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ABSTRACT 

 

HIGH THROUGHPUT PHOTOPATTERNING AND INTERACTIVE 
MANIPULATION OF MICROPARTICLES AND MICROORGANISMS 

 

By 

Christopher Ryan Oliver 

 

Chair: Professor John Hart 

 

Recent advances in soft material microfabrication technologies are enabling wide-ranging 

studies of cellular and organism behavior in vitro; however, these methods are generally time-

consuming, challenging to implement by non-experts, are limited to planar features, and cannot 

be reconfigured within live environments.  As a result, it is not possible to manufacture realistic 

artificial tissue constructs, nor to perform dynamic experimentation with model organisms. 

This thesis describes an integrated hardware and software platform, based on micro-scale 

light shaping and high-speed machine vision algorithms that enables real-time, dynamic photo-

patterning in response to microscale environmental changes.  An optofluidic lithography system 

designed for the purpose of in-flow polymerization of hydrogel microstructures achieved 

diffraction limited resolution (r = 0.7µm) with a maximum distortion of the projection of 160nm.  

This enables continuous production of poly(ethylene-glycol) diacrylate(PEG-DA) microparticles 

(20-100μm, CoV5-15%).  A new pillared microfluidic device design increased throughput up to 

1500-fold, capable of synthesizing 2.5 ൈ 10଺ particles per minute. 

Biocompatibility of hydrogels was validated for model organism C. elegans, and 

hepatocytes.  Dynamic assays where structures were built during live culture affirm that 

proximity of pillared structures increased the swimming speed of C. elegans and showed that 

worm behavior can be influenced by sequential photopatterning of free-floating structures. 
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A software architecture was designed to enable use of machine vision to in flow, by 

photopolymer encapsulation in response to image-based decision events.  We then evaluated the 

sensitivity, specificity, RMSE and computational time of candidate machine vision algorithms, 

and find the Speeded Up Robust Feature (SURF) method was the most robust though 

Thresholding was 3 orders of magnitude faster than SURF.  Using this capability, we sorted 

poly(styrene) micro particles by size via selective encapsulation (TPR=100% and 

SPC=99.999%, Mean error 4.7 pixels); and print patterns of hepatocyte aggregates with single 

cell resolution (<20µm) onto polymer substrates.   

Last, the thesis describes the design and testing of a six-axis robotic dynamic lithography 

system for patterning large area curved surfaces.  Looking forward, platforms combining micro- 

and nanofabrication processes with image-driven artificial intelligence algorithms could widely 

expand capabilities for scalable biofabrication and automation of science, including for custom 

fabrication of cell-based assays and in vitro organ mimics. 
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CHAPTER  I. INTRODUCTION 

Motivation 

The goal of my doctoral research (Figure 1) has been to converge expertise in laboratory 

robotics and automation by using advanced lithography to understand how to manipulate and 

assemble micro-scale building blocks as a tool for bioengineering research.   

 

Figure	1.		Intersection	of	fields	and	research	interests	converging	in	this	thesis.	

Study of many biological systems using in vitro models requires the assembly of microscale 

building blocks, such as biological cells or polymer microstructure in two- and three-dimensional 

systems.  For example in tissue engineering, to create an organ on a chip the liver  can be 

discretized into building blocks [1].  Then the building blocks can then be arranged onto a 

substrate to be cultured into functional tissue-like material (Figure 2). 
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Figure	2.		Motivational	concept	of	organizing	building	blocks	into	functional	systems	such	as	in	

tissue	engineering.	

One method of organizing cells onto a substrate is to pattern topographic features that capture 

cells onto a device using soft lithography.  Microfabrication of soft materials was introduced by 

George Whitesides when he introduced the idea of “soft lithography” in which PDMS is cast 

from a mold into microstructures such as channels and pillars [2], [3].  This method requires the 

fabrication of a master mold and subsequent casting and fabrication of a device over several 

days.  This has been employed by Bhatia et al. to capture and localize cell aggregates (cells 

cultured in spherical polymer particles) [4].  Moreover, while soft lithography has been robustly 

applied to address many biologically relevant problems it requires expert knowledge and is not 

reconfigurable within live environments.  Therefore, it is highly desirable to have a template-free 

method of organizing cell-scale building blocks, with arbitrary configuration, in 2D and 3D.  

This enables rapid testing of arrangements of cells and helper cells to find optimal configurations 

that function similar to the original tissue.    
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In order to enable assembly of arbitrary building blocks, a method is needed to synthesize the 

building blocks at scale.  Inspiration is provided by the seminal work of Patrick Doyle who has 

developed a method of lithographically patterning microparticles inside of a microchannel using 

a mask.  The mechanics of this process are discussed in 0, but the use of light to arbitrarily 

control the shape of synthesized microparticles and to encapsulate cells inspires the idea of using 

light do manipulate them. 

The microfluidic lithography technique has been extended to direct the motion of particles to 

pre-planned locations via rails in the fluidic channel.  Kwon et al. patterned rails into the 

microfluidic device that accept a fin on top of a pre-fabricated particle to direct a collection of 

them into grid patterns where the particles interlock due to 2D features on their surface.  This 

form of bottom up construction is inspirational for the work in this thesis, because to meet the 

grand challenge one the goals is to organize cell laden particles into 2D patterns.   

Figure	3.		An	example	of	soft	lithographic fabrication	of	organ‐on‐a‐chip. 	aሻ		Fabrication	of	cell	

aggregates	using	photopolymerized	droplets in	a	microfluidic	device.		bሻ		Localization	of	cells	by	

features	patterned	onto	a	soft	lithographic	microfluidic	device ሾ4ሿ.	copyright	2014	Nature	

Publishing	Group.
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Figure	4.		Microfluidic	lithography	prior	work.		aሻ		Microfluidic	flow	lithography	as	published	by	

Doyle	and	colleagues	showing	fabrication	of	microparticles	inside	a	fluidic	channel	when	a	

photopolymer	is	exposed	to	light.		bሻ		The	process	of	stopping	the	flow	when	the	shutter	is	opened	

and	flowing	finished	particles	out	of	the	device.		cሻ		Schematic	of	railed	lithography	as	described	by	

Kwon	et	al.		dሻ		Side	view	of	the	channel	showing	the	rail	and	particle	fin.		eሻ		Micrograph	and	SEM	of	

particle	in	the	device	and	illustrating	the	fin	that	aligns	with	the	rail.		

	

However, railed lithography is unable to select an arbitrary particle and relies on some other 

method of buffering particles to be arranged.  By comparison macro manufacturing in which 

pick and place systems use machine vision to localize and manipulate products such as pancakes 

offer more flexibility and have been adapted to meet microscale positioning requirements.  An 

example system using a flexure picker to organize microbeads was demonstrated by Chen et al. 

with micron level accuracy [5].  However, pick-and-place methods do not scale favorably to the 

micro-scale because the machine can only manipulate one particle at a time limiting the 

throughput.  In addition, a mechanical gripper is not well suited to manipulating biological 

components that are easily damaged by shear forces and once gripped will tend to stick to the 

end effector rather than release onto the substrate because of their “sticky” surface.   

	copyright	2007	Royal	Society	of	Chemistry. copyright	2008 Nature	Publishing	Group.	
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The combination of the motivation we’ve discussed and the inspirational work in various 

fields has led us to consider the shaping and steering of light driven by computer aided decision 

making and machine vision to address the challenge and other relevant applications.  Texas 

Instruments manufactures a device called a Digital Light Processing (DLP) or Digital 

Micromirror Device (DMD) that controls the orientation of micromirrors to shape light into 

structured patterns.  It is the same technology found in commonly used office projectors to 

generate an image.  We will discuss the design and structure of this device in more detail later in 

this work.  Here, consider simply that it enables the ability to control thousands of beams of light 

and direct them according to real time feedback from an image processing unit.  In the same way 

multiple robots can be placed on an assembly line we imagined using the light beams as end 

effectors to photopolymerize on demand.  Moreover, the wavelengths in the electromagnetic 

spectrum enable the concept of light as a manipulator high flexibility in manufacturing.  By 

dividing the spectrum into ranges (i.e.360	݊݉ േ 30	݊݉, 450	݊݉ േ 30	݊݉) portion of the 

spectrum can be used for different function such as imaging, photopolymerization and heating. 

Thesis outline 

With this motivation in mind, the goals of this thesis are to: 

• Design and build a modular maskless photopatterning system. 

• Develop software and algorithms enabling adaptive and interactive photopatterning in 

microfluidic environments. 

• Explore initial applications of dynamic photopatterning including interacting with C. 

elegans in vivo, sorting/encapsulating polymer microparticles and printing microparticles 

and hepatocyte cell aggregates into predefined shapes.    

• Practice my expertise and interest in laboratory automation through the realization of a 

robotic lithography system to apply dynamic photopatterning to arbitrary curved surfaces. 

The chapters are structured such to highlight each level of complexity and the underlying 

engineering challenges as the work approached the goal of dynamically manipulating particles, 

objects and organisms.  This includes the application of the author’s expertise in developing 

large scale automation to solve microscale problems.   

 

Chapter 2 describes the design and construction of a maskless lithography system, and 

presents a detailed analysis of the optical design and system performance.  The goal is to 
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design a system that is diffraction limited (r = 0.7 µm) and can achieve on-demand 

patterning of photopolymers in fluidic channels or on substrates.  

 

Chapter 3 discusses use of the maskless lithography system to manufacture of 

microparticles synthesized from Poly(ethylene) glycol diacrylate (PEG-DA) hydrogels, 

which are intended to be used for future work on self-assembling microparticles.  A 

library of microparticles (20-100 μm) is synthesized with a polydispersity (CoV) between 

5-15%.  Moreover, a pillared microfluidic device is shown to achieve a 40-1500 fold 

increase in throughput and may be able to make 2.5 ൈ 10଺ microparticles per minute.   

 

Chapter 4 demonstrates application of the maskless lithography system to study the 

behavior of C. elegans worms in assays fabricated in vivo.  In order to enable use of the 

system for in vivo photo-patterning, hydrogel biocompatibility and performance is 

evaluated and we search for a platform that can pattern directly onto agar.  Assays are 

performed to study locomotion and decision making in response to rewards.  Additional 

assays demonstrate the ability to fabricate moving parts and perform interactive 

experimentation using researcher feedback. 

 

Chapter 5 presents algorithms and software enabling dynamic lithography to utilize 

computer aided decision making in response to changes in the microenvironment.  

Design problems for this system are modeled and discussed including the algorithm for 

detecting and generating masks to project onto particles, latency in communication 

between system components and control over projection accuracy.  Then, we demonstrate 

the use of this to encapsulate/sort micro beads flowing in a fluidic channel.  We then 

detail the variables that control throughput using this system based on Little’s Law. 

 

Chapter 6 improves the performance of dynamic lithography by quantitatively studying 

the performance of selected established detection and tracking algorithms.  We quantify 

the detection and tracking root mean square error (RMSE), sensitivity, specificity and 

computational cost of each method.  These metrics are collected against ground truth 

simulated videos that enable us to examine independently the properties common to 
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microscopy images (blur, signal-to-noise, particle size, particle velocity, particle 

dynamics, particle complexity and others).  This comprehensive approach gives insight 

into what parameters can be controlled, and for those we cannot control how detrimental 

they may be to performance.  Further we break down the functions involved in the 

algorithm and report how computational cost changes with increasing particle density. 

 

Chapter 7 applies dynamic lithography towards the grand challenge of flexible tissue 

manufacture, starting with hepatocyte aggregates as the printing “ink”.  First, 

biocompatibility of the hepatocytes to both substrate and photo-polymer is investigated.  

Then we design an algorithm to pattern cells and other objects.  Finally, we demonstrate 

and characterize the performance of this new capability by printing arrangements of 

particles and multiple types of cells into predefined patterns.  This is done towards 

organizing tissue like material. 

 

Chapter 8 presents a robotic system for three-dimensional (3D) photopatterning.  

Fabrication of structures on the surface is achieved by positioning and focusing the 

projector using a six axis robot before exposure of the surface.  The design of the system 

is presented and resolution of the projection system is measured.  Finally, we demonstrate 

the ability to pattern a metal ball and discuss challenges caused by error propagation in 

the motion system.  
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CHAPTER  II. A MODULAR MASKLESS LITHOGRAPHY SYSTEM 

Abstract 

The capability to fabricate polymer microparticles on demand, and to create direct-write 

microfeatures on surfaces, enables applications such as multiplexed diagnostics.  This chapter 

presents the design and construction of a modular maskless lithography system.  First, the system 

was designed to accommodate a fixed mask; then, it was adapted to a maskless configuration 

using a Digital Light Processing chip (DLP).  The performance of the system is modeled and 

measured including the imaging, illumination and projection of the shaped light.  The system is 

then used to fabricate structures from polyethylene glycol diacrylate (PEG-DA) on glass.  The 

modularity of its configuration is exemplified by integrating a roll to roll system to pattern 

microstructures on copper tape moving under the system.    
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Introduction 

The origin of the word “lithography” traces back to ancient Greece when it meant to “Write 

with a stone [6].”  Modern photolithography may be better described as “Write with light,” as 

modern methods have enabled the scale-up and continued miniaturization of semiconductor 

fabrication technology [7].  Photolithography is based on the concept of transferring a pattern 

onto a light sensitive polymer by projecting light through a mask.  The light is shone through the 

mask which project the pattern and initiates polymerization.  The polymer used in this process is 

a photo sensitive polymer, commonly called a photoresist.  

Despite the versatility and scalability of modern photolithography it typically requires a fixed 

mask which makes the cost high for producing new patterns.  This is a practical challenge to 

laboratories that are not looking for mass-production quantities.   

In the early 2000’s, researchers sought to improve the flexibility of lithography using direct 

write microscope methods.  Love et al. have adapted a Zeiss microscope for patterning resists in 

the laboratory [8].  Then with the advent of spatial light modulators (DMD) [9] maskless 

lithography was implemented by Mei et al. to fabricate semiconductors and flat panel displays 

[10].  Many other methods have been developed, that are centered on the idea of how to best 

project light onto a photosensitive material (i.e. photoresist).  Many of the methods are shown in 

Figure 5 [11]–[17]. 

 

Figure	5.		Tree	of	lithography	technology.		Masked	based	methods	use	polymers	or	glass	type	

materials.		Masked	methods	include	DLP,	Liquid	crystal	on	Silicon	ሺLCOSሻ,	laser	and	electron‐beam	

ሺe‐beamሻ.	
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In this chapter, we discuss the design and construction of a modular maskless lithography 

system.  Previous contributions in the field have built DLP based maskless lithography systems 

by modifying off-the-shelf microscopes [18] or designing the entire optical train and achieved 4 

µm resolution.  We sought to design a system that uses off the shelf components but has greater 

modularity than a modified microscope.  We present the design principles to achieve diffraction 

limited, high resolution optical performance, and discuss tradeoffs in design that degrade 

performance.  Aberrations in the system are modeled and when possible characterized.  The 

system was first designed to accommodate a standard quartz mask then integration of the 

maskless components is introduced.  We characterize the projection, illumination and imaging 

performance independently, and demonstrate the system fabricating microstructures in a 

hydrogel resist called Poly(ethylene glycol) diacrylate (PEG-DA) on glass and copper with a 

resolution of 10 µm.  To highlight the modularity of the design (various masks, camera, 

objectives, stages) we also combine it with a roll-to-roll reel of tape.  The structures of PEG-DA 

pillars are patterned continuously along the tape using the roll-to-roll system. 
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The design process 

It is composed of a mask/DMD, CCD (Charge-coupled device) camera sensor and a light 

source (Figure 6). 

 

Figure	6.	Photograph	of	the	first	masked	version	of	the	lithography	system	

This system performs three optical processes: 

 Projection 

 Imaging 

 Illumination 

The system must project the image formed by the mask accurately.  At the same time, 

imaging the substrate is important to be able to focus the projection and observe changes in the 

photo-polymer.  Finally, two forms of illumination play two very different roles.  The first is to 

illuminate the substrate for the camera, while the second is to polymerize the resist.  In both 

cases uniform, parallel beams are desired. 
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Design of the projection system 

As shown in Figure 7 the paraxial layout establishes the focal lengths and overall size of the 

system.  Here ଵ݂ is the focal length of the objective, ଶ݂ is the focal length of the tube lens and d is 

the distance between the objective and the tube lens.     

 

Figure	7.		Paraxial	design	of	the	projection	system,	excluding	the	illumination.		Schematic	of	

designed	system	is	shown	in	Figure	6.	

We chose to use off the shelf optical components for accessibility and transferability to other 

laboratories.  For that reason the system is built around Mitutoyo long working distance 

objectives to access a range of resolutions.  These lenses have long working distances (>15 mm) 

making them ideal for microfluidic or roll to roll integration.  Their specifications are shown in 

Table 1. 

Table	1.		Mitutoyo	objectives	and	their	imaging	properties.	

Objective 
(Magnification) 

Focal length 
(mm) 

Numerical 
aperture 

Working 
distance 

(mm) 

Depth of 
focus (µm) 

5 40 0.17 34 14 
20 10 0.42 20 1.6 
50 4 0.55 13 0.9 
     

 The system is designed as an infinity corrected system, which means that the object space is 

focused to infinity.  It is composed of two lens groups, the objective and tube lens, with a stop in 

between them and an entrance pupil controlled by the objective.  They are arranged such that the 

objective is one focal length away from the substrate and the mask is one focal length away from 

the tube lens.  In this case the objective must project an image from the mask onto the substrate, 

but the distance between the objective and tube lens is not related to the magnification or focus.  

The objective both images the light reflected from the substrate and projects the light from the 

tube lens.  For infinity corrected systems the magnification of the system takes on a special 
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relationship where magnification (ܯ) is equal to the focal length of the tube lens ( ଶ݂ሻ divided by 

the objective focal length ( ଵ݂ሻ. 

ܯ  ൌ
௙మ

௙భ
Equation 1

Constrained by the numerical aperture (NA) of the objective, we calculate the tube lens focal 

length necessary to achieve a specific mask size and field of view (FOV) projection.  The 

matching focal length of the tube lens for this objective is 200 mm.  However, we chose a lens 

with a focal length of 150 mm instead to limit illumination energy lost to the optical path.   

This choice is also coupled to the projection resolution, as characterized by the modulation 

transfer function (MTF).  The modulation transfer function is used to describe how well a lens 

system reproduces an image [19].  We calculate the quality by measuring the profile of the 

intensity across a patterned image; a bar pattern with decreasing spacing between adjacent bars.  

For any pair of bars along the profile the modulus of the intensity values, representing the 

contrast, can be calculated as: 

 
ݐݏܽݎݐ݊݋ܥ% ൌ

௠௔௫ܫ െ ௠௜௡ܫ
௠௔௫ܫ ൅ ௠௜௡ܫ

100ݔ
Equation 2

By relating contrast to the spacing between pairs of bars (line pair) in the image and object 

we calculate the MTF.  

ܨܶܯ  ൌ
%஼௢௡௧௥௔௦௧ ௜௠௔௚௘

%஼௢௡௧௥௔௦௧ ௢௕௝௘௖௧
Equation 3

 Practically, we apply the MTF to identify a quantity called the line pair resolution.  The line 

pair resolution is defined as the smallest line pair spacing that is visible in the projected image.  

Because the MTF describes contrast we chose an MTF value of 30% to describe a line pair that 

is fully resolved.  This means that during exposure the space between two lines will receive 30% 

of the illumination intensity as is projected on the line.  Therefore, we optimized the lens focal 

values and relative positions to achieve an MTF value of 30% when the line pair spatial 

resolution is 1 µm or less.     

Next, we simulated the performance using the prescription of a real lens (Thorlabs, LBF254-

150) rather than an ideal lens that was initially assumed.  Using ZEMAX software we evaluated 

the negative effects such as a reduction in contrast, resolution and an increase in aberrations.  

Two fields are examined, 1) the on axis or zero field and 2) the edge of the sample 0.5 mm from 

center or the off axis/extended field.  The effect on the MTF is shown in Figure 8b, where the 

zero field remains diffraction limited with a resolution of 700 nm but the extended field shows a 
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resolution of 1.1 µm.  This is because aberrations are introduced due to the geometry of the tube 

lens.   

 

Figure	8.		Modeling	the	projection	system.		aሻ		Ray	trace	when	using	a	real	lens.		bሻ		The	modulation	

transfer	function	ሺcontrast	between	line	pairsሻ	compared	to	the	spatial	frequency	of	a	sinusoidal	

input	function	in	mm.		The	tangential	and	sagittal	ray	traces	are	shown	for	both	fields.		The	

diffraction	limit	is	annotated.		cሻ		The	Seidel	aberrations	coefficients	as	a	sum	of	all	surfaces	in	the	

system.		A	schematic	of	optical	system	is	shown	in	Figure	6.	

The common monochromatic aberrations are defocus, spherical aberration, coma, 

astigmatism, field curvature and distortion.  These are described by the Seidel polynomial 

(Equation 4).  Each term of W௜௝௞is the wave front aberration coefficient in µm.  ܪ௜ is the 

fractional image height, ranging between 0 and 1.  ߩ௝ is the fractional pupil radius, which also 

ranges between 0 and 1.  Finally,	ܿݏ݋௞ߠ is the other pupil coordinate given by ߠ.   

 ܵ ൌ ෍ ௜ܹ௝௞ܪ
௜ߩ௝ܿݏ݋௞ߠ

௜,௝,௞

Equation 4

From the Seidel polynomial the first five terms correspond to the aberrations in the image as 
shown in Table 2. 
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Table	2.		Seidel	coefficients	for	each	aberration	ሾ19ሿ.	

Aberration Seidel coefficient 

Defocus ݓௗ ൌ ଴ܹଶ଴ߩ
ଶ 

Spherical aberration ݓ௦ ൌ ଴ܹସ଴ߩ
ସ 

Coma ݓ௖ ൌ ଵܹଷଵߩܪ
ଷܿߠݏ݋ 

Astigmatism ݓௗ ൌ ଶܹଶଶܪ
ଶߩଶܿݏ݋ଶߠ 

Field curvature ݓ௙௖ ൌ ሾ ଶܹ଴଴ܪ
ଶሿߩଶ 

 

The system suffers from several aberrations so we calculated the Seidel aberration 

coefficients as shown in Figure 8c to consider the relative contribution of each aberration to 

image quality.  In order of descending coefficient value they are spherical aberration, coma, 

astigmatism, field curvature and distortion.  Color based aberrations are avoided by the use of a 

single wavelength for polymerizing the photopolymer.   

To confirm the effect of described by the Seidel coefficients ray tracing was used to visually 

observe the effect each aberration would have.  The distortion for the off-axis field as is shown 

(exaggerated 10-fold) in Figure 9 indicates pincushion distortion is present with a maximum 

value of 1.19%.  Figure 9b shows the transverse ray plot indicating how the spherical aberration 

is presented.  At the far field 5 µm of spherical aberration occur, this can be reduced to 2.5 µm at 

the best mid-focus as marked.  The spot diagrams shown in Figure 9c and Figure 9d show the 

effect of astigmatism and coma respectively.  While astigmatism is present we also observe that 

for the zero field the system is diffraction limited as the spot is within the airy disc.     
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Figure	9.		Ray	trace	plots	of	the	projection	system.		aሻ		Plot	of	ray	distortion	traveling	through	the	

system.		bሻ		Transverse	ray	plot.		cሻ		Ray	spot	plot	for	the	zero	field.		dሻ		Ray	spot	plot	for	the	far	field	

ሺ7.215	mmሻ.	

The system has a filter for the UV light source.  As discussed, the design is intended for 

either 365 nm or 405 nm wavelength light.  Illumination of the mask is supplied by a 75 Watt 

short-arc lamp source (Dymax Bluewave 75).  The purpose of the illumination is to provide a 

uniform exposure of substrate and initiate polymerization.  In addition to uniformity we require 

that it has sufficient radiance and control over exposure time.  Short-arc mercury lamps produce 

a wide range of wavelengths at varying intensities.  The radiance for this light source at different 
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wavelengths is shown in Table 3 as measured from the end of the optical light guide.  In 

addition, the lamp has a mechanical shutter that can operate at 200 Hz. 

Table	3.		Bluewave	75	specifications.*	

 Wavelength (nm) Intensity (W/cm2) 

Total 280-450 19 

Visible 400-450 9 

UVA 320-395 9 

UVB 280-320 1.5 

*Data supplied by manufacturer (Dymax) 

 

This lamp produces > 9 W/cm2 in the UVA and a total of 19 W/cm2 across the spectrum.  

We therefore inserted a band pass filter (Thorlabs FGUV) before the tube lens to select ∓30 nm 

on either side of 355 nm wavelength.  The total output from the lamps fiber optic end is 9 W/cm2 

at this wavelength.  Taking into account optical losses, the high radiance will aid the system in 

achieving fast polymerization. 

 

Figure	10.		Schematic	of	the	collimating	lens	in	relation	to	the	light	guide	and	mask	to	determine	the	

divergent	angle	of	the	beam	and	optimal	focal	length	of	the	lens.	

To achieve sharp projection of the mask, it is necessary to collimate the output from the 

optical light guide (Figure 10).  Given the mask size of 20 mm, the illumination can be 

collimated into a beam larger than the mask.  The light guide supplied by Dymax has a 

divergence angle of 0.425 radians and an initial beam diameterሺݕଶ) of 2.5 mm.  Using Equation 

5 and Equation 6 we can calculate the focal length ( ଵ݂) of the collimating lens and the divergence 

angle ߠଶ of a 25 mm output beam [20]. 

૛ݕ  ൌ ଵߠ ଵ݂ Equation 5

ଶߠ  ൌ
ଵݕ

ଵ݂
ൗ Equation 6
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The focal length of the lens is 58.8 mm and the divergence angle is 0.0425 radians.  Thus we 

selected a Thorlabs aspheric condenser lens (ACL7560) with a focal length of 60mm.  An 

aspheric was chosen because it efficiently collimates the light while introducing fewer 

aberrations.  Using this, the illumination is focused to infinity when the mask image is in focus 

and vice versa.  This prevents the system from imaging the lamp source and maximizes the depth 

of field. 

 A chrome on quartz mask was designed to study shape and size of structures and later 

particles.  The arrangement of the mask in the system is shown in Figure 6 and a detailed view of 

the mask is shown in Figure 11. 

 
Figure	11.		An	overview	of	the	mask	with	an	array	of	possible	shapes.		The	sizes	next	to	the	basic	

shapes	correspond	to	the	size	the	particles	should	be	if	projected	with	a	20X	objective.		The	right	

hand	side	shows	six	enlarged	examples	of	shapes	on	the	mask.	

Glass and surface coating choice is another important consideration.  When possible UV 

fused silica was chosen or uncoated NBK-7 was chosen.  The transmission data for the UV fused 

silica is shown in Figure 12 and provides > 90% transmission below 365 nm, while the BK-7 

exhibits significantly decreased transmission of light at wavelengths below 365 nm.  
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Figure	12.		Optical	transmission	data	for	N‐BK7	and	UV	fused	silica	as	provided	by	the	

manufacturer.	

The camera looks through the same objective to image the projection and aid in focusing on 

the substrate.  A beam splitter from thorlabs (DMLP-505) sends 10% of the reflected image 

towards the camera.  Due to the infinity corrected design the beam splitter can be inserted into 

the projection optical train without changing the focal lengths or introducing significant 

aberrations.   

Along the imaging path after the beamsplitter, a tube lens (200 mm Mitutoyo) focuses the 

image onto a CCD.  The CCD is a Nikon DSLR 5100.  Interestingly, the SLR has a sensitivity to 

NUV light, not found in other sensors and can image the UV projection.  Many other cameras 

filter out light below 400 nm making it difficult to focus the UV projection.  The design for this 

is shown in Figure 13. 
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Figure	13.		Modeling	the	imaging	design.		aሻ		Layout	of	the	camera	system	including	the	objective	

and	tube	lens.		bሻ		The	modulation	transfer	function	for	this	arrangement.		cሻ		The	expected	

aberrations.	

For this system we chose an MTF value of 30% predicting an imaging resolution of 0.7 µm 

which matches the expected value from the NA of the lens.  The camera has a sensor size of 

pixels with (4,928x3264) pixels, where each pixel has a pitch of 4.78 µm. The sensor has a 

diagonal length of 28.9 mm.  Therefore given a magnification of 20X the FOV is 1.3 mm 

diagonal and each pixel represents 0.23 microns.  This changes according to the objective 

selected as shown in Table 4. 

Table	4.		Objective	field	of	view	and	resolution.	

Objective µm/pixel FOV width (µm) FOV height (µm) 
2X 2.37 11354 7520 
5X 1.86 9176 6078 
20X 0.23 1138 753 
50X 0.09 452 300 
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Figure	14.		Ray	tracing	plots.		aሻ	Distortion	plot	for	rays	traveling	through	the	system.		Maximum	

distortion	is	‐0.3623.		bሻ		Field	curvature	as	measured	across	the	field.		cሻ		Spot	diagram	showing	the	

astigmatism	present	in	the	system.		dሻ		Spot	diagram	for	the	off	axis	field	showing	coma	for	the	

imaging	system.	

Figure 14a shows that the imaging system has some distortion but unlike the projection 

system it is barrel distortion with a maximum predicted value of 1 µm.   

The imaging system produces the opposite type of distortion as the projection system, barrel 

distortion, with a maximum predicted distortion of 1 µm.  The transverse ray plot indicates 

spherical aberration.  Examining the far field the location of best focus shifts 1 µm from the zero 
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field and a best focus position adjusted 0.5 µm as indicated.  This is 2 µm away from the best 

focal distance indicated for the projection system.  The projection is significantly more important 

however, so in use the focus is adjusted to focus the mask on the substrate at the expense of a 

small amount of imaging degradation.  The spot diagram, Figure 14c and Figure 14d, shows that 

the imaging system is diffraction limited for the airy disc associated with its optical path, this 

correlates with the MTF plotted previously.  Finally, coma is also present in the imaging system 

for the off axis field as is seen by the lengthening of spot of rays.  It appears to follow the same 

pattern as for the projection but across 100 µm instead of 10 µm.   

%.  Figure 9b shows the transverse ray plot indicating how the spherical aberration is 

presented.  At the far field 5 µm of spherical aberration occur, this can be reduced to 2.5 µm at 

the best mid-focus as marked.  The spot diagrams shown in Figure 9c and Figure 9d show the 

effect of astigmatism and coma respectively.  While astigmatism is present we also observe that 

for the zero field the system is diffraction limited as the spot is within the airy disc.     
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Figure	15.		Ray	fan	plot	showing	spherical	aberration	in	the	system	for	both	the	transverse	and	

sagittal	directions.	

Figure 15 shows the ray fan plot indicating spherical aberration in the system.  However, 

because there is no focal shift that could reduce the spherical aberration it is taken as the best 

choice.  Additional lens elements would be required through lens splitting and re-optimization to 

reduce the spherical aberration. 

Now, all of the necessary components for the optical systems prescription have been 

described.  From here on we discuss the necessary arrangement to replace the stationary mask 
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with a digital micromirror device (DMD, W4100).  This device is a spatial light modulator which 

enables the user to dynamically change the mask via digital control.  An exemplary DMD chip 

and the micromirrors that are arrayed on it is shown in Figure 16a and 12b.  The mirrors are 

MEMS devices that tilt (± 10˚) on an axis under an applied voltage.  Due to their design they can 

switch states (ON/OFF) rapidly without wear.     

 

Figure	16.		DMD	chip	design.		aሻ		DMD	chip	held	by	researcher	ሾ21ሿ.		bሻ		SEM	image	of	DMD	mirrors.		

Note	how	they	tilt	on	a	diagonal	axis	when	actuated.		cሻ		Two	common	configurations	of	the	DMD	

mirrors	that	affect	system	design.	

The mirrors can be arranged in one of two ways.  As shown in Figure 16c the mirrors can be 

arranged in a checkerboard pattern or a diamond pattern.  The main difference is the direction the 

incident light approaches the edge of the DMD from.  For this reason diamond mirror patterns 

simplify the design of the system but require interpolation because the pixels are not oriented 

with image pixels from the screen.  This system uses the checkerboard pattern so the angle of 

incidence is accounted for in the design of the system housing. 

We designed a housing that positions a UV-capable DMD chip in place of the mask.  The 

housing accepts the fiber light guide and steers the collimated beam onto the DMD such that it 

reflects along the axis of the projection system.  This is achieved using a total internal reflectance 
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(TIR) prism or by positioning the light guide along the diagonal of the DMD, as shown in Figure 

17a.  Figure 17b shows a custom 3D printed housing to hold the DMD chip and a TIR prism.  

Finally, Figure 17c overlays the optical paths that represent the imaging, projection and 

illumination discussed previously onto the schematic of the system. 

 

Figure	17.		Overview	of	the	maskless	lithography	system.		aሻ		Schematic	of	the	UV	DLP	optofluidic	

lithography	system.		bሻ		3D	printed	housing	for	the	DMD	and	TIR	prism.		cሻ		An	overlay	of	the	optical	

trains	discussed	with	the	schematic.	

The system is controlled via Labview and a National Instruments (NI-6008) DAQ card.  The 

UV light is actuated by closing a resistance circuit using a 5V relay switch controlled Labview.  

Exposure time is controlled either via Labview or by a timer built into the BlueWave 75. 
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Figure 7.  Screenshot of LABVIEW interface for controlling exposure and in future work 

flow in a microfluidic device. 

Validation of Performance 

Performance of the imaging system is characterized in two ways.  First an image from the 

system is compared to an image from a Keyence VHX-5000.  This is shown in Figure 18 and to 

the author the results look comparable.   

 
Figure	18.		Comparison	of	micrographs	taken	using	a	Keyence	VHX‐5000	ሺ500Xሻ	and	our	custom	

built	microscope.	
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The second method used was to test the resolution.  No test slide was available with 0.7 µm 

resolution so monodisperse Poly(styrene) beads were used.  Images were taken of 0.5 µm beads 

as shown in Figure 19.  The individual beads are easily resolvable. 

 

Figure	19.		Characterizing	the	resolution	of	the	imaging	system.		aሻ		Resolution	test	target	using	10	

µm	and	0.5	µm	PS	beads.		bሻ		Shows	a	close	up	of	the	0.5	µm	bead.		cሻ		An	intensity	profile	from	the	

image	taken	along	the	yellow	line.	

Illumination was tested by measuring the radiance (ܹ/ܿ݉ଶሻ from the light source and at the 

substrate.  This is shown in Table 5.  The projection of the DMD at the substrate did not fill the 

sensor area on the radiometer.  The radiometer sensor area was approximately 5 mm2 while the 

projection was over a 1-5 mm2 area.  We attempted to correct for this but some error may exist in 

the reported values such that the radiance is lower than the real radiance.  From the light guide 

tip a radiance of 747 W/cm2 was measured, but for the 20X objective the system actually 

produced a higher radiance (8.39%) because the beam was focused sufficiently to overcome 

losses. 

