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ABSTRACT 

PROBING THE DETERMINANTS OF THE MOLECULAR RECOGNITION IN 

METAL-DEPENDENT DEACETYLASE 

by  

Byung Chul Kim 

Chair: Carol A. Fierke 

Metal-dependent deacetylases catalyze a variety of essential reactions in nature. 

However, most metallohydrolases can be activated by a number of divalent metal ions, such as 

Zn(II) or Fe(II). Human metal-dependent metalloenzyme, histone deacetylases 8 (HDAC 8), 

catalyze the deacetylation of acetylated lysine residues on histones and other protein substrates. 

Although it was known as a Zn(II)-metalloenzyme, there is growing evidence which indicates it 

is also activated by Fe(II). HDAC8 was more active with Fe(II) than Zn(II) in vitro, and exhibits 

Fe(II)-like activity in vivo, suggesting that many “Zn”-enzymes may utilize either Fe or Zn 

cofactors in vivo depending on cellular conditions. Here I measured the metal (Zn(II) / Fe(II)) 

binding kinetics and thermodynamics for HDAC8 using newly developed fluorescence 

polarization assay. Next, the determinants governing the metal specificity of HDAC8 was 

explored. Alterations in second shell ligand environment significantly affect the reactivity 

(kcat/KM), binding affinity (koff and KD) for Zn/Fe-bound HDAC8 when compared to the wild-

type. Monovalent binding to other metal binding sites in HDAC8 also had an effect on divalent 

metal binding by decreasing dissociation rate constant. Additionally, the putative binding partner 



xii 

 

to HDAC8, poly (rC) binding protein, was investigated to determine the interaction between the 

two proteins in vitro and in vivo. This finding revealed that the two proteins bind to each other in 

a specific manner with μM affinity when apo-apo proteins interact. All these data suggest that 

HDAC8 is activated by either Zn or Fe based on various factors as a means of metal homeostasis.   

Finally, another deacetylase, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine 

deacetylase (LpxC), was studied to generate a novel potent inhibitor. LpxC catalyzes the 

committed step in Lipid A biosynthesis. Inhibitors of LpxC affecting lipid A biosynthesis are 

targets for the development of antibacterials, since lipid A is essential for bacterial cell viability. 

For the development of more potent non-hydroxamate inhibitors, libraries of metal-binding 

fragments were screened against Escherichia coli LpxC using a high-throughput mass 

spectrometry assay. A few potent hits (IC50 in the nM range) were identified.  

These results are important for understanding how best to inhibit the many clinically 

useful metalloprotein drug targets, as well as for understanding a potentially important new 

aspect of metal ion homeostasis and metalloprotein regulation. 
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CHAPTER 1 

INTRODUCTION 

 

1. Metal homeostasis 

Zinc and iron are essential metal cofactors. However, both metals can be toxic if their 

homeostasis (such as levels and distribution) is unregulated.
1
 The impact of incorrect control of 

metal homeostasis on human health has generated considerable interest in understanding the 

principles involved in metal homeostasis. Cells use metal-binding proteins to maintain low 

cytosolic metal ion concentrations and as protection against cytotoxic increases in intracellular 

metal ions. 

 

1.1 Zinc homeostasis 

Zinc is an essential element in the cell, playing important structural, and regulatory roles.
2
 It 

forms the catalytic center in numerous metalloenzymes and stabilizes the structure of many other 

proteins. It is the second most abundant transition metal in the cell, next to iron.
3
 Bioinformatic 

studies revealed that 10% of all proteins in the human genome contain potential binding sites for 

zinc.
4
  

Zinc has several characteristics that enhance its use as a metal cofactor. First, unlike other 

essential transition metals in the cells such as iron and copper, zinc is redox insensitive and can 

form stable complexes with macromolecules. Second, as a d
10

 metal, zinc is not susceptible to 
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ligand field stabilization effects; therefore, zinc can adopt various coordination numbers ranging 

from 4 to 8, with 4 – 6 commonly observed in protein binding sites
5
, although the most typical 

geometry is tetrahedral or distorted tetrahedral. Third, the specific recognition of a transition 

metal by a protein-binding site requires discrimination based on ionic size, charge, and chemical 

nature (i.e., “hardness’’ or “softness”). Zinc has borderline hardness and easily accommodates 

nitrogen, oxygen, and sulfur atoms in its biological coordination polyhedral (Table 1). Lastly, in 

addition to chemical hardness/softness, simple electrostatic effects are also important for protein-

metal ion recognition. In metalloproteins, zinc binds to negatively charged residues (e.g., 

carboxylates and thiolates) and/or neutral dipolar residues (e.g., carbonyls and imidazoles).  

Given its importance, zinc homeostasis is regulated through an extensive network of 

transporters, ligands and transcription factors in the cell (Figure 1).
6,7

 The dysregulation of zinc 

homeostasis is associated with various human health problems.
8,9

 For instance, displacement of 

zinc from zinc-binding structures, e.g., zinc finger structures in DNA repair enzymes, is proposed 

as a major cause for carcinogenicity of other metals such as cadmium, cobalt, nickel, and 

arsenic.
10

 Furthermore, zinc is suggested to play a role in the development of prostate cancer. 

Zinc levels in prostate adenocarcinoma are significantly lower than in the surrounding normal 

prostate tissues, implying a role for zinc in the pathogenesis and progression of prostate 

malignancy.
11

 The proposed mechanism is down-regulation of the zinc transporter Zip1, which is 

responsible for zinc uptake and accumulation in prostate cells.
12,13

 Elevated zinc levels have also 

been implicated in the development of neurodegenerative diseases, e.g., deregulated zinc 

homeostasis could be important to onset and progression of Alzheimer’s disease.
14
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Table 1.1 Properties of certain biological metal ions 

Metal ion Radius (Å )
a
 Hard-soft

b
 

Mg(II) 0.65 Hard 

Ca(II) 0.99 Hard 

Mn(II) 0.80 Hard 

Fe(II) 0.76 Borderline 

Fe(III) 0.53 Hard 

Co(II) 0.74 Borderline 

Ni(II) 0.69 Borderline 

Cu(I) 0.96 Soft 

Cu(II) 0.72 Borderline 

Zn(II) 0.74 Borderline 

Cd(II) 0.97 Soft 

 

a. Radii were calculated by the method of Pauling, abstracted from Cotton and Wilkinson
5
 

b. From Pearson (1963)
15
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Figure 1.1 Zinc homeostasis in mammalian cells reprinted from Da Wang’s thesis with 

permission. MTF-1 is the zinc-dependent transcription factor that is the major regulator of zinc 

homeostasis in mammalian cells. MTF-1 up-regulates the expression of the membrane zinc 

exporter ZnT1 and metallothionein to enhance zinc efflux and sequestration by intracellular 

ligands under high zinc stress. ZIP transporters increase the cytosolic zinc concentration by 

importing zinc from the outside or releasing zinc from the organelles into the cytosol. ZnT 

transporters decrease the cytosolic zinc concentration by zinc efflux to the outside or 

sequestration into organelles. ZIP (blue) and ZnT (green) transporters carry various tissue-

specific functions. Some ZnT type transporters shuttle zinc into specialized secretory vesicles, 

including insulin granules and synaptic vesicles.  

 

 

1.2 Iron homeostasis 

Iron is also essential for the function of many metalloenzymes, including heme, iron-

sulfur clusters, and non-heme metalloproteins, where it is a cofactor in many major biological 

processes, including photosynthesis, N2 fixation, methanogenesis, H2 production and 

consumption, respiration, the trichloroacetic acid (TCA) cycle, oxygen transport, gene regulation 
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and DNA biosynthesis.
16

 Under physiological conditions, cellular iron mainly exists in one of 

two interconvertible redox states: the reduced Fe(II) ferrous form and the nearly insoluble, 

oxidized Fe(III) ferric form. Its biological functionality is most frequently dependent upon the 

formation of a metalloprotein, either as a metal cofactor or as part of iron-sulfur clusters or heme 

groups. Therefore, sophisticated regulatory mechanisms have evolved to acquire and transport 

iron across biological membranes to provide adequate amounts for critical biological processes.  

Cells must maintain sufficient iron to ensure proper cellular functions but not excess iron 

that could generate toxic effects, such as promoting the formation of reactive oxygen species 

(Figure 2). Cells maintain iron homeostasis by a number of mechanisms. First, all mammalian 

cells produce ferritin, an iron(III) storage protein. Each ferritin can accommodate up to 4500 iron 

atoms. Ferritin acts as a depot, keeping excess iron and allowing for the mobilization of iron 

when needed.
17

 A second mechanism is a set of iron regulatory proteins (IRPs). When iron is 

limiting, IRPs bind to RNA stem-loop iron regulatory elements (IREs) found in the untranslated 

regions of mRNAs involved in iron transport and storage.
18

 The IRP-IRE regulatory system 

enables cells to adjust proteins involved in iron homeostasis to regulate the concentration of 

available cytosolic iron and optimize the function of numerous iron-dependent cellular 

components. Therefore, the uptake and export of cellular iron is tightly regulated, as low 

concentrations of irons impair the function of numerous iron proteins, whereas excess iron can 

oxidize and damage cellular macromolecules. In addition, several iron-specific 

metallochaperones are being investigated for roles in iron homeostasis.
19,20

 These chaperone 

candidates include the IscA family of proteins and frataxin for delivery of iron for iron-sulfur 
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Figure 1.2 Iron homeostasis in Saccharomyces cerevisiae, reprinted from ref. 21 with permission. 

Yeast cells contain multiple dependent transcription factors, Aft1, Mac1, Zap1 (Zn) and Ace1. 

Products of genes that are activated under low iron-homeostasis conditions by Aft1 (green), 

Mac1 (blue), Zap1 (red), and Ace1 (purple) are shown. Extracellular iron that is bound to 

siderophores has been circled, and stars indicate proteins (Arn1-4 and Aft1) that undergo iron-

dependent cellular trafficking. The metal ion specificities of transporters involved in metal ion 

uptake are indicated; the major iron transporters are Ftr1/Fet3, Fre1/2, Fit1-3 and Fet4. 

Additionally, free iron is taken into the cell by both high and low-affinity transport systems (Fet3, 

Ftr1, and Fet4).  

 

 

cluster assembly and poly r(C)-binding protein 1 (PCBP1for delivery of iron to ferritin.
22,20,19

  

Iron deficiency is the most common cause of anemia, which interferes with normal cognitive 

development in human.
23

 Conversely, iron overload, observed in hemochromatosis and 

thalassemia, causes liver and heart failure.
24,25

  

To better understand how cells control metal homeostasis to allow incorporation of the 

correct metal into metalloproteins, there is a need for more widespread and precise enumeration 
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of protein metal affinities and selectivities both in vivo and in vitro. 

2. Metal selectivity 

Metal cations perform a plethora of essential tasks ranging from protein structure 

stabilization to enzyme catalysis to signal transduction. Currently, about 40% of known proteins 

contain bound metal cations; Na(I), K(I), Mg(II), Ca(II), Zn(II), Mn(II), Ni(II), Cu(I)/(II), 

Fe(II)/(III), and Co(II)/(III) are most frequently found to bind to proteins under physiological 

conditions (Figure 3).
26,27

 Understanding the molecular basis of metal binding affinity and 

selectivity in metalloproteins is of fundamental importance. The exact mechanism and 

physicochemical principles governing protein-metal recognition remain elusive.  

Figure 1.3 Metals used in metalloproteins for enhancing catalysis reprinted from ref. 28 with 

permission. The elements used as catalytic cofactors in enzymes are shown in blue. The height of 

each column represents the proportion of all enzymes with known structures using the respective 

metal. A systematic bioinformatics survey of 1,371 different enzymes for which three-

dimensional structures are known estimated that 47% required metals, with 41% containing 

metals at their catalytic centers.
28

 Magnesium is the most prevalent metal in metalloenzymes, 

followed by zinc and iron. 

 

Several questions need further investigatation, including: What is the optimum structure and 

composition of a protein binding site to provide the best metal affinity and/or selectivity? How 

does a metal bound to a binuclear site affect the properties of the other metal-binding site? How 
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and to what extent does the structure of the amino acids in the first and second coordination shell 

modulate the metal-binding site affinity and selectivity? These questions can be addressed by 

assessing the role of various factors in metal-protein recognition such as (a) the identity of the 

metal ion, (b) the structure and composition of the first and second ligation spheres, (c) the 

structure and properties of the protein matrix, and (d) the cellular environment, such as 

metallochaperone.  

The metal ion selectivity of wild-type carbonic anhydrase II (CAII) His3water zinc 

coordination polyhedron has been investigated in detail (Figure 4). The metal specificity of this 

site follows the Irving-Williams series (Mn(II) < Fe(II) < Co(II) < Ni(II) < Cu(II) > Zn(II))
30

, 

similar to small molecule chelators, although the affinity of Zn(II) is increased significantly such 

that it approaches the affinity of Cu(II).  

Figure 1.4 Schematic diagram of the metal binding affinity of mutants in the active site of WT 

CA(II), adapted from ref. 29. 
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To investigate the determinants of metal ion selectivity, the metal ion affinity and specificity 

of CAII variants with mutations in the first coordination shell were measured. Substitution of any 

of the His ligands in the first shell environment with another side chain capable of coordinating 

the zinc ion, such as Asp, Glu, Gln, Asn decreased zinc affinity by >100 fold.
31–33

 Each of the 

zinc-coordinating His side chains form a hydrogen bond with another protein group.  Deletion 

of any one of the hydrogen bonds with the second shell ligands also reduced zinc affinity by 

5~4000-fold.
31,34

 Finally, alterations in the hydrophobic residues (Phe93, Phe95 and Trp97) 

surrounding the zinc binding site also decreased the metal affinity of CA(II) by as much as 100-

fold.
35,36

 Furthermore, mutations in each of these portions of the metal binding pocket led to 

alterations in metal selectivity; for example the selectivity of zinc compared to copper (KZn/KCu) 

varies from 0.1 for wild-type CAII to 2 x 10
-4

 and 15 for mutations in the His119 ligand (H119N 

and H119Q, respectively).
33

 In summary, these data indicate that the metal ion selectivity of 

wild-type CAII and the majority of variants follows the Irving-Williams series, demonstrating 

that the second ionization energy of the metal ion is a dominant factor in thermodynamic metal 

ion selectivity in proteins, although other influences can alter this trend. These data also 

demonstrate that changes in metal ion specificity of the variants correlate with the preferred 

coordination number and geometry of the metal ion. Therefore, we conclude that the primary 

features driving deviations from the inherent ligand affinity, i.e., the Irving-Williams series, are 

structural components in the CAII active site that alter the energy required for a bound metal ion 

to adopt a preferred coordination number and geometry. 
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3. Histone deacetylase (HDAC) 

Acetylation / deacetylation, a key posttranslational modification of many proteins, is a 

dynamic, reversible, and highly regulated chemical modification that is responsible for 

modulating critical biological pathways. Acetylation is an enzyme-catalyzed reaction involving 

the transfer of an acetyl group from acetyl-CoA, a metabolic intermediate, to the ε-amino acid of 

lysine residues in target proteins.  Deacetylation is catalyzed by a group of enzymes termed 

histone deacetylases (HDACs). 

There are 18 known HDAC enzymes divided phylogenetically into four classes: class I 

(HDAC1-3 and HDAC8), class II (HDAC4-7 and HDAC9,10), class III (sirtuins 1-7), and class 

IV (HDAC11) (Figure 5).
37

 Class I, II, and IV HDACs are metalloenzymes that require a 

divalent metal ion for catalysis. The class III enzymes, termed sirtuins due to their homology 

with yeast Sir2, have a protein fold and a catalytic mechanism that differs from the metal-

dependent enzymes. Although the class I, II, and IV enzymes are referred to as histone 

deacetylases based on genomic sequence using the first identified enzyme, HDACs catalyze 

deacetylation of many acetylated protein substrates in addition to histones and in various cellular 

locations outside of the nucleus.
38

 Although histones are the most thoroughly studied of the 

acetylated protein substrates of HDACs, several recent reports have shown that HDACs are also 

responsible for deacetylating and thereby modifying the activity of diverse types of non-histone 

proteins.
39

 

These include transcription factors, signal transduction mediators, a microtubule component, 

and a molecular chaperone. 
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Figure 1.5 Classification of classes I, II, and IV HDACs by structure and cellular localization, 

reprinted from ref. 40 with permission. Eighteen HDACs have been identified in humans, and 

they are subdivided into four classes based on their homology to yeast HDACs, their subcellular 

localization and their enzymatic activities. The class I HDACs (1, 2, 3 and 8) are homologous to 

the yeast RPD3 protein, can generally be detected in the nucleus and show ubiquitous expression 

in various human cell lines and tissues. Class II HDACs (4, 5, 6, 7, 9 and 10) share homologies 

with the yeast Hda1 protein and can shuttle between the nucleus and the cytoplasm. HDAC11 is 

the sole member of the class IV HDACs. It shares sequence similarity with the catalytic core 

regions of both class I and II enzymes but does not have strong enough identity to be placed in 

either class. 

 

 

Although histone deacetylases have been shown to be metalloenzymes by crystallography 

and biochemical analysis, little has been known about the metal ion dependence of HDAC 

activity.
41,42

 Kinetic studies suggest that HDAC8 requires one bound metal ion for maximal 

activity.
43

 The metal-dependent HDACs have been designated as zinc-dependent enzymes 

because the addition of Zn(II) increases HDAC activity and recombinant HDAC8 isolated 

aerobically contains bound Zn(II). Furthermore, Zn(II) ion was observed in the active site of the 

HDAC crystal structure with the bound hydroxamate inhibitor trichostatin A (TSA).
41

 However, 
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HDACs possess an unusual set of metal ligands for a mononuclear Zn(II) enzyme, Asp2-His-

water, suggesting that Zn(II) may not be the in vivo metal ion.
44

 Also, Fe(II)-HDAC8 has a 

higher value of kcat/KM than Zn(II)-HDAC8 in vitro.
43

 Additionally, iron is the most abundant 

metal in HDAC8-His, immediately following the metal affinity column purification step.
43

 For 

cells grown with iron supplementation, the HDAC8 activity is ~ 4-fold larger when the cells are 

lysed under anaerobic conditions compared to that under aerobic conditions. All the data above 

strongly suggest that HDAC8 could function as an Fe(II)-protein in cells.  

 

4. Fe(II)-dependent hydrolases 

There have been several examples of Zn(II)-dependent hydrolases that have been reclassified 

as “Fe(II)-dependent” enzymes, including peptide deformylase (PDF), LuxS, γ-class carbonic 

anhydrase, and UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) 

(figure 6). The misidentification of the native metal cofactor as Zn(II) is attributed to the aerobic 

purification of these enzymes, with the oxidation of Fe(II) to Fe(III) and substitution of Zn(II) at 

the active site due to higher binding affinity. Identification of these proteins as containing native 

Fe(II) cofactors comes from a variety of methods, including rapid pull-downs form cells under 

anaerobic conditions (LpxC)
45

 and inhibition of cellular growth using Fe(II)-specific inhibitors 

(PDF).
46

 

The identification of the native metal ion bound to a protein is important because it affects 

the catalytic activity, substrate selectivity, inhibitor affinities, protein stability and/or regulation. 

For example, it is proposed that some metalloenzymes are regulated by changes in the oxidation  
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Figure 1.6 Reactions catalyzed by Fe(II)-dependent hydrolases. The reactions catalyzed by CA 

(carbonic anhydrase), LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine 

deacetylase), LuxS (S-ribosylhomocysteinase), and PDF (peptide deformylase) are shown.   
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state or the identity of the catalytic metal ion. Furthermore, the unique structural features of the 

Fe(II)-metalloenzyme active site will facilitate the design of selective inhibitors.  

 

4.1. Peptide Deformylase (PDF)  

Peptide deformylase is an essential metalloenzyme required for the removal of the 

formyl group at the N terminus of nascent polypeptide chains in eubacteria. PDF was previously 

reported to be a zinc metalloenzyme with a His2CysWater coordination sphere; the Zn(II)-bound 

protein is very stable but has low catalytic activity (kcat/KM ≈ 80 M
-1

s
-1

 with formyl-Met-Ala-Ser 

as substrate).
47

 Later it was found that the Escherichia coli enzyme is activated by Fe(II) in vitro 

and retains activity with substitution of Ni(II)
48

 for the metal cofactor instead of Zn(II) as 

previously suggested.
49

 The Fe(II)- and Ni(II)-PDF are 1200-fold and 900-fold more active that 

the Zn(II)-bound form.
50

 However, Fe(II)-PDF rapidly loses activity under anaerobic 

conditions.
50

 The dramatically enhanced catalytic activities of PDF with the Fe(II) cofactor 

compared to Zn(II) despite similar tertiary structures
48,51,52

, provided support that the native 

metal ions are directly involved in the catalytic mechanism.  

 

4.2. LuxS 

Previous studies have shown that S-ribosylhomocysteinase is encoded by the luxS gene 

in Escherichia coli, which catalyzes the synthesis of the type-2 quorum sensing molecule.
53

 

LuxS is a small metalloenzyme (157 amino acids for the Bacillus subtilis enzyme). Sequence 
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alignment of this enzyme reveals an invariant HXXEH motif, which is often found in Zn(II)-

containing proteins. High resolution structures demonstrated a divalent metal ion bound to the 

active site via a His2Cys coordination sphere, which was initially reported to be Zn(II), based on 

inductively coupled plasma (ICP) metal analysis.
54,55

 However, rapid, aerobic purification of 

overexpressed C-terminally histidine-tagged LuxS using metal affinity chromatography 

demonstrated that the metal cofactor bound to LuxS was Fe(II).
56

 Like the deformylase, native 

LuxS [Fe(II) bound] rapidly loses activity under aerobic conditions, whereas the activity of the 

Zn(II)- or Co(II)-substituted LuxS form is stable under these conditions.
56

  

 

4.3. γ-Class Carbonic Anhydrase (Cam) 

γ-class carbonic anhydrase (Cam) contains a His3Water metal coordination sphere rather 

than the His3Water site in CAII, an α-class enzyme. The initial biochemical, kinetic, and 

structural characterizations of Cam concluded that the active-site metal ion was Zn(II), which 

was consistent with zinc reported for all CA’s characterized from the extensive α- and β-

classes.
57,58

 However, the methanoarchaea such as Methanosarcina thermophile are strict 

anaerobes that live in ferrous rich, oxygen-free environments and synthesize an abundance of 

oxygen-sensitive enzymes. Indeed, it was shown that Cam reconstituted with Fe(II) in vitro is 

exquisitely sensitive to oxygen with rapid loss of activity on exposure to air, leading to the 

suggestion that aerobic purification of Cam could lead to loss of Fe(II) and incorporation of 

Zn(II).
59

 Overproduction of the archetype γ-class CA in preparative yields provided sufficient 

material to establish iron as the physiological metal in the active site of this metalloenzyme, 

establishing a novel catalytic role for iron.
60
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4.4. LpxC 

UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes 

the committed and second overall step in lipid A biosynthesis, the hydrolysis of UDP-3-O-

myristoyl-N-acetylglucosamine to UDP-3-O-myristoyl-glucosamine and acetate.
61–63

 Lipid A 

forms the core structure of the lipopolysaccharide cell wall of gram negative bacteria essential 

for cell growth.
64

 Consequently, inhibitors targeting LpxC in the lipid A biosynthetic pathway are 

an active area of drug development.
65

 LpxC was previously identified as a mononuclear Zn(II) 

metalloenzyme that also contains a weaker, inhibitory metal ion-binding site.
66

 However, later 

studies demonstrated that LpxC is ~6-fold more active with Fe(II) as its metal ion cofactor 

compared with Zn(II) in vitro.
67

 Furthermore, rapid anaerobic purifications of tagged LpxC from 

E. coli followed by ICP-MS metal analysis demonstrated that under most growth conditions 

LpxC is activated by Fe(II) in vivo.
45

 This identification was also confirmed by the oxygen 

sensitivity of LpxC activity in crude lysates, indicative of the Fe(II)-bound enzyme.  However, 

the pulldown experiments also demonstrated that in the presence of low Fe(II) and high Zn(II) in 

the medium, LpxC binds and is activated by Zn(II).  These data indicate that LpxC should not 

be considered an Fe(II)-specific metalloenzyme but rather a Me(II)-dependent enzyme that is 

generally activated by Fe(II). In vivo LpxC can bind either Fe(II) or Zn(II) based on altered 

cellular conditions, such as variations in metal availability in the medium.
45

  

 

4.5. HDAC8 

The metal-dependent HDAC8 has been typically described as a Zn(II)-enzyme. However, 

several lines of evidence suggest a more careful analysis of the metal dependence is warranted, 
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including the unusual HisAsp2 metal coordination sphere, the higher catalytic activity of Fe(II)-

HDAC8 compared to Zn(II)-HDAC8 in vitro,
43

 and the sensitivity of HDAC activity to oxygen 

from both E. coli lysates containing recombinant HDAC8 and HeLa cell extract.
43

 

 

5. Metallochaperones  

Access to metals in enzymes can be mediated by specific interactions with metal-delivery 

proteins, such as metallochaperones. Cells are required to overcome several obstacles in ensuring 

that apo-proteins receive the correct, cognate metal ion. First, although the first and the second 

spheres of metal-binding sites can distinguish between ions based on charge, coordination 

geometry, and polarity, the large differences in intrinsic metal affinity (described by the Irving-

Williams series) may overwhelm the capacity of a protein binding site to identify the correct 

metal ions.  In fact, proteins may even bind a non-cognate metal more tightly than the correct 

one, such as Zn(II)-bound LpxC and Cu(II)-bound CAII.
66,68

 Second, some metal ions, such as 

iron and copper, are redox-active, therefore in the presence of oxygen, can both oxidize to the 

incorrect metal species (i.e Fe(II) to Fe(III)) and catalyze the formation of reactive oxygen 

species. Thus, cells must tightly modulate the distribution of transition metals to incorporate 

them correctly while avoiding the toxicities of mismetallation and oxidative damage. One 

cellular strategy is to use the metallochaperones that recognize and help deliver a cognate metal 

ion to a metalloprotein.  This strategy has been shown to operate for several copper binding 

proteins, such as superoxide dismutase
69

; however, no metallochaperones have yet been 

identified for Zn(II).  Therefore, the data suggest that zinc metalloproteins are metallated by 

equilibration with the cellular exchangeable zinc pools.
6
 Eukaryotic metallochaperones for other 
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metals have not yet been clearly established; however, candidates for the delivery of iron to the 

sites of iron-sulfur cluster assembly and to ferritin have been identified. Candidates for iron 

chaperones include frataxin, and poly(rC)-binding proteins (PCBPs). 

