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Abstract 

 

Muscles of aged individuals display high susceptibility to injury and impaired 

regeneration. Developing strategies to restrict damage or enhance repair for older 

individuals requires a mechanistic understanding of both the damage and repair 

processes following injury and the impact of aging on those processes. The overall 

objective of this dissertation was to address fundamental gaps in our knowledge of 

cellular and molecular events associated with a common form of muscle injury and to 

identify age-related changes in key events. We conducted experiments using 

established models of lengthening contraction-induced injury in young and old mice. We 

first pursued the question of whether reactive oxygen species (ROS) generated during 

damaging lengthening contractions contribute to the initiation of the injury. We found 

that lengthening contractions did not generate more ROS than non-damaging isometric 

contractions, arguing against ROS as an initiating factor in the injury process. Because 

neutrophils exacerbate muscle damage while macrophages contribute to repair, we next 

investigated molecular mechanisms of neutrophil migration into injured muscle and the 

associations between myeloid cell levels and muscle degeneration and regeneration in 

old animals. Treatment with blocking antibodies for P- and E-selectin reduced neutrophil 

levels in injured muscles by half, supporting the importance of these molecules for 

neutrophil accumulation after lengthening contractions. Despite 50% fewer neutrophils, 

no reduction in damage was observed, indicating no direct relationship between 



 
 

ix	
  

neutrophil levels and injury. Moreover, 30-50% more neutrophils in muscles of old 

compared with adult mice was not associated with more severe injury. Despite more 

neutrophils, impaired regeneration in muscles of old mice was not associated with an 

inability to clear these cells nor impaired recruitment of macrophages with age. Indeed, 

for a given level of muscle injury in old mice, we found 20-50% more macrophages, 

including anti-inflammatory macrophages. Muscles of old mice also showed aberrant 

expression of macrophage-associated inflammatory mediators including tumor necrosis 

factor-alpha and interleukin-10, which have the potential to undermine muscle 

regeneration. In summary, our studies do not support antioxidant or anti-P/E-selectin 

therapies to mitigate damage in older individuals. Instead, targeting specific myeloid cell 

functions may represent a superior therapeutic approach. 
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Chapter 1 

 

Introduction  

 

Motivation 

 

Age-related declines in skeletal muscle 

 Aging is associated with progressive declines in skeletal muscle mass and 

function (1). Studies comparing men and women between the ages of 40 and 80 years 

have shown a 30-50% decrease in muscle mass and at least an equal but usually even 

greater decrease in strength in older individuals (2). Muscle power (force x velocity) also 

decreases with age. Studies comparing healthy subjects in the 20-40 year age range to 

healthy subjects in the 70-80 year age range have demonstrated 20-40% declines in 

muscle power in older individuals (3). The age-related loss of muscle mass is attributed, 

at least in part, to a loss of muscle fibers as well as a decrease in size (i.e. cross-

sectional area) of the remaining fibers (3, 4). There is particularly a loss of type II (fast 

twitch) fibers, which contribute to the loss of muscle power (3). The decrease in strength 

is attributed to the decrease in muscle mass (4), as force generation is proportional to 

cross-sectional muscle area (5). However, decreases in strength are still observed after 

normalizing strength to the cross-sectional muscle area, suggesting the remaining 

muscle from older individuals is intrinsically weaker (3). This decline in muscle quality 
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may be due in part to age-related changes in muscle composition, as muscles from 

older individuals contain more fat and connective tissue (3, 4).  

 The age-related declines in muscle mass, strength, power and quality can have 

serious consequences for older individuals. Impaired muscle strength and muscle fat 

infiltration are predictors of impaired mobility, defined as difficulty walking or climbing 

stairs (6), and impaired muscle strength, especially in the lower extremities, is a risk 

factor for falls and associated fractures (7). The loss of muscle mass increases the risk 

of developing physical disability, defined as difficulty performing the activities of daily 

living (8). Thus, age-related muscle declines can significantly impact quality of life and 

limit independence in older individuals, as well as contribute to the need for residential 

care and associated health care costs.  

 

Causes of age-related declines in skeletal muscle 

Age-related declines in muscle mass, function, and quality are likely due to many 

contributing factors, and many have been proposed, including muscle fiber denervation 

and the loss or remodeling of motor units, changes in protein metabolism, changes in 

the endocrine milieu, increased systemic inflammation, and increased oxidative stress, 

to name a few (2, 3, 9-12). 

Also proposed as a contributing factor is the response of aged muscle to certain 

activities that can cause muscle damage (10, 11, 13). Muscles of aged individuals are 

more susceptible to damage following certain types of exercise or contractions (14-17). 

Muscles from aged individuals also have a diminished ability for repair, as shown by 

slowed recovery of strength (18) and increased fat accumulation (19). Cycles of 
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frequent damage followed by incomplete repair may be an important contributing factor 

to the progressive losses of muscle mass and function that occur with aging. 

Therefore, restricting damage or enhancing repair after muscle injury is a 

worthwhile goal for the benefit of older individuals. Developing strategies to restrict 

damage or enhance repair requires a mechanistic understanding of both the damage 

and repair processes following injury as well as an understanding of the mechanisms 

underlying the age-related increase in susceptibility to damage and impaired repair.  

 

Background 

 

Causes of skeletal muscle injury 

Skeletal muscle injuries are extremely common. Muscle constitutes a large 

proportion of the body and many muscles have superficial locations, rendering them 

susceptible to injuries caused by physical insults (e.g. lacerations, contusions, puncture 

wounds, crush injuries), extreme temperatures (e.g. freeze injuries, burns) or invasive 

surgery. Muscles can also be injured by toxins (e.g. snake venoms), periods of 

unloading followed by reloading, and periods of ischemia followed by reperfusion. 

Finally, muscles can also be injured by their own contractions. Injuries caused by 

contractions are probably the most common injuries experienced by skeletal muscle.  

Muscle is especially susceptible to injury during lengthening (or eccentric) 

contractions (20). Lengthening contractions occur when muscles are stretched while 

activated and injuries caused by lengthening contractions are referred to as contraction-

induced injuries. Lengthening contractions occur during normal, everyday movements, 
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such as lowering oneself into a chair, walking down a flight of stairs, or lowering a heavy 

package onto a table. Certain activities, such as downhill running, involve repetitive 

lengthening contractions. Repetitive lengthening contractions, especially when muscles 

are unaccustomed to such movements, often produce injury and associated symptoms 

of soreness, swelling, decreased range of motion and loss of strength (21). 

Alternatively, even a single lengthening contraction can produce injury, perhaps during 

an accidental fall, especially if the stretch is severe and the muscle is maximally 

activated (2). 

 

Repair process following skeletal muscle injury 

Contraction-induced muscle injury and repair are similar in humans and animals 

(i.e. rodents and rabbits) and an extensive series of studies from these species has 

contributed to our understanding of the injury and repair process. Most of the events 

described in the following paragraphs are from studies in which the injury was initiated 

by lengthening contractions or eccentric exercise. However, it should be noted that 

regardless of the nature of the initial insult, injured muscles generally go though similar 

sequential but overlapping stages of degeneration, inflammation and necrosis followed 

by regeneration and remodeling. 

Lengthening contractions produce immediate disruptions in skeletal muscle (22). 

Within minutes of lengthening contractions, ultrastructural damage to contractile 

proteins and sarcomeres is evident within muscle fibers (23-25), as well as disruption of 

components of the cytoskeleton involved in force transmission (26, 27). There is 

evidence of damage to the muscle cell membrane (27) and impaired excitation-
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contraction coupling, perhaps from damage to T-tubules and the sarcoplasmic reticulum 

(28). The immediate damage is accompanied by an impaired ability to generate force 

(i.e. a force deficit) (25, 29). 

The degenerative stage of muscle injury occurs within hours after lengthening 

contractions and lasts for several days. Calcium moves down its concentration gradient 

into the muscle cell cytoplasm, possibly through damage to the cell or sarcoplasmic 

reticulum membranes (22). Increased intracellular calcium causes hypercontractions of 

portions of muscle fibers, which are visible as large, swollen fibers in transverse muscle 

sections and leave adjacent portions of the same fibers barely visible or missing (24, 

30). Increased intracellular calcium can also activate the calpains, proteolytic enzymes 

that initiate the breakdown of myofibrils and cytoskeletal elements (31). Degenerating 

and necrotic fibers are visible in transverse muscle sections (29), and a loss of muscle 

fibers is observed along with an increased or maintained force deficit (13, 29, 32). 