Table	5.		Measured	radiance	at	various	locations	in	the	system.	

Measured location 
Radiance 
(W/cm2) % Change 

Light guide tip 747.38 0% 
Collimated beam 25mm from lens 636.37 -14.85% 
At substrate using 5x objective 111.39 -85.10% 
At substrate using 20x objective 810.10 8.39% 

 

The performance of the projection system was measured by polymerizing features out of 

polyethylene glycol diacrylate (PEG-DA).  PEG-DA is a hydrogel photopolymer resist.  The 

photopolymer solution was prepared using 0.5% v/v photoinitiator 2-hydroxy-2methyl-1-phenyl-
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1-propanone (Darocur 1173, Sigma Aldrich) in poly(ethylene glycol) (400) diacrylate (PEG-DA, 

Sigma Aldrich), Error! Reference source not found.. 

 

Figure	20.		Chemical	structure	of	PEG‐DA	

Using the system PEG-DA pillars of 10 µm width was fabricated.  The same process was 

performed for the maskless system, and the ultimate resolution was measured as 5 µm (5X).  The 

experiment was performed by projecting a checkerboard pattern onto PEG-DA that had been 

spun onto a glass slide with a thickness of 50 µm.  We expect the reason the polymerization 

resolution does not match the optical resolution is because of a combination of diffraction in the 

thick resist and polymer chain kinetics. 

 

Figure	21.		Measuring	projection	performance.		aሻ		Smallest	feature	size	in	PEG	fabricated	using	the	

masked	configuration.		Shows	10	µm	column.		bሻ		Similar	resolution	target	for	the	maskless	system.		

cሻ		The	intensity	of	illumination	across	the	projection	shown	in	aሻ.	
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 Finally, we examined the illumination intensity over the projection and found that the 

illumination varied by 7% across the mask.  Aberrations also contributed to outer edges showing 

less contrast between the projected squares.  Reduced contrast between projected features causes 

unintended polymerization due to the lack of a clearly defined edge.  

Similar to the expected results from modeling the system, the projection suffers from 

aberrations near the edge of the mask (Figure 22).  This practically limits the area of the DMD 

that can be used when patterning features less than 10 µm in size.  We quantified this area as 

equaling ~80% of the DMD area. 

 

Figure	22.		Grid	array	of	squares	25	µm	in	length	to	observe	aberrations	across	the	field	of	the	

projection.	

Now we show (Figure 23) patterned features on stationary substrates for both the masked and 

maskless designs.  The masked features show an array of triangles of 5 different sizes which 

range from 100 µm to 6.25 µm.  The maskless system shows similarly sized objects being 

patterned one after another on a stationary substrate.  In this case we patterned the evolution of 

man to illustrate the progression of the pattern.  Both examples were patterned from a solution of 

PEG-DA spun onto a slide.   
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Figure	23.		Examples	of	PEG‐DA	features	on	glass.		aሻ		Example	features	patterned	on	a	stationary	

substrate	using	the	masked	system.		bሻ		Example	features	patterned	on	a	stationary	substrate	using	

the	maskless	system.		Both	sets	of	features	are	fabricated	in	PEG‐DA.	

Finally, we demonstrate the modularity and ease of integration of the system with other 

components.  Here a roll to roll module developed by Erik Polsen was inserted into the system as 

shown in Figure 24 [22]. The roll-to-roll module is comprised of a stepper motor, supply and 

uptake wheel to translate tape across a concave support.  A blade (Figure 24c) is used to spread a 

uniform thin layer of PEG-DA onto the substrate and then it is patterned by the lithography 

system.  An example of the system doing this is shown in Figure 24d where Tetris like shapes 

are being patterned onto copper tape. 

 



31 
 

 

Figure	24.		Use	of	the	lithography	system	to	produce	features	on	a	roll‐to‐roll	copper	tape.		aሻ		

Photograph	of	a	roll‐to‐roll	module	designed	by	Dr.	Erik	Polson	integrated	into	the	masked	system.		

bሻ		A	photograph	of	the	roll‐to‐roll	system.		cሻ		A	schematic	of	the	process	of	applying	PEG‐DA	to	the	

substrate	while	it	is	moving	and	patterning	features	onto	it	sequentially.		dሻ		Exemplary	results	

showing	5	objects	being	patterned	on	the	copper	tape.	

Discussion and conclusions 

Several key observations become apparent.  First, it is possible to build a high quality 

lithography system that is more flexible than post-engineering an off-the-shelf Zeiss scope.  

Further, the system cost ¼ of a similar Zeiss system that does not include a maskless capability.  

When designed as an infinity corrected system, the change in magnification of the mask when 

projected is the ratio of the focal lengths for the field of view and tube lens.   

The maskless capability to shape the light on demand opens a number of research 

opportunities that were not capable with a masked system.  For example, the system can now 
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pattern different shapes as the substrate translates in a continuous fashion [23].  Also, as shown 

later, it can respond to changes in the substrate such as the presence of a particle.   

Unlike a premade imaging microscope such as Zeiss or Nikon the design of this system 

enables modularity for integration of multiple components.  The structure is comprised of COTS 

components (Thorlabs) so interfacing additional lenses, filters, light sources, beam splitters, 

camera etc. is straightforward given design objectives.  Further, the configuration of the system 

can be modified to adapt to constraints of a particular application.  As shown, the same system 

was configured either as an upright and inverted arrangement.  An upright configuration is best 

when patterning opaque substrates, while the inverted arrangement improves focus and feature 

resolution in microfluidic channels mounted to glass slides.  
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CHAPTER  III. SYNTHESIS AND ANALYSIS OF HYDROGEL 
MICROPARTICLES BY OPTOFLUIDIC LITHOGRAPHY  

Abstract 

This chapter begins with a review of particle synthesis by microfluidics and other methods.  

We build upon the maskless lithography design presented in 0, by integrating a microfluidic 

device into the system and a custom flow controller.  These are used to fabricate microparticles 

by polymerizing PEG-DA in flow.  The system is tested by fabricating a library of particles and 

measuring their geometry and polydispersity (20-100 μm side length, CoV 5-15 %).  The role of 

system design on throughput is described and because shallow channels take a long time to stop 

flowing it is challenging to rapidly fabricate small particles.  To address this issue a new 

microfluidic device which uses a thick channel to achieve fast stop times around pillars is used to 

fabricate small particles quickly.  The particles can be fabricate on top of the pillars at a rate of 

up to 2.5 Million particles/minute.  I would like to acknowledge Levon Cimonian’s contributions 

to preparing samples and performing experiments to characterize this system. 
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Introduction  

Rapid synthesis of microparticles with arbitrary control of shape and surface chemistry 

enables more efficient diagnostics and improved tissue engineering.  For example, multiplexed 

diagnostic assays have improved the ability to rapidly identify multiple analytes such as proteins 

in a sample.  To achieve improved throughput smaller microparticles need to be fabricated 

rapidly without loss of quality [24]–[26].  Many methods have been developed to synthesize 

microparticles including traditional lithography [27], droplet based microfluidics [28], 

emulsions, jetting [29], [30] and stop flow lithography [31].  Each method has advantages and 

disadvantages, yet there is significant need for improvement in the manufacture, modeling and 

application of micro and nano particles for known and yet to be imagined fields.  For rapid 

manufacture of particles with a wide variety of shapes and functions, microfluidic lithography is 

one of the most promising techniques[24].   

 

Figure	25.		Schematic	of	stop	flow	lithography	as	first	presented	by	Doyle	et	al	ሾ32ሿ.	

As introduced in Chapter  I, seminal work on microscope based lithography has been 

demonstrated in a number of forms and a review on this published by Love et al. [8] may have 

been the inspiration for the development of a technique described as stop flow lithography, 

which was first demonstrated by Doyle et al. in 2007 (Figure 25) to fabricate hydrogel 

microparticles.  The basic method uses a UV light source focused through a mask, located at the 

field stop of a standard microscope, to cure a polymer flowing in a microfluidic channel.  The 
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seminal paper discussed continuous flow lithography but they later found that throughput could 

be improved by rapidly stopping the flow during exposure of the polymer in the channel.  They 

have since demonstrated the ability to produce particles having 2D/3D shape and varying 

chemistry or color.  For example, barcoded multiplexed assay contain a chemically patchy region 

for sensing analytes and a barcode region that is rapidly read by a laser to identify the particle  

[33], [34].   

Prior to the invention of stop flow lithography spherical microparticles were fabricated using 

microfluidic droplet based techniques.  T-shaped junctions had been used to fabricate hydrogel 

microparticles by creating droplets inside of a sheath flow.  The droplets were then exposed to 

UV light polymerizing the hydrogel sphere.      

Oxygen inhibition was essential to the success of this method.  Oxygen, which diffuses 

through the PDMS microchannel, inhibits polymerization of PEG-DA creating a thin self-

lubricating layer between the particle and the channel [35].  This layer, which is approximately 5 

µm thick, both prevents particles from adhering to the channel and enables them to slide out of 

the channel after fabrication.  Moreover, they recently published a non PDMS device that doesn’t 

rely on oxygen diffusion through the PDMS channels to provide lubrication to the particles but 

instead flows lubricating fluids on either side of the photopolymer [34].   

Doyle also controlled surface chemistry of the particle by flowing two or more immiscible 

fluids through the channel using hydrodynamic focusing in both the horizontal and vertical 

configurations [36] to create Janus, opaque and compartmentalized particles [37].     

Kwon’s group from Seoul National University has developed additional methods in 

optofluidic lithography; they pioneered the use of DLP maskless lithography in a stop flow 

device [18] similar to what is shown in this thesis.  This also includes railed lithography as 

discussed in Chapter  I.   
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Figure	26.		Kwon’s	maskless	stop	flow	system	ሾ18ሿ.	

That work was followed by a method for fabricating 3D structures using an air bladder to 

control the height of the channel [38].  The limitation of this technique is that undercuts are not 

allowed, and additional materials must be fabricated on a smaller area than the previous layer or 

else they will cure through the entire thickness of the channel. 

 

Figure	27.		3D	features	in	microparticles	enabled	by	air	bladder	to	change	the	height	of	the	channel	

during	exposure		ሾ38ሿ.	

Finally, Kwon’s group contributed to multiplex microparticles for bioassays and a very novel 

photonic crystal using multi-colored ink [39].  The particle polymer uses a novel ink that changes 

color depending on the spacing between nanoparticles within the polymer.  The spacing is 

controlled by a magnetic field and locked into place when the PEG-DA is polymerized.  They 

then applied this to particles in the form of barcodes surrounded by a functional/sensing area 
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[40].  The sensing area interacts with biomolecules and fluoresces when specific molecules are 

captured.  The barcoded region is then read to determine what the drug or molecule used in that 

particle was.  This creates a unique, multiplexed assay for drug testing. 

 

Figure	28.		Binel	labs	color	changing	particles	based	on	orientation	of	nanoparticles	ሾ39ሿ,	ሾ40ሿ.	

Prof. DeSimone from the University of North Carolina invented and commercialized PRINT 

(Particle Replication in Non-wetting Templates) [41]. This is based on the use of a template with 

a non-wetting top surface.  The photopolymer is spread onto the template and wets cavities 

imprinted on the surface of the mold.  This is then exposed to UV light to cure the polymer. 

Careful preparation of the template allows for nanometer resolution particles and they have 

scaled-up this method using a roll-to-roll system via a startup company, Liquidia.  

 

Figure	29.		Examples	of	the	PRINT	method	of	fabricating	microparticles	ሾ42ሿ.	

These particles are being applied to a variety of applications including antifouling coatings, 

delivery vehicles for drugs and cells and photovoltaics [11]. 

While these are the most directly comparble methods of microparticle fabrication others do 

exist.  Many of these techniques rely on chemical fabrication.  For example DNA folding has 
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also shown the ability to create scalable particles with nanometer scale features.  For many 

applications it suffers from a slow reaction rates and low temperature solubility [43]–[45].  This 

method was first pioneered by Rothemund who found that stapled DNA strands could be used to 

pin down DNA into a certain shape as reviewed by Lin et al [46]. 

 

Figure	30.		DNA	microcapsule	folding	ሾ46ሿ.	

Finally, considerable work has also been done to synthesize particles from the bottom up by 

self assembly, electrojetting and emulsions.  One promising bottom up method using 

nanoparticles to create structures by adding spheres to a central structure, the control of this 

process can create many basic polyhedrons that can then be used for secondary assembly 

processes [47].  Electrojetting has been employed in the fabrication of Janus particles and 

scaffolds [29].  Emulsions have been used to fabricate a number of particles [47]–[51]. 

Each method has specific advantages and disadvantages in throughput, complexity, control 

over shape, chemical anisotropy, biocompatibility and others.  In our case the throughput, 

resolution and control over shape is why the optofluidic approach was the method to study.  We 

aim to use the particles fabricated by this method to design self-assembling system at the 

microscale and to study the physics behind self assembling particles but did not do so in this 

thesis.  
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Synthesis and analysis methods 

In 0, a maskless lithography system was discussed with a detailed optical design.  To enable 

the system to fabricate microparticles a microfluidic device is added to the system as well as a 

system to control the fluid flow.  A top level overview of how this works is shown in Figure 31.  

First, the microfluidic device is placed on top of an inverted configuration of the projection 

system.  The system is focused onto the photopolymer within the channel.  Then software, 

written in LabView alternates states between exposing the channel with structured light, to 

polymerize particles into defined shapes, and pumping the particles and uncured polymer into a 

reservoir.  Excess oligomer is washed off and the particles are re-suspended.   

 

Figure	31.		Overview	of	microfluidic	synthesis	system.		aሻ		Schematic	of	the	optical	system	with	a	

microfluidic	device	placed	on	the	stage.		bሻ		Photograph	of	system	used	to	synthesize	microparticles	

in	the	inverted	configuration.		cሻ		The	process	to	polymerize	microparticles	begins	when	the	flow	is	

stopped,	then	the	DMD	image	is	projected	polymerizing	the	particles	which	then	flow	out	of	the	

channel.		This	is	repeated	to	synthesize	any	number	of	particles.			
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The microfluidic device was designed using a straight channel design with varying widths on 

a single mold.  The widths on the device included 75 µm, 200 µm, 500 µm and 1000 µm.  

Example devices are shown in Figure 32.   

 

Figure	32.		Microfluidic	device	designs	for	double	and	triple	inlets	used	for	laminar	flow	mixing.	

Two poly-dimethylsiloxane (PDMS) microfluidic devices were fabricated by soft lithography 

methods, Figure 33 [3], [52] to synthesize particles of two different heights.  First, photoresist is 

applied to a Si wafer which is then deep RIE etched to create a permanent mold.  This mold is 

used to cast multiple devices in PDMS.  After curing for 1 hour at 85 C˚ the PDMS is removed 

from the mold and placed atop a PDMS (1:20) coated glass slide.  The PDMS was applied to the 

glass slide using a spin coater at 500 rpm for 30 seconds and then 3000 rpm for 30 seconds.  The 

resulting layer for each mold was measured as 5 µm and 45 µm thick.  The assembled device 

was allowed to cure at room temperature overnight. 

 

Figure	33.	Fabrication	process	for	making	particle	synthesis	microfluidic	devices.	
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To synthesize particles, it is necessary to flow a photopolymer solution that is sensitive to the 

projected light.  The same hydrogel solution used in Chapter  I, PEG-DA is used in this system.  

Flow in the microfluidic device was achieved by a pressure pump in which a reservoir (BT-4502, 

BC-211 Western Analytics) was pressurized to 3 psi, Figure 34.  The flow was controlled by 

pulse width modulation of a solenoid valve (The Lee Co. INKX0514300A) using a spike/hold 

driver (The Lee Co. IECX0501350A).  The valve was attached to a nozzle with an 80 µm 

opening (The Lee Co. INZA4630912T).  The nozzle was inserted into the microfluidic device 

and held in place with a clamp.  Pressure was regulated using a high precision 0-5 psi regulator. 

 

Figure	34.		The	pumping	system.		aሻ		Detailed	view	of	the	solenoid	valve	and	nozzle	inserted	into	the	

microfluidic	device.		bሻ		Control	schematic	for	the	pressure	system	and	the	light.	

Stop times for the microfluidic flow were calculated by pulsing the flow for 0.25 ms and 

measuring via video the time required for PS beads in the flow to reach 1% of their maximum 

velocity.  Velocities were calculated using position data measured from the ImageJ particle 

tracker plugin.   

Measurements of microparticle dimensions were performed using an FEG scanning electron 

microscope (Phillips XL30 SEM).  The particles were collected from solution via a syringe filter 

(XX3002500 Millipore) and rinsed twice using water and isopropyl alcohol or until all excess 

unpolymerized monomer had been washed away.  Because the particles are not conductive they 

were coated in gold for SEM imaging using a sputter system for 10 seconds. 
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Results and discussion of particle synthesis  

To characterize the performance of the system a library of particles was synthesized with 

standard shapes (hexagons, squares and triangles) across a variety of side lengths (100 µm, 50 

µm and 20 µm).  A matrix showing SEM images of the PEG particles is shown in Figure 35.   

 

Figure	35.		SEM	images	of	PEG‐DA	particles	ሺfrom	left	to	right:	hexagon,	square,	triangleሻ	

synthesized	using	the	microfluidic	lithography	system.		Columns	illustrate	shape	and	rows	illustrate	

size.		Red	circles	are	to	highlight	the	example	particle.	

The monodispersity of the particles was characterized by measuring their side length, corner 

radius, thickness and corner angle and then calculating the coefficient of variation (CoV) for 

each metric, Figure 36.  The side lengths for 100 µm particles ranged from 89 µm - 104 µm with 

an average of 96 µm.  The 50 µm particles had an average side length of 41 µm with a maximum 

of 49 µm.  Finally, the 25 µm particles ranged from 19 µm – 25 µm with an average of 22.4 µm.  

The side lengths showed less variation as the length of the size of the particle decreased.  The 

angle between edges of the hexagonal particle was measured and should be measure 120 ˚.  As 

measured in the SEM this was the most uniform metric measuring 121˚ with a standard deviation 

of < 2.5˚.  The error is likely due to measurement bias introduced by the researcher while 
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annotating the SEM images.  The thickness of the particles was measured and as expected was 

well controlled by the height of the fluidic channel.  For 45 µm deep channels the average 

particle thickness differed by less than 1 µm between the different sizes.  The thicknesses ranged 

from 41 µm - 42.5 µm for 100 µm side lengths, 39 µm - 42.7 µm for 50 um side lengths and 41 

µm - 43 µm for 25 um side lengths.  The radius of particle corners was 4.1 µm for 50 µm and 20 

µm particles, while 100 µm particles has a corner radius of 5.05 µm.  However, for 100 µm side 

length particles the range of for the corner radius measured from 2.5 µm – 9 µm.  By comparison 

the 50 µm and 20 µm particles had a smaller range from 2 µm -5.5 µm.  Having characterized the 

basic measurements the  

Having measured the important metrics that describe the intra-particle variation we now 

discuss the monodispersity.  No universal definition of monodispersity for microparticles exist, 

but criteria for monodispersity of spherical microparticles as measured by the CoV range from 

3.04% (NIST) – 16% (Quasi-monodisperse) [53].  The reason no singular definition exist is that 

the necessary monodispersity is application dependent.  Doyle et al. defined monodisperse as a 

CoV of 10% and we’ve chosen to adopt this standard for this discussion because we are using a 

similar synthesis method.   

For side length measurements, the CoV ranged from 5.2-15% as the particle size increased.  

The angles between edges of a hexagonal particle were measured with a CoV of 1.7%.  The 

height of the particles as measured in a channel fabricated from a 30 µm deep mold showed a 

CoV of 5%.  Finally, the radius at the corner of the particle was measured in the SEM and 

showed a maximum CoV of 50%.  Monodispersity was achieved for all metrics except 

sharpness.  We were concerned with the poor performance of the corner radius, because sharp 

corners are expected to be necessary for the application of microparticles that self-assemble into 

diagnostic devices.  However, the average corner radius was only 4.6 µm.  Unlike the other 

metrics this is approaching the resolution limits of the system.  Therefore, it is sensitive to 

manual adjustments to focus and future work should automate the focal adjustment to improve 

the CoV.  The second possibility is the polymerization time was not tuned to ensure full 

polymerization at the corners so variation during polymerization is effecting corner radius.  

Moreover, contributions from uneven illumination may contribute to uneven polymerization 

across the field of view but based on measurements taken in Chapter I, it seems that tuning 

polymerization time and focal adjustments would improve the monodispersity of the 
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microparticles corner radius.  Further improvement could also be found by removing the 

particles synthesized during the first five cycles when the system focus and flow rates are being 

adjusted.  This certainly contributes to variation since in this case.  Finally, we hypothesize that 

shrinkage occurs in the hydrogel between synthesis and measurement.  Evidence for this is found 

by observing the surface texture of the particles in Figure 35.  Ripples appear on the surface of 

the particles that are indicative of volumetric shrinkage.  If this is the case it is could explain why 

the average particle edge length is smaller than the expected length and may introduce variations 

into the particle population.  Causes may come from ambient conditions or could have been 

caused by pressure difference in the evacuated SEM chamber. 

 

Figure	36.		Measurement	of	particle	monodispersity.		aሻ		Particle	dimensions	in	microns	as	

measured	for	three	particle	sizes.		bሻ		The	angle	between	edges	of	a	hexagonal	shape	for	100	µm,	50	

µm	and	20	µm	particles.		cሻ		Height	measurements	for	each	particle	size	synthesized	on	a	

microfluidic	device	fabricated	from	a	30	µm	deep	mold.		dሻ		Plot	of	corner	radius	by	particle	size.		

The	corner	radius	was	measured	in	SEM	by	annotation.	

Next, particles were fabricated to demonstrate the ability to rapidly control particle shape 

using the DMD discussed in Chapter II (Figure 37).  In these examples we show two gear sets 
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being fabricated where the first is synthesized, pushed out of the system and then the second 

mask is immediately projected to fabricate a different set of gears.  This is followed by a set of 

fluorescent particles that have the Michigan M patterned as a cut-out in their center.  Fluorescent 

dye was added to the solution before synthesis.  Finally, a number of hexagonal and lizard 

shaped particles are assembled in a microfluidic channel after synthesis. 

 

Figure	37.		Examples	of	particle	fabrication.		aሻ		Example	set	of	gear‐shaped	particles	fabricated	in	

PEG‐DA	using	the	maskless	system.		bሻ		After	expelling	the	previous	gears	a	new	type	of	gear	set	

was	fabricated	to	demonstrate	the	maskless	capability.		cሻ		Examples	of	fluorescent	Michigan	

particles	synthesized	with	the	system.		dሻ		Hexagonal	and	Lizard	shaped	particles	packing	into	a	

fluidic	device.			

Other functional types of particles can be fabricated such as the example in Figure 38 where 

iron nanoparticles were suspended in the PEG-DA solution [54].  After polymerization the 

synthesized composite microparticle was removed and suspended in water.  The orientation of 

the particle could be controlled by moving a magnet around the edge of the dish.  This type of 

particle could be oriented during analysis of multiplexed assays or as will be discussed in 

Chapter VII during assembly into tissue like structures. 
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Figure	38.		Iron	nanoparticle	laden	hydrogel	microparticle	example.		aሻ		The	starting	location	of	the	

particle.		bሻ		The	location	after	rotating	a	magnet	around	the	particle	to	reorient	it.		cሻ		Schematic	

describing	how	the	magnet	was	moved	in	a	circle	around	the	particle.		
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Throughput of microfluidic lithography  

In order to use these particles in either application requires high throughput synthesis.  As 

discussed in a report by Transparency Market Research the multiplexed diagnostic industry is 

expected to reach 9.8 B by 2019.  This valuation is dependent upon increasing the density of 

particles used in multiplex diagnostics.  To do so requires complimentary advances in decreased 

particle size and increased throughput.  In stop flow lithography throughput is governed by the 

cycle time and the number of particles that can be fabricated per cycle.  Where the cycle time is a 

combination of exposure time (ߙ), pump time (ߚ) and flow stopping time (߬).  Therefore, the 

number of cycles per time unit is the inverse of their sum.  The throughput per cycle is a 

described by the ratio of the exposable area of the substrate (ܨ) and the particle cross sectional 

area (݌).  The resulting term is multiplied by the percentage fill factor that describes what 

proportion of the DMD is filled with particles.  The throughput is accordingly:	
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All of the values shown are independent of the microfluidic channel design except for the 

flow stopping time.  Because the microfluidic channel is elastic it deforms when the flow creates 

a pressure gradient when pumped.  This results in a delay in the flow velocity dropping back to 

zero.  This deformation is dependent on the properties of the liquid, the microfluidic device 

material and its dimensions.  For example, as stiffness decreases the channel will deform more 

due to the same pressure drop and take long for the flow to stop.  The relationship between 

microfluidic channel dimensions and stop times was analyzed in detail by Dendekuri et al. from 

which they derived Equation 8.  The stop time is approximately equal to the viscosity of the 

liquid (ߤ) multiplied by the length of the channel squared (ܮ ) and the width (ܹ) divided by 

Young’s modulus of the PDMS (ܧሻ and the channel height (ܪ ).   

 
߬௧~

ଶܹܮߤ

ଷܪܧ

Equation 8

This can be combined with Equation 7 to relate the throughput to the design of the 

microfluidic device.  We assume that the channel dimensions will be greater than the FOV or if 

they are not then multiple channels will be used and the exposable area will be calculated by 

adjusting	߱. 
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To calculate the throughput of the system according to Equation 9 we experimentally find the 

exposure time, pump time and stop time.  The other values are calculated based on the system 

design.  Mechanical limits of the shutter that is used to actuate the UV light limit  ߙ to 0.05 s 

which was also found to be a good exposure time for particle fabrication.  The pump time (ߚ) is 

controlled by the high speed valve and actuation was measured as fast as 0.002 s.  However, to 

give the flow time to push fabricated particles from the field of view a pump time of 0.025 s was 

more appropriate.   

Next, the stopping time of the flow in the channel was measured while changing channel 

length, pump time and channel width as shown in Figure 39.  Channel height was 5 µm for all 

experiments because our goal was to produce small particles and because according to Equation 

9 this would have a long stop time which we want to try to overcome by tuning the other device 

parameters.  First we examined the effect of changing channel length.  The channel length was 

varied from 0.25 cm to 1 cm for a 500 µm wide, 5 µm tall channel with a pump time of 0.025 s 

and flow pressure of 3 psi.  As the channel length increased beyond 0.75 cm the stop time 

increased to 20 seconds, however the shortest stop time was 1 second for a channel length of 

0.25 cm.  We then tuned the channel width in the same manner as shown in Figure 39c.  The stop 

time was shortest for a 200 µm wide channels at 13.2 seconds.  Lastly, we examined the effect of 

changing the pressure pump time or pressure pulse duration from 0.01 s, 0.05 s and 0.1 s.  The 

fastest stop time was the longest pulse (0.1 s) and required 15 seconds to slow to a stop.   

Finally, to finish deriving the expected throughput the FOV is calculated according to a 20X 

objective with a FOV of 1 mm x 1 mm.  The fill factor (߱) is calculated using the MTF from 

Chapter II.  Sufficient spacing between the particles is necessary such that the contrast between 

two particle projections is 30% or greater.  The contrast is worse at the edge of the FOV so the 

far field Tangential MTF is used indicating that the spacing between projection must be 2.5 µm 

or greater.  Assuming square particles we apply a safety factor of 100% and give a minimum 

spacing (R) of 5 µm.  Therefore p is equal to ሺ݈ ൅ ܴሻଶ where		݈ is the length of the particle.  The 

fill factor can be chosen arbitrarily to reduce the number of particles printed. 
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Figure	39.		Flow	stopping	time	constant	values.	aሻ	Stop	time	constant	measurement	method.		bሻ		

Stop	time	constant	measured	while	changing	channel	length.		cሻ		Stop	time	constant	measured	while	

changing	channel	width.		dሻ		Stop	time	constant	measured	while	changing	the	pressure	pulse	or	

flow	time.			

Now the throughput is calculated for height (1 µm, 10 µm, 20 µm, 40 µm, 60 µm, 80 µm) 

versus particle size with an assumed channel length of 0.25 cm, width of 1 mm and pump time 

0.1 s.  Finally, the FOV is set to 1 mm2, exposure time of 0.05 s and a fill factor of 1.  From the 

throughput calculation we observe that between channel heights of 1 µm and 10 µm throughput 

decreases two orders of magnitude.  Therefore, we need to identify a way to achieve a similar 

stopping time as 80 µm tall channels but when making 5 µm thick microparticles. 
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Figure	40.		Throughput	of	the	system	as	a	function	of	particle	size	and	channel	height	as	it	relates	to	

the	stopping	time.	

Increased throughput due to microfluidic channel design and scaling 

To overcome the limitations to stoppage time and therefore increase throughput, we 

hypothesized that by fabricating particles on pillars inside a microfluidic channel the stopping 

time on the pillar would equal that of the full depth of the microfluidic channel.  This assumption 

imagines that the pillar acts like a small microfluidic channel with a short length and width.  So, 

we attempted to fabricate a microfluidic device as seen in Figure 41 with 30 µm wide circular 

pillars and a 5 µm gap between the top of the pillar and the channel. 

 

Figure	41.		High‐level	schematic	of	how	pillars	are	positioned	inside	the	fluid	flow	to	enable	

fabrication	on	top	of	the	pillars.	

 However we found it difficult to fabricate 1 mm wide microfluidic channels with pillars 

that were 5 µm below the top of the channel.  To address this issue we added a diagphram to the 

device so that we could pneumatically control the height of the channel and increase the 

thickness of the particle if needed.  To do so we developed the device design shown in Figure 42. 
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Figure	42.		Fabrication	of	the	pillared	microfluidic	channel.		aሻ		Isometric	view	of	the	microfluidic	

device.		bሻ	Exploded	view	showing	the	layers	of	the	device	and	diaphragm	connection.		cሻ		A	side	

view	of	the	position	of	the	pillars.			

The fabrication of this device was performed in two steps.  First, the pillared portion of the 

device is fabricated.  The fabrication procedure for the pillar portion of the microfluidic device is 

shown in Figure 43.  The dry film resist was from Dupont model MX5000 with a resist thickness 

of 10 µm.   
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Figure	43.		Process	for	fabricating	high	throughput	microfluidic	device.	

During fabrication, the master Si mold was imaged to determine the quality of the etching 

process.  It was observed as shown in Figure 44e that some debris from the etching process 

remained but they were sufficiently small that no attempt was made to remove them beyond a 

wash.  Several of the designs can be seen in the SEM image, including ellipses, circles and tear 

drops.  Our reasoning was that the tear drops may deform less than the circles when the flow is 

pulsed. 
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Figure	44.		SEM	images	of	the	master	mold.		aሻ	SEM	image	SI	mold	of	3	elongated	pillars	side	by	side	

in	a	200	µm	channel.		bሻ		SEM	image	of	3	circular	pillars	side	by	side	in	a	200	µm	channel.		cሻ		SEM	

image	of	3	elongated	pillars	placed	along	the	channel.		dሻ		An	array	of	tear	drop	pillars	designed	for	

high	density	throughput.		eሻ		A	close	up	of	the	artifacts	that	remain	after	DREI	etching	the	mold.	

Next the master mold is replicated in PDMS to enable oxygen to diffuse into the pillars 

inhibiting the particles form adhering to the device.  A glass slide is placed on top of the Si wafer 

that contains the micro pillar device array.  Next, a vacuum chamber design around the 

microchannels is traced; this acts as a guide when preparing the negative mold for the vacuum 

chamber (mold C).  Then, a 3M double-sided tape is used to cover the vacuum chamber design 

previously drawn.  This glass slide/tape assembly is what will be used to cast Mold C from. The 

mold is coarse but sufficient.  After checking the orientation of the channel; the assembly is set 

aside.  A set of glass slides is cleaned with IPA then attached attached to the spin coater using 

double sided tape.  The oven is pre-heated to 80	Ԩ.  PDMS is mixed at a 1:5 volume ratio of 

curing agent to base.  The final volume of PDMS, sufficient to fill the mold prepared in step 1 to 

a height of 1.5 mm and the mold prepared in step 2 to a height of 5 mm, was 15 ml.  The mixture 

is placed into a vacuum oven to degas.  Then, the PDMS is mixed at a 1:20 volume ratio of 

curing agent to base.  Once mixed, the mixture is dispensed onto the glass slides, then spun at 

2000 RPM for 30 seconds, and poured into the molds to create mold B and C.  Mold C is placed 

into an 80 Ԩ oven for 10 minutes, then set aside the oven.  The glass slide is placed into the oven 
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for 10 minutes, and Mold B for 20 minutes.  While the glass slides and mold B are in the oven, 

mold C is carefully de-molded and the tape is removed as well.  A ∅1݉݉ biopsy punch is used 

to create the vacuum chamber inlet.  Next, the glass slides is removed from the oven and set 

aside for 10 minutes.  After ten 10 minutes mold B is removed from the oven.  Now, mold B is 

de-molded.  Now, Mold B and C are aligned and adhered to one another.  A ∅1݉݉ biopsy 

punch is used to create the microfluidic inlet/outlet holes. 

Finally, the assembly (mold B and mold C) is adhered to the PDMS coated glass slides.  

Control over the glass slide curing is important to prevent uncured PDMS from flowing into the 

channels during this step.  The entire chip assembly is placed into the oven at 80 Ԩ for 8-12 

hours.  The results of this process are shown in Figure 45b and is linked to the mask design for 

clarity in Figure 45a.  One vacuum inlet controls the diaphragm on two channels.  

 

Figure	45.		The	diaphragm	design	and	assembly.		aሻ	Layout	of	pillared	diaphragm	driven	

microfluidic	device.		bሻ		Many	images	stitched	to	show	the	full	device.		cሻ		Schematic	showing	

relationship	of	the	diaphragm	to	the	pillared	channel.	

Various devices were fabricated and tested.  Device type 11 (device numbers are listed with 

their properties in 0) is shown in Figure 46a.  Using this device, the stop time was measured 

using 2.5 µm PS beads mixed into the PEG-DA solution.  The pressure was pulsed for 25 ms and 

then the stop time was measured as described previously.  Then, 10 µm microparticles (enclosed 

in the red square) were fabricated on top of pillars, Figure 46b.  The top image shows the pillar 



55 
 

without a particle and the bottom image shows the pillar with the particle that has stopped on top 

of it. 

 

Figure	46.		Measuring	the	performance	of	the	new	microfluidic	device.		aሻ		Verification	of	stop	time	

using	2.5	µm	beads	in	solution.		The	beads	were	flown	in	the	device	and	imaged	as	they	stopped	on	

top	of	the	pillar.		bሻ		Demonstration	of	synthesizing	particles	on	top	of	the	pillar	structure.		

