ii) the shape and dimension of
each detector cell is ignored, (iii) the size and shape of the reconstruction image voxels are ignored
and assumed to be infinitely small. Even though this idealized model does not represent reality, it
works well with regular X-ray dose, and FBP produces reasonably good images. However, failure
to consider the statistical properties of the measurement noise leads to unacceptable image quality
when the dose is significantly lowered. The reconstructed image suffers from severely increased
streak artifacts as radiation dose is reduced [62]. Other assumptions may also impact the image
quality in other ways.

Statistical image reconstruction methods, on the other hand, use realistic models that incorpo-
rate the physics of the measurements and the statistical properties of the measurement noise [40].
Compared to FBP, statistical methods are much more flexible and accurate, because modeling dif-
ferent kinds of physical constraints is easier with these methods. Even though there have been
attempts to integrate some aspects of statistical methods into FBP method [141, 142], it is difficult
to develop a FBP method with all of the above models.

The difference between the FBP method and the statistical method can be described by using
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(a) (b)

Figure 1.1: Maps with (a) limited information1 and (b) detailed road maps and satellite informa-
tion2

the following example in everyday life. Suppose you arrived at a region where you have never been
before and are looking for the hotel that you reserved. If all you have is just a crude map with only
major streets and few landmarks (Fig. 1.1 (a)), it is likely that you will have difficulties finding
the hotel. Since you have all the necessary information, you can still arrive at the destination, but
chances are your search paths would be inefficient and time consuming. On the other hand, if you
have a GPS with satellite information (Fig. 1.1 (b)), you’ll be able to reach at the hotel in a very
efficient manner. The device can provide you with information such as well-modeled road maps,
current traffic status, and construction and detour information. Your paths may be comparably
efficient if you are in the region with few roads and structures, but they may become very different
if you are in a big city. The reconstructed image in CT imaging can be compared to the path that
you took in this example. Similar to having a crude map in this example, FBP can certainly provide
a reasonable image but its quality may fluctuate depending on various factors like dose. Statistical
methods are like having a GPS that can provide various information such that it can produce good
images in more flexible and stable manner. Accurate physical models can be compared to the road
map data in the GPS, and the current traffic and road status is somewhat analogous to statistical
properties of measurements.

Statistical image reconstruction methods have shown their advantages and potential in clini-
cal cases for positron emission tomography (PET). All commercial PET scanners are equipped
with statistical image reconstruction methods, and they provide improved image quality over FBP
methods [91]. In contrast, even though commercial scanners with statistical methods have been
recently launched, the classical FBP image reconstruction method with possible combinations of
pre- or post-processing denoising steps [69, 77] is still the dominant reconstruction method in
commercial CT scanners. There are several possible reasons for this discrepancy: (i) polyenergetic

1 c©2008 University of Michigan, MM&D
2 c©2014 Google
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nature of the X-ray source spectrum (ii) much larger data sizes and computational requirements for
CT (iii) the FBP image quality in CT is reasonably good compared to that in PET, thus reducing
the impetus for using the statistical image reconstruction method (iv) physicians are accustomed
to FBP images and their (noisy) texture. However, most of these challenges can be addressed
by sophisticated algorithm designs, and as emphasized several times above, the favorable image
quality comes at the expense of high X-ray dose. The statistical image reconstruction method has
many potential advantages for CT imaging over the conventional FBP method, and thus it is being
extensively investigated in various applications.

1.2 Limitations of statistical image reconstruction methods

The feasibility of statistical image reconstruction methods has been demonstrated in [124] in
terms of noise, resolution, and artifacts. Other literatures have shown that statistical methods can
provide better image quality in these criteria [16, 97, 133]. Such improvements in image quality
become more apparent in low-dose scans where FBP reconstruction suffers from increased streak
artifacts [62]. However, there are still many factors needing to be addressed to ensure the success
of statistical methods in clinical applications. Diagnostic readability of the reconstructed images
depends on various characteristics such as texture, resolution, noise, and artifacts. Here, we in-
troduce major challenges that statistical image reconstruction methods are facing currently. We
provide possible solutions to each of these problems in the following chapters.

1.2.1 Image artifacts

Due to the complex nature of statistical image reconstruction, some image artifacts appear in
the reconstructed image that were not noticeably visible in that of FBP methods. These artifacts
can be in the form of shading, correlated texture, etc.. Reasons for these artifacts are not clear,
and they may result from combinatorial effects of various factors including regularization design
and insufficient sampling. Furthermore, since various kinds of artifacts appear in the reconstructed
image such as motion artifacts, beam hardening and streak artifacts [14], it is hard to isolate the
cause of each artifact in the image. No matter how local and insignificant an image artifact appears,
it can affect the diagnostic readability and impair the integrity of the reconstructed image. In
this dissertation, we focus on the short-scan artifact that results from using a standard short-scan
scanning protocol for cardiac CT.
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1.2.2 Anisotropic and nonuniform spatial resolution and noise characteristics

Spatial resolution or noise properties of reconstructed images are often used as criteria to eval-
uate imaging systems. Sharp spatial resolution is usually preferred, but it must be balanced with
appropriate levels of noise. For diagnostic readability, having uniform and isotropic spatial resolu-
tion and noise characteristics are desirable. Unlike many imaging systems that are approximately
shift-invariant, CT systems are shift-variant due to their physical nature. For example, in fan-beam
CT, more rays are concentrated at the edges of the image compared to the center of the image. In
addition, statistical image reconstruction methods use the shift-variant statistics of an object such
that the resulting estimators often have shift-variant characteristics.

Spatial resolution and noise properties of reconstructed images can affect the readability of
these images, especially for detecting lesions. Anisotropy and nonuniformity of the spatial resolu-
tion can distort the shape of certain features in the reconstructed image and also its amplitude [113].
Also, anisotropic and nonuniform noise properties mean different levels of noise for varying voxel
locations, and can affect the texture of the reconstructed image. Having these effects in the re-
constructed image is obviously undesirable for diagnostic purposes. Therefore, controlling spatial
resolution and noise properties for the statistical image reconstruction methods is very important,
and has been researched widely [90, 99, 108, 116, 118, 138].

Since uniform spatial resolution and noise characteristics cannot be achieved at the same time,
controlling their balance in the reconstructed image is very important. However, there is no clear
guideline for such balance because each physician may have different preference for the recon-
structed image quality. Therefore, having an ability to control spatial resolution and noise charac-
teristics according to user-selected criteria is highly desirable.

1.2.3 Computational cost

In spite of many potential advantages of the statistical image reconstruction method, the method
is not being used ubiquitously in clinical CT imaging yet. One major drawback of the method is the
high computational intensity compared to FBP methods. Unlike FBP methods that only require
one back-projection and additional post-filtering steps, statistical image reconstruction methods
minimize a complex cost function consisting of a data-fitting term incorporating the system model
and the measurement statistics, and a regularizer term designed to enforce additional constraints
on the reconstructed image such as smoothness and edge-preservation. Minimization of the cost
function is generally performed by an iterative algorithm that requires multiple iterations involving
forward- and back-projections, and thus computationally extensive. Usually, the computation time
taken to execute one iteration of an iterative algorithm is larger than that of a FBP method due to an
extra forward-projection operation. In addition, even the highly efficient algorithms require more
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than tens of iterations to reach a certain convergence criteria. Reducing the computational cost for
statistical methods is thus one of the most active research topics in the field of CT imaging.

1.2.4 Temporal resolution and motion artifacts

Limited temporal resolution and resulting motion artifacts are not caused by using a statisti-
cal image reconstruction method, but rather are the result of inherent limitations of the imaging
modality and patient motion. Many imaging systems dealing with an object with motion suffer
from certain spatial and temporal trade-off in image acquisition, and some of them have difficulties
achieving both good spatial and temporal resolutions. Unfortunately, CT falls into this undesirable
category. As mentioned earlier, the gantry speed of state-of-the-art CT scanners is 0.35 seconds per
rotation or faster. This is enough to obtain a non-cardiac image without having noticeable motion
blur as patients can hold their breath during the scan. However, the situation changes for cardiac
scans for the following reasons. First, cardiac motion is involuntary. Second, the gantry speed is
not fast enough to avoid motion blur especially when the heart rate of the patient is faster than 75
beats-per-minute (BPM). Third, a CT scanner with 64 detector rows, which is still dominant in
clinical settings, can cover only part of the heart at one scan, thus requires multiple scans to obtain
an image of the entire heart.

There exist some solutions to these issues. Beta blockers can be used for short term reduction
of the heart rate prior to cardiac CT scans, and they are safe and effective with well-established
protocols. However, beta blockers do not guarantee to lower the heart rate as desired and may have
contraindications for certain patients [80]. Some hardware improvements such as faster gantry
speed and wider cone angle for cone-beam CT have been introduced by certain manufacturers,
and these modifications will be made constantly as technology evolves. However, as previously
mentioned, hardware modification, such as advanced gantry or dual source CT, is expensive and
nontrivial. Solutions with new scanning protocols or reconstruction methods are thus desired. The
statistical image reconstruction method can provide the solution to this problem by incorporating
motion models.

1.3 Contributions of this dissertation

This dissertation addresses the challenges of statistical image reconstruction methods for car-
diac CT problem.

First of all, we investigated various methods to reduce the image artifacts in reconstructed
images obtained from the short-scan approach. We mainly approach the problem from the reg-
ularization design point of view. We proposed regularization design methods to obtain isotropic
and uniform spatial resolution or noise properties [19–21]. Two different types of regularization
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design methods were investigated: one using the Fourier domain approach like previous works in
the field, and the other using a new hypothetical geometry concept. Experimental results with both
clinical data and phantom study illustrate the advantages and limitations of each method.

Secondly, we approach the short-scan artifact problem by improving the sampling condition
at undersampled voxels. Starting from simple extrapolation methods, we investigate methods that
use all the available information, such as additional measurements or initial reconstruction, to
reduce short-scan artifacts while maintaining the temporal resolution within the region-of-interest
(ROI) of the reconstructed image. Statistical weighting modification method and additional prior
regularization were proposed and evaluated with phantom simulations for different cone-angles.
Furthermore, combination of these methods were investigated.

Finally, we accelerated the statistical image reconstruction method for the cases with and with-
out motion-compensation. We proposed an acceleration scheme for conventional ordered-subsets
type methods using a “double surrogate” idea [17] in the case of no motion-compensation. For
motion-compensated image reconstruction, we proposed an acceleration scheme using variable
splitting approach [24, 25]. In general, motion-compensated image reconstruction relies heavily
on the motion estimates, and imperfect estimates leads to residual artifacts. Joint estimation of
both motion parameters and reconstructed images have potential to address this issue, but they still
require good initial conditions and acceleration scheme. We investigated a sinogram-based motion
estimation method [18] that does not require any additional measurements other than the short-scan
amount of data. Estimated motion can serve as decent initial estimates for joint estimation of both
motion parameters and reconstructed images. Lastly, we extend the variable splitting approach
to the joint estimation. Experimental results show that the proposed acceleration algorithms con-
verge faster compared to the conventional ordered-subsets type algorithms and nonlinear conjugate
gradient algorithm, respectively.

1.4 Outline of the dissertation

This dissertation is organized as follows.
Chapter II describes models used in the statistical image reconstruction and a mathematical

framework for incorporating motion models into the image reconstruction process. Short-scan
artifacts are introduced with examples in this chapter.

Chapter III presents regularization designs methods to improve resolution and noise properties
and reduce artifacts. Two separate regularization design methods were proposed to achieve more
isotropic and uniform spatial resolution and noise properties, respectively.

Chapter IV investigates additional regularization design methods using the hypothetical geom-
etry idea. The designs are more focussed on the uniformity of resolution and noise throughout the
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volume, including undersampled regions.
Chapter V introduces methods to reduce short-scan artifacts in the reconstructed image. Statis-

tical weighting modification approach that controls the contribution of the weights associated with
the extra measurements was proposed. Additionally, new prior regularization term using structural
information from an initial reconstruction was introduced.

Chapter VI presents how to accelerate conventional ordered-subsets type algorithms and motion-
compensated image reconstruction methods. A sinogram-based motion estimation algorithm that
obtains the motion estimates without any additional measurements other than short-scan data was
introduced to obtain feasible initial motion estimates.

Finally, Chapter VII concludes the thesis and outlines the proposed future work.
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CHAPTER II

Background

In this chapter, we first review statistical image reconstruction methods for X-ray CT problems.
We also describe motion-compensated image reconstruction methods within MBIR framework.
Mathematical models and cost functions for these methods will be presented. The models and
methods presented in this chapter are general enough to represent different imaging modalities.
However, if necessary, more specific assumptions will be made in other chapters. Finally, we
introduce short-scan artifacts that are specific to 3D cone-beam CT.

2.1 Statistical image reconstruction (SIR) methods

The purpose in X-ray CT imaging is to accurately estimate the spatial distribution of the linear
attenuation coefficient μ(r, E) of the patient being scanned, where r denotes spatial location and E
parameterizes the dependence on incident photon energy [40]. We need the following steps for any
statistical image reconstruction method [37]: (i) object parameterization, (ii) modeling the system
physics, (iii) modeling the measurement statistics, (iv) defining a regularization, and (v) designing
an iterative algorithm for minimizing the cost function.

2.1.1 Object model

The object can be parameterized using a finite linear combination of basis functions:

μ(r) =

np∑
j=1

xjBj(r), (2.1)

where np is the number of coefficients xj , r denotes the 3D spatial coordinates and Bj denotes
the jth basis function. Now, our goal is to reconstruct the coefficients x = (x1, · · · , xnp) from
the measurements. Notice that we disregarded the dependence of μ on X-ray photon energy E for
simplicity. However, when we are dealing with the patient data, we accounted for the effects of
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beam hardening using the standard polynomial water correction [67,85]. Throughout the thesis, we
use cubic basis functions corresponding to square voxels, but the methods could be generalized to
consider other types of basis functions such as smooth basis functions, so-called “blobs”, in [145]
at the expense of increased computation. For cone-beam CT, one practical matter to consider is
that statistical image reconstruction methods need to account for the entire portion of the object
that contributes to the measurements, which means that we also need to reconstruct axial slices
that are outside of the detector coverage. This prevents artifacts from propagating into the ROI,
and helps reconstructing end slices that are always under-sampled compared to center slices (“long
object problem”). Therefore, in practice, np includes the number of voxels in the diagnostic ROI
and also the “padded” slices.

2.1.2 System and measurement models

Let the random variable Yi represent the signal recorded for the ith ray. We use the following
statistical model for the measurements:

E[Yi] = Ȳi = bi exp

(
−
∫
Li

μ0(r)dl

)
+ ri, (2.2)

where bi is the intensity of the ith measurement, ri denotes the background contributions from
factors such as scatter, and crosstalk, Li is the line between the source and detector for the ith ray,
and μ0 � μ(r, E0) is the linear attenuation coefficient at the given source photon energy E0 [40].

Let y = (y1, · · · , ynd
) denote the vector of noisy sinogram measurements after taking the

logarithm and having been corrected for physical effects such as beam hardening, where nd is the
number of measured sinogram values. The mean of each measured sinogram data value yi has the
following linear relation with the attenuation coefficients:

E[yi] =

∫
ai(r)μ(r)dr, i = 1, · · · , nd, (2.3)

where ai(r) is the system response accouting for effects like finite source and detector size, and
other detector characteristics [57]. Substituting (2.1) into (2.3) yields the following linear system

E[yi] = ȳi =

np∑
j=1

aijxj � [Ax]i, (2.4)

where A is the nd × np system matrix with the following elements

aij �
∫
ai(r)Bj(r)dr. (2.5)
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In this thesis, we model A using either the separable footprint method [79] or the distance-driven
method [32] for forward- and back-projection operators.

2.1.3 Statistical modeling

The measurement noise statistics can be modeled using a probability density function by relat-
ing the measurements yi to their mean values E[yi]. The physical processes in the data acquisi-
tion system mainly affect these statistics. For current integrating detectors, the statistics of X-ray
measurements is a complicated mixture of compound Poisson photon distribution and Gaussian
electronic noise [132]. In practice, the following simple models have been used successfully: (i) a
Poisson model for pre-log data Yi in a discretized form of (2.2) can be written as [77]

Yi ∼ Poisson{bi exp(−[Ax]i)+ri}, (2.6)

where i = 1, · · · , nd, and bi and ri are assumed to be known. (ii) The quadratic approximation
of the negative log-likelihood of (2.6) implies that the post-log data yi in (2.3) is approximately a
Gaussian random variable [38, 107]

yi ∼ N

(
[Ax]i,

Ȳi
(Ȳi − ri)2

)
. (2.7)

2.1.4 Cost function formulation for SIR

Statistical image reconstruction methods reconstruct an image x̂ from noisy measurements y
by minimizing a cost function, Ψ(x):

x̂ = argmin
x

Ψ(x) . (2.8)

The cost function consists of a negative log-likelihood or a data-fidelity term L- (x), which is ob-
tained from the statistical models described above, and a regularization or a penalty term R(x).

Ψ(x) � L- (x)+R(x) . (2.9)

For independent measurements, we can express the log-likelihood term in more convenient form
[40]:

L- (x) =
nd∑
i=1

hi([Ax]i). (2.10)
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The function hi(l) is determined by the selected statistical model. For Poisson model in (2.6), the
marginal log-likelihood of the ith measurement is

hi(l) = (bi exp(−l)+ri)− Yi log(bi exp(−l)+ri), (2.11)

and this function is convex if ri = 0. Based on the Gaussian model in (2.7) and the mean-variance
relationship, the negative log-likelihood of the measurements can be approximated by a weighted
least-squares (WLS) function:

hi(l) =
1

2
wi(l − yi)2, (2.12)

where the weights wi should be the reciprocal of the variances of the measurements by the Gauss-
Markov theorem:

wi �
1

σ2(E[yi])
=

(Ȳi − ri)2
Ȳi

. (2.13)

In practice, the mean of the measurements is unknown so typically the weightings are estimated
by using a plug-in approach, i.e. wi ≈ 1/σ2(yi). In this thesis, we mostly focus on using the WLS
cost function. One potential drawback of the WLS cost function (2.12) is the use of the logarithm,
which may lead to negative measurements for some rays in the very low dose cases. However, this
issue is not one of our focuses, so we simply set the weights to zero for such rays assuming that
they do not carry much useful information.

A regularization term is added to the log-likelihood term to control the noise and possibly
enforce additional requirements to the reconstructed image. Such requirements include edge-
perservation, non-negativity, and space-invariant spatial resolution or noise. Furthermore, adding
regularization can assist convergence by reducing the condition number of the problem. Absence
of regularization may result in undesirably noisy image. We can write a regularization function as
the following form:

R(x) =

np∑
j=1

Nl∑
l=1

βl
jψl ((cl ∗ ∗ ∗ x) [n,m, z]) , (2.14)

whereNl is the size of the neighborhood, which is usually 13 in 3D, βl
j is the regularization param-

eter that balances between the data-fitting term and the regularizer, ψl is the potential function, ∗∗∗
denotes 3-D convolution, we define a first-order differencing function that penalizes lth neighbor
as

cl[n,m, z] =
δ[n,m, z]− δ[n− nl,m−ml, z − zl]√

n2
l +m2

l + z2l
, (2.15)

δ[n,m, z] is a Kronecker impulse at the location [0, 0, 0], and nl,ml, zl denote the offset of the lth
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neighbor. The regularization parameter βl
j is commonly defined as the following separable form

βl
j � βrlκjκj−jl , (2.16)

where β is a constant that determines that overall strength of the regularizer, jl denotes the off-
set of the lth neighbor in lexicographical order, {rl} are the directional coefficients, and κj is the
user-defined weight for controlling spatial resolution and noise in the reconstructed image [42]. A
typical choice of the directional weights is rl = 1, ∀l, but they also can be selected more sophisti-
catedly as in [138]. Substituting (2.16) to (2.14) leads to the following expression for a regularizer

R(x) = β

np∑
j=1

κj

Nl∑
l=1

κj−jlr
lψl ((cl ∗ ∗ ∗ x) [n,m, z]) , (2.17)

where, in this case, β is usually referred to as the regularization parameter.
Selection of the potential function ψl influences the quality and the characteristics of the re-

constructed image. For example, when ψl(t) = t2/2, i.e., a quadratic potential function, the
reconstructed images become smooth everywhere including the edges. Since this is undesirable,
edge-preserving potential functions are used. These functions can reduce noise while preserving
edges because they are quadratic near zero but linear above certain value, δ. The parameter δ de-
termines the threshold for what values of contrast differences should be preserved. Here are some
examples of edge-preserving potential functions:

• Hyperbola [94]:

ψ(t) = δ2
[√

1 + |t/δ|2 − 1

]
, (2.18)

• q-Generalized Gaussian [124]:

ψ(t) =
1
2
|t|p(

1 + |t/δ|(p−q)r
)1/r

, (2.19)

• Fair [35]
ψ(t) = δ2 [|t/δ| − log(1 + |t/δ|)] . (2.20)

We mostly focus on using convex and edge-preserving regularization in this thesis, and assume
ψl = ψ, ∀l.
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2.1.5 Iterative optimization algorithm

In statistical image reconstruction, the reconstructed image x̂ is obtained by minimizing the
cost function (2.8). In general, there is no closed form solution for the minimizer x̂. Even for the
quadratic cost function case where an analytical solution exists, direct calculation of this solution
is impractical due to the enormous size of the system matrix. Therefore, we must use an iterative
algorithm to minimize the cost function. One starts with an initial guess x0, which is typically the
available FBP image, and then proceeds to refine the solution recursively. The reason why statisti-
cal methods are less practical compared to the conventional FBP approach is this necessity for an
iterative process, which results in high computation time. Various methods have been proposed to
obtain the solution in efficient manner, and thus reduce the computational burden [8, 74, 87, 139].

2.2 Motion-compensated image reconstruction (MCIR) methods

Even with the fast acquisition speed of commercial scanners, motion artifacts such as blurring
and streaks are still a significant issue in CT image reconstruction, especially for cardiac CT imag-
ing. Various methods have been proposed to address this problem [47, 50, 68, 109, 120]. Many of
these are gated reconstruction methods that use only the projection data corresponding to approx-
imately the same motion state, preferrably from a phase with the least cardiac motion. Diastolic
phase of the heart cycle is an ordinary choice. For most practical purposes, a temporal resolution
of 100 msec or less is enough to obtain reasonable images from diastole [111].

Gated reconstruction methods can be categorized into prospective ECG triggering and retro-
spective ECG gating. They both use simultaneously recorded ECG signals, but in different ways.
Prospective ECG triggering uses a ECG signal to determine when to acquire data. On the other
hand, retrospective ECG gating utilizes it to group the scan data from the same phase for im-
age reconstruction. These methods can provide promising results in terms of image quality and
processing time, but they suffer from limitations such as dose inefficiency and limited temporal res-
olution. Prospective ECG triggering is more dose efficient, but depends highly on a regular heart
rate of the patient, which can lead to misregistration in the presence of arrhythmia. Retrospective
ECG gating enables continuous and phase-consistent coverage of the entire heart, but suffers from
inefficient dose [111]. Especially for fast and arrhythmic cardiac motion, both methods may be
subjected to residual motion artifacts [63].

Motion-compensated image reconstruction (MCIR) methods exploit all collected data and use
the motion information to obtain better spatial and temporal resolution and less motion-blurring
[27,31,48,51,63,121–123,129]. This section of the chapter describes the mathematical models for
the MCIR method, and they are general enough to represent different medical imaging modalities.
However, specific assumptions will be made focusing on CT.
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2.2.1 Measurement model

In addition to previously defined measurement model for CT (2.4), we add temporal depen-
dence as follows. Let x(r, t) denote the time-dependent attenuation coefficient distribution of the
unknown object, where r is the spatial location and t is time. Let tm be the time of mth frame at
which the measurements, ym, corresponding to the motion-free state of the objects are acquired.
We assume that the measurements consist of Nf scans, y = [y1, · · · ,yNf

]. The measurements
were assumed to be linearly related to the object xm = {x(·, tm)} as follows:

ym = Amxm + εm, m = 1, · · · , Nf , (2.21)

where Am is the system model for mth frame and εm is the noise. For the cases of CT that rotate
during the scan or MRI that have dynamically changing sampling, the system model Am will be
different for each frame. On the other hand, for cases like a video sequence or an attenuation
corrected PET, we can assume the same system model for every frame [26].

2.2.2 Deformation model

Throughout the thesis, we use cubic B-splines as our deformation models, because of their
properties such as smoothness and computational efficiency including separability. A nonrigid
transformation T in 3D can be represented as

T (r) = r + d(r), (2.22)

where r = (x, y, z) denotes the 3D Cartesian spatial coordinates, and d(r) is the displacement. A
tensor product representation of the 3D displacement d = (dx, dy, dz) is

dp(r;α) =
∑
i,j,k

αp
ijkBs

(
x

mx

− i
)
Bs

(
y

my

− j
)
Bs

(
z

mz − k
)
, (2.23)

where mp is a spacing between knots in the p direction where p ∈ {x, y, z}, and Bs is a cubic
B-spline basis function. Other deformation models like thin plate splines (TPS) [82] are also used.

2.2.3 Object and interpolation model

The object xm(r) � x(r, tm) can be parameterized with a basis function B:

xm(r) =

Nb∑
l=1

cmlB(r − ql), (2.24)
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where Nb is the number of basis functions and ql denotes the spatial coordinate of the center of the
lth basis function. From (2.23) and (2.24), a deformed object can now be represented as

xm(r + d(r, α)) =

Nb∑
l=1

cmlB(r + d(r;α)− ql). (2.25)

In a simple matrix-vector form, (2.25) can be rewritten as follows:

xm(rn + d(rn, α)) = T (α)cm, (2.26)

where xm = [xm(r1), · · · , xm(rnp)] denote a discretized vector of xm(r) with np samples located
at {rn}, cm = [cm1, · · · , cmNb

] is the image coefficients for the mth frame image, and T (α) is the
np ×Nb warp matrix that has elements

[T (α)]nl = B(rn + d(rn;α)− ql).

In this thesis, we use a tensor-product of cubic B-splines as our basis function B.

2.2.4 Warp model

For convenience, we define the following notations:

xj = Tj,ici, T0 = Ti,i, (2.27)

where i, j = 1, · · · , Nf , Tj,i is a warp from the coefficients of ith frame to the jth frame image,
and T0 denotes the interpolation operation with given coefficients. For our analysis, we use the
following approximations for the image to image warp

xj ≈ Tj,iT
−1
0 xi, (2.28)

where T−1
0 operation with B-spline basis functions is well-defined [128]. Finally, for notational

simplicity, we denote Ti as the warp from a reference image xref to ith frame image xi:

xi ≈ Ti,refT
−1
0 xref � Tixref . (2.29)

2.2.5 Cost function formulation for MCIR

The cost function for MCIR methods can be represented in the following typical form [26]

Ψ(y1, · · · ,yNf
|x1, · · · ,xNf

, α1, · · · , αNf
). (2.30)
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The goal is to reconstruct {xm} from {ym} using a motion model. The motion parameters {αm}
may be estimated in advance or sequentially from separate motion estimation methods [11, 45, 55,
61,64], or jointly estimated [13,27,122,123]. The cost function (2.30) typically consists of a data-
fidelity term, a regularizer for the reconstructed image, and a regularizer for the motion parameters
for the case of joint estimation. The detailed formulations of the cost function will be described
more in detail in Chapter VI.

2.3 Introduction to short-scan artifacts

In this section, we describe short-scan artifacts that appear in the reconstructed image of 3D
cone-beam CT scans, especially when the short-scan protocol is used.

(a) (b)

Figure 2.1: (a) X-ray source trajectories of full-scan and short-scan approaches for axial CT. (b)
Fan and cone angles of X-ray cone-beam.

Due to significantly reduced data acquisition time, the short-scan approach, which has angular
span of π+2γ where γ is the fan angle of the projection (Fig. 2.1 (b)), has advantages like improved
temporal resolution and lower dose compared to the full-scan approach at the expense of increased
image noise level, unless the tube current is increased accordingly (Fig. 2.1 compares X-ray source
trajectories of full-scan and short-scan approaches for axial CT). However, reduced angular span
from 2π to π + 2γ leads to insufficient sampling3 at certain locations in third-generation CT ge-
ometry.

Fig. 2.2 shows that as we move away from the iso-plane more voxels are being insufficiently
sampled, and thus end slices are most affected. Most of the voxels in end slices has sampling from

3In this study, “full” or “sufficient” sampling do not mean that they satisfy the complete sampling conditions
derived in [92, 127], but rather mean that the voxel is seen in every projection view. Thus, insufficient sampling
indicates the voxel is seen from only part of the projection views.
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less than short-scan amount of views, and this situation will become more severe as the cone angle
becomes larger (Fig. 2.1 (b)).
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Figure 2.2: (a) Diagram of sampling at each slice for axial CT geometry (b) Number of views
passing through each voxel for 64 slice scanner with 70 cm FOV: Center slice (left) and
end slice (right). A short-scan with 642 angular views were simulated and a circular
mask was used. Display range is [0 642].

Insufficient sampling at end slices, when regularized iterative reconstruction method is used to
reconstruct an image from short-scan projection data, can cause the following artifacts.

2.3.1 Distortion and shading

Fig. 2.3 compares the reconstructed images of the XCAT phantom at an end-of-ROI slice for
both full-scan and short-scan measurements. A 256 slice CT scanner was simulated to obtain the
measurements. The reconstructed image of short-scan data, on the contrary to that of full-scan
data, shows severe distortions in some structures, especially around high contrast structures, and
shadings at several locations.

2.3.2 Resolution nonuniformity

Short-scan measurements corresponding to a 256-slice scanner were simulated to observe lo-
cal impulse responses, defined as (3.6) in Chapter III, at different locations. Fig. 2.4 (a) shows
contour plots of local impulse responses at two different locations from a center slice and an end
slice, respectively. We can observe that each local impulse response has an anisotropic shape and
also is different from each other. Such anisotropic shapes of local impulse responses represent
anisotropic resolution in the reconstructed image (see Chapter III). As shown in Fig. 2.4(b), local
impulse responses at different locations have different peak values, which will result in resolution
nonuniformity in the reconstructed image (see Chapter IV).
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(a) (b)

Figure 2.3: Reconstructed images of the XCAT phantom at end slice from (a) full-scan projection
data (b) short-scan projection data. A 256 slice CT scanner was assumed to obtain the
measurements.
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Figure 2.4: Comparison of local impulse responses at two different locations: a center slice and
an end slice. A 256-slice scanner with short-scan measurements were simulated. (a)
Contour plots of xy, xz, and yz profiles. Each contour was plotted based on its own
peak value. (b) Plot of x profiles through the center of each impulse response.