Repair and regeneration begin within the first week and the regenerative stage 

can last for a few weeks. Successful muscle regeneration relies on muscle stem cells 

known as satellite cells, named for their location at the periphery of mature muscle 

fibers. In response to injury, satellite cells exit their normal quiescent state, proliferate, 

and migrate to the site of injury. These cells then differentiate and fuse together to form 

new myofibers or fuse to existing fibers to repair damage (33, 34). Repaired and 

regenerating muscle fibers are identified by their centrally located nuclei. Early in the 

regeneration process, new myofibers are visible as small basophilic centronucleated 

myofibers, which increase in size over time (35). Finally, a remodeling stage occurs, 

characterized by extracellular matrix production and remodeling, and angiogenesis (36). 
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Accompanying the degenerative and regenerative phases is the accumulation of 

myeloid cells (i.e. neutrophils and macrophages) (37). Neutrophils are the first to 

increase in number in injured muscle, arriving from the circulation within hours of the 

initial insult. Neutrophil levels peak within 1-2 days following the initial insult and then 

their numbers decline to control levels within 7 days after the injury (38). Following the 

arrival of neutrophils, macrophages begin to accumulate in injured muscle. Pro- and 

anti-inflammatory macrophages are observed. Early arriving, pro-inflammatory 

macrophages invade muscle fibers and are associated with the removal of damaged 

and necrotic tissue (39-41). Pro-inflammatory macrophage numbers decline within a few 

days as the number of anti-inflammatory macrophages increases. Anti-inflammatory 

macrophages can remain in the muscle for many days and their presence generally 

coincides with the regenerative stage of muscle repair (39-41). 

Ultimately, in young and healthy muscles, the injured muscles return to a state 

not detectably different from muscles that were never injured. 

 

Dissertation objectives and overview of chapters 

 

Dissertation objectives 

Although much is known about the sequence of events following muscle injury, 

the underlying cellular and molecular mechanisms remain incompletely understood. 

Furthermore, the mechanisms underlying the age-related increase in susceptibility to 

damage and delayed or incomplete repair are not well understood. Understanding these 

mechanisms may reveal key therapeutic targets for restricting damage or enhancing 
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repair for individuals whose muscles do not fully recover after injury due to advanced 

age. 

Therefore, the overall objectives of this research were 1) to address fundamental 

gaps in our knowledge of cellular and molecular events associated with a common form 

of muscle injury and 2) to identify age-related changes in key events.  

 

Overview of dissertation chapters 

Early initiators of degenerative and regenerative processes following contraction-

induced injury have not been clearly defined. ROS generated during lengthening 

contractions may contribute to degenerative or regenerative processes, as ROS can 

cause direct damage to macromolecules (42) and ROS signaling can affect many 

processes that contribute to degeneration or regeneration following injury (43, 44). 

Furthermore, age-related changes in damage and repair are accompanied by aberrant 

ROS homeostasis (45, 46) and at least one study suggests that ROS production around 

the time of injury enhances initial damage in old animals (47). Chapter 2 describes 

published work (48) that examines whether ROS generated at the time of injury are an 

early initiator of downstream processes of degeneration and regeneration.  

Despite accumulating evidence that the number of myeloid cells present in 

injured muscle is a critical factor in the success of muscle repair (32, 49-53), the effect 

of aging on the magnitude and the timing of the myeloid cell response to injury has 

received little attention. Chapter 3 explores age-related changes in the magnitude of the 

myeloid cell response to injury and examines whether such changes correlate with 

impaired regeneration in aged animals. 
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Given the critical role of myeloid cells in determining the success or failure of 

muscle repair, manipulating myeloid cell infiltration after contraction-induced injury may 

be an effective strategy for either preventing damage or enhancing repair in aged 

populations. Neutrophils can exacerbate damage to muscle fibers following injury while 

macrophages generally contribute to repair (32, 50-53). Thus, preventing or blunting the 

neutrophil response while keeping the macrophage response intact may provide a 

therapeutic benefit. However, the molecules responsible for neutrophil infiltration after 

contraction-induced injury are not entirely known. Potential candidates are P- and E-

selectin proteins that are expressed on the luminal surface of blood vessels and interact 

with corresponding ligands on neutrophils. The selectins mediate initial steps in a well-

characterized cascade that culminates with neutrophil migration out of the blood vessel 

and into the surrounding tissue, at least under some circumstances (54). Chapter 4 

investigates the role of P- and E-selectin molecules in neutrophil and macrophage 

accumulation after muscle injury and examines whether blunting neutrophil 

accumulation by blocking the selectins provides a therapeutic benefit. The findings in 

Chapter 4 also help to interpret findings from Chapter 3. 

Mouse models were used for all experiments. Rodents demonstrate many of the 

age-related changes observed in muscle, including reductions in muscle mass and 

force generation (55-57), increased susceptibility to damage following contractions (47, 

58, 59), and delayed or incomplete repair (56, 60-64). Experiments were conducted 

using well-established in vitro (65, 66) and in situ injury models (25, 29, 32, 47, 56, 57, 

63, 67). 
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Chapter 2 

 

Reactive oxygen species generation is not different during isometric and 

lengthening contractions of mouse muscle 

 

Abstract 

 

Skeletal muscles can be injured by lengthening contractions, when the muscles 

are stretched while activated. Lengthening contractions produce structural damage that 

leads to the degeneration and regeneration of damaged muscle fibers by mechanisms 

that have not been fully elucidated. Reactive oxygen species (ROS) generated at the 

time of injury may initiate degenerative or regenerative processes. In the present study 

we hypothesized that lengthening contractions that damage the muscle would generate 

more ROS than isometric contractions that do not cause damage. To test our 

hypothesis, we subjected muscles of mice to lengthening contractions or isometric 

contractions and simultaneously monitored intracellular ROS generation with the 

fluorescent indicator 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein (CM-

DCFH), which is oxidized by ROS to form the fluorescent product CM-DCF. We found 

that CM-DCF fluorescence was not different during or shortly after lengthening 

contractions compared with isometric controls, regardless of the amount of stretch and 

damage that occurred during the lengthening contractions. The only exception was that 
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after severe stretches, the increase in CM-DCF fluorescence was impaired. We 

conclude that lengthening contractions that damage the muscle do not generate more 

ROS than isometric contractions that do not cause damage. The implication is that ROS 

generated at the time of injury are not the initiating signals for subsequent degenerative 

or regenerative processes. 

 

Introduction 

 

Skeletal muscles can be injured by lengthening contractions, when the muscles 

are stretched while activated. Lengthening contractions produce immediate 

ultrastructural damage within muscle fibers, and the damage is accompanied by a 

deficit in force generation. In the hours, days, and weeks following the initial injury, 

inflammatory cells invade the tissue and muscle fibers undergo a process of 

degeneration, necrosis, and regeneration (1). The cellular and molecular mechanisms 

by which the initial injury initiates degenerative and regenerative processes remain 

incompletely understood. Understanding these mechanisms may reveal key therapeutic 

targets for restricting degeneration or enhancing regeneration for individuals whose 

muscles do not fully recover after injury due to advanced age (2, 3), disease (4-6), or 

severe trauma (7).  

Reactive oxygen species (ROS) generated at the time of initial injury may 

contribute to degenerative or regenerative processes. ROS can cause direct damage to 

macromolecules, including proteins and lipids (8) or act indirectly via a wide variety of 

pathways to influence gene transcription and expression (9, 10). In muscle, ROS 
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signaling is thought to affect many processes that could contribute to degeneration or 

regeneration following injury, including protein degradation, autophagy, cell death, 

inflammation, cell proliferation, cell differentiation, and mitochondrial biogenesis (11, 

12). Despite the potential involvement of ROS or ROS signaling in degenerative or 

regenerative processes following the initial injury, ROS generation at the time of the 

initial injury has not been studied. Therefore, the main objective of our study was to 

examine ROS generation at the time of the initial injury, during lengthening contractions 

that damage the muscle.  

Our expectation that lengthening contractions would generate ROS is supported 

by reports of increased ROS production within skeletal muscle fibers during contractions 

(13-17). Contraction-induced ROS generation has been attributed to non-mitochondrial 

sources (18,19) and specifically, NADPH oxidase has been implicated (20, 21). ROS 

production has also been reported during passive stretches of skeletal muscle fibers 

and cardiac myocytes (22-24). Although ROS production during passive stretches is not 

a universal finding (23, 25), it is conceivable that lengthening contractions that involve 

both stretch and activation generate more ROS than during activation alone. 