Plotting the stop time for a device with the parameters of the full depth of the pillared 

channel we see that the stop time for this device is very good with a value of 6.48 milliseconds.  

Comparing the full height channel (5 µm) and the pillared experiment (5 µm gap in 80 µm 

channel) we observe that using the micropillared device may manufacture up to 2.5E6 particles 

which is 1500X the throughput of the original design.  We believe this confirms our hypothesis 

that the stop time on pillars acts in the same manner as the chip it is housed on. 
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Figure	47.		Comparison	of	the	time	constant	for	full	depth	channels	and	pillared	channels	which	

perform	as	in	the	same	manner	as	an	80	µm	deep	channel.	

Conclusion 

This chapter demonstrated the application of our maskless lithography system to rapidly 

fabricate PEG-DA microparticles with arbitrary 2D shape and to improve throughput of small 

particles.  Maskless microfluidic lithography is an attractive tool to manufacture polymer 

hydrogel microparticles.  For example, it can be used to encapsulate an object such as a cell 

within a functional shape (barcode, sensing).  In addition, the method has demonstrated the 

capability of monodisperse synthesis of microparticles.  We observed CoV of 1.7%, 5%, 10%, 

50% for edge length, height, angle and corner radius respectively.  Using the system we 

demonstrated examples of functional microparticles (fluorescing and magnetic particles).  Future 

efforts should study the role of shape and chemistry to enable assembly of these particles on a 

liquid surface.         

Throughput of microparticle synthesis was limited by stop time of the flow as a function of 

the microfluidic channel height.  By redesigning the microfluidic device to use fabricate 

microparticles on top of pillars in the channel, it was shown that the stop time can be reduced by 

three orders of magnitude for thin particles.  This method is expected to grow continuously in 

sophistication as collaborators in the field have produced insightful and creative methods of 

adapting this technique.  In particular, it is hoped that the method can be used to further 

understand the micro-self assembly of microparticles patterned with  hydrophobic regions by 

flowing immiscible photopolymers through the microfluidic device [55], [56]. 
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CHAPTER  IV. THE STUDY OF C. ELEGAN NEMATODES BEHAVIORAL 
RESPONSE TO DIRECT-WRITE ENCAPSULATION, MANIPULATION AND IN-SITU 

SYNTHESIS OF STRUCTURES 

Abstract 

The nematode Caenorhabditis elegans has proven to be a striking model for bio-engineering 

research.  This can be attributed to conserved molecular pathways and physiological mechanisms 

that provide insight into more complex organisms.  New technologies are needed to improve 

immobilization, isolation, manipulation and breeding of these nematodes to learn about how their 

behavior and physiology change with time.  However, most tools and microfluidics in general 

must be designed and fabricated according to a fixed intent before the experiment begins, and 

cannot be modified in situ.  Here, taking advantage of C. elegans as a model organism, we 

demonstrate a new method, dynamic lithography, used to manipulate worms and modify their 

microenvironment in situ, in a rapid and inexpensive manner.  This method, is used to fabricate 

microfeatures onto agarose gel seeded with C. elegans in real time creating a new assay in as 

little as 12 minutes.  To demonstrate the use of this platform we show a classic mobility study 

reaffirming that proximity of pillared structures increases the swimming speed of C. elegans up 

to 89%.  In accordance with other studies we found that the C. elegans can solve a hydrogel 

maze when directed by food twice as well as when no reward is present.  Other examples 

highlight the paradigm of in situ fabrication and manipulation using a stylus pad and/or moving 

parts.  I would like to acknowledge the contributions of Dr. Eleni Gorgou and Dr. Daphne 

Baszopoulou for providing their expertise, time and animals to this collaboration.  I also thank 

Prof. Tim Swager and Elizabeth Sterner for assistance with ATR-FTIR measurements. 
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 Introduction 

Microfluidics, and in particular methods to pattern soft materials like PDMS and hydrogels, 

has revolutionized methods to manipulate cells and small model organisms such as C. elegans, 

Drosophila and zebrafish, in vitro.  However, conventional approaches enable only the 

fabrication of fixed assay designs, which cannot be changed during experimentation, unless 

specialized features are designed into the device ahead of time, such as gates and valves 

requiring complex external hardware [57].  

Specifically, regarding C. elegans, microfluidic based assays have been successfully used for 

worm immobilization and imaging, behavioral assays, laser microsurgery and high throughput 

drug screening [58]–[60]. Despite their elegant and effective design, they are static devices, 

allowing only one reversible modification.  This modification is usually in the form of a pressure 

change or a stimulus delivery.  To achieve this, they have to be connected to external hardware, 

have integrated synthetic valves (e.g. valves [57], [60]) or have a more complicated multi-layer 

design.  Moreover, multi-layer design requires alignment of features between layers of PDMS or 

other systems and, being a manual method, suffers from poor reproducibility.  Often, these 

restrictions are imposed by the fabrication method (soft lithography) which, in spite of the boost 

it has given to developing highly impactful tools for biological studies (e.g enabling micro-scale 

manipulation of the nematodes via clamps ), does not allow for much flexibility in real-time 

modification and device adaptation.  Studies that aim to map learning and behavioral response to 

brain plasticity, could significantly gain from a tool that would select individual C. elegans 

which show a unique learning capacity.  

While, PDMS microfluidic assays are being applied to a growing number of C. elegans 

studies, the standard practice is to use agar plates.  Agarose gel is made of porous superstructures 

made of helical agarose molecules.  The initially liquid agar gels between 35-42 ᵒC.  It is 

accepted that this material does not stress the worms significantly, however, no method of 

fabricating complex structures made of agarose gel exists.  

There is also promise due to the decreasing cost and increasing performance and availability 

of additive manufacturing techniques, such as fused deposition modeling (FDM) and 

stereolithography (STL) [61].  However, limitations in resolution and optical clarity have limited 

its adoption.  Moreover, the biocompatibility of common 3D stereolithography resins is still 

under investigation.  The availability of mail-order 3D microfluidics is attractive because it 
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reduces the need for in-house fabrication knowledge but this does not resolve the need to order a 

new device for each iteration of the experimental process or add flexibility to an individual 

experiment. 

Here, we propose and demonstrate a method for reducing the complexity and time necessary 

to fabricate C. elegans assays as well as enable fundamentally new assay capabilities that rely on 

real time interaction with the worms.  We exhibit how this new technique can be successfully 

used for dynamic micro-fabrication during the performance of a live C. elegans assay. 

We aim to provide a platform for biocompatible assay production in situ, through the 

combination of benchtop maskless fabrication, biocompatible material selection, integration of 

standard agarose gel plates and user feedback.   

Materials and Methods 

Materials 

The photopolymer used for the majority of experiments was 0.5% v/v photoinitiator 2-

hydroxy-2methyl-1-phenyl-1-propanone (Darocur 1173, Sigma Aldrich) in poly(ethylene glycol) 

(400) diacrylate (PEG-DA, Sigma Aldrich) in 80% aqueous solution.  Agarose gel was prepared 

using standard methods outlined in Brenner et al [62].  Other photoinitiators used include 

Phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide (Sigma Aldrich) and a custom mixture of 

0.01 mM Eosin Y (Sigma Aldrich) and 0.1% TEA (Sigma Aldrich).  The structure of the agar gel 

is shown in Figure 48 to aid in interpreting the results of the Attenuated Total Reflectance – 

Fourier Transform Infrared Spectroscopy (ATIR-FTIR) data.  

 

Figure	48.		Chemical	structure	of	the	agar	used	in	these	experiments	to	aid	in	interpreting	the	ATR‐

FTIR	data.	

ATR-FTIR measurements of diffusion 

Diffusion of the PEG-DA polymer into the agarose gel was measured by ATR-FTIR 

(Thermo Scientific Nicollet 6700, fitted with an ATR-FTIR sampling accessory with a 

Germanium crystal).  A 500 µm thick sample of agarose was placed on top of the crystal and 10 
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µl of PEG-DA was pipetted onto the surface of the agarose.  A baseline spectrum was taken and 

re-measured periodically over 20 minutes as shown in Figure 51.  Bands were measured against 

known the location of known chemical expressions.  Because the system identifies molecules at 

a specific depth in the sample we assume that the development of a band is due to diffusion.   

Survival assay 

Synchronous populations of nematodes were established by allowing 20 adult 

hermaphrodites to lay eggs for a limited time interval (4–5 h) on nematode growth medium 

(NGM) plates seeded with Escherichia coli OP50.  Progeny were grown through the L4 larval 

stage, and then transferred to fresh NGM-seeded plates with PEG-DA-coated walls (20% PEG-

DA in water) at groups of 10–20 nematodes per plate and kept at 200C.  The first day of 

adulthood was used as day 0.  Animals were transferred to fresh plates every 2–4 days thereafter 

and were examined every day for pharyngeal pumping and movement in response to a gentle tap 

with a thin platinum wire or pipet tip, until death.  Lifespan was defined as the number of days 

between day 0 and the last day on which the worm was scored as alive.  Worms that died due to 

internally hatched eggs, desiccation, an extruded gonad or crawling on the edge of the plates, 

were incorporated into the date set as censored. 

Statistical analysis 

We used the Origin software package (OriginLab Corporation, Massachusetts, USA), to 

carry out statistical analysis and to determine lifespan values.  The Kaplan Meier estimator was 

used to evaluate differences between survivals and determine the p value.  

C. elegans tracking using image processing 

Custom C++/Matlab code was written to identify the worm in each frame built using the 

OpenCV toolkit.  Image differencing between frames was used to identify where the nematode 

had moved and the centroid of the highlighted region on the image was used to mark its position.   
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Results and discussion 

Dynamic fabrication of PEG-DA microstructures on agar plates 

 For C. elegans assays we fabricate microstructures of a common hydrogel (PEG-DA) on 

substrates of agarose gel (see Methods).  The key advance over previous methods of in vivo 

assay fabrication in the use of a maskless lithography system, coupled with custom image 

analysis software to achieve precise localization of C. elegans in assays and track their behavior.  

The system as described is shown in Figure 49, uses a digital micromirror device (DMD) to 

generate diffraction limited image projections through a microscope.  A ultra-violet (UV) 10W 

Mercury lamp, at 365nm, is projected off the DMD and through a Mitutoyo objective (2X, 5X, 

20X, 50X).  The projection and subject is imaged using a Nikon D5100 SLR camera through the 

same optical train via a beam splitter.  Figure 49b shows an example of the resulting structures 

formed around a C. elegans nematode as seen through the CCD.  The procedure of fabricating an 

assay takes three steps.  First, an agarose gel plate is dried under Nitrogen for 30 seconds.  Then 

5 µL of photo-polymer (PEG-DA/H2O/Photoinitiator) is dispensed using a pipette.  The droplet 

may or may not be covered with a glass cover-slip based on assay intent.  When covered a shim 

of PS Beads or cover glass is used to control the height of the features from 1-1000 µm.  Finally, 

the plate is inserted into the microscope and the pattern is projected onto the photo-polymer 

curing it in place and adhering it to the agarose gel.  Because the fabrication step occurs at the 

same time as imaging additional exposures can fabricate additional features, and can be stitched 

to span a larger area.  The microstructure design was produced using standard drawing software 

(Adobe Illustrator). 
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Figure	49.		Overview	of	C.	elegans	patterning	process.		aሻ		Flow	chart	of	the	patterning	process.		bሻ		

Schematic	of	the	experimental	setup	for	patterning	agar	plates.		Lithography	system	is	a	modified	

microscope	comprised	of	a	UV	DLP	mask	and	light	source	for	projecting	image	of	desired	structure.		

Real‐time	video	feedback	is	provided	by	a	CCD.		The	system	is	controlled	by	Labview.		cሻ		An	

example	of	a	structure	formed	around	a	C.	elegans	worm	in	situ.		

The material system comprised of PEG-DA/H2O/Photoinitiator on Agarose was chosen as a 

biocompatible platform for the assays.  We initially investigated several bio-adhesives and 

monomers including PEG, Pluronic-F127, Methacrylate and PDMS.  We chose PEG-DA for its 

ease of polymerization, biocompatibility, and hydrogel properties (e.g. oxygen diffusion, 

softness).  It was also attractive to use agarose, which has long been the gold standard growth 

medium for C. elegans worms.  The last key ingredient is the Photoinitiator, which initiates 

polymerization of the PEG-DA monomer into solid structures, and must be selected carefully 

based on its wavelength sensitivity and biocompatibility.  Biocompatibility can be affected by 

the formation of free radicals during exposure to light or its hydrophobicity.  We tested three 

candidates, including 2-hydroxy-2methyl-1-phenyl-1-propanone (Darocur 1173), 

Phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide and a custom mixture of 0.01 mM Eosin Y 

and 0.1% TEA.  The latter two initiate in white light while the former initiates in NUV.  Titrating 
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concentrations of Phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide into PEG-DA yielded no 

solution that would photopolymerize and be biocompatible.  The Eosin Y solution would not 

adhere to the agarose gel but did show promise as a biocompatible photopolymer with C. elegans 

to be studied later.  Finally, the NUV Photoinitiator showed the ability to both adhere and be 

compatible with living C. elegans.  Results are shown in Figure 50, for a 2X, 5X, 20X and 50X 

objective across a range of feature heights from 1 µm to 1000 µm.  The exposure time for each 

experiment was controlled using a shutter with a mechanically limited minimum exposure time 

of 50 ms.  The length of time of the exposure determined the thickness of the cured PEG-DA 

layer.  The optimal exposure time for each objective and thickness was chosen for the highest 

resolution line pair measured.  As shown in Figure 50c as thickness (feature height) decreased 

the exposure time increased due to oxygen inhibition at very small heights [35].   
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Figure	50.		Resolution	and	exposure	data	for	PEG‐DA	on	agar.		aሻ	Optical	images	of	fabricated	test	

pattern	ሺUSAF	1951	patternሻ	used	to	determine	line	pair	resolution,	with	examples	ሺfrom	left	to	

rightሻ	of	under‐exposed,	properly	exposed,	and	over‐exposed	results.		bሻ		Relationship	between	line	

pair	resolution	and	feature	height	for	different	objective	magnifications	indicated	in	the	legend.		cሻ	

Relationship	between	optimal	exposure	time	and	feature	height,	determined	using	smallest	line	pair	

fabricated	in	each	case.		The	lines	are	linear	fits	using	the	data	points.		dሻ		SEM	Images	of	T‐mazes	as	

used	in	Figure	8,	including	ሺfrom	left	to	rightሻ	the	full	maze	in	the	upper	half	and	the	projected	mask	

overlayed	in	the	lower	half,	the	sub‐image	shows	one	leg	of	the	maze,	and	the	right	sub‐image	

shows	the	corner	of	a	wall	feature.		

Unfortunately, we found that features smaller than 50 µm did not remain adhered to the PEG-

DA upon rinsing.  As a result, this determined the minimum feature size we could use in the C. 

elegans assays, and this is still significantly smaller than the worm body length (~1000 µm).  

This limit is related to the strength of the PEG-DA and how the photopolymer diffuses into the 

agarose gel, thereby influencing the adhesion strength between the two materials.  Diffusion of 

the PEG-DA polymer into the agarose gel was measured by ATR-FTIR A baseline spectrum was 
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taken and re-measured periodically over 20 minutes as shown in Figure 51.  Figure 51b 

compares the first and last measurement showing the development of a band at 1714 

wavenumbers due to the presence of an ester carbonyl.  Our interpretation is this band 

development indicates diffusion because this group can only be found in the PEG-DA monomer 

which must have diffused into the agarose to be detected.  Polymerization of diffused PEG-DA 

enables adhesion to the substrate proportional to the structure cross sectional area.   

 

Figure	51.		Results	of	FTIR	measurement	showing	diffusion	of	PEG‐DA	into	agar.	

Figure 50d, shows SEM images of an example structure fabricated out of PEG-DA on 

agarose gel alongside the mask projected.  Each successive frame shows a close-up detail of the 

corner of a T structure imaged at 45˚.  The corner radius of the maze fabricated with a 5X 

objective is 10µm. 

Survival of C. elegans 

Before performing live worm assays using the dynamic lithography method, it was essential 

to evaluate the viability of the worms in the presence of the PEG-DA solution on agar plates.  To 

this end, and since PEG-DA is a relatively new material for C. elegan assays, we tested its effect 

on worms in various concentrations.  Our results show that, diluted to 20% PEG-DA and 80% 

water does not have any effect on population longevity.  Increased concentrations of PEG-DA, 

30%, 50%, 75% and 100% appear to induce stress on worms, expressed in reduced motility, 

increased curling and signs of dehydration, resulting in death after 3-10 minutes.  These results, 

in combination to the fact that the suitable photo-initiator, as explained above, is insoluble at 

PEG-DA concentrations below 15%, led us to choose 20% as the appropriate concentration.  
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The viability test was performed on NGM plates non seeded with Escherichia coli OP50.  

Each plate was seeded with adult worms of various ages and a droplet of the material under 

investigation was placed onto them.  We incubated the worms within the PEG-DA solution 

droplet at 20 ᵒC and checked on the worms every 1 min.  

 

Figure	52.		Worm	viability	comparing	agarose	gel	substrate	and	PEG‐DA/agarose	substrate.		

Despite our observation showing no apparent effect of 20% PEG-DA in C. elegans short-

term viability, we performed a survival assay to verify that this is also the case with the worm’s 

lifespan.  To this end, we used NGM plates, seeded with Escherichia coli OP50, rinsed in PEG-

DA, on which we built simple structures from photopolymerized PEG-DA (i.e. rings, 

rectangular).  We then placed worms on them, as described in the Methods section.  This way we 

tested the effect of both cured and traces of non-cured PEG-DA.  As shown in Figure 52, the 

presence of PEG-DA has no effect on long-term viability of C. elegans.  Worms also show 

normal locomotion patterns and motility, no dehydration signs and normal life cycle.  These 

results encourage us to use 20% PEG-DA in our technique and also permit us to use it for 

behavioral studies, since no major modification of their behavior or activity was observed during 

their exposure to it.  

Manipulation of C. elegans by dynamic confinement 

To demonstrate the capability to build locomotive assay designs in situ, we first designed 

experiments that could be compared to previous studies [63] using static assays.  Specifically we 

fabricated pillars and confinement channels.  Locomotive assays are useful for identifying how 

the dynamics of the worm change with its environment.  Starting with an agar plate loaded with 

worms, a single worm was isolated from the worm population in a 5 by 3 mm box that was 100 

µm deep, shown in Figure 53a by a single exposure (1 s) from the lithography system.  A second 

exposure generated an array of pillars 100 µm in diameter with a spacing of 100 µm between 
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pillar centers 4 seconds after the first assay.  The array of pillars mimics the period length of the 

worm’s motion enabling it to move much faster than swimming freely.  The path of the worm in 

the pillars over a duration of 200 seconds is shown in Figure 53b.  At another time, a third 

exposure confined the worm within a corrugated microchannel approximately 100 µm wide.   

 

Figure	53.		In	situ	photopolymerization	of	microstructures	resulting	in	physical	confinement	of	a	C.	

elegans.		aሻ	Three	exemplary	assays	built	sequentially	ሺfrom	left	to	rightሻ:	an	open	frame,	an	array	

of	micropillars	ሺ100	µm	diameterሻ,	and	a	rippled	microchannel	created	by	gradually	increasing	the	

density	of	polymerized	micropillars.		bሻ	Tracking	of	the	worm	motion	over	a	time	period	of	200s.		cሻ	

Box‐whisker	plots	of	velocity	in	each	configuration,	showing	that	sequential	confinement	increases	

mobility.		The	whiskers	represent	the	max	velocity	of	the	worm	in	each	scenario	and	are	connected	

to	highlight	the	trend.		

By comparing the average speed of the worm in each assay design (Figure 53c), we conclude 

that the worm swims faster in confinement.  For example, comparing pillars spaced with 100 

microns between them and overlapping pillars we found an 89% increase maximum velocity.  
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We observed that the worms take advantage of the pillars to offer leverage during locomotion.  

When the pillars were overlapped the maximum swimming speed of the worm increased from 

330 µm/s, free swimming, to 890 µm/s corroborating physical simulation and experimentation 

by Majmudar et al. [64].  The periodicity is easily tunable by simply changing the image 

projected to study a broad range of locomotive behaviors.  The total time to develop three 

independent assays around a freely swimming worm is reported as 30 seconds. 

Free-floating structure and mechanical elements 

Free floating features cannot be fabricated in traditional PDMS systems.  By controlling the 

exposure time and focal plane we are able to specify an exposure depth from the surface, thereby 

creating free floating features.  Here, we demonstrate the fabrication of a lever fabricated around 

a pin.  Video was taken of the C. elegans interacting with the lever and rotating it until it hit a 

wall (Figure 54).  Next, the worm wedged its body between the outer wall and the hinge.  Once 

in that position it straightened its body, pushing the hinge up and around the pin.  This motion 

was repetitive, symmetric and touch reactive.  The rotating lever is an example while other types 

of mechanisms can be fabricated as well.  
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Figure	54.		Worm	interaction	with	a	simple	hinge‐pin	mechanism	patterned	within	a	millimeter‐

scale	area.		aሻ	Sequential	frames	show	the	worm	rotating	a	hinge	around	a	pin.		bሻ		Schematics	of	

worm	motion	as	observed	in	the	experiment,	which	is	also	shown	in	Video	S2.		When	the	worm	

contacts	two	points	spanning	from	the	frame	to	the	hinge,	it	extends	its	body,	exerting	force	on	the	

hinge	and	causing	it	to	rotate.   

Free-hand drawing of features within the assay 

In addition to projecting fixed geometric patterns during the assay process, the system can 

generate freeform input from the researcher.  One example is the use of a tablet to draw an array 

of pillars (Figure 55b).  We integrated a touch pad into the system so that the researchers touch 

would correspond to projection and fabrication of microstructures (Figure 55a).  In this case the 

input from the tablet is converted in real-time into a projected mask using a custom LabVIEW 

software.  The latency between the researchers moving their finger/pen across the screen until 

the light is projected is >250ms.  The limit to the speed at which this process can be driven is 

coupled to the latency in response of the computer to recognize the input, transfer of the input to 

the projector, kinetics of the DMD mirrors and shutter latency.  The rate-limiting step is 

currently the transfer of the image to the projector due to the manufacturer software for this 

module.  If this were not the case, the fundamental limitation would be the photopolymerization 

rate or the reaction time of the researcher.  
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Figure	55.		Tablet‐based	method	for	real‐time	input	by	hand	drawing.		aሻ	Schematic	of	sequence,	

resulting	in	projection	of	input	to	create	PEG‐DA	features	on	the	substrate.		bሻ		Optical	microscope	

images	of	an	array	of	dots,	drawn	sequentially	by	hand,	subsequently	built	on	the	chip.		The	system	

projects	the	features	drawn	by	the	researcher	after	a	time	delay	of	0.25	seconds.	

 Direct-write encapsulation and imaging of nematodes follows naturally as the examples 

given allude sufficiently towards how a user can encapsulate specific nematodes with the touch 

pad and then perform separation or imaging of them. 

Dynamic maze fabrication  

In C. elegans population studies, locating individuals with exceptional fitness compared to 

the rest of the population is a necessary first step to selectively breed traits, given that 

phenotypes within C. elegans populations are stringently conserved.  Here we demonstrate how 

individuals can be tracked in custom-made mazes to determine their fitness regarding their 

ability to locate food.  

More specifically, we demonstrate how a maze can be fabricated around a C. elegans worm 

suspended in the photopolymer, or placed ex situ.  To begin, forty seven adult hermaphrodite 

worms were placed into the entrances of an array of already built T-shaped mazes and tracked 

until 80% of their body was inside of a circle region at either terminal end of the maze (Figure 

56a).  We recorded whether they chose left or right maze leg and found that the choice occurred 

with equal probability (Figure 56b).  Our results verify that the choice is random, corroborating 

previous maze studies using PDMS assays [3]. Next, we placed food (Escherichia coli OP50) on 

the left end of each maze and we recorded the choice made by forty two adult hermaphrodites.  
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Using the above mentioned criterion of a worm’s final choice, we found that the worms would 

choose the leg containing the food almost twice as often as the leg without food (Figure 56b).  

 

Figure	56.		Maze	assays	used	as	a	test	case	of	C.	elegans	decision	making	behavior.		aሻ		T‐shaped	

PEG‐DA	microchannel,	with	colored	dots	showing	position	of	worm	during	a	30	second	period.		bሻ		

Control	group	of	worms	with	and	without	food,	and	trained	worms.		cሻ		Array	of	T‐shaped	mazes.		

dሻ		Increasingly	complex	maze	used	to	examine	individuals	with	increased	ability	to	track	food	

placed	in	the	green	dots.		Numbers	indicate	locations	that	correspond	to	failed	decisions.			

Given the fact that, based on the above mentioned results, not all worms located food 

correctly, we postulated that some worms would have the ability of locating food more 

effectively than others.  To explore this further and taking into account that training the worms to 

solve complex mazes has been the subject of previous works (Pandey et al. [65]) we fabricated a 

second, more complicated maze to determine if the worm will continue to choose the correct leg 

of the maze to find more food (Figure 56d). Preliminary results are indeed implying an ability of 

certain individuals to locate food correctly (data not shown), however the full study is currently 

in progress, and our future experiments involve also the identification of genes that participate in 

the worm’s ability to locate food.   

We would like to also note that the exploratory behavior of C. elegans inside a maze reported 

in previous studies [59] was observed during the described experiments. This, in our opinion, 
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occurred as in our case a third dimension in space (height) was available to explore due to the 

absence of a top cover, as used in the study of Qin and Wheeler, 2007.  

This gave the worms the chance to climb up the walls of the maze corridors, verifying their 

ability to navigate in all space dimensions, in accordance with the conditions of their natural 

environment, the soil.  Individuals that climbed their way out of the maze, even in initial stages, 

were not put back into the maze, so as to eliminate the possibility of them being already 

accustomed to the structure.  

Our approach offers also the option to use feedback from the imaging system to decide the 

fitness of an individual by tracking worms in mazes and thus can provide an impetus to map 

learning and behavioral response to brain plasticity fitness in learning.  

Conclusion 

As tools and software for in situ analysis of assays become more capable, the possibility 

opens to dynamically alter the physical conditions of the experiments.  Moreover, a bench top 

process eliminates the need for mask fabrication, master fabrication, or stamp/molding and 

enables rapid testing and iteration of assay designs using direct write lithography of Poly-

ethylene glycol diacrylate (PEG-DA) onto agarose gel.  

A comparison of dynamic lithography to soft lithography, lithography and 

stereolithography  

Soft lithography has many advantages over traditional lithography for biologist and chemists.  

These are covered in detail by Xia et al. [52], and include the ability to fabricate many devices 

from a single master mold. However, the master mold is still fabricated via molding photo-

lithographically defined features.  An adapted process diagram shown from Xia, Figure 1a, 

shows how Dynamic lithography’s process differs from soft lithography.  Dynamic lithography 

removes the mask fabrication, master fabrication and molding step to fabricate features.  

Mitigating these issues enables the direct-write fabrication of photoresists microfeatures 

including hydrogels onto the substrate of choice.  Moreover, Table 6 details how the mechanism 

of structure/pattern formation differs as well as functional differences.  Compared to mail-order 

stereolithography this method will improve resolution due to a broader range of available 

chemistries and better resolution (30X). 
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Table	6.		Comparison	of	photolithography,	soft	lithography	and	dynamic	lithography.	
 Photolithography Soft lithography Mail order 

stereolithography 
Dynamic lithography 

Definition of 
patterns 

Rigid photomask 
(patterned Cr 
supported on a quartz 
plate) 

Elastomeric stamp 
or mold (a PDMS 
block patterned with 
relief features) 

Laser or Digital 
micromirror 
device 

Digital micromirror 
device (array of 7 µm 
mirrors that are 
addressable pixels) 

Materials that can 
be patterned 
directly 

Photoresists (polymers 
with photosensitive 
additives) SAMs 

Photoresists 

Sams 

Unsensitized 
polymers 

Proprietary 
photopolymers 

Photoresists 
(polymers with 
photosensitive 
additives) (PEG-DA) 

Current limits to 
resolution 

ca. 250 nm  30 µm ca. 250 nm 

Minimum feature 
size 

 ca. 100 nm 10 -100 nm 300 µm 1 µm 

Dynamic 
patterning 

N/A N/A N/A Image, machine 
vision or researcher 
input 

 

 

 

Figure	57.		Comparison	of	soft	lithography	to	dynamic	patterning	method.	

We have presented a bench top process for fabricating, via direct-write lithography, micro-

features onto NGM plates for assaying and encapsulating C. elegans in a rapid process.  This, in 

our opinion displays numerous advantages compared to traditional lithography and soft 

lithography methods via enabling simultaneous rather than sequential assay fabrication and 
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experimentation.  First, using soft lithographic methods the expected time to develop a new assay 

is 7 days to 24 hours depending on the use of an industrial mask fabricator or in house plotter, 

however using our process we expect a complete new assay to be developed in 10-15minutes 

[52], [66], [67].  Moreover, high precision assays, with feature sizes nearing 1 µm require clean 

room access or industrial mask printing, which we also claim to eliminate the need for.  This 

method is a platform for in-situ interrogation of C. elegans behavior by connecting the researcher 

to the micro-environment of the worm.  Furthermore, it removes complicated interconnects for 

delivery the worm to the device by building the device around the worm.  The capability of the 

system to fabricate free-floating structures could be used to observe a more complex behavior.  

The paradigm shift of dynamic feedback can be used to incorporate new features into a running 

assay or encapsulate a phenotype of interest for further processing.  Moreover, this technique 

could be used in combination with real time worm tracking systems after selected neurons have 

been tagged with fluorescent markers, in order to observe which neurons and neuronal circuits 

participate in solving a maze, decision making and readjusting locomotion routes.  Not only will 

advances in scaling assay patterning and integrating optogenetics improve the potential 

application of this method but so will advances in material synthesis.  Recently, reported 

techniques to use Pluronic F127 as a thermally switchable encapsulant for C. elegans has the 

opportunity to expand the breadth of solutions available to this method [68].   

Furthermore, this method may be useful for other model organisms such as manipulating 

Zebrafish or Daphnia [69], [70].  Zebrafish are another model organism used to study vertebrate 

development and disease.  This method would be well suited to manipulating swimming 

organisms such as Zebrafish but they are much larger reaching 25 mm in length.  The platform 

could be adapted to large area patterning however, polymerization or manipulation may occur 

too slowly.  Moreover, Daphnia is used to understand genomic response to environmental 

stressors.  This method could be adapted to control the introduction of stressors, but increased 

knowledge about how the system would affect genomic response would need to be studied first. 
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Towards the potential advances outlined we are currently using this methodology to select 

worm phenotypes based on problem solving capability in progressively challenging mazes.  

Selection is made by collecting and breeding worms that have completed the challenge to breed 

the trait.  It is our vision that this method can also be used by other labs to rapidly deploy new 

assays that require many iterations, feedback, moving parts or incorporate machine learning for 

large data sets.   
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CHAPTER  V. HIGH-SPEED OBJECT MANIPULATION BY DYNAMIC 
LITHOGRAPHY USING MACHINE VISION 

Abstract 

The previous chapter discussed the use of microfabrication in vitro via human directed 

manipulation of the micro-environment.  To achieve automated adaptive and selective 

manipulation of the microenvironment based on feedback from machine vision, we can build 

upon previous microfabrication methods.  Batch microfabrication, for example enables parallel 

processing of microscale objects but lacks the ability to dynamically adapt to live environments.  

Overcoming these limitations is will enable manufacturing of, realistic artificial tissue constructs 

with vascularization. 

The goal of this chapter is to build an integrated hardware and software platform, based on 

micro-scale light shaping and high-speed machine vision algorithms that enables real time, 

dynamic photo-patterning in response to changes in microscale environments.   

To enable the system to respond without human intervention, software was written to use 

machine vision to dynamically manipulate objects in flow, by photopolymer encapsulation.  In 

order to track motion of particles while accounting for system latency a Kalman filter and image 

encoding algorithm are implemented to improve projection accuracy.  The Kalman filter 

properties are derived by a genetic algorithm to match the motion characteristics of each 

experiment.   

As a demonstration of this technique, micro-particles are sorted by size (TPR=100% and 

SPC=99.999%) and the mean encapsulation error of 4.7 pixels is measured.  This demonstrates 

the promise of this method to effectively solve sorting and by extension general manipulation of 

particles.  Looking forward, the realized platform combining light-driven polymerization and 

image-driven artificial intelligence algorithms could enable many dynamic fabrication 

capabilities for interacting with cellular and living systems.   

I thank undergraduate researcher Lilly Chin and Felix Sun for their assistance writing the 

software used to track and detect objects.    
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Introduction and design of the dynamic lithography system 

We introduce the term “dynamic lithography” to refer to the main goal and accomplishment 

of this chapter: adapting a DLP based photopatterning system to include hardware and software 

that enables real time computer driven decision making to interact with a dynamic 

microenvironment, for example to encapsulate a particle in flow (Figure 58).  This differs from 

the methods we have previously discussed in that those methods either required foreknowledge 

about the system or researcher input while this method must analyze the image from the camera 

and automatically generate a new mask to project.  This is challenging because ideally the 

system will act in in real time in response to a stimulus, such as the presence of a particle.  Work 

by Kwon et al. have demonstrated similar functionality to apply protective coating LEDs when 

applying a phosphor coating [71], [72].  This requires tight integration of all the components in 

the system (optics, software, chemistry).  To detail the requirements, we breakdown the design 

into the optics and its housing and the software algorithm with additional detail taken to discuss 

the individual steps of the algorithm.   

 

Figure	58.		Overview	of	dynamic	lithography.		aሻ		Dynamic	lithography	system.		bሻ		Schematic	of	

microfluidic	device	and	basic	process	of	manipulating	a	particle.		cሻ		Layout	of	the	microfluidic	

device.	

Optics and housing 

The problem of designing the system can again be described as three optical processes: 

projection, illumination and imaging.  However, for this application the requirements are 

different than for manufacturing microparticles with arbitrary shape.  First, we identified design 

requirements to enable the system to process many particles at a high rate.   
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Table	7.		Design	parameters	for	dynamic	lithography	system.	

Design requirement Value Units 
Camera frame rate 60-300 fps 
Latency 16 ms 
FOV 5 mm 
Camera resolution 5 µm 
DLP framerate 1440 Fps 
Wavelength 405 nm 
Depth of field 20 µm 

 
 
The TI DLP system chosen was the Lightcrafter 4500, designed by Wintech which has an 

HDMI based communication method and can stream video at 60 frames per second.  The DLP 

has a resolution of 912 x 1140 pixels with a pitch of 7.6 µm.  The cover glass on the DMD chip 

acts as a bandpass filter between 405 nm to 750 nm wavelengths.  The mirrors are in a diamond 

pattern (Figure 16 from Chapter  I) which enables illumination along the mounting plane as 

shown in Figure 16.  This system has a built in controller designed for development and 

experimentation.  Settings are configured via USB connection to a PC and controlled by either 

the manufacturer software or custom C++ interface.   