2.3.3 Nonuniform and correlated noise characteristic

Fig. 2.5 (a) compares the local noise correlations, defined as (3.37) in Chapter III, at two differ-
ent slices: a middle slice and an end slice. A 256-slice CT scanner was simulated and the XCAT
phantom was used as an object. The local noise correlations show nonuniform and anisotropic
shapes that will result in nonuniform and correlated noise property in the reconstructed image. Re-
constructed images of the XCAT phantom at an end slice and a middle slice are shown in Fig. 2.5
(b). Standard deviation of the image values at the selected uniform regions shows that the noise is
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nonuniform in the reconstructed image.

(a)

(b)

Figure 2.5: (a) Comparison of local noise correlations at two different locations: a middle slice
and an end slice. Contour plots of xy, xz, and yz profiles are presented. Each contour
was plotted based on its peak value. (b) Reconstructed images of the XCAT phantom
at an end slice (left) and a middle slice (right). Standard deviation of image values at
the selected regions are shown.

Even though the short-scan artifacts were categorized as above, they are closely interconnected
to each other and appear simultaneously in the reconstructed image. These artifacts are undesirable
and may prohibit accurate diagnosis, and thus need to be removed or at least mitigated.
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In the following chapters, we investigated various methods that addresses different short-
scan artifacts. Two Fourier domain based regularization design methods in Chapter III address
anisotropic and nonuniform spatial resolution and nonuniform and correlated noise property, re-
spectively. In Chapter IV, regularization design methods using a hypothetical geometry concept
focuses on improving uniformity of spatial resolution or noise in the reconstructed image. Finally,
Chapter V presents methods that remove most of short-scan artifacts, especially distortions and
shadings, by using all available information.
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CHAPTER III

Regularization designs for isotropic and uniform spatial
resolution and noise

While statistical image reconstruction methods have potential advantages over conventional
FBP reconstruction such as reduced patient dose and improved noise properties, their use of sta-
tistical weighting and space variant scanning geometries can lead to nonuniform and anisotropic
spatial resolution and noise characteristics. This holds even for idealized shift-invariant imaging
systems [42], and becomes most severe near the end slices of 3D axial or helical CT.

Conventional regularizers defined as (2.17) have space variant nature, but only in the sense
of overall regularization strength at each location. Regularization strength between a voxel and
its neighbors is usually determined by object independent factors such as voxel size and distance
between a voxel and its neighbor, and thus is the same for all voxels. Such regularizers are not
enough to compensate for anisotropic image properties induced by statistical weighting and space
variant scanning geometries. Therefore, in this chapter, we investigate regularizers having spatially
varying regularization strength between each voxel and its neighbors.

As a preliminary study, we investigated heuristic regularizer designs for mitigating short-scan
artifacts, especially nonuniform spatial resolution. Our goal for this study was to learn whether
modifying the directional strength of the regularizer can lead to improved resolution uniformity
and reduced distortion. The basic idea to overcome the lack of sampling was to make the voxels
with insufficient sampling depend more on the neighbors with better sampling. Motivated by
the success of zeroth-order extrapolation for FBP reconstruction, we investigated a design that
enforces stronger axial regularization in axial direction and less for other directions. Having strong
axial direction regularization for insufficiently sampled region may have similar effect as what
FBP is doing in practice. Experiments with clinical and phantom data showed some promise
for improving resolution uniformity. However, the methods showed clear limitations including
dependence on empirical parameter selection. Details of this preliminary study are not presented

This chapter is based on [19, 20]
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in the thesis, but the study motivated more systematic regularization design methods presented in
this Chapter.

We propose quadratic regularization design methods for 3D axial X-ray computed tomography
(CT) that aim to improve isotropy and uniformity of resolution and noise, respectively. Simulations
and a phantom experiment show that the proposed methods lead to more uniform and isotropic
spatial resolution and noise characteristics in 3D axial CT with modest computational cost.

The focus of these methods is to design the regularization parameter, βl
j , to achieve the goal.

Instead of directly modifying the regularization parameter βl
j in (2.14), we design the directional

weights {rl} in (2.17) for each voxel, leading to {rlj}. The main reason for taking this approach is
that the directional weights {rl} have much smaller dynamic range compared to the regularization
parameter βl

j and can be more intuitively constrained by certain conditions, such as fixed norm,
during the design process. However, the designs proposed in this chapter can be readily applied to
directly modifying the regularization parameter βl

j .

3.1 Quadratic regularization design for isotropic and uniform spatial reso-
lution

Some may argue that forcing isotropic resolution can interrupt detection and quantification of
lesions [96]; however the importance and consequences of isotropic and uniform spatial resolution
still require more investigation. In addition, the method developed in this section is not limited
to isotropic and uniform spatial resolution designs, but can be used for other user-defined spatial
resolution criteria. The spatial resolution of the reconstructed image should be controlled by the
users, and not just obtained as an arbitrary byproduct of the estimator used [113].

Several previous regularization designs aim to match the local impulse response of the estima-
tor to a target impulse response by matrix manipulations and discrete Fourier transforms [42,119].
Due to the large number of voxels in the image volume, regularization design methods based on
discrete Fourier transforms would require prohibitive computational cost, especially for 3D axial
or helical CT. A fast analytical regularization design method for 2D fan-beam X-ray CT that uses
continuous space analogs to simplify the regularization design problem was proposed in [116].
In [115], the authors addressed the problem for 3D axial CT, but for a simplified 3D system that
was modeled as a stack of 2D fan-beam systems. In this section, we propose a regularization de-
sign for 3D axial X-ray computed tomography (CT) accounting for cone angle. Simulations and
a phantom experiment show that the proposed method leads to more uniform and isotropic spatial
resolution in 3D axial CT with modest computational cost.
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3.1.1 Local frequency response

From (2.9), (2.10), and (2.12), we obtain the following penalized weighted least squares (PWLS)
objective function

Ψ(x) = L- (x)+R(x), L- (x) =
1

2
‖y −Ax‖2W , (3.1)

where W = diag{wi} is a statistical weighting matrix, and R(x) is defined as (2.17). Our purpose
is to improve the regularizer R(x), by designing the directional weights {rlj}, such that our local
impulse response (LIR) lj matches a target l0 that has more isotropic spatial resolution, at every
voxel j. We simplify this process by turning to the frequency domain. As mentioned in the begin-
ning of the chapter, the design process in the section can be readily applied to directly modifying
the regularization parameter βl

j in (2.14).
When we use different weights for each location or asymmetric weights, our iterative algorithm

also needs to be modified to take that into account. The gradient of the regularizer (2.17) now
becomes:

∇x R(x) =

[
· · · , ∂

∂xj
R(x), · · ·

]
′, (3.2)

∂

∂xj
R(x) = βκj

∑
l∈Nj

rljκj−jlψ̇(xj−jl , xj) + β
∑

k:j∈Nk

r
lk(j)
k κkκjψ̇(xj, xk) (3.3)

= βκj
∑
l∈Nj

(
rlj + r

lj−jl
(j)

j−jl

)
κj−jlψ̇(xj, xj−jl), (3.4)

where lk(j) means the lth directional weight of a voxel located at k that is linked to the voxel
located at j. Notice that the weight between two voxels appears as the sum of the weights to each
other.

We first define the local impulse response. The local impulse response describes the local
spatial resolution properties. The following definition of local impulse response at jth voxel was
used [116]:

lj � lim
ε→0

x̂ (ȳ (xtrue + εδj))− x̂ (ȳ (xtrue))

ε
(3.5)

= ∇yx̂ (y) |y=ȳ(xtrue)∇xȳ (x) |x=xtrueδj, (3.6)

where δj is a Kronecker impulse at jth voxel, and the gradient operations are matrices with the
following elements:

[∇yx̂ (y)]ji =
∂

∂yi
x̂j(y), [∇xȳ (x)]ij =

∂

∂xj
ȳi(x).
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The impulse response given above is local in the sense that it is shift-variant and depends on the
object xtrue at the voxel.

For simplicity we focus on quadratic regularization, for which, from (3.6), the local impulse
response of the PWLS estimator (2.8) of the cost function (3.1) is expressed as

lj = [A′WA+R]−1A′WAδj, (3.7)

where R is the Hessian of the regularizer R(x) [42]. The statistical weighting W depends on xtrue

due to Poisson-type statistics.
Assuming A′WAδj and Rδj are approximately locally circulant [99], we can approximate

(3.7) as follows:

Lj =
F (A′WAδj)

F (A′WAδj) + βF (Rδj)
, (3.8)

where F (·) denotes the 3-D DFT centered at voxel j.
Instead of directly using the discrete Fourier transform, we use the continuous-space analog of

Hj � F (A′WAδj) in spherical coordinates ν � (ρ,Φ,Θ). We use a closed-form approximation
for Hj that was suggested in [110]:

Hj(ν) ≈ KJ(ν)
w̃j(Φ)

ρ cos(Θ)
(3.9)

K = ΠΔ3
xΔzD

2
sd/D

2
so

J(ν) = sinc(Δxρ cos(Θ) cosΦ)2

×sinc(Δyρ cos(Θ) sinΦ)2sinc(Δzρ sin(Θ))2

w̃j(Φ) =
∑

β∈Bj(Φ)

w̄β,j

dβ,j
√
1− (ζj cos(θj))2 cos2(φj − Φ)

,

where Dso · (ζj, φj, θj) denotes the location of the jth voxel in spherical coordinates, K is a con-
stant depending on voxel sizes and scanner geometry, J(ν) is a factor depending only on spatial
frequencies, w̄β,j � wβ(�s

∗
j) where �s∗j is the position on the detector that maximizes the footprint of

voxel j at source angle β, dβ,j is the distance from the source to the xy-projection of voxel j, and
Bj(Φ) is the set of the values of β for which the ray passing through voxel j is perpendicular to the
frequency vector ν where the ray and frequency vector are both projected onto the xy-plane [110].
Substituting (3.10) into (3.8) yields the following expression for the continuous space analog of
Lj:

Lj ≈ KJ(ν)w̃j(Φ)/(ρ cos(Θ))

KJ(ν)w̃j(Φ)/(ρ cos(Θ)) + βRj(ν)
, (3.10)

where Rj(ν) is the local frequency response for the regularizer near pixel j (see (3.18) below).
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3.1.2 Target frequency response

The local frequency response associated with penalized unweighted reconstruction is isotropic
at the isocenter for a full-scan, so we use it as our target response. At isocenter, (3.10) for uniform
weights (wi = 1) is given as

H0(ν) ≈ KJ(ν)
ũ0(Φ)

ρ cos(Θ)
, (3.11)

ũ0(Φ) = |Bj(Φ)| .

Now the target local frequency response is

L0 ≈ KJ(ν)ũ0(Φ)/(ρ cos(Θ))

KJ(ν)ũ0(Φ)/(ρ cos(Θ)) + βR0(ν)
, (3.12)

where L0 is the continuous-space analog of L0.
Our purpose is to match the local impulse response at jth voxel to the target impulse response,

i.e., we want

Lj ≈ KJ(ν)w̃j(Φ)/(ρ cos(Θ))

KJ(ν)w̃j(Φ)/(ρ cos(Θ)) + βRj(ν)
(3.13)

≈ KJ(ν)ũ0(Φ)/(ρ cos(Θ))

KJ(ν)ũ0(Φ)/(ρ cos(Θ)) + βR0(ν)
≈ L0.

Cross multiplying and simplifying yields the goal

ũ0(Φ)Rj(ν) ≈ w̃j(Φ)R0(ν). (3.14)

3.1.3 Regularization structure

Taking the Fourier transform of (2.15) yields the following expression for the local frequency
response

|Cl(ω1, ω2, ω3)|2 =
1

n2
l +m2

l + z2l

∣∣1− e−i(ω1nl+ω2ml+ω3zl)
∣∣2

=
1

n2
l +m2

l + z2l
(2− 2 cos (ω1nl + ω2ml + ω3zl)) . (3.15)

Using the approximation 2− 2 cos(x) ≈ x2 [116] (3.15) simplifies

|Cl(ω1, ω2, ω3)|2 ≈ 1

n2
l +m2

l + z2l
(ω1nl + ω2ml + ω3zl)

2 . (3.16)
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We convert (3.16) to spherical frequency coordinates. The relationship between frequency and
sampling yields ω1 = 2πΔxρ cos(Φ) cos(Θ), ω2 = 2πΔyρ sin(Φ) cos(Θ), and ω3 = 2πΔzρ sin(Θ).
Substituting these into (3.16) yields the following expression for

(3.17)
|Cl(ω1, ω2, ω3)| 2

≈ 1

n2
l +m2

l + z2l
(2πρ)2(nlΔx cos(Φ) cos(Θ)+mlΔy sin(Φ) cos(Θ)+zlΔz sin(Θ))2.

The local frequency response of the regularizer (2.17) is now

Rj(ρ,Φ,Θ) = (2πρ)2κ2j

Nl∑
l=1

rlj (e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2 , (3.18)

where e(Φ,Θ) � (cos(Φ) cos(Θ), sin(Φ) cos(Θ), sin(Θ)), Δ � (Δx,Δy,Δz), ⊗ is element-wise
multiplication, and we assumed that κj ≈ κl for l within the neighborhood of j.

For the target response, R0 becomes

R0(ρ,Φ,Θ) = (2πρ)2κ20

Nl∑
l=1

rl0 (e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2 , (3.19)

where κ0 is the user-defined weights for target spatial resolution at the isocenter, and {rl0} is the
pre-defined directional weights, which determines the shape of the target response.

3.1.4 Regularization design for isotropic and uniform spatial resolution

Substituting (3.18) and (3.19) into (3.14) and simplifying yields

Qj(Φ,Θ) ≈ κ20w̃j(Φ)

κ2j ũ0(Φ)
Q0(Φ,Θ), (3.20)

where

Qj(Φ,Θ) �
Nl∑
l=1

rlj (e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2 , (3.21)

Q0(Φ,Θ) �
Nl∑
l=1

rl0 (e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2 . (3.22)

We solve the following weighted minimization problem to design the directional weighting
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coefficient vector rj = (r1j , · · · , rNl
j ) at the jth voxel

rj � arg min
rj≥0

∫ 2π

0

∫ π
2

−π
2

Dw(Φ,Θ)

∣∣∣∣∣w̌j(Φ,Θ)−
Nl∑
l=1

rlj(e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2

∣∣∣∣∣
2

dΘdΦ,

(3.23)
where Dw(Φ,Θ) is a user-defined weighting function, the non-negativity constraint ensures the
regularizer’s convexity and we define the modified weighting function

w̌j(Φ,Θ) � κ20w̃j(Φ)

κ2j ũ0(Φ)

Nl∑
l=1

rl0(e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2. (3.24)

The choice of the weighting function can be determined by factors like the coordinate system.
We choose Dw = cos(Θ) to have more uniform effect of the sample points. We view (3.23) as a
weighted projection of w̌j(Φ) onto the space spanned by {(e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2}, which can
be expanded as follows

(e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2 = Δ2
x cos

2(Θl) cos
2(Φl) cos

2(Θ) cos2(Φ)

+ Δ2
y sin

2(Θl) cos
2(Φl) cos

2(Θ) sin2(Φ)

+ Δ2
z sin

2(Θl) sin
2(Φ)

+ 2ΔxΔy cos
2(Θl) cos(Φl) sin(Φl) cos

2(Θ) cos(Φ) sin(Φ)

+ 2ΔxΔz cos(Θl) cos(Φl) sin(Θl) cos(Θ) cos(Φ) sin(Θ)

+ 2ΔyΔz cos(Θl) sin(Φl) sin(Θl) cos(Θ) sin(Φ) sin(Θ),

where (Φ,Θ) ∈ [0, 2π] × [−π/2, π/2]. From this equation, we can extract 6 basis functions as
follows

q1(Φ,Θ) = 1

q2(Φ,Θ) = cos2(Θ) cos(2Φ)

q3(Φ,Θ) = cos2(Θ) sin(2Φ)

q4(Φ,Θ) = cos(2Θ)

q5(Φ,Θ) = sin(2Θ) cos(Φ)

q6(Φ,Θ) = sin(2Θ) sin(Φ),
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where we used the following trigonometric identities

sin2(Φ) =
1

2
(1− cos(2Φ))

cos2(Φ) =
1

2
(cos(2Φ)−1) .

Notice that regardless of the size of the neighborhood, the local frequency response of the regular-
izer (3.18) is spanned by only 6 functions. This limited degree of freedom suggests that we can
only obtain modest variations for the local frequency response of the regularizer.

To obtain orthonormal basis functions, we define an inner product for (3.23)

〈A,B〉 = 1

2π2

∫ 2π

0

∫ π/2

−π/2

cos(Θ)A(Θ,Φ)B∗(Θ,Φ)dΘdΦ. (3.25)

The orthonormal basis functions are given as follows

p1(Φ,Θ) =

√
π

2

p2(Φ,Θ) =

√
15π

8
cos2(Θ) cos(2Φ)

p3(Φ,Θ) =

√
15π

8
cos2(Θ) sin(2Φ)

p4(Φ,Θ) =

√
45π

32

(
cos(2Θ)−1

3

)

p5(Φ,Θ) =

√
15π

8
sin(2Θ) cos(Φ)

p6(Φ,Θ) =

√
15π

8
sin(2Θ) sin(Φ),

where we used the Gram-Schmidt process to obtain p4 because q1 and q4 were not orthogonal.
We can decompose

∑Nl

l=1 r
l
j(e(Φ,Θ)·[e(Φl,Θl)⊗Δ])2 as PTrj , where P is an operator whose

columns are the six orthonormal vectors, and T is a 6×Nl linear combination matrix whose mth
row is the following inner product

Tml =
1

2π2

∫ 2π

0

∫ π/2

−π/2

cos(Θ)(e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2pmdΘdΦ. (3.26)
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Assuming Δx = Δy, the lth column of T is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3π

[
Δ2

x cos
2(Φl) + Δ2

z sin
2(Θl) sin

2(Φl)
]

4
15π

Δ2
x cos

2(Φl)
8

15π
Δ2

x cos
2(Θl) cos(Φl) sin(Φl)

8
45π

[
Δ2

x cos
2(Φl)− 2Δ2

z sin
2(Θl) sin

2(Φl)
]

8
15π

ΔxΔz cos(Θl) cos(Φl) sin(Θl)
8

15π
ΔxΔz cos(Θl) sin(Φl) sin(Θl)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since P has orthonormal columns, we can represent the minimization problem (3.23) as the
following simplified expression

rj = arg min
r≥0

∥∥Tr − bj
∥∥2 , (3.27)

where P ∗ denotes the adjoint of P and bj � P ∗w̌j(·), i.e.,

bjk =
1

2π2

∫ 2π

0

∫ π
2

−π
2

cos(Θ) pk(Φ,Θ)w̌j(Φ,Θ)dΦdΘ, k = 1, · · · , 6.

The minimization problem (3.27) is much smaller than (3.23). For 3D case, solving (3.27) analyt-
ically would be not be trivial, instead, we solve (3.27) using NNLS algorithm [78]. Since (3.27) is
a small problem with typical value of Nl equal to 13, only modest computation is required.

The minimization problem (3.27) is under-determined and may have many different solutions
rj that are all global minima. Too many zeros in rj may degrade the image since there will zeros
in the Hessian [116]. To ensure that certain rj values are greater than some small positive number
εjl , we modify (3.27) as follows

rj = arg min
r≥0

∥∥Tr − (bj − Tεj)
∥∥2 (3.28)

= arg min
r≥0

∥∥Tr − b̄j
∥∥2 , (3.29)

where b̄j � bj − Tεj . After minimization, we use the coefficients r̄j = rj + εj for our new
regularizer (See [116] for a possible way to select εj).

We also need the mapping from P ∗w̌j to rj to be continuous for our locally circulant approx-
imations. We use Tikhonov regularization to coerce our NNLS problem to select a solution that
also minimizes the norm of rj [114]. By appending a scaled identity matrix to T and zero padding
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b̄j , (3.29) can be further modified as follows

rj = arg min
r≥0

∥∥∥T̄ r − b̂j
∥∥∥2 (3.30)

= arg min
r≥0

∥∥Tr − b̄j
∥∥2 + τ ‖r‖2 , (3.31)

where

T̄ =

(
T√
τI

)
, b̂ =

(
b̄

0

)
. (3.32)

We select the value of τ to be a small number that is sufficient to apply a small penalty to the norm
of rj .

3.1.5 XCAT simulation results

We simulated a 3rd-generation axial cone-beam CT system using the separable footprint pro-
jector [79]. The simulated system has Ns = 888 channels and Nt = 64 detector rows spaced by
Δs = 1.0239 mm and Δt = 1.09878 mm, and 984 evenly spaced view angles over a 360 degree
scan. The source to detector distance was 949 mm, and the source to rotation center distance was
541 mm. We included a quarter detector offset in the channel direction to reduce aliasing. The
XCAT phantom [112] was used, and the image was reconstructed to a 512 × 512 × 122 grid with
pixel size Δx = Δy = 0.9766 mm and Δz = 0.625 mm. Poisson noise was added to the sinogram,
and the statistical weighting was chosen as wi = exp(−[Ax]i). The regularization parameter β
was selected such that the target PSF at the isocenter has a full-width at half-maximum (FWHM)
of approximately 1.4 mm in xy and 0.9 mm in z.

Figs. 3.1 and 3.2 compare impulse responses of conventional regularization and proposed reg-
ularization for two different voxels with different sampling properties. There is a considerable
anisotropy at both locations, especially for voxels with insufficient sampling. The main reasons
for the anisotropy are statistical weighting and scan geometry. The spatial resolution of the voxel
in Fig. 3.1 is primarily affected by the statistical weights, and our proposed method gives more
isotropic impulse response. The location in Fig. 3.2 is greatly affected by scan geometry, and our
proposed method achieves limited improvements.

Fig. 3.3 compares reconstructed images with various methods. Iteratively reconstructed im-
ages show better noise characteristics compared to the FDK reconstruction, but they may have
more anisotropic spatial resolution especially at the voxels with less samplings. The true image
blurred by the target impulse response was provided as a reference to assess the improvements of
our proposed method. In Fig. 3.4 closely compares the reconstructed images with conventional
regularization and the proposed regularization. Overall, the reconstructed image with the proposed
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Figure 3.1: Impulse responses of conventional regularization (middle column) and proposed reg-
ularization (right column) at (-66,217,-17) (mm), which is a fully sampled location.
Target impulse response is given as a reference (left column). Each row corresponds to
xy, xz, and yz profiles, respectively. Each contour was plotted based on its own peak
value.

Figure 3.2: Impulse responses of conventional regularization (middle column) and proposed reg-
ularization (right column) at (-117,-67,17) (mm), which is a insufficiently sampled
location. Target impulse response is given as a reference (left column). Each row cor-
responds to xy, xz, and yz profiles, respectively. Each contour was plotted based on its
own peak value.

regularizer has better resolution characteristics, but has slightly more noise. At locations indicated
by the arrows, the proposed regularization shows noticeable improvements (better match to target).

The proposed regularization showed improved spatial resolution characteristics compared to
the conventional regularization for the full-scan geometry. However, the designed impulse re-
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(a) (b)

(c) (d)

Figure 3.3: Reconstructed images at end slice (a) FDK reconstruction (b) True image blurred by
the target impulse response (c) Iterative reconstruction with conventional regularizer
(d) Iterative reconstruction with designed regularizer

sponses do not match the target response precisely and locations with insufficient sampling still
suffer from anisotropic resolution. Since 3D axial short-scans can suffer from severe anisotropy
at the end slices due to their scan geometry, the proposed method may have difficulties achieving
desired isotropic resolutions for short-scans.

3.2 Quadratic regularization design for isotropic and uniform noise

In addition to the regularization design method that aims for isotropic and uniform spatial reso-
lution presented in previous section, this section introduces a method that pursues the isotropy and
uniformity of noise characteristics in the reconstructed image. In practice, depending on physi-
cians, noise characteristics may affect diagnostic quality of the reconstructed image more than the
spatial resolution. Our proposed method aims to match the local power spectrum of the estimator
to a target power spectrum in an efficient manner.

Consider a penalized weighted least squares (PWLS) objective function (3.1) with a quadratic
regularizer defined in (2.17), where {rlj} are the directional weighting coefficients that we will
design.

We first define the noise covariance and correlation at each voxel. With a quadratic regularizer,
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Figure 3.4: Reconstructed images with conventional regularization (middle row) and proposed reg-
ularization (bottom row) at different locations on end slices. True image blurred by the
target impulse response is given as a reference (top row).

the closed-form solution of (2.8) is given by

x̂ = (A′WA+R)
−1

A′Wy. (3.33)

The covariance of the reconstructed image x̂ [39] is

cov(x̂) = (A′WA+R)
−1

A′W cov(y)WA (A′WA+R)
−1
. (3.34)

If the weighting is chosen such that cov(y) = W−1, then the reconstructed image covariance
simplifies to

cov(x̂) = (A′WA+R)
−1

A′WA (A′WA+R)
−1
. (3.35)
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The noise property of the estimator can be expressed with the ensemble variance at each voxel:

(3.36)var (x̂j) = δTj (A′WA+R) −1A′WA (AWA+R) −1δj.

On the other hand, the width of the jth column of the covariance matrix (3.34) represents the noise
correlation of jth voxel in the reconstructed image

corr(x̂j) = cov(x̂)δj = (A′WA+R)
−1

A′WA (A′WA+R)
−1

δj. (3.37)

3.2.1 Local power spectrum

We use the locally circulant approximation for A′WAδj and Rδj again. From (3.37), we can
approximate the local noise power spectrum near voxel j as follows:

Sj =
F (A′WAδj)

(F (A′WAδj) + βF (Rδj))
2 , (3.38)

where F (·) denotes the 3-D DFT centered at jth voxel and δ ˙j denotes a Kronecker impulse for
the jth voxel.

Instead of directly using the discrete Fourier transform, we use a continuous-space analog of
Hj � F (A′WAδj) in spherical coordinates ν � (ρ,Φ,Θ) shown in (3.10) and used for the
regularization design in the previous section.

Substituting (3.10) into (3.38) yields the following expression for the continuous space analog
of the noise power spectrum Sj:

Sj ≈ M(ν)w̃j(Φ)/ρ

(M(ν)w̃j(Φ)/ρ+ βRj(ρ,Φ,Θ))2
, (3.39)

where M(ν) = KJ(ν)/cos(Θ) and Rj(ρ,Φ,Θ) is the local frequency response of the regularizer
near pixel j [110].

3.2.2 Target local power spectrum

Our goal is to design the regularizer such that more isotropic correlation is obtained. We
approximate (3.34) as

cov(x̂) ≈ (DηA
′ADη + βR)

−1
DηA

′ADη (DηA
′ADη + βR)

−1
, (3.40)

where Dη = diag{ηj} and ηj =
√∑

i a
2
ijwi/

∑
i a

2
ij .
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With further approximations, variance at jthe voxel becomes

var(x̂j) ≈ 1

η2j

(
A′A+

β

η2j
R

)−1

A′A
(
A′A+

β

η2j
R

)−1

. (3.41)

From (3.41), our target, the local power spectrum at the isocenter with uniform weighting, can be
written as:

S0 ≈ M(ν)ũ0(Φ)/ρ

η20 (M(ν)ũ0(Φ)/ρ+ (β/η20)R0(ν))
2 , (3.42)

where R0(ν) is the local frequency response of the regularizer at the isocenter with pre-defined
directional weights, {rl0}, that determine the shape of the target noise power spectrum, and ũ0(Φ) =
|Bj(Φ)|.

We want to match the local noise power spectrum near jth voxel to the target local noise power
spectrum, i.e., Sj ≈ S0.

Sj ≈ M(ν)w̃j(Φ)/ρ

(M(ν)w̃j(Φ)/ρ+ βRj(ν))2
≈ M(ν)ũ0(Φ)/ρ

η20 (M(ν)ũ0(Φ)/ρ+ (β/η20)R0(ν))
2 ≈ S0. (3.43)

Cross multiplying leads to the following:

ũ0(Φ)
(
M(ν)w̃j(Φ)/ρ+ βRj(ρ,Φ,Θ)

)2 ≈ η20w̃j(Φ)
(
M(ν)ũ0(Φ)/ρ+ (β/η20)R0(ρ,Φ,Θ)

)2
.

By taking the square root on both sides

√
ũ0(Φ)

(
M(ν)w̃j(Φ)/ρ+ βRj(ρ,Φ,Θ)

) ≈ η0

√
w̃j(Φ)

(
M(ν)ũ0(Φ)/ρ+ (β/η20)R

0(ρ,Φ,Θ)
)
.

Finally, simplifying yields

Rj(ρ,Φ,Θ) ≈ β−1M(ν)

ρ

[
η0

√
ũ0(Φ)w̃j(Φ)− w̃j(Φ)

]
+

1

η0

√
w̃j(Φ)

ũ0(Φ)
R0(ν). (3.44)

3.2.2.1 Regularization design for isotropic and uniform noise

Substituting (3.18) into (3.44) and simplifying yields

Qj(Φ,Θ) ≈ β−1 M(ν)

(2πρ)2

[
η0

√
ũ0(Φ)w̃j(Φ)− w̃j(Φ)

]
+

1

η0

√
w̃j(Φ)

ũ0(Φ)
Q0(Φ,Θ), (3.45)
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where Qj(Φ,Θ) � κj
∑Nl

l=1 κl(j)r
j
l (e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2. For large ρ, the second term in

(3.45) dominates:

Qj(Φ,Θ) ≈ 1

η0

√
w̃j(Φ)

ũ0(Φ)
Q0(Φ,Θ). (3.46)

We solve the following weighted minimization problem to design the directional weighting coeffi-
cient vector rj = (r1j , · · · , rNl

j ) at the jth voxel

rj � arg min
rj≥0

∫ 2π

0

∫ π
2

−π
2

Dw(Φ,Θ)

∣∣∣∣∣w̌j(Φ,Θ)−
Nl∑
l=1

rlj(e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2

∣∣∣∣∣
2

dΘdΦ,

(3.47)
where the nonnegativity constraint ensures the regularizer’s convexity and we define the modified
weighting function

w̌j(Φ,Θ) � 1

η0

κ20
κ2j

√
w̃j(Φ)

ũ0(Φ)

Nl∑
l=1

rl0(e(Φ,Θ) · [e(Φl,Θl)⊗Δ])2, (3.48)

where we assumed κj ≈ κl for l within the neighborhood of j. Notice that (3.48) is very similar
to (3.24), but has a square root over the ratio w̃j(Φ)/ũ0(Φ). This problem can be simplified and
solved by the same procedure in previous section. We use the same choice for the weighting
function, Dw = cos(Θ).