Accordingly, we hypothesized that damaging lengthening contractions would generate 

more ROS than isometric contractions that do not cause damage. To test the 

hypothesis, we subjected muscles of mice to lengthening contractions (LC) or isometric 

contractions (IC) and simultaneously monitored intracellular ROS generation with the 

fluorescent indicator 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (CM-

DCFH), which is oxidized by ROS to form the fluorescent product CM-DCF. Passive 

stretches (PS), i.e. stretches without activation, were also administered to examine the 
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degree to which increased CM-DCF fluorescence during lengthening contractions may 

represent an additive effect of ROS generation during stretch plus ROS generation 

during muscle activation.  

 

Methods 

 

Animals.  Male C57BL/6J mice, 7-9 mo of age (retired breeders), were 

purchased from the Jackson Laboratory and housed in a specific-pathogen-free facility 

at the University of Michigan. The mice weighed 32 ± 3 g (mean ± SD, N = 59). On the 

day of an experiment, a mouse was anesthetized with an intraperitoneal injection of 

Avertin (tribromoethanol, 250 mg/kg) (chemical components from Sigma-Aldrich, St. 

Louis, MO). After the mouse was unresponsive to tactile stimuli, one forepaw was 

removed and the mouse was euthanized with an overdose of Avertin followed by 

induction of a bilateral pneumothorax. All animal use procedures were approved by the 

University of Michigan Committee on the Use and Care of Animals (UCUCA). 

Lumbrical muscle preparation. All experiments were conducted in vitro using 

forepaw lumbrical (LMB) muscles. The extremely small LMB muscle offers the diffusion 

benefits of an isolated single fiber while providing a model of whole muscle with intact 

extracellular matrix and tendons (26). The forepaw was pinned in a shallow dish filled 

with Tyrode “dissection” solution composed of (in mM): 136.5 NaCl, 11.9 NaHCO3, 5.0 

KCl, 1.8 CaCl2, 0.5 MgCl2, 0.4 NaH2PO4, and 0.1 EDTA. A whole LMB muscle was 

dissected free from the third digit relative to the medial side of the paw and cleaned of 

as much connective tissue as possible to facilitate subsequent visualization of fiber 
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striations. Monofilament nylon suture (USP 10/0, Ashaway Line & Twine) was used to 

tie the LMB muscle into an experimental chamber, with the proximal tendon attached to 

a high-speed length controller (318B, Aurora Scientific) and the distal tendon attached 

to a force transducer (400A, Aurora Scientific). Ties were placed as close to muscle 

fibers as possible to minimize effects of tendon compliance. The chamber was perfused 

with Tyrode “experiment” solution (in mM): 121 NaCl, 24 NaHCO3, 5.5 glucose, 5.0 KCl, 

1.8 CaCl2, 0.5 MgCl2, 0.4 NaH2PO4, and 0.1 EDTA. Tyrode solutions were made with 

chemicals purchased from Sigma-Aldrich. The solution was bubbled with 95% O2-5% 

CO2 to maintain a pH of 7.3. The temperature of the solution was maintained at 25 °C. 

The chamber was placed on the stage of an inverted microscope (Axiovert 100, 

Carl Zeiss Microscopy) and fiber striations were visible through the transparent bottom 

of the chamber. A video sarcomere length system (900B-5A, Aurora Scientific) 

monitored striation spacing and reported sarcomere length. For all muscles, fiber length 

(Lf) was calculated as previously described (27). Because LMB fibers are arranged 

parallel to the long axis of the muscle, the number of sarcomeres in series within a fiber 

can be inferred by changing the muscle length by a known amount and measuring the 

resulting change in sarcomere length. The number of sarcomeres in series is then 

multiplied by 2.5 µm to calculate fiber length. After the fiber length was calculated, the 

length of the muscle was adjusted until the sarcomere length was 2.5 µm (i.e. optimal 

length).  

CM-DCF fluorescence measurements. A rectangular aperture with adjustable 

dimensions was placed in the image path between the muscle and the photodetector, 

allowing selection of the image area from which fluorescence measurements were 
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obtained. The aperture was adjusted to select a region of the muscle image that was 

0.12 mm x 0.60 mm, equivalent to approximately 12% of the area occupied by the 

image. Fluorescence was elicited by light originating from a 75 W xenon lamp. A 

diffraction grating monochromator (Deltascan 4000, Photon Technology International) 

was used to select excitation wavelengths centered at 493 nm (bandwidth 2 nm). The 

excitation light was reflected through an angle of 90° by a dichroic mirror and passed 

through the microscope objective before reaching the muscle. The emitted fluorescence 

was collected by the objective and passed through the dichroic mirror and a band-pass 

filter (535 ± 20 nm) and detected using a photomultiplier detection system (814, Photon 

Technology International). The dichroic mirror reflected wavelengths shorter than 505 

nm and passed those longer than 505 nm. Fluorescence was measured before loading 

any indicator to determine background fluorescence. 

Loading of CM-DCFH and measuring CM-DCF fluorescence were performed at 

25 °C and experiments were conducted in a darkened laboratory room to minimize 

photobleaching of the indicator and contaminating room light from reaching the 

photodetector. CM-H2DCF-DA (C6827, Life Technologies, Carlsbad, CA) was dissolved 

in ethanol and combined with Tyrode dissection solution containing 0.1% (v/v) Pluronic 

F-127 (P-6866, Life Technologies) to facilitate suspension of CM-H2DCF-DA. The final 

concentration of the CM-H2DCF-DA solution was 15 µM. The CM-H2DCF-DA solution 

was added to the chamber and 30 min were allowed for passive diffusion of CM-

H2DCF-DA into muscle fibers and conversion to the retained form, CM-DCFH, by 

intracellular esterases. After 30 min, the chamber was perfused with Tyrodes 

experiment solution for 5 min to remove residual CM-H2DCF-DA. Perfusion with 
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Tyrodes experiment solution continued during the CM-DCF measurements. CM-DCF 

fluorescence was monitored continuously (10 samples/s) for 3 min before the onset of 

IC, LC, or PS to establish a baseline. CM-DCF fluorescence was then monitored during 

IC, LC, or PS, and for 5 min afterward. Muscles remained in the dark for 5 more min 

before the final isometric contraction was elicited (see Isometric contractions).  

Preliminary experiments suggested that 15 µM of CM-H2DCF-DA was more than 

sufficient for our study. When hydrogen peroxide was added to the chamber after a 

typical experiment, the DCF fluorescence increased by as much as 15-fold, indicating 

that only a small portion of the probe was oxidized during any given experiment and that 

our ability to detect ROS was not limited by a shortage of unoxidized probe within the 

muscle.  

Isometric contractions. Muscle activation was accomplished by electric field 

stimulation via platinum plate electrodes. Stimulus pulses were 0.2 ms in duration and 

the stimulation current was adjusted in order to elicit maximum twitch force. The muscle 

was subjected to a single isometric contraction to establish “pre-protocol force”. After 

the muscle was loaded with CM-DCFH, the muscle was subjected to a protocol of 12 

isometric tetanic contractions spaced 8 s apart. Each tetanus was 400 ms in duration, 

and the stimulus pulses within each tetanus were delivered at a rate of 200 s-1. Force 

was recorded continuously throughout the contraction protocol. A single isometric 

tetanus was elicited 10 minutes after the 12th contraction to assess the deficit in 

isometric force in the absence of fatigue. Force deficit was calculated by the following 

equation: Force deficit (%) = [(pre-protocol force – force 10 min after protocol)/(pre-

protocol force)] X 100.  
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Lengthening contractions and passive stretches. Muscles exposed to LC were 

treated the same as muscles exposed to IC, except that a stretch was initiated at the 

beginning of the 400 ms stimulation period. Muscles were lengthened at the appropriate 

rate to cause the peak of the stretch to coincide with the end of the tetanic stimulation. 

In one series of experiments, muscles were stretched by 40% Lf at a rate of 1 Lf/s, and 

in a second series of experiments, muscles were stretched by 10, 30, or 50% Lf at rates 

of 0.25, 0.75, or 1.25 Lf/s, respectively.  Muscles exposed to PS were treated the same 

as muscles exposed to LC, except that the muscles were not activated.  

Large strains relative to fiber length were chosen to ensure that muscles would 

be damaged during lengthening contractions (28). Strains as large as 30-50% relative to 

fascicle length (an estimate of fiber length) have been reported in vivo for human 

gastrocnemius muscles during dorsiflexion (29, 30) and vastus lateralis muscles during 

knee flexion (31). Modeling studies incorporating subject data have also found that 

fascicles actively lengthened as much as 37% (splenius capitis) and 50% (semispinalis 

capitis) during low-velocity automobile impacts (32), and 64% near the myotendinous 

junction of the biceps femoris muscle (33). Similar strains have been reported for 

passive stretches of biceps femoris and gastrocnemius muscle (29, 30, 34). LMB 

muscles likely do not experience large strains in vivo, but can be considered models for 

other muscles. 