The camera chosen was a Ximea 3 USB camera.  This camera communicates via USB 3.0 

which allows 5 Gbit/s of data.  Using this the maximum frame rate achievable for full sensor 

(2048x2048) video is 90 fps in 8 bit capture.  It has a pixel pitch of 5.5 µm.  The size of the 

sensor is 25.4 mm along its diagonal.  The sensor is CMOS with a global shutter.   

The objective is interchangeable, and a good compromise of FOV, resolution and depth of 

field was found when using the 5X Mitutoyo objective.  This specifications of this objective state 

a FOV of 4mm, a resolving power of 2.0 µm (0.14 NA) and a depth of field of 14.0 µm.  It also 

has a long working distance of 34 mm.   

Depth of field can vary depending on how it was calculated because in a real system there is 

no definite location at which the object immediately becomes unfocused.  Rather it is gradual 

therefore, we calculate the depth of field to understand what parameters the manufacture used to 

determine the specification.  The depth of field (DOF) is given by the sum of wave and 

geometric optical depths of field as in Equation 10 [73].  Where ݀ represents the depth of field, ߣ 

is the wavelength of light, ݊ is the refractive index of the medium, and ܰܣ is the objective 
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numerical aperture.  The variable e is the smallest resolvable feature by a detector placed in the 

image plane with a lateral magnification	ܯ.  Note how the first term relates to the contribution of 

the numerical aperture of the objective while the second term weights the circle of confusion.  

Using this equation the depth of field of the system is calculated as 28 µm at 500 nm which 

equals the manufacturer specification of ±14 µm.  This means that NA which describes the half 

cone angle of the objective geometrically describes the  

 
݀ ൌ

௢ߣ
ଶܣܰ

൅
݊

ܯ ∙ ܣܰ
݁

Equation 10

To image during exposure we chose a beamsplitter that would transmit the projected image 

to the substrate and reflect the substrate image to the camera.  For this we chose a Cube-Mounted 

pellicle beamsplitter from Thorlabs.  It has an 8:92 (R:T) reflectance and transmission ratio and 

is uncoated with a wavelength range of 400-2400 nm.  The beamsplitter has a very thin cross 

section (2 µm), eliminating ghosting and removing chromatic aberration.  Due to thin film 

interference there is a sinusoidal variation in the R:T spectrum as shown in Figure 59. 

 

Figure	59.		Transmission	data	for	pellicle	beam	splitter.		Data	provided	by	manufacturer	ሺThorlabsሻ	

Each of these components was assembled into a custom housing (Figure 60) with a constant 

distance between the DMD and the objective.  The CCD adjusts along four optical cage rods to 

focus it onto the image plane.  Finally, a longpass filter (Thorlabs FGL495) was mounted in front 

of the camera to filter blue light from the camera.  This enables viewing with the camera in green 

and red light without bleaching caused by the exposure in blue light. 
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Figure	60.		405	nm	dynamic	lithography	system.		aሻ		ISO	view	of	the	system	assembled.		bሻ		Break	

apart	view	of	the	components	in	the	system.		cሻ		Side	view	of	the	system	showing	the	alignment	of	

the	optics.		dሻ		Front	view	of	the	system.	

The assembled system is mounted onto an optical rail and positioned to project towards a 

motorized 3-axis stage (X, Y, Z: Thorlabs PT1-Z8), which has a manufacturer quoted 0.05 µm 

resolution, 130 µm absolute accuracy and 1.5 µm repeatability.  The X and Y stages have a 25 

mm travel range while the Z stage has a fine range of 25 mm and a coarse rack and pinion range 

of 200 mm.   

This arrangement differs from the previously presented UV DLP lithography system 

(Chapter  I) in that it has a smaller overall size, faster camera capture and projection rates.  

Moreover, it is better suited to “g line” resist, which denotes any photo-polymer sensitive to 435 

nm illumination wavelengths because of a reflective coating on the DMD window that filters 

light below 400 nm.  

  



81 
 

Dynamic lithography algorithm 

The goal of the dynamic lithography algorithm is to generate feedback and based on pre-

defined rules decide how to process a particle in the system.  A high level overview of this 

process can be seen in Figure 61a. 

First, an image is captured and pre-processed to remove noise.  Objects in the image are then 

detected and filtered further to only relevantly sized/shaped particles.  Next, single particles are 

tracked.  The software maintains a list of particle positions for 100 frames, new particles are 

added to the list and particles that have disappeared from view are deleted.  Once the particles 

have been tracked, a Kalman filter and a bit plane slicing algorithm is applied in order to enable 

high resolution tracking and account for latency.  The Kalman filter is, a linear estimator of 

particle position, velocity and acceleration that is updated on each iteration.  While the bit plane 

slicing algorithm encodes predicted positions of for the particle into subframes encoded in the 

projection frame.  The projector interprets the projection frame as 24 sub frames projected 

individually and sequentially to smooth the projection as it tracks a particles.   
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Figure	61.		Overview	of	the	particle	tracking,	detection	and	processing.		aሻ	Flow	chart	of	the	

algorithm.		bሻ		Preprocessing	steps.		cሻ		Detection	sequence	checking	current	frame	against	position	

and	velocity	of	previous	frame.		dሻ		Kalman	filter	prediction	of	state	position	and	extrapolation	of	

position	via	bit	plane	slicing.		eሻ	Display	of	subframes	for	high	speed	projection.	
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The particle class 

Particle information is maintained through an object-oriented approach.  For each particle 

type (C. Elegans, hepatocytes, etc.), there is a “Particle Group” class which defines properties 

about the particle type such as image pre-processing and drawing parameters.  The ParticleGroup 

also contains a vector of all current particles of that type.  Each particle tracks its own location 

and instance of a Kalman filter for further iteration.  The particle class is shown in Figure 62. 

 

Figure	62	Diagram	of	the	particle	class	object	and	particle	group	object	

Pre-processing 

After an image is acquires, it is pre-processed to reduce noise and improve detection by 

applying a Gaussian blur and morphological operations [74].    

Gaussian noise along one axis is defined as:  

 
ሻݔሺܩ ൌ

1

ଶߪߨ2√
݁
ି
௫మ

ଶఙమ
Equation 11

However it is direction independent so performing it along both the x and y directions can be 

accomplished by simply performing the blur again in the other direction. 
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Equation 12

Where ߪ is the standard deviation of the Gaussian distribution.  To understand how this is 

used in the blur algorithm each pixel is blurred by averaging it with its neighbors.  Each neighbor 

is weighted according to the Gaussian distribution value corresponding to that pixel.  So closer 

pixels add more color information than those further away.  To make the algorithm more 

efficient a blur radius cut off can be set effectively setting ߪ for the distribution so that pixels 

further away than the radius do not contribute to the effect.  Applied to a single image of 45 µm 

PS beads yields the progression shown in Figure 63. 

 

Figure	63	Effect	of	Gaussian	blur	radius	on	noise	in	an	image	of	45	µm	PS	beads	

The second method we use to deal with noise are morphological operations.  The two 

operations being used are dilation and erosion.  The effect of these two operations is similar to 

the classic game Minesweeper.  If a black block of pixels is present on a white background 

applying the dilate operation will change to black each pixel that is adjacent to a black pixel, 

causing the black block to enlarge.  The erode operation applies the same effect to white pixels, 

making the black block smaller.  In the present algorithm we apply erode and dilate sequentially 

to first remove noise and then return the size of the particles of interest to their original size.  

This removes noise by iteratively applying erode so that black blocks that are only a few pixels 

in width are erased leaving only larger blocks.   

Detection 

The first step in detection is to apply a threshold to the image to generate a binary 

representation of the particles.  More details on the threshold method are discussed in the next 

chapter.  To generate a list of detected objects, contour detection was run on the new binary 

image.  Having maximized the edge contrast of the particles, the image moments (ܯ௜୨) of each 

particle can be found [75], according to Equation 13  ܫሺݔ,  ሻis the intensity of the pixel atݕ

position x,y with indices i, j.     
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Equation 13

A uniqueness theorem [76] states that if f(x,y) is piecewise continuous and has nonzero 

values only in a finite part of the xy plane, moments of all orders exist, and the moment sequence 

is uniquely determined by f(x,y).  The moment of an image uniquely describes that image and 

the converse is also true. 

This is useful because the ܯ଴଴ moment for binary region (particle after thresholding) on an 

image gives its value, while the centroid of a region can be found by ሼݔ, ሽݕ ൌ ሼܯଵ଴ܯ଴଴,ܯ଴ଵ/

 ଴଴ሽ.  Next in the algorithm, the remaining particle candidates are filtered by comparing theܯ

areas found for each particle using the moments to a maximum area.   

Tracking 

In each frame, the algorithm first detects particles in the frame then links them to a history 

using a tracking algorithm, resulting in a vector of particles.  Particles are tracked by matching 

particles from the current frame to the previous frame.  Any particles that did not match are 

considered new particles. 

Our tracking algorithm incorporates Kalman filter predictions into a nearest neighbor 

algorithm.  This filter was chosen because it is statistically the optimal linear estimator for 

systems that are one dimensional and linear [77].  We assume that the motion between frames 

can be simplified into linear motion.  At any frame, we know the predicted position of particles, 

estimated from the previous frame.  From this, we can calculate an approximate velocity vector 

for each particle.  Thus, we know that it is likely that in the current frame, the particle will be 

found along the direction of this velocity vector.  So, for a specified radius r and a specified 

particle width w, we can construct a rectangle where the particle will most likely be for this time 

step.  If the algorithm finds a particle in this triangle, it is matched with the older particle.  This 

method was chosen because it improves on nearest neighbor tracking by focusing the search 

region to the most likely area on the image.  A pictorial representation of this algorithm can be 

seen in Figure 62c.  

After all particles on the detected particles list have been accounted for, we iterate over all 

particles once more.  If they have not been updated in a five frames (death counter) or if they are 

too close to the edge of the image and will be going outside our field of view, they will be 

removed from our particle list so they will no longer be accounted for in our tracking algorithm.  
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The death counter was chosen to ensure responsive removal of particles that are no longer visible 

while ignoring momentary detection algorithm failures.  A more detailed description of the 

Kalman filter is to follow. 

Predicting/Extrapolating 

A limitation of the HDMI communication between the PC and the projector is that the 

drawing rate to the projector is 60 fps.  In an attempt to improve the projection accuracy between 

imaging frames, we implemented a method to increase the frame rate of the projector between 

each drawing event.  Given the predicted position of the particle, from the Kalman filter, the 

system attempts to draw the extrapolated position of the particle extrapolated in increments of 

0.7 milliseconds.  However, we must send this data to the projector and sync the software.  In a 

24 bit RGB (Red, Green, Blue) image each pixel in the image is described by 24 bits.  The first 

bit for every pixel can be selected and would described a binary image or a plane of image data.  

This is true of each bit related to a pixel.  So, in this way a 24-bit image is composed of 24 1-bit 

binary images.  Since we are projecting in RGB, each image sent to the projector is composed of 

24 independent bit planes – 8 for each color.  Normally, the projector displays these rapidly 

while changing the display color to trick our eyes into seeing multiple colors on the screen at 

once.  However, by encoding 24 binary images into each of the 24 bit planes, we were able to 

increase our projection frame rate to 1,440 frames per second.  (60 frames X 24 subframes).  

Each of the binary images or sub-images is drawn on to include the next extrapolated particle 

mask.  Therefore each binary image contains the projection for the position of the particle at each 

increment in the extrapolation as shown in Figure 61d [78].  However, changes in the software’s 

frame rate are inevitable as the number of particles in the system fluctuates.  Under standard use, 

a clock is used to sync the projector, camera and system software.  However, if the system frame 

rate dropped below 60 fps then the extrapolated projection would display the last subframe 

longer than intended.  In this case the latency is used to alter the display rate of the subframes on 

the projector resulting in a smooth, accurate projection.   

Generating masks and projecting images 

The generated mask to be projected uses the state positions of the particles and any drawing 

data the particle class may convey.  For example, it may contain information on orientation and 

type.  In future cases this will orient the projection and change it based on the particle type 
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detected.  The applications discussed in this thesis adjust the size of the projected mask to 

encapsulate the detected object.  The image that has been generated is then displayed on the 

projector as transferred via an HDMI connection. 

Improving projection accuracy by accounting for latency 

Latency in the projection 

A significant challenge in real time tracking is introduced by latency in the system [79].  The 

latency is defined as the duration from when light reaches the camera sensor and the system 

emits patterned light according to the result of the processing algorithm.  The major 

contributions to latency are the camera encoding the image, the transfer across the USB cable, 

writing the data to RAM, performing a demosiac procedure on the image, performing the 

machine vision algorithm and transferring another image to the projector, loading it into 

projector memory, and switching the mirrors to match the pattern of pixels in the image. 

The effect of latency can be seen in an early version of the software (Figure 64) in which 

polymerized PEG-DA is trailing the detected particle by a distance e proportional to their 

velocity 

 

Figure	64.		Early	attempt	at	encapsulation.		Latency	caused	delay	in	projection	so	the	system	missed	

the	particles	by	some	distance	proportional	to	their	velocity.	
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The Kalman filter 

In order for dynamic lithography to be successful we must accurately and consistently know 

the position of each object of interest.  However, our measurements are nothing more than 

approximations.  Yet, given some minimum number of measurements (we may accurately 

determine the unknown quantity of position at time t.  This problem is described by Gauss in his 

development of Least Squares estimators and further by Kalman when employed in recursive 

systems [80].  Gauss noted that because of errors in any measurement system we require 

redundant measurements to accurately describe the state of a particle.  This is true even if we 

have a description of the dynamics of the particles parameters (position, velocity).  Gauss stated 

that the parameter estimates must satisfy the observations.  He referred to this as minimization of 

the residuals defined as the difference between observed and predicted values.  Gauss further 

indicated that the inaccuracies of the observations or errors are unknown which set the stage to 

be addressed later by probabilistic modeling.   

To account for latency it became apparent that we needed to calculate the latency and predict 

the true state of the object.  To do this we employed the Kalman filter as invented by R. E. 

Kalman.  An report by Welch and Bishop provides a foundation for our discussion of it and how 

it can be applied to the problem of real time tracking in a 2D image [81].   

With Gauss’ findings in mind, the next step is to model dynamic lithography using a Kalman 

filter.  First, we must derive the filter according to the dynamics of the system.  Assuming the 

state of a particle (position, velocity and acceleration) at time t evolved from its prior state at 

time t-1 according to the linear stochastic equation   

௧ݔ  ൌ ௧ିଵݔ௧ିଵܣ ൅ ௧ݑܤ ൅ .௧ݓ Equation 14

With a measurement (of particle position)	ݖ ∈ Ը௡: 

௧ݖ  ൌ ௧ݔ௧ܪ ൅ ௧ݒ Equation 15

The ݊ ൈ ݊ matrix ܣ in the difference equation (Equation 14) relates the state at time step ݐ to 

the state at step ݐ ൅ 1, in the absence of either a driving function or process noise.  The ݊ ൈ ݈ 

matrix ܤ relates the control input ݑ	 ∈ 	Ը to the state ݔ.  The ݉ ൈ ݊ matrix ܪ in the measurement 

equation (Equation 15) relates the state to the measurement ݖ௧. 

The random variables ݓ௞ and ݒ௞ represent the process and measurement noise (respectively).  

They are assumed to be independent (of each other), white, and with normal probability 

distributions ݌ሺݓሻ	and ݌ሺݒሻ. 
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ሻݓሺ݌  െ ܰሺ0, ܳሻ, Equation 16

ሻݒሺ݌  െ ܰሺ0, ܴሻ. Equation 17

Modeling the Kalman filter  

Next, we estimate the vector of an object and the latency inherent in the system.  The vector 

represents the two-dimensional dynamics of an object moving through a medium under the 

lithography system.  We assume that we can take measurements of the position of each particle 

and calculate the direction and velocity of motion.   

The motion of a particle in 2D can be modeled using a Kalman filter of the following form of 

A.  No control input is used so B has a null value. 

 

࡭	 ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
1 0 1 0 1 0
0 1 0 1 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 ے1

ۑ
ۑ
ۑ
ۑ
ې

	

B	ൌ	ሾሿ

Equation 18

The Kalman filter is a two-step algorithm: first the filter estimates the process state at some 

time and then takes some measurement as feedback.  This process is described by five 

standardized equations broken into a prediction set and measurement update set.  The prediction 

equations advance the time step of the system and calculate the expected current state and error 

covariance estimates to obtain the a priori estimates for the next time step.  The measurement 

update equations gather information about the position of the object in x, y coordinates and 

convert them into an a priori estimate of the objects position, velocity and direction to obtain a 

weighted and improved a posteriori estimate. 

The weight of the estimate or the measurement is dependent upon the Kalman gain,ܭ௧.  After 

each time step (prediction and measurement update), the process repeats recursively using the 

previous a posteriori estimates to predict the new a priori estimates.  This is why the Kalman 

filter enables efficient calculation of the optimal linear estimator [77], [82]. 

ෝ௧|௧ିଵ࢞  ൌ ෝ௧ିଵ|௧ିଵ࢞࡭ ൅ ௧ିଵ࢛࡮ Equation 19

௧|௧ିଵࡼ  ൌ ࡭௧ିଵ|௧ିଵࡼ࡭
் ൅ ࡽ Equation 20

Measurement Update (“Correction”) 

௧ࡷ  ൌ ௧ࡴ௧|௧ିଵࡼ
்ሺࡴ௧ࡼ௧|௧ିଵࡴ௧

் ൅ ௧ሻࡾ
ିଵ Equation 21
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ෝ௧|௧࢞  ൌ ෝ௧|௧ିଵ࢞ ൅ ௧ݖሺࡷ െ ෝ௧|௧ିଵሻ࢞௧ࡴ Equation 22

 

௧|௧ࡼ  ൌ ௧|௧ିଵࡼ െ ௧|௧ିଵࡼ௧ࡴ௧ࡷ Equation 23

From the update state variables in ܠො௧|௧ the projection x position is calculated adding the distance 

traveled due to latency.  This is calculated using the state velocity ݔሶ  and ݕሶ  and the latency 

compensation coefficient (߬) of the system. 

 

Figure	65.		Kalman	filter	algorithm.		aሻ		Visualization	of	the	implementation	of	the	Kalman	filter.		bሻ		

Schematic	relating	the	equations	to	an	x,	y	position	on	the	screen.	
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Tuning using a genetic algorithm and simulation 

Genetic algorithms, which is a method of iteratively finding a local optimum from a 

population of possible solutions have previously been applied to diverse fields such as 

bioinformatics, aeronautics and trading.  In this section we apply the genetic algorithm to find 

the optimal parameters to the Kalman filter difference equation that will minimize the projection 

error [83].  Many optimization methods could be used but in this case we did not know how 

many parameters needed to be optimized.  The algorithm began with examining the values of the 

Kalman filter including the transform matrix (A), the covariance matrices and the scalar (latency 

compensation coefficient).  It was then determined that not all of these were important and a 

simpler optimization algorithm would have sufficed.  The genetic algorithm works by first 

creating a population of possible values for four parameter inputs to the Kalman filter (error 

covariance, process covariance, measurement covariance and the latency delay) as shown in 

Figure 66.  Each member of the population is assigned to an individual particle being tracked in a 

simulated video of particles moving.  The particles have different velocities and trajectories 

(linear, sinusoidal).  After each member of the population is assigned the Kalman filter is re-

initialized and the particles are tracked for 10 frames.  After all of the members of the population 

have been tracked for 10 frames the error in the fitness of each member is evaluated.  This means 

that the error between the projected state position of the tracker and the ground truth position of 

the particle (given some latency) is measured and assigned a fitness value.  The goal of the 

algorithm is to drive the fitness value towards zero.  The particle that first reaches a fitness value 

of 1 pixel therefore has parameters that minimize the error between the projection and ground 

truth.  If none of the member of the population meets the goal fitness of value of 1 pixel, then the 

genetic algorithm creates a new population by crossing over values between members and 

mutating some of the parameter values.  Crossing over means that half of the parameter values 

from one member of the population are swapped with another member.  Further, mutation 

randomly occurs and changes the value of a parameter for selected members.  Elitism was also 

applied so that the top two members of the population were preserved during the cross over but 

not during mutation.  So, the best performing member of the population persist until a better 

member replaces it, so performance can’t degrade between iterations.  To our knowledge the 

Genetic Algorithm has not yet been applied to find the optimal solution to the Kalman filter for a 
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particular problem.  This enables us to be confident in the performance of the Kalman filter and 

to quickly adapt it to new dynamics in the particle system by running the GA again. 

 

Figure	66.		Genetic	algorithm	overview	

Mapping projector space to image space 

Alignment between the camera and projector is automatically mapped on system start up.  

This is necessary to ensure accurate projection onto the particles.  The projection does not take 

up the entire imaging sensor.  Therefore, a red rectangle is projected during an initialization 

process representing the extents of the projector (Figure 67).  Using image processing the edges 

of the rectangle are found and assigned as the region of interest (ROI) in the image.   

 

Figure	67.		Algorithm	for	mapping	projector	space	to	image	space.	
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Methods 

Encapsulation experiments were performed by translating a glass slide on which particles 

were cast in solution using the system’s stage as described earlier.  The stage was translated at 

0.1, 0.5, 1 and 2 mm/s (its maximum velocity).  

Sorting was performed using a microfluidic device with a race track pattern and two outlets.  

One outlet has gates (100 µm wide) that act like filters, letting particles smaller than the width of 

the gate exit the device.  A solution of PEG-DA with a white light photoinitator 

(Phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide) was prepared with (5 µm, 10 µm, 45 µm 

and 90 µm) PS microparticles at a concentration of 200,000/ml for each particle size.  The 

solution was pumped through the system via a syringe pump. 

Fabrication of the microfluidic device 

SU-8 (MicroChem 2050) master molds were fabricated to then cast PDMS microfluidic 

devices from [84], [85].  To fabricate the mold a 4 inch Si wafer was cleaned in a Piranha 

solution to remove any organic residue.  Then 4ml of SU-8 2050 was spun at 2000 rpm for 30 s.  

According to manufacturer specifications this should give 100 µm thickness.  This was followed 

by a Pre-bake and softbake for 3 minutes at 65 ˚C and 9 minutes at 95 ˚C respectively.  The mask 

was then aligned and exposed for 15 s, allowed to cool for 15 s and then exposed again for 15 s 

with 230 mJ/cm3 in MA-4.  The mask was removed and the wafer was put in the oven for a two-

step post bake with 1 min at 65 ˚C and 7 minutes at 95 ˚C.  The wafer was then developed by 

spinning it at 200 rpm while rinsing it with developer until clean followed by IPA and a drying 

spin at 1000 rpm.  No hard bake was performed as it wasn’t necessary for this application.  After 

drying PDMS (1:5) was cast to a thickness of 5 mm on the mold and allowed to cure for 45 

minutes on a hotplate at 85 ˚C.  The resulting layer was then removed and affixed onto a glass 

slide that had PDMS already spun onto it to 100 µm.  The completed device was placed into the 

oven overnight to cure fully before use.  The inlets and outlets were opened using a 1 mm biopsy 

punch. 

The height of the SU-8 master mold was measured using a profilometer (KLA-Tencor P-

16+).  The profilometer was fitted with a 12.5 µm tip with a length of 500 µm.  The SU-8 

patterns on the first device measured 198 µm tall while the second measured 117 µm.   
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Figure	68.		Image	of	the	mold	used	to	fabricate	the	microfluidic	device.	

Results 

The resolution of imaging, projection and photopolymerization of the DLP lithography 

system described for high speed manipulation using white light is as follows.  The imaging 

resolution was measured as 2 µm and the photopolymerization resolution was 5µm.  The mean 

time to photo-polymerize a structure was 0.1 s measured by imaging encapsulated beads using 

exposure times from 0.01-1 second.  As previously reported (0) the exposure time depends on 

the size of the feature, photo-initiator concentration, dilution and illumination intensity. 

The effect of tuning the Kalman filter on system performance 

The Kalman filter is used to track and predict the position of particles in the next frame.  

However, it has several parameters that need to be correctly set, as discussed in the modeling 

section, to function properly.  The Genetic Algorithm was used to find the optimal latency 

compensation coefficient for system wide latencies ranging from 0-2 seconds.  This was done by 

running the GA on a simulated video of particles whose positions in each frame are known.  

Then the latency was set and the GA searched for the optimal parameters the minimized the error 

between the projection as predicted by the Kalman filter and the simulated position of the 

particle.  The search process is shown in Figure 69a, while the projection (rings) are properly 

projected in Figure 69b after the GA has run.  The error was reduced to 1 pixel on average.  The 

single circle lagging on the left is simply due to the initialization of the Kalman filter, that circle 

will be centered by the next frame.  Moreover, by this method we mapped the relationship of 

velocity and latency to the four Kalman filter input parameters.   
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Figure	69.		Results	of	tuning	the	Kalman	filter.		Aሻ		A	view	of	state	t	showing	the	error	between	

particle	state	position	and	projection	position	during	the	genetic	algorithm	process.		Bሻ		The	result	

of	the	tuning	process	showing	a	displacement	error	of	1	pixel	on	average.		Cሻ		Measured	relationship	

between	latency	and	the	compensation	coefficient	for	the	Kalman	filter	and	the	linear	fit.	

Verification of bit place slicing procedure 

Using the bit plane slicing algorithm a test image was prepared with 16 slices.  This is shown 

in Figure 70a.  After the image was generated it was projected against a substrate at 60 fps, 

which was imaged with a 30fps camera as seen in Figure 70b.  At this rate the image appears as a 

solid white image with uniform brightness.  This indicates that each bit plane is sharing a 

uniform exposure time.  Moreover, when using a 10,000 fps camera each bit plane is easily 

observed being projected sequentially.  For example, the number 2 projected in Figure 70c is a 

single bit plane exposed from the full image.  Finally, we translated this to generate masks using 

bit plane slicing for particles as shown in an exaggerated example (the latency is multiplied by 

100X so the distance between subframe positions is exaggerated so that it is easier to understand) 

in Figure 70d. 
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Figure	70.		Bit	plane	slicing	verification.		Aሻ		Test	image	on	monitor	to	verify	the	bit	plane	slicing	

algorithm	constructed	a	16	bit	image	from	16	binary	images	with	colors	indicating	bit	planes.		Bሻ		

View	of	the	image	projected	as	imaged	at	30	fps	second.		Cሻ		Same	projection	viewed	through	10,000	

fps	camera	showing	individual	bit	planes	ሺ6,7,8ሻ	as	they	are	displayed.		Dሻ		Bit	plane	slicing	adapted	

to	draw	24	locations	to	project	circle	sequentially	in	direction	of	particle	motion.	

Performance of projector space mapping 

The accuracy of the projection relative to the camera using the mapping procedure was 

measured as having a maximum error of 1 pixel across the FOV.  Each time the system starts this 
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mapping can be run to reset the values if projections begin to drift due to temperature 

fluctuations or rough handling. 

The frame rate of the detection and tracking code was also measured and averaged 60 fps 

with a deviation of 10 frames.  The code was capped at 60 fps by a timer but the frame rate was 

measured for every frame and fed into the tracking code for the next frame to address latency.    

Sorting results 

Next we sought to validate the ability of the system to identify, track and project onto 

moving objects by performing a dynamic experiment using a sorting device as shown in Figure 

58.  The goal was to test how well the system could select one type of particle (90 µm) from a 

population flowing inside a microfluidic channel and encapsulate it preventing it from exiting the 

device.  Then to use the results to identify the limits of particle velocity in a flow that can be 

successfully encapsulated.  First we identified the cut-off velocity for which polymerization time 

limited the ability of the system to successfully encapsulate a particle.  This was done by flowing 

particles between 0.1 mm/s and 30 mm/s as measured by machine vision.  If incomplete 

polymerization around the particle was observed as it left the FOV then that value was 

determined to be outside the limits of the system.  The remaining data represented the velocities 

for which polymerization was guaranteed.  This maximum value was identified as 10 mm/s.  

Beyond this velocity the probability of successful encapsulation drops dramatically.  In addition, 

the error for the measurements was calculated as an average of 4.7 pixels and a maximum of 10 

pixels.   

 
Figure	71.		Particle	velocity	and	projection	error.		Aሻ		Histogram	of	the	error	between	particle	center	

and	projection	center.		Bሻ		Scatterplot	of	error	between	particle	center	and	projection	center	in	

microns	and	particle	velocity	in	microns. 
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The following experiment flowed a mixture of 90 µm, 45 µm, 10 µm and 5 µm PS beads 

through the device.  Flow rates were limited to 10 mm/s.  The goal was to identify the 90 µm 

particles and encapsulate them.   

 

Figure	72.		Method	and	demonstration	of	sorting	PS	beads.		a‐cሻ	Reminder	of	the	structure	of	the	

system	and	the	microfluidic	channel	that	is	used	to	separate	particles.		The	basic	process	is	to	

identify,	track	and	then	encapsulate	or	encircle	the	particle.		cሻ		Shows	the	racetrack	fluidic	device	

they	particles	circle	around	while	being	processed.		d‐fሻ		Two	particles	being	encapsulated	over	1	

second.		The	small	white	circle	is	the	detected	position	of	the	particle	of	interest.		The	larger	white	

circle	is	the	predicted	position	for	it	in	the	next	time	step.	

Using the system as shown in Figure 72 the sensitivity, specificity, precision and accuracy 

(definitions in Table 8) were calculated for the experimental demonstration of sorting particles 

by size (Table 8).  The sensitivity below 10 mm/s in flow was 100% with a specificity of 99.9%.  
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This means that the system correctly identified and sorted the beads consistently.  The precision 

and accuracy were 98.9% and 99.9% respectively.   

Table	8.		Performance	metrics	for	sorting	and	encapsulation	methodology	using	dynamic	

lithography.	

Performance measure Calculation Value 
Sensitivity TP/(TP+FN) 1 
Specificity TN/(FP+TN) 0.999 
Precision TP/(TP+FP) 0.989 
Accuracy (TP+TN)/(P+N) 0.999 

 

Throughput analysis of dynamic lithography for generalized flow manipulation 

For tailoring of dynamic lithography toward applications, it is necessary to have a rigorous 

understanding of how the density of particles, FOV, frame rate and polymerization kinetics 

governs speed and accuracy.  We consider the system to be a manufacturing system where 

operations are performed on particles so we will model it using manufacturing concepts. 

Moreover, modeling the throughput helps identify what governs the process limits.  For 

example, is it the hardware or is it physically limited (e.g. photopolymerization)?  The 

component of the system that limits throughput will be called the bottleneck and can be used to 

describe the sensitivity of the system to uncertainty.   

The throughput of this type of system can be described as highly parallelized with each row 

of mirrors on the DMD acting as a processing lane or machine.  We will make several 

assumptions for this model to be accurate: 

1. Objects travel in a straight line and polymerization of one particle does not affect the 
motion of any other particle.   

2. All rows are equivalent to single machines and act independently; consequently the 
line is trivially balanced. 

3. Process times are random and occur according to a distribution known as a normal 
distribution. 

From these assumptions, the throughput of the system can be modeled by first considering 

Little’s Law [86].  According to Little’s Law the steady state number of particles in a system 

divided by the processing time is equal to the throughput.  The limiting case in which the critical 

number of particles in the system ( ଴ܲ), having no variability, can describe the maximum 

throughput (ݎ௕) with minimum cycle time to process (e.g. encapsulate) a particle ( ଴ܶ).   
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௕ݎ  ൌ ଴ܲ/ݐ଴ Equation 24

The critical number of particles in the system can be described by considering the 

relationship between the number of pixels on the DLP and the ratio of particle diameter to pixels. 

 
଴ܲ ൌ ሺ

ሺ݉݌ሻଶ

ሺߨ
݀ ൅ ݈௣
2

ሻଶ
ሻଶ Equation 25

Here ݌ represents the number of pixels along an edge of the DLP (1104 pixels), assuming a 

square DLP; ݉ is the conversion from microns to pixels for the current objective, which is 

divided by the equivalent particle area as defined by the particle diameter (݀); and the line pair 

resolution of the system (݈௣ሻ.  Therefore, ଴ܲ is equivalent to the steady state expected number of 

particles that can be in the system at any point which is visually a grid of particles separated by 

the minimum distance at which particles can be processed without interfering with each other.  

The resulting maximum throughput is equal to: 

 

ܾݎ ൌ ሺ
ሺ݉݌ሻ

2

ሺߨ
݀ ൅ ݌݈

2
ሻ

2ሻ

2

0ݐ/ Equation 26

௕ݎ ൌ ݐݑ݌݄݃ݑ݋ݎ݄ݐ	݈݇ܿ݁݊݁ݐݐ݋ܾ
݌ ൌ ݌݈݀	݊݋	ݏ݈݁ݔ݅ܲ

݀ ൌ ݎ݁ݐ݁݉ܽ݅݀	݈݁ܿ݅ݐݎܽܲ
݈௣ ൌ ݊݋݅ݐݑ݈݋ݏ݁ݎ	ݎ݅ܽ݌	݈݁݊݅

଴ݐ ൌ ݁݉݅ݐ	݈݁ܿݕܿ	݉ݑ݉݅݊݅݉
݉ ൌ ݏ݈݁ݔ݅݌	݋ݐ	μ	݉݋ݎ݂	݊݋݅ݏݎ݁ݒ݊݋ܿ

 

This suggests that, in the absence of variability, the throughput of the system is equal to the 

values shown in Figure 73 for varying processing times (0.01s, 0.05s, 0.25s and 1.25s) for 

particle diameters from10 µm to 100 µm. 
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.  

Figure	73.		Throughput	of	the	system	for	varying	diameters	as	a	function	of	processing	times	with	

no	variability.	

The system is never in this ideal state because space between particles is required to 

photopolymer to surround individual particles and to allow particles to flow past on another.  

Therefore, we multiply ଴ܲ by a factor ݂ that represents the volumetric fraction of particles in the 

medium used.  The volume fraction we will use for most of this analysis is 1M particles/ml 

unless the volume fraction and diameter are both explicitly stated.  The relationship can be seen 

in Figure 74 and follows the corresponding equation.   

 
Figure	74.		Volume	fraction	of	a	suspension	of	non‐colloidal	particles	compared	to	particle	diameter.	