3.2.3 Phantom experiment results

A water cylinder phantom was used to evaluate the proposed method and was scanned with a
32-slice scanner in full scan mode. The reconstruction field-of-view (FOV) was 250 mm, and the
image was reconstructed by using the ICD algorithm.

Table 3.1: Comparison of image values in the reconstructed images with conventional and de-
signed regularizers (Units: HU)

Center Slice End Slice
Conventional 1000 ±5.22 999 ± 6.85

Designed 1000 ±5.25 999 ± 5.82

Fig. 3.5 shows that the image reconstructed using the designed directional weights has slightly
more uniform noise distribution, but has higher noise level. The noise level of the reconstructed
image with designed directional weights is higher compared to that of conventional reconstruc-
tion because our target noise power spectrum is from uniform weighting. Selecting a proper noise
power spectrum is thus important to maintain the noise level. In future works, other target noise
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Figure 3.5: Reconstructed images at an end slice using conventional directional weights (left) and
designed directional weights (right).

Figure 3.6: Autocorrelation of conventional regularization (middle column) and proposed regular-
ization (right column) at (0,70,9.4) (mm). Target autocorrelation is given as a reference
(left column). Each row corresponds to xy, xz, and yz profiles, respectively. Each im-
age was normalized with its own peak value.

spectrums will be investigated to maintain the noise level and obtain further improvements. Fig. 3.6
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shows that the proposed methods provide directional weights that lead to more isotropic noise char-
acteristics in reconstructed image. Table 3.1 compares image values in the reconstructed images
with conventional and designed regularizers.

Overall, the proposed method shows potential to obtain more isotropic and uniform noise char-
acteristics for the statistical reconstruction methods. However, the proposed method suffers from
the same issue as the previous design. Designed noise power spectrum does not match the target
precisely, especially in the insufficiently sampled region.

3.3 Discussion

In this chapter, we proposed two regularization design methods for 3D axial CT that aim for
isotropic and uniform spatial resolution or noise, respectively. Proposed methods showed promis-
ing results, and achieved reasonable isotropy and uniformity of spatial resolution or noise. How-
ever, there are many issues need to be addressed. One major problem is that the proposed methods
rely on a locally circulant approximation, which fails at insufficiently sampled locations. Another
issue is the limited freedom of the directional weighting coefficient design. These limitations lead
to sub-optimal designs, leading to imprecise matching to the target.

Another limitation of these methods is that we only focused on quadratic regularization. Edge-
preserving regularization is the preferred method for denoising in CT problems, so it would be
desirable to extend the proposed method to edge-preserving regularization. How to use the de-
signed directional weights in edge-preserving regularization needs to be investigated.

How to choose the target is still an open question, especially for the noise power spectrum.
Matching to one fixed target may be a too strong constraint considering the issues mentioned
above. Combining these two methods to control both spatial resolution and noise characteristics
may be a possible future work. The approximation for Hj [110] used in this chapter may require
further refinements to estimate Hj more accurately. As a future work, we will use this refined
approximation to obtain better isotropy and uniformity of spatial resolution and noise characteris-
tics of the estimator. Furthermore, the minimization (3.29) should consider various constraints to
improve designed solutions.
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CHAPTER IV

Regularization designs using the hypothetical geometry

As mentioned previously, conventional regularized image reconstruction leads to spatially vari-
ant spatial resolution and noise characteristics because of interactions between the system models
and the regularization. Previous regularization design methods aiming to solve such issues mostly
rely on circulant approximations of the Fisher information matrix that are very inaccurate for
undersampled geometries like short-scan cone-beam CT. This chapter extends the regularization
method proposed in [42] to 3D cone-beam CT by introducing a hypothetical scanning geometry
that helps address the sampling properties. The proposed regularization designs were compared
with the original method in [42] with both phantom simulation and clinical reconstruction in 3D
axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise
uniformity in statistical image reconstruction for short-scan axial cone-beam CT.

In [42], a regularizer based on the aggregated certainty was developed for 2D PET to yield
images with approximately uniform spatial resolution, and that regularizer has been used for other
geometries and modalities [84,90,98,99,105]. However, the aggregated certainty regularizer does
not provide uniform resolution when applied to modalities such as 2D short-scan fan-beam CT
or 3D cone beam CT because of asymmetries in scan geometry, such as cone angle and short-
scan orbit. In [99] and [84], the original aggregated certainty regularizer was modified with a
diagonal scaling factor for 3D PET. Recently, it was also extended to both static and multi-frame
reconstruction in 3D PET by considering spatially variant and frame-dependent sensitivity [66].
Since the term aggregated certainty maybe misleading for some imaging modalities such as CT,
instead, we use more general term “pre-tuned spatial strength”, which represents that the purpose
of the function is to control the regularization strength at each voxel, before the reconstruction
process, so that the reconstructed image is guided to have desired characteristics, i.e., uniform
resolution.

Many previous regularization design methods focussed on choosing directional coefficients in

This chapter is based on [21, 22]
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the regularizer by matching local characteristics, such as impulse response or correlation function,
of the estimator to target characteristics to achieve uniform and isotropic resolution [19, 116, 118]
or noise characteristics [20,108]. Since both the regularization parameter and the pre-tuned spatial
strength can be incorporated into directional coefficients, those regularization design methods are
more general and flexible than simply adjusting the regularization strength at each voxel. How-
ever, such design methods require additional computations to design the coefficients for every
voxel, and it is challenging to obtain both uniformity and isotropy at the same time for either spa-
tial resolution or noise characteristics. Especially for the undersampled voxels in cone-beam CT,
locally circulant approximations of the Fisher information matrix are very inaccurate, leading to
imperfect coefficient designs at such locations. Furthermore, the memory requirement to store all
directional weights for every voxel can be burdensome.

The goal of this chapter is to refine the regularizer R(x), by designing {κj} so that the recon-
structed image has more uniform resolution or noise properties. We want to improve upon the
design proposed in [42] which was

κj =

√∑nd

i=1 a
2
ijwi∑nd

i=1 a
2
ij

. (4.1)

We continue to refer (4.1) as the (original) aggregated certainty to distinguish from our newly
designed pre-tuned spatial strengths.

4.1 Metrics to analyze spatial resolution and noise properties

In this section, we review the metrics to analyze spatial resolution and noise properties in the
reconstructed image.

One common metric for measuring the local resolution is the width of the local impulse re-
sponse at jth voxel, such as the full width half maximum (FWHM) [42]. As an alternative, the
peak amplitude of the local impulse response, or the contrast recovery coefficient (CRC) [98], can
be used to quantify resolution

CRC(lj) � δT
j lj = δT

j [A
′WA+R]−1A′WAδj. (4.2)

To measure isotropy of the impulse response, the width measure will be more effective. On the
other hand, uniformity of the impulse response is easier to assess with the CRC. In this chapter, we
use the CRC of the local impulse response to quantify spatial resolution.

When the statistical weighting is chosen such that cov(y) = W−1, the reconstruction image
covariance is given by (3.34). However, in some cases, additional factors are applied to W . For
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instance, Parker weighting [95] is applied to sinogram measurements for short-scan FBP recon-
struction. It may also be used in iterative reconstructions so that the temporal resolution of such
reconstructions would match that of FBP reconstruction. Additional weightings change the sta-
tistical characteristics of the weighting W , thus it no longer satisfies cov(y) = W−1. We can
express the statistical weighting more generally as

W = ŴV = D[ŵivi], (4.3)

where the weighting Ŵ is the conventional choice that satisfies ŵi = 1/Var{yi}, and {vi} are the
additional weighting elements. The reconstructed image covariance (3.34) with the new statistical
weighting can be expressed as follows

cov(x̂) = (A′WA+R)
−1

A′W̌A (A′WA+R)
−1
, (4.4)

where W̌ = V ŴV = D[ŵiv
2
i ].

The noise property of the estimator can be quantified with the ensemble variance at each voxel:

(4.5)var (x̂j) = δTj (A′WA+R) −1A′W̌A′ (A′WA+R) −1δj.

The entire jth column of the covariance matrix (4.4) represents the noise correlation of the jth
voxel in the reconstructed image with all other voxels

corr(x̂j) � (A′WA+R)
−1

A′W̌A (A′WA+R)
−1

δj. (4.6)

4.2 New regularization designs using the hypothetical geometry

In this section, we review the aggregated certainty developed in [42], and then modify it to de-
velop new regularization designs that provide approximately uniform resolution or noise properties
by using an “ideal” system matrix factorization.

4.2.1 System matrix generalization using the hypothetical geometry

The aggregated certainty in [42] was developed for shift-invariant systems like 2D PET. For
shift-variant systems like CBCT, the formulation in [42] must be modified.

The Fisher information matrix A′WA is shift-variant for both emission and transmission to-
mography, causing nonuniform properties of the reconstructed image. Statistical weighting is only
partially responsible for the nonuniformity; the Fisher information matrix for unweighted case
A′A is also shift-variant for 3D PET and CT. In [42], the system matrix A was factored into three
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elements as follows
aij = cigijsj, (4.7)

where {ci} denote ray-dependent factors, {sj} denote voxel-dependent factors, and G = [gij]

represents the object-independent geometric portion of the tomographic system response. Ideally
we would like to choose {ci} and {sj} and G such that G′G is shift-invariant. Shift-invariant
G′G can be more accurately approximated with a circulant matrix (implemented via fast Fourier
transform (FFT)), which will lead to improved regularizer designs. The matrix representation of
(4.7) is

A = D[ci]GD[sj ]. (4.8)

Since this representation is not unique, we can design each of the factors to make G′G “very
shift-invariant”. The original design presented in [42] for PET assumed uniform voxel-dependent
factors, i.e., sj = 1, ∀j, and the ray-dependent part included only non-geometric aspects such
as detector efficiency and dead time. In 2D PET, this leads to geometric factors {gij} for which
G′G is nearly shift-invariant. However, this conventional choice of G leads to G′G that is highly
shift-variant for 3D cone beam CT and even for 2D fan-beam CT when short-scan geometry is
considered.

Here, we present a new generalization of the form (4.7) that works in various geometries in-
cluding 3D cone beam CT. First, we consider the geometric sampling properties of A and consider
what rays are “missing” that cause A′A to be shift-variant. For example, in a short-scan fan-beam
geometry we are missing some of the views that would have been acquired with a full 360◦ scan.
As another example, for a CBCT axial scan, we are missing the data that would have been ac-
quired with a “step and shoot” set of axial scans [56]. For axial CBCT with a full 360◦ scan, A′A

is approximately shift-invariant over the fully-sampled, so-called “football region”, it is natural to
define G to be a hypothetical system matrix having extra detector rows such that the entire recon-
struction volume is contained in its corresponding football region4. Fig. 4.1 illustrates some cases
described above. In general, we define G to be some Ng × np system matrix corresponding to an
ideal, fully sampled geometry, for which G′G is approximately shift-invariant. The matrix G has
the same number of columns as A but has more rows (Ng > nd); the rows of A are a subset of the
rows of G.

Second, we replace the usual diagonal matrix D[ci] in (4.8) with D[ci]P where P is a nd×Ng

matrix that that selects the rows of the hypothetical geometry G corresponding to those of the
actual geometry A. Each row of P is entirely zero except for a single element that is unity. By
ordering the rows of G appropriately, we can use P = [Ind

0nd×(Ng−nd)]. An important property

4A hypothetical parallel-beam geometry is another option for G that may lead to G′G that is even more shift-
invariant; that choice would require an additional cone-to-parallel rebinning process [2].
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Figure 4.1: Illustration of possible hypothetical geometries G. Short-scan orbit vs. full-scan orbit
(left). Intertwined multiple helical geometries (middle). Cone-beam with extended
detector rows (right).

of the row selection matrix P is that P ′WP is a Ng × Ng diagonal matrix where each element
corresponds to a wi value for actual rays and is zero for the hypothetical rays.

With this generalization, we can rewrite the Fisher information matrix of the data fitting term
as follows:

A′WA = D[sj ]G
′P ′D[ci]WD[ci]PGD[sj]

= D[sj ]G
′P ′D[wic

2
i ]PGD[sj]. (4.9)

Since the Fisher information matrix is fairly concentrated near its diagonal elements [42], we
approximate (4.9) as

A′WA ≈ D[sj ]D[ηj ]G
′GD[ηj ]D[sj ]

= D[λj ]G
′GD[λj] = ΛG′GΛ, (4.10)

where the following factors match the diagonals of (4.10):

ηj =

√∑nd

i=1 g
2
ijc

2
iwi∑Ng

i=1 g
2
ij

, (4.11)

λj = sjηj =

√∑nd

i=1 a
2
ijwi∑Ng

i=1 g
2
ij

, (4.12)

Λ � D[λj]. (4.13)
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Different choices of ci and sj will lead to various designs for G = {gij}. As an example, for axial
cone-beam CT, assuming ci = 1, ∀i, and sj = 1, ∀j, will lead to G that corresponds to another
axial cone-beam CT geometry with extended detector rows and full 360 degree orbit. For some
other choices, we may not have a physical interpretation for the system represented by G.

Both ray- and voxel-dependent factors need to be designed based on different criteria depending
on the modality, i.e., for SPECT, sj should be designed to properly model the nonuniform spatial
sensitivity and, for PET, ci to represent detector characteristics.

4.2.2 Regularization with uniform resolution property

Substituting (4.10) into (3.7) yields the following approximation for the local impulse response
at jth voxel:

lj ≈ (ΛG′GΛ +R)
−1

ΛG′GΛδj

= Λ−1
(
G′G+ Λ−1RΛ−1

)−1
G′GΛδj. (4.14)

Typically, the local impulse response lj is concentrated about voxel j and clearly Λδj = λjδj . So
we approximate (4.14) as the following final expression for the local impulse response:

lj ≈
(
G′G+ λ−2

j R
)−1

G′Gδj. (4.15)

Now that we have analyzed the local impulse response, we focus on designing the coefficients
{κj} in the regularizer (2.17); these coefficients affect the Hessian R in (4.15) and thus control the
spatial resolution. Our goal here is to choose {κj} to provide approximately uniform spatial reso-
lution by matching the local impulse response at jth voxel, lj , to a target local impulse response,
lref , i.e., lj ≈ lref . Using the approximation (4.15), we write the target local impulse response at a
reference point, such as the isocenter, as follows:

lref � (G′G+R0)
−1

G′Gδref , (4.16)

where R0 is the Hessian of a regularizer R0(x) that provides desirable spatial resolution property
at the reference point. R0(x) has the same form as (2.17) but possibly with a different set of {κj}
or κj = 1, ∀j.

Our design for G leads to locally circulant G′Gδj , and we assume Rδj is approximately
locally shift-invariant [99]. Taking Fourier transform of (4.15) yields the following expression for
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the local frequency response

Lj ≈ F (G′Gδj)

F (G′Gδj) + λ−2
j F (Rδj)

, (4.17)

where F (·) denotes the 3-D DFT centered at jth voxel. We match the local frequency response of
jth voxel to the target frequency response, i.e.,

Lj ≈ F (G′Gδj)

F (G′Gδj) + λ−2
j F (Rδj)

(4.18)

≈ F (G′Gδref)

F (G′Gδref) + F (R0δref)
≈ Lref .

Cross multiplying and simplifying yields

F (Rδj)F (G′Gδref) ≈ λ2jF (R0δref)F (G′Gδj) . (4.19)

We design {κj} by minimizing the least squares difference between both sides of (4.19)

κ̂j = argmin
κj

‖F (Rδj)F (G′Gδref) − λ2jF (R0δref)F (G′Gδj) ‖2. (4.20)

For the quadratic potential function, the local frequency response of the regularizer Hessian is [116]

F (Rδj) = κ2jRω, (4.21)

Rω �
Nl∑
l=1

βrl |Cl(ω1, ω2, ω3)|2 , (4.22)

using the usual approximation κj ≈ κl for l within the neighborhood of j, where Cl denotes the
discrete-space Fourier transform of cl[n,m, z]. Without loss of generality, we can choose R0(x)

such that

F (R0δref) =

Nl∑
l=1

βrl |Cl(ω1, ω2, ω3)|2 = Rω. (4.23)

Substituting (4.21) and (4.23) into (4.20) yields the following simplified expression:

κ̂j = argmin
κj

‖κ2jRωF (G′Gδref)− λ2jRωF (G′Gδj) ‖2. (4.24)
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Solving (4.24), we obtain

κ̂j = λj

√〈RωF (G′Gδref) , RωF (G′Gδj)〉
‖RωF (G′Gδref)‖ , (4.25)

where 〈·, ·〉 denotes the inner product for 3D DFT space.
When G′G is approximately shift-invariant, we have

F (G′Gδj) ≈ F (G′Gδref) , (4.26)

and (4.25) simplifies to κj = λj .
The presented design process can address more general purposes besides obtaining resolution

uniformity. For instance, one may want to match a spatially varying target response that depends on
certain characteristics, such as the sampling at each voxel, so that each voxel would have different
resolution properties for specific purposes.

Our new regularizer for uniform resolution properties in the reconstructed image (hereafter
R-REG) is given by (2.17) with

κ̂j =

√∑nd

i=1 a
2
ijwi∑Ng

i=1 g
2
ij

. (4.27)

This new pre-tuned spatial strength function (4.27) has a very similar form to that of the original
certainty (4.1) proposed in [42], but with a different denominator. This new denominator takes ef-
fect when the voxel j is at an undersampled location. When it is fully-sampled, the new pre-tuned
spatial strength is exactly the same as the original certainty since

∑Ng

i=1 g
2
ij =

∑nd

i=1 a
2
ij for such

locations. For undersampled region, this new denominator decreases the regularization strength,
leading to sharper and possibly noisier reconstructed images compared to using the original aggre-
gated certainty (4.1). For practical purpose, we can approximate (4.27) as follows

κ̂j ≈
√∑nd

i=1 aijwi∑Ng

i=1 gij
. (4.28)

Unlike the back-projection of the statistical weighting,
∑nd

i=1 aijwi, calculating the sum of rows
of the Hessian A′WA,

∑nd

i=1 a
2
ijwi, is sometimes not available or easily implementable. We can

obtain reasonably similar results using the approximation (see Appendix A for empirical verifica-
tion).

Even though the new regularizer design was derived for quadratic regularization, it can be also
applied to regularizations with non-quadratic potential functions, following the spirit of [7]. For
such regularizations, the Hessian of the regularization depends on x, i.e., R(x) = ∇2 R(x), and
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the approximate local impulse response can be written as

lj ≈
(
G′G+

1

λ2j
R(x)

)−1

G′Gδj. (4.29)

Since D[κ̂j] = Λ, if we assume that κ̂j is almost the same within its neighborhood, the Hessian
of the regularization (2.17) can be approximated as follows [42] The Hessian of the regularization
(2.17) is given by [42]

Rjk(x) =

{
2
∑

j 	=l κ̂lκ̂jβ
l
jψ̈l(xj − xl), j = l

−2κ̂lκ̂jβl
jψ̈l(xj − xl), j �= l

}
, (4.30)

and since D[κ̂j ] = Λ we can approximate R(x) as follows

R(x) ≈ ΛR∗(x)Λ, (4.31)

where R∗(x) is the Hessian of the following regularization without the pre-tuned spatial strength

R∗(x) =
np∑
j=1

Nl∑
l=1

βrlψl ((cl ∗ ∗ ∗ x) [n,m, z]) . (4.32)

Substituting (4.31) to (4.14) leads the following new approximation for the local impulse response

lj ≈
(
G′G+R∗(xtrue)

)−1
G′Gδj. (4.33)

Since G′G was designed to be closely shift-invariant, the proposed regularization provides approx-
imately uniform resolution at every voxel. However, due to the object-dependence of the Hessian
of the regularization R∗(xtrue), the proposed regularization leads to some non-uniformities in the
reconstructed image such as less smoothing on the edges, i.e., edge-preserving regularization. This
non-uniformity is an important characteristic of the non-quadratic regularization, and it will be pre-
served.

The proposed regularizer (4.27) attempts to address non-uniformities caused by both the shift-
variant scanning geometries and by interactions between the regularization and the statistical
weights. The derivation assumed that κj changes very slowly within its neighborhood. However,
this assumption may fail for certain regions such as near the edges of a structure. Furthermore,
since we are only adjusting the “overall strength” of the regularization at each voxel and not its
“directional strength” for each neighboring voxel, the proposed regularization cannot correct for
asymmetry in local impulse responses. The proposed regularization is designed to generate uni-
form spatial resolution in terms of CRC. To obtain isotropic local impulse response, one would

48



need to design the directional coefficients, {rlj}, at each location [19].

4.2.3 Regularization with uniform noise property

Using the approximation (4.10), we approximate the local noise correlation corr(x̂) as follows

corr(x̂j) ≈
(
Λ̄G′GΛ̄ +R

)−1
Λ̂G′GΛ̂

(
Λ̄G′GΛ̄ +R

)−1
δj, (4.34)

where

λ̄j �
√∑nd

i=1 a
2
ijŵivi∑Ng

i=1 g
2
ij

, Λ̄ � D[λ̄j], (4.35)

λ̂j �
√∑nd

i=1 a
2
ijŵiv2i∑Ng

i=1 g
2
ij

, Λ̂ � D[λ̂j ], (4.36)

and vi and ŵi were introduced in (4.3).
We further approximate (4.34) as

corr(x̂j) ≈ Λ̄−1
(
G′G + Λ̄−1RΛ̄−1

)−1
Λ̄−1Λ̂G′GΛ̂Λ̄−1

(
G′G+ Λ̄−1RΛ̄−1

)−1
Λ̄−1δj

≈ λ̂2j
λ̄4j

(
G′G+ λ̄−2

j R
)−1

G′G
(
G′G+ λ̄−2

j R
)−1

δj, (4.37)

using the usual assumption that the local noise correlation corr(x̂) is concentrated about voxel j.
From (4.37), the local noise power spectrum of voxel j is approximately

Sj ≈ λ̂2j
λ̄4j

F (G′Gδj)(
F (G′Gδj) + λ̄−2

j F (Rδj)
)2 . (4.38)

To obtain uniform noise properties, we match the local noise correlation at the jth voxel to
a target noise correlation in the frequency domain, i.e., Sj ≈ Sref . For the target, we use the
local noise correlation at the reference point and assume that the regularizer R0(x) was chosen to
provide the proper noise level at that location. Our design goal becomes:

λ̂2j
λ̄4j

F (G′Gδj)(
F (G′Gδj) + λ̄−2

j F (Rδj)
)2 ≈ λ̂2ref

λ̄4ref

F (G′Gδref)

(F (G′Gδref) + F (R0δref))
2 . (4.39)
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Cross multiplying leads to

λ̂2j λ̄
4
refF (G′Gδj) (F (G′Gδref) + F (R0δref))

2

≈ λ̂2ref λ̄
4
jF (G′Gδref)

(
F (G′Gδj) + λ̄−2

j F (Rδj)
)2
. (4.40)

Using (4.21) and (4.23), we simplify (4.40) to

κ2j
√
F (G′Gδref)Rω

≈
(
λ̂jλ̄

2
ref

λ̂ref

)√
F (G′Gδj) (F (G′Gδref) +Rω)

− λ̄2j
√
F (G′Gδref)F (G′Gδj) . (4.41)

By defining Bref
ω � F (G′Gδref) and Bj

ω � F (G′Gδj), (4.41) can be rewritten as follows:

κ2j
√
Bref

ω Rω ≈
(
λ̂jλ̄

2
ref

λ̂ref

)√
Bj

ω

(
Bref

ω +Rω
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We design {κj} by solving the following least squares problem

(4.43)κ̂j = argmin
κj

∥∥∥∥∥κ2j√Bref
ω Rω −

[(
λ̂jλ̄

2
ref

λ̂ref

)√
Bj

ω

(
Bref

ω +Rω

)− λ̄2j√Bref
ω Bj

ω

]∥∥∥∥∥
2

.

The solution to (4.43) is given by

(4.44)

κ̂j =
1∥∥∥√Bref
ω Rω

∥∥∥
[(

λ̂jλ̄
2
ref

λ̂ref

)
〈
√
Bref

ω Rω,

√
Bj

ωRω〉

+

(
λ̂jλ̄

2
ref

λ̂ref

)
〈
√
Bref

ω Rω,

√
Bj

ωB
ref
ω 〉 − λ̄2j〈

√
Bref

ω Rω,
√
Bref

ω Bj
ω〉
] 1

2

.

Using (4.26), we simplify (4.44) as follows

κ̂j =

√(
λ̄2ref
λ̂ref

)
λ̂j + Eω

[(
λ̄2ref
λ̂ref

)
λ̂j − λ̄2j

]
, (4.45)

where Eω = 〈√Bref
ω Rω,

√
Bref

ω Bref
ω 〉/

∥∥∥√Bref
ω Rω

∥∥∥2.
Regularizer (2.17) with (4.45) (hereafter N-REG) provides approximately uniform noise prop-

erties in the reconstructed image. The new {κj} factors (4.45) consist of two terms within a square
root. If we ignore the second term, then (4.45) is approximately the square root of the pre-tuned

50



Table 4.1: Acronyms for regularizers
Acronym Description
A-REG aggregated certainty (AC) regularizer (4.1)
R-REG regularizer for spatial resolution uniformity (4.27)
N-REG regularizer for noise uniformity (4.45)

spatial strength (4.27) of R-REG. This suggests that N-REG has less spatial variation of the reg-
ularization strength compared to R-REG. The denominator in (4.36) will have the same effect as
the denominator in (4.27). Second term of (4.45) is kind of an “adjustment” that is usually smaller
than the first term.

4.3 Phantom simulation and clinical experiment

This section investigates the effect of the proposed regularizers (see Table 4.1 for acronyms)
for PWLS image reconstruction of 3D short-scan axial CT using both phantom and clinical data.
For the hypothetical geometry G, we assumed ci = 1, ∀i, and sj = 1, ∀j, in (4.9) and used a full
360◦ scan with increased number of detector rows, N ext

t (see Appendix B for a different choice of
G).

4.3.1 Resolution uniformity

4.3.1.1 Phantom simulation

An anthropomorphic phantom simulation was used to demonstrate the improved spatial reso-
lution uniformity induced by the regularizer with the pre-tuned spatial strength (4.27). We used
512 × 512 × 122 XCAT phantom [112] with voxel size Δx = Δy = 0.9766 mm and Δz = 0.625

mm as our true image, xtrue (Fig. 4.2).
We used the separable footprint projector [79] to simulate a monoenergetic, noiseless sinogram

for a 3rd-generation axial cone-beam CT system having Ns = 888 channels and Nt = 64 detector
rows with spacings Δs = 1.0239 mm and Δt = 1.09878 mm. We assumed a short-scan protocol
that covers an angular range of 227.6◦ with Na = 622 evenly spaced views. We selected the
hypothetical geometry G to have both extended views, N ext

a = 984 over 360◦, and detector rows,
N ext

t = 168. The statistical weights were wi = b0 exp(−[Ax]i) where the X-ray intensity was
b0 = 106.

To obtain local impulse responses at various locations, we added impulses with amplitude
ε = 2.5 × 10−4 mm−1, corresponding to approximately 14 HU, to 6 different locations in each of
the selected 9 slices (see Fig. 4.2 for impulse locations in xy plane). Selected slices were evenly
spaced through z-dimension including isoplane, end slices of region-of-interest (ROI), and slices
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Figure 4.2: XCAT phantom used in the simulation. Middle 3 planes (xy, xz, and yz planes through
the isocenter) are shown. Red and blue dots indicate locations of the added impulses
and the isocenter, respectively. Red lines indicate the 5th and 56th slices (out of 64
slices), which is our ROI. Blue line displays the location of the center slice. Finally,
green lines show the 1st and 64th slices, which is the axial coverage of the simulated
scanner.

outside ROI. Axial ROI was selected as 5th to 56th slices (out of 64) to avoid displaying slices with
possible short-scan artifacts due to insufficient sampling. (Ideally, we want to display the entire
coverage, which requires efficient short-scan artifact removal. See Chapter V.) We used (3.6) to
evaluate the local impulse response at each location for regularizer designs with both the original
aggregated certainty (4.1) (hereafter A-REG) and the pre-tuned spatial strength function (4.27)
(R-REG). Both quadratic and edge-preserving regularizations were investigated to show that the
proposed regularizer design R-REG is applicable to both cases. Image reconstruction was done on
the same grid as the true image. The regularization parameter β was selected based on the full-
width at half-maximum (FWHM) of the local impulse response at the isocenter. To visualize the
shape of the local impulse response more clearly, we selected a somewhat large β value for which
the FWHM was approximately 3 times the voxel size. For this experiment, we set rl = 1, ∀l.
Image reconstruction used the ordered-subsets with double surrogates (OSDS) method [17]. The
number of iterations was 20 with 41 subsets.

First, we present the results for regularization with a quadratic potential function. Fig. 4.3
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isocenter 1 2 3 4 5 6 isocenter 1 2 3 4 5 6

(a) A-REG (b) R-REG

Figure 4.3: Comparison of xy plane through the center of each local impulse response at selected
location (see Fig. 4.2 for the index of locations). Quadratic potential function was used.
Top row is from a center slice (blue line in Fig. 4.2), middle row is from 1st slice of
ROI (red line in Fig. 4.2), and bottom row is from outside ROI (green line in Fig. 4.2).
(a) Regularization with original aggregated certainty (4.1) (A-REG) (b) Regularization
with proposed pre-tuned spatial strength (4.27) (R-REG).
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Figure 4.4: Comparison of x profiles through the center of each impulse response in Fig. 4.3. Left
column is from a center slice, middle column is from 1st slice of ROI, and right column
is from outside of ROI. Top and bottom rows represent the regularizers A-REG (4.1)
and the proposed R-REG (4.27), respectively. (a) A-REG, center slice (b) A-REG, 1st
slice of ROI (c) A-REG, outside ROI (d) R-REG, center slice (e) R-REG, 1st slice of
ROI (f) R-REG, outside ROI.
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illustrates that the proposed regularizer (4.27) leads to local impulse response functions having
more uniform CRC values than the “conventional” aggregated certainty design (4.1), particularly
for off-center slices. CRC values of local impulse responses at different locations become nonuni-
form when using A-REG (4.1). This nonuniformity becomes severe as we move away from center
slices. Using the proposed regularizer R-REG (4.27), the CRC values become much more uniform
regardless of the location or the amount of sampling. R-REG (4.27) corrects only the nonunifor-
mity of peak values of local impulse responses. Anisotropy in the shape of the impulse response
could be improved by designing directional coefficients [19].