Isometric contractions after lengthening contractions. For some LMB muscles, a 

series of IC was elicited 10 min after the 12th lengthening contraction, according to the 

activation protocol described above for Isometric contractions. During the intervening 10 

min, no additional CM-H2DCF-DA was added to the chamber. CM-DCF fluorescence 
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was collected for 2 min before the onset of IC to re-establish baseline oxidation and 

CM-DCF fluorescence monitoring continued during the series of IC.  

GSHEE experiments. In order to confirm that CM-DCF fluorescence was 

sensitive to intracellular changes in ROS, ROS generation was measured in the 

presence of glutathione reduced ethyl ester (GSHEE). LMB muscles were prepared and 

tested as previously described with the following exceptions. After the pre-protocol force 

was measured, dissection solution containing 2.5 mM glutathione reduced ethyl ester 

(GSHEE) (G1404, Sigma-Aldrich) was added to the chamber. LMB muscles were 

exposed to GSHEE for 1 hr before exposure to 15 µM CM-H2DCF-DA solution for 30 

min. To remove residual CM-H2DCF-DA, fresh dissection solution was added to the 

chamber before isometric contractions were initiated. GSHEE was present during CM-

DCFH loading and during the contractions. To conserve GSHEE, the chamber was not 

perfused with solution during contractions. With the absence of perfusion, we observed 

greater baseline CM-DCF fluorescence compared with the baseline fluorescence when 

solution was flowing (Table 2.1), possibly due to lower rates of leakage of the indicator 

from the muscles. Control muscles were treated the same as muscles exposed to 

GSHEE, except that GSHEE was not present.  

Muscle cross-sectional area measurements. After testing, muscles were 

maintained at optimal length while the testing chamber was placed on the stage of a 

stereo microscope (MZ8, Leica Microsystems). The diameter of the muscle was 

measured using a scale in the eye piece of the microscope and the cross-sectional 

muscle area (CSA) was estimated by assuming a circular cross-section. 
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Data analysis. ROS oxidize CM-DCFH to form the fluorescent product CM-DCF, 

and the net increase in ROS over time is indicated by the increase in CM-DCF 

fluorescence over time (15, 20, 35). Therefore, we determined the “CM-DCF slope” (i.e. 

slope of the CM-DCF fluorescence-versus-time plot) during a resting period and during 

IC. In order to quantify the change in slope with the onset of contractions, we subtracted 

the slope of a line fitted to the baseline portion of the CM-DCF fluorescence record 

(dashed line, Figure 2.1) from the slope of a line fitted to the portion of the record 

corresponding to the series of contractions (dotted line, Figure 2.1). We considered only 

the CM-DCF fluorescence measurements collected after each contraction (i.e. after the 

force returned to the baseline value) to prevent motion artifact from affecting the 

analysis. Background fluorescence was subtracted from the CM-DCF fluorescence 

record before the slopes were calculated. The analysis was the same for muscles 

subjected to lengthening contractions and passive stretches.  

Statistics. Data are presented as mean ± SD. Differences between experimental 

groups were analyzed by a Student’s t test or a one-way ANOVA followed by the Holm-

Sidak method to determine which means were significantly different. In the case of 

skewed distributions or unequal variance, a Mann-Whitney rank sum test or a Kruskal-

Wallis one-way ANOVA on ranks was used. Correlation between two variables was 

determined by calculating the Pearson product-moment correlation coefficient. 

Differences were considered statistically significant when P < 0.05. 
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Results 

 

To test our hypothesis that lengthening contractions that damage the muscle 

generate more ROS than isometric contractions, we subjected LMB muscles to LC or 

IC, with PS as an additional control, and examined changes in CM-DCF slope (Figures 

2.1-2.3). As expected, LC caused muscle damage as indicated by a ~30% force deficit, 

whereas IC and PS produced no or minimal force deficits, respectively (Figure 2.3A). 

The CM-DCF slope increased during IC and LC relative to baseline slopes; however, 

the increase observed with the onset of LC was not greater than the increase observed 

with the onset of IC (Figure 2.3B). We did not detect a change in CM-DCF slope with 

the onset of PS (Figure 2.3B) and so we excluded PS from subsequent experiments. 

Since we did not find that LC increased the CM-DCF slope more than IC, we 

completed a second series of experiments to verify the result was not due to insufficient 

or excessive stretch. We subjected LMB muscles to lengthening contraction protocols 

with the magnitude of stretch ranging from 30-50% Lf, including 0% Lf (i.e. IC) as a 

control, and examined changes in CM-DCF slope (Figure 2.4). As expected, the force 

deficit increased as the degree of stretch increased (Figure 2.4A). However, despite the 

large range of stretch and damage among groups, there were no differences in the 

change in CM-DCF slope with the onset of LC (Figure 2.4B). In case the effects of LC 

were not immediately apparent, we also examined the CM-DCF slope 10 min after LC, 

during an additional isometric contraction protocol. Prior to the isometric contraction 

protocol, the baseline DCF slope was not different between injured and uninjured 

muscles. In contrast, we found that the change in CM-DCF slope with the onset of 
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contractions was significantly less in muscles initially stretched by 50% Lf (Figure 2.4C), 

and within this group the force deficit and the change in CM-DCF slope were negatively 

correlated (Figure 2.4D). Overall, the second series of experiments confirmed our 

finding that LC did not increase CM-DCF slope more than IC.  

In order to confirm that CM-DCF slope was sensitive to ROS in LMB muscles, we 

conducted a third series of experiments. CM-DCF slope was examined after LMB 

muscles were exposed to GSHEE. GSHEE is converted to the antioxidant GSH once it 

crosses the cell membrane and decreases contraction-induced ROS generation in 

single muscle fibers (15). GSHEE decreased both the baseline CM-DCF slope (Figure 

2.5A) and the change in CM-DCF slope with the onset of IC, compared with controls 

(Figure 2.5B). GSHEE exposure did not reduce force (Figure 2.5C) indicating that 

GSHEE did not damage LMB muscles or impair muscle activation. These results 

suggest that the decrease in CM-DCF slope was due to an increase in GSH content, 

not impaired muscle function, and verified that CM-DCF slope is sensitive to net 

changes in ROS in whole LMB muscles.  

Finally, our findings were not due to intrinsic differences among experimental 

groups. Prior to IC, LC, or PS, there were no differences in muscle size (i.e. fiber length 

and CSA), pre-protocol force, or baseline CM-DCF slope among experimental groups, 

except for a difference in baseline CM-DCF between muscles exposed to GSHEE 

relative to controls (Table 2.1).  
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Discussion 

 

The main finding of the present study is that, contrary to our hypothesis, 

lengthening contractions that damage muscle do not generate more ROS than isometric 

contractions that do not cause damage. This finding is supported by the observation 

that lengthening contraction protocols with stretches of 30, 40, and 50% Lf clearly 

damaged mouse LMB muscles as shown by deficits in isometric force, but the increase 

in CM-DCF slope associated with each of the lengthening contraction protocols was not 

different from the increase associated with isometric contractions.  

Our main finding is consistent with other studies. Kon and colleagues quantified 

thiobarbituric acid reactive substances (TBARS) levels in mouse tibialis anterior (TA) 

muscles immediately after 12 min of lengthening contractions in situ. TBARS were 

elevated after the lengthening contractions, but the increase was not different from the 

increase observed after shortening contractions (36). Another in situ study analyzed 

2′,7′-dichlorofluorescein (DCF) fluorescence, melondialdehyde (MDA) levels, 

glutathione, and antioxidant enzyme activity in muscle homogenates immediately after 

single lengthening contractions of rabbit TA muscles. DCF fluorescence and MDA levels 

were not elevated in injured muscles compared with sham controls, and glutathione 

content and antioxidant enzyme activity did not appear to differ between injured 

muscles and controls (37). Neither of these studies examined ROS generation during 

the lengthening contractions, but measures of ROS were not elevated shortly after 

lengthening contractions beyond control levels and are therefore consistent with our 

main finding. Several studies report an elevation in ROS after injury, but these studies 
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do not conflict with ours since the elevation is observed hours to days after the initial 

injury and are primarily attributed to invading inflammatory cells (17, 36, 38, 39). 

Although our observation that ROS levels produced during damaging and non-

damaging contraction protocols were not different suggests that changes in the 

magnitude of ROS generation at the time of injury is not an initiating signal for 

subsequent inflammation, degeneration, necrosis, or regeneration, our data do not 

completely rule out a role for ROS in the initiation of degenerative or regenerative 

processes after injury. ROS indicators based on DCFH or DCFH derivatives are 

sensitive to a variety of ROS and oxidizing reactions (40). Therefore, the possibility 

remains that variations in the specific ROS generated by isometric and lengthening 

contractions may be different although the overall magnitude of detected ROS was not. 