 

5.1. Frataxin 

Frataxin is an essential, highly conserved mitochondrial protein. Frataxin-defective 

organisms, from unicellular yeast to human beings, exhibit various metabolic disturbances, 

including the accumulation of iron in the mitochondria of yeast with the deleted frataxin 

homologue gene (Yfh1).
70

 Furthermore, involvement of frataxin in Fe-S formation was 

suggested by studies showing that patients with Friedreich ataxia (FRDA), and conditional 

knockout mice have deficiencies in Fe-S cluster proteins.
71

  

 

5.2. Poly(rC)-binding proteins (PCBPs) 

PCBP1 (also called a-CP1 or hnRNP E1) has previously been shown to function as an 

RNA- and DNA-binding protein.
72

 PCBP1 is one member of a family of four homologous 

proteins containing three heterogeneous nuclear ribonucleoprotein K-homology (KH) domains. 

PCBPs have a role in transcriptional regulation and participate in several protein-protein 

interactions.
73,74

 The Philpott laboratory recently identified PCBP1 as a cytosolic iron chaperone 

that delivers iron for incorporation into ferritin.
75

 PCBP1 binds ferrous iron with micromolar 

affinity in a 3:1 Fe:PCBP1 molar ratio (Figure 7).
19

 PCBP1 binds to ferritin and can enhance iron  
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Figure 1.7 Simplified model of iron delivery in mammalian cells, adapted from ref. 76. PCBP1 

and PCBP2 bind cytosolic Fe(II) and directly deliver it to ferritin, 2-oxoglutarate dioxygenases 

(such as PHDs and FIH1), and possibly other non-heme iron enzymes such as HDAC8.  

 

 

 

incorporation into ferritin in vitro and in vivo. Mammalian cells lacking PCBP1 exhibit defective 

incorporation of iron into ferritin. A previous report indicated that mammalian genomes encode 

four PCBPs, and suggested that all of the PCBPs may share iron chaperone activity.
77

 

Subsequently, PCBP1 and 2 have been implicated as metallochaperones for the iron-dependent 

prolyl hydroxylases (PHDs) and asparaginyl hydroxylase (FIH1) that modifies hypoxia-inducible 

factor a (HIFa).
78

 The activities of the HIF hydroxylases may be regulated by the availability of 

iron since HIF hydroxylase activity is stimulated by the addition of Fe(II) in vitro, and, in 

cultured cells, activity is inhibited by the addition of iron chelators. Iron-deprived cells lacking 

PCBP1 or PCBP2 exhibit increased levels of HIF1a due to a decrease in prolyl hydroxylation 

and Von Hippel–Lindau (VHL)-mediated degradation. The loss of prolyl hydroxylase activity 

was traced to a decrease in iron loading of the enzyme, which could be restored by addition of 
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recombinant PCBP1. Furthermore, PCBP1 physically interacts with PHD2 by using pulldown, 

indicating that PCBP1 likely acts as an iron chaperone for PHD. Similar results suggest a direct 

role for PCBPs in the activation of asparaginyl hydroxylase.
78

 These data indicate PCBP1 

facilitates incorporation of iron into ferritin, PHD, and FIH1 and functions as an iron 

metallochaperone. Since PCBP1 serves as an iron chaperone for these diverse enzymes, it is 

possible that other enzymes of the Fe(II)-dependent metalloenzyme class will require PCBPs for 

metallation.  

 

Objectives of this work 

The overall goal of this thesis is to elucidate the mechanistic features that govern the 

molecular recognition of metal binding specificity in HDAC8. Growing evidence indicates that 

HDAC8 could be an Fe(II)-dependent metalloenzyme rather than activated by Zn(II) in vivo. 

Additionally, it is possible that the enzyme is regulated by metal switching depending on cellular 

conditions, such as concentrations of readily exchangeable metal and/or oxidative stress. 

However, there is not a clear understanding of how the metal binding of HDAC8 is determined 

and regulated. In the following chapters, I will develop new assays to measure the binding 

kinetics and thermodynamics of metal ions bound to HDAC8. This information will aid in 

identifying the native metal ion. The crystal structure of HDAC8 provides insight into the unique 

structural features of the metal binding site of HDAC8, such as the lack of hydrogen bonds in the 

second shell environment and a nearby monovalent cation binding site. These unique structural 

features may modulate the metal binding of HDAC8. This hypothesis will be analyzed by 

measuring the metal affinity and selectivity of HDAC8 mutants.  These findings shed light on 
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our understanding of metalloprotein selectivity in vivo, and illuminate the potential regulatory 

mechanism of metal switching which is also suggested by bacterial deacetylase LpxC.  

Furthermore, the role of the metal identity in determining inhibitor selectivity will be explored 

for LpxC. 
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1This was a collaboration with Amit S. Pithadia and synthesis of flSAHA obtained by him is explicitly 

labeled within the chapter. 

CHAPTER 2 

MEASUREMENT OF METAL-BINDING PROPERTIES OF HISTONE 

DEACETYLASE 8 USING FLUORESCEIN-SUBEROYLANILIDE 

HYDROXAMIC ACID
1
 

 

INTRODUCTION 

Posttranslational modifications are implicated in many human diseases, including cancer 

and neurodegenerative diseases.
1
 Posttranslational acetylation / deacetylation of lysine side 

chains has been observed at more than 3500 sites in proteins, including histones,
2
 and this 

modification regulates the biological activity of many these proteins. For example, acetylation 

and deacetylation correlate with the activation and deactivation, respectively, of transcriptional 

gene expression.
3
 The status of acetylation of lysine residues is reversibly regulated by histone 

acetyltransferase (HAT) and histone deacetylase (HDAC) activity. HDACs are a family of 18 

enzymes grouped into 4 classes. Class I comprises four HDAC family members, HDAC 1, 2, 3, 

and 8. They are expressed ubiquitously and generally display deacetylase activity toward histone 

substrates.
4
 Class II includes HDAC 4, 7, 9, and 10 which generally have lower catalytic activity. 

HDAC11, the sole member of Class IV, lies at the boundary between the other two classes. Class 

I, II and IV are metalloenzymes with a largely conserved catalytic core, consistent with a 
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common catalytic mechanism.
5
 All three classes are distinct from the sirtuin-family enzymes 

(class III) in the catalytic domain sequence and three-dimensional structure, and in the catalytic 

mechanism.
6
                                                                                                                                                                                      

High resolution crystal structures of the histone deacetylase-like protein from Aquifex 

aeolicus, human HDAC8, and Schistosoma mansoni HDAC8 have been solved illustrating a 

single α/β domain with a core eight-stranded β-sheet surrounded by eleven α-helices. The 

substrate binding surface is composed of nine loops and an 11 Å  tunnel leading to the active site 

with a HisAsp2 divalent metal binding site. These crystal structures were solved with zinc(II) as 

the active site metal ion, although little change in the structure of HDAC8 was observed with 

other metals (Co(II), Fe(II) and Mn(II)) bound to the active site.
7
 Nonetheless, the enzymatic 

activity of HDAC8 varies with the active site metal ion: Co(II) > Fe(II) > Zn(II) > Ni(II).
8
 This 

result suggests the possibility that either Fe(II) or Zn(II) could activate the enzyme in vivo. 

Recently several “Zn(II)-dependent” enzymes have been reclassified as “Fe(II)-dependent” 

enzymes, including peptide deformylase (PDF), LuxS and UDP-3-O-[(R)-3-hydroxymyristoyl]-

N-acetylglucosamine deacetylase (LpxC).
9,10,11

  

The affinity of HDAC8 for Zn(II) is much higher (5 pM) than the Fe(II) affinity (0.2 μM), 

as predicted based on the Lewis acidity of Zn(II) compared to Fe(II) and in accord with the 

Irving-Williams series of stability constants.
12

 Although, the total cellular concentrations of zinc 

and iron are comparable at 0.1 – 0.2 mM in eukaryotes and Escherichia coli
13,14

, the readily 

exchangeable (RE) metal ions differ significantly: [Zn(II)]RE is picomolar (10-400 pM),
15

 and 

[Fe(II)]RE is micromolar (0.2-6 μM).
16,17

 Therefore, based on thermodynamic considerations it is 

possible that HDACs could be activated by Fe(II) rather than Zn(II) in cells. The choice of iron is 
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intriguing given the redox reactivity of Fe(II)-bound HDAC8
8
, suggesting the possibility of 

regulation of the activity of this enzyme by redox stress and/or Zn(II)/Fe(II) metal switching in 

cells. Evaluation of the kinetics of metal equilibration with HDAC8 will provide insight into the 

feasibility and biological relevance of these proposals.  

However, previous research showed that HDAC8 could be bound to Fe(II) in vivo. First, 

the kcat/KM value of HDAC8, stoichiometrically substituted with both metals, is greater for Fe(II). 

Next, iron was the most abundant metal in HDAC8-His, immediately following the affinity 

column purification. Also activity of cell-free lysate grown with iron supplementation is ~4-fold 

higher under anaerobic conditions compared to that under aerobic conditions.
8
 Finally, the active 

site metal ligands of HDAC8 (Asp2His) are unusual for a zinc-dependent hydrolase based on 

crystal structure of HDAC8 (Figure 1).
7
 These findings suggest that HDACs could potentially be 

activated by Fe(II) rather than Zn(II). The choice of iron is intriguing given that the inherent 

instability of Fe(II) and that HDAC8 catalyzes a non-redox reaction.  

Figure 2.1 Promiscuity of metal selectivity in HDAC8 
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Additionally, there have been several examples of Zn(II)-dependent enzymes that have 

been reclassified as “Fe(II)- dependent” enzymes including peptide deformylase (PDF), LuxS, 

and UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC).
9,10,11

 These 

metal constraints limit the utility of HDAC8, thus, a more detailed understanding of binding 

kinetics is needed to determine the native cofactor.  

The crystal structure of HDAC8 also visualized two monovalent binding sites which are 

conserved in class I and II human HDACs.
18,19

 Site 1 and 2 are located 7 Å  and 21 Å , 

respectively, from the divalent metal ion binding site. These monovalent sites could be occupied 

with either K
+
 or Na

+
 depending on the cellular conditions. Previous studies revealed that the 

monovalent cation (MVC) occupying site 1 inhibits HDAC8 activity, whereas the MVC 

occupying site 2 increases activity by stabilizing the structure.
20

  These monovalent cation 

binding sites may also play a role in regulating metal selectivity and equilibration kinetics.  

To date, a number of assays of HDAC activity have been developed to measure substrate 

reactivity (kcat/KM), inhibitor potency (Ki)
21-22

, and enzyme-coupled assay
23

. The most commonly 

used method is the Fluor de Lys (FdL) assay, which uses the commercially available peptide 

substrate (R-H-K(Ac)-K(Ac)-coumarin fluorophore) (BIOMOL) derived from the sequence of 

p53 that is acetylated at Lys381 and Lys382. In this assay, deacetylation is followed by cleavage 

of the coumarin fluorophore catalyzed trypsin, leading to a measurable change in fluorescence.
8
  

However, this assay is not sufficiently rapid to measure the metal-binding kinetics of 

HDAC8. Recently, a fluorescence-based binding assay has been developed using coumarin-

suberoylanilide hydroxamic acid (c-SAHA) as the fluorescent probe; the fluorescence is 
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quenched 50% upon binding to HDAC8.
24

 However, this fluorophore is unsuitable for 

fluorescence polarization (FP) measurements. Therefore, we developed a FP-based binding assay 

using fluorescein-labeled SAHA (flSAHA) as a probe. This FP assay measures metal-binding in 

a simple 96-well format with ease and is ratiometric measurement with great precision. 

Furthermore, it is also applicable for high-throughput screening of inhibitors against HDAC8.  

Here we use the flSAHA assay to demonstrate that despite the differences in the binding 

affinity of HDAC8 for Zn(II) and Fe(II), the dissociation rate constants are comparable at ~0.001 

s
-1

. These data demonstrate that metal binding to HDAC8 occurs in a two-step binding process 

and that metal selectivity is determined by the apparent slower association rate constant for Fe(II) 

compared to Zn(II). Furthermore, the metal dissociation kinetics are lowered by the binding of 

cations to either of the monovalent cation binding sites. These data demonstrate that the metal 

selectivity (Zn/Fe) occurs in the apparent association step and further implies that association of 

Fe(II) association is not a diffusion-controlled step. It further implies that Fe(II) binding to 

HDAC8 could be more than two step mechanism, which is binding followed by a conformational 

change. These data supports the proposal that HDAC8 could exist as an Fe(II)-dependent 

metalloenzyme as well as a Zn(II)-dependent enzyme depending on cellular factors. 

 

MATERIALS AND METHODS 

 

Materials  

Unless specified, chemicals and supplies were purchased from Fisher. All chemicals were 

of the highest quality available. Ethylenediaminetetraacetic acid (EDTA) and FeCl2 were 

purchased from Aldrich. Chromatography resins were purchased from GE Healthcare. To prevent 



34 

 

trace metal contamination, all plasticware was presoaked with 1 mM ethylenediaminetetraacetic 

acid (EDTA) and triple rinsed with Millipure H2O. Plastic disposables, including pipet tips and 

microcentrifuge tubes, were certified trace metal-free (Corning Incorporated and Costar, 

respectively). Sodium hydroxide (Sigma, 99.999%) was used to titrate 3-(N-

morpholino)propanesulfonic acid (MOPS) buffer (Ambion). Dialysis cassettes (Pierce) and 

syringes with needles were presoaked with 1 mM EDTA and extensively washed with Millipure 

H2O. 

 

Expression and Purification of HDAC8  

Recombinant His6-HDAC8 was expressed in BL21(DE3) E. coli transformed with pHD4 

and purified as previously described
8
 and concentrated to 2-12 mg/mL for metal exchange. 

Metal-free HDAC8 was generated by dialyzing purified HDAC8 twice into 500 mL of 25 mM 

MOPS (pH 7.0), 1 mM EDTA for 12-14 hr at 4 °C, followed by buffer exchange into 25 mM 

MOPS (pH 7.5), 0.1 mM EDTA and finally 25 mM MOPS (pH 7.5) for 12-14 hr at 4 °C. When 

necessary, anaerobic conditions were achieved using either the captair pyramid glove-bag filled 

with argon or nitrogen or an anaerobic chamber (Coy, Grass Lake, MI) 

 

Synthesis of flSAHA  

1) Synthesis of 2-(3,6-dihydroxy-9H-xanthen-9-yl)-5-(8-methoxy-8-

oxooctanamido)benzoic acid: To a flame-dried flask equipped with stir bar and dry DMF (10 mL) 
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was added 5-fluoresceinamine (100 mg, 0.28 mmol) in one portion. To the stirring solution was 

added dry NEt3 (43 L, 0.31 mmol). The solution was allowed to stir at room temperature for one 

hour. Methyl-8-chloro-1-oxooctanate (40 L, 0.28 mmol) was then added to the solution drop 

wise and the resulting reaction mixture was stirred at 50 °C for 24 h. Upon completion the 

solvent was evaporated in vacuuo and the residue was dissolved in dichloromethane (20 mL). 

The product was washed with sat. NaHCO3 (3 x 20 mL), brine (2 x 20 mL), dried over 

anhydrous MgSO4, filtered and dried in vacuuo to yield an deep orange-yellow oil. The product 

was purified via silica gel chromatography (4% MeOH in CH2Cl2) and the resulting product was 

continually washed with hexanes to remove residual impurities. The final product was yielded as 

an orange oil (yield: 81 mg, 0.16 mmol, 56%). 1H NMR (CD3OD, 400 MHz)/(ppm): 8.23 (d, J = 

1.6 Hz, 1H), 7.73 (dd, J = 8.0, 2.0 Hz, 2H), 7.04 (d, J = 8.4 Hz, 2H), 6.56 (d, J = 2.4 Hz, 1H), 

6.53 (d, J = 8.8 Hz, 2H), 6.43 (dd, J = 8.4, 2.4 Hz, 2H), 3.54 (s, 3H), 2.34 (t, J = 7.6, 2H), 2.24 (t, 

J = 7.6, 2H), 1.66-1.52 (m, 4H), 1.32-1.30 (m, 4H). [M+H]
+
: calcd = 518.13, Found = 518.06   

 

2) Synthesis of 2-(3,6-dihydroxy-9H-xanthen-9-yl)-5-(8-(hydroxyamino)-8-

oxooctanamido)benzoic acid (flSAHA): Hydroxylamine hydrochloride (104 mg, 1.5 mmol) in 

methanol (10 mL) was combined with a solution of KOH (1.57 g, 28 mmol) in methanol (16 mL) 

and cooled to 0 °C and then filtered. Product was added to the filtrate from step 1 and slow 

addition of a solution of KOH (5 mg in 1 mL MeOH). The mixture was stirred at rt for 2 h and 

then refluxed at 65 °C for an additional 34 h. The reaction was quenched by the addition of cold 

water (15 mL), followed by drop wise addition of glacial acetic acid to until the pH reached 

approximately 7.0. A solid product precipitated and filtered, washed with water to remove 
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impurities and dried under vacuum to remove residual water. The resulting product was purified 

twice by silica gel chromatography (25% MeOH in CH2Cl2) and the final product was 

recrystallized in CH2Cl2 and hexanes to afford an orange solid (yield: 362 mg, 0.70 mmol, 75%). 

1H NMR (CD3OD, 400 MHz)/(ppm): 8.24 (d, J = 1.6 Hz, 1H), 7.73 (dd, J = 8.0, 2.0 Hz, 2H), 

7.04 (d, J = 8.4 Hz, 2H), 6.56 (d, J = 2.4 Hz, 1H), 6.53 (d, J = 8.8 Hz, 2H), 6.40 (dd, J = 8.4, 2.4 

Hz, 2H), 2.32 (t, J = 7.6, 2H), 2.24 (t, J = 7.6, 2H), 1.68-1.51 (m, 4H), 1.37-1.33 (m, 4H). 

[M+H]
+
: calcd = 518.14, Found = 518.11 

 

Affinity of HDAC8 for flSAHA  

FP experiments were performed in a half-area black 96-well microplate (Corning 

Incorporation, #3686) and FP values were measured with excitation at 485 nm (30 nm bandpass) 

and emission at 535 nm (40 nm bandpass) using a TECAN Plate Reader. Binding experiments 

for determining the KD values of metal-bound HDAC8 for flSAHA included 50 nM flSAHA in 

assay buffer [20 mM HEPES (pH 8), 137mM NaCl, 3mM KCl] and FP was measured as 

HDAC8 (≤5 μM) was titrated into the reaction. The fluorescence intensity was corrected for 

dilution and background fluorescence. The value of KD for flSAHA was obtained by fitting a 

binding isotherm to the dependence of the FP signal on the concentration of HDAC8 (equation 1). 

In the equation, 𝑃𝑓 is the polarization of unbound flSAHA and 𝑃b is signal from fully bound 

flSAHA·HDAC8 complex. 

Equation 1 : Y = Pf + (Pb − Pf) × 
([L]+{E]+Kd)−√([L]+[E]+Kd)2−4[L][E]

2[𝐸]
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Kinetics for Binding flSAHA to HDAC8  

Fluorescence stopped-flow measurements were carried out on a model SF-2001 stopped-

flow spectrofluorometer (KinTek Corp., Austin, TX) fitted with a 75W xenon arc lamp in two 

syringe mode. flSAHA was excited at 495 nm (slit width, 0.1-2 mm). flSAHA fluorescence 

emission was monitored using a long-pass filter (N500nm; Corion, LL-500-F). All kinetic traces 

were an average of four to six independent determinations. To measure the dissociation rate 

constant, flSAHA (0.1 μM) was preincubated with metal-bound HDAC8 (2 μM) for at least 30 

min at RT in assay buffer. The reaction was initiated by mixing the HDAC8•flSAHA complex 

with an equal volume of unlabeled SAHA (final concentration of 20 μM) in assay buffer at 25℃ 

to trap HDAC8 and an increase in fluorescence intensity was measured. The dissociation rate 

constant was determined from a fit of a single exponential to the fluorescence signal (equation 2).  

To determine the association rate constant for HDAC8 binding flSAHA, flSAHA in assay buffer 

(50 nM final concentration) was mixed with an equal volume of metal-bound HDAC8 (final 

concentration of 1-6 μM) in assay buffer at 25 °C and a decrease in fluorescence measured. The 

apparent association rate constants were determined from a fit of a single/double exponential to 

the time-dependence of the fluorescence signal using KinTek software, and the reported errors 

are the asymptotic standard errors (equation 3 and 4). The dependence of the observed rate 

constants on the metal-bound HDAC8 concentration was analyzed using GraphPad Prism 4.0 

software.  

Equation 2 : Y= A * exp (-koff * X) + c 

Equation 3 : Y = A1 * exp (-kobs1 * X) + c 
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Equation 4 : Y = A1 * exp (-kobs1 * X) + A2 * exp (-kobs2 * X) + c 

 

HDAC8 Metal Ion Binding Affinity  

For Zn(II) affinity measurements, apo-HDAC8 (1–200 µM) was incubated in a metal ion 

and pH buffer containing 1 mM nitrilotriacetic acid (NTA), 10 mM MOPS, pH 7, and 0–0.5 mM 

Zntot (0–3.3 nM Znfree) at 30 °C for 30 min in an anaerobic chamber.
25

 Free and bound metal 

were separated by ultrafiltration, described above and the total metal concentration in each 

fraction was measured using Inductively coupled plasma mass spectrometry (ICP-MS). The 

concentration of Znfree in the metal buffers was calculated using the program MINEQL-

(Environmental Research software). The value of KD Zn was obtained by fitting a binding 

isotherm to the dependence of the bound metal ion on the concentration of Znfree (equation 1). 