 
݂ ൌ

ሺ
32
3
ሻܾ݀ߨଷ

ܸ ∗ 10ଵସ
Equation 27

݂ ൌ  ݊݋݅ݐܿܽݎ݂	ܿ݅ݎݐ݁݉ݑ݈݋ݒ

ܾ ൌ 	݁݉ݑ݈݋ݒ	ݎ݁݌	ݏ݈݁ܿ݅ݐݎܽ݌	݂݋	ݎܾ݁݉ݑ݊
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ܸ ൌ 	݈݉	݊݅	݁݉ݑ݈݋ݒ

݀ ൌ  ݉ߤ	݊݅	݈݁ܿ݅ݐݎܽ݌	݄݁ݐ	݂݋	ݎ݁ݐ݁݉ܽ݅݀	݄݁ݐ

Put another way the volume of solid particles in relationship to the medium is equivalent to 

the 2D fill percentage (area) of particles across the DLP.   

 
௕ݎ ൌ ݂ሺ

ሺ݉݌ሻଶ

ሺߨ
݀ ൅ ݈௣
2

ሻଶ
ሻଶ/ݐ଴ Equation 28

However, we must consider that not all variables may be deterministic but have some 

variability such as, the volume fraction of particles in the system and the processing time per 

cycle.  Volumetric fraction is variable because the number of particles in view will change with 

some probability.  We assume that the volume fraction ݂ of particles in the medium, which will 

characterize an ideal, monodisperse hard-sphere suspension, is Normally distributed such that: 

 ݂~ܰሺߤଵ, ଵሻߪ Equation 29

Where ߤଵ equals the mean fraction of particles in suspension and ߪଵ equals the standard 

deviation.  We also assume that the processing time is Normally distributed such that: 

,ଶߤሺܰ~ݐ  ଶሻߪ Equation 30

The processing time is a summation of all the individual steps to process a particle.  These 

are shown in   
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Table 9 and include grabbing an image, transferring the image, demosaicing the image, 

detecting particles, tracking them, drawing the mask and sending it to the projector long enough 

to polymerize the medium.  The table shows measured values for each step.  Four terms will add 

parameters to our model.  Those are Detect, Track and Cure and Draw.  Detect and Track are 

both dependent on the volume fraction of particles according O(N!) [87] proportion, because the 

algorithms used are assumed to be worst case brute-force methods.  The Draw process is 

proportional to the number of particles or O(N).  Additionally, the Cure process follows the 

working curve of the photopolymer which can be affected by concentration of the monomer, 

concentration of the Photoinitiator, the illumination radiance and depth of cure.    
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Table	9.		A	description	of	the	processing	times	by	task	and	links	to	their	derivation.	

 

 

 

 

 

 

 

 

 

Each of the variables in Table 9 contribute to the system processing time, therefore the total 

processing time can be calculated as their sum (           Equation 31).	

ݐ ൌ ௧ܥ ൅ 2 ௧ܹ ൅ ௧ܦ ൅ ܺ௧ ൅ ௧ܻ ൅ ௧ܸ ൅ ܼ௧ ൅  ௧           Equation 31ܪ

As a natural consequence of the properties of Normal distributions we can then substitute the 

random variables into Equation 28 and the result is a random variable represented by a new 

Normal distribution.   

The resulting mean throughput is equal to: 
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Equation 32

And the resulting standard deviation is equal to: 
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Equation 33

Thus we plot (Figure 75) the expected steady state throughput and the effect of variability for 

varying system wide sigma values (1, 3, 6) with a mean processing time of 0.123 and a mean 

volumetric fraction of 0.1%.  Here we assume that the population standard deviations are 0.0002 

and 0.2 respectively.  These were chosen until measured or calculated values are given but 

indicate the sensitivity of the throughput.  The maximum processing time can then effectively be 

calculated as the processing time at six sigma.  Therefore the lower limit throughput can be 

Station name Variable Processing 
time (ms) 

Source 

Camera ܥ௧ 11.1 1/fps 
Transfer ௧ܹ 11.1 1/60 
Demosaic ܦ௧ 6.2 Measured 
Detect ܺ௧ 11 Measured 
Track ௧ܻ 10 Measured 
Draw ௧ܸ 7 Measured 
Transfer ௧ܹ 16.6ത 1/60 
Project ܼ௧ 0.02 Estimated 
Cure ܪ௧ 50.0 Empirical 
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observed for a specific diameter.  Perhaps a better way to state this fact is that the expected 

steady state throughput for the system is between the green lines.  The system is constrained in 

that throughput can’t be greater thanݎ௕. 

 

Figure	75.		Throughput	of	the	system	when	taking	the	standard	deviation	of	the	processing	times	

and	volumetric	fractions	into	account.		This	represents	the	limits	of	the	system	under	these	

assumption	that	processing	time	and	volumetric	fraction	are	independent.	

Having established the basic relationship between system parameters we want to understand 

the sensitivity of the system to changes in these parameters to identify both the most likely cause 

of failure (partially or uncured particle) and best opportunity for improvement.  Looking at our 

system throughput equation we have two opportunities for improvement 1: Reduce processing 

time 2: Increase volume fraction of particles.  The second option may impact processing time as 

will be discussed in the next chapter.  For example, if the number of particles that can be 

processed is limited to 10,000 (to not impact the system) then    Else, we have to look at 

increasing the number of DLP’s working in tandem, which would have the effect of increasing 

working area.   

Now consider the processing times in greater detail.  Figure 76 shows throughput compared 

to changes in processing time.  It follows that reduction in processing time is critically important 

as an order of magnitude change has the inverse effect on throughput.  Given the steady state 

measure of cycle time of 0.123 seconds the throughput of the system as shown in Figure 76 is on 

the order of 10,000 per second. 
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Figure	76.		The	throughput	of	the	system	when	only	varying	processing	time.		Particle	size	and	

volumetric	fraction	are	held	constant.	

From the initial discussion on processing times the curing speed of the photopolymer, 

detection rates and tracking rates each show the greatest potential for initial improvement.  All 

other rates are limited by design of off the shelf components or standards such as USB3.   

What this does not account for is how variability affects the likelihood of the system to 

perform correctly and what the rate of successful encapsulation is likely to be.  This problem can 

be defined and searching for the probability that a particle is correctly encapsulated given some 

velocity or processing time.  This probability is controlled by both the likelihood of correctly 

detecting/tracking the particle and the probability that the polymer receives the correct dosage of 

light.  Empirical values for this were discussed in Figure 71b, where 10 mm/s velocity for a FOV 

of 5 mm saw a dramatic decrease in success rates from 100% to 8%.  

Conclusion 

A new method of integrating machine vision into lithography to create dynamic responses to 

micro-environments has been engineered.  It was enabled by the combination of quality micro-

projection system and adaptive software.  Accurate projection (4.7 pixels) by the software was 

enabled by a fast and accurate detection and tracking algorithm, latency correction via a Kalman 

filter and an increased frame rate from bit plane slicing.  The application of the Kalman filter and 

tuning via the GA to minimize the projection error provide a platform for tuning the system 

quickly for any motion type.  During experimentation we also observed that lighting played an 

important role in performance as the system would detect the edges of the polymerized region as 
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a new particle unless it was either filtered programmatically or removed by using dark field 

lighting. 

Comparable methods to manipulate objects in flow such as microfluidic focusing or laser 

trapping are either inflexible or limited to very small particles (< 1 µm).  The ability to program 

applets into the software of this system enables it to adapt to a wide variety of problems, particle 

sizes and shapes.  Here we discussed the ability to use it for sorting, but in the coming chapters 

we will discuss how to print particles with it as well.  In addition, the flexibility of machine 

vision algorithms enables the same system to adapt to particles with non-spherical shape.  The 

mask can be generated to align itself to anisotropic particles including the addition of a barcode 

or feature to change its hydrodynamic properties in flow.  Moreover, we can extend the C. 

elegans study to adaptively project in response to worm behavior taking into account the worm’s 

elongated shape.   

Future work could improve performance in sorting further by implementing non-linear 

motion into the predictive equations.  In microfluidic flows that rapidly change the assumption 

that motion is linear frame to frame may be invalid.  There is also opportunity for improvement 

in the performance of the photopolymer to yield faster polymerization at lower radiance levels.  

This would result in increased throughput of the system by reducing the processing time and 

enabling faster flow velocities.     

In addition to improving the method and the models of what governs it, we want to apply it 

to more applications.  Inspired by the demonstration of sorting polystyrene beads shown here one 

can imagine challenges that may be solved if the systems performance reaches an appropriate 

level.  Examples include separating circulating tumor cells, encapsulating cells that approach 

drug laden microparticles to test efficacy, or, as we will discuss in the coming chapters 

photopatterning micro objects into arbitrary arrangements for tissue engineering.   
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CHAPTER  VI. QUANTITATIVE COMPARISON OF DETECTION AND 
TRACKING METHODS APPLIED TO MICROPARTICLES IN MOTION 

Abstract 

The effect of particle properties on the performance of  5 detection algorithms and two 

tracking algorithms common to machine vision are measured against simulated videos 

representing basic properties in biological videos (Signal to Noise, particle complexity, particle 

density, particle velocity, blur and particle motion) .  The algorithms tested include SURF, 

Hough detection, Caany, Otsu and Threshold for detection and nearest neighbor or Kalman 

filtering for tracking.  Of these, the Speeded Up Robust Feature (SURF) detection was robust but 

Thresholding performed well under controlled conditions.  Thresholding was 3 orders of 

magnitude faster than SURF making it a better candidate for real time processing.  Finally, we 

evaluate each function used in dynamic lithography described in 0 to characterize its algorithmic 

complexity.  I’d like to acknowledge the contributions from John Lewandowski in the 

Mechanosynthesis group in assisting in the design of this study and for his work in developing a 

simulation platform in Matlab to generate simulated videos to test with. 
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Introduction 

Real-time detection and tracking of cells and organisms is important to both research and 

clinical methods including flow cytometry, bio-informatics, and single cell studies.  Advances in 

microscopy have resulted in impressive capabilities to image fundamental components of cells 

such as the cytoskeleton.  Quantitative methods to track the motion of particles (bead, cell, 

Zebrafish, etc.), enables the derivation of numerical quantities from the image or video 

sequences from which biologically relevant data can be inferred.  

Before real-time image processing algorithms were available post-processing of data would 

create aggregate information about populations of cells or micro-objects after an experiment.  

During such static image analysis, many methods and parameters can be applied until a 

satisfactory extraction of information about the particles is achieved.  Trends in analysis of large 

populations of objects (e.g. cell colonies) and complex structures (e.g. neurons, cytoskeleton, 

growing organisms) demand a comprehensive understanding of how the performance of image 

analysis methods can be optimized for real-time applications. 

The problem is therefore:  How to detect a particle spatially and then link it to a previous 

frame temporally.  While the detection algorithms are primarily concerned with extracting the 

location and morphology descriptors for a particle the linking or tracking algorithm is concerned 

with creating a history of the particles location with time.    

There is a number of software packages designed to enable particle detection.  However, 

choosing the correct analysis method and implementing it with the correct parameters can be 

difficult and compromise its overall efficacy.  Moreover, they are not designed to integrate into 

real-time systems such as probe stations, microfluidics and dynamic lithography.  To do so 

requires an API interface to   Recently published work by Chenouard et al. compared algorithms 

by distributing simulated videos of cell like environments to bio-imaging laboratories, each 

laboratory then tested and reported the performance of their own detection and tracking method 

[88].  The study found 14 different methods were affected by three main factors (particle 

dynamics, density and signal).  They concluded that each situation is unique and requires special 

care to identify the correct particle tracking method, a conclusion that left open the possibility of 

further investigation into the relationships between the parameters and method performance.  

Therefore, our goal is to develop a comprehensive framework enabling the evaluation of a 

particle detection and tracking algorithm for dynamic lithography.  We show that, by using 



110 
 

simulated videos while varying particle properties we can characterize the performance of five 

detection algorithms (Speeded up Robust Feature Detector (SURF), CAANY, Hough, Otsu and 

Threshold) by the root mean square error (RMSE) of the detection, the sensitivity to the presence 

of particles and the number of false positives.  We then compare how each performs while 7 

primary factors (particle density, particle size, particle velocity, particle motion, particle 

complexity and image signal to noise ratio) are independently varied.  The then report the 

computational cost of each method and how the best performing method degrades as the number 

of particles increase.  Finally, interpretation is provided for the results indicating how to select 

from the tested algorithms and how to test additional methods.  
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Object relationship and organization in images 

Figure 77 shows some considerations that describe a particle and its relationship to the image 

or other particles.  These considerations ultimately constituted the population of parameters that 

we could select from to examine in the study. 

 

Figure	77.		Particle	properties	their	arrangement	and	motion	characteristics	
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Methods 

To provide an objective comparison of the detection and tracking methods, we developed 

ground truth videos of particles to simulate various conditions that might be found when 

analyzing cells in a system.  The ground truth is an unambiguous description of the particle and 

its position at every time step.  This is compared with the predicted values from each method to 

generate measurements of performance.  

Generating data sets and ground truth by simulation 

We developed a simulation framework using MATLAB’s basic particle system toolbox 

(http://www.mathworks.com/matlabcentral/fileexchange/14314-particle-system-toolbox [89]) 

and the final code used to create the particles inside of the particle system can be found in the 

Appendix that allowed us to specify and simulate all the parameters in Figure 77 and output the 

simulation as videos which are easily processed by the detection and tracking code.  

Within the simulation, we ensured that every particle created was tagged with a unique 

identification number and its true particle size to ensure that sensitivity and specificity data could 

be generated, aggregated and further manipulated with ease.  Meanwhile, for every frame, the 

MATLAB code recorded the x-y position pixel coordinates of the particle (rounded to the nearest 

whole number) and tied them to its ID.  The resulting output file consists of frame, ID, x-

position, y-position, and size for each time in the simulation.   

A matrix of videos was generated combing all parameters shown in Figure 78.  These include 

particle dynamics, size, velocity, density, signal, blur and complexity.	
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Table	10.		Matrix	of	test	parameters	for	simulation	study.	

Parameter Type I Type II Type III 
Motion Linear Sinusoid Brownian 
Representing Microfluidics C. elegans Self-assembly 
Speed (mm/s) 0.1, 0.5, 1, 2 0.1, 0.5, 1, 2 0.1, 0.5, 1, 2 
Particles (um) 5, 10, 45, 90, 90 

and 45, 10 and 5 
5, 10, 45, 90, 90 
and 45, 10 and 5 

5, 10, 45, 90, 90 
and 45, 10 and 5 

Size (pixels) 1276 x 794 1276 x 794 1276 x 794 
Length 

(frames)* 
1800 1800 1800 

Density (low, 
medium, 
high)** 

50, 500, 1000 50, 500, 1000 100, 500, 1000 

SNR (levels) 1, 3, 5, 8 1, 3, 5, 8 1, 3, 5, 8 
Complexity  No, Yes No, Yes No, Yes 
Blur  None, Low, High None, Low, High None, Low, High 

*For the fastest speed of 2 mm/s, only 900 frames were used (at 30 fps, this constituted 30 seconds).  

1800 frames was the typical length due to video file writing limitations. 

**For simulations with two sizes of particles, medium and high densities constituted 250 and 500 

particles within the field of view and for linear and sinusoid videos there were less particles in the low 

scenario to ensure a minimal intersection fraction. 

 

Each video file and corresponding data output file was labeled with a unique identifier and 

then processed through the detection and tracking code to output quantitative performance 

criteria (RMSE, sensitivity, specificity, false positives, and computational cost) and link it to the 

unique combination of parameters.  One simulation was generated for each unique combination 

of parameters in Table 10, allowing for a full factorial analysis to be performed across all of 

these parameters.  Examples that demonstrate the effect of each parameter on the video result are 

shown Figure 78.	
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Figure 78.  Properties of particle simulations 
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Dynamics 

We decided upon three different motion types, linear, sinusoid, and Brownian, for two 

specific reasons.  The first reason is that each of these motions correlates to an exemplary model 

system.  For example, linear motion corresponds to detection and tracking of particles or cells 

captured by a laminar flow in a microfluidic device.  Sinusoidal motion occurs when C. elegans 

are swimming.  Brownian motion describes diffusive migration of particles.  This is particularly 

the case when the time between frame grabs is large such that the instantaneous vector of the 

particle is uniformly random.  This is very similar to what would happen when observing self-

assembly of particles subject to Brownian motion.  The second reason is for testing the 

capabilities and limitations of the tracking algorithms to correctly identify and predict the 

position of particles undergoing different motion trajectories.  To test its limits with predicting a 

new particle’s position, we wanted constant velocity in a single direction (linear), changing 

velocities in multiple directions (sinusoid), and arbitrary instantaneous velocity in an arbitrary 

direction (Brownian).  We believe these three types are representative of a wide variety of 

motion types; other systems may be approximated by combinations of these motions.  From the 

tracking algorithm perspective, all else being equal, theoretically these types of motion should 

increase in difficulty.  

Length and Speed 

It was important for the simulations to constitute a sufficient period of time to ensure data 

spanned over many sub-cases within the scenarios and to provide data to gather statistically 

sound results.  Therefore, the majority of the simulation videos were one minute in length, 

constituting 1800 frames at 30 frames per second to match our experimental parameters.  The 

various speeds used ranged from 0.1mm/s to 2.0mm/s. Based on the field of view, this velocity 

ultimately dictated how long the particle was in the system and how many interactions would 

undergo and frames it would be present in.  

Particle size 

The particle sizes ranged from 5 um to 90 um for four key reasons.  First, the goal was to test 

an order of magnitude decrease in size and do so in collaboration with standard sizes of 

polystyrene beads.  Second, 5 um (3 pixels) neared the resolution of our camera and so was a 

suitable lower boundary.  Third, we chose similar sizes such as 10 um and 45 um (double and 
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half the diameters, respectively) to challenge the specificity of the detection.  Fourth, the pixel 

sizes of these particles reflect similar sizes of cells, viruses, and other microorganisms in a 

biological system.  Specificity was only determined for simulations with two sizes, to test the 

algorithm’s ability to differentiate sizes rather than focusing on less interesting false negatives. 

Density 

According to previous work, increased density is one of the largest contributors to decreased 

sensitivity [88]. Therefore, careful selection of the density parameter was crucial to a thorough 

understanding of its sensitivity.  For low-density scenarios, we desired to have no overlap of 

particles.  To achieve this we used 50 particles for linear and sinusoid and 100 particles for 

Brownian.  

SNR 

Using the GNU Image Manipulation Tool (GIMP), we established standard layers of fractal 

noise or “cloud fog” that could be overlaid on the simulations to decrease the signal-to-noise 

ratio (SNR) to desired levels.  The maximum SNR (particles on a white background) that we 

could achieve given our system and particle intensity was 8.  This would simulate particles 

flowing through a channel after already having been separated, diluted, and washed.  Previous 

work has shown that an SNR of 5 or greater is necessary to achieve good detection therefore, we 

weighted the parameter selections to the more sensitive side of the spectrum, using values of 1, 

3, 5 and 8.  These values were designed and confirmed using ImageJ to analyze the average 

intensity of the particle in relation to the entire system, using the equation:  

 ܴܵܰ ൌ ቤ
ܵ̅ െ തܲ

ඥ|ܵ̅|
ቤ Equation 34

Where ܴܵܰ represents the signal to noise ratio, ܵ̅ is the average intensity of the system and തܲ 

is the average intensity of the particle.  This specific equation was implemented because it 

balanced typical average signal to noise calculations with influence of the density and 

distribution of particles and noise in the system. 

Blur 

The blur effect was chosen because of two common occurrences: 1. The camera is slightly 

out of focus and causes the subject particles to blur, and 2. The particles in question have soft 

edges that either blend into the background or cause the typically circular shape to look irregular.  
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The blur effect tested the capacity of the contour-finding tool in the detection phase of the code.  

Blur was applied as a Gaussian blur according to the following:  

ሻݔሺܩ  ൌ
1

ଶߪߨ2
݁
ି
௫మା௬మ

ଶఙమ Equation 35

Complexity 

While the SNR parameter allowed the investigation of system-wide noise, there also exists 

cell-to-cell or particle-to-particle variation, meaning not every particle is identical in size, shape, 

color, or texture.  The gradient effect, which consisted of scaled intensity values across the 

diameter of the particle, was overlaid on the system to investigate how particles that differed in 

intrinsic characteristics affected the overall performance of the algorithm. 

Renderings  

Adobe Creative Suite 6 After Effects was used to perform the rendering of the videos with 

noise, gradient, and blur effects (See SI for exact software specifications for all of the following 

parameters).  The renderings were performed in escalating order of individual particles to 

particle population to particle system – blur, gradient, and then noise – so that the desired 

scenarios and underlying representative conditions were not confounded. 

Measures of performance 

Choosing how to rank the performance of the methods for objective comparison is critical 

and largely determined by the intended use.  For example sorting particles of rare types requires 

a high sensitivity.  This may accept a high false positive rate.  On the other hand printing high 

value cells is more stringent requiring both high sensitivity and a low false positive rate.   

We chose six measures of performance.  The first is the root mean square error between the 

ground truth position of a particle and the detected position of a particle.  This is an important 

measure in dynamic lithography to ensure proper curing location.  In addition, sensitivity and 

specificity are measured to illustrate the capacity to both identify a particle and distinguish it 

from others.  Sensitivity is defined as the number of true positives divided by the total number of 

positives present, while specificity is the number of true negatives divided by the total number of 

negatives present.  False positives are reported because in conjunction with sensitivity they 

indicate if the method is being overly sensitive.  In many applications such as diagnostics, there 

is a fine balance and even thresholds to maintain between the competing false positives and 
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sensitivity.  Finally, the computational cost of each method is examined to determine the 

potential and limits of each method in a real-time scenario. 

Evaluating methods against ground truth 

A program was written in C++ to load the prepared simulated videos and ground truth files 

into a detection experiment.  The software was designed to load the list of each video and the 

parameter it was testing.  It would iterate through each video testing all five methods and the two 

tracking methods while collecting metrics of performance for each frame, aggregating the results 

and writing them to a separate file.  At the same time the history of tracked positions for every 

particle was saved to another file for future processing.   

During each frame of the video processed the frame would be converted to grayscale then 

passed to a detection function which would apply the detection method generating a list of 

particles in the frame.  Then the list of particles would be passed to a tracking function where 

each object is matched to a previous particle.  If no match can be found then the particle is added 

to the list of particles as a new particle.   

The list of tracked particles is then passed to class which compares the list to the ground truth 

for that frame of the video.  To do this the distance between each particle in ground truth and 

each particle in the frame is calculated.  The nearest match is set as a match and the ID of the 

ground truth particle and particle in the frame are linked.  At the same time the root mean square 

error between ground truth and the particle in the frame is recorded to a history for that ground 

truth particle.   

Finally, the true positives, false positives, false negatives and if applicable true negatives are 

recorded for each particle.  If a particle in the frame is within the minimum distance to be 

considered a true positive then it is recorded as a true positive.  For these experiments that value 

was 10 pixels for 45 µm and 90 µm, 5 pixels for 10 µm and 2 pixels for 5 µm.  This ensured the 

detection point was within the bounds of the particle, meaning less than its radius...  The 

remaining particles in ground truth that had not found a match were marked as false negatives.  

Finally, the particles in the frame that did not match were marked as false positives.  For each 

particle in ground truth the sensitivity and if applicable the specificity were calculated using the 

collected positive/negative values.   
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Lastly, for each frame the computation time of the entire frame as well as individual 

functions was calculated and recorded by using the system clock to measure the beginning and 

end of the function and calculate the delta time.  

The input parameters of each method were tuned by hand using the most confounded video.  

Then, unless otherwise noted, they were not changed to illustrate the sensitivity of each method 

to the changing factors in the image.   

Detection algorithms 

The detection algorithms used include SURF, Hough, Canny, Otsu and Threshold.  These 

methods were both accessible and had a history of being successfully applied.  Canny, Otsu and 

Threshold all rely on some form of threshold and may be referred to as the threshold based 

methods because we hypothesis that they may perform similarly. 

 

a. SURF (Speeded Up Robust Features) 

SURF is a robust feature detector presented by Herbert Bay et al. in 2006 [90].  It is built 

using the Hessian-matrix approximation.  By doing so the integral images made by Viola and 

Jones [91] can be used.  The integral image allows fast box type convolution.  The integral image 

is formed by iterating each pixel and for each pixel summing all of the intensities from the input 

image within a rectangular region.      

ሺ௫ሻୀఀܫ  ∑ ∑ ,ሺ݅ܫ ݆ሻ
௬
௝ୀ଴

௫
௜ୀ଴ Equation 36

Next the Hessian matrix is applied to find locations where the Hessian determinant is 

maximized to identify interest points.  Given a point ℓ ൌ ሺݔ,  ሻ in an image I, the Hessian is asݕ

follows with a scale of σ: 

 
࣢ሺℓ, ሻߪ ൌ ቈ

,௫௫ሺℓܮ ሻߪ ,௫௬ሺℓܮ ሻߪ

,௫௬ሺℓܮ ሻߪ ,௬௬ሺℓܮ ሻߪ
቉

Equation 37

Where ܮ௫௫ሺℓ,  ሻ is the convolution of the Gaussian second order derivative with the image Iߪ

in point ℓ, and similarly for the values of ܮ.  However, approximations of the Gaussians are used 

when approximating the determinant of the Hessian.   

ሺ࣢௔௣௣௥௢௫ሻ	ݐ݁݀  ൌ ௬௬ܦ௫௫ܦ െ ሺܦݓ௫௬ሻ
ଶ Equation 38

The relative weight ݓ of the filter responses are used to balance the Gaussian Kernal and the 

approximation.  The resulting determinant of the Hessian for each location in the image 
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represents a blob response.  To localize the blob points of interest non-maximum suppression is 

applied as described by Neubeck and Van Gool [92].   

Finally, the descriptors are extracted from the resulting data and matched.  First a square 

region is centered on the interest point, and if necessary it is oriented.  The region is split up into 

4x4 square sub-regions.  For each subregion the Haar wavelet response is computed and summed 

up over each sub-region.  These are saved into a feature vector in addition to the sum of the 

absolute values of the responses.  The feature vector of values representing these four metrics is 

the descriptor.  The list of vectors represents the detected particles.  Further discussion can be 

given to size and orientation but we leave those to the original author’s publications. 

The parameters used for the SURF detection method are: 

For 90 µm and 90 µm/45 µm scenarios 

 Hessian: 10000 

 Octaves: 2 

 Octave layers: 15 

For 45 µm scenarios 

 Hessian: 10000 

 Octaves: 2 

 Octave layers: 15 

For 10 µm and 10 µm /5 µm scenarios 

 Hessian: 6 

 Octaves: 4 

 Octave layers: 64 

For 5 µm scenarios 

 Hessian: 1 

 Octaves: 4 

 Octave layers: 64 

 

b. Hough 

This method applies a Hough transformation to an image to identify circular particles.  This 

method was invented by Richard Dude and Peter Hart in 1972, but popularized by Dana Ballard 

in 1981 [93].  The Hough transform extracts features from an image through a voting procedure 

that assumes any point in a binary image could be part of some set of circles.  First the image is 
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passed through a Canny edge detector.  For all nonzero points, representing edges, the local 

gradient is calculated by the Sobel derivatives in the x and y directions.  By parameterizing the 

circles in the set the algorithm can identify points that are related to the center of the circle.  The 

candidate centers are chosen from the locations of the nonzero pixels in the output of the Canny 

detector.  The accumulator (an array of positions and likely hoods for being centers of circles) is 

incremented for every point on the slope of the line some maximum and minimum distance 

according to the gradient.  For example, if we are searching for a circle the data from the image 

may be imperfect and edges of a circle that are detected may have breaks due to noise.   

The process the algorithm follows first creates an accumulator space ሺݎ, ܽ, ܾሻ.  This space is 

made up of a cell for each pixel initialized to zero.  Then beginning with the edge pixels in an 

image it increments all cells which could be the center of a circle.  The increment is applied to 

cells that satisfy the equation: 

ଶݎ  ൌ ሺ݅ െ ܽሻଶ ൅ ሺ݆ െ ܾሻଶ 	 Equation 39

Then iterate over all possible values of a that are found and find the possible values of b 

which satisfy the equation for each potential circle cell. 

Finally, search for local maxima cells whose accumulated value is greater than its 

neighborhood.  Past some threshold these are the cells that are most likely to be the center of the 

circle we are trying to locate. 

The parameters used for the Hough circle detection method are: 

For 90 µm and 90 µm/45 µm scenarios 

 Minimum distance between circles: 20 

 Upper threshold for internal Canny detector: 7 

 Threshold for center detection: 7 

 Minimum circle radius: 20 

 Maximum circle radius: 30 

For 45 µm scenarios 

 Minimum distance between circles: 13 

 Upper threshold for internal Canny detector: 7 

 Threshold for center detection: 7 

 Minimum circle radius: 13 

 Maximum circle radius: 20 

For 10 µm and 5 µm scenarios 
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 Minimum distance between circles: 7 

 Upper threshold for internal Canny detector: 2 

 Threshold for center detection: 2 

 Minimum circle radius: 7 

 Maximum circle radius: 12 

 

c. Canny 

Canny detection is a four-step algorithm.  First a Gaussian blur is applied to reduce noise in 

the image [94].  Second, a gradient operator is applied for obtaining the gradients intensity and 

direction.  The gradient operator is a Sobel edge detection operator which returns the first 

derivative in both directions (ܩ௫,	ܩ௬) for each pixel.  The edge gradient and direction are then 

calculated as follows: 

 
ܩ ൌ ටܩ௫

ଶ ൅ ௬ܩ
ଶ Equation 40

ߠ  ൌ ,௬ܩ2ሺ݊ܽݐܽ ௫ሻܩ Equation 41

The edge direction angle is rounded to match either a horizontal, vertical or diagonal angle.  

Third the non-maximum suppression determines if the pixels is a better candidate for an edge 

than its neighbors.  Finally, hysteresis thresholding creates contours from individual pixels.  This 

examines if for a particular pixel, the pixels gradient is above the maximum threshold.  If this is 

true, the pixel is marked as an edge pixel; if it is below the minimum threshold, it is rejected.  

However, it is between the two thresholds it is accepted if it is a neighbor of a pixel that exceeds 

the high threshold. 

The parameters applied to the method include: 

 Gaussian filter size: 3  

 First threshold: 50 

 Second threshold: 100 

 

d. Otsu 

We will describe the algorithm as shown by Al-Kubati et al. and others [95].  This method is 

built upon the threshold method but uses an additional step to automatically choose the threshold 

value that separates the pixels in an image into two classes such that the variance within the 

classes is minimized.  In other words it tries to minimize the spread in intensity values for the 
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collection of pixels above the threshold and the collection of pixels below the threshold.  To do 

this with a threshold t, let ݍ଴	ܽ݊݀	ݍଵ represent the estimate of the class probabilities such that: 

ሻݐ௢ሺݍ  ൌ ∑ ሺ݅ሻ௧݌
௜ୀ଴ , ሻݐଵሺݍ ൌ ∑ ሺ݅ሻ௟ିଵ݌

௜ୀ௧ାଵ Equation 42

And the variances are defined by: 

଴ߪ
ଶሺݐሻ ൌ 	∑ ሾ݅ െ ሻሿݐ଴ሺߤ

ଶ ௣ሺ௜ሻ

௤బሺ௧ሻ

௧
௜ୀ଴ , ܽ݊݀ ଵߪ

ଶሺݐሻ ൌ ∑ ሾ݅ െ ሻሿݐଵሺߤ
ଶ ௣ሺ௜ሻ

௤బሺ௧ሻ

௟ିଵ
௜ୀ௧ାଵ

Equation 43

The class means as shown above are defined as: 

ሻݐ଴ሺߤ  ൌ 	∑
௜௣ሺ௜ሻ

௤బሺ௧ሻ

௧
௜ୀ଴ , ܽ݊݀ ሻݐଵሺߤ ൌ ∑

௜௣ሺ௜ሻ

௤భሺ௧ሻ

௟ିଵ
௜ୀ௧ାଵ

Equation 44

Here, p represents the image histogram.  Otsu, demonstrated that the problem of minimizing 

the inter-class variance is the same as maximizing the intra-class variance.  This is written as: 

௕ߪ 
ଶሺݐሻ ൌ ଶߪ െ ௪ߪ

ଶሺݐሻ ൌ ሻሾ1ݐ଴ሺݍ െ ሻݐଵሺߤሻሿሾݐ଴ሺݍ െ ሻሿݐ଴ሺߤ
ଶ Equation 45

Finally, Equation 42 can be maximized at the maximum value of σୠ
ଶሺtሻ	yielding the threshold 

value t. 

The process for this algorithm is as follows: 

1.  Calculate the histogram and probabilities of each intensity value. 

2.  Initialize ݍ௜ሺݐሻand ߤ୧ሺݐሻ equal to zero. 

3.  Step through all possible thresholds until the maximum intensity of the image is tested. 

4.  Update ݍ௜ሺݐሻ and ߤ୧ሺݐሻ. 

5.  Compute ߪ௕
ଶሺݐሻ	and report the desired threshold corresponding to this value. 

No parameter is given to this algorithm. 

 

e. Threshold 

This is possibly the simplest method tested as it creates a cut off value t in pixel intensity I.  

For each pixel if I > t then the pixel is set to 1 otherwise it is set to 0.  The result is a binary 

image chosen by setting the intensity cutoff.   

 This written as t: 

 
݃ሺ݅, ݆ሻ ൌ ൜

1 ݂݅ ݂ሺ݅, ݆ሻ ൒ ݐ

0 ݂݅ ݂ሺ݅, ݆ሻ ൏ ݐ
Equation 46

The threshold parameters used for all scenarios was: 

 Inverted intensity threshold value: 30 
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Tracking algorithms 

a. Nearest Neighbor 

Classically known as the Post Office problem the nearest neighbor search method attempts to 

identify a particle detected in the current video frame with the closest proximity to the particle 

being tracked.  Formally, it is described as given a set P of particle locations in space R and a 

query particle ݏ ∈ ܴ, find the closet particle in P to s.  In this case the dissimilarity between 

members of P and s are measured in 2D Euclidean space as a distance [96].  This is a naive 

implementation of the algorithm such that the best match is tracked and replaced if a better is 

found as the entire list is searched.  It has a complexity of O(N) where N is the cardinality of P 

which in this case is 100, 500 or 1000 particles in a frame. 

The parameters used for this method are: 

 Maximum search radius: 100 

 

b. Kalman tracking 

This method has been implemented but preliminary data suggests that the chosen 

implementation performs almost identically to Nearest Neighbor and insufficient time was 

available to collect additional data. 

Ranking each methods overall performance 

To convey an overall sense of how detection methods vary in success, we ranked the top 

three methods according to each value of the performance criteria under study.  The metrics 

reported include the RMSE, Sensitivity (TPR) and False Positives (FP).  The detection methods 

are coded as follows: 1:SURF, 2: Canny, 3:Hough, 4:Otsu, 5:Threshold and are also color-coded 

from red to green.  Scenarios in which no value could be calculated were left blank (white).   