Moreover, DCFH-based indicators are generally not sensitive to superoxide and show 

variable sensitivities to nitric oxide and peroxynitrite (40), allowing for the possibility that 

some ROS vary between isometric and lengthening contractions but were not detected 

by CM-DCFH in the present study. The fact that a variety of ROS measures failed to 

show differences after lengthening contractions versus controls argues against this 

possibility (36, 37). ROS are not only generated within muscle fibers (37, 44, 29, 51, 

18), but are also released from muscle during contractions (14, 42, 43). ROS released 

from muscle fibers may contribute to degenerative or regenerative processes following 

injury, based on the modulation of injury caused by manipulation of extracellular 

antioxidants (44, 45). Because CM-DCFH is retained within the muscle fibers, released 

ROS were not detected in the present study, and we are unable to rule out the 
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possibility that extracellular ROS are involved in the initiation of downstream processes 

after injury. 

An additional finding of our study was that muscles that were initially exposed to 

lengthening contractions with stretches of 50% Lf showed reduced ROS generation 

during a subsequent series of isometric contractions, compared with controls. Moreover, 

within this experimental group, there was a negative correlation between the force 

deficit induced by the stretches of 50% Lf and the change in CM-DCF slope during the 

isometric contractions performed after 10 min. This observation indicates that greater 

damage correlated with less ROS generation during ensuing contractions. Although this 

relationship does not necessarily imply causation, if enough damage occurs during 

lengthening contractions (e.g. 60% force deficit as in the LC group with stretches of 

50% Lf), the muscle’s ability to produce ROS appears to be impaired. Force dropped 

steadily during the LC protocol with stretches of 50% Lf, likely due to mechanical 

damage to force generating or force transmitting structures (46, 47) or the excitation-

contraction coupling apparatus (48), but this damage did not appear to immediately 

disrupt the pathways involved in ROS production, as the “ROS deficit” was not apparent 

until 10 min later. To our knowledge a link between muscle damage and an impaired 

ability to produce ROS has not been established and we cannot speculate regarding the 

mechanism at this time. The link between muscle damage and ROS generation may 

represent an interesting topic of exploration in future studies, although in vivo strains of 

approximately 50% relative to fiber (fascicle) length seem to indicate an upper limit (29-

33) and the result described here may only be applicable in rare instances of severe 

stretch.  
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Our hypothesis was partially based on the expectation that passive stretches 

would generate ROS, but we did not detect an increase in CM-DCF fluorescence during 

passive stretches. In agreement with our findings, passive stretches of single flexor 

digitorum brevis (FDB) fibers estimated to be of 10-15% strain did not increase 6-

carboxy-2′,7′-dichlorofluorescein fluorescence (25) or CM-DCF fluorescence (23), 

although contradictory findings have been reported. DCF fluorescence increased during 

stretches of 20% of whole extensor digitorum longus muscles (22), 15% of strain of 

C2C12 myotubes (22), and 8% stretch of cardiac myocytes (24), and ethidium 

fluorescence was increased after 15% stretches of single FDB fibers (23). Conflicting 

results may be due to variations in stretch protocols, indicators, and cell or muscle type, 

or ROS generation during passive stretch may sometimes fall below the detection limits 

of commonly used methods. In any case, our results suggest that any production of 

ROS elicited by passively stretching muscles is minimal in comparison to the ROS 

produced as a byproduct of contractile activity. 

Our main finding that lengthening contractions do not generate more intracellular 

ROS than isometric contractions has several implications. First, the magnitude of 

intracellular ROS generated at the time of injury is probably not an initiating signal for 

subsequent inflammation, degeneration, necrosis, and regeneration, although other 

aspects of ROS generation (e.g. composition or localization) may be important. A 

second implication of our finding is that the sources responsible for contraction-induced 

ROS generation are not sensitive to stretch. Although we did not examine the source of 

ROS generation in the present study, others have suggested that non-mitochondrial 

sources (18, 19) and specifically, NADPH oxidase (20, 21) contribute to ROS 



 
 

31	
  

generation during muscle contractions. While NADPH oxidase appears to be stretch-

sensitive in cardiac muscle cells (24), this may not be the case in skeletal muscle. 

Finally, our data suggest that ROS generation during muscle contraction is highly 

robust. The ability to produce ROS was intact during and immediately after damaging 

lengthening contractions, except under circumstances of large stretch and severe 

damage. One could speculate that beneficial adaptations thought to result from ROS 

production during contractions (49, 50) can occur despite moderate muscle damage.	
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Figure 2.1: Representative force responses during a single isometric contraction, 
lengthening contraction and passive stretch. Imposed length change and activation 
stimuli are also shown.  
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Figure 2.2:  Representative force responses during series of 12 isometric contractions, 
lengthening contractions, and passive stretches, and simultaneous CM-DCF records. 
Lines were fit to the CM-DCF fluorescence signal during a resting period (dashed line) 
and during the contractions (dotted line) and the slopes were calculated. The same 
analysis was performed for lengthening contraction and passive stretch protocols. 
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Figure 2.3: Effect of isometric contractions, lengthening contractions (40% Lf), and 
passive stretches (40% Lf) on (A) force deficit and (B) change in CM-DCF slope. Force 
deficits are expressed as a percentage of the pre-protocol force and each symbol 
represents data from an individual muscle. Horizontal lines indicate the mean force 
deficit for each group. Changes in the slope of the CM-DCF fluorescence are expressed 
in photon counts per second per second and each bar represents the means ± SD. 
∗indicates significant difference from the other two groups. The number of LMB muscles 
= 14 (IC), 6 (LC), and 6 (PS). 
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Figure 2.4: Effect of lengthening contractions on (A) force deficit and (B) change in CM-
DCF slope for stretches of several magnitudes expressed as a percentage of muscle 
fiber length (% Lf). Force deficits are expressed as a percentage of the pre-protocol 
force and each symbol represents data from an individual muscle. Horizontal lines 
indicate the mean force deficit for each group. LC with 30% and 50% stretches 
produced force deficits while LC with 10% and 0% stretches did not. ∗indicates 
significant difference from 0% and 10% groups and #indicates significant difference 
from 30% group. Changes in the slope of the CM-DCF fluorescence are expressed in 
photon counts per second per second and each bar indicates the mean ± SD. There 
were no differences between groups. (C) Changes in CM-DCF slope during IC 
performed ten minutes after LC with stretches of several magnitudes. Each bar 
indicates the mean ± SD. ∗indicates significant difference from 0% group. (D) Negative 
correlation between the change in CM-DCF slope 10 min after LC (stretches of 50% Lf) 
and the force deficit. Each symbol represents data from an individual muscle. The 
number of LMB muscles = 8 (0%), 6 (10%), 6 (30%), and 7 (50%). 
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Figure 2.5: Data are shown for (A) baseline CM-DCF slope, (B) the change in CM-DCF 
slope with the onset of isometric contractions, and (C) force generation in millinewtons 
for control LMB muscles (black bars) and LMB muscles exposed to glutathione reduced 
ethyl ester (GSHEE) treatment (gray bars). ∗indicates significant difference from control 
group. The number of LMB muscles = 3 (Control) and 3 (GSHEE). 
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Experiment 
series and 
group 

Number 
of LMB 
muscles* 

Fiber length 
(mm) CSA (mm²) 

Pre-
protocol 
force (mN) 

Baseline CM-
DCF slope 
(photon 
counts/s/s) 

Series 1:      
   IC      14 2.1 ± 0.4† 0.13 ± 0.02 19.7 ± 2.3   23 ± 21 
   LC     6 1.9 ± 0.2   0.13 ± 0.01 19.1 ± 1.4   16 ± 19 
   PS     6 2.1 ± 0.2 0.13 ± 0.02 19.2 ± 1.2     9 ± 13 
      
Series 2:      
   0%      8 2.0 ± 0.3 0.12 ± 0.01 18.9 ± 2.4    -3 ± 25 
   10%     6 2.2 ± 0.3 0.12 ± 0.01 18.5 ± 2.5   13 ± 13 
   30%      6 1.8 ± 0.2 0.12 ± 0.02 18.8 ± 2.4   11 ± 13 
   50%     7 1.8 ± 0.2 0.13 ± 0.01 19.1 ± 3.4   10 ± 28 
      
Series 3:      
   Control      3 2.1 ± 0.3 0.13 ± 0.01 17.5 ± 1.7 140 ± 20 
   GSHEE     3 2.0 ± 0.3 0.13 ± 0.02 18.6 ± 2.1   10 ± 09‡ 

 
Table 2.1: Experimental groups of LMB muscles are not different prior to IC, LC, or PS. 
Comparisons are made between experimental groups within each series of 
experiments. Values are means ± SD.*1 LMB muscle taken from each mouse.†1 value 
missing. ‡significantly different from control group 
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Chapter 3 

 

Impaired regeneration in old mice is associated with elevated neutrophil and 

macrophage accumulation and altered expression of macrophage-related genes  

 

Abstract 

 

Aging is associated with delayed and possibly incomplete repair after skeletal 

muscle injury, but the underlying mechanisms are not entirely understood. We 

hypothesized that age-related deficiency in muscle repair is associated with an 

inappropriate myeloid cell response, specifically a persistence of neutrophils and a 

delay or reduction in the accumulation of macrophages, especially anti-inflammatory 

(M2) macrophages. To test our hypothesis, we injured muscles of young and old mice 

with lengthening contractions in situ and analyzed the muscles 2 or 5 d later. 