The affinity of HDAC8 for Fe(II) was measured by assaying catalytic activity in the presence of 

varying Fe(II)free concentrations in an anaerobic glove box in 1 mM NTA, 5 mM MOPS, pH 7, 

serving as both a pH and metal buffer. The affinity was not dependent on NTA concentration 

(data not shown). The assays contained 0–950 μM total iron (Sigma, 99.99%, Fe(II)free = 0–2.6 

μM, as calculated by MINEQL-(Environmental Research Software)), and 1 μM HDAC8, in the 

presence of 3 mM KCl and 137 mM NaCl. The assay mixtures were incubated for 2 h on ice to 

pre-equilibrate in the anaerobic glove box. Assays were initiated by the addition of enzyme (200 

nM final), and processed as described above. The affinity is not dependent on the concentration 

of metal buffer. 

 



39 

 

Metal Ion Dissociation Rates Constants   

The first order rate constant for M(II) dissociation from HDAC8•M(II) complex was 

measured by the time-dependent loss of activity upon incubation with EDTA. HDAC8 

reconstituted with stoichiometric Zn(II) or Fe(II) (final concentration = 1 μM) was diluted into 

assay buffer containing 1 mM EDTA at 30 °C. At various times (0–60 min) an aliquot was 

diluted 10-fold into assay buffer containing 50 μM FdL substrate. The reactions were quenched 

by the addition of TSA followed by trypsin developer as described above. The initial rate for 

product formation was determined for each time point. The dissociation rate constant was 

determined from a single exponential fit to the decrease in the initial rates as a function of time 

(equation 2).  

 

Dependence of Metal Dissociation Rate constant  

For measurement of the dependence of Zn(II) koff on the concentration of MVC, 

reconstituted Zn(II)-HDAC8 was incubated with varying concentration of potassium and sodium 

([KCl] = 1-100mM, [NaCl] = 100-2000mM) on ice for 1 h in 20mM HEPES, pH 8.0 and then at 

25 °C for 4 min. The reaction was started by the addition of 1 mM EDTA. The metal dissociation 

rate constant was measured from the decrease in catalytic activity using the FdL assay and 

calculated from an equation 5 fit to the data, as described below.  

Equation 5 :  kobs =   
𝑘𝑜𝑓𝑓,1+ 

𝑘𝑜𝑓𝑓,2∗[𝑀𝑉𝐶]

𝐾1
 + 

𝑘𝑜𝑓𝑓,3∗[𝑀𝑉𝐶]2

𝐾1∗𝐾2

1+ 
[𝑀𝑉𝐶]

𝐾1
 + 

[𝑀𝑉𝐶]2

𝐾1∗𝐾2
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RESULTS 

 

Design of a fluorescein-SAHA probe for HDAC8  

Recently, the pan-HDAC inhibitor, SAHA, was derivatized with a coumarin fluorophore 

to form coumarin-suberoylanilide hydroxamic acid (c-SAHA)
24

.  The fluorescence of this 

molecule is quenched 50% upon binding to HDAC8 and this property has been used to measure 

the binding kinetics and dissociation rate constants for HDAC inhibitors. However, the small 

change in the fluorescence intensity limits the utility of this approach for measuring the affinity 

of HDAC ligands. Therefore, we developed a similar small molecule probe, flSAHA (Figure 2 

and 3), that employs a fluorescein derivative (6-aminofluorescein) to optimize its use as a 

fluorescence polarization probe and we have used this inhibitor to measure the metal binding 

affinity of HDAC8 for Zn(II) and Fe(II).  

Figure 2.2 Synthetic scheme of fluorescein-SAHA (flSAHA) and comparison of flSAHA 

derivatives. 
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Figure 2.3 Excitation and emission spectra of flSAHA. The spectra were taken in 10 mM 

HEPES (pH 8) containing 137 mM NaCl, 3mM KCl and 1 mM TCEP. [flSAHA] = 0.5 μM, (λex 

= 497 nm, λem = 515 nm). The ultraviolet–visible (UV–vis) spectra of flSAHA showed a 

prominent absorption band at 497 nm. It shows the fluorescence excitation and emission spectra 

of flSAHA (0.5 μM) in 10 mM HEPES buffer (pH 8) containing 137 mM NaCl, 3mM KCl and 1 

mM TCEP.  

 

 

Binding affinity of apo and metal-bound HDAC8 for fluorescein-SAHA  

To probe the affinity and selectivity of flSAHA for metal-bound HDAC8, we measured 

the fluorescence anisotropy of flSAHA upon titration with either apo or metal-bound HDAC8 

under equilibrium conditions in an assay buffer (137 mM NaCl and 3 mM KCl, Figure 4). Upon 

addition of metal-bound HDAC8, the fluorescence anisotropy increases with a hyperbolic 

dependence on the HDAC8 concentration, as predicted for binding of a small molecule to the 

larger protein (MW = 42.5 kDa). 

A single binding isotherm fit to these data allows calculation of an apparent dissociation 

constant of flSAHA (KD,
app

) for Zn-bound and Fe-bound HDAC8 of 0.3 ± 0.1 μM and 0.2 ± 0.08 

μM respectively. The affinity of HDAC8 for flSAHA is enhanced by a bound divalent metal ion 

as little or no change in fluorescence anisotropy is observed upon titration with BSA or apo- 

HDAC8 (KD,
app

 > 5 μM assuming that the anisotropy endpoint is the same as flSAHA bound to 
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Zn-HDAC8). These results demonstrate that flSAHA only binds to metal-bound HDAC8 under 

the assay conditions. Therefore, flSAHA can be used as a probe to visualize metal-bound 

HDAC8 and to interrogate metal selectivity and affinity.            

Figure 2.4 Measurement of the binding affinity (KD) of flSAHA with Zn
2+

/Fe
2+

 bound HDAC8 

using FP assay. Total florescence change was adjust. Binding of ZnHDAC8 (•) and FeHDAC8 (■) 

to flSAHA measured by FP in Buffer (20 mM HEPES, pH8, 137 mM NaCl, 3 mM KCl, and 

1mM TCEP), at 30˚C with 50 nM flSAHA. KD of ZnHDAC8 and FeHDAC8 to flSAHA are 0.4 

± 0.1 μM and 0.1 ± 0.1 μM, respectively. 

 

 

Binding kinetics of fluorescein-labeled SAHA with metal-bound HDAC8  

The association kinetics for formation of the metal-bound HDAC8-flSAHA complex 

were assessed by mixing limiting flSAHA with excess metal-bound HDAC8 complex in a 

stopped-flow fluorescence spectrometer and measuring the time-dependent changes in 

fluorescence intensity. flSAHA exhibited a decrease in fluorescence over time at each metal-

bound HDAC8 concentration tested, producing time courses that are best fit by a single 

exponential for Zn-HDAC8 and a double exponential for Fe-HDAC8 at 25 °C (Figure 5). 

Biphasic kinetic behavior in ligand binding can be explained by mechanisms that include a 
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conformational change of the macromolecule either before or after the bimolecular collision 

event (Scheme 1).
26

  The rate constant for both of the phases increases linearly with the 

concentration of Zn(II)-HDAC8 or Fe(II)-HDAC8, suggesting a bimolecular collision event with 

an apparent association rate constant for flSAHA (kobs,1 in Equation 3 and 4 for Zn and Fe) of 4 x 

10
5
 M

-1
sec

-1
 and 1 x 10

5
 M

-1
sec

-1
, respectively.  

Figure 2.5 Measurement of the association rate constant (kon) of flSAHA with Zn(II)/Fe(II) 

bound HDAC8 using stopped-flow kinetics. Dependence of kobs on the concentration of Zn-

HDAC8 and Fe-HDAC8. The linear least-squares fits to the dependence of kobs on the [M
2+

-

HDAC8] yield a slope of (4.1 ± 0.5 ) x 10
5
 M

-1
s

-1
 for Zn-HDAC8 and (1.0 ± 0.3 ) x 10

5
 M

-1
s

-1
 for 

Fe-HDAC8.  
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Scheme 1.  Minimal kinetic mechanism of metal binding to HDAC8 

 

The extrapolation of the apparent bimolecular rate constant to the y-axis for flSAHA 

binding to Zn(II)-HDAC8 is 0.7 sec
-1

, approximating the dissociation rate constant for flSAHA 

(Equation 3). For Fe(II)-bound HDAC8, the y-intercept is too small to determine (< 0.1 sec
-1

). 

Assuming a single binding step, a value for the dissociation constant, KD, for flSAHA complexed 

with Zn-HDAC8 can be estimated from the equilibration rate constants: KD = koff / kon = 0.6 s
-1

 / 

8 x 10
5
 M

-1
s

-1 
= 0.9 µM. This value is about 2-fold higher than the measured equilibrium value 

for KD (Table 1) suggesting that the assumption of a single biomolecular step is reasonable.  

The biphasic kinetics demonstrate that this assumption cannot be true for Fe-HDAC8.  

Table 2.1 Kinetic parameters of flSAHA for Zn(II) / Fe(II)-HDAC8 

 KD
flSAHA

 (μM) koff (sec
-1

) kon (M
-1

s
-1

) 

Zn(II)-HDAC8 0.4 ± 0.01 0.6 ± 0.06 4 x 10
5
 

Fe(II)-HDAC8 0.1 ± 0.01 0.04 ± 0.0005 1 x 10
5
 

 

Determination of rate constant for dissociation of flSAHA complexed with HDAC8  

To measure the dissociation rate constant for flSAHA, the HDAC8•flSAHA was mixed 

with excess SAHA to bind to HDAC8 to form the HDAC8•SAHA complex rapidly upon 

dissociation of flSAHA. The replacement of SAHA for flSAHA bound to HDAC8 leads to an 
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increase in the fluorescent intensity (λex = 495 nm), allowing measurement of the flSAHA 

dissociation rate constant. 

The time-dependent increase in fluorescence observed after mixing metal-bound 

HDAC8•flSAHA complex with 20 µM SAHA in the stopped flow fluorometer (Figure 6) is well-

described by a single exponential with flSAHA dissociation rate constants of 0.6 ± 0.06 and 0.04 

± 0.0005 s
-1

 for Zn-bound and Fe-bound HDAC8, respectively. These rate constants are 

unchanged when the concentration of SAHA is increased by two-fold (data not shown), 

demonstrating that trapping of HDAC8 by SAHA is rapid and therefore the measured rate 

constants reflect the dissociation rate constant of flSAHA from the HDAC8 complex. These 

values for koff are consistent with those calculated from the concentration dependence of the 

association kinetics. 

Figure 2.6 Measurement of the dissociation rate constant (koff) of flSAHA with Zn(II)/Fe(II) 

bound HDAC8 using a stopped-flow assay. The dissociation of flSAHA with the metal-bound 

HDAC8 was triggered on mixing of the HDAC8–flSAHA complex with an excessive 

concentration of SAHA. The concentrations of the individual species in the stopped-flow 

syringes were as follows: [M
2+

-HDAC8] = 2 μM + [flSAHA] = 0.1 μM (syringe 1) versus 

[SAHA] = 20 μM (syringe 2). The solid lines are the best fit of the experimental data according 

to the single exponential rate equation for a dissociation off-rate constant. a) koff of flSAHA with 

Zn-HDAC8. b) koff of flSAHA with Fe-HDAC8 
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Metal binding properties of HDAC8 

Zn(II) and Fe(II) are the most likely native cofactors for HDAC8 since they exist in high 

amounts in the cell. To determine the metal binding affinity of HDAC8, metal binding was 

coupled to the binding of flSAHA. The fluorescence anisotropy of flSAHA in the presence of 

HDAC8 was measured as a function of free metal concentration in nitrilotriacetate (NTA)- 

buffered solutions under equilibrium conditions. The fluorescence anisotropy increased with a 

hyperbolic dependence on the free metal concentration (Figure 7) while the total fluorescence 

intensity remained constant (data not shown). Dissociation constants (KD) were obtained from 

fitting a single binding isotherm to these data (KD,Zn = 6 ± 1 pM and KD,Fe = 0.2 ± 0.1 μM), 

demonstrating that HDAC8 has a significantly higher affinity for Zn(II) than Fe(II).  

Figure 2.7 Measurement of metal affinity of HDAC8 by the FdL activity assay and the FP assay. 

The activity and anisotropy of HDAC8 was assayed in the presence of increasing concentrations 

of free Zn(II) (circles) or Fe(II) (squares) using a 1 mM NTA metal buffer. a) The relative initial 

velocity (vobs/vmax) is plotted to simplify the graph. b) Anisotropy is plotted as a function of free 

metal concentration. The metal dissociation constant was determined from fitting a single 

binding isotherm (eq 3) to these data.  
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To validate the FP method for measuring metal affinity, the binding affinities of HDAC8 

for Zn(II) and Fe(II) were measured from the metal-dependent activation of catalytic activity 

(Figure 7, KD = 5 ± 1 pM for Zn(II) and KD = 0.2 ± 0.03 μM for Fe(II)). These values are also 

slightly lower than previously measured metal affinities for HDAC8.
7
 The higher Zn(II) affinity 

is consistent with the higher Lewis acidity of Zn(II).
27

 

The rate constants for dissociation of HDAC8-bound metal ions were also determined 

from the time-dependent decrease in activity upon dilution of the enzyme into the high affinity 

metal chelator, EDTA. The measured rate constants are not dependent on the concentration of 

EDTA (data not shown), indicating that the metal chelator is trapping the metals after 

dissociation from the enzyme. These measurements revealed that the rate constants for 

dissociation (koff) of Zn(II) and Fe(II) from HDAC8 are 0.0006 ± 0.0001 and 0.001 ± 0.0002 s
-1

, 

respectively (Figure 8). The similarity in the dissociation rate constants for Zn(II) and Fe(II) is 

unexpected given the significantly different affinity of HDAC8 for these metal ions.  

Figure 2.8 Measurement of the metal dissociation rate constant (koff) from the HDAC8•Me(II) 

complex using the FdL assay. The koff values for HDAC8-bound metal ions were determined 

from the time-dependent decrease in activity measured using the FdL assay after dilution of the 

enzyme into 1 mM EDTA in 20 mM HEPES, pH8, 3 mM KCl, 137 mM NaCl..  
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Therefore, the discrimination between the two metal ions originates mainly from the 

apparent association rate constants that are estimated assuming a one-step binding mechanism 

from the KD and koff values (kon = koff / KD) as 1 x 10
8
 M

-1
s

-1
 (Zn(II)) and 5 x 10

3
 M

-1
s

-1
 (Fe(II)). 

The calculated association rate constant for zinc is near the diffusion-controlled limit, consistent 

with a single-step binding mechanism. However, the association rate constant for Fe(II) is 

significantly lower than the diffusion-limit suggesting a two-step binding mechanism, perhaps 

formation of an initial encounter complex followed by a unimolecular conformational 

rearrangement. 

 

KCl and NaCl Modulate metal-binding property of HDAC8  

To evaluate whether monovalent cations bound to HDAC8 regulate the metal binding 

kinetics, the HDAC8 metal affinity and metal dissociation rate constants as a function of the 

concentration of either K
+
 or Na

+
 was measured. As the monovalent cation concentration 

increases, the observed value of koff for Me(II) decreases significantly until it reaches a plateau 

near 100 mM KCl or 1500 mM NaCl (Figure 9). Data were fit assuming that two non-

cooperative monovalent cations bind to and decrease the metal dissociation rate constant 

(equation 4). These data indicate that binding potassium or sodium to HDAC8 decreases the 

Me(II) dissociation rate constant by 30-fold and 15-fold, respectively. Previous research 

demonstrated that one bound MVC activates catalytic activity (K1/2 = 3.4 mM for K
+
), whereas 

the second, weaker- binding MVC (K1/2 = 26 mM for K
+
) decreases catalytic activity.

20
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Figure 2.9 Dependence of metal dissociation rate constant (koff) from the HDAC8•Me(II) 

complex on the concentration of monovalent cations. The rate constants were determined as 

described in the legend of Figure 8. It show the dependence of koff on the concentration of KCl 

(circle) and NaCl (triangle), respectively.  The solid line is a fit of equation 5 to the data. 

 

These data also suggest that monovalent cations increase the affinity of HDAC8 for Zn(II) and 

that the enzyme with two bound potassium ions has the highest affinity for Zn(II). Therefore, 

Zn(II) had the highest affinity for the MVC-occupied form of HDAC8 (EK2) with the affinity 

increasing at least up to 15-fold.  

 

DISCUSSION  

Here, we developed a new fluorescent probe that can be utilized in a FP assay to measure 

the kinetics and thermodynamics of metal binding to HDAC8. With this assay, the metal binding 

kinetics of HDAC8 have been determined for the first time. Notably, this FP assay can be used to 

measure the metal binding kinetics of HDAC8 variants and other HDAC isozymes.  This assay 

could also be useful as a high-throughput screen for HDAC inhibitors. 



50 

 

flSAHA binds to metal-bound HDAC8 in the submicromolar range, which is comparable 

to that of cSAHA. This is reasonable since both SAHA analogs contain the same hydroxamate 

moiety chelates the metal ion in active site and an aliphatic chain that can be accommodated in 

the hydrophobic tunnel of HDAC8.
18

 Additionally, flSAHA displays similar KD values for the 

Zn(II)- and Fe(II)-bound HDAC8 forms, as previously observed for SAHA.
8
 Apparent 

association rate constants of flSAHA to metal-bound HDAC8 were measured as 4 x 10
5
 M

-1
s

-1
 

and 1 x 10
5
 M

-1
s

-1
 for Zn(II)- and Fe(II)-HDAC8, respectively.  These association rate constants 

are lower than the diffusion-limit and biphasic binding kinetics are observed for Fe(II)-HDAC8 

suggesting a two-step binding mechanism.  One mechanism consistent with these data is the 

formation of an encounter complex followed by a slow conformational change.  Dissociation 

rate constants (koff) of flSAHA from metal-bound HDAC8 were also determined using stopped-

flow spectrometry to be 0.7 s
-1

 and 0.04 s
-1

 for Zn(II)- and Fe(II)-HDAC8, respectively.  

By using flSAHA, we have measured the metal binding thermodynamics and kinetics of 

HDAC8. KD measurements of dissociation of metal from the HDAC8•Me(II) complex using the 

flSAHA FP assay were comparable to values determined from metal-dependent activation of 

catalytic activity.
7
 The binding affinity of Zn(II) to HDAC8 is in the picomolar range while the 

Fe(II) affinity is in the micromolar range, a difference of 10
5
-fold comparable to previous 

measurements.
7
 Unexpectedly, the dissociation rate constants (koff) of both metals (0.001 s

-1
) are 

similar, despite the difference in the binding affinities. This result indicates that metal selectivity 

primarily occurs in the apparent association rate constant, estimated as 10
8
 and 10

3
 M

-1
s

-1
 for 

Zn(II) and Fe(II), respectively (Table 2). Importantly, these data show that apparent association 

rate constant for Fe(II) is much lower than that of Zn(II). The Zn(II) association rate step is likely 

diffusion-controlled, while the Fe(II) association is likely a two-step binding mechanism 
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(Scheme 1).  

Table 2.2 Kinetic parameters of metal for HDAC8 

 KD
metal

 koff (sec
-1

) kon (M
-1

s
-1

) 

Zn(II)-HDAC8 5 ± 1 pM 0.001 ± 0.0001 1 x 10
8
 

Fe(II)-HDAC8 0.2 ± 0.03 μM 0.001 ± 0.0002 5 x 10
3
 

 

Previously, metal association kinetics of human carbonic anhydrase II (CAII) were 

determined with association rate constants for Zn(II) and Cu(II) of 10
4
–10

5
 and 10

9
 M

-1
s

-1
, 

respectively.
28

 Analysis of the zinc binding kinetics of CAII mutants suggests a two-step binding 

mechanism.  In the first step zinc binds to CAII at near diffusion-controlled rates to form an 

initial complex with two protein ligands followed by a second slower step that includes exchange 

of inner-sphere water molecules with the third protein ligand.
28

  This may be a paradigm for 

two-step metal binding to proteins, including HDAC8.  Metal binding kinetics similar to 

HDAC8 have been measured for another deacetylase, LpxC, where the association rate constants 

for Zn(II) and Fe(II) are 10
6 

and 10
4
 M

-1
s

-1
, respectively, also suggesting a two-step binding 

mechanism for Fe(II) association.
11

  In this case, the physiological metal in E. coli is Fe(II) 

under most conditions, although LpxC binds Zn(II) in vivo when Fe(II) concentrations are very 

low.  In LpxC and CAII, the physiological metal ion (Fe(II) and Zn(II), respectively) has a low 

association rate constant, leading to a very low dissociation rate constant.  This may be 

important for metal selectivity in vivo, decreasing kinetic traps for the higher affinity, but 

incorrect metal ion.  Furthermore, the similarities between the in vitro metal binding kinetics of 

LpxC and HDAC8 lead to the hypothesis that HDAC8 might behave similarly to LpxC in cells 
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by being activated by Fe(II) undermost conditions but switches to the Zn(II) bound enzyme at 

high cellular zinc..
11

 

Two bound monovalent cations are observed in the crystal structures of HDAC8.
18,19

 

Subsequently, it was determined that HDAC8 is activated by low concentrations of KCl and 

NaCl, and inhibited at higher concentrations of these MVCs.  Inhibition is proposed to occur by 

binding to MVC site1 (nearest the metal site) which depresses the pKa of His-142 near the active 

site.
20

 In this work, we investigated the regulation of the metal binding kinetics by monovalent 

cations by measuring the metal dissociation rate constant as a function of MVC concentration. 

This is consistent with previous finding that the occupancy of MVC2 site (distal from the metal 

site) stabilizes an active HDAC8 

HDAC8 is activated by a number of divalent metal ions, including zinc, iron(II), 

nickel(II), and cobalt(II) in vitro
8
. The use of a Fe(II) as the physiological catalytic metal ion has 

been previously demonstrated for multiple metallohydrolases, such as peptide deformylase, 

methionyl aminopeptidase, LuxS, γ-carbonic anhydrase, cytosine deaminase, and atrazine 

chlorohydrolase.
9,10,29,30

,
31

,
32

 These enzymes were originally misidentified as a Zn(II)-

metalloenzyme due to oxidation of the Fe(II) to Fe(III), dissociation of this metal and re-binding 

of Zn(II) upon purification under aerobic conditions.  Additionally, measurement of the native 

activity under anaerobic condition is difficult. Previous data show that the HDAC8 is likely 

another non-heme Fe(II) hydrolase that was previously identified as a zinc metalloenzyme.
8
 

HDAC8 may use Fe(II) as a metal cofactor under many physiological conditions, but the Fe(II) 

metal ion may exchange with zinc as a function of cellular condition, such as oxidative stress, 

increased cellular zinc concentration, or activity of a metallochaperones..  
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1The contents of this chapter are adapted and reproduced from a manuscript by Byungchul Kim and 

Carol A .Fierke.  