Figure 79 shows the ranked results for 45 µm particles undergoing linear motion at low 

density.  SURF performed the best across a variety of scenarios for the RMSE metric, followed 

by Threshold and Otsu.  Sensitivity however, showed greater variety.  For example, high levels 

of blur saw better performance from SURF, which looks for specific features/shapes rather than 

histogram variation.  For other levels of blur, SURF and threshold methods ranked highest.  

Finally, false positives were consistently lowest using the threshold methods because intensity 

values due to the SNR varied across the image.  However, Hough ranked second across a broad 

range of scenarios.   
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Figure	79.		The	top	three	best	performing	methods	for	each	combination	of	properties	and	Linear	

motion.		aሻ	45	µm	particles	moving	in	linear	motion	at	a	low	density	with	no	particle	complexity.		bሻ		

45	µm	particles	moving	in	linear	motion	at	a	low	density	with	particle	complexity.		The	methods	are	

coded	as	follows:	1:SURF,	2:	Canny,	3:Hough,	4:Otsu,	5:Threshold.	

The results are similar for 45 µm particles undergoing Brownian motion at low density, 

shown in the continued summary of performance in Figure 80... Again, SURF, Threshold and 

Otsu ranked highest for the RMSE metric.  For high levels of blur, Canny outperformed the other 

threshold methods at higher velocities.  Sensitivity had three distinct winners: SURF, Canny and 

Otsu.  However, for higher levels of blur Hough outperformed Otsu.  The fewest false positives 

were reported by threshold methods.  Taking all three metrics into consideration, SURF is by far 

the most robust method 45 µm particles undergoing Brownian motion at low density, if false 

positives are accepted. 
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Figure	80.		The	top	three	best	performing	methods	for	each	combination	of	properties	and	

Brownian	motion.		aሻ	45	µm	particles	moving	in	Brownian	motion	at	a	low	density	with	no	particle	

complexity.		bሻ		45	µm	particles	moving	in	Brownian	motion	at	a	low	density	with	particle	

complexity.		The	methods	are	coded	as	follows:	1:SURF,	2:	Canny,	3:Hough,	4:Otsu,	5:Threshold.	

Finally, for 45 µm particles in a sinusoidal motion at low density in Figure 20 the results 

mainly differ for low blur levels.  For the RMSE metric SURF, Threshold and Otsu ranked 

highest again but Otsu surpassed SURF at low blur levels.  Sensitivity had three distinct winners 

SURF, Canny and Otsu.  However, for lower levels of particle complexity Otsu outperformed 

SURF.  The fewest false positives at low levels of complexity were for Otsu but at higher levels 

the trend is less clear.  It is clear that Threshold while ranked third was robustly third across 

methods.  For this scenario either SURF or Otsu performed best depending on the metric of 

interest. 
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Figure	81.		The	top	three	best	performing	methods	for	each	combination	of	properties	and	

Sinusoidal	motion.		aሻ	45	µm	particles	moving	in	Sinusoidal	motion	at	a	low	density	with	no	particle	

complexity.		bሻ		45	µm	particles	moving	in	Sinusoidal	motion	at	a	low	density	with	particle	

complexity.		The	methods	are	coded	as	follows:	1:SURF,	2:	Canny,	3:Hough,	4:Otsu,	5:Threshold.	

Performance of surveyed detection methods under varying imaging conditions 

Having now established a sense of the overall ranking between methods, we want to also 

understand how each method changed in performance as the primary factors changed.  

Specifically, to study the effect of SNR, density, particle size, velocity, blur and particle 

complexity we compared how the sensitivity, RMSE and number of false positives changed as 

each parameter varied.  The full factorial analysis allowed us to vary the parameters 

independently of other effects.  These factors are shown for each dynamic including linear, 

Brownian and sinusoidal.  
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Effect of SNR 

We measured the RMSE, sensitivity and false positives for each method across all of the 

SNR values and dynamics.  To maintain clarity in the visualization of results encompassing a 

large number of situations while maintaining standardization across them, the primary effects of 

the factors investigated are presented for 45 µm particles with a low density, no complexity or 

blur applied.  This can be seen in Figure 82.  We first observed that the RMSE was not affected 

by the SNR values present in our study.  This is true for all three dynamics.  Hough detection 

was the only method to have an average RMSE greater than 4 pixels.  The best performing 

method was SURF with a RMSE of 1.72 pixels.  However, threshold based methods were all 

within 2 pixels.  Brownian motion showed slightly worse performance at an average of 3.4 pixels 

RMSE, likely due to lag in the Kalman filter correction.   

Sensitivity was very high for all methods except for Hough detection.  Otsu was susceptible 

to SNR in respects to sensitivity, dropping from 0.96 to 0.22 across the SNR range of 8 to 1.  The 

sensitivity of SURF decreased only from 0.99 to 0.95 across SNR of 3 to 1.  CANNY and 

Threshold were invariant and stable across all values but did perform slightly worse under 

Brownian motion. 

While false positives were consistently zero for the Threshold method, they ranged from 85-

266 for CAANY within linear motion.  All three performed worse for sinusoid and Brownian, 

respectively.  Of particular interest is that Otsu performed much worse as SNR increased, with 

208,063 false positives at its minimum, FP causing a dip in sensitivity.  Hough also performed 

worse with decreasing SNR. 
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Figure	82.		RMSE,	Sensitivity	and	False	positives	measured	for	varying	Signal‐to‐Noise	Ratios	ሺSNRሻ	

and	dynamics.			

Effect of density 

The effect of particle density is presented for Brownian motion.  RMSE performed worse 

with increasing density.  Examination of the videos makes the cause clear; overlap increases as 

density increases and for uniform particles this obscures detection of the centroid because two 

regions become one large particle with a centroid shared between them.  Also, we observed that 

sensitivity decreased as density increased.  The rate of decrease was faster between 500 and 1000 

particles.  This suggests that some number of particles between these two values would be the 

cross-over value for balancing throughput and sensitivity.  One could interpolate or test a more 

granular range of densities to find that exact value.  False positives also increased significantly 

between medium and high-density runs. 
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Figure	83.		Influence	of	particle	dynamics	on	primary	output	metrics	ሺRMSE,	Sensitivity,	False	

positivesሻ	for	varying	SNR	in	simulated	videos.	

Effect of particle size 

Primary particle size effects are shown for all four particles for each dynamic at a velocity of 

0.5 mm/s and SNR of 8.  Figure 84 (a) shows that no method was able to sufficiently detect 5 µm 

particles.  During investigation it was established that these were too small to be processed by 

the contour-finding function we utilized.  The remaining data shows that the RMSE improves as 

the particle size increases.   

Sensitivity showed one clear and important trend; that each algorithm had a value for which 

the sensitivity would suddenly drop off.  Because the number of false positives is not increasing 

with decreasing particle size, the number of true positives or correctly detected particles is 

confidently decreasing.  The particle size thresholds sizes at which sensitivity drops are 45 µm, 
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10 µm, 5 µm, 5 µm and 5 µm for Hough, SURF, Canny, Otsu and Threshold respectively.  

However, for Brownian motion Canny, Otsu and Threshold reduce in sensitivity at 10 µm rather 

than at 5 µm.  False positives are less common for smaller particles and increase as particle size 

increases for SURF and Hough.  After further investigation, this is because edges of larger 

particles are more likely to be near one another when the particle number density is held 

constant.  When two particles are near each other SURF and Hough often detect the region in 

which the two curves approach each other as one or more false positives.  This happens because 

the shape the two particles make near each other approximately resembles a curve.  This caused 

the total number of false positives and even the ratio of false positives to true positives to inflate 

dramatically if many of these situations are present and the scenario holds throughout the 

lifetime of the particle in the field of view.   

 

Figure	84.		Influence	of	particle	dynamics	on	primary	output	metrics	ሺRMSE,	Sensitivity,	False	

positivesሻ	for	varying	particle	size	in	simulated	videos.	
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Effect of velocity 

The RMSE across four velocities showed no trends across all dynamics and methods which 

was expected.  Other trends presented were similar to previous results as shown in Figure 85. 

Otsu, Threshold and Canny showed a reduction in sensitivity for Brownian motion as 

velocity increased with a distinct shift from 0.5 to 1 mm/s.  

False positives increased with increasing velocity for all methods within Brownian motion.  

Although, it stayed constant for the other two motion types.  A comparison of the video prepared 

for 1 mm/s and 2 mm/s showed a reduced concentration of particles near each other for 2 mm/s 

due to random seeding.  This accounts for the unusual reduction at 2 mm/s seen in SURF, 

Hough.  Nevertheless, we still expect false positives to increase with increasing velocity.     

 

Figure	85.		Influence	of	particle	dynamics	on	primary	output	metrics	ሺRMSE,	Sensitivity,	False	

positivesሻ	for	varying	SNR	in	simulated	velocity.	
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Effect of blur 

For linear dynamics, Hough detection improved its RMSE with increasing blur as shown in 

Figure 86.  For Brownian motion however, increasing blur caused Otsu, Threshold and Canny to 

more than double in RMSE for low levels of blur and to stop detecting altogether at high levels.  

Sinusoidal motion saw the same three methods suddenly cutoff at high levels of blur.  This 

seems to occur for these because the blur affects the entire particle, decreasing its signal level 

below the threshold value.  This is easily remedied by increasing the threshold, but can also be 

related to the PSF or focus of the image. 

The sensitivity of each method follow similar patterns with three of the five methods no 

longer detecting any particles at high levels of blur.  Considering there is not an increase in FP 

the detection scheme is failing. 

 

Figure	86.		Influence	of	particle	dynamics	on	primary	output	metrics	ሺRMSE,	Sensitivity,	False	

positivesሻ	for	varying	blur	in	simulated	videos.	
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Effect of complexity 

Complexity is a categorical variable and so the trends appear overstated as shown in Figure 

87.  Nevertheless, RMSE increases for all methods except Hough, which stays constant.  

Sensitivity decreases with increasing complexity and false positives increase for threshold 

methods.  SURF and Hough actually see a decrease in false positives.  These trends unusually 

hold true for all dynamic styles, making it the most consistent alterations across methods within 

our study, and making it a candidate for further investigation in a study if further tuning of 

methods were not possible. 

 

Figure	87.		Influence	of	particle	dynamics	on	primary	output	metrics	ሺRMSE,	Sensitivity,	False	

positivesሻ	for	varying	particle	complexity	in	simulated	videos.	
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Performance of Nearest Neighbor tracking under varying conditions 

Next we discuss quantitative analysis of the nearest neighbor tracking algorithm when using 

the five chosen detection methods.  Changes in the RMSE due to the detection method and its 

parameter settings will have an impact on the metrics of tracking.  Moreover, if a detection 

algorithm skips detecting a particle for several frames, the tracking algorithm is also penalized 

for being unable to link the particle.  We assume that the particles have been detected and now 

only require linking so density and velocity are primarily discussed.  Other factors, such as SNR 

could have some effect in which a particle is divided into two and the linker switches between 

tracking one half of the particle or the other.  Because it is difficult to distinguish between false 

linking we chose not to report the data. 

Effect of density on tracking 

The effect of density on tracking performance was measured for Brownian motion, because 

we expected it to be the most susceptible.  Sensitivity of tracking decreased with increased 

density for all methods, as expected.  However, Hough performed better for medium density.  

The cause of sensitivity reducing with increasing density was due to an increased number of 

false positives.  The Kalman filter, which predicts the motion of the particle for all methods, will 

predict that a particle moving in one direction will stay moving in that direction.  In the 

Brownian case there is no reason to expect this.  Therefore, at higher densities, if a particle 

moves into a location randomly vacated by a particle being tracked, it may ultimately be tracked 

and labeled as the original rather than its own as an unintended consequence.  This issue 

presented here may be overcome by more advanced methods that memorize a property of the 

particle other than location and orientation.  However, that is beyond the present scope. 
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Figure	88.		Sensitivity	and	false	positives	for	the	nearest	neighbor	tracking	method	while	varying	

density	and	dynamics.	

Effect of velocity on tracking 

The effect of particle velocity on tracking is critically important as the distance a particle 

travels between measurements could lead to misidentification.  Figure 89 shows the tracking 

sensitivity does not change by varying velocity.    

Invariant tracking sensitivity across this velocity range is expected for linear and sinusoidal 

motion as the predictive algorithm and linking algorithm can work together to reduce mistakes.  

However, Brownian motion causes a reduction in sensitivity as velocity increases.  This is likely 

due to poor modeling of the Brownian motion in the tracker leading to increased false positives.   

Among all five methods, Hough showed the worse sensitivity for linking.  In fact, in some 

cases it did not properly link any particles.  This failure is likely due to the fact that the detected 

circles in Hough were not well centered.  An examination of the particles paths would confirm.  

SURF also showed an increased number of false positives with increasing velocity but it 

didn’t affect sensitivity because more particles were simply measured over the same video 

length.   
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Figure	89.		Sensitivity	and	false	positives	for	the	nearest	neighbor	tracking	method	while	varying	

velocity	and	dynamics.	

Is real-time realistic? 

We also measured the computational cost of each method for both detection and tracking for 

all videos with 100 particles.  All videos were analyzed on an Intel i7 2.4 GHz with 8GB of 

RAM and Windows 8.1 operating system.  We directly compared the relative computation time 

required by each algorithm as shown in Figure 90.  The amount of time the program spent 

performing each detection and tracking algorithm was recorded during every frame and then 

averaged across all of the frames within the sample.  This data was converted into a box and 

whisker plot and ranked.  The ranking shows that SURF requires the highest average 

computation time (0.174 s/frame) followed by Hough detection (0.038 s/frame), Canny (0.009 

s/frame), Thresholding (6.47 e-4 s/frame) and Otsu Thresholding (6.14 e-4 s/frame).  SURF’s 

iterative voting procedure is simply a larger number of computations per pixel than threshold.  

The implication is that by designing your illumination to favor Thresholding, you can reduce 

your computational cost by two orders of magnitude.  On the other hand, Kalman filtering and 

nearest neighbor tracking algorithms were on average in the same order of magnitude at 0.06 

s/frame and 0.03 s/frame respectively.  Max-min values are shown in the whisker region of the 

plot.     
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Figure	90.		Computational	cost	of	detection	and	tracking	algorithms.		aሻ		Computational	cost	of	

detection	algorithms	across	all	simulated	videos.		bሻ		Computational	cost	of	tracking	algorithms	

across	all	simulated	videos.		Whiskers	show	max‐min	values.	

Using Threshold detection with Nearest Neighbor tracking we performed a second set of 

experiments to examine the change in computational cost for each function as the number of 

particles increase to determine how effective this method would be in real time.  Figure 91  

shows these results for the total time and the five functions that contribute and are aggregated to 

produce that total time value.  Figure 91 shows that the relationship between the total time to 

process one frame is exponential as the particles are increased an order of magnitude from 10 to 

10,000.  The threshold function operates on the whole image not on the number of particles and 

therefore isn’t affected by a change in particles as shown in Figure 91b.   

The finding-contours function does increase as more contours are in the image but even at 

10,000 particles it contributes only 0.02 s to the total time of 10 s.  Find image moments function 

also increase exponentially but at a slower pace from 1.4x10-3 to 1.4.  The majority of the 

computation time is actually spent matching and linking particles that have been previously 

found to particles detected in the current image.  Finally, adding new particles if they weren’t 

found in the tracking list contributes less than 1x10-5 s for 10, 100 and 1,000 particle densities 

but increases 0.5 s for 10,000 particles. 

This data conveys that the brute force search method to match particles in the list is the 

largest contributor to limiting the implementation high throughput, high speed particle tracking 

methods.  Future work to replace this method is suggested by implementing well known sorting 

methods to decrease matching time and limiting the search list to particles within a region of 

interest in the image.  This has been tested for dynamic lithography and proven to be a useful 

method when the number of regions is small. 
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Figure	91.		Box‐whisker	plots	showing	the	computation	time	in	seconds	for	various	functions	used	

in	the	detection	and	tracking	algorithm.		aሻ		The	total	time	for	each	frame.		bሻ		The	computational	

cost	of	threshold.		cሻ		The	computational	cost	of	finding	contours	of	objects	in	the	image.		dሻ		The	

computational	cost	of	finding	the	moments	of	the	image.		eሻ		The	computational	cost	of	matching	

and	updating	tracking	variables.		fሻ		The	computational	cost	of	creating	new	particle	object	if	no	

match	is	found.		
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Discussion 

As a survey of accessible traditional and sophisticated methods, this study could certainly 

include many other possibilities for examination such as multiple hypothesis testing.  However, 

we feel that the methods presented represent a collection of both traditional and modern 

algorithms that form a basis of what is easily accessible.  While the parameters used were tuned 

globally across all scenarios for each method it should be noted that post-tuning to a specific 

scenario region often produced better results.  This is expected and should be used as 

justification to expand the study to then tune input parameters as needed. 

Density appears to play the largest role in determining success of an algorithm in detecting 

objects, because particle density (i.e. number of particles per unit area) influences both detection 

and tracking.  Particle overlap increases with density, making detection more difficult when 

objects are similar in size and/or shape.  Second, it increases the likelihood that linking during 

the tracking process will mistake a particle near the correct one for the original.  This is 

especially pronounced for Brownian dynamics where the likelihood is increased due to the 

random direction and magnitude of the motion of each individual particle since these algorithms 

take no information on motion trajectory. 

Of course, each parameter in its extreme case had the potential to drastically impact 

performance.  For example, high levels of blur quickly deteriorated performance for threshold-

based methods by reducing the signal/intensity from small particles.  The number of pixels that 

represent a particle directly impacts how detrimental blur and SNR changes are.  In a scenario in 

which the system is out of focus equivalent to a Gaussian blur of 50 pixel radius, a 5 µm particle 

will no longer be visible while a 45 µm will.  Based on our results, a reasonable conclusion is 

that if a particle is represented by fewer than 4 pixels on the image it will be difficult to 

accurately detect.  A non-dimensional rule could also be forged stating that if the particle’s 

representation in pixels approaches one pixel, then the edge detection algorithm used for overall 

particle detection will no longer function and other methods will be needed. 

The relationship between particle size and pixel representation is a balance between image 

size, resolution, and performance.  For example, the videos used in this study had a WXGA 

resolution, which was chosen as part of this balance.  With some video formats approaching 4 

MP, the performance of many algorithms would naturally be slower even though the number of 

pixels per object would be higher.  But, because WXGA was chosen, with our optics, 1 pixel 
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represented our 5 µm particles.  If a larger format (4K) was chosen then 9 pixels would have 

represented the particle making it easier to detect and draw morphological data from.  In real 

world systems this is also coupled to magnification and pixel pitch size, meaning if we increase 

the resolution at the same magnification then we require a smaller pixel pitch.  It becomes easy 

to see that a balance between image size, resolution and performance needs to be struck.  

Another consideration is if the simulations are sufficiently similar to real world scenarios.  

Figure 92 shows a comparison between 45 µm particles in three different scenarios: a white light 

bright field image, a dark field image, and a simulation.  The dark field image and simulation are 

very similar, allowing one to be used as a proxy for the other.  

 

Figure	92.		Comparison	of	brightfield	and	darkfield	lighting	to	illustrate	how	simple	simulations	can	

be	sufficient	to	describe	real	images.	

One of the key assumptions regarding the velocity results is that the particles do not blur as 

they move faster, because our ground truth videos are built up frame-by-frame rather than broken 

down into frames form a live image.  This assumption is less feasible in a real system because 

the shutter speed of the camera is not sufficient to capture a sharp image of particles moving 

quickly.  For this reason the velocity results were expected but could be very misleading.  
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Therefore, caution should be used when setting up a real world system as to ensure the shutter 

speed is properly adjusted to account for faster moving particles.  Without having the capabilities 

to receive ground truth data from a live video feed, it is difficult to empirically determine the 

relationship of shutter lag.  But one could measure the induced motion blur due to a slow shutter 

and correlate the results reported for blurred particles.  

Complexity of the particle is very difficult to control in biological systems.  They can be 

represented by any combination of transparency, color gradients and granular appearance.  Any 

combination of these alterations can easily divide a normally whole particle into two or three 

apparently different objects.  Fluorescence is probably one of the best potential solutions because 

the detection point can be localized and uniform.  Therefore, our recommendation is to consider 

fluorescence capabilities for any system that has the potential to be confounded by these 

complexities  

Real-time performance is achievable yet should be pursued with some caution, with off-the-

shelf workstations performing very well at lowered resolutions, but meaning that they are not yet 

sufficient to match the resolution of the most capable high resolution cameras (4K 3840x2160).  

Further, the number of particles that can be processed at full frame is system-dependent.  

Therefore we recommend looking carefully at the system’s resolution and particle volume 

limitations before expecting real-time performance. 

The detection and tracking software is available to the community either for further analysis 

of new and exciting algorithms against ground truths or as a means of implementing a real-time 

particle-tracking package into another research area altogether.  In particular, the design is well 

suited to real-time systems such as dynamic lithography or optogenetics. 

Conclusion 

Based on the present study, we conclude that (when possible) controlling density, blur, and 

particle complexity are the best ways to maximize performance of detection and tracking 

methods.  We acknowledge that for many applications this may not be possible.  For example, in 

a microfluidic environment it is most readily possible to control the particle density and the 

illumination.  A counter example is tissue culturing where the density is determined by the 

growth of the tissue and imaging with fluorescence is not suitable during the growth.  However, 

counting cells in a tissue culture is not necessarily a real-time scenario and care can be taken to 

tune the algorithm parameters.   
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One takeaway from this study is that the shallow depth of field in microscopy images reduces 

the image structure to parameters found in Figure 77.  This could also be why simple and easily 

implemented methods such as Thresholding remain interesting research areas because they are 

adaptable and fast under these conditions.  However, continued research into new algorithms will 

likely yield more effective results when coupled with machine learning that can more robustly 

adapt to a variety of scenarios, no longer requiring the detailed categorization of images 

according to common metrics.  Users of detection and tracking methods can apply this study to 

identify a starting point for choosing the correct method in their own application, which becomes 

more challenging as the number of options continues to grow.  

Developers may find both the methods used here to evaluate the algorithms engaging for 

their own purposes.  Moreover, they should take care to consider the selection of input 

parameters into the algorithm carefully as it has a significant impact on performance.  In future 

work, it would be similarly useful to study the in-depth sensitivity and relationships between the 

method performance and the chosen parameters.  Based on largely anecdotal observations 

throughout our study whilst tuning the parameters, we noted many instances where there was a 

large either linear or non-linear, sometimes even binary or threshold, effect. 

We hope that other investigators expand on the experiments performed here through the 

addition of new methods of interest and videos of real world particle systems and their respective 

ground truths.  It will also be useful to compare between CPU and GPU-based methods to 

increase the resolution at which real-time analysis can be performed. 
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CHAPTER  VII. DYNAMIC PHOTOPRINTING OF CELLS AND MICROBEADS 
TOWARDS FLEXIBLE TISSUE MANUFACTURING 

Abstract 

One of the key applications enabled by dynamic lithography is photopatterning micro-scale 

objects, such as cells, into arbitrary 2D arrangements with single cell resolution (~10-20 µm or 

better).  In this chapter, we use the dynamic lithography platform along with a new algorithm 

which observes cells flowing across the field of view and anchors them to a substrate by 

photopolymerization if they pass through the target location(s).  We then measure the error 

involved in printing PS beads into various structures (20 µm).  Finally we characterize the 

biocompatibility of the polymer and substrate for hepatocyte cells and pattern two types of cells 

onto a substrate.  We believe this demonstrates a clear direction towards engineering 

sophisticated liver like tissue as an organ on a chip demonstration.  I’d like to thank Arnout 

Schepers and Prof. Sangeeta Bhatia for supplying us with hepatocytes and for contributing their 

expertise and resources to culture samples.   

  



145 
 

Introduction 

 Liver disease and loss of liver function is the 12th most frequent cause of death in the 

United States[97].  We need alternatives to liver transplantation to properly address developing 

diseases such as non-alcoholic fatty liver disease and steatohepatitis.  There are currently no 

other strategies that directly alter mortality.  

Printing of mature hepatocytes and hepatocyte aggregates into polymeric scaffolds and 

structures is being pursued by engineers and biologist to organize cells and their constituent 

biomolecules into a structure that, after culturing, functions like that of the original liver.  This is 

being pursued not only to meet the grand challenge of synthetic liver transplantation but also to 

generate organs-on-chip that exhibit similar function and can be used to test drugs in a controlled 

environment.    

One approach to creating polymeric scaffolds is by cellular encapsulation in a polymeric 

semi-permeable membrane.  This is a tissue engineering strategy that protects the cells from 

immune cells and antibodies [98].  Macrophages specifically are the first line of defense for the 

first 8-10 days of wound healing or transplantation [99].  In addition, encapsulation permits bi-

directional diffusion of small molecules such as oxygen, nutrients, growth factors and outward 

diffusion of waste and therapeutic proteins.  Common materials for fabricating cell scaffolds 

include making sheets of collagen and chitosan as they are readily biocompatible and 

inexpensive to fabricate.  More recent work has also applied PEG-DA hydrogels as the 

encapsulation material with success equal to that of the biologically inspired materials. 

Microparticles can be assembled like building blocks into 2D and 3D structures that resemble 

the organization found in tissue.  To this end polymer microparticles have been investigated as a 

promising strategy for producing conformable cell seeded scaffolds [100].  Sahoo et al. has 

shown polymer spherical PLA-PVA microparticles being used to culture breast cancer cells.  The 

authors showed that microparticles with properly tuned adhesion and growth factors can produce 

tissue like environments around the cell after a 5 day incubation period.  PEG-DA spherical 

particles and plates have also been employed by Bhatia et al. and shown to produce liver like 

function when implanted into rat models.  However, spherical microparticles, while readily 

available, limit the ability of researchers and clinicians to leverage the variety of material 

characteristics available to a tissue engineer.   
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Here we seek to establish the capability of dynamic lithography to print multiple cell types in 

arbitrary 2D patterns.  This requires: (1) biocompatibility (2) a printing.  One of the remaining 

challenges in this field is how to best rapidly position cells to mimic the shape of complex liver 

tissues structures [101].  We present work towards printing cells into tissue like structures by 

photopatterning cells and microbeads onto a substrate based on an arbitrary pattern.  First, an 

algorithm for printing cells or other particles flowing in a fluidic device is discussed and then 

Polystyrene (PS) microbeads are printed into arrays and images.  We characterize the error and 

limits of printing beads.  Next, we characterize the biocompatibility of the polymer and substrate 

for hepatocyte cells.  Finally, we statically pattern two types of cells into a tissue like material 

and culture for viability.  Challenges are identified and future solutions are analyzed. 

Printing algorithm 

We developed an algorithm to print microparticles using machine vision to efficiently track 

particles of interest and anchor them on demand.  On top of the foundation built into dynamic 

lithography so far an additional function matches particles to print locations.  As shown in Figure 

93 a file is loaded that represented the desired print locations on the screen.  The print locations 

are filled from the right to left using the dynamic lithography process.  As particles flow across 

the screen, the algorithm detects if the particle trajectory at time t+1 will be in the region of 

interest (ROI) around the print location.  Particles that do not meet this requirement are filtered 

from the candidate list.  Further filtering is performed on the particles in the ROI by measuring 

their trajectories and velocities.  If the trajectory will pass within a specified distance from the 

print location then the candidate is marked.  Finally, due to polymerization kinetics and latency 

in the system a particle with a velocity too fast to anchor accurately is rejected.  Rejection occurs 

based on knowledge of the polymerization time (~0.05 s) of the photopolymer.  A particle that 

passes each of these checks is then exposed to polymerize the photopolymer around it until it is 

anchored to the substrate.  The timing to begin exposing the particle is a function of particle 

velocity so that it is anchored to the correct location.  Using the velocity of the particle and its 

distance from the print location upon detection an estimate is calculated of the arrival time of the 

particle to the print location.  This is updated every frame and when the value is equal to 0.05 

seconds then exposure begins. 
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Figure	93.		Flow	chart	of	printing	algorithm.		aሻ	Load	print	locations	into	memory.		bሻ		Flow	particles	

across	print	locations.		cሻ		Filter	particles	not	entering	the	region	near	print	location.		dሻ		Further	

filter	candidates	by	trajectory	and	velocity.		eሻ		If	best	candidate	is	found	anchor	it.		fሻ		Iterate	this	

process	over	each	column	of	print	locations.	
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Methods 

Culturing cells 

Rat hepatocytes (Hep G2) were cultured at 37 °C at 5% CO2 using a culture medium 

composed of Dulbecco’s Modified Eagle’s Medium (DMEM) (Invitrogen) supplemented with 

10% Fetal Bovine Serum (FBS) and 1% antibiotic-antimycotic (Gibco).  Cells were cultured in 

100 mm culture dishes until reaching ~ 80% confluence and were then passaged using 0.25% 

Trypsin/EDTA (Gibco) to detach cells from plates prior to diluting and transferring them to 

devices.  Those used for experiments followed standard protocol in a biological hood and had the 

media drained first.  Then they were washed in 8 ml of phosphate buffer solution (PBS) for 30 

seconds.  The PBS was removed and 2 ml of trypsin was pipetted into the dish.  The dish was 

gently agitated and placed into the incubator for 3 minutes.  Once, 90% of the cells were 

suspended in the trypsin 8 ml of media was added to the dish.  The cell solution was moved to a 

15 ml centrifuge tube and spun at 200 RCF for 5 minutes.  The media and trypsin was drawn 

leaving the cell pellet and an additional 10 ml of PBS was added to the tube.  If the cells were 

being used in a device counting and partitioning was performed prior to spinning.   

After printing the hepatocytes the excess PEG-DA solution and cells were rinsed into a 

biohazard container and disposed of.  Then the device was submerged in media and placed in an 

incubator. 

Testing viability and exposure time 

Bio-compatibility of PEG-DA and the Photoinitiator were unknown for this experiment.  A 

full factorial survey of photoinitiators and PEG-DA/PBS concentrations and exposure times was 

performed to determine what combination met criteria of viability and rapid polymerization.  

Unlike other studies in which very small levels of photo-initiator can be used and exposed for 

15-30 minutes, dynamic lithography requires exposure times on the order of milliseconds to 

seconds.  Three photo-initiators were studied including (a) 2-hydroxy-2methyl-1-phenyl-1-

propanone (Darocur 1173), (b) Phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide and a 

mixture of (c) Eosin Y and TEA.  The first was prepared by mixing Darocur 1174 with PEG-DA 

at a concentration of 5% v/v.  The second prepared by mixing 98 ml of PEG-DA and 2 grams of 

Phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide.  The last mixture was prepared with 100 ml 
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of PEG-DA and 0.01mM Eosin Y and 0.1% TEA.  Each 100 ml PEG-DA solution was then 

diluted with the cell/PBA solution to PEG-DA Molar concentrations of 50%, 25% and 12.5%.   

For testing the effect of concentration and exposure time on viability, 100 µl droplets of cells 

were dispensed into a line of 8 droplets.  Each droplet was cured by the system sequentially at 

the following exposure times: 0.5 s, 0.75 s, 1 s, 1.25 s, 1.5 s, 2 s, 5 s, 8 s.  The droplet rows were 

ordered on the substrate by concentration.   

To study the effect of substrate choice on cell viability and PEG-DA wetting several 

materials were tested including collagen, cellulose, PFA, nylon, polyester and cellophane.  These 

were in addition to glass slides and PDMS, which have been used in previous studies.  In 

addition, the engineering materials were studied to identify candidate materials to print cells on 

large areas.    

When printing, the cell/PBS solution was mixed with the PEG-DA solution to a 

concentration of 10% PEG-DA/Photoinitiator.  The final composition after biocompatibility 

assessments was prepared by mixing 100 ml of PEG-DA with 0.01 mM Eosin Y and 0.1% TEA. 

Polystyrene microparticle PEG-DA solution 

The polystyrene (PS) microparticles (Poly Sciences) were mixed into a pre-prepared solution 

of PEG-DA.  The PEG-DA was prepared as before by mixing 98 ml of PEG-DA and 2 grams of 

Phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide.  This photo-initiator is known from 

previous work to polymerize near 405 nm and is compatible with the system.  Concentrations of 

beads were estimated by the manufacturer per droplet from the bottle.   

Experiment for printing beads and cells 

Beads were printed onto a glass slide covered by a PDMS microfluidic channel.  A syringe 

pump was used to control the flow rate of microparticles across the field of view of the system.  

This approach was used for two example prints.  The first was a grid array of particles while the 

second was the word MIT.  The error in printing position was measured using ImageJ.  Finally, 

aggregates of cells were cultured and suspended in a PEG-DA solution.  These cells were cast 

onto a glass slide and sequentially photo patterned by type.  The cells were cultured and a live 

dead stain was performed after 3 days to confirm growth. 
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Results and discussion 

Substrate selection for large area tissue printing 

To determine candidate materials for printing liver like tissue, wetting studies were first 

performed.  For this study Phenylbis(2,4,6-trimethylbenzoyl)-phosphine oxide in PEG-DA and 

PBS was used at varying concentrations of PBS.  Table 11 shows the observations of this 

experiment.  The contact angle was measured to determine wetting angle and polymerized 100 

µm pillars patterned on to the material were tested for adhesion by rinsing them twice in water.   

Table	11.		Substrate	tests	for	qualitative	wetting	and	adhesion.	

Material Wetting (concentrations) Adhesion 

Collagen Low Low 

Cellulose High (25/25) High 

PFA Absorbed water and deformed Low 

Nylon Medium (25/25) Medium 

Polyester Medium (25/25) Medium 

Cellophane Low Low 

 

From this data we chose cellulose as a base substrate for future experiments in addition to 

PDMS devices for lab on a chip experiments.     

Cell viability on cellulose 

Because it was previously known that PEG-DA was compatible with these cells, we examined 
the photo-initiator that would provide the fastest polymerization time while maintaining viability.  
Using the methods outlined above, viability was tested for three different photo-initiators on 
cellulose.  The results of this viability test are reported in Table 12.   
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Table	12.		Photo‐initiator	viability	

Photo-initiator Primary 
wavelength 

Biocompatible 
(Molarity) 

Polymerization 
time (s) 

(50, 25, 12.5, 7.5) 

Water 
solubility level 

(PEG/PI 
concentration)

2-hydroxy-2methyl-1-phenyl-1-
propanone (Darocur 1173) 

365 N/A ∞ N/A 

Phenylbis(2,4,6-
trimethylbenzoyl)-phosphine oxide  

450 Yes (25) 0.05, 0.8, 1.2, < 20 % 

0.01 mM Eosin Y and 0.1% TEA 405 Yes (12.5) 0.06, 0.8, 1.5, 3 All 

 

Printing beads 

As a first evaluation, we examine the performance of the system when printing PS beads onto 

a stationary substrate.  The beads flow within the channel until anchored.  Figure 94a shows an 

example of printing a 2x2 matrix of beads while Figure 94b shows a more complicated pattern of 

printing the acronym MIT. 