Regardless of age, injury increased neutrophil (Gr-1+), total macrophage (CD68+) and 

M2 macrophage (CD163+) content by 2 d. By 5 d, neutrophils declined and total 

macrophages increased dramatically while M2 macrophages increased to a lesser 

extent. We found no evidence of persisting neutrophils or reduced accumulation of M2 

macrophages in old muscles. Instead, we generally found more neutrophils and 

macrophages (total and M2) in muscles of old mice at both time points. Messenger RNA 



 
 

44	
  

levels suggested age-related changes in the expression of macrophage-associated 

genes that have the potential to undermine or impair muscle regeneration. Therefore, 

the mechanism underlying age-related deficiency in muscle repair may involve altered 

macrophage function in old mice. 

 

Introduction 

 

Skeletal muscle injuries are common and have a variety of causes, including 

physical trauma, extreme temperatures, toxin exposure, invasive surgery, 

ischemia/reperfusion and unloading/reloading. Muscles can also be injured by their own 

contractions, especially during lengthening contractions when muscles are stretched 

while activated. Regardless of the cause, the initial insult is followed by degeneration 

and necrosis of damaged muscle fibers and subsequent regeneration and repair. 

Muscle repair is delayed and possibly incomplete with advanced age. After injury, 

muscles from old animals have fewer and smaller regenerating fibers (1, 2), more 

fibrosis (3-6) and more fat (6) compared with young controls. Failed restoration of 

normal muscle structure is accompanied by persistent and likely permanent deficits in 

force generation (7-10). Although the age-related deficiency in muscle repair is well 

established, the underlying mechanisms are incompletely understood.  

Successful muscle regeneration relies on muscle stem cells known as satellite 

cells. In response to injury, satellite cells exit their normal quiescent state and 

proliferate, differentiate, and fuse together to form new myofibers or fuse to existing 

fibers to repair damage (11). Satellite cells from old animals are capable of repair, but 
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systemic and local aspects of the aged environment hinder the ability of satellite cells to 

successfully regenerate injured muscle (2, 12-14). Myeloid cells accumulate in injured 

muscle and thus contribute to the local environment of satellite cells, and a growing 

body of evidence suggests that myeloid cells play critical roles in muscle repair and 

regeneration. Neutrophils are the first to accumulate in injured muscle, arriving from the 

circulation within hours of the initial insult. The contribution of neutrophils to muscle 

repair is not well understood. Possible beneficial roles include facilitating the removal of 

damaged or necrotic tissue and contributing to subsequent macrophage accumulation 

(15). However, neutrophils may undermine the repair process by exacerbating damage 

to muscle fibers. Neutrophils can lyse muscle cells in vitro and damage membranes in 

vivo by mechanisms involving reactive oxygen species (16, 17), and preventing 

neutrophil infiltration after injury has been reported to reduce force deficits and 

histological damage to muscle fibers (18-21). 

Following the arrival of neutrophils, macrophages begin to accumulate in injured 

muscle. Macrophage accumulation is thought to arise from the infiltration and 

differentiation of circulating monocytes, but the proliferation of macrophages that are 

already present in the muscle may also contribute (22, 23). Macrophages generally 

contribute to muscle repair. Preventing or delaying the accumulation of monocytes 

and/or macrophages induced by muscle injury results in delayed clearance of necrotic 

fibers, fewer or smaller regenerating fibers, increased fibrosis and more fat relative to 

controls (22, 24-28). 

The mechanisms by which macrophages contribute to muscle repair appear to 

depend on macrophage phenotype. In vitro, macrophages can take on pro-inflammatory 
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(M1) or anti-inflammatory (M2) phenotypes based on their environment. After muscle 

injury in vivo, pro- and anti-inflammatory macrophages are also observed and have 

been referred to as M1 and M2 macrophages, although in the complex in vivo 

environment, macrophages do not perfectly conform to phenotypic categories defined in 

vitro (29, 30). After injury, M1 macrophages accumulate within 1-2 days. Because they 

invade muscle fibers, they are thought to contribute to repair by the removal of 

damaged or necrotic tissue (31-33). M1 macrophage numbers decline within a few days 

as the number of M2 macrophages increases. M2 macrophages can remain in the 

muscle for many days and their presence generally coincides with the regenerative 

stage of muscle repair (31-33). M2 macrophages may contribute to muscle repair by 

regulating satellite cell function, as M2 macrophages have been reported to stimulate 

proliferation and differentiation of muscle precursor cells in vitro (22, 33, 34). 

The shift from M1 to M2 macrophages appears to be important for successful 

muscle regeneration. The M1 to M2 phenotype shift was impaired in mice deficient in IL-

10 after muscle injury and was associated with persistent muscle membrane lesions, 

fewer regenerating fibers and reduced fiber growth in comparison to wild type mice (33). 

An impaired or delayed shift from M1 to M2 macrophages could be detrimental due to 

the persistence of M1 macrophages or due to the decreased number of M2 

macrophages, as mice carrying a mutation that blocked downstream induction of M2- 

but not M1-specific genes showed severe defects in muscle fiber regeneration (35). 

Despite the impairments in muscle regeneration observed in old animals as well 

as the accumulating evidence that myeloid cells play a critical role in muscle repair 

following injury, the effect of aging on the magnitude and timing of the myeloid cell 
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response has received little attention. The degree to which the myeloid cell response 

changes with age or how the changes may be associated with the age-related 

deficiency in muscle repair is largely unknown. Therefore, in the present study we 

tested the hypothesis that age-related deficiency in muscle repair is associated with an 

inappropriate myeloid cell response, specifically a persistence of neutrophils and either 

impaired total macrophage accumulation or a delayed switch from M1 to M2 

macrophages. To test our hypothesis, we injured muscles of young and old mice with 

lengthening contractions in situ and analyzed the muscles 2 or 5 days later. Muscle 

damage and repair was determined by functional and histological measures, neutrophil 

and macrophage content was determined by immunohistochemistry and 

immunofluorescence, and myeloid cell function was studied by RT-qPCR.  

 

Methods  

 

Animals. Male C57BL6 young (3-5 mo) and old (25-27 mo) mice were housed in 

a specific-pathogen-free facility at the University of Michigan until experimentation. 

Between experimental procedures, mice were housed in a separate specific-pathogen-

free return room. All animal use procedures were approved by the University of 

Michigan Committee on the Use and Care of Animals (UCUCA). 

In situ evaluation of contractile properties. Procedures for in situ evaluation of 

muscle contractile properties were based on previous studies (7, 36). Each mouse was 

anesthetized with 3% isoflurane in oxygen delivered at a rate of 1 L/min. Anesthesia 

was maintained throughout in situ procedures with 2% isoflurane in oxygen and depth of 
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anesthesia was confirmed by failure of the mouse to respond to tactile stimuli. 

Ophthalmic ointment was placed on the mouse’s eyes to prevent corneal drying and 

trauma and this was re-administered throughout in situ procedures. The mouse was 

placed on a platform warmed to 37 °C with a circulating water bath. The hind limb fur 

was removed with animal clippers followed by a minimal amount of fur removal cream. 