CHAPTER 3 

 

SECOND SHELL RESIDUES MODULATE THE METAL SELECTIVITY 

AND REACTIVITY OF HISTONE DEACETYLASE 8
1
 

 

INTRODUCTION  

Histone deacetylases (HDACs) catalyze the hydrolysis of the ε-N-acetyl group from 

lysine residues that were previously acetylated by histone acetyltransferases. To date, more than 

4500 acetylated lysine residues have been identified in human proteins and this posttranslational 

modification is proposed to regulate multiple cellular processes, including DNA replication, 

DNA damage and repair, or transcription factors.
1
 Among 18 human HDACs, HDAC8 is a 

member of the class I metal-dependent histone deacetylases and has been shown by 

immunochemistry to localize mainly with the cytoskeleton in smooth muscle cells.
2
  HDAC8 

was also found to be located in nucleus of NIH3T327 and HEK293 cells.
3,4

 A recent study has 

also shown that a loss of function mutation in HDAC8 leads to increased SMC3 acetylation 

which results in Cornelia de Lange syndrome (CdLS), a developmental disorder.
5
 

HDAC8 was originally characterized as a Zn
2+

-dependent metalloenzymes.
6
 However, 

subsequent studies have shown that the catalytic efficiency (kcat/KM) of HDAC8 with peptides is 

enhanced with Co
2+

 or Fe
2+

 as the active site metal ion compared with Zn
2+

.  HDAC8 has 

significantly higher affinity for Zn
2+

 (KD = 5 ± 1 pM) than Fe
2+

 (KD = 0.2 ± 0.03 μM) with 

affinities that are comparable to estimates of the readily exchangeable metal concentrations in 

cells.
7
 Previous measurements in eukaryotic cells indicate that the concentration of readily 
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exchangeable Zn ([Zn
2+

]free ~10-400 pM)
8
 is also orders of magnitude lower than the 

concentration of readily exchangeable Fe, where [Fe
2+

]free ~0.2-6 μM.
4,9

 These data suggest that 

either Zn
2+

 or Fe
2+

 could be the native metal cofactor in cells
10

 leading to a number of 

biologically relevant implications. First, the activity and/or substrate selectivity of HDAC8 could 

be regulated by a metal switching mechanism in response to changes in the readily exchangeable 

concentrations of Zn
2+

 and Fe
2+

 depending on cellular conditions, such as oxidative stress.
11

 

Second, the cellular metal cofactor could affect inhibitory affinity, as previously observed for 

other enzymes, such as methionine aminopeptidase.
12

 Therefore, HDAC inhibitors should be 

screened using the native metal cofactor. Identification of the determinants of metal selectivity in 

HDAC8 in vitro could provide insight into metal specificity in vivo.  

For cells grown with iron supplementation, the HDAC8 activity is ~4-fold larger when 

the cells are lysed and assayed under anaerobic conditions compared to that under aerobic 

conditions.
10

 This increase in activity is consistent with the ratio of activities of Fe
2+

- and Zn
2+

-

substituted HDAC8s. This evidence suggests that Fe
2+

-HDAC is the major species when 

recombinantly expressed in E. coli.  

The metal selectivity of proteins is governed both by direct interactions with side chains 

that coordinate the metal ion and indirectly by the protein structure surrounding the metal 

binding site.
13

 Carbonic anhydrase II (CAII) is a prototypical Zn(II)-metalloenzyme, where the 

role of conserved structural features of metal binding sites in determining metal ion affinity and 

specificity has been probed.
14–21

 In CAII three conserved features regulate the properties of the 

metal ion binding site (Figure 1). First, the first direct ligands (H94, H96, and H119) and a 

hydroxide ion coordinate to zinc in a tetrahedral array. Second, indirect second ligands (Q92, 

E117, the backbone carbonyl of N244 and T199) form hydrogen bonds to the zinc-coordinated 
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histidine and hydroxide moieties. These second-shell interactions enhance the basicity of the 

direct histidine ligands and allow the positioning of the direct ligands for optimal metal  

Figure 3.1 Comparison of the active site of CAII and HDAC8. A) Structure of the active site of 

wild-type carbonic anhydrase II (CAII) taken from the crystal structure (PDB ID: 3KS3). Zinc 

coordinated to three imidazole ligands, H94, H96, and H119 in the first shell. H94 and H119 

donate a hydrogen bond to the side chains of Q92, E117, respectively. H96 donates a hydrogen 

bond to the backbone carbonyl oxygen of N244. Direct metal coordination interactions are 

indicated by black dashed lines. F93, F95, and W97 that form an aromatic cluster underneath the 

zinc site are also depicted. B) Structure of the active site of wild-type HDAC8 taken from the 

crystal structure (PDB ID: 2V5W). D178, H180, and D267 are coordinating to the metal. 

Hydrophobic shell residues F207, F208, and M274 are located on the near H180 at the active site. 

The zinc ion appears as a large sphere.  

 

 
 

coordination.
14,22,15

 Finally, hydrophobic residues (F93, F95, and W97) anchor the β-strand 

containing H94 and H96 in the hydrophobic core of the enzyme. This hydrophobic shell is 

proposed to enhance protein-metal affinity by both positioning the ligands and establishing a 

metal site environment with a lower dielectric constant
23

 that increases electrostatic interactions.  

X-ray crystal structures of zinc-bound HDAC8 show that the divalent metal ion is 

pentacoordinated to carboxylate oxygens of D178 and D267, and to the Nδ1 atom of H180 as 

direct ligands in addition to the hydroxamic acid group of the inhibitor.
24,25

  

Similar to CAII, the hydrophobic side chains (M274, F207, and F208) are embedded 
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near the H180 metal ligand. Two of these hydrophobic residues (F207 and F208) are highly 

conserved across both class I human HDACs and HDAC8 homologues from different organisms 

(Figure 2). However, M274 is a leucine in other class I HDACs and a histidine in Schistosoma 

mansoni HDAC8 (smHDAC8).
26

 

Figure 3.2 Multiple sequence alignment of HDAC8 from different organisms showing conserved 

first shell ligands and hydrophobic residues of the second shell. Protein sequences of HDAC8 

were identified from PSI-BLAST search and aligned by Clustal Omega. Red color-shading 

indication of sequence conservation were generated by ESPript 3. Secondary structure is 

annotated based on human HDAC8 structure using ESPript 3. Sequences in black boxes 

correspond to the first shell elements. Putative second shell ligands are marked by yellow boxes. 

 
 

Additionally, the crystal structure visualizes hydrophobic interactions between F207 and F208 

and the HDAC inhibitor suberanilohydroxamic acid (SAHA).
27,28

 However, in contrast to CAII 

and other zinc metalloenzymes
29,30

 hydrogen bonding interactions with the first shell H180 are 

absent, replaced by hydrophobic interactions (Figure 3). This structural alteration may be a 

signature of metalloenzymes that may be activated by multiple metal species in vivo (i.e. Zn
2+

 or 

Fe
2+

), allowing subtle alterations in the active site structure to accommodate different metal ions. 

The role of the hydrophobic shell in HDAC8 was investigated by measuring the effect of mutants 

in F207, F208 and M274 on the catalytic activity, metal binding affinity and metal equilibration 
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kinetics. These data demonstrated that catalytic reactivity (kcat/KM) and metal selectivity, 

primarily KD, are governed by the second shell environment, which is unique structural feature 

when compared to CAII. This could be a physiologically relevant way for metalloproteins to 

recognize and switch Zn/Fe based on cellular conditions. 

Figure 3.3 Crystal structure of Zn(II)-HDAC8 active site with bound acetyl-lysine methyl 

coumarin. Figures derived from PDB file 2V5W using Pymol. A close-up of Zn
2+

-HDAC8 active 

site with bound acetyl-lysing methyl coumarin using surface representation of first and second 

shell ligands. Second shell residues are depicted as follows: F207 as light blue, F208 as purple, 

M274 as blue. First shell residues are yellow. 
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MATERIALS AND METHODS 

 

General 

All experiments were performed in metal-free plastic ware using reagents without 

extraneous metal ions, as verified by Inductively Coupled Plasma Mass Spectrometry (Ted 

Huston, University of Michigan). Reagents were of the highest quality available from Sigma-

Aldrich, unless otherwise noted. For Fe
2+

 experiments, a freshly made 10 mM FeCl2 stock was 

prepared in 50 mM ascorbic acid and diluted to 100 μM with 1X assay buffer (20mM HEPES, 

pH8, 3mM KCl, 137mM NaCl) prior to incubation with apo-HDAC8. Similarly, a 10 mM ZnSO4 

solution was prepared in 20 mM HEPES pH 8, 1 mM triscarboxyethylphosphine (TCEP) and 

diluted to 100 μM with 1X assay buffer prior to incubation with apo-HDAC8.  

 

Preparation of HDAC8 variants using site-directed mutagenesis 

All second shell ligand mutations were introduced into the pHD2 plasmid using 

QuikChange site-directed mutagenesis methodology (Stratagene). The M274A, M274Q, 

M274E,F207A, and F208A HDAC8 variant was produced by replacing the wild-type Met-274 

codon (ATG) with the codon for Ala (GCG), Gln (CAG), and Glu (GAG) and Phe-207 codon 

(TTT) with the codon for Ala (GCT) and Phe-208 codon (TTC) with the codon Ala (GCC) using 

oligonucleotide-directed mutagenesis. The pET-20b-derived HDAC8 E. coli expression plasmid, 

pHD2-His, was modified to add a TEV NIa protease cleavage site with the linker recommended 

by Invitrogen (ENLYFQG-DYDIPTT) upstream of the C-terminal His6 tag.
10

 

Following confirmation of the desired mutation by sequencing, each mutant was 

expressed in E.coli BL21(DE3) and purified similar to WT enzyme.
10

 After transforming the 
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plasmid into the BL21(DE3) strain of E. coli, the cells were grown in 2X-YT media 

supplemented at 37 °C until OD600 = 0.6, incubated at 25 °C for 30 min, and then 0.5 mM 

isopropyl β-D-1-thiogalactopyranoside was added and the cells were incubated for 12–15 h. The 

cells were pelleted and resuspended in buffer A (20 mM Hepes, 150 mM NaCl, 0.5 mM 

imidazole, pH 8.0), lysed using a microfluidizer and the resulting extract was clarified by 

centrifugation. The cell extract was loaded onto a metal affinity (IMAC) column charged with 

nickel chloride, washed with buffer A with 25 mM imidazole and then the protein was eluted 

with buffer A containing 250 mM imidazole. The His6-TEV tag was removed by incubation with 

recombinant TEV protease and then dialyzed overnight in buffer A containing 1 mM tris(2-

carboxyethyl) phosphine (TCEP). The IMAC column was run a second time and HDAC8 was 

collected in the flow-through. Metal-free HDAC8 was prepared by dialyzing the purified enzyme 

twice overnight against 20 mM 4-morpholinepropanesulfonic acid (MOPS), 3 mM KCl, 137 mM 

NaCl, and 1 mM EDTA, pH 8.0, followed by dialysis against 20 mM MOPS, 3 mM KCl, 137 

mM NaCl, pH 8.0. The enzyme was then concentrated using an Amicon Ultra Microcon 

centrifugal filtration device (10,000 MWCO) and the buffer was exchanged using a PD-10 gel 

filtration column (GE Healthcare) equilibrated with 20 mM MOPS, pH 8.0 (pretreated with 

metal chelating resin, Chelex 100). 

 

Measurement of catalytic activity (kcat / KM) 

The catalytic reactivity of wild-type and mutant HDAC8 reconstituted with Zn
2+ 

or Fe
2+

 

was measured using a commercially-available fluorescent assay (BIOMOL) with the Fluor de 

Lys (FdL) HDAC8 substrate (RHK(ac)K(ac)-methyl-coumarin). All assay buffers were pre-

treated with Chelex resin (Bio-Rad) to remove trace divalent metal ions. Metal-free HDAC8 
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variants were reconstituted with Zn
2+

 or Fe
2+

 by incubation with a stoichiometric concentration 

of metal in assay buffer (20mM HEPES pH 8.0, 137 mM NaCl, 3 mM KCl, and 1mM TCEP). 

The reaction was quenched by the addition of stoichiometric amounts of trichostatin A (TSA), a 

potent inhibitor of HDAC8. Fluorescence intensity was monitored at λex = 340 and λem = 450 for 

the deacetylated and cleaved product, and at λex = 340 and λem = 380 for the starting acetylated 

substrate. The ratio of product fluorescence divided by substrate fluorescence was observed and 

linearly increases with product concentration up to 30% product. The amount of product formed 

was determined from comparison to the fluorescence rations of a standard curve made up of 

known concentrations of products and substrates. The linear initial rates catalyzed by 0.5 μM 

wtHDAC8 or 10 μM HDAC8 mutants with varying concentrations of peptide substrate (50 – 

1500 μM) in assay buffer at 25 °C were measured. The steady-state parameters kcat, KM and 

kcat/KM were obtained by fitting the Michaelis-Menten equation to the dependence of the initial 

velocities on the substrate concentration using the curve-fitting program Prism. 

 

Measurement of metal (Zn
2+

 / Fe
2+

) dissociation rate constant (koff) 

The first order rate constant for metal ion dissociation from HDAC8 was measured by 

the time-dependent loss of activity upon incubation with EDTA. WT and HDAC8 variants (2-10 

µM) reconstituted with stoichiometric Zn
2+

 or Fe
2+

 were diluted into assay buffer containing 1 

mM EDTA. At various times (0 – 60 min) an aliquot was diluted 10-fold into assay buffer. The 

reactions were quenched by the addition of TSA and analyzed as described above. The observed 

rates are not dependent on the concentration of EDTA (0.5-5 mM).  

Equation 2 : Y= A * exp (-koff * X) + c 
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Measurement of metal (Zn
2+

 / Fe
2+

) dissociation constant (KD) 

The affinity of HDAC8 for Zn
2+

 or Fe
2+

 was measured in an anaerobic glove box (H2/N2 

mix) from an increase in activity measured with the FdL assay in the presence of increasing 

concentrations of free Zn
2+

 or Fe
2+

 maintained using a metal ion buffer. The standard assay 

buffer
10

 was replaced with 1 mM nitrilotriacetic acid (NTA), 137 mM NaCl, 3 mM KCl, 10 mM 

MOPS, pH 7 buffer
31

 with [Fe
2+

]total = 0-950 μM ([Fe
2+

]free 0-2.6 μM) or [Zn
2+

]total = 0-200 μM 

([Zn
2+

]free 0-532 pM) and 0.5 μM HDAC8. The concentration of bound versus free metal ion was 

calculated using the program MINEQL+ (Environmental Research Software). The assay 

mixtures, containing all components except substrate, were incubated for 2 hours on ice in the 

anaerobic glove box. Assays were incubated at 30°C for 30 min, initiated by the addition of 

enzyme and the products analyzed as described above. Activity was dependent on the 

concentration of [Me
2+

]free and not the total concentration of the metal ion and buffer as 

determined by varying the concentration of the buffer. The metal dissociation constant (KMe) was 

determined from fitting a binding isotherm (Equation 1) to the [Me
2+

]free dependence of activity 

using the program Prism where A is the activity at saturating metal ion.  

Equation 1 : Y= A* X / (KD + X) + c 

 

RESULTS 

 

Second Shell HDAC8 mutants  

Crystal structures of HDAC8 show three hydrophobic residues, M274, F207, and F208, 

flanking the zinc ligand H180. In crystal structure, there is no water molecule placed within 

hydrogen-bonding distance of H180 and the S of M274 is positioned to be within hydrogen 
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bonding distance to N of H180.
25

 The side chains surround the N of H180 (within 4 Å ), 

replacing the hydrogen bonding interaction observed in a number of other metalloenzymes 

(Figure 1)
14–16

. We hypothesize that these side chains contribute to the structure and environment 

important for modulating the properties of the catalytic metal ion site. To delineate the role of 

these residues in determining catalytic activity and metal selectivity of HDAC8, site-directed 

mutagenesis was used to prepare mutations where the side chain was truncated to Ala. 

Additionally, to further explore the role of hydrophobicity and hydrogen bonding in controlling 

the properties of HDAC8, the M274 side chain was also replaced with Asn and Gln. These 

hydrophobic residues are highly conserved across HDAC8s from different species.  

These residues were mutated by site-directed mutagenesis to determine their role in 

contributing to metal ion selectivity and affinity within the HDAC8 active site. To delineate the 

effect of the second shell substitution on the reactivity of zinc/iron-bound mutants, we measured 

catalytic reactivity of metal-reconstituted HDAC8 WT and second shell ligand mutants using 

Fluor-de-lys (FdL) acetyl-peptide as a substrate. This assay utilized the commercially available 

peptide substrates containing a methylcoumarin fluorophore conjugated to the C-terminal side of 

the p53 transcription factor (RHKacKac-methylcourmarin).  

 

Steady-State Turnover (kcat/KM) of Mutants 

To define the role of these residues in determining the reactivity of HDAC8, we 

measured the catalytic activity of HDAC8 WT and mutants, reconstituted with either Fe
2+

 or 

Zn
2+

, using the Fluor-de-lys (FdL) assay with the commercially available acetyl-peptide substrate 

containing a methylcoumarin fluorophore conjugated to the C-terminal side of the p53 

transcription factor (RHKacKac-methylcoumarin). The steady-state kinetic parameters were 
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determined from the substrate dependence of the initial rate for product formation from a fit of 

the Michaelis–Menten equation to the data or, in cases where little or no curvature was observed, 

the value of kcat/KM was determined from a linear fit to the data (Figure 4). 

Truncating the side chains of each hydrophobic residue by substitution with Ala 

significantly diminishes the catalytic activity of Zn
2+

-HDAC8; the value of kcat/KM decreases 25- 

and 700-fold for M274A and F207A, respectively (Figure 4, Table 1). The F208A mutation has 

an even larger effect; no detectable catalytic activity was observed for Zn
2+

-F208A even at 1.5 

mM substrate concentration, suggesting a decrease in activity of > 130-fold. These data indicate  

Figure 3.4 Deacetylation activity of HDAC8 mutants of second shell residues important for 

metal ion binding specificity in HDAC8 by measuring the reactivity of variants with Zn
2+

 or Fe
2+

 

by using FdL peptide. Apo-HDAC8 mutant (20 μM) was incubated with divalent metal ions 

(Fe
2+

 and Zn
2+

) at 4 °C for 1 h and then assayed at 5 μM HDAC8 mutant with 0 – 1500 μM Fluor 

de Lys HDAC8 substrate at 25 °C in 20 mM HEPES, pH 8.0, 137 mM NaCl and 3 mM KCl. The 

initial rates for deacetylation were determined from time-dependent changes in fluorescence. The 

resulting rates fit to the Michaelis-Menten equation to obtain kcat and KM, which are listed in 

Table 1.  

 

 
 

that the hydrophobic shell surrounding H180 is essential for the catalytic efficiency of HDAC8 
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by enhancing substrate recognition or increasing the reactivity of the catalytic metal site either 

directly or indirectly through stabilization of the overall protein structure. As previously 

observed
10

, the value of kcat/KM for deacetylation catalyzed by Fe
2+

-HDAC8 is increased 3-fold 

compared to Zn
2+

-HDAC8, at least partially due to a decrease in the value of KM, likely 

reflecting substrate affinity for these weak-binding substrates
10

. Similarly, all of the Ala mutants 

have higher catalytic activity (2- to 100-fold) using Fe
2+

 as the catalytic metal ion compared to 

Zn
2+

.  

 

Table 3.1 Catalytic reactivity of HDAC8 variants with Zn
2+

 / Fe
2+

  

 
Zn kcat/KM  

(M
-1

s
-1

) 
a 

Fe kcat/KM  

(M
-1

s
-1

) 
b 

Fe kcat/KM 

/ Zn kcat/KM 
d
 

Fe KM 

(uM) 

Fe kcat 

(min-1) 

WT 800
c
 2300

c
 3 210 

e
 30 

e
 

M274A 30 67 2 n.d.
g
 n.d.

g
 

M274Q 9 193 21 560 
e
 6.5 

e
 

M274E 9 15 2 n.d.
g
 n.d.

g
 

F207A 6 580 97 250 
e
 8.8 

e
 

F208A low 
f
 26 NA 220 

e
 0.3 

e
 

 

a. Enzyme reconstituted 1:1 with Zn
2+

 was assayed at pH 8 at 30°C 

b. Enzyme reconstituted 1:1 with Fe
2+

 was assayed at pH 8 at 30°C 

c. Obtained from reference
10

 

d. Value of kcat/KM for Fe
2+

-substituted relative to Zn
2+

-HDAC8 

e. Steady-state kinetic parameters calculated from a fit of the Michaelis-Menten equation to the 

dependence of the initial rate on the substrate concentration  

f. Initial velocity was not detectible 

g. Value was not determined 
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The F207A variant is particularly interesting because it retains a high degree of activity 

(4-fold decrease from WT) for Fe
2+

-bound form despite the 130-fold decrease for the Zn
2+

-bound 

enzyme. The KM values of Fe
2+

-bound F207A and F208A are comparable to that of WT HDAC 

while the kcat values decrease 3- and 100-fold. Assuming that the KM reflects substrate affinity, 

these data suggest that alterations at 207 and 208 affect the reactivity of the metal site rather than 

substrate affinity. In contrast, the M274A mutation increases the KM value, suggesting that this 

mutation alters substrate affinity.  These data clearly demonstrate that the hydrophobic residues 

surrounding the metal site modulate the activity of HDAC8. Further, these side chains are 

generally more important for enhancing the reactivity of the Zn
2+

-bound enzyme than the Fe
2+

-

bound enzyme. 

To further explore the importance of hydrophobicity on catalytic activity, M274 was 

substituted with Gln, introducing additional hydrogen-bonding ability, or Glu, introducing a 

negative charge. For the Zn
2+

-bound enzyme, both the Gln and Glu mutants decrease the activity 

by 90-fold compared to WT, to a value 3-fold lower than the Ala substitution at this position. 

However, these isosteric substitutions differentially alter the activity of the Fe
2+

-enzymes; Fe
2+

-

M274Q HDAC8 activity decreased 11-fold, a smaller effect than the Ala substitution, while the 

Fe
2+

-M274E HDAC8 activity lessened by 150-fold. This suggests that the activity of Fe
2+

-

HDAC8 is particularly sensitive to the structure or electrostatic environment in the second sphere 

of the metal site. Furthermore, the M274Q mutation in the Fe
2+

-bound enzyme both increases the 

value of KM by ~2-fold and decreases the value of kcat by ~5-fold suggesting effects on both 

substrate affinity and metal site reactivity. These data pinpoint interactions with M274 as 

modulating the relative reactivity of the Zn
2+

 and Fe
2+

-substituted enzymes.  
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Measurement of dissociation constant (KD) 

Given that mutations in the hydrophobic residues near the metal site differentially alter 

the activity of Zn
2+

- and Fe
2+

-HDAC8, we tested the importance of these side chains in 

determining metal selectivity by measured the dissociation constant (KD) for both Zn
2+

 and Fe
2+

 

from metal-bound HDAC8. We assayed metal affinity from the metal-dependence of either 

catalytic activity or binding of fluorescein-labeled SAHA (flSAHA). For these experiments apo-

HDAC8 was equilibrated with varying concentrations of total metal ions in nitrilotriacetate 

(NTA)-buffered solutions to maintain a readily exchangeable zinc/iron pool with a constant free 

metal ion concentration, calculated using the MINEQL program.
32

 The fraction of metal-bound 

HDAC8 was determined from the catalytic activity measured using the FdL assay or by the 

binding of flSAHA, which has high affinity only for metal-HDAC8, monitored by fluorescence 

anisotropy
7
. Both the catalytic activity and fluorescence anisotropy showed a hyperbolic 

dependence on the free metal concentration (Figure 5) which is well-described by a single 

binding isotherm (Eq. 1). Both methods yield identical results for the affinity of WT-HDAC8 for 

metal binding (KD
Zn

: 5 pM vs. KD
Fe

: 0.2 μM); this is reasonable since the concentration of 

flSAHA used is below the KD for this inhibitor.  Consistent with previous results
7
, WT HDAC8 

binds Zn
2+

 nearly 10
5
-fold more tightly than Fe

2+
.  

Mutations in hydrophobic residues near the metal site alter both metal affinity and 

selectivity.  Replacement of the Met ligand at position 274 with Ala, Gln, or Glu significantly 

decreased the zinc affinity relative to WT (by 10-, 110-, and 12-fold, respectively). However, 

these Met mutants had smaller and differential effects on the Fe
2+

 binding affinity; M274Q and 

M274E decreased affinity by 3-, and 8-fold, respectively, while M274A enhanced the affinity by 

3-fold. Therefore, alterations in this side chain increased the selectivity for Fe
2+

, alter the metal 
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selectivity ratio (KD
Fe

/KD
Zn

) from the WT value of 60,000 to 1,300 for M274Q. 