Fig. 4.4 shows x profiles through the center of all local impulse responses to compare CRC
values more closely. Using A-REG (4.1) leads to resolution nonuniformity even in the center
slice, primarily due to short-scan geometry. Nonuniformity in resolution becomes most severe
for locations 2 to 4 that have much less sampling compared to the isocenter due to both axial
cone-beam geometry and short-scan orbit.

Table 4.2 and Table 4.3 compare the average “mismatch” of the CRC values for given 6 loca-
tions across slices and within each slice. We used the following definition of CRC mismatch

ρj � |CRC(lj)− CRC(lref)| /|CRC(lref)| . (4.46)

The proposed regularizer R-REG improved the uniformity of CRC values throughout the recon-
struction volume. The average CRC mismatch was significantly improved for all locations and
slices, and undersampled voxels were most improved by the proposed regularizer, as designed.
The overall improvement of CRC mismatch was from 34.5% to 9.9%.

We obtained similar results for edge-preserving regularization with a hyperbola potential func-
tion (2.18). Shape of the local impulse responses does not change much compared to the quadratic
regularization, but CRC values become slightly higher. As in the quadratic case, the original cer-
tainty function (4.1) yields non-uniform CRC values across multiple voxel locations, and proposed
regularization (4.27) leads to more uniform CRC values. Due to their similarity to the quadratic
case, results for edge-preserving regularization are presented in Appendix B.

Even though proposed designs were based on approximations, such as (4.15), the local im-
pulse response calculated by (3.6) yields CRC values that closely match the target CRC. For both
quadratic and edge-preserving regularizers, the proposed designs provide improved uniform CRC
values (see also Table 4.2 and Table 4.3).

4.3.1.2 Real clinical data

We reconstructed a clinical cardiac CT scan as a 1024 × 1024 × 122 image with 70 cm field-
of-view (FOV). Measurements were obtained from a 64 row axial CT scanner with a short-scan

54



Uniform A−REG R−REG N−REG

Figure 4.5: Reconstructed images using uniform regularizer (1st column), A-REG (2nd column),
R-REG (3rd column), and N-REG (last column). Quadratic potential function was
used. Top row: center slice; bottom row: the last slice of ROI. Display range is [800
1200] (HU).

Full scan Uniform A−REG R−REG N−REG

Figure 4.6: Comparison of reconstructed images in Fig. 4.5 at the last slice of ROI. From left to
right, the images are from full scan measurements with A-REG, uniform regularizer,
A-REG, R-REG, and N-REG, respectively. Top row is from a region on the left side
where sampling is lower than a region on the right side (bottom row). Display range is
[800 1200] (HU).
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protocol and 480 mAs tube current. The sinogram dimension was [Ns, Nt, Na] = [888, 64, 642].
We selected the hypothetical geometry G to have both extended views, N ext

a = 984, and detector
rows, N ext

t = 148. For this experiment, we set rl using [138]. We used ICD with spatially non-
homogeneous updates [140] for reconstruction. We show results from both quadratic and edge-
preserving regularization, for which we used the q-generalized Gaussian potential function with
p = 2, q = 1.2, and c = 10, [124]

φ(t) =
|t|p

1 + |t/c|p−q . (4.47)

Fig. 4.5 compares the reconstructed images with a quadratic potential function and the follow-
ing different regularizers: Uniform, A-REG, and R-REG. When uniform regularization is used,
i.e., κj = 1, ∀j, the reconstructed image becomes over-smoothed even for some locations in the
center slice, illustrating the importance of the pre-tuned spatial strength in the regularization. Re-
constructed image using A-REG (4.1) shows less blurring and sharper spatial resolution compared
to that of the uniform regularizer. However, even in the center slice, both left and right sides of
the reconstructed image have different resolution. This is consistent with the result in Fig. 4.4
(a) where the CRC values were nonuniform even in the center slice due to short-scan orbit. The
proposed regularizer R-REG (4.27) improved resolution uniformity in the center slice. In the end
slices of the ROI, the resolution nonuniformity becomes more apparent. A-REG (4.1) fails to pro-
vide resolution uniformity at under-sampled locations, leading to visible differences in smoothness
between left and right side of the reconstructed images. On the other hand, the reconstructed image
using R-REG (4.27) has more uniform resolution properties even in these undersampled region,
leading the structures in the region to have more sharp and clear boundaries.

Fig. 4.7 and Fig. 4.8 show reconstructed images for edge-preserving regularization. Clearly, the
edge-preserving regularization preserves fine structures, leading to better image quality in terms of
spatial resolution compared to the quadratic regularization. However, the choice of the regularizer
still affects the resolution uniformity in the reconstructed image. The results show similar tendency
as in quadratic case: non-uniform resolution and over-regularization in undersampled region for
uniform regularizer and A-REG. On the other hand, the proposed R-REG achieves sharper and
more uniform spatial resolution. This suggests that even though the proposed regularizer was
derived for a quadratic regularization, it can also be used well for non-quadratic regularization.

4.3.2 Noise uniformity

Reconstructed images using R-REG (4.27) shows better resolution uniformity throughout the
entire volume, however, this improvement in the spatial resolution was achieved at the expense of
the noise properties in the image. As shown in Fig. 4.8, the proposed R-REG slightly increases
the noise level in the reconstructed image when edge-preserving regularization is used. This trade-
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Uniform A−REG R−REG N−REG

Figure 4.7: Reconstructed images using uniform regularizer (1st column), A-REG (2nd column),
R-REG (3rd column), and N-REG (last column). Edge-preserving potential function
(4.47) was used. Top row: center slice; bottom row: the last slice of ROI. Display
range is [800 1200] (HU).

Full scan Uniform A−REG R−REG N−REG

Figure 4.8: Comparison of reconstructed images in Fig. 4.7 at the last slice of ROI. From left to
right, the images are from full scan measurements with A-REG, uniform regularizer,
A-REG, R-REG, and N-REG, respectively. Top row is from a region on the left side
where sampling is lower than a region on the right side (bottom row). Display range is
[800 1200] (HU).
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off is inevitable, thus we also investigated a regularizer that focuses on noise uniformity (N-REG,
(4.45)).

4.3.2.1 Phantom experiment

To compare the regularizers quantitativly, we use the GE performance phantom (GEPP) [56].
The phantom consists of a PlexiglasTM insert with resolution bars, and tungsten wires in water.
The phantom was scanned with a 64 row axial CT scanner in short-scan mode and 70 mAs tube
current, which corresponds to very low dose scan, and reconstructed to a grid of 1024 × 1024 ×
90 with the following voxel size: Δx = Δy = 0.2246 mm and Δz = 0.625. We selected the
scanning geometry with both extended views, N ext

a = 984, and detector rows, N ext
t = 200, as the

hypothetical geometry G. Edge-preserving regularization with q-generalized Gaussian potential
function (4.47) was used. We set rl using [138].
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Figure 4.9: The GEPP used for quantitative comparison of regularizations. Red boxes indicate the
regions selected for noise variance comparison.

Fig. 4.9 shows the reconstructed image of the GEPP with previous regularization. Due to small
FOV (= 23 cm), the end slices of ROI did not suffer much from under-sampling. However, the
choice of regularization still leads to different image qualities in reconstructed images even in the
center slice. To compare different regularizations fairly, we chose the regularization parameter
β such that the noise standard deviation near the isocenter is similar for all reconstructed images
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Table 4.2: Average CRC mismatch (4.46) for selected 6 locations across slices (Units: %). See
Fig. 4.2 for the index of impulse locations.

Locations
1 2 3 4 5 6

A-REG (Fig. 4.4) 32.6 45.3 24.8 47.2 31.9 25.0
R-REG (Fig. 4.4) 7.5 14.9 3.9 20.0 5.9 7.2

Table 4.3: Average CRC mismatch (4.46) within each slice, respectively (Units: %).
Averages

Overall Center Slice 1st slice of ROI Outside ROI
A-REG (Fig. 4.4) 34.5 (a) 12.3 (b) 33.7 (c) 46.8
R-REG (Fig. 4.4) 9.9 (d) 8.7 (e) 11.6 (f) 7.4

(≈ 13.7 HU). We selected 7 different homogeneous regions in the center slice to compare the noise
standard deviation (see Fig. 4.9 for their locations). Table 4.4 illustrates that the proposed N-REG
shows the best noise uniformity out of given regularizers, i.e., the average standard deviation of the
noise is reasonably close to that of the region near isocenter. Since FOV is small, the noise standard
deviation does not vary much within PlexiglasTM insert. However, the standard deviation in the
wall shows noticeable variability depending on the regularization method. Due to the symmetrical
shape of the GEPP and thickness of its wall, the statistical weighting varies mostly only in channel
dimension (except for the views affected by an additional weighting such as Parker weighting) and
has an “U” shape. As a result, uniform regularizer generally increased noise in the reconstructed
image, and both A-REG and R-REG over-regularized the region far away from isocenter, i.e.,
walls in this case. Both A-REG and R-REG showed similar performance as expected, and N-REG
improved noise uniformity in the reconstructed image.

4.3.2.2 Real clinical data

Fig. 4.5 to Fig. 4.8 compare the reconstructed images obtained using the proposed N-REG with
other regularizers. For both quadratic and edge-preserving regularizations, the proposed N-REG
provides improved noise uniformity in the reconstructed image compared to other regularizers.
Uniform regularizer tends to over-smooth the reconstructed image, and A-REG shows nonuniform
noise properties even in the center slice. Both proposed regularizers R-REG and N-REG show
improved improved image qualities in terms of both resolution and noise. R-REG shows somewhat
shaper reconstructed image compared to N-REG on end slices for both regularizations, but has
slightly higher and nonuniform noise variance.

Fig. 4.6 and Fig. 4.8 zoom into the reconstructed images at the last slice of ROI, which has
nonuniform sampling within the slice. A reconstructed image from full scan measurements with A-
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REG was used as a reference with desirable image quality. Since the image quality of the reference
image is also affected by the choice of regularization, it may not be the optimal image for clinical
diagnosis. However, the under-sampling from short-scan measurements is a more dominant factor
for the image quality in the displayed region, so the chosen reference image shows better image
characteristics compared to other reconstructed images from short-scan measurements. For each
case, the region on the right side of the reconstruct image (bottom row) was compared to the
left side of the image that has less sampling (top row). Uniform regularization clearly leads to
over-regularization in the undersampled region, yielding severe noise nonuniformity within the
slice. Even though less severe, A-REG also suffers from the same issue. Proposed regularization
N-REG generates reconstructed image with better noise uniformity, leading the structures in the
undersampled region to have more clear visibility.

For both examples, the proposed N-REG (4.45) provides more uniform noise characteristics in
the reconstructed image compared to other regularization methods.

Table 4.4: Comparison of the noise standard deviation for different regularizers method. All values
are in Hounsfield units (HU).

Uniform A-REG R-REG (4.27) N-REG (4.45)
PlexiglasTM Insert (center) 14.0 13.7 13.7 13.6
PlexiglasTM Insert (right) 18.8 16.0 16.2 16.4
PlexiglasTM Insert (left) 15.1 14.4 14.5 14.9

Phantom Wall (left) 15.4 9.3 9.5 11.8
Phantom Wall (right) 16.9 8.8 6.8 10.1
Phantom Wall (top) 17.4 8.7 8.8 10.7

Phantom Wall (bottom) 16.1 7.7 8.8 10.9
Average 16.2 ± 1.6 11.2 ± 3.4 11.2 ± 3.6 12.6 ± 2.4

4.4 Discussion

We have proposed new regularization methods by modifying the aggregated certainty presented
in [42] using the hypothetical geometry concept. Proposed regularization (4.27) improved the
spatial resolution uniformity in the reconstructed image, and (4.45) provided better uniform noise
characteristics compared to uniform and aggregated certainty regularization methods.

Proposed methods, R-REG and N-REG, showed improved spatial resolution or noise unifor-
mity compared to uniform regularizer and A-REG in both quadratic and edge-preserving regular-
izations and for both simulated and clinical scans. Even though the proposed regularizers were
targeted to improve the uniformity of either the spatial resolution or noise, they yield reconstructed
images with qualitatively improved image quality in terms of both resolution and noise compared
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to that from the uniform and the aggregated certainty regularizers. For quadratic regularization, the
noise characteristics have less effect on the visual image quality than the spatial resolution, which
suggests the use of R-REG to improve spatial resolution uniformity in the reconstructed image.
On the other hand, since edge-preserving regularization provides improved resolution by enhanc-
ing sharply changing structures, the noise uniformity primarily affects the readability of the re-
constructed image. Thus, N-REG may be preferable for edge-preserving regularization. However,
there exists trade-off between spatial resolution and noise characteristics. Using either regularizer
may not provide an optimal reconstructed image in terms of both resolution and noise. Diagnostic
readability for the reconstructed images obtained from both methods needs to be carefully inves-
tigated to determine the best regularization, and possibly some combination of methods may be
desirable. A compromise regularization that balances spatial resolution and noise characteristics is
explored in the supplement as a starting point for further research.

For experiments in the chapter, we used the hypothetical scanning geometry obtained intu-
itively by extending both rows and views from given axial cone-beam CT geometry. We also
suggested other possibilities such as step-and-shoot set of axial scans. However, for other geom-
etry, determining the appropriate hypothetical geometry may be harder. For example, in helical
CT, simply extending views would not suffice, and since the actual scanning geometry must be a
subset of the hypothetical geometry, we cannot use a very small pitch. Intertwined multiple helical
geometries may be a possible choice. As shown in this example, a careful consideration is required
to properly extend the proposed regularizations to other scanning geometries.

One minor drawback of using the generalized geometry is the increased computation for (4.12).
For the geometry with extended views and rows, since (4.12) is calculated only once prior to
the iterating process, the increase in the computation expense is insignificant compared to the
computation required for the actual reconstruction. However, the use of step-and-shoot set of axial
scans or intertwined multiple helical scans may require considerable computations. Fortunately,
since the calculation of (4.12) only requires the information of the hypothetical geometry and the
same hypothetical geometry can be used for different geometries as long as they are subsets, one
could tabulate the denominator part of (4.12).

Proposed regularizers improve the uniformity of spatial resolution or noise by controlling a
scaling factor at each voxel. Even though the design process involves matching the entire local
impulse responses and noise correlation functions, they are primarily matching CRC values and
variances at each location due to the approximation (4.15) and (4.37). Thus, proposed regularizers
do not correct anisotropy of these characteristics. Designing directional coefficients in the regu-
larization may have potential to correct for such anisotropy, and have shown promising results for
the well-sampled regions [20, 116]. However, the anisotropy of the image characteristics in the
under-sampled region is hard to correct, especially since these methods rely on Fourier transform
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with locally circulant approximation for Fisher information matrix. One possible future work is to
extend the methods in this chapter to directional coefficient design.
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CHAPTER V

Short-scan artifact removal 3D axial cone-beam CT using all
available information

As described in Chapter II, the short-scan approach has several advantages compared to the
full-scan approach due to its reduced scan time, but suffers from insufficient sampling at certain
voxel locations. Using more measurements for reconstruction reduces such artifacts, but at the
expense of decreased temporal resolution. This chapter investigates methods that reduce short-
scan artifacts while preserving the temporal resolution in the well-sampled slices.

We fist propose a statistical weighting modification approach that controls the contribution of
the weights associated with the extra views available. We then introduce another regularization
term to the conventional statistical image reconstruction cost function to obtain structural informa-
tion from an initial reconstruction.

5.1 Short-scan artifact removal using all acquired views

Clinical cardiac scans typically include extra views for the purpose of viewing different phases,
motion-compensation algorithms, etc.. Here we use such extra acquisition data to reduce short-
scan artifacts in the undersampled region. Using XCAT phantom simulations, we investigated
an approach to modifying the statistical weights associated with the extra views. This approach
reduced short-scan artifacts, particularly in slices near the ends of the axial field-of view (FOV).

5.1.1 Introduction

5.1.1.1 Motivation

Short-scan approach leads to insufficient sampling at certain voxels, and more voxels in the
slice become insufficiently sampled as one moves away from the iso-plane. This situation becomes

This chapter is based on [23]
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severe as the cone angle becomes larger. Using more projection views for reconstruction reduces
such artifacts, but at the expense of decreased temporal resolution. Reconstructed images of the
XCAT phantom using both full-scan and short-scan measurements are shown in Fig. 5.1. A 64-
slice CT scanner was simulated, and the images at 1st and 64th slices were displayed where regular
cardiac images use slices between 5th to 56th slices for diagnosis. Fig. 5.1 (b) shows that, for
short-scan, as we move toward end slices, we see noticeable artifacts (indicated by red arrows) in
the reconstructed images resulting from insufficient sampling. On the other hand, reconstructed
images from full-scan measurements (Fig. 5.1 (a)) do not show such artifacts, but suffer from
severe motion artifacts (indicated by green arrows).

(a) Full-scan, end slices

(b) Short-scan, end slices

Figure 5.1: Reconstructed images of the XCAT phantom using full-scan measurements and short-
scan measurements at end slices. Measurements were obtained from a 64-slice CT
scanner with 40 mm collimation. Green and red arrows indicate motion artifacts and
short-scan artifacts, respectively. Display window is [850 1150] (HU).

Current image reconstruction methods do not provide satisfactory images for short-scans at
those slices far away from the iso-plane. We want to develop a method that reduces short-scan
artifacts on those slices. In clinical settings, it is common to acquire extra measurements in view
dimension for purposes such as viewing different phases, use of motion-compensation algorithms,
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etc.. In this study, we investigated a method for statistical image reconstruction that uses such
extra acquisition data to reduce short-scan artifacts in the undersampled region. The goal is to use
the part of extra measurements to remove short-scan artifacts without compromising the temporal
resolution in the sufficiently sampled region, or so called “football” region. We propose a statistical
weighting modification approach that was evaluated with the XCAT phantom simulation.

5.1.1.2 Sinogram Extrapolation

Before introducing the statistical weighting approach, let us elaborate about “extra” measure-
ments. As mentioned earlier, in clinical settings, it is common to acquire extra measurements in
view dimension for various purposes. Such measurements, when used in the reconstruction, can
help reduce short-scan artifacts and improve SNR at the expense of degraded temporal resolution.
What if we use data extrapolation to obtain such extra measurements without increasing the scan
time or the number of detector rows? In practice, FBP reconstruction uses data extrapolation for
the reconstruction of undersampled region. Zeroth order extrapolation in the detector row dimen-
sion is used to extend its axial coverage. Surprisingly, this works well, and generates reasonable
images. Motivated by the success in FBP reconstruction, we evaluated sinogram extrapolation in
both view and row dimension.

Sinogram extrapolation in row dimension For the measurement y � y(s, t, v) where s, t,
and v denote channel, row, and view dimensions respectively, the row extrapolated measurement
yext � yext(·, ·, ·) can be written as

yext(·, t, ·) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y(·, t, ·) if tmin ≤ t ≤ tmax

y(·, tmin, ·) if t ≤ tmin

y(·, tmax, ·) if t ≥ tmax,

(5.1)

where [tmin tmax] is the range of t for real measurements.
Fig. 5.2 shows the results from a preliminary simulation with the XCAT phantom. It added

some additional artifacts to the image. Depending on the object, extrapolated measurements may
or may not be good approximation.

Furthermore, the statistical weighting was also extrapolated with zeroth order approximation
as (5.1), which means that both real and extrapolated data were treated equally. Some down-
weighting for the extrapolated rows may lead to better image quality by balancing the effects of
real and extrapolated data. Fig. 5.3 shows the results with two down weighting values, 0.25 and
0.01. Both results show increased artifact in the reconstructed image. Some of the structures
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may be considered as sharper, but the increased artifacts have more dominant effects on the image
quality.

Since there are many parameters involved including number of padded rows, how to weight
the padded region, and how to adjust the regularization strength, it is hard to claim that this was a
definitive study. Using more sophisticated extrapolation methods may provide better results. How-
ever, using a simple method such as zeroth order extrapolation is not desirable for statistical image
reconstruction methods, since the extrapolated data are inconsistent with the statistical model that
assumes independence.

Figure 5.2: Reconstructed images of a XCAT phantom using ordered-subsets method with 82 sub-
sets. A 64-slice CT scanner was simulated. Left column: standard reconstruction.
Right column: Zeroth order extrapolation was used to the projection data. Thirty rows
were padded to both top and bottom of the rows.

Sinogram extrapolation in view dimension The artifacts come from missing projections due
to the geometry of the short-scan. To provide those projections, we re-project an initially recon-
structed image using either FBP or a statistical method. Since this initially reconstructed image
has artifacts, the sinogram obtained by re-projecting it may not give us a perfect image. But they
may reduce the artifacts at the end slice.

If we extrapolate the sinogram in view domain as we did in row dimension (5.1), the voxels
with sufficient sampling, such as voxels near the isocenter, will also be affected, and this is not
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(a) Down weighting = 0.01

(b) Down weighting = 0.25

Figure 5.3: Short-scan reconstruction with row data extrapolation (a) down weighting = 0.01 (b)
down weighting = 0.25. From left to right, each column corresponds to 1st, 17th,
center, 239th, last slice of ROI, respectively.

desirable. Therefore, we define the view extrapolated measurement yv,ext � yv,ext(·, ·, ·) as follows
so that only the end slices are affected by the extrapolation:

yv,ext(·, t, v) =
⎧⎨
⎩yre(·, t, v) if v ≥ vshort and tmin ≤ t ≤ tmax

y(·, t, v) otherwise,
(5.2)

where yre � yre(·, ·, ·) is the re-projection, vshort is the number of views for the short-scan, and
[tmin tmax] is the range of t that will not be affected by the extrapolation. The statistical weighting
was also extrapolated in the same way.

We obtained the re-projection from the statistical reconstruction of short-scan measurements.
Fig. 5.4 shows that the method provides no improvements. The re-projection was obtained from
the reconstructed image with artifacts and noises, hence inconsistent with original projection data.
This inconsistency corrupts the reconstructed images and induces other artifacts. The results in
Fig. 5.4 (d) were obtained by re-projecting the full-scan image, so the artifacts are reduced. These
results illustrate the importance of the accuracy of the extrapolated sinogram. The range of t for
Fig. 5.4 (d) was selected to show that the range may determine the trade-off between the image
quality of the end slices and the inner slices. In this case, the range was not narrow enough to
reduce the entire artifacts even with good re-projections.

Similar to previous extrapolation method, this method still has many things to refine such as
the range of t and possible down-weighting of the statistical weighting.
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(a) (b)

(c) (d)

Figure 5.4: Reconstructed images of a XCAT phantom using ordered-subsets method with (a) full-
scan measurements, (b) short-scan measurements, (c) view extrapolation where re-
projection obtained from (b), and (d) view extrapolation where re-projection obtained
from (a). A 64-slice CT scanner was assumed.

5.1.2 Statistical weighting modification approach

Consider a PWLS objective function of the form (3.1). Basic idea behind statistical weight-
ing modification is to selectively use additional measured views for each voxel depending on the
sampling properties of the short-scan views. Undersampled voxels can benefit from using the
additional measurements. However, some of these additional measurements affect not only the
undersampled voxels but also other sufficiently sampled voxels, thus potentially degrading their
temporal resolution. At one extreme, using all the additional measured views would cause all
voxels to have the deteriorated temporal resolution of the full-scan reconstruction. Therefore, our
goal is to optimize the use of additional measurements so that the temporal resolution of the well-
sampled reconstructed slices are minimally affected and at the same time the short-scan artifacts
are reduced. Since there is a trade-off between the temporal resolution and the short-scan arti-
fact reduction, we need to determine which characteristic is more important for each voxel. For
our analysis below, we strongly encourage the voxels inside the football region to have the same
temporal resolution as the short-scan reconstruction. For all other voxels, we maximize the use of
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additional measurements.
First, we introduce the following new metric to quantify the effect of each detector measure-

ment for a targeted region

ei =

∑np

j=1 aijm
(t)
j∑np

j=1 aijm
(c)
j

, (5.3)

where aij is the elements of the system matrix, np is the number of voxels, m(t)
j is the jth element

of the mask for a targeted region, and m(c)
j is the jth element of the cylindrical mask. The value of

this metric varies from 0 to 1 where 0 means that the ray corresponding to the detector cell does
not pass through the targeted region. As mentioned above, we use football region as our targeted
region, but one may define the mask differently depending on the purpose.

Second, we modify the statistical weighting based on this metric as follows

Ŵ � WD[pi]D[vi] = D[wipivi], (5.4)

where W = {wi} is a conventional choice for the statistical weighting, pi indicates the Parker
weighting used to match the temporal resolution of the FBP reconstruction, and

vi =

⎧⎨
⎩1, if i is within short-scan view range

1− ei otherwise.
(5.5)

Fig. 5.5 compares back projections of the following weights: uniform weights with both full
and short-scan views, and the designed weight vi. These back projection images reflect the sam-
pling condition at each voxel. In this figure, Parker weighting was not included for better visual-
ization of the improvements. The designed weight leads to the sampling condition similar to that
of the short-scan at the center slice and the full-scan at the end slice, which suggests that our design
has potential value.

To add more freedom to our design, we investigate the following design

v̄i = f(vi) = (vi)
p, (5.6)

where p is a parameter that requires tunning. Fig. 5.6 compares the designed weights along row
dimension for different choice of p. As p becomes larger, the use of additional measurements
decreases, and the reconstructed image suffers more from the short-scan artifact. On the other
hand, small p leads to reduced temporal resolution in the targeted region.

In addition to visual comparison, we need a metric to quantitatively evaluate the reconstructed
image obtained by the proposed method. Most intuitive measure would be counting the number of
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0 0 0

0 0 0

Figure 5.5: Comparison of back projections the following weights: uniform weights with full-scan
views (left), uniform weights with short-scan view (middle), and the designed weight
(right). Top row is the center slice, and bottom row is the 1st slice of ROI for 64-slice
scanner.
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Figure 5.6: Plot of designed weights along row dimension for different p values. (a) 1st channel
(b) 222th channel (c) 444th channel.

views or detector elements affecting each voxel when our modified weighting is used. However,
calculating such measure may not be trivial or computationally efficient. Instead, we propose the
following metric called “view mask” for a given statistical weighting wi:

M �
∑
n

∑
l,m a(l,m,n)jw(l,m,n)∑
l,m a(l,m,n)jo(l,m,n)

, (5.7)

where oi = o(l,m,n) = 1, ∀i, and l, m, and n indicate channel, row, and view indexes in the
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projection domain, respectively. The ratio between the view masks of two different weightings, or
“view ratio”, can be used to quantify the “closeness” of the proposed method to either full-scan
MBIR or short-scan MBIR at certain location. For example, the view ratio between the proposed
method and short-scan MBIR is given by

R � Mproposed

MSS

=
∑
n

∑
l,m a(l,m,n)jŵ(l,m,n)∑
l,m a(l,m,n)jw̄(l,m,n)

, (5.8)

where ŵi = wipiv̄i, and w̄i = wipi. For this case, when a voxel has R = 1, the temporal resolution
of the proposed method is equivalent to that of short-scan MBIR at that location. For our analysis,
we want the voxels inside the football region to have the view ratio R close to 1.

5.1.3 XCAT simulations results for statistical weighting modification

The proposed method was investigated on a 3D cone-beam CT imaging problem with 40 mm
collimation. The simulated system has 888 channels, 64 detector rows, and 984 evenly spaced
view angles over 360◦. The XCAT phantom with cardiac motion of 75 bpm was used as an object.
To focus on the sampling induced artifacts, we generated noiseless measurements. ICD with spa-
tially non-homogeneous updates [140] was used to reconstruct images. For illustration purposes,
we assumed that the acquisition time is long enough so that full-scan measurements is available.
However, the proposed method can be applied with any amount of extra acquisition.

Fig. 5.7 shows the view ratio between the proposed method with p = 5 and short-scan MBIR
within the football mask. The view ratio values at most of the voxels are very close to 1, which
indicates that the proposed method provides reconstructed images having the desired temporal
resolution in most spatial locations of the targeted region.
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Figure 5.7: View ratio (5.8) values between the proposed method and short-scan MBIR within the
football region. From left to right, each column corresponds to 5th, 13th, and center
slice of ROI (out of 64 slices), respectively. Display range is [1 1.3].
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Fig. 5.8 compares reconstructed images obtained by the proposed method to those of other
methods at different slice locations. The reconstructed image obtained by the proposed method
removes short-scan artifacts while preserving the temporal resolution in the football region, and
thus shows improved image quality compared to that of short-scan MBIR. Notice that the slices on
the far end have much less artifacts. However, when compared to reconstructed images from full-
scan MBIR, some residual artifacts are still noticeable on end slices. Tuning the design parameter
p changes the image quality of the reconstructed image, but does not remove the entire short-scan
artifacts while preserving the temporal resolution. This suboptimal results come from the inherent
limitation of the statistical weighting modification. Since we only control the contribution of each
ray, which affects multiple voxels at the same time, we only have limited control over sampling of
each voxel. More sophisticated design for (5.6) may improve the results, but the trade-off between
the temporal resolution and the short-scan artifact cannot be avoided with the proposed statistical
weighting modification approach.

-z ←− center −→ +z

(a) Full-scan MBIR

(b) Short-scan MBIR

(c) Proposed method (5.6) with p = 5

Figure 5.8: Comparison of reconstructed images from different reconstruction methods. (a) Full-
scan MBIR (b) Short-scan MBIR (c) Proposed method (5.6) with p = 5. From left
to right, each column corresponds to 1st, 5th, 32nd, 56th, and 64th slice, respectively
(out of 64 slices). Slices from 5th to 56th are used for usual cardiac imaging displays.
Green and red arrows indicate motion artifacts and short-scan artifacts, respectively.
Display window is [850 1150] (HU).