The skin was disinfected with chlorhexidine and a small incision was made at the ankle 

to expose the distal tendon of the EDL muscle. Another small incision was made distal 

to the knee to expose the peroneal nerve. A secure knot was tied around the tendon 

with 6.0 braided silk suture. The hind limb was immobilized by pinching the knee and 

the foot with small clamps secured to the platform. Using the tails of the silk suture, the 

intact tendon was tied to the lever arm of a servomotor (300C-LR-FP, Aurora Scientific), 

which controlled the length of the muscle and measured the force generated. A 

computer with custom-designed software controlled stimulus pulses, the servomotor, 

and collected and stored force data. The small area of exposed tendon was kept moist 

by frequent administration of sterile saline. The EDL muscle was activated using a 

stimulator (701C, Aurora Scientific) and platinum electrodes placed under the peroneal 

nerve. A stimulus pulse duration of 0.2 ms was used for all contractions. Stimulation 

current and muscle length were adjusted in order to elicit maximum twitch force. Tetanic 

contractions of 200 ms duration were elicited with trains of pulses and the frequency of 

the pulses was increased until the force plateaued at the maximum isometric force (Po), 

typically at a frequency of 200 Hz. Finally, small adjustments in the ankle position were 

made to elicit maximum isometric tetanic force. The tetanic contractions were spaced 1 

min apart to prevent fatigue. Optimal muscle length (Lo), defined as the muscle length at 
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which maximum isometric force is achieved, was measured with calipers using the knee 

to estimate the location of the proximal end of the EDL muscle. Optimal muscle fiber 

length (Lf) was determined by multiplying Lo by the previously determined Lf-to-Lo ratio 

of 0.45 (37). 

In situ lengthening contraction protocol. Following evaluation of contractile 

properties, the EDL muscle was exposed to a protocol of 75 lengthening contractions 

spaced 4 s apart for a total duration of 5 min. Each contraction was 300 ms in duration. 

100 ms after the onset of stimulation, near maximum isometric force was generated and 

a stretch of 20% strain relative to Lf was initiated. Muscles were lengthened at the 

appropriate rate (1 Lf/s) to cause the peak of the stretch to coincide with the end of the 

tetanic stimulation. Ten minutes after the lengthening contraction protocol, the muscle 

was re-lengthened to achieve maximum twitch tension and Po was re-measured. The 

small incisions at the ankle and distal to the knee were closed with 7.0 sterile 

monofilament nylon suture and bathed with povidone-iodine solution, and mice were 

monitored until they recovered from anesthesia. 

In vitro evaluation of contractile properties. Two or five days following 

administration of the lengthening contraction protocol, mice were again evaluated for Po. 

Procedures for the in vitro evaluation of EDL contractile properties have been previously 

published (37). Each mouse was anesthetized with an intraperitoneal injection of Avertin 

(tribromoethanol, 250 mg/kg) (chemical components from Sigma-Aldrich). After the 

mouse was unresponsive to a tactile stimulus, the injured EDL muscle was isolated 

from the hindlimb of the mouse. 5-0 silk suture was tied to the proximal and distal 

tendons of the muscle and the muscle was placed into a chamber containing Krebs 
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Mammalian Ringer solution composed of (in mM): 137 NaCl, 5 KCl, 2 CaCl2·2H2O, 1 

MgSO4·7H2O, 1 NaH2PO4, 24 NaHCO3, 11 glucose, 0.03 tubocurarine chloride. The 

solution was maintained at 25 °C and bubbled with 95% O2-5% CO2 to maintain a pH of 

7.4. The proximal tendon was attached to a stationary object and the distal tendon was 

attached to a force transducer (BG-50, Kulite Semiconductor Products). Muscle 

activation was accomplished by electric field stimulation via a high-power current 

stimulator (701C, Aurora Scientific) and parallel plate electrodes.  

A computer and custom-designed software controlled stimulus pulses and 

collected and stored force data. Stimulus pulses of 0.2 ms in duration were used for all 

contractions. Stimulation current and the muscle length were adjusted in order to elicit 

maximum twitch force. A digital calipers was used to measure Lo. Muscles were held at 

Lo and tetanic contractions of 300 ms in duration were elicited with trains of pulses. The 

frequency of the pulses was increased until the force plateaued at Po, typically at 

frequencies from 150-200 Hz. The tetanic contractions were spaced 1 min apart to 

prevent fatigue. Optimal muscle fiber length (Lf) was determined as previously 

mentioned. Force deficit was defined as the difference between the Po measured 

immediately prior to lengthening contractions and the Po measured two days after 

lengthening contractions expressed as a percentage of the pre-injury Po. Following 

evaluation of the injured EDL, the contralateral EDL was removed and evaluated as 

described. Muscles were trimmed of their tendons, weighed, and cut in half. Half of 

each muscle was immersed in Tissue Freezing Medium (Electron Microscopy Sciences) 

and frozen in isopentane cooled by liquid nitrogen. The other half of each muscle was 

submerged in an RNA stabilization reagent (RNAlater, QIAGEN). The mouse was 
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euthanized with an overdose of Avertin followed by induction of a bilateral 

pneumothorax. 

Histology, immunohistochemistry and immunofluorescence. EDL muscles were 

cut into 10 µm thick sections on a cryostat. The sections were fixed in cold acetone and 

stained with Hematoxylin (Ricca Chemical Company) and Eosin Y (EMD Millipore). The 

number of injured fibers was counted per section and expressed as a percentage of the 

total number of fibers. Injured fibers included those with a swollen appearance, pale or 

variable staining, and obvious infiltration of inflammatory cells (36). Basophilic fibers 

with central nuclei were identified as regenerating fibers (38). An image analysis 

program (Image J) was used to count fibers and measure cross-sectional areas of 

entire sections and individual regenerating fibers. 

Muscle sections were analyzed for neutrophil and macrophage content using 

immunohistochemistry. Sections were fixed in cold acetone and air-dried. Sections were 

exposed to BLOXALL solution to block endogenous peroxidase activity followed by 10% 

normal rabbit or goat serum in PBS (Phosphate Buffer Solution, Fisher Scientific) to 

block non-specific binding of subsequent antibodies. Neutrophils were detected with a 

rat anti-mouse Gr-1 antibody (RB6-8C5, 1:50 dilution, BD Pharmingen, 550291) diluted 

in PBS containing 10% rabbit serum and macrophages were detected with a rat anti-

mouse CD68 antibody (FA-11, 1:1000, AbD Serotec, MCA1957) diluted in PBS 

containing 10% rabbit serum or with a rabbit anti-mouse CD163 antibody (M-96, 1:1000, 

Santa Cruz Biotechnology, sc-33560) diluted in PBS containing 10% goat serum. After 

incubation in primary antibodies, sections were exposed to biotinylated mouse adsorbed 

rabbit anti-rat IgG (Gr-1 and CD68) or biotinylated goat anti-rabbit IgG (CD163) in PBS 
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containing 10% rabbit or goat serum, respectively. Following exposure to the secondary 

antibodies, the sections were treated with the VECTASTAIN Elite ABC reagent 

containing peroxidase followed by the peroxidase substrate 3, 3’-diaminobenzidine 

(ImmPACT DAB). The sections were rinsed with PBS after each step except after the 

treatment with serum. All reagents were from Vector Laboratories unless stated 

otherwise. The Image J program was used to count the number of neutrophils or 

macrophages in one transverse section from the middle of each muscle. In the 

periphery, neutrophils express high levels of Gr-1 while monocytes express low or no 

levels of Gr-1 (39). Therefore, dark brown cells indicating high levels of Gr-1 were 

counted as neutrophils while the occasional light brown cell of similar size was not 

counted. Both light and dark brown cells were counted as macrophages in sections 

treated with reagents for CD68 and CD163 detection. The Image J program was used 

to calculate the area of each section and neutrophil or macrophage content was 

expressed per mm3 of muscle. We also normalized neutrophil and macrophage content 

to the initial force deficit in order to provide a measure of the cellular response to a 

given amount of damage. Initial force deficit provides a valid and reproducible measure 

of the totality of the injury (40) and therefore we used the initial force deficit as a 

measure of initial damage. 

 Some muscle sections were analyzed for double labeling of either CD68 and 

CD163 or CD163 and CD301 with immunofluorescence. Sections were fixed in cold 

acetone and air-dried. Sections were exposed to 1% BSA (Jackson ImmunoResearch 

Laboratories) in PBS to block non-specific binding of subsequent antibodies and then 

exposed to a mixture of primary antibodies in PBS containing 1% BSA. To detect CD68 
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and CD163, the primary antibodies and concentrations were the same as for 

immunohistochemistry, except that anti-CD163 was diluted to 1:200 for 

immunofluorescence. To detect CD301, a goat anti-mouse CD301 IgG antibody was 

used (1:400, R&D Systems, AF4938). After exposure to primary antibodies, the sections 

were exposed to a mixture of appropriate secondary antibodies in PBS containing 1% 

BSA. Secondary antibodies were Alexa Fluor 594 goat anti-rat IgG (112-585-167), 

Alexa Fluor 594 bovine anti-goat IgG (805-585-180), and Alexa Fluor 488 donkey anti-

rabbit IgG (711-545-152) and were purchased from Jackson ImmunoResearch 

Laboratories. Sections were then exposed to DAPI (D9564, Sigma-Aldrich) to detect 

nuclei and treated with ProLong Gold Antifade Reagent (P36930, Life Technologies). 