 

Figure	94.		Dynamic	lithography	based	printing	of	PS	beads.		aሻ		A	simple	sparse	2x2	matrix	of	

pillars.		bሻ		A	more	complicated	MIT	pattern,	displaying	blocking	and	clustering	problems.	

Both examples demonstrate opportunities for improvement.  In the first example all print 

locations are successfully printed with a single object however, accuracy can still be improved.  

The distance between where the particle is supposed to be anchored and where it is actually 

anchored is 22 µm on average with a standard deviation of 2.5 µm.  The arrival rate of particles 

that will flow over a print location within 2 pixels is directly proportional to the density of the 

particles in solution.  Because the density of particles (number/volume) can increase as particle 

diameter decreases, the arrival rate of particles can be increased by reducing the particle size and 

increasing the density.  Moreover, because the particles are not tracked until they are inside the 

ROI, the ROI size is a function of flow rate.  Half of the ROI length must be greater than the 
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particle velocity multiplied by exposure time.  So, there is a tradeoff between velocity and 

computational performance that limits throughput.   

The second example shows other challenges that need to be addressed including aggregation 

of particles before printing and blocking of print locations.  Aggregation can be addressed by the 

use of surfactants to improve dispersion.  Blocking can be addressed by integrating a z motion 

into the fluidic channel that draws trapped particles upward emptying the location and enabling 

the correct particle to find its position.  Implementing improvements to the algorithm such as 

those discussed in 0 is the path forward to improving the accuracy.  But a better understanding of 

the variation in polymerization time to anchor a particle as it relates to flow rate would help 

identify the source of variation.  

Printing cells  

Finally, we printed two cell types onto cellulose using sequential exposure by casting the 

substrate with cell (hepatocyte aggregates) laden solution and polymerizing the pattern shown in 

Figure 95.  Then the substrate was rinsed and cast with the second cell type (Hep G2).  This was 

also polymerized and excess PEG-DA was rinsed away.  The final device was incubated, and 

live/dead stain after 3 days showed viability of the pillar arrangements.  Live/dead staining uses 

selective staining of intracellular esterase activity and intact plasma membranes to identify 

cytotoxicity.  Using green fluorescent calcein-AM green stain images show intracellular esterase 

activity in the marked “Live” in the figure.  While a red-fluorescent ethidium homodimer-1 stain 

is used to indicate loss of the plasma membrane.  The live/dead figure is a combination of the 

live stain image and the dead stain image to show the proportion of cells from the population that 

survived.  Note that fluorescent dye is also absorbed into the hydrogel structure. 

Two patterns were tested by sequential maskless lithography, not using the photopatterning 

process to help us understand how to use it in the future.  The first was a perfusable arrangement 

of pillars with a vein created by the pillar arrangement.  Future work may take advantage of such 

an arrangement to then pattern endothelial cells.  The second pattern is an arrangement of pillars 

and rods.  The best combination of cell types and their arrangement is still an open question in 

the tissue engineering field.  This method and the addition of dynamic lithography may make it 

easier to test a variety of patterns to identify trends that improve tissue growth. 
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Figure	95.		Demonstration	patterning	cells.		aሻ		Live/Dead	stain	of	Hepatocyte	cells	polymerized	into	

a	grid	of	pillars	with	a	vein	structure	running	through	the	middle.		bሻ		Live/Dead	stain	of	single	

hepatocytes	ሺbarsሻ	and	HepG2	clusters	ሺpillarsሻ.			

We observed that clearing the PEG-DA from in between polymerized regions was difficult 

and cells that were nearby but not in the structure were also bound to the substrate.  This is why 

we expect printing the cells sequentially via machine vision driven photo-patterning to be more 

robust method over time. 

Having established the cell viability and demonstrated growth of multi-cell structures future 

work will leverage dynamic lithography to identify the improved combinations of pattern size, 

spacing, arrangement and biological building blocks.  After this has been accomplished the 

results will be applied to pattern large areas a via roll-to-roll dynamic photopatterning system.  

The layout of these experiments is shown in Figure 96.  In this concept, the print region is 

translated at the same velocity as the tape.   
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Figure	96.		Roll	to	roll	printing	concept	of	large	area	tissue.		aሻ		Arrangement	of	the	roll‐to‐roll	

system	integrated	into	the	dynamic	lithography	system.		bሻ		Front	view	schematic	illustrating	the	

arrangement	of	a	fluidic	device,	substrate,	objective	and	cell	flow.		cሻ		Top	view	showing	particles	

flowing	across	zones	and	being	anchored	into	a	pillar	array.	

Conclusion 

The main advantage of dynamic lithography for printing is its flexibility and capability to 

pattern objects across length scales from nanometers to microns and adapt to particle position in 

the micro-environment.  This is the distinct difference between other methods.  For example this 

method could be adapted to identify particle clusters on the surface and anchor only those that 

have assembled into dimers and trimmers.  A comparison of printing methods is shown in Figure 

97.  These include contact printing, inkjet, LaserJet, electro hydrodynamic printing and pick-and-

place.  The advantages and challenges of pick-and-place were discussed in Chapter  I but each 

method is capable of compared in more detail relating throughput, minimum object/feature and 

the ability to print different types of materials and objects.   
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Figure	97.		Relative	performance	of	common	micro‐printing	methods.	

Experiments shown here demonstrated the ability to print particles with 20 µm accuracy.  

Continued improvement of the method should enable better localization of the cells onto the 

substrate.  Moreover, we expect that in future work, it will be important to consider new methods 

of delivering particles to the system to address the scalability of this method, because current 

implementation may suffer from slow cycle times waiting for particles to arrive at the desired 

location along with blockage of unfilled sites.  However, this is not a challenge for applications 

that can take advantage of low density patterns. 
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CHAPTER  VIII. A ROBOTIC SYSTEM FOR PHOTOPATTERNING OF LARGE 
THREE DIMENSIONAL SURFACES 

 

Abstract 

The fabrication of organized micro- and nanoscale textures on everyday objects demands 

new methods for scalable patterning, particularly when the substrate is curved in one or more 

dimension.  We describe the design of a dynamic lithography system mounted to a six axis robot 

that projects images onto a curved surface and alters the size and shape of the projection based 

on the local radius of curvature of the substrate.  Motion of the robot is coordinated with a rotary 

stage to access all sides of an object.  The resolution, repeatability and accuracy of the system are 

measured.  Finally, we demonstrate the method by patterning North America onto a precision 

ground steel ball coated in photo-resist.  The revolution in customized manufacturing has been 

led by additive printing methods which build up structures from a polymer.  Here, we rather 

examine a method to pattern pre-existing objects by adding material to what already exists.  For 

example, this work may be used to pattern cells directly onto bone to aid healing.  Towards, this 

ultimate goal Adam Stevens deserves equal credit for this work and I enjoyed working side by 

side with him to develop and test the final system.  The project began in the ME450 course at the 

University of Michigan, where it was co-mentored with Erik Polsen and included the following 

team members Chad Archer, Jenna Garber and Casey Boyle.   
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Introduction 

Patterning of photosensitive polymers on arbitrarily shaped surfaces would enable the 

application of lithography methods to large curved objects, and therefore would be an enabling 

technology for developing highly integrated electronics in biomedical applications, such as 

external devices (body armor, helmets) and implants (eye, heart, and bone implants)[102]–[104]. 

One approach is to fabricate stretchable and/or flexible electronics on PDMS that then contour 

the device/object.  John Roger’s group, has applied this method to demonstrate conformal brain 

implants and a glove-like pericardium[105].   

Several other methods have been discussed before including stereolithography as discussed 

in 0 and laser based methods of rastering across the surface of an object[106], [107].  We aim to 

overcome limitations in patternable area by using robotic lithography to position a six axis 

microlithography system. 

Here we discuss the system design and process for patterning curved substrates.  Design of a 

multi-axis micro lithography system is subject to mechanical error so we discuss the role of error 

build up in the system components[108], [109].  We characterize the resolution and aberration 

performance of the system both optically and lithographically.  Using this framework, we finally 

demonstrate the patterning of a micro-scale map onto a spherical metal ball.   

System design  

The system is comprised of three major components:  1)  Maskless lithography system.  2)  

Positioning system for the part and lithography system.  3)  An object to be patterned and its 

mount.  The coordination of these is controlled via software.   

The design of the maskless lithography system is described in detail in 0 and 0.  The 

maskless lithography system is mounted to the robot end effector and can be positioned 

anywhere within a 20x20x20 cm work envelope to manipulate the projection relative to the part.  

The back of the housing shown in Figure 60 in Chapter  V, has an alignment pin on the back of it 

which mates with the six axis robot end effector.  
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Figure	98.		Robotic	lithography	system	and	process	overview		aሻ		Photograph	of	the	robotic	

lithography	system	and	rotary	stage.		bሻ		Close	up	view	and	schematic	of	the	dynamic	lithography	

system	mounted	to	the	robot.		cሻ		Researcher	showing	the	kinematic	mount	for	precision	alignment	

between	mounted	objects.		dሻ		The	basic	process	of	printing	onto	a	curved	surface.	

To enable the large work envelope the 6-axis robot (Adept Viper s650) and a rotary stage 

(Velmex B5990TS) (Figure 98) are positioned relative to one another.  Both are mounted onto a 

precision optical table.  The goal of the positioning system is to accurately and repeatably focus 

the projection from the maskless lithography system normal to the substrate at the correct focal 

distance.  The rotary stage is mounted on a 12.5 mm thick aluminum plate that is spaced from the 

optical table using four 100 mm optical posts (Thorlabs P4) which have a tolerance of ±0.127 

mm.   

The part to be patterned is mounted on a kinematic mount (Thorlabs KB3X3) (Figure 97c).  

The purpose of this is so that the part can be removed to 3D scan and coat in photoresist and then 

placed back in the system while minimizing error.  The kinematic mount is attached to the rotary 

stage using a custom adapter plate made of Aluminum.  Two precision stages (Thorlabs PT1A) 

are mounted between the kinematic mount and the rotary stage.  Because multiple top plates of 

the kinematic mount are used the stages remove the error between the mount and the rotary stage 

z-axis.   
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Figure	99.		Rotary	stage	and	kinematic	mount	detail.	

The motion and timing of each component necessary to conformally pattern in three 

dimensions is controlled by a custom C++ algorithm that integrates the drivers from the rotary 

stage, robot and lithography system.  First, a 3D scan of the object is taken using a 3D scanners 

(NextEngine) from which three dimensional coverage is achieved by triangulating the surface of 

the object and saving the data in the obj format.  The location of each triangle in the digital-space 

is then associated with that in the real space.  Each triangle is then associated with the texture 

contained within its borders and stored in computer memory for later projection.  The software 

iterates over the list of triangles in saved in the obj list.  For each triangle it finds the centroid of 

the triangle and commands the rotary stage and robot to move so that the robot is normal to the 

centroid and the correct focal distance.  It then displays the texture and triangle on the projector, 

scaled to match the optical magnification and turns on a blue LED to expose the surface and cure 

the photoresist for 0.1 s before moving to the next triangle.  This process is repeated until all 

triangles have been patterned.   
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Methods 

Using this system the experimental process for photopatterning onto the surface involves 

mounting a part, depositing photoresist on its surface, 3D scanning the object and preparing a 

texture file of it and then exposing sequentially over the entire part.  For the demonstrations 

shown in this study a steel ball was selected as the curved substrate and a glass slide was used for 

linear patterning.  The steel ball has a precision of < 1 µm so it is ideal for this study.   

Preparing photoresist 

First the mounted substrate (e.g. the sphere) is cleaned with acetone and IPA and dried with a 

nitrogen gun.  The photoresist used is MicroSpray MicroChem positive spray photoresist.  

Following the manufacturer guidelines we shake the can approximately 10 times and spray once 

away from the substrate to clear the nozzle.  Next, 3 quick overlapping passes are sprayed onto 

the substrate to deposit ~5 µm of resist.  The substrate sits for 5 minutes and is then warmed with 

a hot air gun set to 116 C˚ for 5 minutes.   

After exposure across the surface of the substrate (1.9s/triangle) the part is immersed in 0.1N 

NaOH for 5 minutes without agitation.  After 5 minutes the part is rinsed with DI water to 

remove unpolymerized resist.  The final part is dried under nitrogen or dry air. 

The hydrogel was applied to linear curved substrates by dipping the substrate upside down in 

a 100 ml beaker.  Smaller areas were covered by pipetting 10 ml onto the surface and wetting 

corners. 

Results 

Accuracy and repeatability of the motion system 

The measured planar repeatability and accuracy of the motion system and thus the projection 

is 20 microns and 30 microns, respectively.  It was measured by moving the robot to and from a 

desired location and then measuring the shift of a target object as imaged by camera via ImageJ.  

The accuracy of the robot in 3D is much more difficult to characterize but shows degraded 

performance.  It was measured by patterning triangles along a surface with a radius of curvature 

of 12.5 mm.  The triangles were patterned from the x-axis of the ball to 45 degrees off axis in 

both the horizontal and vertical directions.  It was observed that the system had a maximum 

positioning error of 325 µm in 3D space. 



161 
 

Moreover, the resolution of the system was investigated.  We hypothesized that the photo-

resist monomer length would affect quality of the pattern.  Both the hydrogel and the photoresist 

were applied to the glass substrates and patterned using the USAF 1951 test target.  The results 

show that using MicroChem resist a resolution of 5µm in a 5 µm thick layer was achieved.  This 

was also seen in the rounding of corners for example in Figure 100c.  The same experiment was 

performed using PEG-DA and this showed worse performance with a 10 µm resolution.  This 

may also be affected by the nature of each resist (positive vs. negative).   

 

Figure	100.		Resolution	characterization	for	robotic	lithography.		aሻ		USAF	1951	resolution	test	

pattern.		bሻ		USAF	1951	test	pattern	exposed	into	a	5	µm	thick	layer	of	MicroChem	spray	

photoresist.		cሻ		Close	up	view	of	smallest	channel	around	the	pattern	shown	in	d.		dሻ		Comparison	of	

1,	4	and	16	pixels	used	for	exposure.		eሻ		USAF	1951	test	pattern	in	PEG‐DA	on	a	glass	slide.		fሻ		SEM	

of	corner	of	small	feature	on	fabricated	from	PEG.	

Taking into account the depth of field of the system (ߜሻ and the local radius of curvature of 

the substrate (ܴሻ we calculate (Equation 47) the parameter α2 representing the area of the DMD 

that can be used for each exposure accounting for the DOF of the objective.  This relationship is 

plotted in Figure 101.  However if the radius of curvature is smaller than δ then ߙଶ	is just ሺܴߨሻଶ. 

ଶߙ  ൌ 2ܴ ଵሺି݊݅ݏ
√ଶோఋିఋమ

ோ
ሻଶ Equation 47

This is used to decide the triangle size when generating the mesh.  By measuring the smallest 

radius of curvature on the scanned object we can calculate ߙଶ and correlate it to a triangle length.  

While we expect this to critically determine quality of the projection over the surface this is a 

tradeoff with processing time as smaller triangles are proportional to number of exposures. 
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Demonstration 

As seen in Figure 101a, the ball mounted on the kinematic mount attached to the stage was 

coated with resist, exposed by the system, and rinsed.  The pattern that was exposed onto the ball 

is shown in Figure 101b and is represented by a triangular mesh with the pattern of North 

America textured onto its surface by UV mapping.  The system sequentially moved the centroid 

of each triangle in the mesh and projected the pattern linked to the triangle.  The result of this 

patterning process is shown in Figure 101c.  The micrograph shows the state of Michigan 

patterned onto the ball with feature resolutions approaching 5 µm.  An SEM of the surface shows 

the steel ball surface and the texture of the photoresist after processing for a bay (Figure 101). 

 

Figure	101.		Demonstration	of	patterning	a	curved	surface.		aሻ		Steel	ball	mounted	onto	stage.		bሻ		

.OBJ	file	with	texture	mapped	onto	surface.		cሻ		Photograph	of	the	ball	after	processing	showing	

Michigan.		dሻ		SEM	image	of	bay	showing	metal	surface	and	photoresist	structure.		eሻ		Area	the	DMD	

can	pattern	as	a	function	of	radius	of	curvature	of	the	substrate	and	depth	of	field	of	the	system.	
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Conclusions 

While limitations due to inherent machine geometry exist, this demonstrations shows the 

potential for patterning arbitrary curved surfaces.  The role of the depth of field and radius of 

curvature play a balance in both throughput and clarity of the projection.   

This technique bridges the gap between microlithography and macroscale objects as the size 

of the eventual pattern is limited only by the combined work envelope of the robot and rotary 

stage.  It is also flexible and able to work in different environments such as manufacturing 

factories and operating rooms.  While the goals differ the methodology presented here is suited 

for both. 

Considering, the potential use in manufacturing we imagine this capability being used in 

concert with a variety of post processing steps.  Industry may have the goal of patterning a 

surface to protect it during an etching or deposition process.  For example the area not covered 

by resist could be coated with metallic spray to make a conformable PCB.  Another use is to 

cover a surface before applying catalyst that is then used to generate nanostructures selectively.     

To meet these challenges further improvement in micropatterning accuracy may be found by 

the addition of an absolute positioning systems.  As discussed, error in absolute robotic position 

is inherent to the design of six axis robots but corrections can be made if the position of the end 

effector is known by a secondary measurement.  New methods are being commercialized 

(Creaform) to provide this correction and achieve accuracy down to 15 µm.   

The second case may be depositing material directly such as cell laden hydrogels.  We 

imagine that uses within the operating room in which 3D scans of the patient and then 

subsequent patterning may enable improved healing or the integration of sensors and electronics 

that interact with cellular features.  The ability to rapidly create custom two-dimensional patterns 

on three-dimensional substrates as demonstrated is expected to unlock new functionality in fields 

including, but not limited to, experimental semiconductors, personalized medical devices, and 

optics. 
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CHAPTER  IX. CONTRIBUTIONS AND FUTURE WORK 

Key contributions of this work 

This thesis was concerned with the development of a machine vision based optofluidic 

lithography platform for synthesizing and manipulating microparticles, objects and organisms.  

This was then applied to sort and print microparticles and cells, achieving accuracy and 

resolution that is suitable to biologically relevant applications.  The design of the maskless 

platform was applied to a robotic end effector to pattern curved large area curved objects.  To 

summarize, the contributions of this thesis include: 

 Chapter II I designed and constructed a modular maskless system for 365 nm 

wavelength lithography.  The system has diffraction limited performance which is 

comparable to commercial microscopes yet the system offers additional flexibility such 

as the capability to be integrated into manufacturing systems.  Traditional systems require 

that the substrate match the lithography machine which I overcome.  The design is also 

simple enough for any laboratory to fabricate.   

 Chapter III Continuous microfluidic synthesis of microparticles with monodisperse 

sizes (5-15% CoV) was studied.  This was done to address limitations in fabrication of 

particles for self assembly and multiplex diagnostics.  Previous methods were not able to 

fabricate small particles with sufficient throughput for these applications.  I hypothesized 

that microfluidic channel design plays a role in fluid stop time, which is critical to 

throughput.  Using this understanding we designed a new microfluidic device to increase 

throughput up to 1500X for particles width a 5 µm height enabling synthesis of up to 

2.5 ൈ 10଺ particles per minute. 

  Chapter IV I hypothesized that interactive, in vivo lithography could be used to study 

the locomotive, force response and decision making ability of C. elegans.  I first studied 

the behavior of C. elegans in assays designed by dynamic lithography to test variations in 

worm locomotion to pillar spacing.  I hypothesized that C. elegans would swim faster as 

pillar spacing decreased.  By varying pillared structure spacing we quantified locomotion 
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of the worms and observed an increase in maximum velocity of up to 89% as 100 µm 

pillar arrays begin to overlap to form a channel.  I also, hypothesized that free floating 

structures could be fabricated by controlling exposure time and focus position.  This 

capability was verified to be true and patterned movable structures within the 

microfluidic device which could measure force response from worm locomotion.  This is 

the first to the author’s knowledge that lithography has been applied to manipulate whole 

animal models such as C. elegans.  Moreover, I studied the diffusion of PEG-DA into 

agar as I hypothesized that this would enable adhesion to the agar.  Unlike in PDMS 

devices which are inhibited by oxygen diffusion through the material. 

 Chapter V I wanted to understand how machine vision might enable the lithography 

system to dynamically respond to particles in flow and intelligently project masks to 

encapsulate or capture them for sorting and self assembly applications.  To do this I 

hypothesized that a simple algorithm could detect the particles from a binary image and 

draw the projection using their moments.  I found that this was not true and latency of the 

system had to be modeled and accounted for to project in the correct location.  To do this 

I wrote software to integrate system components and detect, track and process 

microparticles at 1140 fps with 4.4 pixels accuracy.  I then demonstrate the ability to sort 

PS beads with a sensitivity of 100%, specificity of 99.9%, accuracy of 99.9% and 

precision of 98.9%.  This is comparable to other methods such as Flow cytometry which 

can process 60 ml/min, however I processed 300 ml/min of particle laden fluid.  In 

addition, this method has additional flexibility when compared to flow cytometry because 

metrics from the image can be used to describe particle properties.  

 Chapter VI As I developed the dynamic lithography system, I was faced with a 

question of which detection and tracking algorithm to use.  I hypothesized that the 

particle environment could be simulated by independently testing the following image 

properties: particle size, particle density, particle dynamics, particle velocity, particle 

complexity, blur.  Using custom software I compared the performance of the detection 

and tracking algorithms to simulated ground truth and found that by controlling the 

lighting of my system to match the simpler simulations I could use traditional algorithms 

to accurately and efficiently detect and track particles.  This study when compared to 

recent publications expanded on the parameters of interest from three to seven.  This 
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additional information was valuable to give context about applying this method to other 

types of bio-imaging problems.  

 Chapter VII I hypothesized that printing cells onto substrates in a template free manner 

could achieve high density, multi cellular environments that contribute to improved 

organ-on-a-chip fabrication.  Using the dynamic lithography system could I tested the 

capability by printing PS beads as a surrogate cells.  This identified two problems that 

need to be addressed in future work (blocking and aggregation).  However, I did 

demonstrate sequential patterning of hepatocyte cells into organized structures using 

multiple cell types.  I expected that photo-initiator selection and the PEG-DA dilution 

would impact viability of the cells.  Therefore, I characterized the viability of hepatocytes 

to hydrogel encapsulation for 3 photo-initiators and 5 engineering substrates.  This was 

the first time this photo-initiator was used with hepatocytes and cells were found to be 

viable in these structures for the incubation period of three days.  Moreover, the speed of 

synthesis compared to previous template method using PEG-DA for cell encapsulation 

was an order of magnitude faster (1 second vs 30 seconds).   

 Chapter VIII In this chapter I highlighted another potential application in patterning 

directly onto curved hard surfaces such as bone.  I expected that the lithography system I 

used to print cells could be positioned arbitrarily and take into account the curvature of 

the substrate.  To test this hypothesis I designed and characterized a system to pattern 

curved large area surfaces by mounting the dynamic lithography system to a six axis 

robot.  This included establishing a standard procedure for scanning, mounting, coating 

and processing objects.  During the demonstration of the technique I quantified the 

resolution of the system to pattern resist (5 µm) and hydrogels (4 µm).  Finally, I 

patterned a spherical object across a 10 mm area.  The result demonstrated that we could 

pattern curved objects and gave us a theoretical framework for the area that can be 

patterned in relation to the local radius of curvature.  Furthermore, we now understand 

that mechanical error in the robot is not sufficient to use this method across the entire 

working envelope and further correction is needed to establish absolute positioning of the 

projected image relative to the substrate.  Compared to other methods, stretchable soft 

lithographic features do not adhere to the substrate and cannot be used for post processing 

as this method could.  The only other comparable method is a laser raster system that has 
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been commercialized.  The throughput of my method compared to the laser method is 

more scalable because we can utilize a greater area of the DMD while the laser beam 

must remain focused to a point.   

 

In addition, several important accomplishments exceed the state of the art and advance 

the field in a meaningful way:   

 I designed and constructed an off the shelf system was designed for maskless 

microparticle synthesis that is more flexible than off the shelf lithography. 

 I confirmed our hypothesis that microfluidic channel structure effects throughput and 

as a consequence tested a new microfluidic device that may synthesize up to 2.5 ൈ

10଺	particles per minute is 1500X faster than a comparable system. 

 This lithography system was used to fabricate in vivo and ex vivo assays 5000X faster 

than soft lithography.  Moreover, this is the only system that enables in vivo 

manipulation in an unstructured way.  I hypothesized that PEG-DA would diffuse 

into agar overcoming the oxygen inhibition layer.  This was verified by ATR-FTIR 

measurements.  I also discovered that C. elegans lifespan was not affected by assays 

that expose them to PEG-DA on agar.  This was the first time that movable objects 

were fabricate directly inside of an assay device to interact with whole animal 

organisms. 

 Developed the first machine vision based method to manipulate (sort, print) particles 

and biologically relevant materials via lithography.  Flow rates of 10 mm/s enable 

sorting of 300 µL/min.  Hypothesized that because particles move in a flow that the 

flow could be polymerized around them accurately encapsulating them.  Discovered 

this to be true given accurate projection light.   

 Finally, the robotic lithography system is the only system that can pattern arbitrary 

curves surfaces. 
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Key questions and future directions 

While conventional 2D lithography continues to achieve higher performance for use in the 

semiconductor industry, the paradigm of designing intelligent lithography unlocks new 

opportunities.  Going forward, we view the dynamic lithography system, comprising both 

hardware and software, as a general tool for manipulation, interrogation, synthesis, assembly, 

printing and sorting of particles, biological components and objects (Figure 102). 

 

Figure	102.		Potential	directions	for	dynamic	lithography.	

To be able to adapt the system to each problem, key questions must still be answered.  

Specifically, we must understand, based on fundamentals of the system, how to improve its 

accuracy, repeatability, resolution and responsiveness.  To improve these metrics we want to 

answer questions such as, “What is the most efficient detection and tracking algorithm?”  

Potential paths forward involve using patterned light sensitive photo-chemistry to control the 

microenvironment so that particles can be driven to the right location.    

At Michigan and MIT I will continue to work on this problem to improve the capability of 

the system to print hepatocytes into functioning organs on a chip for drug testing.  Primarily, we 

need to study how increasing particle density will affect patterning performance.  This may arise 

from “blocking” and aggregating of particles as was seen when printing the MIT logo.  In 

experiments so far (Figure 94), the first is seen when an undesired particle arrives at a print 

location and blocks a desired particle.  The second occurs when particles begin to aggregate due 

to micro and nano scale forces (Van der Waals, depletion, etc).  When this happens, anchoring a 

single particle becomes impossible.  Understanding the scaling laws of interactions and 

developing a particle motion model may provide a clear pathway to understanding the 
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underlying principles of blocking, aggregating and identifying the limitations of processing 

throughput.   

To transfer this work to commercial manufacturing scales the speed of photopatterning tissue 

into 3D structures with arbitrary placement and multiple cell types needs to be improved.  With 

the combination of the techniques presented in this thesis, it is anticipated that continued interest 

in the area of dynamic lithography will provide additional improvements in quality and 

throughput to leading to full scale implementation.  This may be accomplished by improving the 

hardware (workstation, GPU), software (detection, tracking), modeling (photo polymerization, 

flow) and photochemistry.   

 

Figure	103.		Vision	for	the	future	of	flexible	adaptive	microfabrication	methods.	

To complete the long-range vision, we have identified a number of technologies as part of a 

vision for flexible adaptive microfabrication that takes advantage of and compliments the work 

in this thesis.  Automated manufacturing technologies such as maskless lithography, machine 

vision, roll to roll processing and robotic lithography can be used to fabricate or augment 

building blocks at different length scales in 2D and 3D.  We then see dynamic lithography, 

photo-capillary driven assembly and self-assembly as a means of achieving heterogeneous 

hierarchical assemblies and structures.  The structures and particle designs realized should be 

driven by the identification of important bioengineering and technology applications that 

leverage the adaptive nature of the dynamic lithography platform.  For example, we envision 
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future possibilities in which electronics and cells are combined/printed into the same structure 

enabling responsive grafts to monitor the health of customer and respond to changes in their 

physiology. 
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APPENDICES 
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APPENDIX  A. WAFER DESIGN 
 

Table	13.		Wafer	layout	and	characteristics.	
Wafer 
Pos. 

Pillar Cross 
Section 

Type (I-III) 

Arrang
-ement 
Type 
(A-H) 

Pillar 
Spacing
, x (um) 

Channel 
Width 
(um) 

Channel 
Length 

(cm) 

Diameter 
(um) 

Major 
Radius 
(um) 

Major 
Radius 
(um) 

Width 
(um) 

Length 
(um) 

1 III H  400 0.5    20 60 

2 III H  400 0.5    20 60 

3 III H  400 0.5    20 60 

4 III H  400 0.5    20 60 

5 III H  400 0.5    20 60 

6 I A  100 0.5 20     

7 I B  100 0.5 20     

8 I C  100 0.5 20     

9 I D  100 0.5 20     

10 II A  100 0.5  40 10   

11 II B  100 0.5  40 10   

12 II C  100 0.5  40 10   

13 II D  100 0.5  40 10   

14 III A  100 0.5    20 60 

15 III B  100 0.5    20 60 

16 III C  100 0.5    20 60 

17 III D  100 0.5    20 60 

18 I A  200 0.5 40     

19 I B  200 0.5 40     

20 I C  200 0.5 40     

21 I D  200 0.5 40     

22 II A  200 0.5  80 20   

23 II B  200 0.5  80 20   

24 II C  200 0.5  80 20   

25 II D  200 0.5  80 20   

26 III A  200 0.5    40 120 

27 III B  200 0.5    40 120 

28 III C  200 0.5    40 120 

29 III D  200 0.5    40 120 

30 I E 25 500 0.5 20     
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31 I E 50 500 0.5 20     

32 I E 80 500 0.5 20     

33 I E 100 500 0.5 20     

34 I E 130 500 0.5 20     

35 I E 130 500 0.5 40     

36 I E 130 500 0.5 60     

37 I E 130 500 0.5 80     

38 I E 25 200 0.5 20     

39 I E 25 300 0.5 20     

40 I E 25 400 0.5 20     

41  Blank 
Device 

 100 0.5      

42  F  10 1      

43  F  25 1      

44  F  50 1      

45  F  100 1      

46  G  10 1      

47  G  25 1      

48  G  50 1      

49  G  100 1      

50 III H  400 0.5    20 60 

51 III H  400 0.5    20 60 

52 III H  400 0.5    20 60 

53 III H  400 0.5    20 60 

54 III H  400 0.5    20 60 
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APPENDIX  B. MATLAB CODE FOR SIMULATING PARTICLES 
 
% Particle Simulator for Objective Detection and Tracking Comparison 
% Written by John Lewandowski and Ryan Oliver 10/23/2014 
 
% The operation of this code depends on the motion type, speed, density, 
% and size of particles needed in the system 
  
% In this file, change the following: 
% Add a new speed using the formula global stepX and stepX = (X/1276)*2 in 
line 36 
% Change the number of frames in line 48 
% Change titles of output in lines 61 and 66 
% For higher densities, increase number of particles added per frame in line 
91 
% Comment and uncomment lines 127 and 128 for ability to have multiple sized 
particles 
  
% These lines control Brownian in this file: 
% Comment line 54 and uncomment line 56 
% Uncomment entire Brownian section lines 93-113 
% Comment entire Linear and Sinusoidal section lines 118-138 
  
% These lines control Linear and Sinusoidal in this file: 
% Comment line 56 and uncomment line 54, adjust speed 
  
  
% Only change lines 544-573 in particlesystem.m for speed and motion type 
(comment and uncomment) 
% and lines 769-779 for density and field of view (comment and uncomment) 
  
% Only change lines 171-186 in particle.m for sizes in pixels 
  
  
% Clear memory 
clear all 
close all 
clc 
  
% Create the particle system that contains all particles 
% ([gravity x, gravity y, gravity z], resistance, axes) 
Particle_System = particle_system ([0, 0, 0], 0, 1); 
% View is of 2D-motion 
view (0, 0); 
  
% Step time of simulation (speed of motion) 
% Sets frame rate at 30 frames per second (1/step_time) 
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step_time = 0.033; 
  
% Global step delta x = velocity 
% This sets the global velocity variable 
global step2 
step2 = (11/1276)*2; 
global step1 
step1 = (5.5/1276)*2; 
global step05 
step05 = (2.75/1276)*2; 
global step01 
step01 = (0.55/1276)*2; 
  
% Set length of simulation in frames 
N = 60; 
frames = N; 
  
% Lifespan of particle adjusted for three motion cases 
% Comment for Brownian 
% Replace step2 with whatever global variable speed you use 
lifespan = (2/step2)*step_time; 
% Uncomment for Brownian motion 
% lifespan = N*step_time; 
  
% Name your video file here 
writerObj = VideoWriter('particlevideofile','MPEG-4'); 
writerObj.FrameRate = 1/step_time; 
open(writerObj); 
  
% Name your data text file here  
fileID = fopen('particletextfile.txt','w'); 
  
% Make headers for the text file  
fprintf(fileID,'%10s %10s %7s %10s %10s %10s \n', 'frame', 'ID', 'false', 
'Xpos', 'Ypos', 'Size'); 
  
% Initialize ID, frame, particle matrices, particle sizes, particle id, and 
% position matrices 
ID = ones(0); 
frame = ones(0); 
particlepositions = ones(0); 
particlesize1 = 45; 
particlesize2 = 90; 
id = 1; 
fxy = []; 
     
%Get rid of axes and ticks in this simulation for clean background 
set(gca, 'XTick', []); 
set(gca, 'YTick', []); 
set(gca, 'ZTick', []); 
   
% Only for linear and sinusoid 
% Determine how many particles need to be created per frame 
% Creates a X multiplier for the density of the system 
global particlesperframe 
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particlesperframe = 1; 
  
% Uncomment section for Brownian motion only 
%  
% numbrownianparticles = 100; 
% for i = 1 : numbrownianparticles 
%      
%     For Brownian, set the boundary coordinates of where particles can 
appear in the FOV 
%     a2 = -0.85; 
%     b2 = 0.85; 
%     r2 = (b2-a2).*rand(10000,1) + a2; 
%      
%     If more than one size of particle uncomment the denom (denom = number 
of types) 
%     To change particle sizes, also need to adjust particlesizes in 
particle.m file 
%     if mod(i,k) == 1 
%     if mod(i,2) == 1; 
%         Particle = particle (Particle_System, 1, [r2(i), 0, r2(i+1)], [0, 
0, 0], false, lifespan, fxy, id, particlesize1);   
%     else 
%         Particle = particle (Particle_System, 1, [r2(i), 0, r2(i+1)], [0, 
0, 0], true, lifespan, fxy, id, particlesize2); 
%     end 
%      
%     id = id + 1; 
% end 
     
for k = 1 : frames 
       
    % Uncomment section for linear and sinusoid motion only 
    % For linear and sinusoid, set the boundary coordinates of where 
particles can appear in the FOV 
    a = -0.75; 
    b = 0.75; 
    r = (b-a).*rand(10000,1) + a; 
    start = 0; 
     
    % Uncomment section for linear and sinusoid motion only 
    for j = 1 : particlesperframe 
%   If more than one size of particle uncomment the denom (denom = number of 
types) 
%   To change particle sizes, also need to adjust particlesizes in particle.m 
file 
%   denom = k; 
    denom = 2;    
        if mod(k,denom) == 1 
            Particle.id = particle (Particle_System, 1, [-1, 0, r(j)], [0, 0, 
0], false, lifespan, fxy, id, particlesize1); 
            id = id + 1; 
        else 
            Particle.id = particle (Particle_System, 1, [-1, 0, r(j+1)], [0, 
0, 0], true, lifespan, fxy, id, particlesize2); 
            id = id + 1; 
        end 
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    end 
     
    % For all types of motion, simulate one single time step by advancing 
time 
    Particle_System.advance_time (step_time); 
     
    % Calculate size of array 
    for l = 1 : size(Particle_System,1)   
        %Get the particle positions of each time step  
        particle_positions = get_particles_positions (Particle_System); 
    end 
     
    % Append the frame, x, and y to the particle entity 
    Particle_System.appendfxy (k); 
     
    % Saves each frame from iteration k 
    particlemovieframe(k) = getframe; 
end 
  
%Add frames together into a movie that is saved in your MATLAB folder 
writeVideo(writerObj,particlemovieframe); 
  
%Close the video file 
close(writerObj); 
  
%Parse data 
for i = 1 : k 
    for j = 1 : size(Particle_System.particles,2) 
        %idmatrix = j*ones(size(Particle_System.particles(j).fxy,1),1); 
        I = find(Particle_System.particles(j).fxy(:,1) == i); 
        parseddatatemp = [Particle_System.particles(j).fxy(I,1), 
Particle_System.particles(j).id, 
round(Particle_System.particles(j).fxy(I,2)*638)+638, 794-
(round(Particle_System.particles(j).fxy(I,3)*397)+397), 
Particle_System.particles(j).particlesize]; 
        if size(I) > 0 
        Particle_System.parseddata = [Particle_System.parseddata ; 
parseddatatemp]; 
        end 
    end 
end 
  
% Sort the data so that it can be interleaved 
parseddatasorted = sortrows(Particle_System.parseddata,[1 2]); 
  
% Initialize the final vector to be the length of all the sub vectors 
final = zeros(1,numel(parseddatasorted)); 
  
% Interleave the sub vectors into the final vector 
final(1:5:end) = parseddatasorted(:,1); 
final(2:5:end) = parseddatasorted(:,2); 
final(3:5:end) = parseddatasorted(:,3); 
final(4:5:end) = parseddatasorted(:,4); 
final(5:5:end) = parseddatasorted(:,5); 
fprintf(fileID,'%10.8f, %10.8f, false, %10.8f, %10.8f, %10.8f\n', final)  
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% ParticleSystem.m as written by _ with changes implemented 

classdef particle_system < handle 
     
    properties 
         
        gravity 
        drag 
        particles 
        springs 
        attractions 
        time = 0 
        graphics_handle 
        parseddata 
         
    end 
     
    methods 
         
        function Particle_System = particle_system (gravity, drag, limits) 
            %PARTICLE_SYSTEM  Particle system object constructor. 
            % 
            %   Examples 
            % 
            %   PS = PARTICLE_SYSTEM creates particle system PS with default 
properties: 
            %   gravity: [0 0 0] (no gravity) 
            %   drag: 0 
            %   (axes) limits: 1 
            % 
            %   PS = PARTICLE_SYSTEM (G, D, L) creates particle system PS 
with the following properties: 
            %   gravity: G 
            %   drag: D 
            %   (axes) limits: L 
            
             
            if nargin == 0 
                 
                gravity = [0, 0, 0]; 
                 
                drag = 0; 
                 
%               Change to your specific aspect ratio (x,y,z) 
                limits = [1.607,1,1]; 
                 
            end 
             
            Particle_System.gravity = gravity; 
             
            Particle_System.drag = drag; 
             
            Particle_System.graphics_handle = figure; 
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            set (Particle_System.graphics_handle, 'renderer', 'opengl') 
             
            Particle_System.parseddata = []; 
             
%             Decide if you want to adjust for screen size or hard code a 
specific size 
%             screen_size = get (0, 'screensize'); 
%             set (Particle_System.graphics_handle, 'position', screen_size + 
[20 40 -40 -120]); 
              set (Particle_System.graphics_handle, 'position', [20 40 
(1644.5) (971.75)]) 
             
%             Set limits to 1 
%             axis ([-limits limits -limits limits -limits limits]); 
              axis ([-limits limits -1 1 -1 1]); 
             
%             axis equal 
             
            grid on 
             
            rotate3d 
             
        end 
         
        function advance_time (Particle_System, step_time) 
            %ADVANCE_TIME  Advance particle system time. 
            % 
            %   Example 
            % 
            %   ADVANCE_TIME (PS, ST) increments the current time property 
            %   of the particle system PS for step time ST. 
            