As a next step, we evaluated the method on the XCAT phantom with wider cone angle, i.e. 256
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detector rows. Proposed Proposed method (5.6) method is compared to other methods in Fig. 5.9.
The reconstructed image obtained by the proposed Proposed method (5.6) remove the short-scan
artifacts while preserving the temporal resolution in the football region, and thus shows improved
image quality compared to that of short-scan MBIR. However, when compared to reconstructed
images from full-scan MBIR, some residual artifacts are still noticeable on end slices. Tuning the
design parameter p changes the image quality of the reconstructed image, but does not remove
the entire short-scan artifacts while preserving the temporal resolution. This suboptimal results
come from the inherent limitation of the statistical weighting modification. Since we only control
the contribution of each ray, which affects multiple voxels at the same time, we only have limited
control over sampling of each voxel. More sophisticated design for (5.6) may improve the results,
but the trade-off between the temporal resolution and the short-scan artifact cannot be avoided with
the proposed statistical weighting modification approach.

5.1.4 Conclusions for statistical weighting modification

We presented a statistical weighting modification approach to reduce short-scan artifacts while
maintaining temporal resolution in the target region. The proposed statistical weighting modifica-
tion showed improvements compared to short-scan MBIR, especially on end slices. Future work
will address other possible designs to further remove residual artifacts. The residual artifact is
mostly affected by the targeted region (5.3). Instead of selecting the targeted region based on the
sampling, e.g., football region, we can also directly determine the voxels that are mostly affected
by the temporal resolution. Having additional measurements enables multi-phase reconstruction.
Comparing reconstructed images from adjacent phases could help identifying such voxels, which
may be used for more effective statistical weighting modification designs.

5.2 Introducing additional regularization term

Previously, we have investigated methods to reduce sampling induced artifacts, such as short-
scan artifacts, by designing regularizers and modifying statistical weightings. Even though we
have investigated various aspects of the regularizer, it was very hard to reduce the artifacts. On
the other hand, the statistical weighting modification approach successfully removed some of the
artifacts, and this suggests that use of additional information is inevitable to completely remove
such artifacts.

In the MBIR framework, one intuitive approach for the short-scan artifact reduction problem
is to use prior information obtained from some image that does not suffer from short-scan arti-
facts. Such prior images, however, may have other issues such as poor temporal resolution or
noise properties. Consider the following PWLS formulation with an additional prior-dependent
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(a) Full-scan MBIR

(b) Short-scan MBIR

(c) Proposed method (5.6) with p = 5

Figure 5.9: Comparison of reconstructed images from different reconstruction methods. (a) Full-
scan MBIR (b) Short-scan MBIR (c) Proposed method (5.6) with p = 5. Each column
corresponds to 1st and last slice of ROI, respectively. Display window is [800 1200]
(HU).

regularizer

x̂ = argmin
x

1

2
‖y −Ax‖2W + R(x)+βp ‖L(x− xprior)‖2D , (5.9)

where βp is a regularization parameter for the additional prior term, xprior denotes a prior image,
L is a filtering operator, and D selects (or weights) the voxels to be affected by the prior. It is
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apparent that the quality of the solution highly depends on that of the prior image. Therefore, the
major challenge of this method is to select an appropriate prior image and efficiently exploit its
information.

One possible candidate for a prior image is an initial reconstruction using all available mea-
surements. When full-scan measurement is available, we can either use full-scan FBP or full-scan
MBIR to obtain images with reduced sampling-related artifacts. Full-scan MBIR would be a better
choice in terms of image quality due to its superior noise characteristics, especially for low-dose
scans. However, the computation cost issue introduced in Chapter 1.2.3 would becomes more
severe since we need to minimize two different cost functions sequentially. On the other hand,
full-scan FBP may be readily available and does not require much computational expense com-
pared to full-scan MBIR. However, a FBP prior image may cause degradations of the solution,
such as compromised noise property. Therefore, a sophisticated filtering operation is required to
extract only the desirable features from the FBP prior.

For some cases, available measurements may not be enough to remove short-scan artifacts from
the reconstructed image. To prevent such case, for cardiac scans, we can use a new acquisition
protocol that acquires additional measurements to what current short-scan protocol collects, but at
lower tube current. Such additional measurements will ensure that we have enough data to obtain
an initial reconstruction with desirable image quality without significantly increasing patient dose.
Fig. 5.10 shows an example of such acquisition protocols. This new acquisition protocol can also
be combined with the statistical weighting modification in previous section. In this study, we
assume that the acquired measurements are enough to reconstruct a prior image with reasonable
quality, thus we do not use the new protocol.

Figure 5.10: Example of a new acquisition protocol
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5.2.1 Prior regularization designs

We first define the diagonal weighting D that selects the voxels to be affected by the prior
image. Since the prior image may have either poor noise or temporal resolution properties, it is
undesirable for sufficiently sampled voxels to be affected by this prior. Unsophisticated designs
for the weighting D will result in additional artifacts, degraded temporal resolution and noise
properties, etc..

We want to design the weighting based on the sampling condition at each voxel, thus we define
a new metric to measure the sampling condition at each voxel location as follows

αj =

∑np

i=1 aij∑Ng

i=1 gij
, (5.10)

where we define G = {gij} to be an extended geometry of A = {aij} with enough number of
detector rows to contain the entire reconstruction volume in its football region. For well-sampled
region, the sampling metric αj will have a value close to 1. We also define a sampling mask as
follows

mj = 1− αj. (5.11)

Fig. 5.11 shows an example of the sampling mask at an end slice obtained from a 64-slice CT
scanner.

Figure 5.11: A sampling mask (mj = 1 − αj) at an end slice. A 64-slice CT scanner was used.
The color scale goes from 0 (black) to 1 (white).

We propose the weighting D based on the sampling mask (5.11):

D =

⎧⎨
⎩(mj)

p if j is in ROI

0 otherwise,
(5.12)
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where p is a parameter that controls the strength of the diagonal weighting.
There are many possible choices for the filtering operator L. We first investigate the case

without any filtering, i.e., L = I . Since the prior image may contain unacceptable noise, no
filtering may lead to noisy images, especially at the selected region. We want to investigate how
much noise in the prior can be tolerated when no filtering is applied.

Using a low-pass filtering for L seems reasonable, since we only want to remove short-scan
artifacts that have mostly low-frequency contents. Properly designed filter will remove noise and
unnecessary structures in the prior image and provide useful low-frequency structural information.
Since we want to apply the prior regularization to insufficiently sampled region, which is mostly
located on end slices, we apply a stack of 2D filtering instead of a 3D filtering. We use the following
definition for the filtering operator L

L =

⎡
⎢⎢⎣

...
M ′

iQ
′LiQMi

...

⎤
⎥⎥⎦ , (5.13)

where Li is a 2D Fourier domain filter, Mi is a mask that selects ith slice from the entire volume,
and Q is a 2D DFT matrix. For 2D low-pass filter Li, we investigate the following two simple
choices Fig. 5.12.

• Rectangular filter

Li(u, v) =

⎧⎨
⎩1 if r(u, v) < Fc

0 otherwise,

• Gaussian filter
Li(u, v) = exp

(
− r2

2F 2
c

)
,

where u = 0, 1, ..., Nx − 1, v = 0, 1, ..., Ny − 1, Fc is a normalized cutoff frequency, and

r(u, v) =

√
((u−Nx/2)/Nx)

2 + ((v −Ny/2)/Ny).

Rectangular filter was designed with a smooth transition between the stop and pass band to avoid
ringing artifacts.

5.2.2 Results for additional prior regularization

Since the diagonal weighting D (5.12) can preserve temporal resolution of the well-sampled
region, we only focus on reduction of short-scan artifacts in the undersampled region. For this
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Figure 5.12: 2D Low-pass filters: Rectangular (left) and Gaussian (right) with Fc = 0.2.

purpose, we used a static XCAT phantom for following experiments. All the reconstructed images
were obtained by using a “order-subsets (OS) + momentum” method based on Nesterov’s fast
gradient method [75] with 12 subsets and 30 iterations.

5.2.2.1 Importance of the ROI constraint

It is important to properly weight the prior image such that the prior only affect the voxels
within ROI (see (5.12)). Reconstructed images outside ROI contains artifacts or may not be con-
sistent with the system model, especially when FBP based prior is being used. Enforcing prior
regularization on such regions can lead to additional artifacts. We illustrate this with the following
example with the XCAT phantom. A 256-slice scanner was assumed and no noise was added to
the measurements. Full-scan FBP reconstruction was used as the prior image. Fig. 5.13 shows the
error sinogram, y − Ax̂, of reconstructed images obtained with and without the ROI constraint.
Severe mismatch in error sinogram can be observed when the ROI constraint is not enforced. This
suggests that the prior image is not consistent with the system model, thus strong enforcement of
the prior will results in artifacts. Fig. 5.14 and Fig. 5.15 compare the reconstructed images obtained
with and without the ROI constraint. Reconstructed images were obtained from the design (5.13)
with L = I and βp = 1010. Images obtained without the constraint are corrupted with artifacts.
Artifacts mostly appear around the transition region of the diagonal weighting D.

Fig. 5.16 illustrates that use of the rectangular filter can cause ringing artifacts within the recon-
structed image, especially around high contrast structures. The transition in our rectangular filter
was not smooth enough to avoid the ringing artifact. More improved designs with better transition
and parameters may reduce such artifacts, but designing a sophisticated filter is not our goal in this
study. From now on, we focus on designs with Gaussian filters.
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Figure 5.13: Comparison of error sinograms of the following reconstructed images: Short-scan
MBIR (top), Design (5.13) without ROI constraint for the diagonal weighting D
(middle), Design (5.13) with ROI constraint for D (bottom).

5.2.2.2 Prior with moderate noise: a regular-dose case

We simulated a regular-dose case, which has a tube current of 550mAs. A 256-slice scanner
was assumed and the XCAT phantom was used as a static object. Realistic noise were simulated
with CATSIM [33]. Full-scan FBP image is used as the prior image.

Fig. 5.17 and Fig. 5.18 present reconstructed images obtained from various methods. Regu-
larization parameter for the prior regularization, βp, was selected empirically for the purpose of
illustration. Full-scan FBP image used as the prior is noisier than full-scan or short-scan MBIR
images. The reconstructed image obtained from the proposed design with no filtering had much
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(a) without ROI constraint

(b) with ROI constraint

Figure 5.14: Comparison between the reconstructed images obtained using the design (5.13) (a)
without ROI constraint (b) with ROI constraint. From left to right, each column
corresponds to 1st, 17th, center, 239th, last slice of ROI, respectively. Display window
is [800 1200] (HU).

(a) without ROI constraint

(b) with ROI constraint

Figure 5.15: Comparison between the reconstructed images obtained using the design (5.13) (a)
without ROI constraint (b) with ROI constraint. Sagittal and coronal views. Display
window is [800 1200] (HU).

less short-scan artifacts, but its end slices are noisy compared to its middle slices. In this case,
the noise characteristics of the prior image were propagated to the reconstructed image due to the
absence of filtering. This was somewhat expected from the beginning, and the regularizer R(x)
was unable to remove the propagated noise. The main reason for this situation is that the reg-
ularization strength of R(x) at those locations considered only the data fitting term, and not the
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Figure 5.16: Reconstructed images using the proposed design with a rectangular filter (Fc = 1/5
and βp = 1010). Each column corresponds to 1st, 17th, 239th, last slice of ROI,
respectively. Display window is [800 1200] (HU).

additional prior regularization term. If we want to remove such noise, we need to properly modify
the regularization strength of the regularizer R(x) by considering the effect of the prior term. This
is an open question, and we leave it as a future work. The reconstructed image obtained from
the proposed method with a Gaussian filter, on the other hand, had much better noise property
at end slices, in addition to reduced short-scan artifacts. Use of low-pass filtering stopped noise
and other high-frequency artifacts from propagating into the reconstructed image. However, when
compared to full-scan MBIR image, the reconstructed image still shows residual artifacts and is
slightly noisier at end slices.

So far, we fixed the cutoff frequency to Fc = 1/5. When the cutoff frequency is too high, then
the noise and undesirable high-frequency structures can propagate into the reconstructed image.
We investigated different values of the cutoff frequency to see its effect on the image. Fig. 5.19
compares reconstructed images obtained from different cutoff frequencies. When the cutoff fre-
quency becomes too small, the reconstructed image loses some of its details and suffers from other
artifacts. Empirically, Fc = 1/10 provided well-balanced results.

5.2.2.3 Prior with severe noise: a low-dose case

To test a case where the prior image is too corrupted with noise and artifacts to provide accurate
information, we simulated a low-dose case with 50mAs tube current. All other settings are the
same as the regular-dose case.

Fig. 5.20 and Fig. 5.21 show reconstructed images from various methods. For this case, the
prior image, Full-scan adaptive statistical iterative reconstruction (ASiRTM)5 is noisy and have se-
vere artifacts. For the locations where the prior image is good enough to provide useful structural
information, the reconstructed image from the proposed method shows reduced artifacts and de-
sired noise characteristics. However, severe artifacts of the prior image were also propagated at

5ASIR image was provided by GE Healthcare. However, the image is not from the full product ASIR meaning
that it may be missing some pre- or post- processing that could affect the reconstructed image quality.
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(a) Full-scan MBIR

(b) Short-scan MBIR

(c) Full-scan FBP

(d) Proposed method with no filtering, cutoff = 1/5, βp = 106

(e) Proposed method with a Gaussian filter, cutoff = 1/5, βp = 106

Figure 5.17: Comparison between the reconstructed images obtained from various methods (a)
Full-scan MBIR (b) Short-scan MBIR (c) Full-scan FBP (d) Proposed method with no
filtering (e) Proposed method with a Gaussian filter. From left to right, each column
corresponds to 1st, 17th, 239th, last slice of ROI, respectively. Display window is
[800 1200] (HU).
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some locations. This experiment showed the limitation of the prior based regularization. The qual-
ity of the reconstructed image depends heavily on that of the prior image, and imperfect design of
the regularization may lead to additional artifacts.

In Fig. 5.22 and Fig. 5.23, we present reconstructed images obtained by using the statistical
weighting modification approach proposed in the previous section. The statistical weighting modi-
fication greatly reduced short-scan artifacts. However, as pointed out in the previous section, due to
the limitation of the statistical weighting modification, there exists residual artifacts in the image.
To reduce the artifact further, we combined the prior regularization approach with the statistical
weighting approach. Fig. 5.22 and Fig. 5.23 also show the reconstructed image from the combined
method. We selected the regularization parameter for the prior regularization term to be small,
βp = 103. Combined method slightly reduced residual artifacts.

5.2.3 Discussion for additional prior regularization

Adding an additional regularization based on the prior image showed promising results. By
designing the diagonal weighting or tuning the parameters, we can only use the necessary infor-
mation for the reconstruction. However, it is hard to tune all the parameters optimally. How to
determine each of these parameters is an open question. In addition, the quality of the prior image
greatly affects the quality of the reconstructed image. We used FBP based prior images for the ex-
periments, but we can use full-scan MBIR instead for better results. However, this requires much
more computation, since we are reconstructing two separate MBIR images.

We also showed that the proposed regularization method can be combined with the statistical
weighting modification method to further reduce the short-scan artifacts.

5.3 Summary of the chapter

In this chapter, we investigated methods that reduce short-scan artifacts by exploiting all avail-
able information. We used additional information other than short-scan measurements to recon-
struct images with reduced artifacts. The main issues were how to effectively use such additional
information and to maintain desirable properties such as temporal resolution. We proposed two
different methods to achieve the goal: statistical weighting modification and additional prior reg-
ularization. Both methods greatly reduce short-scan artifacts in the reconstruct image. However,
they both suffer from certain trade-offs. The main question for these methods is the selection of the
parameters that control these trade-offs. How to choose such parameters is an open question. To
systematically choose the parameters, we need a metric that can measure the amount of short-scan
artifact in the image. However, it is not trivial to design the metric since the artifacts appear in
various forms. We leave the metric design as a future work.
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(a) Full-scan MBIR

6 6

(b) Short-scan MBIR

6 6

(c) Full-scan FBP
1

6

1
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(d) Proposed method with no filtering, cutoff = 1/5, βp = 106

6 6

(e) Proposed method with a Gaussian filter, cutoff = 1/5, βp = 106

Figure 5.18: Comparison between the reconstructed images obtained from various methods (a)
FS-MBIR (b) HS-MBIR (c) FSHS-FBP (d) Proposed method with no filtering (e)
Proposed method with a Gaussian filter. Sagittal and coronal views. Display window
is [800 1200] (HU).

84



(a) Fc = 1/5

(b) Fc = 1/8

(c) Fc = 1/10

(d) Fc = 1/15

Figure 5.19: Reconstructed images obtained from different cutoff frequencies (a) Fc = 1/8 (b)
Fc = 1/10 (c) Fc = 1/15. Each column corresponds to 1st, 17th, 239th, last slice of
ROI, respectively. Display window is [800 1200] (HU).
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(a) Full-scan MBIR

(b) Short-scan MBIR

(c) Full-scan ASiR

(d) Proposed method with Gaussian filtering, cutoff = 1/10, βp = 106

Figure 5.20: Comparison between the reconstructed images obtained from various methods (a)
Full-scan MBIR (b) Short-scan MBIR (c) Full-scan ASIR (d) Proposed method with
a Gaussian filter. From left to right, each column corresponds to 1st, 17th, 239th, last
slice of ROI, respectively. Display window is [800 1200] (HU).
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(a) Full-scan MBIR

(b) Short-scan MBIR

(c) Full-scan ASiR
1
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1

6

(d) Proposed method with Gaussian filtering, cutoff = 1/10, βp = 106

Figure 5.21: Comparison between the reconstructed images obtained from various methods (a)
FS-MBIR (b) HS-MBIR (c) FSHS-FBP (d) Proposed method with no filtering (e)
Proposed method with a Gaussian filter. Sagittal and coronal views. Display window
is [800 1200] (HU).
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(a) Statistical weighting modification with p = 5

(b) Statistical weighting modification + the prior regularization method with Gaussian filtering

Figure 5.22: Reconstructed images from (a) statistical weighting modification (b) statistical
weighting modification (p = 5) combined with the prior regularization method with
Gaussian filtering (Fc = 1/10 and βp = 103). Each column corresponds to 1st, 17th,
239th, last slice of ROI, respectively. Display window is [800 1200] (HU).

(a) Statistical weighting modification
1

6

1

6

(b) Statistical weighting modification + the prior regularization method with Gaussian filtering

Figure 5.23: Reconstructed images from (a) statistical weighting modification (b) statistical
weighting modification (p = 5) combined with the prior regularization method with
Gaussian filtering (Fc = 1/10 and βp = 103). Sagittal and coronal views. Display
window is [800 1200] (HU).
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CHAPTER VI

Accelerated statistical image reconstruction methods

In CT imaging. the complex nature of the cost function that comes from the complicated and
large-scaled system matrix and a generally non-quadratic regularizer necessitate the need of an
iterative algorithm for the minimization process. As described in Section 1.2.3, the computation
time is one of the great challenges for the practical utilization of the statistical image reconstruction
method. Choice of an algorithm and its properties such as monotonicity and convergence speed are
directly related to the computational expense, so many algorithms with advanced properties have
been proposed in many literatures [8,75,105,140]. This chapter presents methods to accelerate the
optimization process for both cases: a standard image reconstruction without motion model and a
motion-compensated image reconstruction.

6.1 Accelerating ordered-subsets type image reconstruction using double
surrogates

Ordered-subsets (OS) algorithms, also known as block-iterative or incremental gradient meth-
ods, are popular in the field of statistical image reconstruction due to their significant acceleration
in initial iterations. The basic idea of OS methods is to group the measurement data into an or-
dered sequence of subsets or blocks and utilize only one subset of the data for each update instead
of using the entire measurements.

Despite their success in speeding up the convergence, ordinary OS algorithms are not conver-
gent in general but rather approach a suboptimal limit-cycle. Several methods were proposed to
make OS algorithms globally convergent [5, 76, 117]. Most of these methods introduces relaxia-
tion parameters, which need to be appropriately scheduled to ensure global convergence. Finding
good relaxation parameters usually involves trial-and-error or some experimentation [5]. There
also exist convergent algorithms that does not use relaxation parameters such as incremental EM

This chapter is based on [17, 18, 24, 25]
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algorithms [86] and incremental aggregated gradient (IAG) method [12]. Incremental optimiza-
tion transfer (IOT) is generalized version of the incremental EM algorithms, and it ensures global
convergence without requiring relaxation parameters [6].

Unregularized OS reconstruction methods are used routinely for PET and SPECT scans [59].
For regularized image reconstruction problems, conventional OS algorithms calculate the gradient
of the regularizer for every subset update [1]. For large problems with large number of subsets,
such as cone-beam or helical CT image reconstruction, calculating the gradient for each subset
update can be very computationally expensive. To mitigate this issue, some investigators use un-
regularized iterations followed by a denoising operation after updating all subsets [135]. Although
such methods save computation, their convergence properties are uncertain, and since they may not
be minimizing any particular cost function it becomes more difficult to design regularization pa-
rameters. Furthermore, it is known that inserting filtering steps into unregularized algorithms can
lead to undesirable spatial resolution properties [84]. Our goal here is to reduce the computational
cost without inducing such problems.

In this section, we propose new OS-type algorithms that are derived from optimization transfer
principles and that allow us to compute the gradient of the regularizer less frequently, and thus re-
duces the computational expense when many subsets are used. Our derivation leads to a correction
term that accounts for the fact that the regularizer gradient is updated less frequent than every sub-
iteration. The proposed method reduces computational cost with little impact on the convergence
rate leading to an overall acceleration.

Recently, OS algorithms were further accelerated by using spatially non-uniform updates [74]
or incorporating momentum method based on Nesterov’s fast gradient method [73,75]. These new
OS algorithms converge much faster than the conventional OS, even with small number of subsets.
We extend the proposed algorithm to OS with momentum method, and show that, even when small
number of subsets are being used, our method can still save computation time.

We apply the proposed algorithm to penalized weighted least squares (PWLS) image recon-
struction for cone-beam X-ray computed tomography (CT). Simulations and phantom experiments
show that the proposed method reconstructed images with compatible image quality within reduced
computation time. The method easily could be adapted for other statistical models.
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6.1.1 Ordered-subsets (OS) and incremental optimization transfer (IOT) algorithms

6.1.1.1 Ordered-subsets algorithms

For most penalized-likelihood image reconstruction problems, the objective function and its
gradient can be rewritten as the following partially separable forms [88]:

Ψ(x) =
M∑

m=1

Ψm(x), ∇x Ψ(x) =
M∑

m=1

∇x Ψm(x), (6.1)

where typically Ψm(x) corresponds to a subset of the projection data. Most iterative algorithms
use the gradient of the objective function to obtain a minimizer, and many can be written as the
form

x(n+1) = x(n) − αnD0(x
(n))∇x Ψ(x(n)), (6.2)

where αn > 0 is a relaxation parameter and D0 is a scaling matrix, which is typically diagonal.
For many algorithms, the empirical findings have suggested that in early iterations, one can replace
the gradient of the entire objective function with that of only a part of the objective function and
still have x(n+1) be better than x(n) but with less computational cost. Such methods are called
incremental gradient methods in the optimization literature [10, 72]. The term ordered-subsets has
been used in tomography fields, because only a subset of projection views are used in the update
steps and the ordering of the views is important [1, 59, 71]. For x(n) far from the minimizer, x̂,
if we select the subsets to be “balanced” in some appropriate sense then the following conditions
hold:

∇x Ψ1(x) ∼= ∇x Ψ2(x) ∼= · · · ∼= ∇x ΨM(x),

or equivalently,
∇x Ψ(x) ≈M∇x Ψm(x), ∀m. (6.3)

Thus, instead of (6.2), a typical OS algorithm has the form shown in Table 6.1.
We refer to each update in Table 6.1 as the mth subset update, or mth sub-iteration of the nth

iteration. One complete iteration is performed by cycling through all the subsets indexed by m
so that all data is utilized. In tomography problems, the subsets are selected so that projections
within each subset correspond to angularly downsampled projections. It was suggested that the
ordering of the subsets that makes projections corresponding to one subset as “orthogonal” as
possible to previously used projections is preferable [49, 54]. Despite their success in speeding up
the initial convergence, ordinary OS algorithms are not convergent in general but rather approach
a suboptimal limit-cycle without relaxation, i.e., when αn = α. To address this issue, several
families of convergent OS type algorithms have been proposed [12, 34, 76, 86], although those
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Table 6.1: Ordered-subsets algorithm
Initialize x(0)

for n = 0, 1, · · ·,
x(n) := x(n,0)

for m = 1, · · · ,M

x(n,m) = x(n,m−1) − αnMD(x(n,m−1))∇x Ψm

(
x(n,m−1)

)
,

end
x(n+1) := x(n,M)

end

modifications tend to slow down convergence. In this section, we focus on the initial convergence
characteristics of OS algorithms rather than their final convergence properties.
Consider a PWLS objective function of the form (3.1). The data-fit term can be rewritten as the
following separable form:

L- (x) =
M∑

m=1

L- m(x),

where L- m is the data-fit term associated with the mth subset. OS algorithm for PWLS objective
function is shown in Table 6.2. For separable quadratic surrogates method, we can define the
scaling matrix D as follows:

D(x) = [DL(x) +DR(x)]
−1 .

Typical choices [1] for DL and DR are

DL = diag(A′WA1),

DR(x) = diag
(|C|′ diag(|ω(Cx)|) |C|1) ,

where ω(t) = ψ̇(t)/t is Huber’s curvature [58]. Instead of using pre-determined scaling fac-
tors, more adaptive selection maybe desirable. For example, OS with spatially non-uniform up-
dates [74] refines these scaling matrices based on the prediction of how much updates does each
voxel need. Notice that we need to calculate the regularization gradient,∇x R

(
x(n,m−1)

)
, for every

sub-iteration, which may cause each update to be very computationally expensive when dealing
with large problems with many subsets. Even if we used small number of subsets, if the reconstruc-
tion volume is large, the computational cost for updating the regularizer gradient would become
burdensome.
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Table 6.2: Ordered-subsets algorithm for PWLS problem
Initialize x(0)

for n = 0, 1, · · ·,
x(n) := x(n,0)

for m = 1, · · · ,M

x(n,m) = x(n,m−1) − αnD(x(n,m−1))
(
M∇x L- m(x

(n,m−1)) +∇x R
(
x(n,m−1)

))
,

end
x(n+1) := x(n,M)

end

6.1.1.2 Incremental optimization transfer

Consider the separable form of the objective function again (6.1). Assume furthermore that, for
each sub-objective function Ψm(x), we can define a surrogate function φm that satisfies the usual
majorization conditions [60]:

φm(x;x) = Ψm(x), ∀x (6.4)

φm(x; x̄) ≥ Ψm(x), ∀x, x̄.

We define the following ”divergence” functions:

Dm(x‖x̄) � φm(x; x̄)−Ψm(x), m = 1, · · · ,M. (6.5)

By construction, Dm(x‖x̄) ≥ 0 and Dm(x‖x) = 0, and especially:

argmin
x̄

Dm(x‖x̄) = x.

We define the following augmented objective function using (6.5):

F̄(x; x̄1, · · · , x̄M ) = Ψ(x)+
M∑

m=1

Dm(x‖x̄m) =
M∑

m=1

φm(x‖x̄m). (6.6)

By the properties of Dm(·‖·), we obtain the following expression for the estimator x̂:

x̂ = argmin
x

Ψ(x) = argmin
x

min
x1,···,xM

F̄(x; x̄1, · · · , x̄M). (6.7)
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Therefore the problem of minimizing Ψ is equivalent to minimizing F̄. Given an initial set of
estimates x̄(0)

m form = 1, · · · ,M , we minimize F̄ by applying a cyclic coordinate descent approach
in which we alternate between updating x and one of the x̄m vectors, as outlined in Fig. 6.3.

Each update will decrease F̄ monotonically, and by (6.7), if the iterates converge to a minimizer
of F̄, then that estimates also minimizes the original objective function Ψ. However, Ψ need not
decrease monotonically with the algorithm [15].

One drawback of this method is the requirement of storing at least M images, especially when
the image size and M are large.

Table 6.3: Generic incremental optimization transfer (IOT) method
Initialize x̄

(0)
1 , · · · , x̄(0)

M

for n = 0, 1, · · ·
for m = 1, · · · ,M

xnew = argmin
x

F̄(x; x̄(n+1)
1 , · · · , x̄(n+1)

m−1 , x̄
(n)
m , x̄

(n)
m+1, · · · , x̄(n)

M ) (6.8)

x̄(n+1)
m = argmin

x̄m

F̄(xnew; x̄
(n+1)
1 , · · · , x̄(n+1)

m−1 , x̄m, x̄
(n)
m+1, · · · , x̄(n)

M ) = xnew

end

x(n+1) := x̄
(n+1)
M

end

When we use quadratic surrogates for φm, i.e.

φm(x; x̄) = Ψm(x)(x̄) +∇Ψm(x)(x̄)(x− x̄) +
1

2
(x− x̄)′Cm(x̄)(x− x̄), ∀x̄,

where Cm is a N × N Hermitian nonnegative-definite matrix that ensures (6.5). For simplicity,
consider the unstrained estimation case, then given x̄1, · · · , x̄M , the minimizer in (6.9) satisfies the
following

0 =
M∑

m=1

[∇Ψm(x)(x̄m) +Cm(x̄m)(x
new − x̄m] ,

which is equivalent to[
M∑

m=1

Cm(x̄m)

]
xnew =

M∑
m=1

[Cm(x̄m)x̄m −∇Ψm(x)(x̄m)] . (6.9)

The general form of IOT with quadratic surrogates is shown in Table 6.4.
For the case where the cost function is strictly convex, quadratic surrogates ensures the aug-
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Table 6.4: IOT algorithm with quadratic surrogates (unconstrained)
Initialize {x̄m : m = 1, · · · ,M}
for n = 1, 2, · · ·,

for m = 1, · · · ,M

x̄m :=

[
M∑
l=1

Cl(x̄l)

]−1 M∑
l=1

[Cl(x̄l)x̄l −∇Ψl(x)(x̄l)] (6.10)

end

x(n) = x̄M

end

mented function F̄ to be convex with respect to x. In this case the minimizer in (6.9) exists, and
the algorithm in Table 6.4 will decrease F̄ monotonically. One can establish general conditions
that ensure convergence of all of the xm vectors to x [6].