 

Figure 3.5 Measurement of a Zn
2+

 / Fe
2+

 dissociation constant (KD) for mutants of second shell 

residues of HDAC8 by activity assay and FdL assay. ApoHDAC8 was equilibrated with NTA-

buffered metal solutions. Bound zinc (left) was analyzed by enhancement of HDAC8 activity 

and FP assay (KD
Zn

); bound iron (right) was analyzed by HDAC8 activity and FP assay (KD
Fe

), as 

described in Materials and Methods. KD values are listed in Table 2. 

 
 

The Gln substitution at M274Q leads to both the highest selectivity for Fe
2+

 affinity and 

the highest ratio of catalytic activity for the Fe
2+

- and Zn
2+

-substituted enzymes. In contrast, 

substitution of Ala for Phe at position 207 decreased the affinity of HDAC8 for Fe
2+

 (3-fold) 

more than for Zn
2+

 (9-fold) compared to that of wild-type HDAC8. This leads to a HDAC8 

mutant with higher selectivity for Zn (KD
Fe

/KD
Zn

 =193,000).  
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Table 3.2 Metal dissociation constants and dissociation rate constants of HDAC8 WT and 

second shell ligand variants 

Enzyme
a
 

Zn KD  

(pM)
b
 

Fe KD  

(μM)
b
 

Zn KD /  

Fe KD  

(μM)
c
 

Zn koff  

(min
-1

)
d
 

Fe koff  

(min
-1

)
d
 

WT 5 ± 1 0.3 ± 0.08 1.7 E-05 0.04 ± 0.004 0.07 ± 0.01 

M274A 50 ± 30 0.1 ± 0.07  4.2 E-04 0.04 ± 0.02 0.03 ± 0.01 

M274Q 620 ± 200 0.8 ± 0.3 8.2 E-04 0.06 ± 0.008 0.06 ± 0.01 

M274E 60 ± 30  1.6 ± 1.2   3.6 E-05 0.03 ± 0.02 0.02 ± 0.006 

F207A 14 ± 5 2.7 ± 2.3 5.2 E-06 0.26 ± 0.06 2.6 ± 0.1 

F208A NA 0.2 ± 0.1 - - - 

 

a. Metal substituted HDAC8 WT and variants was reconstituted with stoichiometric metal ion 

(1:1) as described in the “Materials and Methods for measuring koff values 

b. Metal binding affinity to HDAC8 was measured at 30 °C (20 mM HEPES, pH 7.5, 3 mM KCl, 

137 mM NaCl, 1 mM NTA) using fluorescence anisotropy or FdL activity assay as described 

in the “Materials and Methods”. The KD values were obtained by fitting Eq.1 to the data. 

c. Value of KD for Zn
2+

 relative to Fe
2+

 in HDAC8 

d. Metal-reconstituted HDAC8 variants were incubated 1 mM EDTA for various times and then 

the activity was determined by dilution into an assay to measure metal dissociation rate 

constant (koff), as described in Materials and Methods. 

 

Unexpectedly, for the F208A mutant, no zinc-dependent binding of flSAHA was 

observed even at nM zinc concentrations (Figure 5), suggesting that the zinc affinity of this 

mutant is decreased >1000-fold compared to WT HDAC8. This result is consistent with the 

absence of detectable catalytic activity even at high substrate concentrations for Zn
2+

-F208A 

HDAC8. However, the F208A enzyme retains Fe
2+

-dependent flSAHA binding (Figure 5), with a 

KD
Fe

 value that is comparable to wild-type. The retention of high Fe
2+

 affinity demonstrates that 
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the loss of zinc affinity is not caused by global unfolding of this mutant. Surprisingly, truncation 

of the F208 side chain drastically lowers the binding affinity for Zn
2+

 while having no effect on 

the Fe
2+

 affinity, leading to a HDAC8 mutant with increased selectivity for Fe (KD
Fe

/KD
Zn

 > 150). 

In summary, the hydrophobic second shell residues play a significant role in modulating the 

metal affinity and Zn/Fe selectivity of HDAC8. 

 

Measurement of metal dissociation rate constant (koff) 

To further examine the importance of the hydrophobic side chains in the second shell 

(residue F207, F208, and M274) in determining the properties of the HDAC8 metal site, we 

measured the rate constant (koff) for dissociation of Zn
2+

 or Fe
2+

 bound to the HDAC8 variants. 

The metal dissociation rate constants (koff) were determined from the time-dependent decrease of 

enzyme activity after dilution into 1 mM EDTA to trap the dissociated free metal. The measured 

values of koff are not dependent on the EDTA concentration (1 – 5 mM) demonstrating that this 

chelator does not catalyze metal dissociation but functions by lowering the free metal ion 

concentration (data not shown).  

The rate constants for dissociation (koff) of Zn
2+

 or Fe
2+

 from WT HDAC8 at 25℃, pH 8 

are 0.04 ± 0.004 min
-1

 and 0.07 ± 0.01 min
-1

, respectively (Figure 6). The comparable 

dissociation rate constant for Zn
2+

 and Fe
2+

 is unexpected given the large differential in the 

affinity of HDAC8 for these metals. This result suggests a two-step binding mechanism, which 

has previously been observed in other metalloenzymes, including carbonic anhydrase II and 

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC).
31,33

 Consistent with 

a multi-step metal binding mechanism, the measured dissociation constants for the HDAC8 

mutants at M274 do not scale with the measured alterations in the metal affinity. 
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Figure 3.6 Measurement of a Zn
2+

 and Fe
2+

 dissociation rate constant (koff) for mutants of 

HDAC8 second shell residues. 5 μM Zn
2+

-bound (left) or Fe
2+

-bound (right) HDAC8 mutants 

were incubated with 1 mM EDTA at various times and then at those times the activity was 

determined by dilution (10-fold) into an assay, as described in Materials and Methods. A single 

exponential equation (Equation 2) was fit to the time-dependence of activity to obtain koff (solid 

lines). koff values are listed in Table 2. 

 
 

The substitution of M274 with Ala, Gln, and Glu led to minor changes (<3-fold) on the 

Zn
2+

 and Fe
2+

 dissociation rate constants relative to that of wild-type despite decreases in the zinc 

affinity of >100-fold (Table 2). In contrast, the F207A mutation results in an increase in koff of 6-

fold and 30-fold for Zn
2+

-HDAC8 and Fe
2+

-HDAC8, respectively, consistent with the decreased 

affinity of this mutant for both Zn
2+

 and Fe
2+

 (3-fold and 9-fold, respectively).  Therefore, these 

hydrophobic shell residues differentially regulate the metal binding kinetics of HDAC8. 

 

DISCUSSION 

In all of the crystal structures of HDAC8•hydroxamate complexes solved to date, the 

metal geometry is square-pyramidal with the metal ion coordinated by three protein ligands (Asp, 

Asp, and His side chains) and two oxygens from the hydroxamate inhibitor which are 

presumably replaced by water molecules in the absence of the inhibitor.
7,25,34

 The unusual ligand 

set (Asp2His) for HDAC8 compared to prototypical zinc-dependent hydrolases (frequently His3 
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or His2Glu
35

) called into question the identity of the physiological metal cofactor. The refined 

metal ion coordination geometries and distances in Fe
2+

-substituted HDAC8 are comparable to 

those observed in Zn
2+

-HDAC8, although some uninterpretable difference density is observed 

for Fe
2+

-HDAC8 that may reflect incomplete changes in metal coordination.
7
 These structural 

data are consistent with activation of the enzyme by either Fe
2+

 or Zn
2+

. However, the enhanced 

activity of Fe
2+

-HDAC8 suggested that iron could be the metal
 
cofactor in vivo. Although the 

affinity of HDAC8 for Fe
2+

 is 10
5
-fold weaker than Zn

2+
, the biologically readily exchangeable 

concentration of Fe
2+

 is estimated to be 10
4
-fold higher than that of Zn

2+
 and both concentrations 

are on the same order of magnitude as the HDAC8 metal affinity. This correlation suggests that 

HDAC8 could be activated by either zinc or iron under physiological conditions. However, the 

factors contributing to the Zn/Fe metal selectivity in HDAC8 have not been delineated. 

In this study, we performed site-directed mutagenesis of second shell residues for the 

following reasons: (i) to understand which residues surrounding the first shell residues play a 

pivotal role in regulating metal ion selectivity (ii) to explore the possibility of manipulating metal 

selectivity by varying these residues (iii) to gain insights into a potential mechanism of metal ion 

switching that regulate HDAC8 activity, and (iv) to investigate if we could develop an iron-

specific sensor for measuring free iron concentration in vivo. To investigate the essential features 

that may lead to Zn
2+

 versus Fe
2+

 selectivity in HDAC8, we altered the size and hydrophobicity 

of the amino acids at positions F207, F208, and M274 that form hydrophobic interactions with 

the first shell ligand at the active site. We mutated these 3 hydrophobic residues into smaller and 

hydrophilic ones in HDAC8 to determine the effect on catalytic activity and metal ion binding 

affinity for Zn
2+

 or Fe
2+

. 
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Second Shell Residues affect catalytic activity  

Measurement of HDAC8 activity with the non-physiological Fluor de Lys substrate 

yields low values of kcat/KM and high KM values. Thus, it is reasonable to assume that the kinetic 

mechanism is rapid, reversible substrate binding followed by rate-limiting cleavage.  The 

enhancement of cleavage for peptide substrates containing trifluoro-acetyl modifications is 

consistent with the model that kcat reflects the rate constant of the hydrolytic step.
36

 For this 

mechanism, KM equals KD
Substrate

, reflecting the affinity of HDAC8 for the peptide substrate. 

Mutation of the F207, F208, or M274 side chain to alanine diminished the catalytic 

activity of zinc-bound HDAC8 significantly (27- to 133-fold) (Table 3).  Since wild-type and 

mutant Zn
2+

-HDAC8s have such a high KM (> 1 mM), it is not possible to determine whether the 

decrease in activity is mainly due to changes in substrate affinity or the hydrolytic rate constant.  

 

Table 3.3 Fold decrease in reactivity of HDAC8 variants 
a,b 

Residue M274 F207 F208 

Enzyme Ala Gln Glu Ala Ala 

Zn
2+

 x27 x89 x89 x133 n.d. 

Fe
2+

 x34 x12 x153 x4 x88 

 

a. Activity of metal-reconstituted HDAC8 was measured at 25 °C (20 mM HEPES, 3 mM KCl, 

137 mM NaCl, pH 8) using FdL assay as described in the “Materials and Methods” and as 

listed in Table 1 

b. Fold-decrease observed for mutant relative to wild-type HDAC8  

 

However, the KM values for hydrolysis catalyzed by Fe
2+

-HDAC8 mutants vary 

significantly less (<3-fold) than the changes in kcat/KM suggesting that the mutations mainly alter 
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the reactivity of the active site metal ion. Similarly, replacement of hydrophobic interactions with 

hydrogen bonding by incorporating a carbamide or carboxylate side chain (M274Q, M274E) also 

resulted in a dramatic decrease in the reactivity of Zn
2+

-HDAC8. 

Intriguingly, the mutations in the second shell had differential effects on the activity of 

Fe
2+

- and Zn
2+

-HDAC8 (Table 3). For example, the F207A mutation decreases the activity of the 

zinc enzyme by 133-fold compared to the modest (4-fold) decrease observed when the mutant is 

reconstituted with Fe
2+

.  Similarly, the M274Q mutation has a significantly smaller deleterious 

effect on Fe
2+

-HDAC8 compared to the zinc enzyme.  In contrast, the M274E and M274A have 

a comparable or larger effect on the iron enzyme. These differential effects of mutations in the 

second shell demonstrate that these side chains are important for tuning the reactivity of the 

metal site and thus differentially altering the hydrolytic rate of the metal-substituted enzymes.  

This could be mediated by changes in the electrostatic environment of the metal site due to 

replacement of a hydrophobic side chain with water or a polar group. Alternatively, replacement 

of a hydrophobic side chain with a group that could hydrogen bond with the His metal ligand, 

such was a water molecule (Ala mutants) or Gln or Glu side chain could potentially lead to 

alterations in geometry of the bound metal and the Fe
2+

- and Zn
2+

-HDAC8 sites could respond 

differently to these new interactions.  For example, it is possible that these mutations allow the 

geometry of the bound zinc ion to become tetrahedral rather than the 5-coordinate square-

pyramidal geometry observed in the wild-type crystal structures.  This alteration in geometry is 

predicated to decrease reactivity as it would limit the ability of the metal to coordinate 2 non-

protein ligands to both activate a water nucleophile and polarize the carbonyl of the substrate 

oxygen. 

For previously studied Fe
2+

-dependent hydrolases, including γ–carbonic anhydrase and 
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peptide deformylase, the kcat/KM value for the Fe
2+

-enzyme is 1.7- to 100-fold higher than the 

Zn
2+

-bound enzyme form.
37,38

  Consistent with the other enzymes, WT-HDAC8 has a 2.8-fold 

higher kcat/KM value for activation by Fe
2+

 compared to Zn
2+

. The ratio of kcat/KM values for the 

Fe
2+

 and Zn
2+

-substituted HDAC8 mutants in the second shell are also within this range (Table 1).  

In summary, these results demonstrate that the conserved hydrophobic residues in the 

context of the native protein fine-tune the reactivity of the Zn
2+

 and Fe
2+

 enzymes such that they 

have similar reactivity.  

 

Mutations Alter Metal Affinity and Specificity  

The affinity of WT-HDAC8 for Zn
2+

 is ~10
5
-fold tighter than the Fe

2+
 affinity. A 

preference for Zn
2+

 binding can be expected by the increased Lewis acidity of Zn
2+

 compared to 

Fe
2+

 and is also in accordance with the Irving-Williams series of stability constants.
39

  However, 

HDAC8 could still bind either Zn
2+

 or Fe
2+

 in vivo since the intracellular concentration of readily 

exchangeable Zn
2+

 in cells is orders of magnitude lower than the concentration of readily 

exchangeable Fe
2+

 (5-400 pM Zn
2+

 vs. 0.2-6 μM Fe
2+

).
8,40–42

 The determinant of metal selectivity 

of cellular proteins is currently unclear and could be facilitated by the unique second shell ligand 

environment in the HDAC8 active site.  In cells, it is possible that metal selectivity is 

determined by equilibration with the metal pools and is therefore under thermodynamic control. 

Since zinc and iron ions are dissimilar (Chapter 1, Table 1) in size and preferred geometry, 

alterations in the metal binding site are not expected to affect the Zn
2+

 and Fe
2+

 binding affinities 

to the same extent.
43

 Consistent with this, mutations in HDAC8 differentially alter the binding 

affinities for Zn
2+

 and Fe
2+

 (Table 4).   
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Table 3.4 Fold decrease in metal affinity parameters of HDAC8 variants 
a,b 

Residue M274 F207 F208 

Enzyme Ala Gln Glu Ala Ala 

Zn
2+

 x10 x124 x12 x3 n.d 

Fe
2+

 x0.3 x2.7 x5.3 x9 x0.7 

 

a. Metal binding to HDAC8 was measured at 25 °C (20 mM HEPES, 1 mM NTA, 3 mM KCl, 

137 mM NaCl, pH 7.5) using FdL or FP assay as described in the “Materials and Methods”. 

The KD values were obtained by fitting Eq. 1 to the data. 

b. Fold-decrease observed for mutant relative to wild-type HDAC8 for binding to metal 

 

Metal binding kinetic from wild-type HDAC8 was similar to that previously measured 

from UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine bacterial deacetylase (LpxC). 

LpxC was shown to perform metal switching depending on cellular condition as the rate 

constants for dissociating Zn
2+

 and Fe
2+

 from the LpxC-metal complex were comparable (0.03 

and 0.067 s
-1

, respectively) despite the large differential in binding affinity (60 ± 20 pM and 112 

± 43 nM, respectively).
33

 HDAC8 also showed similar dissociation rate constants for Zn
2+

 and 

Fe
2+

 (0.0006 and 0.001 s
-1

, respectively) while it has significantly different binding affinity for 

Zn
2+

 and Fe
2+

 (5 pM and 0.2 μM, respectively). 

Mutation of M274 to a smaller side chain (M274A) or replacement with carboxylate 

group (M274E) both showed a similar 10-fold decrease in binding affinity for Zn
2+

. Remarkably, 

substitution of Met with Gln (M274Q) resulted in a 100-fold decrease in binding affinity for Zn
2+ 

with only a 3-fold decrease in the Fe
2+

 affinity. Similar behavior was observed with carbonic 

anhydrase II (CAII) for alteration of E117 that forms a hydrogen bond with the H119 zinc ligand. 
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In the E117Q CAII variant the amide side chain is a hydrogen bond donor that preferentially 

stabilizes the H119-histidinate-Zn
2+

 interaction.  The alteration of a negatively charged metal 

ligand in CAII profoundly decreased catalytic activity and increased the protein-zinc 

equilibration kinetics
21

. A similar hydrogen bond polarity reversal has been proposed in the 

D102N variant of the catalytic triad of the serine protease trypsin where the activity is reduced 4 

orders of magnitude. These alterations have modest effects on the active site structure but large 

effects on the electrostatic environment.
21,44,45

   

Surprisingly no measurable Zn
2+

 binding was observed for the F208A mutant using the 

flSAHA assay. This could reflect a dramatic decrease in the binding affinity of F208A for Zn
2+

 

(>200-fold) or the inability of flSAHA to bind to Zn
2+

-substituted F208A. This latter explanation 

is less likely since the Fe
2+

 affinity of the F208A mutant, measured using the flSAHA assay, is 

comparable to the WT Fe
2+

 affinity. Loss of zinc affinity would explain the complete absence of 

catalytic activity of the Zn
2+

-F208A mutant (Table 3). 

Most of the mutations in the second shell have little effect on the dissociation rate 

constant (koff) for Zn
2+

 and Fe
2+

 despite significant decreases the metal dissociation constant (KD). 

This lack of correlation between koff and KD provide additional evidence for multiple steps in the 

metal association mechanism where koff is mainly limited by a conformational change rather than 

the metal-ligand interaction.  In contrast, the F207A mutation has a larger effect on koff (7- and 

37-fold for Zn
2+

 and Fe
2+

, respectively) than on KD (3- and 9-fold for Zn
2+

 and Fe
2+

, respectively).  

These data indicate that the M274 and F207A mutations alter different steps in the metal binding 

pathway. These data also suggest that exchange of the protein metal ligands is at least partially 

rate-limiting in Zn
2+

/Fe
2+

 dissociation for F207A variant, indicating that the conformational 

rearrangement that limits zinc dissociation for WT HDAC8 is accelerated by the F207A mutation.  
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This suggests that rearrangement of F207 occurs during dissociation of metal from wild-type 

HDAC8 or that the enhanced solvent access in this mutant facilitates exchange of the protein 

metal ligands with solvent water, resulting in an increased rate constant for Zn
2+

/Fe
2+

 

dissociation. 

Overall, mutations in second shell residues decreased the affinity for zinc more than iron. 

Interestingly, the ratio of Fe/Zn specificity (KD
Fe

/KD
Zn

) varied by 50-fold, from 1.7 x 10
-5

 for 

wild-type to 8.2 x 10
-4

 for the M274Q variant. (Figure 7) When Fe/Zn specificity (KD
Fe

/KD
Zn

) for 

WT was normalized to 1, metal selectivity for M274Q was calculated as ~50.  Notably, F208A 

was estimated to be more than 150. This could be due to the total loss of binding affinity for 

Zn
2+

-bound HDAC8 structural conformation or the decreased affinity for flSAHA which leads to 

significantly weak KD for Zn
2+

. 

Figure 3.7 Fe
2+

 / Zn
2+

 selectivity profiles of HDAC8 second shell mutants. The KD for metal in 

HDAC8 was measured at 30 °C as described in “Materials and Methods” and ratio of KD
Zn

 to 

KD
Fe

 was calculated. Those are normalized to the ratio of KD values for WT enzyme. 
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However, F207A showed metal selectivity of <1, implying that these variants had more 

preference for Fe
2+

 than Zn
2+

. This may be utilized for to the development of protein-based iron 

sensors using FRET. This mutagenesis study showed that the contribution of each ligand residue 

in second shell to metal binding, and generated a series of mutants with varying binding affinity 

and kinetics for Zn
2+

 and Fe
2+

.  

 

Development of iron sensor 

Iron is the most abundant transition metal in cells; the total cellular concentration is 

estimated to be approximately 200 μM.
46

 Iron is involved in numerous cellular processes from 

metabolism, electron transport, and DNA synthesis, where disruption of iron regulation has been 

linked to disorders such as anemia, hemochromatosis, and Alzheimer’s.
47,48

 Effective fluorescent 

probes for imaging iron ions in living cellular environments is needed to measure the free iron 

concentration, leading to a better understanding of biological function and regulation. In the last 

several years, a series of probes have been developed for Fe
2+

 and Fe
3+

 that may allow new 

discoveries regarding cellular iron homeostasis.
49–52

   

The majority of reported fluorogenic probes for iron imaging in living cells work 

through a turn-off response, such as Phen Green SK and calcein.
52–54

 However, no endogenous 

biological stimulations were reported in this work. Additionally, these sensors show significant 

interference from other divalent metal ions, including Cu
2+

, Ni
2+

 and Co
2+

. Furthermore, their 

utility for cellular imaging experiments has not been established.  

One goal of this research was the development of a series of HDAC8 variants with 

significantly improved properties for sensing iron in cells. Indeed the second shell mutants alter 

the specificity of HDAC8 for Fe
2+

 and Zn
2+

. In particular, the F208A variant of HDAC8 is a 
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Fe
2+

-specific protein, binding Zn
2+

 with a KD >1 nM and Fe
2+

 with a KD of 0.2 μM. These 

mutants can be used to develop a sensor to measure readily exchange ion concentrations from a 

FRET signal between a red fluorescent protein, TagRFP, fused to the C-terminus of HDAC8 as 

the FRET acceptor and a fluorescein-labeled SAHA (flSAHA) bound to metallated HDAC8 as 

the donor. Using this construct, the observed FRET/TagRFP fluorescence ratio should reflect 

metal-bound HDAC8 and vary with the free metal ion concentration. This should allow 

determination of the readily exchange metal ion concentrations in cells from a comparison of the 

FRET/TagRFP fluorescence ratio to a metal calibration curve. A similar approach has already 

proven feasible for sensing free zinc in cells using CAII variants. T199A, Q92A and WT CAII 

with TagRFP exhibited picomolar apparent affinities for zinc as measured in E. coli at pH 7.6, 

and were sensitive enough to detect subtle differences in intracellular free zinc concentrations.
55

 

Herein, we demonstrated the availability of HDAC8 variants with altered selectivity for both 

metals suggesting that iron-specific sensors could be made.  
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1
All Co-IP experiments were carried out by the Philpott lab at NIH.  

CHAPTER 4 

 

INVESTIGATING THE HDAC8-PCBP1 INTERACTION BY KINETIC 

AND MASS-SPECTROMETRIC ANALYSIS
1
 

 

INTRODUCTION 

Histone deacetylase 8 (HDAC8) catalyzes the hydrolysis of ε-N-acetyl lysine residues on 

proteins acetylated by histone acetyltransferases.
1
 It serves as an essential epigenetic regulatory 

enzyme in gene transcription.
2
 Upon its discovery, this enzyme was identified as a Zn(II)-

dependent metalloenzyme.
3
 However, in vitro activity and binding affinity studies suggest that 

Fe(II) could be the native metal cofactor in vivo.
4
 Additionally, HDAC activity in cell lysates is 

sensitive to oxygen exposure.
4
 These data suggest that HDAC8 might be activated by either 

Zn(II) or Fe(II), depending on the cellular environment.  The readily exchangeable 

concentration of cellular Zn(II) fluctuates under a variety of conditions, such as upon generation 

of reactive oxygen species.
4
 The determinants of Fe(II) / Zn(II) metal selectivity of proteins in a 

cell are currently unclear and could be facilitated by interactions with other proteins, such as 

metallochaperones.   