             
            Particle_System.kill_old_particles; 
             
            time_start = Particle_System.time; 
            time_end = time_start + step_time; 
             
            phase_space_state = Particle_System.get_phase_space_state; 
             
            phase_space_states = ode4 (... 
                @compute_state_derivative, ... 
                [time_start, time_end], ... 
                phase_space_state, ... 
                Particle_System); 
             
            phase_space_state = phase_space_states(2,:); 
             
            Particle_System.set_phase_space_state (phase_space_state); 
             
            Particle_System.time = time_end; 
             
            Particle_System.advance_particles_ages (step_time); 
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            Particle_System.aggregate_custom_forces; 
            Particle_System.update_graphics_positions; 
             
            function Y = ode4(odefun,tspan,y0,varargin) 
                %ODE4  Solve differential equations with a non-adaptive 
method of order 4. 
                %   Y = ODE4(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... 
TN] integrates 
                %   the system of differential equations y' = f(t,y) by 
stepping from T0 to 
                %   T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a 
column vector. 
                %   The vector Y0 is the initial conditions at T0. Each row 
in the solution 
                %   array Y corresponds to a time specified in TSPAN. 
                % 
                %   Y = ODE4(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional 
parameters 
                %   P1,P2... to the derivative function as 
ODEFUN(T,Y,P1,P2...). 
                % 
                %   This is a non-adaptive solver. The step sequence is 
determined by TSPAN 
                %   but the derivative function ODEFUN is evaluated multiple 
times per step. 
                %   The solver implements the classical Runge-Kutta method of 
order 4. 
                % 
                %   Example 
                %         tspan = 0:0.1:20; 
                %         y = ode4(@vdp1,tspan,[2 0]); 
                %         plot(tspan,y(:,1)); 
                %     solves the system y' = vdp1(t,y) with a constant step 
size of 0.1, 
                %     and plots the first component of the solution. 
                % 
                 
                if ~isnumeric(tspan) 
                    error('TSPAN should be a vector of integration steps.'); 
                end 
                 
                if ~isnumeric(y0) 
                    error('Y0 should be a vector of initial conditions.'); 
                end 
                 
                h = diff(tspan); 
                if any(sign(h(1))*h <= 0) 
                    error('Entries of TSPAN are not in order.') 
                end 
                 
                try 
                    f0 = feval(odefun,tspan(1),y0,varargin{:}); 
                catch 
                    msg = ['Unable to evaluate the ODEFUN at t0,y0. 
',lasterr]; 
                    error(msg); 
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                end 
                 
                y0 = y0(:);   % Make a column vector. 
                if ~isequal(size(y0),size(f0)) 
                    error('Inconsistent sizes of Y0 and f(t0,y0).'); 
                end 
                 
                neq = length(y0); 
                N = length(tspan); 
                Y = zeros(neq,N); 
                F = zeros(neq,4); 
                 
                Y(:,1) = y0; 
                for i = 2:N 
                    ti = tspan(i-1); 
                    hi = h(i-1); 
                    yi = Y(:,i-1); 
                    F(:,1) = feval(odefun,ti,yi,varargin{:}); 
                    F(:,2) = 
feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:}); 
                    F(:,3) = 
feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,2),varargin{:}); 
                    F(:,4) = feval(odefun,tspan(i),yi+hi*F(:,3),varargin{:}); 
                    Y(:,i) = yi + (hi/6)*(F(:,1) + 2*F(:,2) + 2*F(:,3) + 
F(:,4)); 
                end 
                Y = Y.'; 
                 
            end 
             
        end 
         
        function appendfxy(Particle_System, k, psize) 
             for i_particle = 1 : length (Particle_System.particles) 
                 
                Particle = Particle_System.particles(i_particle); 
                Particle.fxy = [Particle.fxy;[k, 
Particle.position(1,1),Particle.position(1,3)]]; 
             end 
             
        end 
         
        function setsize(Particle_System, psize) 
             Particle = Particle_System.particles(i_particle); 
             Particle.particlesize = psize;             
        end 
         
         function getsize(Particle_System, currentsize) 
             Particle = Particle_System.particles(i_particle); 
             currentsize = Particle.particlesize;             
         end 
         
        function particles_positions = get_particles_positions 
(Particle_System) 
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            %GET_PARTICLES_POSITIONS  Retrieve particle system particles 
positions. 
            % 
            %   Example 
            % 
            %   P = GET_PARTICLES_POSITIONS (PS) returns the vectors of all 
            %   particles positions of the particle system PS concatenated 
            %   into one long row vector P. 
            % 
            %   See also get_particles_velocities. 
            
             
            n_particles = length (Particle_System.particles); 
             
            particles_positions = zeros (1, 3*n_particles); 
             
            for i_particle = 1 : n_particles 
                 
                Particle = Particle_System.particles(i_particle); 
                 
                particles_positions (3*i_particle - 2 : 3*i_particle) = ... 
                    Particle.position; 
                 
            end 
             
        end 
         
        function particles_velocities = get_particles_velocities 
(Particle_System) 
            %GET_PARTICLES_VELOCITIES  Retrieve particle system particles 
velocities. 
            % 
            %   Example 
            % 
            %   V = GET_PARTICLES_VELOCITIES (PS) returns the vectors of all 
particles velocities 
            %   of the particle system PS concatenated into one long row 
vector V. 
            % 
            %   See also get_particle_positions. 
            
             
            n_particles = length (Particle_System.particles); 
             
            particles_velocities = zeros (1, 3*n_particles); 
             
            for i_particle = 1 : n_particles 
                 
                Particle = Particle_System.particles(i_particle); 
                 
%                 if Particle.fixed 
%                      
%                     velocity = [0, 0, 0]; 
%                      
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%                 else 
%                      
                    velocity = Particle.velocity; 
                     
%                 end 
                 
                particles_velocities (3*i_particle - 2 : 3*i_particle) = ... 
                    velocity; 
                 
            end 
             
        end 
         
        function kill_attraction (Particle_System, Attraction) 
            %KILL_ATTRACTION  Delete attraction from particle system. 
            % 
            %   Example 
            % 
            %   KILL_ATTRACTION (PS, A) deletes the attraction A 
            %   from the particle system PS. 
            % 
            %   See also kill_particle, kill_spring. 
             
             
            index = Particle_System.attractions == Attraction; 
             
            Particle_System.attractions(index) = []; 
             
            Attraction.delete; 
             
        end 
         
        function kill_particle (Particle_System, Particle) 
            %KILL_PARTICLE  Delete particle from particle system. 
            % 
            %   Example 
            % 
            %   KILL_PARTICLE (PS, P) deletes the particle P 
            %   from the particle system PS. Additionally, all 
            %   attractions and springs that are connected 
            %   to the deleted particle are deleted as well. 
            % 
            %   See also kill_attraction, kill_spring. 
             
             
            % Initialize the buffer of the attractions to be killed 
            attractions_to_be_killed = []; 
             
            % Loop over all attractions 
            for i_attraction = 1 : length (Particle_System.attractions) 
                 
                % Extract the current attraction 
                Attraction = Particle_System.attractions(i_attraction); 
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                % Extract both connected particles 
                Particle_1 = Attraction.particle_1; 
                Particle_2 = Attraction.particle_2; 
                 
                % If the particle to be killed is one of the particles 
                % at the ends of the current attraction, 
                if Particle == Particle_1 || Particle == Particle_2 
                     
                    % the current attraction has to be killed too (-> later). 
                    % This can't be done immediatedly 
                    % (the handle has to be buffered), 
                    % because we are still inside a loop over all attractions 
                    attractions_to_be_killed = [attractions_to_be_killed, 
Attraction]; 
                     
                end 
                 
            end 
             
            % Loop over all attractions to be killed 
            for i_attraction = attractions_to_be_killed 
                 
                % Kill it 
                Particle_System.kill_attraction (i_attraction); 
                 
            end 
             
            % Initialize the buffer of the springs to be killed 
            springs_to_be_killed = []; 
             
            % Loop over all springs 
            for i_spring = 1 : length (Particle_System.springs) 
                 
                % Extract the current spring 
                Spring = Particle_System.springs(i_spring); 
                 
                % Extract the indices of both connected particles 
                % Extract both connected particles 
                Particle_1 = Spring.particle_1; 
                Particle_2 = Spring.particle_2; 
                 
                % If the particle to be killed is one of the particles 
                % at the ends of the current spring, 
                if Particle == Particle_1 || Particle == Particle_2 
                     
                    % the current spring has to be killed too (-> later). 
                    % This can't be done immediatedly 
                    % (the handle has to be buffered), 
                    % because we are still inside a loop over all springs 
                    springs_to_be_killed = [springs_to_be_killed, Spring]; 
                     
                end 
                 
            end 
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            % Loop over all springs to be killed 
            for i_spring = springs_to_be_killed 
                 
                % Kill it 
                Particle_System.kill_spring (i_spring); 
                 
            end 
             
            % Find the reference of the particle in the particle system 
            % particles property 
            index = Particle_System.particles == Particle; 
             
            % Delete the particle reference in the particle system 
            % particle property 
            Particle_System.particles(index) = []; 
             
            % Delete the actual particle 
            Particle.delete; 
             
        end 
         
        function kill_spring (Particle_System, Spring) 
            %KILL_SPRING  Delete spring from particle system. 
            % 
            %   Example 
            % 
            %   KILL_SPRING (PS, S) deletes the spring S 
            %   from the particle system PS. 
            % 
            %   See also kill_attraction, kill_particle. 
             
            index = Particle_System.springs == Spring; 
             
            Particle_System.springs(index) = []; 
             
            Spring.delete; 
             
        end 
         
    end 
     
    methods  (Access = 'private') 
         
        function advance_particles_ages (Particle_System, step_time) 
            %ADVANCE_PARTICLES_AGES  Increment the ages of all particles. 
            % 
            %   Example 
            % 
            %   ADVANCE_PARTICLES_AGES (PS, ST) increments the age property 
            %   of all particles in the particle system PS for step time ST. 
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            for i_particle = 1 : length (Particle_System.particles) 
                 
                Particle = Particle_System.particles(i_particle); 
                 
                Particle.age = Particle.age + step_time; 
                 
            end 
             
        end 
         
        function aggregate_attractions_forces (Particle_System) 
            %AGGREGATE_ATTRACTIONS_FORCES  Aggregate attraction forces. 
            % 
            %   Example 
            % 
            %   AGGREGATE_ATTRACTIONS_FORCES (PS) aggregates the forces of 
all 
            %   attractions in the particle system PS on all particles they 
are connected to 
            %   in the corresponding particle force accumulators. 
            % 
            %   See also aggregate_forces, aggregate_drag_forces, 
aggregate_gravity_forces, 
            %   aggregate_spring_forces. 
             
            for i_attraction = 1 : length (Particle_System.attractions) 
                 
                Attraction = Particle_System.attractions(i_attraction); 
                 
                Particle_1 = Attraction.particle_1; 
                Particle_2 = Attraction.particle_2; 
                 
                position_delta = Particle_2.position - Particle_1.position; 
                 
                position_delta_norm = norm (position_delta); 
                 
                if position_delta_norm < Attraction.minimum_distance 
                     
                    position_delta_norm = Attraction.minimum_distance; 
                     
                end 
                 
                attraction_force = ... 
                    Attraction.strength* ... 
                    Particle_1.mass* ... 
                    Particle_2.mass* ... 
                    position_delta/ ... 
                    position_delta_norm/ ... 
                    position_delta_norm/ ... 
                    position_delta_norm; 
                 
                Particle_1.add_force (attraction_force); 
                Particle_2.add_force (-attraction_force); 
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            end 
             
        end 
         
        function aggregate_drag_forces (Particle_System) 
            %AGGREGATE_DRAG_FORCES  Aggregate drag forces. 
            % 
            %   Example 
            % 
            %   AGGREGATE_DRAG_FORCES (PS) aggregates the drag forces 
            %   in the particle system PS on all particles 
            %   in the corresponding particle force accumulators. 
            % 
            %   See also aggregate_forces, aggregate_attraction_forces, 
aggregate_gravity_forces, 
            %   aggregate_spring_forces. 
             
            for i_particle = 1 : length (Particle_System.particles) 
                 
                Particle = Particle_System.particles(i_particle); 
                 
                drag_force = - Particle_System.drag*Particle.velocity; 
                 
                Particle.add_force (drag_force); 
                 
            end 
             
        end 
         
        function aggregate_forces (Particle_System) 
            %AGGREGATE_FORCES  Aggregate forces on all particles. 
            % 
            %   Example 
            % 
            %   AGGREGATE_FORCES (PS) aggregates the spring, attraction, 
drag, and 
            %   gravity forces in the particle system PS on all particles 
            %   in the corresponding particle force accumulators. 
            % 
            %   See also aggregate_attraction_forces, aggregate_drag_forces, 
            %   aggregate_gravity_forces, aggregate_spring_forces, 
clear_particle_forces. 
            
             
            Particle_System.clear_particles_forces; 
             
            Particle_System.aggregate_springs_forces; 
            Particle_System.aggregate_attractions_forces; 
            Particle_System.aggregate_drag_forces; 
            Particle_System.aggregate_gravity_forces; 
            Particle_System.aggregate_custom_forces; 
             
        end 
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        function aggregate_gravity_forces (Particle_System) 
            %AGGREGATE_GRAVITY_FORCES  Aggregate gravity forces. 
            % 
            %   Example 
            % 
            %   AGGREGATE_GRAVITY_FORCES (PS) aggregates the gravity forces 
            %   in the particle system PS on all particles 
            %   in the corresponding particle force accumulators. 
            % 
            %   See also aggregate_forces, aggregate_attraction_forces, 
aggregate_drag_forces, 
            %   aggregate_spring_forces. 
             
            %   Copyright 2008-2008 buchholz.hs-bremen.de 
             
            for i_particle = 1 : length (Particle_System.particles) 
                 
                Particle = Particle_System.particles(i_particle); 
                 
                gravity_force = Particle.mass*Particle_System.gravity; 
       
                Particle.add_force (gravity_force); 
                 
            end 
             
        end 
         
        function aggregate_custom_forces (Particle_System) 
            %AGGREGATE_GRAVITY_FORCES  Aggregate gravity forces. 
            % 
            %   Example 
            % 
            %   AGGREGATE_GRAVITY_FORCES (PS) aggregates the gravity forces 
            %   in the particle system PS on all particles 
            %   in the corresponding particle force accumulators. 
            % 
            %   See also aggregate_forces, aggregate_attraction_forces, 
aggregate_drag_forces, 
            %   aggregate_spring_forces. 
            
            
            %Global step delta x 
            global step2 
            step2 = (11/1276)/6*(1/0.033); 
            global step1 
            step1 = (5.5/1276)/6*(1/0.033); 
            global step05 
            step05 = (2.75/1276)/6*(1/0.033); 
            global step01 
            step01 = (0.55/1276)/6*(1/0.033); 
             
            for i_particle = 1 : length (Particle_System.particles) 
                 
                Particle = Particle_System.particles(i_particle); 
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%                Comment for non-Linear motion  
%                Make sure to change step value to the speed you are using 
                 newposition = 
[Particle.position(1,1)+step2,0,Particle.position(1,3)]; 
  
%                Uncomment for Sinusoidal motion 
%                Make sure to change step value to the speed you are using 
%                newposition = 
[Particle.position(1,1)+step2,0,Particle.position(1,3)+0.03*sin((i_particle+1
0)*pi/10)]; 
  
%                Uncomment for Brownian motion 
%                Make sure to change magnitude value to adjust diffusion rate 
%                  magnitude = 25 
%                  a2 = -1; 
%                  b2 = 1; 
%                  global r2  
%                  r2 = (b2-a2).*rand(10000,1) + a2; 
%                newposition = 
[Particle.position(1,1)+r2(Particle.id)/magnitude,0,Particle.position(1,3)+r2
(Particle.id+1)/magnitude]; 
              
  
                 Particle.position = newposition; 
              
            end 
             
        end 
         
        function aggregate_springs_forces (Particle_System) 
            %AGGREGATE_SPRINGS_FORCES  Aggregate spring forces. 
            % 
            %   Example 
            % 
            %   AGGREGATE_SPRINGS_FORCES (PS) aggregates the forces of all 
            %   springs in the particle system PS on all particles they are 
connected to 
            %   in the corresponding particle force accumulators. 
            % 
            %   See also aggregate_forces, aggregate_attraction_forces, 
aggregate_drag_forces, 
            %   aggregate_gravity_forces. 
             
            for i_spring = 1 : length (Particle_System.springs) 
                 
                Spring = Particle_System.springs(i_spring); 
                 
                Particle_1 = Spring.particle_1; 
                Particle_2 = Spring.particle_2; 
                 
                position_delta = Particle_2.position - Particle_1.position; 
                 
                position_delta_norm = norm (position_delta); 
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                % If the user makes the initial positions of two particles 
identical 
                % we have to avoid a "divide by zero" exception 
                if position_delta_norm < eps 
                     
                    position_delta_norm = eps; 
                     
                end 
                 
                position_delta_unit = position_delta/position_delta_norm; 
                 
                spring_force = 
Spring.strength*position_delta_unit*(position_delta_norm - Spring.rest); 
                 
                Particle_1.add_force (spring_force); 
                Particle_2.add_force (-spring_force); 
                 
                velocity_delta = Particle_2.velocity - Particle_1.velocity; 
                 
                projection_velocity_delta_on_position_delta = ... 
                    dot (position_delta_unit, 
velocity_delta)*position_delta_unit; 
                 
                damping_force = 
Spring.damping*projection_velocity_delta_on_position_delta; 
                 
                Particle_1.add_force (damping_force); 
                Particle_2.add_force (-damping_force); 
                 
            end 
             
        end 
         
        function clear_particles_forces (Particle_System) 
            %CLEAR_PARTICLES_FORCES  Clear all particle forces. 
            % 
            %   Example 
            % 
            %   CLEAR_PARTICLES_FORCES (PS) clears the force accumulators of 
all particles 
            %   in the particle system PS. 
            % 
            %   See also aggregate_forces. 
             
            for i_particle = 1 : length (Particle_System.particles) 
                 
                Particle = Particle_System.particles(i_particle); 
                 
                Particle.clear_force; 
                 
            end 
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        end 
         
        function state_derivative = compute_state_derivative ... 
                (time, phase_space_state, Particle_System) 
            %COMPUTE_STATE_DERIVATIVE  Compute state derivative vector. 
            % 
            %   Example 
            % 
            %   SD = COMPUTE_STATE_DERIVATIVE (T, SS, PS) returns the 6*N-by-
1 
            %   phase space state derivative vector SD of the particle system 
PS at time T. 
            %   SS is the current 6*N-by-1 phase space state vector. 
            %   N is the number of particles. 
            % 
            %   See also ode4, set_phase_space_state, aggregate_forces, 
            %   get_particles_velocities, get_particles_accelerations. 
            % 
             
            phase_space_state = phase_space_state(:)'; 
             
            Particle_System.set_phase_space_state (phase_space_state); 
             
            Particle_System.aggregate_forces; 
             
            velocities = Particle_System.get_particles_velocities; 
             
            accelerations = Particle_System.get_particles_accelerations; 
             
            state_derivative = [velocities, accelerations]'; 
             
        end 
         
        function accelerations = get_particles_accelerations 
(Particle_System) 
            %GET_PARTICLES_ACCELERATIONS  Retrieve particle accelerations 
from particle system. 
            % 
            %   Example 
            % 
            %   A = GET_PARTICLES_ACCELERATIONS (PS) returns the 1-by-3*N 
acceleration vector A 
            %   of all particles from the particle system PS, where N is the 
number of 
            %   particles. 
             
            n_particles = length (Particle_System.particles); 
             
            accelerations = zeros (1, 3*n_particles); 
             
            for i_particle = 1 : n_particles 
                 
                Particle = Particle_System.particles(i_particle); 
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%                 if Particle.fixed 
%                      
%                     force = [0 0 0]; 
%                      
%                 else 
%                      
                    force = Particle.force; 
                     
%                 end 
                 
                accelerations (3*i_particle - 2 : 3*i_particle) = ... 
                    force/Particle.mass; 
                 
            end 
             
        end 
         
        function phase_space_state = get_phase_space_state (Particle_System) 
            %GET_PHASE_SPACE_STATE  Retrieve phase space state vector. 
            % 
            %   Example 
            % 
            %   SS = GET_PHASE_SPACE_STATE (PS) returns the current 1-by-6*N 
            %   phase space state vector SS from the particle system PS. 
            %   N is the number of particles. 
            % 
            %   See also set_phase_space_state. 
             
            positions = get_particles_positions (Particle_System); 
            velocities = get_particles_velocities (Particle_System); 
             
            phase_space_state = [positions, velocities]; 
             
        end 
         
        function kill_old_particles (Particle_System) 
            %KILL_OLD_PARTICLES  Kill old particles. 
            % 
            %   Example 
            % 
            %   KILL_OLD_PARTICLES (PS) kills all particles 
            %   in the particle system PS 
            %   that are older than their life span. 
                        
            % Initialize the buffer of the particles to be killed 
            particles_to_be_killed = []; 
            particledeathrow = []; 
            parseddatatemp = []; 
             
            for i_particle = 1 : length (Particle_System.particles) 
                 
                Particle = Particle_System.particles(i_particle); 
                 
                if Particle.age > Particle.lifespan 
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                    % the current particle has to be killed too (-> later). 
                    % This can't be done immediatedly (the handle has to be 
buffered), 
                    % because we are still inside a loop over all particles 
                    particles_to_be_killed = [particles_to_be_killed, 
Particle]; 
                end 
                 
            end 
             
            % Loop over all particles to be killed 
            for i_particle = particles_to_be_killed 
                tempparticledeathrow  = i_particle; 
                particledeathrow = [particledeathrow;tempparticledeathrow];               
            end 
             
            % Ensure that you store the data for every particle in each frame             
            global particlesperframe 
            particlesperframe = 1; 
             
            for i_particle = 1:size(particles_to_be_killed) 
                for j = 1:particlesperframe 
                      parseddatatemptemp = 
[Particle_System.particles(i_particle+j-1).fxy(:,1), 
Particle_System.particles(i_particle+j-
1).id*ones(size(Particle_System.particles(i_particle+j-1).fxy,1),1), 
round(Particle_System.particles(i_particle+j-1).fxy(:,2)*638)+638, 794-
(round(Particle_System.particles(i_particle+j-1).fxy(:,3)*397)+397), 
Particle_System.particles(i_particle+j-
1).particlesize(:,1)*ones(size(Particle_System.particles(i_particle+j-
1).fxy,1),1)]; 
                      parseddatatemp = [parseddatatemp ; parseddatatemptemp]; 
                end 
                      Particle_System.parseddata = 
[Particle_System.parseddata ; parseddatatemp]; 
            end  
             
            % Kill the particle and save the data 
            for i_particle = particles_to_be_killed  
                Particle_System.kill_particle (i_particle); 
            end 
             
        end 
         
        function set_phase_space_state (Particle_System, phase_space_state) 
            %SET_PHASE_SPACE_STATE  Set phase space state vector. 
            % 
            %   Example 
            % 
            %   SET_PHASE_SPACE_STATE (PS, SS) sets the 
            %   phase space state vector of the particle system PS to SS. 
            %   SS must be a 1-by-6*N vector. N is the number of particles. 
            % 
            %   See also get_phase_space_state. 
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            n_particles = length (Particle_System.particles); 
             
            for i_particle = 1 : n_particles 
                 
                Particle = Particle_System.particles(i_particle); 
                 
                Particle.position = ... 
                    phase_space_state(3*i_particle - 2 : 3*i_particle); 
                 
                Particle.velocity = ... 
                    phase_space_state(3*(i_particle + n_particles) - 2 : 
3*(i_particle + n_particles)); 
                 
            end 
             
        end 
         
        function update_graphics_positions (Particle_System) 
            %UPDATE_GRAPHICS_POSITIONS  Update graphics positions. 
            % 
            %   Example 
            % 
            %   UPDATE_GRAPHICS_POSITIONS (PS) updates the graphics positions 
of all 
            %   particles, springs, and attractions of the particle system 
PS. 
            % 
            %   See also get_particles_positions. 
              
            for i_particle = 1 : length (Particle_System.particles) 
                 
                
Particle_System.particles(i_particle).update_graphics_position; 
                 
            end 
             
            for i_spring = 1 : length (Particle_System.springs) 
                 
                Particle_System.springs(i_spring).update_graphics_position; 
                 
            end 
             
            for i_attraction = 1 : length (Particle_System.attractions) 
                 
                
Particle_System.attractions(i_attraction).update_graphics_position; 
            end      
            drawnow          
        end     
    end 
end 
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% Particle.m as written by _ with changes to particle property list 
classdef particle < handle 
     
    % Declare all of the properties of the particle 
    properties 
         
        mass 
        position 
        velocity 
        newsize 
        lifespan 
        age = 0 
        force = [0 0 0] 
        graphics_handle 
        id 
        fxy 
        particlesize 
         
    end 
     
    methods 
         
        function Particle = particle (Particle_System, mass, position, 
velocity, newsize, lifespan, fxy, id, size) 
            %PARTICLE  Particle object constructor. 
            % 
            %   Examples 
            % 
            %   P = PARTICLE (PS) creates particle P with default 
            %   properties: 
            %   mass: 1 
            %   position: [0 0 0] 
            %   velocity: [0 0 0] 
            %   newsize: false 
            %   life span: inf 
            %   and appends it to the particle system PS 
            % 
            %   P = PARTICLE (PS, M, PP, V, F, L) creates particle P with 
            %   the following properties: 
            %   mass: M 
            %   position: PP (PP must be a 1-by-3 vector) 
            %   velocity: V (V must be a 1-by-3 vector) 
            %   fixed: F (F must be false (or 0) for a free or true (or 1) 
            %   for a fixed particle) 
            %   life span: L 
            %   and appends it to the particle system PS 
                         
            if nargin == 1 
                 
                mass = 1; 
                 
                position = [0, 0, 0]; 
                 
                velocity = [0, 0, 0]; 
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                newsize = false; 
                 
                lifespan = inf; 
                 
                fxy = []; 
                 
                id = 1; 
                 
                particlesize = 0; 
                
                 
            end 
             
            Particle.mass = mass; 
             
            Particle.position = position; 
             
            Particle.velocity = velocity; 
             
            Particle.newsize = newsize; 
             
            Particle.lifespan = lifespan; 
             
            Particle.id = id; 
             
            Particle.fxy = [Particle.fxy;fxy]; 
             
            Particle.append (Particle_System); 
             
            Particle.particlesize = size; 
             
        end 
         
        function clear_force (Particle) 
            %CLEAR_FORCE  Clear particle force accumulator. 
            %   Example 
            %   CLEAR_FORCE (P) clears the force accumulator of the particle 
P. 
            %   See also add_force. 
            Particle.force = [0 0 0]; 
             
        end 
         
        function add_force (Particle, force) 
            %ADD_FORCE  Add force to particle force accumulator. 
            %   Example 
            %   ADD_FORCE (P, F) adds the force F to the force accumulator of 
the 
            %   particle P. 
            %   See also clear_force.   
            Particle.force = Particle.force + force; 
             
        end 
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        function delete (Particle) 
            %DELETE  Delete particle. 
            %   Example 
            %   DELETE (P) deletes the particle P. 
            if ishandle (Particle.graphics_handle) 
                delete (Particle.graphics_handle) 
            end 
        end 
         
        function update_graphics_position (Particle) 
            %UPDATE_GRAPHICS_POSITION  Update the graphical particle 
representation. 
            %   Example 
            %   UPDATE_GRAPHICS_POSITION (P) updates the position of the 
            %   graphical representation of the particle P. 
                         
            set (Particle.graphics_handle, ... 
                'xdata', Particle.position(1), ... 
                'ydata', Particle.position(2), ... 
                'zdata', Particle.position(3)); 
        end 
         
        function set.newsize (Particle, newsize) 
            %SET.NEWSIZE  Make a new sized particle 
            %   Examples 
            %   P.FIXED = TRUE pins the new sized particle 
            %   P.FIXED = FALSE keeps the old sized particle 
                         
            Particle.newsize = newsize; 
             
            if Particle.newsize 
                % Set the size of each particle in diameter 
                set (Particle.graphics_handle, 'markersize', 120, 'marker', 
'.') 
            else 
                set (Particle.graphics_handle, 'markersize', 60, 'marker', 
'.') 
            end 
        end 
         
        function set.position (Particle, position) 
            %SET.POSITION  Set the position of a particle. 
            % 
            %   Examples 
            % 
            %   P.POSITION = NEW_POSITION sets the current position of the  
            %   particle P to NEW_POSITION. 
                         
            Particle.position = position; 
             
            Particle.update_graphics_position; 
             
        end 
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    end 
     
    methods (Access = 'private') 
         
        function append (Particle, Particle_System) 
            %APPEND  Append particle to particle system. 
            % 
            %   Example 
            % 
            %   APPEND (P, PS) appends the particle P to the 
            %   particle system PS. 
                         
            figure (Particle_System.graphics_handle) 
            
%           Change particle size in pixels for the diameter of single sized 
particles 
            Particle.graphics_handle = ... 
                line ( ... 
                Particle.position(1), ... 
                Particle.position(2), ... 
                Particle.position(3), ... 
                'color', [1 0 0], ... 
                'markersize', 120, ... 
                'marker', '.'); 
             
%           Change particle size in pixels for the diameter for two sizes of 
particles 
            if Particle.newsize 
                set (Particle.graphics_handle, 'markersize', 120, 'marker', 
'.') 
            else 
                set (Particle.graphics_handle, 'markersize', 60, 'marker', 
'.') 
            end 
             
            Particle_System.particles = [Particle_System.particles, 
Particle]; 
        end 
         
    end 
     
end 
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