6.1.2 Accelerated algorithms using double surrogates

We present accelerated OS and IOT algorithms. Our accelerated OS algorithm provides fast
initial convergence, but is not a convergent algorithm in general. This motivates us to present an
accelerated IOT algorithm that is globally convergent. Both methods can be used sequentially to
obtain fast and global convergence.

6.1.2.1 Ordered-subsets with double surrogates

In this section, we present an accelerated OS algorithm. Consider a general PL objective func-
tion of the form (2.9) We assume that the data-fit term L- (x) has a quadratic surrogate of the form:

L- (x) ≤ φL(x; x̃) = L- (x̃)+∇ L- (x̃)(x− x̃) +
1

2
(x− x̃)′DL(x̃)(x− x̃), ∀x̃, (6.11)

with an appropriate diagonal matrix D ˙L. We also assume the regularizer R (x) has a quadratic
surrogate of the form:

R(x) ≤ φR(x; x̄) = R(x̄)+∇R(x̄)(x− x̄) +
1

2
(x− x̄)′DR(x̄)(x− x̄), ∀x̄, (6.12)

with an appropriate diagonal matrix D ˙R. Then we define the following “double surrogate” func-
tion:

φ(x; x̃, x̄) � φL(x; x̃) + φR(x; x̄). (6.13)
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By construction, this quadratic surrogate has the following properties:

Ψ(x) = φ(x;x,x)

Ψ(x) ≤ φ(x; x̃, x̄), ∀x̃, x̄.

These properties generalize those of usual optimization transfer methods [60, 65]. For subsequent
use, note that from (6.13):

∇x φ(x; x̃, x̄) = ∇ L- (x̃)+DL(x̃)(x− x̃) +∇R(x̄)+DR(x̄)(x− x̄),

so the minimizer of the double surrogate function is given as follows:

argmin
x

φ(x; x̃, x̄) = Dφ(x̃, x̄) (DL(x̃)x̃+DR(x̄)x̄−∇ L- (x̃)−∇R(x̄)) ,

where we defined the scaling matrix Dφ as follows

Dφ(x̃, x̄) = [DL(x̃) +DR(x̄)]
−1 .

A standard optimization transfer algorithm works as follows:

x(n+1) = argmin
x

φ(x;x(n),x(n))

= x(n) −Dφ(x
(n),x(n)) (∇ L- (x(n))+∇R(x(n))) .

One can show this also decreases Ψ monotonically, i.e., Ψ(x(n+1)) ≤ Ψ(x(n)). Furthermore, this
algorithm converges under suitable conditions [65]. For the case of separable quadratic surrogates

(SQS), usually this type of algorithm converges undesirably slowly [1]. The conventional ordered-

subsets (OS) approach to accelerate convergence is to make the following approximation:

∇ L- (x̃) ≈Dm∇ L- m(x̃),

where L- ˙m is the data-fit term corresponding to the mth subset of the projection views, and D ˙m
is a suitable diagonal matrix, which often simply is MI for M subsets as suggested in (6.3). Using
this approximation, we define the following approximate surrogate function:

φm(x; x̃, x̄) � L- (x̃)+Dm∇ L- m(x̃)(x− x̃) +
1

2
(x− x̃)′DL(x̃)(x− x̃) + φR(x; x̄).
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For a conventional regularized ordered-subsets method, the minimization step for each subset is
given as follows:

x(n,m) = argmin
x

φm(x;x
(n,m−1),x(n,m−1)) (6.14)

= x(n,m−1) −Dφ(x
(n,m−1),x(n,m−1))

(
Dm∇ L-

(
x(n,m−1)

)
+∇R

(
x(n,m−1)

))
,

x(n,0) := x(n), x(n+1) := x(n,M),

for m = 1, . . . ,M .
This iteration is undesirably slow because it computes the regularization gradient ∇R for every
subset. To reduce this expense, we propose to exploit the generality of the double surrogate (6.13)
by using the following novel update:

x(n,m) = argmin
x

φm(x;x
(n,m−1),x(n)) (6.15)

= Dφ(x
(n,m−1),x(n))[DL(x

(n,m−1))x(n,m−1) +DR(x
(n))x(n)

−Dm∇ L-
(
x(n,m−1)

)−∇R(x(n))]

= x(n,m−1) −Dφ(x
(n,m−1),x(n))[Dm∇ L-

(
x(n,m−1)

)
+∇R(x(n))

+DR(x
(n))(x(n,m−1) − x(n))︸ ︷︷ ︸

new term

].

This new iteration (6.15) utilizes the same regularizer gradient for all subsets. Compared to (6.14),
the updates in (6.15) are quite similar except for an extra term that compensates for not updating
the regularizer gradient. Table 6.5 summarizes the proposed algorithm. It requires storing the
previous image xlast.

Table 6.5: General PL ordered subsets method with double surrogate
Initialize x(0)

for n = 0, 1, · · ·,
x(n) := x(n,0), xlast := x(n)

for m = 1, · · · ,M
if mod(m,Uf ) = 0

xlast = x(n,m−1))

end
x(n,m) = argmin

x
φm(x;x

(n,m−1),xlast)

end
x(n+1) := x(n,M)

end
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In above description, we updated the regularizer gradient only after all subsets were updated.
Obviously, the regularizer gradient can be updated as frequently as needed and we denote the
update frequency as Uf (see algorithm in Table 6.5). Updating the regularizer gradient less often
will reduce the computational cost at the expense of the convergence rate in early iterations.

The proposed algorithm was evaluated on a PWLS image reconstruction problem for cone-
beam X-ray CT. We have investigated the trade-off between the update frequency and the compu-
tational expense per iteration.

6.1.2.2 Incremental optimization transfer method with double surrogates

In this section, we present an accelerated IOT algorithm, which is convergent. For most
penalized-likelihood image reconstruction problems, the cost function (3.1) can be rewritten as
the following form:

Ψ(x) =
M∑

m=1

L- m(x) + R(x),

where L- m(x) denotes the negative log-likelihood term associated with the mth data block. Usually
evaluating gradients of L- m is much more computationally expensive than that of R(x), but for
large M , calculating the gradients of R(x) for each data block update can be computationally
exhausting. We again use the double surrogate idea that defines individual quadratic surrogates for
the data-fidelity terms and for the regularization, and update the penalty surrogates less frequently.

For the log-likelihood term, we define quadratic surrogates of the following form

φm(x; x̄) = L- m(x̄) +∇ L- m(x̄)(x− x̄) +
1

2
(x− x̄)′Cm(x̄)(x− x̄), ∀x̄, (6.16)

where Cm is a Hermitian nonnegative-definite matrix that ensures φm to majorize L- m. After con-
structing the following augmented cost function

F̄(x; x̄1, · · · , x̄M) �
M∑

m=1

φm(x‖x̄m) + R(x), (6.17)

≡
M∑

m=1

(
x

′∇ L- m(x̄m) +
1

2
(x− x̄m)

′Cm(x̄m)(x− x̄m)

)
+ R(x),

we apply alternating minimization instead of minimizing the cost function Ψ(x) directly. Minimiz-
ing (6.18) over x is essentially a penalized weighted least squares problem. We apply optimization
transfer again for F̄ . Suppose that we have a quadratic surrogate for the regularizer in the form of
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(6.12). We define a surrogate function for F̄ as follows

Φ(x; x̃; x̄1, · · · , x̄M) � F̄(x; x̄1, · · · , x̄M)− R(x)+R(x; x̃) . (6.18)

Notice that
argmin

x
F̄ (x; ·) = argmin

x
min
x̃

Φ(x; x̃; · · ·).

Iteratively minimizing Φ(·) with respect to x and x̃ will monotonically decrease F̄ with respect to
x. The minimizer of Φ satisfies the following

0 = ∇xΦ(x; x̃; x̄1, · · · , x̄M ),

=
M∑

m=1

(∇ L- m(x̄m) +Cm(x̄m)(x− x̄m)) +∇R(x̃)+DR(x̃)(x− x̃),

=
[
Ĉ +DR(x̃)

]
x−

M∑
m=1

[Cm(x̄m)x̄m −∇ L- m(x̄m)] +∇R(x̃)+DR(x̃)x̃,

where Ĉ �
∑M

m=1 Cm(x̄m). Solving this yields the following inner iteration:

xnew :=
[
Ĉ +DR(x

old)
]−1

[
M∑
l=1

[Cl(x̄l)x̄l −∇ L- l(x̄l)] +∇R
(
xold

)
+DR(x

old)xold

]
. (6.19)

Table 6.6 summarizes the proposed algorithm with the update frequency Uf . One extreme case is
that we consider the regularization term as a “block” in addition to the data blocks [34]. In this
case, the computational cost for the regularizer may become very low, but we may lose “subset
gradient balance”. The proposed algorithm was also evaluated on a PWLS image reconstruction
problem for cone-beam X-ray CT.

6.1.3 Simulation results for sparse view case

The proposed algorithms were investigated on a 3D cone-beam CT image reconstruction prob-
lem with limited view angles. The XCAT phantom [112] was used as a static object, and the
image was reconstructed to a 512 × 512 × 50 grid with pixel size Δx = Δy = 0.9766 mm and
Δz = 0.625 mm.

We simulated a 3rd-generation axial cone-beam CT system using the separable footprint pro-
jector [79]. The simulated system has Ns = 888 channels and Nt = 32 detector rows spaced by
Δs = 1.0239 mm and Δt = 1.09878 mm per view, and 164 evenly spaced view angles over 360◦,
which corresponds to an undersampling factor of 6. The source to detector distance was 949 mm,
and the source to rotation center distance was 541 mm. We also included a quarter detector offset
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Table 6.6: IOT algorithm with quadratic double surrogates for PL problems
Initialize {x̄m : m = 1, · · · ,M} and x(0) = xold

for n = 1, 2, · · ·,

x̄0 := x(n−1)

for m = 1, · · · ,M
if mod(m,Uf ) = 0

xold = x̄m−1 (6.20)

end

x̄m :=
[
Ĉ +DR(x

old)
]−1

[
M∑
l=1

[Cl(x̄l)x̄l −∇ L- l(x̄l)] +∇R
(
xold

)
+DR(x

old)xold

]
(6.21)

end

x(n+1) := x̄M

end

in the channel direction to reduce aliasing.
For the edge-preserving regularizer, we used a certainty-based penalty [42] to obtain more

uniform resolution and a q-Generalized Gaussian MRF (q-GGMRF) [124] as the penalty function
to provide edge-preserving regularizer. The regularization parameter β was selected such that
the target PSF has a full-width at half-maximum (FWHM) of approximately 1.4 mm [42]. We
generated the noisy sinogram with Poisson noise, and used weighting wi = exp(−[Ax]i).

To assess the convergence speed of the proposed method, we computed the root mean squared
difference between the image estimate at the nth iteration, x(n), with both the fully converged
solution, x∞, and true image, xtrue. We calculated x∞ using consecutive steps of ordered-subsets
with decreasing number of subsets. We used 41, 10, and 1 subsets with 100, 100, and 1000
iterations respectively. This type of “relaxed” OS is guaranteed to converge because the final stage
uses just 1 subset for which (6.14) is convergent [1]. However, we also performed 100 iterations
of IOT after that to make sure the convergence.

Fig. 6.1 shows the images of true phantom, Filtered Back Projection (FBP) reconstruction [36],
and fully converged image (x∞). For the FBP reconstruction, the ramp filter was associated with
a Hanning apodization window to attenuate the high frequency noise. Due to limited view angles,
conventional FBP reconstruction, which was used as the initial condition for our OS reconstruction,
shows severe streaking artifacts compared to the true phantom. The fully converged image has
much less artifacts, thus illustrating the benefits of statistical image reconstruction in limited view
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Figure 6.1: Images of (a) XCAT phantom and (b) FBP reconstruction (c) Converged Image (x∞)
from cone-beam CT data with 164 projection views.

angle problems.
We divided the projections into 41 subsets, which corresponds to 4 views per subset. This is

a rather aggressive selection compared to conventional choices to try to accelerate convergence
significantly. The regularizer gradient was updated at different frequencies to see its effect to
convergence and computation time.

6.1.3.1 OS-DS results

Fig. 6.2 illustrates that our proposed method gives similar root-mean-square (RMS) differences,√√√√ 1

N

N∑
j=1

(x
(n)
j − x∞j ),

as the conventional OS even when we update the regularizer infrequently per iteration.
On the other hand, Fig. 6.3 illustrates that the computational expense required to obtain the

same level of RMS differences was reduced by the proposed method. With Uf = 13, which
gives the best result in this case, the proposed method converges about 3 times faster than the
conventional OS. By observing the reconstructed image at the same time point, Fig. 6.4 clearly
shows that the proposed method is converging faster. There exists tradeoff between convergence
rates and computational expense, and for our case calculating the regularizer gradient for every 13
subset updates gave the most efficient results. For different problems, the optimal update frequency
will differ. However, it is noticeable that regardless of the update frequency, the proposed method
is converging faster than the conventional OS. As the problem gets larger and the number of subsets
increase, the computational expenses required to calculate the gradient of the regularizer becomes
much more dominant. Therefore, we can expect substantial benefits from our proposed method for
such problems.
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Figure 6.2: Convergence rates of OS-DS at each iteration for different regularizer update fre-
quency. OS-41-DS-n indicates OS with 41 subsets and Uf = n, and “n = all” means
only updating once after all subset updates are done. (a) x(n) with respect to x∞ and
(b) x(n) with respect to xtrue
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Figure 6.3: Convergence rates of OS-DS versus time for different regularizer update frequency. (a)
x(n) with respect to x∞ and (b) x(n) with respect to xtrue
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To see the effects of the new term in (6.16), we compare the reconstructed images obtained
with and without the term (see Fig. 6.5). Without the new update term, less frequent update of
regularizer gradient led to very poor convergence characteristics. The resulting image is severely
corrupted in the unsampled region of the image (see Fig. 6.6).

6.1.3.2 IOT-DS results

We used 1 iteration of OS-SQS algorithm to initialize IOT [6].
Comparing the results for OS-DS (Fig. 6.2 and Fig. 6.3) and that of IOT-DS (Fig. 6.7 and

Fig. 6.8), we can observe similar tendencies. Less frequent regularizer gradient updates have very
little effects on the convergence in iterations Fig. 6.7. On the other hand, Fig. 6.8 shows that the
same level of RMS differences can be obtained with much less computation by using the proposed
IOT with double surrogates. In this case, regarding the regularization as one of the block performed
most efficiently, and we obtained approximately 2.5 times speed up. For different problems, the
optimal update frequency may differ, but same as the OS-DS case, the IOT-DS method converges
faster regardless of the update frequency.

Since 1 iterations of OS-SQS was not enough to reach the limit cycle, we can notice the unde-
sirable jump in the convergence curve [6].

6.1.4 Physical phantom results

We reconstructed 512 × 512 × 47 images of the GEPP from the measurements with 888
channels, 64 rows, and 3071 views. It was a helical scan with pitch 0.5. We used OS-DS algorithm
with 328 subsets and the scaling factor suggested in [74] to reconstruct images.

In Table 6.5, we suggested to update regularizer gradients for every Uf inner iterations. We
also investigated different update patterns. We use the number of updates Nu instead to indicate
the frequency of regularizer gradient updates. Here are possible three patterns:

• “Regular” - This corresponds to the current update pattern.

• “Consecutive” - Do consecutive Nu updates at the end of the inner iteration.

• “Random-1” : Randomly do Nu− 1 updates during the inner iteration, and always update at
the last inner iteration.

Fig. 6.9 compares the effect of these patterns to convergence speed. Number of updates Nu was
fixed to 10 for the experiment. Consecutively updating the regularizer gradient at the end of inner
iterations turns out to be a bad strategy. On the other hand, the other two update patterns showed
results. It seems that the reason is because we used uniform distribution to determine when to
update. Using different probability distribution may change the results.
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Fig. 6.10 illustrates how the number of updates Nu affects the convergence speed in both it-
erations and wall time. Similar to results obtained with the sparse view simulation, the proposed
method reduced the computational cost to reach the same RMSD level. We obtained about 2 to 3
times speed up for this case. However, if we reduce the number of updates too much, we severely
lose the convergence rates, which is undesirable.

6.1.5 Simulation results for low-dose large cone-angle case

We simulated a 256-slice axial cone-beam CT scanner and a low-dose case with 50mA tube
current. We obtained the measurements with 888 channels, 256 rows, and 622 views, and XCAT
phantom was used as a static object. The image was reconstructed to a 718 × 718 × 440 grid
with the same voxel size as the previous simulation case. We applied double surrogate method to
OS with Nesterov’s fast gradient method [75] (OS-NES-DS), and used it to reconstruct images.
We modified x update equation in Fig. 2 of [75] by applying (6.16), so that the gradient of the
regularizer is less frequently updated. We used 12 subsets for the algorithm (OS-NES-12-DS).

Fig. 6.11 shows that the proposed method, OS-NES-12-DS, further accelerates the OS + mo-
mentum method in time. Using small number of updates leads to decreased convergence rates in
iteration, but requires much less computation per iteration. The main reason for the speed up is the
large size of the reconstruction volume. Even for small number of subsets, the regularizer gradient
updates can be computationally expensive.

6.1.6 Conclusions

We presented simple modifications of the OS type methods that allow the regularizer gradient
to be less frequently updated. The methods provide very significant acceleration when applied to
large problems with many subsets or huge reconstruction volume, such as large cone-angle cone-
beam CT or helical CT image reconstruction, while still providing good reconstructed images.

Simulations and phantom experiments demonstrated that a good reconstruction with compati-
ble quality was achieved within much less computation time. However, the reduction in the com-
putational expense may depend on the size of the problem and the complexity of updating the
regularizer compared to the complexity of forward and back-projection. When implemented on
graphics processing unit (GPU), the trade-offs may differ.

For ordered-subsets method, we focussed on the initial convergence characteristics of the
method. Since the conventional OS algorithm is inherently not globally convergent, neither is
the proposed method. Thus we also applied the double surrogate idea to incremental optimization
transfer method, which is a globally convergent block iterative algorithm. Switching from OS-DS
to IOT-DS will give faster initial convergence and also convergence to the solution. Finally, we
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applied the idea to one of the recent variations of OS algorithm, OS + momentum, and showed its
effectiveness in reducing computation time.

One issue with the double surrogate method, as mentioned before, is the selection of the update
frequency. Using moderate update frequency can provide reasonable speed up, but we want to
maximize it. Further research will address the systematic way to determine the optimal update
frequency and possible improvements of the methods.
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Figure 6.4: Comparing the convergence speed of OS-DS with different update frequencies. Left
column: Images at the same time point (4000 sec after initialization). Right column:
Absolute difference images with respect to x(∞).
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Figure 6.5: Effects of the new update term in the convergence rate
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Figure 6.6: Images of OS-41-DS-all with and without the new update term (a) With the new term,
two slice below bottom end slice (b) With the new term, two slice above top end slice
(c) Without the new term, two slice below bottom end slice (d) Without the new term,
two slice above top end slice
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Figure 6.7: Convergence rates of IOT-DS at each iteration for different regularizer update fre-
quency. IOS-41-DS-n indicates IOT with 41 subsets and Uf = n, and “n = all” means
only updating once after all subset updates are done. (a) x(n) with respect to x∞ and
(b) x(n) with respect to xtrue

0 500 1000 1500 2000 2500 3000 3500

20

21

22

23

24

25

26

27

28

29

30

Wall Time (sec)

R
M

S
D

 (
H

U
)

 

 
IOT−41
IOT−41−DS−4
IOT−41−DS−8
IOT−41−DS−13
IOT−41−DS−20
IOT−41−DS−all

0 500 1000 1500 2000 2500 3000 3500

55.5

56

56.5

57

57.5

58

58.5

59

Wall Time (sec)

R
M

S
D

 (
H

U
)

 

 
IOT−41
IOT−41−DS−4
IOT−41−DS−8
IOT−41−DS−13
IOT−41−DS−20
IOT−41−DS−all

(a) (b)

Figure 6.8: Convergence rates of IOT-DS versus time for different regularizer update frequency.
(a) x(n) with respect to x∞ and (b) x(n) with respect to xtrue
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Figure 6.9: Convergence rates of OS-DS for different update patterns (a) versus iterations (b) ver-
sus time (sec).
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Figure 6.10: Convergence rates of OS-DS for different number of updates (Nu) (a) versus iterations
(b) versus time (sec).

110



0 5 10 15 20
5

10

15

20

25

30

35

40

45

Iterations

N
R

M
S

D
 (

H
U

)

 

 

OS−NES−DS−1
OS−NES−12−DS−2
OS−NES−12−DS−4
OS−NES−12−DS−6
OS−NES−12−DS−8
OS−NES−12−DS−12

0 1000 2000 3000 4000 5000 6000 7000
5

10

15

20

25

30

35

40

45

Wall Time (sec)

N
R

M
S

D
 (

H
U

)

 

 

OS−NES−DS−1
OS−NES−12−DS−2
OS−NES−12−DS−4
OS−NES−12−DS−6
OS−NES−12−DS−8
OS−NES−12−DS−12

(a) (b)

Figure 6.11: Convergence rates of OS-NES-12-DS-Nu for different number of updates (Nu) (a)
versus iterations (b) versus time (sec).
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6.2 Motion-compensated image reconstruction with alternating minimiza-
tion

Cardiac computed tomography (CT) is important for diagnosing heart disease. Motion ar-
tifacts are a significant issue for cardiac CT image reconstruction. Motion-compensated image
reconstruction (MCIR) has the potential to overcome the drawbacks of conventional gated recon-
struction methods by exploiting all the measurement data and using motion information. In gen-
eral, MCIR methods consist of two main steps: estimating the motion and reconstructing the image
using the estimated motion. The quality of the reconstructed image is significantly affected by the
accuracy of the estimated motion, and thus many researchers have focussed on improving motion
estimates. However, the image reconstruction part is also very important for practical use of MCIR
methods. Since the system model in MCIR methods has both the forward-projector and the warp
matrices, it becomes computationally very expensive to use iterative algorithms for MCIR. Unlike
conventional CT image reconstruction problems, designing a proper preconditioner for MCIR is
not trivial due to the complexity of the system model. Ordered-subset (OS) type of algorithms are
not efficient for MCIR, especially when when warping is computationally expensive.

In this chapter, we propose a novel approach to solve the image reconstruction part of the
MCIR method more efficiently. We use a variable-splitting technique to dissociate the original
problem into a number of simpler problems. The proposed method is amenable to preconditioning,
parallelization, and application of block iterative algorithms to sub-problems. We demonstrated
through a phantom simulation that with simple diagonal or circulant preconditioners, the proposed
method shows good convergence rate compared to conjugate gradient (CG) method.

6.2.1 Motion-compensated image reconstruction for CT

6.2.1.1 Problem formulation

We use the mathematical models defined in Chapter II. Consider a penalized-likelihood least
squares (PWLS) formulation of motion-compensated CT image reconstruction:

x̂ = arg min
x

{Ψ(x) � L- (x)+R(Cx)}, (6.22)

L- (x) =
1

2
‖y −ATx‖2W , R(Cx) = β

K∑
k=1

κk ψk([Cx]k),

A = diag{A1, · · · ,ANf
}, T = [T ′

1 . . .T
′
Nf

]′,

where Am is the system matrix corresponding to mth frame, βk is the regularization parameter,
ψk is the potential function, C is a matrix that performs finite differences between neighboring
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voxels, K is the number of neighbors, and T is the warp matrix based on motion parameters that
are assumed to be known. The minimization problem (6.22) is challenging due to the warp matrix
T in the system model.

6.2.2 Proposed method

We apply a variable splitting approach to the problem. The basic idea of variable splitting
method is to introduce auxiliary constraint variables so that coupled parts in the cost function can be
separated [3, 46]. The original problem is transformed into an equivalent constrained optimization
problem, and then alternating minimization methods are applied to efficiently solve the problem.
Previous works have focussed on splitting the regularization term and also the statistical weighting
[3, 103, 105]. In this work, in addition to those splittings, we focus on splitting the warp matrix
from the forward-projector in the system matrix.

6.2.2.1 Equivalent constrained optimization problem

We introduce auxiliary constraint variables u, v, z, and s, and write (6.22) as the following
equivalent constrained problem:

arg min
x,u,v,z,s

Ψ(x,u,v, z, s) =
1

2
‖y − v‖2W + R(z),

s.t. u = Tx, v = Au, z = Cs, s = x, (6.23)

where u ∈ R
NNf separates the system matrix from the warp matrix, v ∈ R

M separates the effect
of the weighting matrix, W , on Ax, z ∈ R

NK and s ∈ R
N detach the warp matrix from the

regularizer.

6.2.2.2 Method of multipliers

We used the framework of method of multipliers [9, 89] to solve (6.23), and constructed an
augmented Lagrangian function as follows [9, 89, 101, 102]:

L(x,u,v, z, s) � 1

2
‖y − v‖2W + R(z)

+ γTu (u− Tx) +
μu

2
‖u− Tx‖2Λu

+ γTv (v −Au) +
μv

2
‖v −Au‖2Λv

+ γTz (z −Cs) +
μz

2
‖z −Cs‖2Λz

+ γTs (s− x) +
μs

2
‖s− x‖2Λs

where γu ∈ R
NNf , γv ∈ R

M , γz ∈ R
NK , and γs ∈ R

N are the Lagrange multipliers, μu > 0,
μv > 0, μz > 0, and μs > 0 are the AL penalty parameters, and Λu � 0, Λv � 0, Λz � 0, and
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Λs � 0 are symmetric weighting matrixes. The multiplier term can be absorbed into the quadratic
penalty term, and by ignoring the irrelevant constants we obtain:

L(x,u,v, z, s) =
1

2
‖y − v‖2W + R(z) (6.24)

+
μu

2
‖u− Tx− ηu‖2Λu

+
μv

2
‖v −Au− ηv‖2Λv

+
μz

2
‖z −Cs− ηz‖2Λz

+
μs

2
‖s− x− ηs‖2Λs

where η’s are Lagrange-multiplier-like vectors defined as ηu = − 1
μu
Λ−1

u γu, ηv = − 1
μv
Λ−1

v γv,
ηz = − 1

μz
Λ−1

z γz, and ηs = − 1
μs
Λ−1

s γs. We use Λu = INNf
, Λv = IM , Λz = INK , and Λs = IN ,

which is a standard approach [4, 43].
To solve the problem (6.23), we alternate between a joint-minimization step and an update step,

which is the classical AL scheme [104]:

(x(j+1),u(j+1),v(j+1), z(j+1), s(j+1)) = arg min
x,u,v,z

L(x,u,v, z, s, η(j)u , η(j)v , η(j)z , η(j)s ) (6.25)

η(j+1)
u = η(j)u − (u(j+1) − Tx(j+1)), (6.26)

η(j+1)
v = η(j)v − (v(j+1) −Au(j+1)), (6.27)

η(j+1)
z = η(j)z − (z(j+1) −Cs(j+1)), (6.28)

η(j+1)
s = η(j)s − (s(j+1) − x(j+1)) (6.29)

6.2.2.3 Alternating direction minimization

Solving the joint minimization step (6.25) is computationally expensive, so we apply alternat-
ing minimization [105] as follows:

x(j+1) = arg min
x

L(x,u(j),v(j), z(j), s(j), η(j)u , η(j)v , η(j)z , η(j)s ), (6.30)

u(j+1) = arg min
u

L(x(j+1),u,v(j), z(j), s(j), η(j)u , η(j)v , η(j)z , η(j)s ), (6.31)

v(j+1) = arg min
v

L(x(j+1),u(j+1),v, z(j), s(j), η(j)u , η(j)v , η(j)z , η(j)s ), (6.32)

z(j+1) = arg min
z

L(x(j+1),u(j+1),v(j+1), z, s(j), η(j)u , η(j)v , η(j)z , η(j)s ), (6.33)

s(j+1) = arg min
s

L(x(j+1),u(j+1),v(j+1), z(j+1), s, η(j)u , η(j)v , η(j)z , η(j)s ). (6.34)
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At the jth iteration, we update each vector in turn as follows:

x(j+1) = arg min
x

μu

2

∥∥u(j) − Tx− η(j)u

∥∥2
Λu

+
μs

2

∥∥s(j) − x− η(j)s

∥∥2
Λs
, (6.35)

u(j+1) = arg min
u

μu

2

∥∥u− Tx(j+1) − η(j)u

∥∥2
Λu

+
μv

2

∥∥v(j) −Au− η(j)v

∥∥2
Λv
, (6.36)

v(j+1) = arg min
v

1

2
‖y − v‖2W +

μv

2

∥∥v −Au(j+1) − η(j)v

∥∥2
Λv
, (6.37)

s(j+1) = arg min
s

μz

2

∥∥z(j) −Cs− η(j)z

∥∥2
Λz

+
μs

2

∥∥s− x(j+1) − η(j)s

∥∥2
Λs
, (6.38)

z(j+1) = arg min
z

R(z) +
μz

2

∥∥∥z −Cs(j+1) − η(j)z

∥∥∥2
Λz

, (6.39)

η(j+1)
u = η(j)u − (u(j+1) − Tx(j+1)), (6.40)

η(j+1)
v = η(j)v − (v(j+1) −Au(j+1)), (6.41)

η(j+1)
s = η(j)s − (s(j+1) − x(j+1)), (6.42)

η(j+1)
z = η(j)z − (z(j+1) −Cs(j+1)), (6.43)

The sub-problems (6.35) to (6.38) are all quadratic problems for which analytical solutions exist.
However, (6.35) and (6.36) cannot be implemented explicitly due to the enormous sizes of the
matrices involved. We employ the iterative CG-solver for these sub-problems.

Sub-problem (6.35) is an image-registration-type problem, which has the following analytical
solution:

x(j+1) = H−1(μuT
TΛu(u

(j) − η(j)u ) + μsΛs(s
(j) − ηs)), (6.44)

and
H = μuT

TT + μsΛs, (6.45)

is nonsingular because Λs = IN � 0. Compared to the original problem (6.22), this sub-problem
requires much less computation due to the absence of the system matrix A and the regularizer R.
We accelerate the CG-solver for (6.44) by using a suitable preconditioner for H . Since H is much
simpler than the Hessian of the original data term in (6.22), it is more amenable to preconditioning.

We now consider (6.36), which is a tomography problem with the following solution:

u(j+1) = M−1(μuΛu(Tx(j+1) + η(j)u ) + μvA
T (v(j) − ηv)), (6.46)

and
M = μvA

TA+ μuΛu, (6.47)

is non-singular because Λu = INNf
� 0. We preconditioned this term to obtain faster convergence.