In cells, a variety of evidence suggests that the majority of class I HDAC enzymes form 

complexes with other proteins. HDAC isozymes - 1 and 2 associate with the large protein 

complexes Mi2/NURD (nucleosome remodelling and histone deacetylase), SIN3A and Co-REST 

(co-repressor for element-1-silencing transcription factor) in vivo (Figure 1).
5,6,7

 Given that 

HDAC8 is a class I enzyme, it is possible that other proteins may form complexes with HDAC8, 
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which could affect the biological function of the enzyme, including altering the metal selectivity 

to alter the activity of HDAC8 in the cell. 

Figure 4.1 Three main HDAC1/2-containing complexes. Mammalian Class-I HDAC1 and 

HDAC2 are abundant, ubiquitously expressed and share a high degree of sequence similarity. 

They are located almost exclusively in the nucleus as part of multi-protein complexes which 

regulate gene expression by modulating chromatin structure. Stable HDAC8 complexes have not 

been well-characterized, although mass spectrometry of HDAC8 pull-downs have suggested 

some proteins that complex with HDAC8
8
. 

 

 
 

In fact, mass spectrometric analysis of HDAC8 pull-downs suggests a number of binding 

parterners.
8
 This possibility raises multiple questions, including whether these interacting 

proteins alter the metal status of HDAC8. 

The mechanism by which HDAC8 recognizes and incorporates the cognate metal ions 

(Zn(II) or Fe(II)) in the cell is unknown. Metal incorporation for a number of metalloproteins is 

facilitated by metallochaperones. For example, cytosolic copper and nickel chaperones have 



90 

 

been described for cytochrome c oxidase and urease activation, respectively.
9,10

 No zinc-specific 

metallochaperones have been identified so far. However,  several potential iron-specific 

metallochaperones are being investigated for roles in iron homeostasis, particularly in the 

assembly of Fe-S clusters.
11–14,15–17

 These chaperone candidates include the IscA family of 

proteins and frataxin for delivery of iron for iron-sulfur cluster assembly.
18,19

 Furthermore, in 

2008, the Philpott lab reported that poly r(C)-binding protein 1 (PCBP1) can function as a 

cytosolic iron chaperone in the delivery of iron to ferritin, a cellular iron storage protein.
20

 

A recent mass spectrometric analysis led to the first proposed global protein interaction 

network for all 11 human HDACs, including HDAC8.
8
 This interactome network was assembled 

from protein–protein interactions in human CEM T cells. The study identified HDAC8 

associations with multiple members of the cohesin complex (SMC1A, SMC3, and STAG2) 

which are involved in sister chromatid segregation during mitosis. Additionally, this analysis 

suggested that HDAC8 might interact with the PCBP family of iron-metallochaperones.
20

 

However, based on statistical modelling using I-DIRT and SAINT, the HDAC8-PCBP1/2 

interactions were characterized as non-specific. 

Within the PCBP family, PCBP1 is one of the four homologous proteins that include 

PCBP2, PCBP3, and PCBP4. This family of proteins bind RNA and are ubiquitously expressed 

in mammalian cells in both the cytosol and the nucleus.
21

 In a genetic screen using budding yeast, 

human PCBP1 was identified by the Philpott lab as an iron chaperone that delivers iron to human 

ferritin.
20

 Additional functional assays in yeast indicate that PCBP1 facilitates the incorporation 

of iron into ferritin through a direct protein-protein interaction.
22

 Subsequent studies have 

identified additional targets for iron delivery through the formation of a hetero-oligomeric 

complex of PCBP1 and 2: the prolyl hydroxylases (PHDs) and deoxyhypusine hydroxylase 
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(DOHH).
23

.
22

 This study demonstrates that the two chaperones function cooperatively to deliver 

iron to several hydroxylases.
24

 The full range of proteins that the PCBP family may function as 

metallochaperones is currently unexplored. 

Herein we investigate the interaction between HDAC8 and the recently identified Fe(II) 

chaperone, poly (rC) binding protein 1 (PCBP1), to evaluate whether this family of 

metallochaperones plays a role in the formation of cellular Fe(II)-HDAC8. We demonstrate that 

addition of PCBP1 to HDAC8 decreases the metal dissociation rate constant for Fe(II) but not 

Zn(II) and alters the catalytic activity of Fe(II)-HDAC8. To evaluate complex formation we 

coupled Nano-electrospray ionization (nano-ESI) mass spectrometry (MS)
25

 with ion mobility 

mass spectrometry (IM-MS) to gain information about both stoichiometry and geometry of the 

protein complexes (Figure 2).
26

 Using IM-MS under native conditions, we demonstrate the 

formation of a HDAC8-PCBP1 complex. Furthermore, co-immunoprecipitation experiments 

from T-Rex 293 cells demonstrate the formation of cellular complexes. Taken together, these data 

suggest that PCBP1 functions as a metallochaperone for the formation of Fe(II)-HDAC8.   
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Figure 4.2 Scheme of ion mobility-mass spectrometry data acquisition. Ions are generated at the 

ion source (lower left), and are allowed to drift in an ion guide filled with neutral gas molecules 

under the influence of an electric field. The ions migrate through this region according to their 

size-to-charge ratio. They are then injected into a time-of-flight (ToF) mass analyzer under 

vacuum for mass-to-charge (m/z) analysis. The resulting data are 3-dimensional, containing ion 

intensity, size, and mass information. The various dimensions of the data can be shown as a 

contour plot (middle, bottom), or 2D selections in drift time or m/z (lower right). 
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MATERIALS AND METHODS 

 

General 

All solutions were prepared in “metal-free” plasticware, with reagents that do not 

contain extraneous metal ions and/or were treated with Chelex (Biorad). The metal content of 

solutions, reagents and proteins was measured using inductively coupled plasma mass 

spectrometry (ICP-MS; Dr. Ted Huston, Univ. of Michigan). HDAC8 was over-expressed in 

BL21(DE3) E. coli transformed with pET-derived expression plasmids and purified according to 

published procedures.
4
 All work with Fe(II) was performed anaerobically in a N2/H2 atmosphere 

glove bag from Coy Labs. Dissolved oxygen was removed from ddH2O by sparging with argon 

and incubating for 24 h in the glove box. FeCl2 was dissolved in anaerobic ddH2O and used 

within 1 h. Enzyme and substrate (<10 μl) were each equilibrated in the glove box for at least 2 h 

at 4 °C before Fe(II) was added; Fe(II) was incubated with apo-HDAC8 for 1hr prior to 

beginning each assay.  

 

Co-IP using anti-flag resin and Western blots  

(All Co-IP were carried out by the Philpott lab, NIH) 

Tetracycline-inducible flag-tagged PCBP1 or PCBP2 constructs (single copy) were 

stably transfected into T-REx-293 cells via the FlpIn recombinase system from Invitrogen. Based 

on the western blots, the level of flag-PCBP1 is about the same as the amount of native PCBP1, 

but this effectively doubles the concentration of PCBP1 in the cell. 

For western blots, proteins were transferred to a nitrocellulose membrane via iBlot 

(Invitrogen) after separation using 4~12% Bis-Tris NuPAGE. The membrane was blocked with 5% 
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milk in phosphate buffered saline (PBS) and blotted with either anti-HDAC8 (sc-11405 from 

Santa Cruz, diluted 1:200) or anti-PCBP1
20

 and the respective secondary antibodies (anti-rabbit 

IgG and anti-chicken IgY from Li-Cor) in PBS-T plus 0.02% sodium azide. Images of the blots 

were produced using a Li-Cor imaging system.  

 

Expression and purification of apoPCBP1 

Chemically competent BL21(DE3) cells were transformed with pCDF encoding 

His6SUMO-tagged PCBP1.
22

 Starter cultures (10 mL) were inoculated by addition of a single 

colony and grown in LB media with 100 μg/ μl streptomycin for 5 hr at 37 °C and 250 rpm. The 

starter culture was diluted (1:1000) into 2 L of LB with appropriate antibiotics in a 6 L culture 

flask. The temperature was decreased to 15 °C at induction. Expression was induced by addition 

of 0.1 mM IPTG,and the cells were incubated overnight at 15 °C. Cells from the 2 L growth were 

harvested, resuspended in 30 ml buffer A (20 mM Tris [pH 7.9], 250 mM NaCl, 30 mM 

imidazole, 10% glycerol, and 2.5 mM TCEP) with one EDTA-free protease inhibitor cocktail 

tablet (Roche). Resuspended cells were lysed using a microfluidizer. The extract was centrifuged 

at 6000 g for 30 min and the supernatant was loaded onto a nickel column. Protein fractionation 

was carried out using a linear gradient in buffer A from 30 mM to 500 mM imidazole, to buffer B 

(20 mM Tris [pH 7.9], 250 mM NaCl, 500 mM imidazole, 10% glycerol, 2.5 mM TCEP), with 

PCBP1 eluting at 110–230 mM imidazole. The His6-SUMO tag was cleaved by incubating with 

1 unit/μl Saccharomyces cerevisiae SUMO protease (Life Techonologies) overnight at 4 °C. The 

protein was buffer exchanged using dialysis with buffer A before passing over the nickel column 

a second time to separate the tag from the untagged protein. The protein was dialyzed overnight 

at 4 °C first against buffer A containing 1 mM EDTA to remove metals and then against buffer A 
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to remove EDTA. Finally, the protein was fractionated on a PD-10 column to remove any 

remaining EDTA. Apo-PCBP1 was concentrated to 100 – 200 μM, flash-frozen and stored at –

80°C. 

 

Measurement of HDAC8 activity as a function of [apoPCBP1] 

Metallated HDAC8 was prepared by incubating apo-HDAC8 (10 µM) with 

stoichiometric Zn(II) or 1 – 2 equivalents of Fe(II) for 1 hr at 4 °C. To analyze the effects of 

PCBP1 on HDAC8 catalytic activity, 2 μM Zn(II)- or Fe(II)-HDAC8 was incubated with varying 

concentrations of apo-PCBP1 (1 – 35 µM) in assay buffer (20 mM HEPES, pH 8, 3 mM KCl, 

137 mM NaCl) for 1 min at 25 °C and then either immediately diluting the enzyme and assaying 

the catalytic activity, and then assaying the catalytic activity of HDAC8. In these assays, the final 

enzyme concentration was 0.5 μM with 50 μM Fluor de Lys p53 substrate. At various times the 

reaction was quenched by the addition of Trichostatin A (TSA) and trypsin which catalyzed 

cleavage of the coumarin group from the product. The initial rate for deacetylation was measured 

from the linear change in the fluorescent ratio (product : ex = 340 nm, em = 450 nm over 

substrate : ex = 340 nm, em = 380 nm)) over time. The initial rates were plotted as a function of 

the incubation time at pH 8 and fit to the following first order exponential equation. Y=A * exp (-

koff * X) + c 

 

Measurement of metal (Zn(II) / Fe(II)) dissociation rate constant (koff)  

The first order rate constant for dissociation of Zn(II) or Fe(II) bound to HDAC8 in the 

absence or presence of apoPCBP1 was measured by the time-dependent loss of catalytic activity 

upon incubation with EDTA. HDAC8 reconstituted with stoichiometric Zn(II) or Fe(II) was 
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incubated with varying concentrations of apoPCBP1 (0 – 10 µM) to form a complex followed by 

dilution into assay buffer containing 1 mM EDTA. At various times (0 – 60 min) an aliquot was 

diluted 10-fold into assay buffer containing the Fluor de Lys p53 substrate. At various times, the 

reactions were quenched by the addition of TSA and Enzo Developer II and the linear initial rate 

measured. The dissociation rate constant was calculated from a fit of a first order exponential 

equation to the time-dependent decrease in the initial rate after dilution into EDTA. The observed 

rate constants are not dependent on the concentration of EDTA (0 – 5 mM). 

 

Sample preparation for IM-MS analysis 

ApoHDAC8 and apoPCBP1 at each 30 μM were prepared in 20 mM HEPES, pH 8. The 

samples were then buffer-exchanged using a Micro Bio-Spin 6 column (Bio-Rad, Hercules, CA) 

equilibrated with 500 mM aqueous ammonium acetate, pH 7 just prior to IM-MS analysis.
27

 

Both of buffer-exchanged proteins were incubated at 25 °C for 10 min to form apoHDAC8-

apoPCBP1 complex.   

 

Synapt G2 Instrumentation 

All experiments were performed on a Synapt G2 ESI quadrupole-ion mobilioty 

separation- time-of-flight (Q-IMS-TOF) mass spectrometer (Waters,Milford, MA), equipped 

with a nanoflow ESI source in collaboration with the laboratory of Professor Brandon Ruotolo.
28

 

The ‘tri-wave’ region of the instrument consists of three main traveling-wave ion guide sections, 

enclosed from the main vacuum system, coupled to smaller traveling-wave ion guides that 

operate within the main vacuum system for increased conductance of the gas load within the 

enclosed regions of the instrument. All mass spectra were collected under positive ion mode 
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using cesium iodide for calibration. A capillary voltage of 1.68kV was applied. Sampling cone 

voltage and source temperature were maintained at 50V and 20 °C during signal acquisition. 

Backing pressure was at 7-8 mbar. To optimize the mass resolution, a trap collision voltage 

ranging from 30-50V were applied, with argon being used in the trap region as the collision gas, 

with a pressure of 2.56e
-2

 mbar. The ion mobility measurements were carried out using N2 as the 

mobility buffer gas, at a pressure of 3.5 mbar. Data acquisition and processing were carried out 

using MassLynx V4.1 software.
29

   

 

RESULTS 

 

In-vivo Co-Immunoprecipitation (All Co-IP were carried out by Philpott lab at NIH) 

Since PCBP1 functions as a metallochaperone for a number of iron(II)-dependent 

enzymes
22,23,30

, we proposed that this protein might also mediate delivery of iron to HDAC8.  

As a first step, we collaborated with the Philpott lab to investigate the formation of an HDAC8-

PCBP1 complex in cells using co-immunoprecipitation. The Philpott laboratory constructed T-

REx 293 cell lines containing either an empty vector (EV; pcDNA5) or a vector expressing flag-

epitope-tagged PCBP1 under the regulation of tetracycline. They were stably transfected, i.e., the 

FP1 construct was integrated into the chromosome, using the Flp-In system. The T-Rex 293 cells 

were subject to iron supplementation by addition of ferric ammonium citrate (FAC) or iron 

chelation by incubation with deferoxamine (DFO) for 5 hr, 16 hr, or no treatment. The flag-

tagged PCBP1 was immunoprecipitated using an anti-Flag antibody and then probed for the co-

precipitation of HDAC8 using an anti-HDAC8 antibody (Figure 3). HDAC8 was detected in 

immunoprecipitates of flag-PCBP1 from cells expressing endogenous levels of both proteins. No 
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PCBP1 or HDAC8 was detected in immunoprecipitates cells containing the empty vector as a 

negative control. These data suggested that PCBP1 and HDAC8 physically interact in cells. Co-

immunoprecipitation of PCBP1 and HDAC8 was also detected in iron-deficient (deferoxamine-

treated) and iron-sufficient (ferric ammonium citrate) growth conditions. Longer incubations of 

cells with FAC or DFO or decreased DFO concentration did not affect the levels of 

immunoprecipitated HDAC8 and PCBP1. Overall, alteration of growth conditions to manipulate 

cellular iron levels had little effect on the total levels of PCBP1 and HDAC8 in the whole-cell 

lysates.  

 

Figure 4.3 In vivo pull-down data to investigate the interaction between PCBP1 and HDAC8. T-

REx 293 cells containing integrated copies of empty vector (EV), FLAG-PCBP1 (FP1) under the 

control of a tetracycline-regulatable promoter were treated with 1 μg/ml doxycycline for 24 h. 

Cells were lysed using glass beads in 50 mM Tris (pH 7.4), 40 mM KCl, 1 mM PMSF, 5 mM 

DTT, and protease inhibitor cocktail and the lysates were subjected to Western blotting with anti-

PCBP1 (Santa Cruz Biotechnology) T-REx 293 cells were treated with A) 20 μM FeCl3 for 5hr, 

or 100 DFO for 5hr or B) 20 μM FeCl3 for 16hr or 25 μM DFO for 16hr. PCBP1 was 

immunoprecipitated using anti-PCBP1 as a negative control. Immune complexes analyzed by 

western blotting for PCBP1. WCE: Whole cell extract, SN: Supernatant.  
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Purification of apoPCBP1 from E.coli 

We next questioned whether PCBP1 altered the metal-dependent activation of HDAC8 

in vitro. A His6-SUMO-tagged version of PCBP1 was subcloned into a pET vector for 

recombinant expression in BL21(DE3) E. coli. Using this vector, overexpression of PCBP1 was 

induced by the addition of IPTG and the protein was purified to homogeneity using a procedure 

modified from Nandal et. al.
22

  

Figure 4.4 SDS-PAGE analysis of the purification of recombinant PCBP1. Panel A : Lane 1 – 6 

are PCBP1-His fractions purified using 1
st
 Ni-IMAC. Panel B : Lane 1 is combined fraction from 

1
st
 Ni-IMAC column (panel A, lane 1-6) and lane 2 is after incubations with SUMO protease. 

The red arrow shows SUMO cleaved PCBP1. Panel C : Lane 1 shows the flow-through after the 

2
nd

 Ni-IMAC column. Lane 2 is eluent from 20 mM imidazole fraction (red arrow indicates 

PCBP1 with correct MW) while lane 3 shows proteins eluted upon addition of 250 mM 

imidazole. Panel D: Lane 1 is MW markers. Lane 2 is PCBP1 after dialysis against 1 mM EDTA 

first and then against no EDTA. (red arrow indicates PCBP1 with correct MW) 

 
 

His6-PCBP1 bound to an immobilized Ni(II) ion affinity chromatography (IMAC) 

column and was eluted from the column using a 25-500 mM imidazole gradient, as determined 

by SDS-PAGE and staining with Coomassie Blue (Figure 4, panel A). Next, SUMO protease was 

added to the combined fractions containing His6-SUMO-PCBP1 to cleave the SUMO-tag (Figure 

4, panel B, lanes 1 and 2) and this mixture was dialyzed overnight against 20 mM Tris buffer, pH 
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7. Following cleavage and dialysis, the enzyme was bound to a second immobilized Ni(II) ion 

affinity chromatography column, and eluted by the addition of 25 mM imidazole (Figure 4, panel 

C, lane 2). The protein was then dialyzed against buffer containing 1 mM EDTA to remove all 

metal ions followed by dialysis against buffer alone to remove EDTA (Figure 4, panel D). This 

procedure routinely yields apo-PCBP1 containing <0.1 mol total bound metal ion / mol enzyme 

(Table 1). The molecular mass of the purified protein was in accord with the size of the PCBP1 

product (37.5 kDa) deduced from the amino acid sequence.  

Table 4.1 Metal ion content of apo-PCBP1. Metal-free PCBP1 was generated by dialyzing the 

recombinant protein with 1 mM EDTA followed by dialysis and gel filtration to removed EDTA. 

Metal ion content of the apo-protein sample was determined by ICP mass spectrometry. The ratio 

of metal ion to protein was determined by dividing the metal ion concentration, as determined by 

ICP mass spectrometry, by the protein concentration as determined by nanodrop. 

 molar ratio of metal : protein 

 Zn(II) Fe(II) Co(II) Ni(II) Cu(II) Mn(II) 

PCBP1 0.04 0.02 <0.01 0.02 0.01 <0.02 

Buffer <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 

 

Measurement of metal-bound HDAC8 activity in the presence of apo-PCBP1 

We examined the effect of apo-PCBP1 on the reactivity of metal-bound HDAC8 using a 

steady-state kinetic assay. The initial rate for deacetylation catalyzed by HDAC8 was measured 

in vitro using the commercially available Fluor de Lys
®
 (FdL) assay. The initial rate for 

deacetylation catalyzed by Fe(II)-bound HDAC8 increased ~ 2-fold upon addition of 8 μM apo-

PCBP1 while higher concentrations (16 – 33 µM) of PCBP1 decrease activity (Figure 5, panel 

A). In contrast, incubation of apoPCBP1 with Zn(II)-bound HDAC8 has little effect on the initial 

rate for deacetylation.  
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Figure 4.5 Measurement of the activity of Zn(II) and- Fe(II)-bound HDAC8 as a function of 

apo-PCBP1concentration. (a) Apo-HDAC8 (2 μM) was incubated with divalent metal ions (Fe(II) 

or Zn(II)) at 4 °C for 1 hr and then diluted to 0.5 μM by the addition of Fluor de Lys HDAC8 

substrate (50 μM) at 25 °C in 20 mM HEPES, pH 8.0, 137 mM NaCl and 3 mM KCl in the 

presence of varying concentrations of apo-PCBP1. The initial rates for deacetylation were 

determined from the time-dependent change in fluorescence (product λex = 340 nm, λem = 450 

nm) and substrate (λex = 340 nm, λem = 380 nm)). The observed initial rates for each metal ion 

were normalized to the highest initial rate for a given metal ion. (b) Apo-HDAC8 (2 μM) was 

incubated with excess amount of Fe(II) (5:1) at 4 °C for 1 hr and then diluted to 0.5 μM by the 

addition of Fluor de Lys HDAC8 substrate (50 μM) at 25 °C in 20 mM HEPES, pH 8.0, 137 mM 

NaCl and 3 mM KCl in the presence of varying concentrations of apo-PCBP1. The initial rates 

for deacetylation were determined from time-dependent changes in fluorescence, as described in 

(a). 

 
The reduced activity of Fe(II)-bound HDAC8 at higher concentrations of apoPCBP1 

could be explained by decreased levels of Fe(II)-bound HDAC8 caused by PCBP1 competing for 

Fe(II). PCBP1 binds three atoms of ferrous iron with dissociation constants (KD) of 0.9 μM for 

the first Fe(II) and 5.8 μM for the remaining two atoms, while HDAC8 has an Fe(II) KD of 0.2 

μM.
20

 To test this possibility, we measure the effect of PCBP1 on the Fe(II)-HDAC8 activity in 

the presence of excess concentrations of Fe(II). At high concentrations of PCBP1 (>10 µM) the 

activity of Fe(II)-bound HDAC8 in the presence of PCBP1 was independent of the metal 

stoichiometry, suggesting that the inhibition of HDAC8 at high PCBP1 is not due to a decrease 

in Fe(II)-HDAC8 (Figure 5, panel B). Therefore, interactions between PCBP1 and HDAC8 lead 
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to both that the gain and loss of Fe(II)-HDAC8 activity, demonstrating the formation of multiple 

complexes. Additionally, the increase in activity at lower concentrations of PCBP1 indicates that 

the initial PCBP1 binding site is not the active site of HDAC8. However, reduced activity at low 

concentration of PCBP1 with excess concentration of Fe(II) was observed probably due to rapid 

oxidation of Fe(II) or experimental error. More work is needed to more carefully assess the effect 

of PCBP1 on the activity of Fe(II)-bound HDAC8. 

 

Effect of apo-PCBP1 on metal dissociation rate constant of HDAC8  

To determine whether apoPCBP1 effects the kinetics of metal binding to HDAC8, we 

measured the metal dissociation rate constant (koff) for Fe(II) and Zn(II) bound to HDAC8 in the 

presence and absence of apoPCBP1 (Figure 6).  

Figure 4.6 Measurement of Zn(II) and- Fe(II) dissociation rate constants (koff) for HDAC8 as a 

function of apo-PCBP1 concentration. The koff values for HDAC8-bound metal ions were 

determined from the time-dependent decrease in activity upon dilution of the enzyme into 1 mM 

EDTA. The activity is measured using the FdL assay, as described in the legend of Figure 5. A 

first-order exponential was fit to the data to calculate the koff values. A) Measurement of Zn koff 

as a function of PCBP1 concentrations. B) Measurement of Fe koff as a function of PCBP1 

concentrations 

 
 

 

[apoPCBP1] Zn(II) k
off

 Fe(II) k
off

 

0uM 0.04 ± 0.004 0.05 ± 0.004 

2.5uM - 0.04 ± 0.006 

7.5uM 0.04 ± 0.007 0.02 ± 0.007 
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Addition of apoPCBP1 does not alter the Zn dissociation rate constant, however, koff for 

Fe(II) decreases with increasing concentration of apoPCBP1. A hyperbolic fit to the dependence 

of koff on apoPCBP1 indicates a K1/2 of 6 ± 2 µM. These data suggest that apoPCBP1 interacts 

with HDAC8 and specifically decreases the dissociation of Fe(II) bound to HDAC8. 

Furthermore, these data would be consistent with apoPCBP1 enhancing the affinity of HDAC8 

for Fe(II). However, additional work is needed to more precisely define the role of PCBP1 on 

HDAC8 activity and metal binding affinity and specificity. 

 

Identification of a complex between HDAC8 and PCBP1 by IM-MS 

Under in vitro conditions PCBP1 likely affects the Fe(II) dissociation rate constant and 

catalytic activity by directly interacting with HDAC8. To further characterize the interactions of 

PCBP1 with HDAC8, we used ion mobility mass spectrometry (IM-MS) to directly measure the 

binding behavior of apo- or metal-bound HDAC8 with apo- or Fe(II)-bound PCBP1. Ion 

mobility separation coupled to mass spectrometry offers unique structural and conformational 

details and has recently been introduced as a novel tool for the analysis of intact protein 

complexes.
31

 We tested the formation of HDAC8-PCBP1 complexes using recombinant, purified 

proteins. Each protein was buffer-exchanged with 500 mM aqueous ammonium acetate solution, 

pH 7, and then the two proteins were mixed in varying concentrations and incubated for 10 min 

before mass spectrometric analysis. The mixture was ionized by nanoESI, and then separated by 

ion mobility drift time as well as m/z values. Close analysis within m/z window 4000 - 5200 

showed several well-resolved peaks that correspond to A) HDAC8 monomer, B) PCBP1 

monomer, and C) HDAC8-PCBP1 complex, as indicated by comparison to the spectra of each 

protein alone (Figure 7).  



104 

 

Figure 4.7 IM-MS analysis of each protein and complex. Protein complexes are ionized by nESI 

in a range of charge states, and then a single charge state is selected for activation in a 

quadrupole mass filter. Spectrum of intact protein complex between apo-HDAC8 and apo-

PCBP1. Proteins states colored as follows: HDAC8 (blue), PCBP1 (orange). Same colors used 

throughout. Values of m/z for each protein monomer are recorded in table below.   

 

HDAC8 (42.5kDa) PCBP1 (37.5kDa) Complex (80kDa) 

m/z z m/z z m/z z 

3277 13 2890 13 4217 19 

3551 12 3131 12 4452 18 

3874 11 3414 11 4714 17 

4261 10 3755 10 5008 16 

 

Furthermore, each intact homo-monomer was detected at four distinct charge states; 13
+
, 

12
+
, 11

+
, and 10

+
. Four charge states (19

+
, 18

+
, 17

+
, and 16

+
) were also observed for the hetero-

complex under the same experimental conditions. Therefore, the IM-MS spectra revealed the 
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presence of a complex between HDAC8 and PCBP1 with a mass of 80 kDa, in agreement with 

the calculated mass of the HDAC8-PCBP1 complex.  

To further verify the identity of the hetero-complex, tandem MS was applied to the m/z 

peaks responsible for complex formation and the precursor ions were collisional activated in the 

trap region, prior to ion mobility separation. Dissociated PCBP1 monomers from the complex 

are observed when trap collision voltage exceeds 140V (Figure 8). This result consolidates the 

identity of peaks reflecting the HDAC8-PCBP1 complex. 

Figure 4.8 MS/MS analysis of complex peak by increasing trap energy. Protein complexes is 

selected for activation in a quadrupole mass filter. Proteins are colored as follows: HDAC8 

(blue), PCBP1 (orange). A 1.68kV capillary voltage, 50V sampling cone voltage and 20 °C 

source temperature were maintained during signal acquisition. Backing pressure was at 7-8 mbar.  

 

 
 

 

As protein samples are transferred from solution phase to gas phase by electro-spray, it 

is possible that two or more protein molecules are trapped in the same water droplet, and 
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subsequently being detected by the mass analyzer and interpreted as complex formation. To 

examine whether the hetero-complex we observed was due to this ESI artifact, we carried out the 

following negative control experiment. 

We tested the formation of hetero-complexes in the IM-MS experiment between human 

carbonic anhydrase II (CAII) and either HDAC8 or PCBP1. We chose to use CAII since there is 

no evidence that this protein forms a protein-protein complex with either HDAC8 or PCBP1. We 

incubated stoichiometric concentrations (5-10 µM) of CAII with HDAC8 or PCBP1 and 

repeated the IM-MS analysis.  No peaks consistent with the formation of CAII-HDAC8 or 

CAII-PCBP1 hetero-complexes were observed (Figure 9).  These IM-MS results strengthen our 

hypothesis that HDAC8 binds to PCBP1 in a specific manner.  

 

Measurement of binding affinity (KD) between apoHDAC8 and apoPCBP1 using IM-MS 

Previously protein-protein binding affinities (KD = 2.2 ± 0.7 μM) for β-lactoglobulin and 

hemoglobin were determined by direct ESI-MS.
32

 Subsequent studies with using direct ESI-MS-

based titration of concanavalin A, whose dimeric form is in equilibrium with its tetramer in 

solution, were able to determine the Ka values for the dimer-tetramer equilibria. These 

researchers showed that the titration method was essential for measuring reasonable Ka values of 

protein-protein interactions in equilibrium by mass spectrometry.
33

 Taking into account the 

response factors (probability of being ionized, transmitted, and detected), we adapted the 

protocol published by the Klassen group
32,34

 Based on the well-established protocol from the 

Klassen method
35

, we plan to expand its utility from protein-ligand interactions to protein-

protein scenarios.
32,33
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Figure 4.9. IM-MS analysis of HDAC8 or PCBP1 after incubating with carbonic anhydrase II 

(CAII). apo-HDAC8 or apo-PCBP1 was incubated with apo-CAII under same assay conditions 

(HDAC8: 10 μM, PCBP1: 15 μM, and CAII: 3 μM) to monitor possible complexation by IM-MS. 

 

 
 

To obtain an estimate for values, several factors need to be considered. First, loss of 

sample can occur after buffer exchange. This can be accounted for the actual concentrations of 

each protein after buffer exchange with a nanodrop, before forming the complex. Second, to 

account for potential non-uniform surface properties of each individual protein, as well as the 

complex, we performed a series of titrations of each individual protein, and plotted the log 

(signal intensity) vs. the actual protein concentration.  

The results showed the two proteins were equally detected equally well (Figure 10A). 

Third, the quadrupole setting, potential disruption of complex by collision-induced dissociation 
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(CID), as well as formation of non-specific complex binding were investigated and have 

developed corresponding control experiments to account for these factors. Finally, we performed 

our KD measurements over a wide range of different concentrations and reported the average 

value. The total ion intensity of the HDAC8 and PCBP1 monomer peaks in the IM-MS spectrum 

were integrated, and the ratio of these two species were defined as R, which serves as a gas phase 

analog of the solution phase concentration ratio of the two species at equilibrium. The following 

series of control experiments were performed to detect all of the possible sources of error sources. 

We first confirmed that the intensities of each of the peaks assigned to HDAC8 and PCBP1 were 

related to their actual concentrations in buffer solution over appropriate concentration ranges. For 

various concentrations, we integrated the areas under the peaks representing the monomer 

populations of each protein to calculate the response factor (Figure 10A). The measured peak 

intensity is linearly dependent on the concentration of each protein after buffer exchange that 

was injected into the mass spectrometer. This result demonstrates that both proteins behave 

similarly in IM-MS, although the slope of the line is slightly varied for the two proteins. The 

peak intensity of the HDAC8-PCBP1 complex was measured at varying concentrations of 

HDAC8 and PCBP1. Taking into account the variation in ionization, preliminary dissociation 

constants were determined for these data using the equation as summarized in Figure 10B. There 

was significant variability in the calculated value of KD depending on the protein concentration 

(21 – 82 µM). The average of these values was KD = 51 µM with a standard deviation of 21 μM 

which reflects the affinity of the interaction between apo-HDAC8 and PCBP1. Dissociation 

constants determined in this way at different protein concentrations range within a factor of four.  

The spread in the ESI-MS-derived KD values for HDAC8 and PCBP1 is somewhat larger, 

between 20 and 80 μM. However, this level of variability is quite common when measuring 
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dissociation constants using the IM-MS method.
36

 

Figure 4.10 Measurement of the value KD for apo-HDAC8 and apo-PCBP1 using IM-MS. 

Relative abundance of HDAC8 and PCBP1 versus solution concentration of each protein. (A) 

Correlation between log-transformed monomer intensity of each protein measured by IM-MS 

and actual concentration of each protein after buffer exchange (B) Determination of KD by MS-

Based Titration from multiple spectra from nine different experimental datasets. KD and 

associated error is represented with bold text. 

 

 
 

DISCUSSION 

 

The identity of the native metal cofactor in a given enzyme in vivo is vital for 

determining how the enzyme is regulated and for developing potent inhibitors; however, the in 

vivo metal can be difficult to distinguish. A previous study showed that HDAC8 can switch from 

the Fe(II)-bound form to the Zn(II)-bound form in vitro.
4
 It may be possible that HDAC8 

switches metals in vivo, and this could be facilitated by a complex mechanism that requires 

additional regulatory proteins or chaperones to properly control metal homeostasis. Here we 
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investigated the possible interaction between HDAC8 and PCBP1, the iron chaperone to ferritin, 

using kinetic and mass-spectrometric analysis. Preliminary in vivo co-IP experiments indicate 

that PCBP1 and HDAC8 form a complex in T-REx HEK293 cells regardless of iron conditions, 

and subsequent IM-MS analyse have demonstrated complex formation under in vitro conditions.  

 

HDAC8-PCBP1 interaction in T-REx 293 cells 

Previously, PCBP1 was shown to act as an iron chaperone for ferritin, prolyl, asparagyl, 

and deoxyhypusine hydroxylase in mammalian cells. Here we have presented evidences that 

PCBP1 has an interaction with HDAC8 in T-REx 293 cells under Fe(II)-sufficient or deficient 

conditions. PCBP1 co-immunoprecipitated with HDAC8 in FAC-supplemented and DFO-

chelated T-REx 293 cells. These studies suggest that PCBP1 and HDAC8 can form a hetero-

oligomeric complex in the cell. A recent study revealed that PCBP1 and PCBP2 played a 

synergistic role in iron delivery to PHDs, but that they could not functionally replace each 

other.
24

 Additionally when purified, recombinant PCBP1 was shown to restore activity to PHDs 

in lysates from cells lacking PCBP1 but not from cells lacking PCBP2, this suggested that the 

two chaperones functioned cooperatively to deliver iron to PHD.
22

 This suggests that both 

PCBP1 and PCBP2 might be required to form a stable complex with and facilitate iron uptake in 

HDAC8.  

 

Kinetic analysis of HDAC8 with PCBP1 

To explore the effect of PCBP1 on HDAC8, we measured the kinetics for dissociation of 

Zn(II) or Fe(II) from HDAC8 in the presence or absence of PCBP1 in vitro. The rate constants 

for dissociation of Fe(II) from the HDAC8-metal complex were slower in the presence of PCBP1. 
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However, little change in metal dissociation was observed for Zn(II)-bound HDAC8. 

Additionally PCBP1 only affected the activity of Fe(II)-HDAC8, not Zn(II)-PCBP1. One 

possible mechanism for this could be the formation of an Fe(II)-HDAC8 complex with PCBP1 

which modestly decreases dissociation of Fe(II) through structural rearrangement (~2.5-fold, 

Figure 6), suggesting that in the context of a cell, binding partners including PCBP1 may 

contribute to form or stabilize the Fe(II)-bound HDAC8 and regulate its biological function. 

Zn(II)-HDAC8 might be able to form a complex with PCBP1, however, the catalytic activity and 

zinc dissociation rate constant are unaffected by binding PCBP1.   

One possible mechanism for inhibition of the catalytic mechanism of HDAC8 by PCBP1 

is competition for binding Fe(II). If the Fe(II) affinities do not change significantly upon 

formation of a HDAC8-PCBP1 complex, PCBP1 (KD 
Fe

 = 0.9 ~ 5.8 μM
20

) should significantly 

compete with HDAC8 for binding Fe(II) at concentrations above 10 µM. However, increasing 

the Fe(II) concentration in these assays does not decrease inhibition by PCBP1 (Figure 5), 

indicating that PCBP1 does not compete for Fe(II) binding to HDAC8.  This result suggests that 

the Fe(II) affinity of HDAC8 is enhanced by complex formation with PCBP1.  This enhanced 

affinity is consistent with the decrease in the Fe(II) dissociation rate constant under these 

conditions.  These results are consistent for a role of PCBP1 in regulating the cellular metal 

content of HDAC8.   

 

Probing the HDAC8-PCBP1 affinity by IM-MS  

To examine the HDAC8•PCBP1 complex, we developed an ion-mobility mass 

spectrometry experiment that could be further developed in the future to measure the complex 

under metal-bound conditions. These experiments demonstrate that HDAC8 binds to PCBP1 
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with a KD of ~50 μM in the absence of metal. Control experiments with CAII demonstrated that 

the observed binding between HDAC8 and PCBP1 is not non-specific based on the fact that no 

complex formation with CAII as observed under the same experimental conditions. These 

findings are consistent with the co-IP results, and taken together the data show that, HDAC8 and 

PCBP1 interact with micromolar affinity in the absence of metal ions. To gain more insight into 

biologically relevant metal-bound species, IM-MS experiments should be completed using 

samples with varying metal concentrations to form metal-bound HDAC8 and/or PCBP1 under 

the same assay conditions. Since both proteins bind metals in vitro and in vivo, we predict both 

that the metallated HDAC8-PCB1 complex should form with higher affinity and that HDAC8 in 

this complex should have a higher affinity for Fe(II), as proposed above. For these experiments, 

it is essential to use conditions where Fe(II)-HDAC8 is stabilized under aerobic conditions.  To 

this end, we demonstrated that addition of 5 mM ascorbic acid maintained the catalytic activity 

of Fe(II)-HDAC8 in air for 2 hours (Figure 11). A future direction will be to evaluate the 

HDAC8•PCBP1 binding affinity and stoichiometry as a function of Fe(II) concentration.  This 

will provide additional insight into the functional role of complex formation.  

Figure 4.11 Conditions to stabilize the activity of Fe(II)-HDAC8 outside of the glovebox. 

Activity of Fe(II)-bound HDAC8 was assayed using the FdL assay under exposure to air in the 

presence or in the absence of 5 mM ascorbic acid. 
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1
This was a collaboration with Seth Lab at UCSD and all metal binding fragments provided by them is 

explicitly labeled within the chapter. 

 CHAPTER 5 

INHIBITION OF LpxC
1
 

 

INTRODUCTION 

In Gram-negative bacteria, the outer layer of the cell envelope is predominantly 

comprised of lipopolysaccharides (LPS), which are anchored to the membrane through a core 

Lipid A component.
64,164

 Lipid A biosynthesis is essential for growth in nearly all Gram-negative 

bacteria. LpxC is an essential metal-dependent enzyme in Gram-negative bacteria that catalyzes 

the deacetylation of UDP-3-O-(acyl)-N-acetylglucosamine in the biosynthesis of lipid A (Figure 

1).
2
 For the majority of Gram-negative bacteria, the first step in the lipid A biosynthetic pathway,  

Figure 5.1 LpxC-catalyzed reaction to lipid A biosynthetic pathway 

 

catalyzed by LpxA, is thermodynamically unfavorable and reversible.
165

 Therefore, the second 

reaction catalyzed by LpxC is the first committed step of lipid A biosynthesis. For this reason, 
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LpxC is considered to be an antibacterial pharmaceutical target. Since inhibition of LpxC is 

bactericidal for most Gram-negative bacteria, it is considered an attractive target for treatment of 

multidrug-resistant Gram-negative infections.
65

  

Small molecule inhibitors targeting LpxC were first discovered in the late 1980s using 

compound screens that measured inhibition of 
3
H-galactose uptake in Escherichia coli cells.

166
 

Subsequent lead optimization studies led to the development of L-161,240, a hydroxamate-

containing phenyloxazoline compound (Figure 2).
166

 L-161,240 had antibacterial activity 

comparable to ampicillin against E. coli, but was ineffective against Pseudomonas aeruginosa.
166

 

Additional experimentation demonstrated that the antibacterial specificity of L-161,240 toward E.  

Figure 5.2 Summary of known LpxC inhibitors 
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coli is due to the greater binding affinity of this compound with E. coli LpxC (EcLpxC) 

compared to P. aeruginosa LpxC (PaLpxC) rather than differences in the intrinsic resistance 

mechanisms of these two bacterial strains, such as membrane permeability or drug efflux.
167

 

Subsequent drug development efforts yielded a series of sulfonamide-based compounds from 

British Biotech, such as BB-78485, which prevented E. coli growth with an activity better than 

that of L-161,240, but remain ineffective against P. aeruginosa.
168,169

 In 2004, scientists at 

Chiron synthesized the compound CHIR-090 that showed promise as a lead compound.
170

 

CHIR-090 is the best LpxC inhibitor reported to date, killing both E. coli and P. aeruginosa in 

bacterial disk diffusion assays with an efficacy comparable to that of ciprofloxacin. CHIR-090 

has a Ki of 2 nM for Aquifex aeolicus LpxC, and exhibits behavior typical of a slow, non-

covalent tight-binding inhibitor.
170

 Recently, a new series of LpxC inhibitors, such as pyridone 

methylsulfone hydroxamate (PF5081090), have been reported.
171

 These compounds have 

improved solubility and free fraction when compared to the previously developed biphenyl 

methylsulfone hydroxamate series, such as BB-78485, and showed higher Gram-negative 

antibacterial activity.
171

   

All inhibitors described above are structurally similar in that they contain both a 

hydroxamate group for coordinating with the active site metal ion (Zn/Fe) and a hydrophobic tail 

which mimics the hydroxy-myristate fatty acid group found in the natural substrate. However, 

most hydroxamate-based inhibitors are associated with severe toxicity and suffer from poor oral 

bioavailability since the hydroxamate groups readily hydrolyzes, leaving the corresponding 

carboxylic acid with a loss of inhibitory and antibacterial activity.
172

 Thus, there is an urgent 

need for the development of non-hydroxamate based inhibitors for LpxC. 
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In this chapter, a library of non-hydroxamate inhibitors targeting LpxC is screened and 

assayed to identify more potent, broad spectrum inhibitors of Lipid A biosynthesis. 

 

MATERIAL AND METHODS 

 

General methods 

All solutions were prepared in “metal-free” plasticware with reagents without extraneous 

metal ions, as verified by inductively coupled plasma mass spectrometry (ICP-MS, Dr. Ted 

Huston, University of Michigan). Reagents were of the highest quality available from Sigma-

Aldrich, unless noted.  

 

Preparation of E. coli LpxC 

Wild-type E. coli LpxC (EcLpxC) was overexpressed using a T7 expression vector and 

purified according to published procedures.
66

 All purification steps were carried out at 4 °C for 

EcLpxC. Following lysis using a microfluidizer, the cell debris was pelleted by centrifugation, 

and the supernatant was loaded onto a DEAE-Sepharose column in 25 mM HEPES, pH 7, 2 mM 

dithiothreitol. EcLpxC were eluted with a linear salt gradient (0–250 mM KCl). The LpxC was 

further fractionated using a Reactive Red 120 column with a linear gradient (0–250 mM KCl). 

LpxC purified by this method was >95% pure as assessed by SDS-PAGE and stored at -80 °C. 

All metals were removed from the purified enzymes by incubation with metal chelators 
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(DPA/EDTA), as described previously.
66

 The apoLpxC was reconstituted with stoichiometric 

amounts of ZnSO4 or FeCl2 prior to use in assays.  

 

LC-MS Assay condition 

The LpxC substrate, UDP-3-O-(R-3-hydroxy-myristoyl)-N-acetyl-glucosamine, was gift 

from Cubist Pharmaceuticals (Lexington, MA). The assay measures the enzymatic deacetylation 

of the synthetic LpxC substrate by mass spectrometry using a computer-controlled fluidic system 

combined with a triple quadrupole mass spectrometer (BioTrove RapidFire). The enzyme assay 

was conducted in 96-well polypropylene plates (Corning no. 3363) in a total volume of 50 μL. 

Substrate, UDP-3-O-(R-3-hydroxy-myristoyl)-N-acetyl-glucosamine, was first added to wells 

(final assay concentration 100 nM). Compounds (5 μL in 100% DMSO: compound final 

concentration range 50 μM to 200 μM) were added at room temperature. The reaction was 

initiated by the addition of LpxC (final assay concentration 1 nM) in buffer 20 mM Bis-Tris 

Propane (BTP)) pH 7.5, 1 mM TCEP, 10% DMSO and, 1 mg/ml bovine serum albumin (BSA). 

After incubation at room temperature for 30 min, reactions were stopped by the addition of 0.25 

N HCl (20 μL) and the plates sealed with Thermowell sealing tape (Corning Incorporation) and 

cooled to –80 °C. The frozen plates were then sent on dry ice to Biotrove, Inc. for analysis using 

the RapidFire ultra-highthroughput mass spectrometry system, consisting of a proprietary 

computer-controlled fluidic robot interfaced with a Sciex API-4000 triple-quadrupole mass 

spectrometer.
173

 The product and substrate peak areas were determined and a percent substrate 

conversion was calculated in Microsoft Excel. The percent inhibition was calculated by 

comparison to the activity in the absence of inhibitor. 



121 

 

Known hydroxamate inhibitor (L-161240, BB-78485, and CHIR-090) and 

nonhydroxamate inhibitor (196904) was provided by Cubist Pharmaceuticals. Metal-binding 

fragment library (CFL and DTP series) were provided by Prof. Cohen lab at UCSD. 

 

RESULTS 

 

High-throughput screen for LpxC inhibitors 

We used a label-free method to characterize the activities of inhibitors against E. coli 

LpxC using a high-throughput mass spectrometry method developed by BioTrove, Inc. (Woburn, 

MA).
173

 This method has been used for a screening assay with results comparable to an assay 

using radiolabeled substrate.
173

 LpxC catalyzes deacetylation of UDP-3-O-(acyl)-N-

acetylglucosamine, generating an expected mass species for substrate at 833 amu and for the 

product at 791 amu (Figure 3). Integration of the peak areas to quantify the substrate and product 

indicates a linear conversion of substrate to product as a function of incubation time; the 

substrate ion signal decreases while the product ion signal increases. The initial rate of product 

formation (<20% reaction) as a function of either substrate or inhibitor concentration can be 

calculated to measure kinetic values (kcat/KM or IC50) using this method. The purified E. coli 

LpxC (1 nM) was incubated with 100 nM chemically synthesized substrate (UDP-3-O-[(R)-3-

hydroxymyristoyl]-N-acetylglucosamine) in buffer in the presence or in the absence of inhibitor. 

At specified time, duplicate reactions were quenched by the addition of 0.25 N HCl and then the 

fraction of product was analyzed by mass spectrometry.  
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Figure 5.3 Measuring conversion of substrate and product using RapidFire mass spectrometry 

 

 

To examine whether the RapidFire mass spectrometric high-throughput assay accurately 

reflects LpxC inhibition, stopped assays in the presence of previously reported LpxC inhibitors 

were carried out in parallel (Figure 4). Under these conditions, all of the inhibitors decrease the 

activity to <0.1% of the LpxC activity in the absence of inhibitor while CHIR-090 (Ki = 2 nM) 

showed the most potent inhibitory activity.. Under these assay conditions, the relative initial rate 

in the presence of the inhibitor is in good agreement with the relative inhibitory potency of the 

compounds previously measured.
65

 These data demonstrate that the assay accurately measures 

the relative inhibitory potency of these compounds. 
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Figure 5.4 Control experiments of known LpxC inhibitors using the RapidFire MS assay. 