Designing the preconditioners for H and M is discussed further in the following section. Further
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more, this sub-problem can be further parallelized into Nf problems. Each parallelized problem
can be efficiently solved by preconditioned CG or ordered-subsets type algorithms, which are less
efficient for the original problem.

Sub-problems (6.37) to (6.39) can be solved much more easily compared to above two sub-
problems. Sub-problem (6.37) has a simple analytical solution:

v(j+1) = D−1(Wy + μvΛv(Au+ ηv)), (6.48)

where D = (W + μvΛv). Since W is diagonal, D can be inverted exactly leading to an exact
solution.

We consider (6.38) which can be seen as an image denoising problem. This can be easily
solved analytically:

s(j+1) = K−1(μzC
TΛz(z

(j) − η(j)z ) + μsΛs(x
(j) + ηs)), (6.49)

and
K = μzC

TC + μsΛs, (6.50)

is non-singular because Λs = IN � 0. Furthermore, we can see that K contains CTC, which
is shift-invariant for C with periodic end condition. So (6.38) is exactly solvable with Fourier
transform if we use C with periodic end condition.

Finally, (6.39), which is also an image-denoising-type problem, can be solved easily with iter-
ative algorithms or exactly solved for a variety of potential functions. Here, we consider one of the
edge-preserving regularization using the Fair potential function:

ψ(t) = δ2[|t/δ| − log(1 + |t/δ|)]. (6.51)

For this regularizer, (6.39) separates into 1D minimization problems in terms of the component
{zk}Kk=1 of z:

z
(j+1)
k = arg min

zk

βκk ψk(zk)+
μz

2
(zk − ρ(j)k )

2
, (6.52)

where ρ(j)k is the kth component of ρ(j) � Cs(j+1)+η
(j)
z . By solving (6.52), we obtain the following

exact solution:

z
(j+1)
k = sign{ρ(j)k }

ζ
(j)
k +

√
(ζ

(j)
k )2 + 4δ

∣∣∣ρ(j)k

∣∣∣
2

, (6.53)

where ζ(j)k �
∣∣∣ρ(j)k

∣∣∣− δ − δβκk/μz.
Finally, we present our algorithm in Table 6.7 for solving (6.23).
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Table 6.7: Splitting approach for motion-compensated image reconstruction in X-ray CT imaging

1. Select x(0), μu, μv, μz > 0, μs > 0 and set j = 0

2. Set u(0) = T (α)x(0), v(0) = Au(0), s(0) = x(0), z(0) = Cs(0), and η(0)u = η
(0)
v =

η
(0)
s = η

(0)
z = ε

Repeat:

3. Obtain x(j+1) applying PCG to (6.35)
4. Obtain u(j+1) applying PCG to (6.36)
5. Obtain v(j+1) using (6.48)
6. Obtain s(j+1) using (6.49)
7. Obtain z(j+1) using (6.53)
8. ηu(j+1) = ηu

(j) − (u(j+1) − T (α)x(j+1))

9. ηv(j+1) = ηv
(j) − (v(j+1) −Au(j+1))

10. ηs(j+1) = ηs
(j) − (s(j+1) − x(j+1))

11. ηz(j+1) = ηz
(j) − (z(j+1) −Cs(j+1))

12. Set j = j + 1

Until stopping criterion is satisfied
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6.2.2.4 Preconditioner designs

Using an efficient preconditioner will help each sub-problem converge with fewer iterations.
Reducing these sub-iteration numbers while obtaining the solution with compatible quality leads
to faster convergence in time. Therefore, designing a decent preconditioner for each sub-problem
is very important for the speed of the proposed method.

First, consider the sub-problem (6.44). In general, using a diagonal preconditioner does not im-
prove the convergence rate much [41], and since H is shift-variant, using a circulant preconditioner
would not work well neither. Since the sub-problem (6.44) is computationally much inexpensive
compared to the sub-problem (6.46), the preconditioner for H does not critically affect the overall
convergence speed. Therefore, we used a simple a diagonal preconditioner for this sub-problem
and leave the design of more efficient preconditioner as future work. By extracting the diagonal
elements of H , we use its inverse as the preconditioner.

Next, consider the sub-problem (6.46). This step is computationally expensive compared to
other steps, so solving this sub-problem efficiently is critical to make our method practical. Here,
we propose new preconditioners and compare them with other well-known preconditioners.

Circulant preconditioner Circulant preconditioner is widely used for tomographic reconstruc-
tion problems [29, 105]. When the hessian of the cost function can be approximated as shift-
invariant, the circulant preconditioner can accelerate the convergence efficiently.

We can see that M contains ATA, which can be rewritten as:

ATA =

⎡
⎢⎢⎢⎢⎣
AT

1A1

AT
2A2

. . .

AT
Nf

ANf

⎤
⎥⎥⎥⎥⎦ , (6.54)

where AT
mAm is “nearly” shift-invariant. So we can precondition the problem using suitable cone

filters [41]. First, we can rewrite M as follows:

M =

⎡
⎢⎢⎣
M1

. . .

MNf

⎤
⎥⎥⎦ (6.55)

=

⎡
⎢⎢⎣
μvA

T
1A1 + μuIN

. . .

μvA
T
Nf

ANf
+ μuIN

⎤
⎥⎥⎦ .
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For each Mm, we can construct a circulant matrix M̄m from the central column of Mm:

M̄m = circ(Mmec), (6.56)

and use its inverse, M̄−1
m , as the preconditioner, where ec is a standard basis vector of RN cor-

responding to the center pixel of the image and circ(ρ) represents the construction of a circulant
matrix from a vector ρ. Therefore, the circulant preconditioner for the problem is given by:

M̄−1 =

⎡
⎢⎢⎣
M̄−1

1

. . .

M̄−1
Nf

⎤
⎥⎥⎦ (6.57)

Shift-variant preconditioner In above, we assumed that AT
mAm is “nearly” shift-invariant.

However, this assumption may not be reasonable especially when Nf is large. Here, we intro-
duce another preconditioner for M , which was suggested by [41]. We can approximate AT

mAm as
follows:

AT
mAm = AT

0WmA0 ≈KmA
T
0A0Km, (6.58)

where A0 = [AT
1 , · · · ,AT

Nf
]T , Wm is a diagonal matrix which only selects the measurements

obtained from Am, Km = D[κm,j ] and

κm,j =

√∑
i a

2
ij[Wm]ii∑
i a

2
ij

≈
√∑

i aij[Wm]ii∑
i aij

, (6.59)

In (6.59), we approximated once again with aij instead of a2ij for computational convenience. We
can obtain approximate M as follows:

M =

⎡
⎢⎢⎣
μvA

T
1A1 + μuIN

. . .

μvA
T
Nf

ANf
+ μuIN

⎤
⎥⎥⎦ (6.60)

≈

⎡
⎢⎢⎣
μvK1A

T
0A0K1 + μuIN

. . .

μvKNf
AT

0A0KNf
+ μuIN

⎤
⎥⎥⎦ .

For each approximated Mm, we get:

Mm ≈ μvKmA
T
0A0Km + μuIN = KmJmKm, (6.61)

119



where Jm = μvA
T
0A0 + μuK

−1
m INK

−1
m . We get the following approximated preconditioner for

M :

M−1 ≈

⎡
⎢⎢⎣
K−1

1 J−1
1 K−1

1

. . .

K−1
Nf

J−1
Nf

K−1
Nf

⎤
⎥⎥⎦ (6.62)

By using the approximations from [41], we can obtain the following shift-variant preconditioner
for Mm:

M−1
M =

⎡
⎢⎢⎣
MM,1

. . .

MM,Nf

⎤
⎥⎥⎦ (6.63)

MM,m = K−1
m Sm

′SmK
−1
m , (6.64)

Sm �
l∑

k=1

Ω
−1/2
m,k QDλm,k

, (6.65)

where Q is the orthonormal version of the DFT operator, Ωm,k is the k-sampled 2D DFT coeffi-
cients of Mm, Dλm,k

is a diagonal matrix with elements λm,k(ηj), λm,k is an interpolation factor,
and ηj is an effective regularization parameter for the jth voxel.

Ad hoc design Since Jm is shift-variant, we cannot directly use circulant approximation, and
thus we have used a shift-variant preconditioner. However, a shift-variant preconditioner requires
more calculations than a circulant preconditioner. Instead of approximating the inverse of Jm with
a shift-variant preconditioner, we use the following simple preconditioner:

M−1 ≈

⎡
⎢⎢⎣
K−1

1 J̄−1
1 K−1

1

. . .

K−1
Nf

J̄−1
Nf

K−1
Nf

⎤
⎥⎥⎦ , (6.66)

where J̄m = circ
((
μvA

T
0A0 + μ∗

uIN
)
ec
)

with some new value of μ∗
u. Obtaining the optimal

value for μ∗
u may not be straightforward. We selected the value empirically.

Preconditioning with new weighting matrix So far, we have used the identity matrix for the
symmetric weighting matrix, Λu. However, we propose to use the following as the weighting
matrix:

Λu =

⎡
⎢⎢⎣
K2

1

. . .

K2
Nf

⎤
⎥⎥⎦ . (6.67)
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With this new weighting matrix, (6.47) can be approximated as:

M ≈

⎡
⎢⎢⎣
K1

(
μvA

T
0A0 + μuIN

)
K1

. . .

KNf

(
μvA

T
0A0 + μuIN

)
KNf

⎤
⎥⎥⎦ (6.68)

We can see that μvA
T
0A0+μuIN is close to shift-invariant, and we can use circulant approximation

to obtain the inverse of this new M .

6.2.2.5 Parameter selection

The parameters μu, μv, μz, and μs do not affect the solution of (6.22), but determine the
convergence speed of the proposed splitting method [103]. Since steps 3 and 4 are inexact, the
convergence speed of the proposed method is determined by how efficiently equations (6.35) and
(6.36) are solved. Thus, selecting the parameters can become very critical to the performance
of the proposed method. Not only their absolute values but also their relative values affect the
convergence speed. Thus we first determine the value of μv, which can be obtained from (6.48),
and then select the values of μu, μz, and μs with fixed μv value.

6.2.2.6 Selecting μv

Observing (6.48), we selected μv = median{wi} to avoid outliers in W , which yields a well-
conditioned D (with κ{D} ≈ 10 for our simulation). To see how robust the proposed method is
to the choice of μv, we may perturb the value of μv and see its effect on the convergence speed. It
seems that the method is slightly more robust to the choice of μv than μu, thus we select its value
first.

6.2.2.7 Selecting μu

Since μu and μv balances μvA
TA and μuIN in M , the condition number of M is determined

by the ratio of these two. We fixed μv as the value selected above, and chose μu to obtain a
reasonable balance between the convergence speed and the condition number. Too large value of
μu results in slow convergence. On the other extreme, setting μu too small will lead to a poorly
conditioned M , which is not favorable. Based on our experiments, for A implemented using the
separable footprints (SF) projector [79], we found that using the ratio μu/μv ≈ 103 gives good
overall convergence speeds for the proposed method. With this value, the condition number of M̄
is approximately 1.6.
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6.2.2.8 Selecting μs

The parameter μs appears both (6.35) and (6.38). With fixed μu, we determine the value of μs

based on (6.35). The ratio μs/μu determines the characteristics of H , (6.45). As mentioned before,
selecting the parameters based on the condition number is not straightforward. Also, estimating the
condition number of T TT is not straightforward. Thus selecting parameters based on the condition
number of H is not promising. We will use the power iteration to obtain the maximum eigenvalue
of T TT and then use it to determine the parameter, μs. We did simulations with various values
of μs to see how the value of μs affect the convergence speed of the method, and determined the
value empirically.

6.2.2.9 Selecting μz

The parameter μz appears (6.38). We fixed μs as the value selected above, and empirically
chose μz to obtain a reasonable balance between the convergence speed and the condition number.
Too small value of μz results in slow convergence. On the other extreme, setting μz too large will
lead to a poorly conditioned K, which is not favorable.

6.2.3 Simulation results

The proposed algorithm was investigated on a 2D CT image reconstruction problem with car-
diac motion for simulated data. We simulated a 3rd-generation fan-beam CT system using the
separable footprint projector [79]. The simulated system has 888 channels per view spaced 1.0239
mm apart, and 984 evenly spaced view angles over 360◦. The image was reconstructed to a 512
× 512 grid of 0.9766 mm pixels. We generated seven frames of the XCAT phantom for a heart
rate of 75 bpm. The motion between the frames was estimated directly from XCAT images using
nonrigid image registration. Estimating motion parameters from true images is unrealistic, but our
focus is not on obtaining reasonable motion estimates. We only focus on the image reconstruction
part of MCIR. For the regularizer, we used a Fair potential function to provide edge-preservation
and a certainty-based penalty to obtain more uniform resolution. The sinogram was generated with
Poisson noise, and the weights in the data-fit term in (6.22) were chosen as wi = exp(−[Ax]i). We
selected the regularization parameter β such that the target PSF has a full-width at half-maximum
(FWHM) of approximately 1.3 mm.

For comparison, we used the (nonlinear) conjugate gradient algorithm to solve the original
problem (6.22). To analyze the convergence speed of the proposed method we computed the
root mean squared (RMS) difference between the image estimate at the nth iteration, x(n), with
the “fully” converged solution, x∞. For the Fair potential, the original MCIR problem is strictly
convex and thus has a unique minimizer, x∞. We numerically approximated x∞ as the mean of the
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Figure 6.12: Images in the ROI of (a) XCAT phantom, (b) Full-scan FBP reconstruction (c) Short-
scan FBP reconstruction (also the initial guess x(0)), (d) Converged Image x(∞).

images reconstructed (assuming convergence) by running 1000 iterations of CG and 700 iterations
of the proposed method with (10,10) sub-iterations.

Fig. 6.12 illustrates that the conventional filtered backprojection (FBP) methods, both full-
scan and short-scan, gives reconstructed images with severe motion artifacts but the motion-
compensated image, on the contrary, contains much less motion artifacts. Some residual motion
artifacts still exist due to imperfect motion estimates even though they were obtained directly from
the true XCAT images.

Fig. 6.13 illustrates that the proposed method converges much faster in iterations compared
to the conventional CG method when we use enough sub-iterations with obvious computation
overhead. This result suggests that if we have a proper preconditioner for each sub-problem, we
can still obtain fast convergence. We also investigated different options for the proposed method
summarized in Fig. 6.13. Using a preconditioner for sub-problems helped reduce the number of
sub-iterations while achieving fast convergence speed. Use of ordered-subsets methods was also
investigated. Both conventional OS and OS + momentum showed fast convergence speed initially,
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Figure 6.13: Plot of RMSD versus iteration for various settings of the proposed method compared
to the conventional CG method. For the proposed method, (Nα,Pγ) indicates α it-
erations for sub-problem (6.35) without preconditioner for H and γ iterations for
sub-problem (6.36) with a preconditioner for M . OS-60-η and OS-NES-12-η indi-
cate ordered subsets method with 60 subsets and “OS + momentum method” with 12
subsets, respectively, and η is the number of iterations.

but slowed down after certain number of iterations.
We have compared the convergence speed of our method with various preconditioners in

Fig. 6.14. All the conditions, except for preconditioner, were fixed. We used a diagonal pre-
conditioner for the registration part and different preconditioners for the tomography part. We can
observe that the circulant preconditioner with new weighting (6.67) gives much faster convergence
speed compared to other preconditioners.

In Fig. 6.15, we compare the proposed method with circulant preconditioner and new weight-
ing (6.67) to the conventional CG method. In Fig. 6.14, the parameters were not chosen to compete
with the conventional CG, so they were sub-optimal. For the purpose of illustration, we selected 5
and 2 sub-iterations for (6.35) and (6.36), respectively. The proposed method shows much faster
convergence speed compared to CG method. While the proposed method as implemented in MAT-
LAB provides marginal improvement in convergence speed over CG, we believe its ability to
parallelize some of the update steps can further improve its efficiency.
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Figure 6.14: Compare the convergence speed of different preconditioners
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Figure 6.15: Plot of RMSD versus wall time for the proposed method compared to the conventional
CG method with 3 line-search iterations. A diagonal preconditioner and a circulant
preconditioner were used for sub-problems (6.35) and (6.36) respectively.

6.2.4 Discussion

We applied a variable splitting approach to the motion-compensated image reconstruction prob-
lem. The proposed method has faster convergence speed than the conjugate gradient method, and
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offers the potential for parallelizability and preconditioning of sub-problems. Some of the sub-
problems can be solved simultaneously or further divided into smaller problems. By using more
sophisticated preconditioners for the sub-problems, the proposed method can be further improved.
In this study, we focussed on the image reconstruction part of MCIR, but our method also can be
extended to the joint estimation framework. Our future work will focus on improving the conver-
gence speed of the proposed method and on applying it to 3-D CT.

6.3 Accelerating the joint motion estimation and image reconstruction using
a variable splitting approach

Assuming a known motion may not be reasonable since obtaining motion parameters is not
trivial. Inaccurate motion estimates lead to residual artifacts, and thus relying on initial motion esti-
mates may results in unacceptable reconstructed images. Joint estimation framework has potential
to solve this issue. In this section section, we focus on the formulation of joint motion estimation
and image reconstruction framework for MCIR problem and its acceleration using a variable split-
ting approach. Acceleration of joint MCIR was not evaluated yet, thus we only provide the idea
and a sinogram-based coronary motion estimation method for estimating initial motion parameters.

6.3.1 Joint motion estimation and image reconstruction for CT

As mentioned previously, the quality of the reconstructed images of MCIR methods depend
heavily of the accuracy of estimated motion parameters. To compensate for imperfect initial mo-
tion estimations, joint estimation for both motion parameters and reconstructed images are often
introduced [122, 123]. Joint estimation of motion parameters and reconstructed images has poten-
tial to provide better estimators at the expense of increased computation. In this section, we apply
a variable splitting technique similar to that of previous section.

For motion-compensated CT image reconstruction, we consider following joint registration
and reconstruction formulation:

(x̂, α̂) = arg min
x,α

{Ψ(x, α) � L- (x, α)+R1(x) + R2(α)}, (6.69)

L- (x, α) =
1

2
‖y −AT (α)x‖2W , R2(α) =

Nf∑
m=1

β2,mRα(αm),

A = diag{A1, · · · ,ANf
}, T (α) = [T (α1)

T . . .T (αNf
)T ]T , α = (α1, · · · , αNf

),

where R1 is the regularizer for the reconstructed image defined in (2.17), R2 is the regularizer for
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the motion parameters (see below), β2,m is a regularization coefficient, T (·) is the warp matrix,
and αm is the motion parameter for mth frame. For motion parameters of each frame, αm, we use
piecewise quadratic regularizer suggested in [28]:

(6.70)
R2(α) =

∑
q∈{x,y,z}

∑
i,j,k

[p(αq
i+1,j,k − αq

i,j,k; ζ
q,x
1 , ζq,x2 ) + p(αq

i,j+1,k − αq
i,j,k; ζ

q,y
1 , ζq,y2 )

+ p(αq
i,j,k+1 − αq

i,j,k; ζ
q,z
1 , ζq,z2 )],

where

p(t; ζ1, ζ2) =

⎧⎪⎨
⎪⎩

1
2
(t− ζ1)2, t < ζ1

0, ζ1 ≤ t ≤ ζ2
1
2
(t− ζ2)2. ζ2 < t

6.3.2 Proposed method for accelerated joint estimation

6.3.2.1 Equivalent constraint optimization problem

We introduce auxiliary constraint variables u and v, and write (6.69) as the following equiva-
lent constrained problem:

arg min
x,α,u,v,z

Ψ(x,u,v, z) =
1

2
‖y − v‖2W + R1(z) + R2(α),

s.t. u = T (α)x, v = Au, z = x, (6.71)

where u ∈ �NNf separates the system matrix from the warp matrix, v ∈ �M separates the effect
of the weighting matrix, W , on Ax, and z ∈ �N detaches the warp matrix from the regularizer.

6.3.2.2 Method of multipliers

To solve (6.71), we use the framework of the method of multipliers and construct an augmented
Lagrangian function as follows:

L(x,u,v, z) � 1

2
‖y − v‖2W + R1(z) + R2(α)

+ γTu (u− T (α)x) +
μu

2
‖u− T (α)x‖2Λu

+ γTv (v −Au) +
μv

2
‖v −Au‖2Λv

+ γTz (z − x) +
μz

2
‖z − x‖2Λz

,

where γu ∈ �NNf , γv ∈ �M and γz ∈ �N are the Lagrange multipliers, μu > 0, μv > 0, and
μz > 0 are the AL penalty parameters, and Λu � 0, Λv � 0, and Λz � 0 are symmetric weighting
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matrixes. The multiplier term can be absorbed into the quadratic penalty term, and by ignoring the
irrelevant constants we obtain:

L(x,u,v, z) � 1

2
‖y − v‖2W + R1(z) + R2(α) (6.72)

+
μu

2
‖u− T (α)x− ηu‖2Λu

+
μv

2
‖v −Au− ηv‖2Λv

+
μz

2
‖z − x− ηz‖2Λz

,

where ηu = − 1
μu
Λ−1

u γu, ηv = − 1
μv
Λ−1

v γv, and ηz = − 1
μz
Λ−1

z γz. We use Λu = INNf
, Λv = IM ,

and Λz = IN , which is a standard approach.
The classical AL scheme for solving the problem (6.71) is to alternate between a joint-minimization

step and an update step:

(x(j+1), α(j+1),u(j+1),v(j+1), z(j+1)) = arg min
x,α,u,v,z

L(x, α,u,v, z, η(j)u , η(j)v , η(j)z ), (6.73)

η(j+1)
u = η(j)u − (u(j+1) − T (α)x(j+1)), (6.74)

η(j+1)
v = η(j)v − (v(j+1) −Au(j+1)), (6.75)

η(j+1)
z = η(j)z − (z(j+1) − x(j+1)), (6.76)

6.3.2.3 Alternating direction minimization

We replace the joint-minimization step (6.73) by alternating direction optimization as follows:

x(j+1) = arg min
x

L(x, α(j),u(j),v(j), z(j), η(j)u , η(j)v , η(j)z ), (6.77)

α(j+1) = arg min
α

L(x(j+1), α,u(j),v(j), z(j), η(j)u , η(j)v , η(j)z ), (6.78)

u(j+1) = arg min
u

L(x(j+1), α(j+1),u,v(j), z(j), η(j)u , η(j)v , η(j)z ), (6.79)

v(j+1) = arg min
v

L(x(j+1), α(j+1),u(j+1),v, z(j), η(j)u , η(j)v , η(j)z ), (6.80)

z(j+1) = arg min
z

L(x(j+1), α(j+1),u(j+1),v(j+1), z, η(j)u , η(j)v , η(j)z ). (6.81)
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Thus, at the jth iteration, instead of (6.73) to (6.76), we execute the following:

x(j+1) = arg min
x

μu

2

∥∥u(j) − T (α(j))x− η(j)u

∥∥2
Λu

+
μz

2

∥∥z(j) − x− η(j)z

∥∥2
Λz
, (6.82)

α(j+1) = arg min
α

R2(α) +
μu

2

∥∥u(j) − T (α)x(j+1) − η(j)u

∥∥2
Λu
, (6.83)

u(j+1) = arg min
u

μu

2

∥∥u− T (α(j+1))x(j+1) − η(j)u

∥∥2
Λu

+
μv

2

∥∥v(j) −Au− η(j)v

∥∥2
Λv
,(6.84)

v(j+1) = arg min
v

1

2
‖y − v‖2W +

μv

2

∥∥v −Au(j+1) − η(j)v

∥∥2
Λv
, (6.85)

z(j+1) = arg min
z

R(z) +
μz

2

∥∥z − x(j+1) − η(j)z

∥∥2
Λz
, (6.86)

η(j+1)
u = η(j)u − (u(j+1) − T (α(j+1))x(j+1)), (6.87)

η(j+1)
v = η(j)v − (v(j+1) −Au(j+1)), (6.88)

η(j+1)
z = η(j)z − (z(j+1) − x(j+1)), (6.89)

Out of equations (6.82) to (6.89), only (6.83) is related to the motion estimation. All other
equations are related to the motion-compensated image reconstruction.

We first consider the motion estimation step (6.83). This minimization can be separated into
Nf image registration problems. Since the minimization is in image domain, it will be much
faster than the conventional joint registration, which is in measurement domain. Also, due to the
independence between the motion parameters in each frame, we can parallelize the minimization
process.

Sub-problems (6.82), (6.84), and (6.85) are same as (6.35), (6.36), and (6.37) from previous
section, respectively. Therefore, (6.82) and (6.84) can be solved by the iterative CG solver with
previously defined preconditioners, and (6.85) has an analytical solution (6.48).

We can observe that (6.86) is a kind of image denoising problem, which can be easily solved
with iterative algorithms like gradient descent. Finally, we present our algorithm in Table 6.8 for
solving (6.71).

The parameters are selected by using the same principles from previous section.

6.3.3 Sinogram-based motion estimation for coronary artery

6.3.3.1 Motivation

Since the accuracy of the estimated motion significantly affects the reconstructed images, ob-
taining precise motion estimates is very important. However, estimating the motion of the entire
heart or even just the coronary arteries is a very challenging problem. Many approaches have
been proposed to address the problem [63, 106, 122]. However, most of these methods require
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Table 6.8: Splitting approach for joint motion estimation and image reconstruction in X-ray CT
imaging

1. Select x(0), μu, μv, μz > 0 and set j = 0

2. Set u(0) = T (α)x(0), v(0) = Au(0), z(0) = x(0), and η(0)u = η
(0)
v = η

(0)
z = 0

Repeat:

3. Obtain x(j+1) using PCG to (6.82)
4. Obtain α(j+1) using iterative algorithm to (6.83)
5. Obtain u(j+1) applying PCG to (6.84)
6. Obtain v(j+1) using (6.48)
7. Obtain z(j+1) applying iterative algorithm to (6.86)
8. ηu(j+1) = ηu

(j) − (u(j+1) − T (α)x(j+1))

9. ηv(j+1) = ηv
(j) − (v(j+1) −Au(j+1))

10. ηz(j+1) = ηz
(j) − (z(j+1) − x(j+1))

11. Set j = j + 1

Until stopping criterion is satisfied

extra measurements in addition to the short-scan or depend on the initial gated reconstructions.
Joint estimation of both the motion parameters and the reconstructed image may compensate for
inaccurate initial motion estimates, but having decent initial estimates is still very desirable. We
propose a new approach to estimate the motion of the coronary arteries by using only the short scan
measurements. The proposed method tracks the motion of the coronary arteries in the sinogram
domain, and provides reasonable estimates of their motion. The acquired motion information can
be used to obtain reconstructed images with reduced artifacts. However, the main purpose of this
method is not perfectly estimating the motion of the coronary arteries, but rather providing good
initial estimates for subsequent joint estimation of both the motion parameters and the image. The
method was investigated with a simulation of cardiac CT with the XCAT phantom. Simulation
results illustrate that our proposed method can provide reasonably good motion estimates that may
be useful for initializing the joint estimation of both motion parameters and reconstructed images.

6.3.3.2 Coronary artery motion estimation

Consider the penalized weighted least squares (PWLS) formulation of motion-compensated
CT image reconstruction in (6.22) and estimation of motion parameters and image reconstruc-
tion formulated as (6.69). Our proposed can be used to provide initial motion estimates for both
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frameworks.
The basic idea is to track the motion of each coronary artery using its trajectory in the sinogram.

Given a stationary point in the image domain, we know its exact path in the sinogram domain. In
turn, from the path of a point in the sinogram, we can estimate its location during the scan. This
information is then used to obtain the warp between frames.

We use 3rd generation CT geometry for the derivation of the method, and only consider the 2D
fan beam case for simplicity. However, the proposed method can be applied to any other scanner
geometry with proper modifications. We also assume that the displacement of the coronary artery
is small, and can be modeled as a linear function of the view angle. Finally, we need approximate
locations of the center of each coronary artery. Coronary artery centerline extraction methods
or manual inputs can be used to obtain this information, which is only used to determine the
approximate region-of-interest (ROI) around each coronary artery.

Step 1 To extract the trajectory of each coronary artery from the measurements, it is helpful
to remove the projections corresponding to the objects outside the ROI. By reconstructing only
the ROI and subtracting it from the fully reconstructed image, we can obtain the objects outside
the ROI. We use filtered back-projection (FBP) method to reconstruct these initial images. For
coronary arteries near the boundary of the heart, we fill the very low intensity regions such as air
with approximate myocardium CT value before the subtraction. This procedure helps the tracking
process to be more accurate. Subtracting the re-projection of this non-ROI image from the original
measurements will approximately give the projections of only the ROI region (See Fig. 6.16 (a)).
Morphological top-hat filtering can be used to remove unnecessary structures to help isolate the
coronary artery [52].

Step 2 Given the projections of only the ROI region, we can identify the trajectory of the target
coronary artery by using various signal processing techniques. We used the following procedure:

• Apply low-pass or matched filter to the projections.

• Track the maximum value at each view angle.

• Fit the nth order polynomial to obtain trajectory. We use n = 5.

With above procedures, we have the trajectory of the center of a coronary artery, sθ(x, y) where θ
is the view angle (See Fig. 6.16 (b)).
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Step 3 From the geometry of the scanner, we have the following relationship:

sθ(x, y) = Dsd arctan

(
xθ

Dso− yθ

)
+ ε, (6.90)

xθ = x cos θ + y sin θ, (6.91)

yθ = −x sin θ + y cos θ, (6.92)

where x and y are the true locations of the coronary arteries at view, Dsd is the distance from the
source to the detector, Dso is the distance from the source to the iso-center, and ε is the noise in
the measurement. We obtain the following approximation from (6.90):

zθ � tan
( sθ
Dsd

)
≈ xθ

Dso− yθ ,
(Dso− yθ) zθ ≈ xθ,

Dsozθ ≈ xθ + zθyθ.

Let x = x0 + tdx and y = y0 + tdy where t ∈ [0 1], x0 and y0 are the initial locations of the
coronary artery, and dx and dy are the displacement to the final locations:

Dsozθ ≈ (x0 + tdx) cos θ + (y0 + tdy) sin θ

+ zθ{−(x0 + tdx) sin θ + (y0 + tdy) cos θ}.

We assumed that the coronary arteries moves at a constant speed, i.e. t increases linearly with view
angle θ. Our objective function to optimize can be written as follows:

arg min
u

‖z −Bu‖1 , (6.93)

where

z = [· · ·Dsozθ · · ·]′ ,

B =

⎡
⎢⎢⎢⎢⎣

cos θ − zθ sin θ
. . . sin θ + zθ cos θ . . .

t cos θ − tzθ sin θ
t sin θ + tzθ cos θ

⎤
⎥⎥⎥⎥⎦

′

,

u =
[
x0 y0 dx dy

]′
.

By estimating u, we determine the initial location of the coronary artery and its displacement
during the scan. Since zθ can be noisy, we use L1 regression instead of least squares fitting.
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Using the above estimation, we can define the warp between the frames by using the defor-
mation model with thin plate splines (TPS) or B-splines. We used cubic B-splines to model the
warp.
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Figure 6.16: (a) Flow chart for step 1 and (b) trajectory of the center of the right coronary artery in
the sinogram domain.

6.3.4 Results

6.3.4.1 Sinogram-based motion estimation

The proposed algorithm (6.93) was demonstrated on a 2D CT image reconstruction problem
with the XCAT phantom, which provides realistic cardiac motion. Simulated heart rate was 75
bpm, and the case of imperfect cardiac gating was assumed. A short scan of a 3rd-generation
fan-beam CT system was simulated, and the system has 888 channels per view spaced 1.0239 mm
apart, and 642 evenly spaced view angles. Reconstructed images use pixels (0.9766mm)2 in size
with 5122 voxels.

The approximate location of each coronary artery was manually selected, and a circular region
with 15 voxel radius centered at the location was selected as ROI. We assumed seven frames,

133



Nf = 7, and the warp between each frame and the reference frame was obtained using nonrigid
image registration and the estimated motion of each coronary artery.

For the regularizer, we used a hyperbola potential function to provide edge-preservation and a
certainty-based penalty to obtain more uniform resolution. Poisson noise was added to the mea-
surement, and the weights in the data-fit term in (6.22) were chosen as wi = exp(−[Ax]i). The
regularization parameter β was selected (without considering the warps) such that the target PSF
has a full-width at half-maximum (FWHM) of approximately 1.3 mm.

(a) (b) (c)

(d) (e) (f)

Figure 6.17: Images in the ROI of (a) XCAT phantom; (b) FBP reconstruction; (c) Iterative re-
construction without motion compensation using conjugate gradient (CG); (d) MCIR
with the motion estimated directly from the XCAT phantom; (e) MCIR with the mo-
tion estimates obtained by the proposed method; (f) Joint estimation results with (e)
as a initial starting point.

Fig. 6.17 shows the reconstructed images with various methods. Using FBP or iterative re-
construction without any motion compensation leads to the reconstructed images corrupted with
motion artifacts. When accurate motion information is avaiable, MCIR methods can reconstruct
the images without motion artifacts, as shown in Fig. 6.17 (d). In this case, the motion estimates
were obtained by using nonrigid image registration directly to the phantom.

Our proposed method [Fig. 6.17 (e)] greatly reduces the motion artifacts compared to the con-
ventional reconstruction methods without any compensation. The shape of each coronary artery
now became more realistic and close to the truth. However, the reconstructed image still has resid-
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Oracle FBP
Iterative

w/o
correction

MCIR
Joint
MCIR

1 14.5 66.9 64.9 40.9 41.0
2 28.2 66.9 70.3 35.9 34.2
3 43.1 43.0 40.0 45.0 41.7
4 55.8 39.8 37.5 59.6 61.2

Table 6.9: RMSD (in HU) of different methods around each coronary artery with respect to the
true image (Fig. 6.17 (a)). See Fig. 6.17 (a) for the index of each coronary artery.

ual motion artifacts due to suboptimal motion estimation. Fig. 6.17 (f) shows a result from joint
estimation of both motion parameters and image, which has further reduced motion artifacts. To
quantitatively verify the improvements, we computed the root-mean-squared difference (RMSD)
around each coronary artery with respect to the XCAT phantom (See Table 6.9). The results con-
firm that our proposed methods effectively reduce severe artifacts. However, both our methods and
the “oracle” reconstruction [Fig. 6.17 (d)] did not work as desired for the region with little motion.
Since our motion model is very simple and tracks only the center of each coronary artery, it may
not be enough to precisely capture the local deformation. We’ll work further to solve this issue.

6.3.5 Discussion

We presented a new coronary artery motion estimation method for the motion-compensated
image reconstruction problem. The proposed method greatly reduced the motion artifacts without
requiring any other information or scan padding other than short scan measurements. The esti-
mated motion is limited to the coronary artery, and the estimated motion still suffers from residual
motion artifacts because of the suboptimal motion. However, as mentioned in the introduction, the
purpose of this method is to provide a good starting point for the following joint estimation step,
which showed promise. The proposed method was applied to a 2D case with a digital phantom.
Our future work will focus on extending the method to 3-D CT and applying to real patient data.
Joint estimation will be more closely investigated to obtain better results.
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CHAPTER VII

Conclusions and future work

7.1 Summary

This dissertation addressed various issues of statistical image reconstruction for cardiac CT
imaging. The main focus was to improve undesirable properties in the reconstructed image includ-
ing image artifacts, anisotropic and nonuniform spatial resolution and noise, and poor temporal
resolution. We proposed different methods to tackle each of these issues. We used both simula-
tions and clinical data from different scan geometries to evaluate our methods.

Chapter III investigated regularization design methods in the Fourier domain that adjust the
regularization parameters, or specifically the directional weighting coefficients, to obtain isotropic
and uniform spatial resolution or noise characteristics.

Chapter IV proposed a new concept called “hypothetical geometry” to design regularizers for
uniform spatial resolution or noise. The proposed method addresses one main concern of the
Fourier based method, which is the local shift-invariance assumption that fails for insufficiently
sampled locations.

Chapter V discussed methods to reduce short-scan artifacts in the reconstructed image by ex-
ploiting all available information, such as additional measurements or initial reconstructions. The
goal of these methods was to reduce short-scan artifacts without degrading temporal resolution
within the ROI. Statistical weighting modification method based on the amount of effect of each
detector element to insufficiently sampled region was proposed and a metric to evaluate its perfor-
mance was also introduced. Addition of another regularization term that exploits information from
a prior image was investigated. Combination of these methods showed further improvements.

Chapter VI proposed new algorithms to accelerate the statistical image reconstruction for both
cases with and without the motion compensation. A new idea called “double surrogates” was
introduced to accelerate the family of ordered subsets algorithms, which includes conventional OS,
IOT, and variations of OS such as OS + momentum. Variable splitting approach was investigated
for motion-compensated image reconstruction problem. We also suggested joint estimation of both
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motion parameters and images, and proposed a sinogram-based coronary artery motion estimation
method that can provide good initial motion estimates.

7.2 Future work

In this thesis, we proposed various methods to address different aspects of the statistical image
reconstruction. Here we introduce possible future works.

We proposed several regularization design methods. Even though these methods showed
promise for improving certain image properties like resolution uniformity, they also exhibited lim-
itations. Improving such limitations are possible future works.

For quadratic regularization design methods in Chapter III, we need a systematic method to
specify the target response. So far we obtained the target from full-scan geometry and uniform
weighting. Such target has isotropic nature, but may not be ideal. Selection of a target requires
a separate design process, and is not trivial. Even if we have a process to design a target with
desirable properties, the proposed methods cannot precisely match the local response to the tar-
get, especially for insufficiently sampled area. Due to limited degree of freedom of the directional
weighting design, the variation that can be induced by the regularizer is somewhat limited. Com-
pensating the effect of statistical weightings is possible and demonstrated in previous works. How-
ever, the effect of sampling would be hard to compensate. Future works should address this issue.
Combining the proposed directional weights design methods with other methods is a possibility.
For example, we can apply the hypothetical geometry idea in Chapter IV first, and then apply
directional weighting design methods in Chapter III to that extended geometry.

In Appendix B, we briefly discussed a heuristic design to achieve somewhat balanced spatial
resolution and noise properties. As mentioned in Chapter 1.2.2, controlling the balance between
spatial resolution and noise in user-defined fashion is a desirable ability for a medical imaging
modality, especially since each physician may have different preference for diagnostic image qual-
ity. All regularization design methods introduced in the thesis may be incorporated into one general
design principle. We investigated methods designing different components of the regularizer, and
these methods might benefit from each other.

We proposed the hypothetical geometry concept for regularization design in Chapter IV. This
idea can also be used for other purposes. For example, the hypothetical geometry can be applied
to preconditioner or sampling metric design. It would be interesting to see whether using the
hypothetical geometry based preconditioner can further accelerate the variable splitting approach.
Since there exist multiple hypothetical geometry for each scanning geometry, the performance of
methods using the hypothetical geometry may be further improved if we find more appropriate
one.
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We investigated methods that remove short-scan artifacts by using all available information.
For both statistical weighting method and additional prior regularization method, the main issue is
to effectively select the parameter that controls the trade-off. For statistical method, there is a trade-
off between the short-scan artifact in the undersampled area and the temporal resolution in the ROI
area. For additional regularization method, the trade-off is between the short-scan artifact and
undesirable properties of the prior image like poor temporal resolution or noise. To systematically
determine the parameter, we need metrics to quantify short-scan artifacts and temporal resolution.
For a temporal resolution, we proposed a metric in Chapter V. However, it is not trivial to design
a metric for short-scan artifacts since they appear in various forms. Developing a metric that can
quantify the short-scan artifact is an interesting and important future work. One possible idea is
to use the blur detection algorithm presented in [126]. The algorithm was developed to detect
out-of-focus or linear motion blurs in natural images, but the idea of using edge detection and its
classification can also be applied to CT images. Furthermore, we can apply the algorithm to small
patches to identify the region with artifacts and possibly also their severity. Similar ideas will be
investigated.

Regularizers designed in this thesis had the form (2.17) and penalized only the adjacent neigh-
bors of a given voxel to enforce smoothness. However, non-local regularizers may be a good
candidate to further improve the reconstructed image quality. Since well-sampled region in the
reconstructed image has a good image quality, such information could be used to help improving
the image quality of the undersampled region. Investigating non-local regularizers and their design
methods is a very interesting future work.

Acceleration methods presented in this thesis can be further improved. Applying double surro-
gate idea to recently developed ordered-subsets variations could be a future study. In Chapter VI,
we did apply double surrogate idea to “OS + momentum” method. However, it was a naive exten-
sion, and requires further investigation.

Joint MCIR for cardiac CT is a very challenging problem. Various aspects of the method needs
to be addressed for its practical use. Computation cost and initial condition are the most chal-
lenging issues among them. We first need to refine the sonogram-based coronary artery motion
estimation and extend it to 3D. Since estimating the entire heart motion is very challenging, we
want to use coronary artery motion estimates as a starting point. To accelerate joint MCIR, variable
splitting approach introduced in Chapter VI needs to be investigated with phantom and clinical ex-
periments. Since variable splitting methods always suffer from parameter selections, investigating
ways to select these parameters more rigorously is another future study.
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APPENDIX A

Images for the pre-tuned spatial strength

This appendix compares the pre-tuned spatial strengths introduced in Chapter IV, for the clin-
ical data.

Fig. A.1 shows the pre-tuned spatial strength {κj} of A-REG, defined as (4.1), at xy, xz, and
yz planes through the image center. The image shows the entire trans-axial field-of-view (FOV),
which is 70 cm. Notice that a cylindrical mask was used.

Fig. A.2 compares the pre-tuned spatial strengths for A-REG, R-REG, and N-REG at both a
center slice and an end slice. The pre-tuned spatial strengths contain object information and is
smooth. We can verify that the approximation κj ≈ κl for l within the neighborhood of j is rea-
sonable. Since the measurements are obtained from the short-scan protocol, end slices suffer from
insufficient sampling at certain locations. The regularization strengths at such locations becomes
overly smoothed and loses object information reflecting their sampling conditions.

Fig. A.4 compares x profiles through the center of the pre-tuned spatial strengths for A-REG, R-
REG, and N-REG. We can see that R-REG assigns smaller regularization strength to undersampled
region compared to A-REG. N-REG has smaller dynamic range for the regularization strength
compared to others due to the square root (4.45).

The approximation in (4.28) was evaluated empirically in Fig. A.3 and Fig. A.5. We can
observe that the approximation holds reasonably well. Notice that ripple-like structures in Fig. A.3
(a) are disappeared in Fig. A.3 (b).
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Figure A.1: Middle 3 planes of the pre-tuned spatial strength (4.1) (xy, xz, and yz planes through
the image center).

141



1

6

1

6

(a) A-REG (4.1)
1

6

1

6

(b) R-REG (4.27)
1

6

1

6

(c) N-REG (4.45)

Figure A.2: Comparison of the pre-tuned spatial strengths for A-REG, R-REG, and N-REG at a
center slice (left column) and an end slice (right column). Display range is [0 250].
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Figure A.3: Comparison of the pre-tuned spatial strengths for R-REG and its approximation given
in (4.27) at a center slice (left column) and an end slice (right column). Display range
is [0 250].
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Figure A.4: Comparison of x profiles through the center of the pre-tuned spatial strengths for A-
REG, R-REG, and N-REG. From center slice (left) and end slice (right).
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Figure A.5: Comparison of x profiles through the center of the pre-tuned spatial strength (4.27)
and its approximation (4.28). From center slice (left) and end slice (right).
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APPENDIX B

Supplementary material for regularization designs using the
hypothetical geometry

This appendix extends the regularization designs investigated in Chapter IV, and presents the
simulation and clinical experiments that supports the results in Chapter IV or were excluded in
Chapter IV due to their repetitive nature.

B.1 Selection of the hypothetical geometry

In Chapter IV, new regularizers for uniform resolution or noise were derived using a hypothet-
ical geometry G, which was assumed to be an ideal and fully sampled geometry. In practice, the
choice of G affects how closely the regularizer can achieve the uniformity of resolution or noise.
For the experiments in Chapter IV, G was chosen to be a hypothetical cone-beam CT geometry
with large enough number of detector rows and 360◦ orbit, and the voxel dependent factor sj was
assumed to be 1 for every location. Because of the cone-angle, such hypothetical geometry G

does not provide perfectly shift-invariant G′G, even though it is “more shift-invariant” compared
to A′A. This geometry with extended views and rows was one of the most intuitive choices for G,
and now we propose an alternative another decomposition for G.

We let the hypothetical geometry described above as Aext = {âij}, then it can be further
factorized as follows

âij = āij ŝj, (B.1)

so that we obtain
āij =

âij
ŝj
, (B.2)
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Table B.1: Acronym suffixes for regularizers
Suffix Description

-1
regularizers designed by selecting the hypothetical geometry with extended
views and rows as G and sj = 1, ∀j

-2 regularizers designed by using the system matrix factorization in (B.4)

where ŝj is a voxel-dependent factor to make Ā = {āij} a better choice for G. Intuitively, we
want to design {ŝj} such that Ā′Ā has constant diagonal elements. Defining

ŝj =

√√√√ Ng∑
i=1

â2ij (B.3)

yields [Ā′Ā]jj = 1, ∀j. Using above designs, we obtain the following matrix representation for
the system matrix A

A = PGD[sj], (B.4)

where P is defined in Chapter IV, gij = āij and sj = ŝj . The Fisher information matrix can be
approximated as (20) with the following new expressions for (4.11) and (4.12):

ηj =

√∑nd

i=1 g
2
ijwi∑Ng

i=1 g
2
ij

=

√√√√ nd∑
i=1

g2ijwi, (B.5)

λj = sjηj =

√√√√ nd∑
i=1

â2ijwi =

√√√√ nd∑
i=1

a2ijwi. (B.6)

Notice that (B.6) no longer depends on the hypothetical geometry G and requires less computation
compared to both the original certainty (4.1) and the modified certainty (4.12).

New approximation (B.4) for the Fisher information matrix leads to different regularizers from
those we used for the experiments in Chapter IV (see Table 4.1 and Table B.1 for acronyms). The
main purpose of this supplementary material is to compare these regularizers obtained from differ-
ent system matrix factorization. Since the derivation for both proposed regularizers in Chapter IV
is general, new regularizers are readily obtained from (4.25) and (4.44).

B.1.1 Regularizer for uniform spatial resolution

New regularizer for uniform spatial resolution is obtained by substituting G from (B.4) and
(B.6) into (4.25). Using the shift-invariant approximation (4.26), the new regularizer for spatial
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resolution uniformity (hereafter R-REG-2) can be written as (2.17) with

κ̂j =

√√√√ nd∑
i=1

a2ijwi ≈ γ

√√√√ nd∑
i=1

aijwi, (B.7)

where the approximation holds for a proper scaling factor γ. The approximation scaling factor γ
can be obtained manually or by matching both sides of (B.7) at a reference point, i.e.,

γ =

√√√√[
nd∑
i=1

a2ijwi

]
j=jref

/

[
nd∑
i=1

aijwi

]
j=jref

, (B.8)

where jref indicates the lexicographical index of the reference location.
The new regularizer R-REG-2 (B.7) does not have a normalization or a denominator, which

also leads to decreased regularization strength for under-sampled region compared to the original
certainty (4.1). Both designs (4.27) and (B.7) are expected to have similar effects to the recon-
structed image, but possibly with different amount.

B.1.2 Regularizer for uniform noise property

Substituting (B.4) into (4.6) leads to the following new expressions for (4.35) and (4.36)

λ̄j �

√√√√ nd∑
i=1

a2ijŵivi, Λ̄ � D[λ̄j ], (B.9)

λ̂j �

√√√√ nd∑
i=1

a2ijŵiv2i , Λ̂ � D[λ̂j]. (B.10)

Substituting G from (B.4), (B.9) and (B.10) into (4.45) yields a new regularizer for noise unifor-
mity (hereafter N-REG-2).

B.2 Comparison between regularizers from different system matrix factor-
izations

B.2.1 Physical Phantom Experiment

We used the GE performance phantom to compare the resolution properties of the reconstructed
image from different regularizations. The phantom was scanned and reconstructed as described in
Chapter IV. The GEPP has a tunsten wire in water as indicated in Fig. B.1, and its peak values in
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Figure B.1: The GEPP phantom used for quantitative comparison of regularizers. Red arrow indi-
cate tungsten wire used for spatial resolution comparison.
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Figure B.2: Comparison of the peak value of the tungsten wire in GEPP for the following regular-
izers: Uniform, A-REG, R-REG-1, R-REG-2, and N-REG-2.
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Figure B.3: Comparison of the noise standard deviation in a homogeneous region of the GEPP,
which corresponds to the left phantom wall in Table B.4, for the following regularizers:
A-REG, R-REG-1, N-REG-1, and N-REG-2.

Table B.2: Average CRC mismatch (4.46) for selected 6 locations across slices (Units: %). See
Fig. 4.2 in Chapter IV for the index of impulse locations.

Locations
1 2 3 4 5 6

A-REG (Fig. B.10) 32.6 45.3 24.8 47.2 31.9 25.0
R-REG-1 (Fig. 4.4) 7.5 14.9 3.9 20.0 5.9 7.2

R-REG-2 (Fig. B.10) 11.0 18.7 3.9 23.3 9.7 9.4
A-REG (Fig. B.12) 31.3 44.1 21.9 47.9 33.4 20.6
R-REG-1 (Fig. B.8) 9.5 14.3 2.9 21.5 9.8 7.1
R-REG-2 (Fig. B.12) 11.5 18.1 2.5 24.8 11.9 7.4

Table B.3: Average CRC mismatch (4.46) within each slice, respectively (Units: %).
Averages

Overall Center Slice 1st slice of ROI Outside ROI
A-REG (Fig. 4.4) 34.5 (a) 12.3 (b) 33.7 (c) 46.8

R-REG-1 (Fig. 4.4) 9.9 (d) 8.7 (e) 11.6 (f) 7.4
R-REG-2 (Fig. B.10) 12.7 (d) 12.1 (e) 14.4 (f) 10.4
A-REG (Fig. B.12) 33.2 (a) 11.9 (b) 34.5 (c) 44.9
R-REG-1 (Fig. B.8) 10.9 (d) 10.5 (e) 14.6 (f) 9.1
R-REG-2 (Fig. B.12) 12.7 (d) 12.9 (e) 17.0 (f) 9.2
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each slice of the reconstructed image will be used to assess resolution uniformity.
In Fig. B.2, we compare the peak value of the tungsten wire profile at every ROI slice for

the following regularizers: Uniform, A-REG, R-REG-1,R-REG-2, and N-REG-2. Notice that on
center slices all the regularizers generate similar peak values for the tungsten wire due to matched
regularization strength at the isocenter. Uniform regularizer and proposed regularizer N-REG-2 for
noise uniformity induce non-uniform spatial resolution characteristics to the reconstructed image,
which result in widely varying peak values of the tungsten wire. The standard deviation in the peak
value is approximately 64 HU for these regularizations. On the other hand, the other 3 regularizers
aimed for spatial resolution uniformity show much better performances as shown in Fig. B.2, and
have approximately 40 HU standard deviation in the peak value. Due to small FOV (23 cm) and its
location, the sampling condition of the tungsten wire is approximately the same for every slices,
thus both proposed regularizers R-REG-1 and R-REG-2 perform almost the same as A-REG.

Fig. B.3 compares the noise standard deviation in a homogeneous region of the GEPP, which
corresponds to the left phantom wall in Table B.4, for the following regulairzers: A-REG, R-
REG-1, N-REG-1 and N-REG-2. A-REG and R-REG-1 show over-regularizing behavior for given
location. On the other hand, both proposed regularizers for uniform noise, N-REG-1 and N-REG-
2, show improved noise uniformity. Overall performances of N-REG-1 and N-REG-2 are very
similar, but show differences for some slices.

B.2.2 XCAT Phantom Simulation

We used the XCAT phantom to illustrate the performance of the proposed regularizer R-REG-2
(B.7). The same simulation settings as in Chapter IV have been used. The improvements in the
spatial resolution uniformity were demonstrated by comparing the impulse responses at different
voxel locations obtained by using A-REG (4.1) to that of the proposed regularizer R-REG-2.

Results for both quadratic and edge-preserving regularizations are presented from Fig. B.9 to
Fig. B.12. We also present the result for R-REG-1 with edge-preserving regularization in Fig. B.7
and Fig. B.8. Similar to the results with R-REG-1 (4.27), the proposed regularizer R-REG-2
(B.7) effectively generate spatially uniform resolution in terms of the constant recovery constant
(CRC). Table B.2 and Table B.3 compare CRC mismatch (4.46) of A-REG, R-REG-1, and R-REG-
2. R-REG-2 improves the average CRC mismatch by approximately 20% throughout the image
volume. Both R-REG-1 and R-REG-2 show comparable performances of improving the resolution
uniformity, but R-REG-1 is slightly better.
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Figure B.4: Comparison of reconstructed images obtained from A-REG (top), R-REG-1 (middle)
and R-REG-2 (bottom) at 3 selected locations (separeted by blue dash lines) on the
last slice of ROI. Display window is [800 1200] (HU).

B.2.3 Real Clinical Data

Same clinical cardiac CT scan used in Chapter IV was reconstructed with various regularizers.
Fig. B.4 compares reconstructed images obtained from both proposed regularizers for resolution
uniformity, R-REG-1 and R-REG-2. The reconstructed image using A-REG was presented as a
reference. Reconstructed image from R-REG-2 is slightly more shaper and noisier compared to
that of R-REG-1 on end slices, but they show very similar image characteristics overall. Fig. B.5
compares reconstructed images from proposed uniform noise regularizers, N-REG-1 and N-REG-
2, and they have very comparable visual image quality.

B.3 Compromise Regularizer

As illustrated on previous sections, each proposed regularizer, either aiming for uniform reso-
lution or noise characteristics, reasonably achieves its goal. However, due to the trade-off between
these image quality properties, using one of these regularizations may not provide the “most de-
sirable image”, especially near the end slices with sampling issues. Since the readability of the
reconstructed image depend on many factors, including both spatial resolution and noise, it is hard
to design the optimal regularizer using one criterion. Furthermore, clinicians may have different
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Figure B.5: Comparison of reconstructed images obtained from both uniform noise regularizers,
N-REG-1 (top) and N-REG-2 (bottom), at 3 selected locations (separeted by blue dash
lines) on the 1st slice of ROI. Display window is [800 1200] (HU).

Figure B.6: Comparison of reconstructed images obtained using R-REG-1 (top), N-REG-1 (mid-
dle) and compromise regularizer (bottom) at 3 selected locations (separated by blue
dash lines) on the last slice of ROI. Display window is [800 1200] (HU).
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Table B.4: Comparison of the noise standard deviation for different regularizers method. All values
are in Hounsfield units (HU).

Uniform A-REG
R-

REG-1
R-

REG-2
N-

REG-1
N-

REG-2
Com-

promise
PlexiglasTM Insert

(center)
14.0 13.7 13.7 13.7 13.6 13.3 13.2

PlexiglasTM Insert
(right)

18.8 16.0 16.2 15.8 16.4 16.4 15.8

PlexiglasTM Insert
(left)

15.1 14.4 14.5 14.7 14.9 14.7 14.2

Phantom Wall
(left)

15.4 9.3 9.5 10.0 11.8 12.7 9.2

Phantom Wall
(right)

16.9 8.8 6.8 7.4 10.1 10.1 8.3

Phantom Wall
(top)

17.4 8.7 8.8 7.6 10.7 10.6 8.6

Phantom Wall
(bottom)

16.1 7.7 8.8 9.0 10.9 10.9 9.6

Average
16.2 ±

1.6
11.2 ±

3.4
11.2 ±

3.6
11.2 ±

3.5
12.6 ±

2.4
12.7 ±

2.3
11.3 ±

3.1

preferences for the appearance of the reconstructed image, complicating the regularization design
process.

We investigated a “compromise” regularizer whose certainty function κj is the arithmetic aver-
age of (4.27) and (4.45). This simple extension of proposed methods gives a sub-optimal solution
for the trade-off between spatial resolution and noise property.

Table B.4 shows that the compromise regularizer provides the noise uniformity in between
those of R-REG-1 and N-REG-1, as expected. Fig. B.6 compares the reconstructed images from
following regularizers: R-REG-1, N-REG-1, and compromise regularizer. When undersampled re-
gion (left column in Fig. B.6) is compared, the reconstructed image from compromise reconstruc-
tion shows somewhat balanced image quality in spatial resolution and noise properties. However,
such improvements are rather subtle.

B.4 Summary

The choice of the hypothetical geometry G affects the performance of the regularizers that we
proposed in Chapter IV. In addition to an intuitive selection we made in Chapter IV, we presented
another factorization for the system model in this supplement, which led to new expressions for the
proposed regularizers. These new regularizers, R-REG-2 and N-REG-2, showed comparable per-
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isocenter 1 2 3 4 5 6 isocenter 1 2 3 4 5 6

(a) A-REG (b) R-REG

Figure B.7: Comparison of xy plane through the center of each local impulse response at selected
location (see Fig. 4.2 for the index of locations). Edge-preserving potential function
was used. Top row is from a center slice, middle row is from 1st slice of ROI, and
bottom row is from outside ROI. (a) Regularization with original aggregated certainty
(4.1) (A-REG) (b) Regularization with proposed certainty (4.27) (R-REG-1).
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Figure B.8: Comparison of x profiles through the center of each impulse response in Fig. B.7. Left
column is from a center slice, middle column is from 1st slice of ROI, and right column
is from outside of ROI. Top and bottom rows represent the regularizers A-REG (4.1)
and the proposed R-REG-1 (4.27), respectively. (a) A-REG, center slice (b) A-REG,
1st slice of ROI (c) A-REG, outside ROI (d) R-REG-1, center slice (e) R-REG-1, 1st
slice of ROI (f) R-REG-1, outside ROI.
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isocenter 1 2 3 4 5 6 isocenter 1 2 3 4 5 6

(a) A-REG (b) R-REG-2

Figure B.9: Comparison of xy plane through the center of each local impulses responses at selected
location (see Fig. 4.2 in Chapter IV for the index of locations). Quadratic penalty
function was used. Top row is from a center slice (blue line in Fig. 4.2 in Chapter IV),
middle row is from 1st slice of ROI (red line), and bottom row is from outside ROI
(green line). (a) Regularization with original aggregated certainty (4.1) (A-REG) (b)
Regularization with proposed certainty (B.7) (R-REG-2).
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Figure B.10: Comparison of x profiles through the center of each local impulse response in
Fig. B.9. Left column is from a center slice, middle column is from 1st slice of ROI,
and right column is from outside of ROI. Top and bottom rows represent the regular-
izers A-REG (4.1) and the proposed R-REG-2 (B.7), respectively. (a) A-REG, center
slice (b) A-REG, 1st slice of ROI (c) A-REG, outside ROI (d) R-REG-2, center slice
(e) R-REG-2, 1st slice of ROI (f) R-REG-2, outside ROI.
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isocenter 1 2 3 4 5 6 isocenter 1 2 3 4 5 6

(a) A-REG (b) R-REG-2

Figure B.11: Comparison of xy plane through the center of each local impulses responses at
selected location (see Fig. 4.2 in Chapter IV for the index of locations). Edge-
preserving penalty function was used. Top row is from a center slice (blue line in
Fig. 4.2 in Chapter IV), middle row is from 1st slice of ROI (red line), and bottom
row is from outside ROI (green line). (a) Regularization with original aggregated cer-
tainty (4.1)] (A-REG) (b) Regularization with proposed certainty (B.7) (R-REG-2).
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Figure B.12: Comparison of x profiles through the center of each local impulse response in
Fig. B.11. Left column is from a center slice, middle column is from 1st slice of ROI,
and right column is from outside of ROI. Top and bottom rows represent the regular-
izers A-REG (4.1) and the proposed R-REG-2 (B.7), respectively. (a) A-REG, center
slice (b) A-REG, 1st slice of ROI (c) A-REG, outside ROI (d) R-REG-2, center slice
(e) R-REG-2, 1st slice of ROI (f) R-REG-2, outside ROI.
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formances in terms of achieving uniform spatial resolution or noise properties in the reconstructed
image compared to those presented in Chapter IV, R-REG-1 and N-REG-1. It is hard to conclude
which factorization is a better choise because R-REG-1 and N-REG-2 obtained bettern resolution
and noise uniformities compared to R-REG-2 and N-REG-1, respectively.

We also investigated a compromise regularizer as a starting point for investigating the trade-off
between spatial resolution and noise. The proposed regularizer obtained somewhat balanced spatial
resolution and noise properties. However, such compromise regularizers require more detailed
investigation.
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