Inhibition by known LpxC inhibitors (10 μM) was measured in buffer (20 mM Bis-Tris-Propane 

pH = 7.5, 1 mM TCEP, 1 mg/ml BSA) with 100 nM substrate and 1 nM EcLpxC at room 

temperature in the presence of varying concentrations of hydroxamate inhibitors. After 60 min at 

room temperature, the reaction was quenched and then product formation was analyzed using the 

RapidFire MS assay. H2O is a negative control and ZnEnz is a positive control without inhibitor. 

HOPO-2 is an internal control. CHIR-090, L161,240, BB-78485, and PF5081090 are potent 

well-known inhibitors against LpxC. 

 

 

Metal-dependence of IC50 values of LpxC inhibitors 

Recent experiments have demonstrated that under most conditions, LpxC in E. coli is 

activated by a Fe(II) cofactor
67

 while the majority of screens have investigated inhibition of 

Zn(II)-LpxC. Therefore, we investigated whether the identity of the active site metal affects the 

affinity of inhibitors containing either a hydroxamate or a carboxylate group that directly 

interacts with the metal ion. The carboxylate inhibitor (196904) was designed and synthesized by 

Cubist Pharmaceuticals. Two of the known hydroxamic acid inhibitors of LpxC, L-161240 and 

CHIR-090, inhibit Fe(II)-LpxC ~2-fold better than the zinc-bound enzyme, consistent with the 
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enhanced kcat/KM value for the iron-enzyme (Figure 5).  

This same trend was also observed for the metal-dependence of inhibition of human 

deacetylase HDAC8 by the hydroxamic acid inhibitor, SAHA.
43

  However, the inhibitor BB-

78485 has ~2-fold higher affinity for Fe(II)-LpxC than Zn(II)-LpxC and the IC50 value for the 

carboxylate inhibitor, 196904, did not vary based on the metal cofactor bound to LpxC (Figure 4).   

Figure 5.5 Determination of IC50 for hydroxamate and carboxylate inhibitors. LpxC activity was 

assayed using the conditions described in the legend of Figure 4 including 100 nM substrate and 

1 nM EcLpxC in the presence of varying concentrations of hydroxamate and carboxylate 

inhibitors. After 60 min at room temperature, the reaction was quenched and then product 

formation was analyzed using the RapidFire MS assay. 

 

 

Screening non-hydroxamate compound library as LpxC inhibitors 

Inhibitors having hydroxamate functional group as metal-binding site encounter many 

obstacles that have limited their effectiveness in the clinic, although the hydroxamate-containing 
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compounds have been approved as drugs, such as ibuproxam and suberoylanilide hydroxamic 

acid (SAHA).
174

 For example, hydroxamic acids can readily hydrolyze in vivo to the 

corresponding carboxylic acid, resulting in poor pharmacokinetics.
175

 Herein, a library of >200 

non-hydroxamate metal-binding fragments, synthesized by the laboratory of Prof. Seth Cohen at 

UCSD, has been screened to evaluate inhibitor potency for E. coli LpxC using the mass 

spectrometric.assay (Figure 6). This library, containing 96 structural cores, was prepared from 

chelators with two to four donor atoms for binding metal ions and to provide sufficient solubility 

for screening.
176,177

 The chelating groups include picolinic acids, hydroxyquinolones, 

pyrimidines, hydroxypyrones, hydroxypyridinones and salicylic acids. This CFL library was 

previously screened against various enzymes (anthrax lethal factor, LF), a non-heme iron 

enzyme (5-lipoxygenase, 5-LO), a dinuclear copper enzyme (tyrosinase, TY), and a heme iron 

enzyme (inducible nitric oxide synthase, iNOS) in order to generate novel metal-binding 

fragments for a wide range of metalloenzymes.
177,178

  

All of the compounds compounds were soluble in the assay buffer and did not appear to 

aggregate under the assay conditions. This 96-member library (CFL) was screened against 

EcLpxC, at a fragment concentration of 200 μM, using a label-free mass spectrometry assay to 

identify LpxC inhibitors. The results of the screens are presented in a heatmap (Figure 6) 

representing the percent remaining activity of EcLpxC in the presence of the library compounds. 

Out of the 96 compounds, 34 compounds decreased activity ≥ 2-fold and 3 compounds decreased 

the activity >10-fold at 200 μM. Most of the hydroxypyrones series (CFL-D: 1d-11d) inhibited  

LpxC >2 fold with some compound inhibiting >10-fold. Additionally, several of the 

sulfur- containing hydroxypyridinethiones (CDL-E) inhibit LpxC >5-fold. Salicylic acid  
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Figure 5.6. Screening chelator fragment library (CFL) for compounds that inhibit LpxC. 

Heatmap representing the results from the screens of CFL-1.1 against Zn(II)-EcLpxC carried out 

as described in the legend of Figure 4. Cells are color-coded by the percent of the remaining 

activity: brown (80-100%), red (60-80%), green (40-60%), orange (20-40%), pale grey (10-20%) 

and white (no detection).  

 

 

derivatives (CFL-F) and the CFL-C series generally inhibited LpxC <2-fold. Additionally, 

several other compounds (12b, 12g, 1h) inhibit LpxC.  
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Based on these initial results, the Cohen lab synthesized another candidate library (DTP 

series) and this library of inhibitors was screened using the mass spectrometric assay (Figure 7). 

This library is composed of derivatives of 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one. 8 out 

of the 9 DTP series compound inhibit LpxC >2-fold at 50 μM. Dose-response scores for 

inhibition of E.coli LpxC were determined for the top scoring compounds and IC50 values were 

calculated (Figure 7). The compound DTP-088 was the most potent inhibitor against Zn(II)-

bound LpxC with IC50 ≈ 2 nM, which is comparable to the potent inhibitor, CHIR-090.   

Figure 5.7 Measurement of IC50 values of selected compounds from the DTP series. Dose-

response curves of inhibition of EcLpxC by DTP derivatives (0 – 100 μM) were measured in 

buffer (20 mM Bis-Tris-Propane pH = 7.5, 1 mM TCEP, 1 mg/ml BSA) with 100 nM substrate 

and 1 nM EcLpxC at room temperature. The IC50 values were calculated by fitting the following 

equation to the data: activityI = activity0 / (1 + [I] / IC50). The IC50 values for metal-binding 

fragments that inhibit activity by ≥50% are listed in the table. 
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DISCUSSION 

 

In this chapter, we addressed two important issues: 1) the effect of the active site metal 

ion (Zn/Fe) on the inhibitor affinity to better correlate the in vitro inhibitor potency with the in 

vivo activity, and 2) a searching for potent non-hydroxamate inhibitors of LpxC to overcome the 

in vivo limitations of hydroxamate inhibitors. 

LpxC containing a single catalytic Fe(II) has 6~8-fold higher activity than Zn(II)-

LpxC.
45

 The increases in kcat/KM and kcat upon substitution of Zn(II) with Fe(II) are proposed to 

be attributable mainly to an enhancement in the chemical step. The inhibitor potency could be 

altered by these changes in the active site metal ion or by changes in interactions with the 

substrate binding pocket. We demonstrated that the affinity of Fe(II)-EcLpxC for a hydroxamate 

inhibitor is altered less than 2-fold compared to the Zn(II)-enzyme.  

This result is consistent with high resolution structures showing that the Fe(II)-geometry 

in LpxC-hydroxamate complexes is five-coordinate.
169,179

 In contrast to Fe-LpxC, extended X-

ray absorption fine structure (EXAFS) spectroscopic studies and x-ray crystal structures of 

Zn(II)-LpxC from A. aeolicus and P. aeruginosa with hydroxamate inhibitors suggest a 4-

coordinate zinc ion (tetrahedral geometry).
179,180

 These data imply that the geometry of the metal 

site is flexible so that the Fe(II) site appears to adopt a five-coordinate structure even in the 

absence of added inhibitors. In general, the alteration between 4- and 5-coordinate geometries 

could explain a modest decrease in the inhibitor affinity of Zn(II)-LpxC from Fe(II)-LpxC. 

Although hydroxamate functional groups rank among the most potent inhibitors of LpxC, 
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many hydroxamates exhibit limited inhibitory activity in vivo following oral administration. This 

low activity has been attributed to the rapid metabolism of the hydroxamate group to the 

corresponding inactive carboxylic acid. To date, few high affinity LpxC inhibitors with other 

metal-binding groups have been reported. To overcome the limitations of the hydroxamate 

moiety we screened a library of potential inhibitors that contained other metal-binding moieties 

to identify LpxC inhibitors in vitro, and possibly in vivo. This library was originally assembled 

and screened against five matrix metalloproteinase (MMP) family members to identify new 

MMP inhibitors.
176

 The best compounds for inhibition of MMPs are library of 

hydroxypyridinone and hydroxypyridinethione fragments. For LpxC the best inhibitors generally 

contained a hydroxypyrones (CFL-D) or hydroxypyridinethiones (CDL-E). However, the best 

inhibitor was identified in a second library based on a DTP scaffold. Notably, the compound 

DTP-088 showed the most potent inhibition (nM range) from a non-hydroxamate inhibitor 

identified to date. This compound has suitable properties as a lead compound. The mode of 

inhibition as well as the structure of the compound bound to LpxC will provide further insight 

into the development of novel antibacterial compounds targeting LpxC.  

Investigators have focused on inhibiting the first committed step in lipid A biosynthesis 

catalyzed by the metal-dependent deacetylase, LpxC for many years. The most potent 

hydroxamate inhibitor identified so far, CHIR-090, has been characterized in terms of both the 

inhibitory mechanism and the structure of the LpxC-inhibitor complex. However, the narrow 

spectrum of antibacterial activity and pathogen resistance due to mutations and the high 

lipophilicity have been problematic for development of CHIR-090 as a novel antibiotic. 

Therefore, there is an urgent need to generate more potent, broad spectrum inhibitors that target 

LpxC. The work in this chapter improves our understanding of the role of metal cofactors and 
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metal chelators in developing inhibitors of LpxC. The identification of a potent non-hydroxamate 

inhibitor of LpxC will be fundamental for developing the next-generation, potent inhibitors 

targeting LpxC and may lead to novel antibiotics.  
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CHAPTER 6 

SUMMARY AND FUTURE WORKS 

 

SUMMARY 

A bound metal ion is essential for histone deacetylase 8 activity. The metal ion enhances 

the enzyme activity by activating the water nucleophile and polarizing the substrate, and 

stabilizing charge in the tetrahedral intermediate and the transition state. Thus, it was intriguing 

that HDAC8 shows different catalytic efficiency and peptide selectivity with bound Fe(II) or 

Zn(II), which are the most abundant metals in cells.
1
  

Also this enzyme has is inhibited by incubation with metal chelators.
2
 To date, the most 

potent compounds that effectively inhibit HDAC activity contain a metal-binding moiety such as 

a hydroxamate.
3
 After aerobic purification, HDAC was isolated with a bound Zn(II) and was 

therefore categorized as a Zn(II)-dependent metalloenzyme. However, additional data supported 

activation of HDAC8 by Fe(II). Based on the crystal structure, the HDAC metal ligands are 

unusual for a mononuclear zinc metalloenzyme in that two of the three ligands are negatively 

charged carboxylates.
4
 Also Fe(II)-HDAC8 is more active than Zn(II)-HDAC8 in vitro.

1
 Lastly, 

the HDAC8 activity is ~4-fold larger when the cells are lysed and assayed under anaerobic 

compared to aerobic conditions.
1
 In light of these observations, the work in this thesis addressed 

two important unanswered questions: 1) What are the metal binding kinetics and 

thermodynamics of HDAC8, and 2) What are the structural determinants of metal specificity and, 

potentially, metal switching? The overall goals of this thesis were to characterize the metal 
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binding kinetics and thermodynamics of a class I histone deacetylase, HDAC8, and furthermore 

to investigate the possible determinants that lead the enzyme to switch between Zn(II) and Fe(II) 

as an active site cofactor. 

 

1. Measurement of metal-binding properties of WT HDAC8 using newly-developed FP assay 

I have investigated the metal binding kinetics using HDAC8 using a newly-developed 

fluorescence polarization (FP) assay with a fluorescein-labeled SAHA (flSAHA). First, the 

kinetic/thermodynamic values (kon, koff, KD) of flSAHA binding to apo- and metal (Zn(II)/Fe(II))-

bound HDAC8 were determined using the FP assay and stopped-flow spectrometry. We noted 

that the binding affinity of flSAHA to metal-bound HDAC8 was fairly high and were 

comparable to selected HDAC8 inhibitors, SAHA. Association rate constants of flSAHA to 

Zn/Fe-bound HDAC8 were also fast enough to allow me to measure metal-binding kinetics of 

HDAC8.   

Then, using the FP binding assay and the conventional FdL activity assay, the metal 

(Zn(II)/Fe(II)) binding kinetics and thermodynamics (koff and KD) of HDAC8 were investigated. 

Interestingly, koff of both metals were comparable, while KD values varied from the picomolar to 

micromolar range for Zn(II) and Fe(II), respectively.  These affinities are comparable to the 

readily exchangeable Zn(II) and Fe(II) concentrations in cells, consistent with either metal 

cofactor activating HDAC8. 
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2. Second shell residues determine the metal (Zn/Fe) selectivity and reactivity of HDAC8 

To characterize the structural determinants of metal switching in HDAC8, mutations of 

conserved second shell ligands (M274, F207, F208) which are unique to HDAC8 were generated 

using site-specific mutagenesis. The catalytic activity (kcat/KM) and metal affinity and kinetics 

(koff, and KD) were assayed using the FP binding assay and the FdL assay for both Zn(II) and 

Fe(II). These results indicated the importance of these residues for both the Zn(II) / Fe(II) 

affinities and catalytic activities of HDAC8. Notably, the M274E mutant has enormously 

enhanced selectivity for Fe(II) compared to Zn(II) compared to that of WT.  This Fe(II)-specific 

HDAC8 mutant has properties which may be ideal for combining with flSAHA for development 

of a cellular iron-sensor (chapter 3, figure 7). In future, more mutations of these amino acids 

(M274L, F207Y, F208Y) will be made and assayed to further delineate the role of second shell 

ligand on metal selectivity. Although Met is located in HDAC8, other class I HDACs contain 

Leu as their conserved residue. It would be interesting to see if S atom has an effect on reactivity 

or metal binding affinity through interaction with His180. F207A mutant shows preference for 

Zn(II), while F208A has an strong affinity for Fe(II). By placing an hydroxyl group from Tyr 

residue instead of Phe, we could determine the role of hydrophobic interaction in pre-orienting 

the metal environment of HDAC8.  

A collaboration with Dr. David Christianson at the University of Pennsylvania to 

crystallize both Zn(II)- and Fe(II)-HDAC8 of mutants showing a higher preference for one metal 

will visualize changes in the metal geometry and the surrounding protein residues that are 

important for metal selectivity. These experiments will advance our understanding of the 

underlying principles of metal selectivity function in the context of second shell ligand 
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environment.  

 

3. Investigation of HDAC8-PCBP1 interaction by kinetic and mass-spec analysis 

Many of the HDAC isozymes form complexes with a variety of other proteins
5,6

.  

Indeed, mass spectrometry and pull-down data suggest that poly (rC) binding protein 1 (PCBP1), 

an iron chaperone of ferritin, interacts with HDAC.
7
 Therefore, the effect of PCBP1 on the 

activity and metal dissociation kinetics of HDAC8 were measured to explore the PCBP1 as a 

potential metallochaperone candidate. Co-IP data indicated that PCBP1 physically interacted 

with HDAC8 in vivo regardless of the cellular iron conditions. Using IM-MS in collaboration 

with Prof. Ruotolo lab, an HDAC8-PCBP1 complex was identified with a KD for the two apo 

proteins of ~50 μM. The koff of Fe(II) from HDAC8 was decreased in the presence of apo-

PCBP1, whereas koff for Zn(II) was not altered. Additionally, only the catalytic activity of Fe(II)-

bound HDAC8 was affected by apo-PCBP1, implying that the protein interaction site for PCBP1 

on HDAC8 must not occur at the active site.  

 

4. LpxC inhibition 

There is a need for the development of non-hydroxamate metal-binding inhibitors for 

LpxC, since most hydroxamate-based inhibitors lead to severe toxicity and poor oral 

bioavailability. To search for novel non-hydroxamate inhibitors of the LpxC enzyme, we 

collaborated with Cubist pharmaceutical and Prof. Cohen at University of California, San Diego 

to assay current potent inhibitors and their novel lead compounds. The affinity of Fe(II)-EcLpxC 
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for a known hydroxamate inhibitor (L161240, CHIR-090) increases by a small degree (~2-fold), 

consistent with crystal structures indicating that the metal geometry in LpxC-hydroxamate 

complexes is 5-coordinate. This change in affinity is likely due to alteration of the geometry of 

the metal-ligand coordination leading to alterations in interactions with other active site groups. 

Subsequently, a library of novel potent metal-binding fragments were screened using the Cubist 

HTS MS assay and found to have submicromolar inhibitory affinity.   

 

FUTURE WORKS 

Metal switching in HDAC8 

In HDAC8, many questions about the in vivo metal still remain unclear. The current 

evidence strongly suggests that Fe(II)-bound HDAC8 can form in vivo.  Therefore, 

identification of the cellular conditions that lead to formation of the Fe(II)-HDAC8 or Zn(II)-

HDAC8 is the most important question to ask to understand the biological implications of metal 

switching. If HDAC8 does switch the native metal in vivo in response to cellular factors, this 

would suggest that many members of HDAC superfamily should be examined to identify cellular 

conditions that lead to metal switching.  

If the metal bound to HDAC8 does not to correlate with the metal content in the media, 

as observed for the bacterial deacetylase LpxC
8
, it will be interesting to identify other stimuli, 

such as binding partners
7
 or metallochaperones, that are responsible for determining the identity 

of the native active site metal. In eukaryotic cells, extracellular metal ion concentrations might 

not be variable enough to induce switching, but other changes, such as oxidative stress or 
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potential alterations in the substrate pool, might lead to metal switching.
9
 In this model, the 

enzyme-bound Fe(II) dissociates from the enzyme and is replaced by Zn(II) which is increased 

due to oxidative stress.  Metal switching could also be enhanced by oxidation of HDAC8-bound 

Fe(II) to Fe(III) which has lower affinity.  

Based on evidence that Fe(II)-HDAC8 is more active than Zn(II)-HDAC8, an important 

future direction is to probe native metal ion bound to HDAC8 in vivo in mammalian cells under a 

variety of cellular conditions.  The pull-down method used to evaluate the native metal ion 

bound to LpxC
8
 could be optimized to probe metals bound to HDAC8 in tissue culture cells. 

Determining the physiological metal bound to HDAC8 under various condition (such as ± H2O2 

and during cell division) will shed light on whether the novel metal switching mechanism of 

HDAC8 has cellular importance, such as acting as a protective redox mode. 

Probing substrate selectivity of HDAC8 second shell mutants using short acetylated 

peptides will shed light on the molecular recognition of metal ion in HDAC8. This can be done 

in collaboration with the Schueler-Furman lab at the Hebrew University of Jerusalem who has 

been working on models to predict HDAC8 substrates through multiple iterations of reactivity 

prediction using the Rosetta FlexPepBind platform. These results suggest that metal switching 

may alter the substrate/peptide selectivity, providing a potential mechanism to regulate HDAC 

activity in vivo.  This experiment needs to be extended to be performed with tissue culture cells, 

since HDAC8 binds a mixture of Fe(II) and Zn(II) when expressed in mammalian tissue culture 

cells. If the metal selectivity is mainly determined by structural factors, such as second shell 

ligand, then the metals bound to HDAC8 expressed in tissue culture cells should vary with 

mutants in second shell environment. 
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Development of iron sensor 

Effective fluorescent probes for imaging iron ions in living cellular environments is 

needed to measure free iron concentration more accurately, leading to an enhanced 

understanding of the biological function of iron. In the last several years, a series of probes have 

been developed for Fe(II) and Fe(III) that may allow new discoveries regarding cellular iron 

homeostasis.
10,11

 However, current fluorogenic agents for cellular iron detection are limited to 

fluorescence quenching readouts. For example, calcein is a commercially available fluorophore 

that has been used for turn-off Fe(II) detection. This reagent is about ten-fold more selective for 

Fe(II) over Fe(III) but also shows significant interference from other metal ions, including Cu(II), 

Ni(II) and Co(II). There is urgent need to develop more specific sensor which can used in in vivo 

accurately. 

An application goal of the second shell mutant study was the development of a series of 

HDAC8 variants, such as M274Q or F208A, with significantly improved properties for sensing 

iron in cells. Various mutations in the second shell ligand of HDAC8 generate distinct metal 

specificity for KD
Zn

/KD
Fe

. The proposed sensing scheme is to use HDAC8 as the metal 

recognition element and couple this to binding of fl-SAHA to visualize bound metal ions.  

Wild-type HDAC8 is not sufficiently selective for Fe(II) such that it would likely reflect both 

cellular Fe(II) and Zn(II) levels. However, a variant of HDAC8 second shell ligand (e.g. F208A) 

binds Zn(II) with a KD > nM while retaining an Fe(II) KD of 0.2 μM. The enhanced selectivity for 

iron is ideal for the development of an Fe(II) sensor, although the molecular determinants of 

selectivity are not yet understood.  For metal sensing, a red fluorescent protein, TagRFP, will be 

fused to the C-terminus of the HDAC8 mutant as a FRET acceptor and fluorescein-labeled 
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SAHA (flSAHA) bound to the active site will function as the FRET donor.  The FRET signal 

will reflect metal-bound HDAC8 since flSAHA requires an active site metal ion to bind with 

high affinity.  This sensor will be calibrated for measuring free iron in E. coli cells and then 

adapted for use in tissue culture cells. This approach has already proven feasible for sensing 

readily exchangeable zinc in cells using CAII variants. T199A, Q92A, H94N and WT CAII 

fused with TagRFP bound a fluorescent ligand (dapoxylsulfonamide) to reflect zinc binding.
12

 

These sensors successfully measured picomolar zinc concentrations in E. coli at pH 7.6, and 

were very sensitive for detecting subtle differences in intracellular free zinc concentrations.
39

 

Herein, we prepared HDAC8 variants with altered selectivity for both metals suggesting that 

iron-specific sensors could be made. 

 

Development of LpxC inhibitor 

A majority of current compounds efficiently inhibit the growth of E. coli and are 

selective inhibitors for EcLpxC. Because square pyramidal geometry has been observed for all 

hydroxamate containing inhibitors, this zinc coordination has generally been regarded as a 

primary restraint for design of LpxC inhibitors. However, there is growing evidences that LpxC 

is activated by Fe(II) or Zn(II) based on cellular conditions.
8,13

 The affinity of Fe(II)-EcLpxC for 

a hydroxamate inhibitor increases by a small degree (~2-fold), consistent with the five-

coordinate (square pyramidal) metal geometry in LpxC-hydroxamate complexes. Next efforts to 

identify potent inhibitors which coordinate the metal ion at the active site of LpxC are required to 

determine the behavior of this enzyme in vivo and prevent overestimation of current inhibitors. 
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CLOSING REMARKS 

The work presented here has provided insight into the metal binding mechanism of 

HDAC8 and determinants of metal switching of HDAC8. Since metal switching is proposed to 

be a common phenomenon among certain metallohydrolases, affecting the activity and 

regulation of numerous proteins, it is critical that we better understand this mechanism. This 

research provides insight into the specific role of structural elements (e.g., second shell residues 

or monovalent cation binding) in eukaryotic cells and furthermore will be useful in developing 

an iron-specific metal sensor or more potent HDAC inhibitors. 
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