The sections were rinsed with PBS after each step except after the treatment with 1% 

BSA. All sections for histology, immunohistochemistry, and immunofluorescence were 

imaged with a Nikon E-800 microscope. 

Blood analysis. Blood was collected via a scalpel nick of the lateral tail vein (50-

100 µl). Whole blood was analyzed with a cell counter (Hemavet 950FS, Drew 

Scientific) to determine circulating white blood cell counts. 

Gene expression. Muscle halves were homogenized in QIAzol lysis reagent 

(QIAGEN). RNA was isolated using an miRNeasy Mini Kit (QIAGEN) and treated with 

DNase I (QIAGEN). RNA concentration was measured with a NanoDrop 2000 

Spectrophotometer (Thermo Scientific). RNA (2  µg) was reverse transcribed using a 

QuantiTect Reverse Transcription Kit (QIAGEN), and cDNA was diluted by 5-fold and 

amplified in a CFX96 real time thermal cycler (Bio-Rad) using a QuantiTect SYBR 

Green I PCR Kit (QIAGEN) and primers specific for inducible nitric oxide synthase 
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(iNOS) (41), tumor necrosis factor alpha (TNFα) (41), arginase-1 (Arg1) (33), 

interleukin-10 (IL-10) (33), and β2-microglobulin (42). Primers were purchased from 

Integrated DNA Technologies and primer concentration was adjusted to yield PCR 

efficiencies between 90 and 110%. The presence of single amplicons from qPCR 

reactions was verified using melting curve analysis. Reactions were performed in 

duplicate. Preliminary work revealed that mRNA from target genes was undetectable in 

contralateral muscles so we completed our analysis using only injured muscles. 

Messenger RNA levels of β2-microglobulin were not altered by age but were elevated 5 

days after lengthening contractions relative to 2 days after lengthening contractions. 

Therefore, we normalized mRNA transcripts to β2-microglobulin and compared young 

and old samples within each time point. Messenger RNA levels were analyzed by the 

comparative CT method (43).  

Data analysis. Data are expressed as means ± 1 SEM. To compare two groups, 

Student’s t-tests were used and in cases of non-normal distributions or unequal 

variance, a Mann-Whitney Rank Sum test was used. To compare multiple groups, a 

Two Way ANOVA (Age x Day) was used and in cases of non-normal distributions or 

unequal variance, the data was ranked and a Two Way ANOVA (Age x Day) was used. 

Significance was set a priori at P < 0.05.  

 

Results   

 

General characteristics of young (3-5 mo) and old (25-27 mo) groups are shown 

in Table 1. Muscles from old mice were weaker by all measures (Table 3.1). We did not 
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detect a significant difference in muscle mass between young and old mice but cross-

sectional areas indicated that muscles from old mice were smaller than young (Table 

3.1).  

Unexpectedly, lengthening contractions caused slightly less initial damage in 

muscles from old mice relative to young, as assessed by the initial force deficit 

measured 10 minutes following the lengthening contraction protocol (Figure 3.1). The 

level of damage increased between 2 and 5 days after lengthening contractions for both 

age groups as indicated by increases in both force deficit and in the number of muscle 

fibers showing signs of histological damage as well as a decrease in the total number of 

fibers (Figure 3.2). Consistent with less initial damage in muscles from old mice, there 

was less damage in muscles from old mice 2 and 5 days after lengthening contractions, 

relative to young, according to several measures. Force deficit and the percentage of 

muscle fibers showing signs of histological damage were lower for muscles of old 

compared with young mice (Figures 3.2A-3.2B). Finally, the total number of fibers 

remaining in a cross-section 5 days after lengthening contractions was larger in the 

muscles of old compared with young mice, suggesting that fewer muscle fibers had 

completely degenerated in old mice by this time point (Figure 3.2C). 

Regenerating fibers were detected in sections from muscles taken 5 days after 

lengthening contractions. Injured muscles from old mice contained fewer regenerating 

fibers relative to young, but the difference was not significant (Figure 3.3A). Since fewer 

regenerating fibers in muscle sections of old mice could be due to less initial damage in 

this group, we also assessed the cross-sectional area of regenerating fibers as a 

measure of regeneration. In spite of less initial damage in muscles from old mice, 
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regenerating fibers in muscle sections from old mice were smaller relative to young 

(Figures 3.3B-3.3D), consistent with delayed or deficient repair with age.   

 Neutrophil (Gr-1+ cell) content in muscles from young and old mice increased 

relative to control levels by 2 days after lengthening contractions (Table 3.2, Figure 3.4, 

P < 0.001 by Two Way (age x injury) ANOVA, injury effect) and then declined between 2 

and 5 days after lengthening contractions (Figure 3.4). Neutrophil content was greater in 

old mice relative to young in control muscles (Table 3.2) and after lengthening 

contractions (Figure 3.4). The age-associated differences in neutrophil content between 

young and old mice were amplified when neutrophil content was normalized to initial 

damage (Figure 3.4B).    

The selection of macrophage markers was guided by immunofluorescence data 

(Figures 3.5-3.6). Mouse CD68 (rat ED1+) is expressed on macrophages and labels 

early-invading macrophages that accumulate in injured skeletal muscle and invade 

muscle fibers (32, 33, 44, 45). We originally planned to use CD68 as a marker of M1 

macrophages, but immunofluorescence showed that cells that were CD163+ were also 

CD68+ (Figure 3.5). Therefore we used CD68 as a marker for total macrophage 

content. CD163 has been used as a marker of M2 macrophages. Mouse CD163 (rat 

ED2+) labels a population of macrophages that accumulate in injured muscle after 

CD68+ cells, do not invade muscle fibers and are associated with repair (31-33). 

Immunofluorescence showed that CD163 co-localized with CD301 (Figure 3.6). CD301 

is another marker of M2 macrophages (46, 47) and the co-localization supports the 

identification of CD163+ cells as M2 macrophages. 
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Total macrophage (CD68+ cell) content in muscles from young and old mice 

increased relative to control levels by 2 days after lengthening contractions (Table 3.2, 

Figure 3.7, P < 0.001 by Two Way (age x injury) ANOVA, injury effect) and increased 

further between 2 and 5 days after lengthening contractions (Figure 3.7). Total 

macrophage content was not different in control muscles of young and old mice (Table 

3.2) and was not different 2 days after lengthening contractions (Figure 3.7A). Five days 

after lengthening contractions total macrophage content was about 25% lower in muscle 

from old mice relative to young (Figure 3.7A). However, when total macrophage content 

was normalized to the amount of initial damage, the outcome was reversed. That is, for 

a given level of injury, the degree of macrophage accumulation was significantly greater 

in old mice relative to young at both 2 and 5 days after injury (Figure 3.7B).   

M2 macrophage (CD163+ cell) content in muscles from young and old mice 

increased relative to control levels by 2 days after lengthening contractions (Table 3.2, 

Figure 3.8, P = 0.036 by Two Way (age x injury) ANOVA, injury effect) and increased 

between 2 and 5 days after lengthening contractions (Figure 3.8). M2 macrophage 

content was greater in muscles of old compared with young mice both before (Table 

3.2) and after lengthening contractions (Figure 3.8). The higher levels of M2 

macrophages in muscles of old mice were observed despite less damage in old mice. 

Thus, the differences in M2 macrophage content between young and old mice were 

enhanced when M2 macrophage content was normalized to initial damage (Figure 

3.8B). 

Finally, we examined function of myeloid cells in injured muscles from young and 

old mice with a focus on macrophages, the dominant cell type. We examined 
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messenger RNA levels of genes expressed by M1 (iNOS, TNFα) or M2 (Arg1, IL-10) 

macrophages in injured muscles from young and old mice (Figure 3.9). In old injured 

muscles, mRNA levels of iNOS and TNFα were not different from young muscles 2 

days after lengthening contractions, but were significantly elevated over young levels 5 

days after lengthening contractions (Figures 3.9A-3.9D). Messenger RNA levels of Arg1 

were also not different between young and old muscles 2 days after lengthening 

contractions (Figure 3.9E). After 5 days, mRNA levels of Arg1 were increased in old 

muscles relative to young, but values from old animals were highly variable and the 

difference was not significant (Figure 3.9F, P = 0.083).  Two days after lengthening 

contractions, IL-10 mRNA levels were decreased in old muscles relative to young 

(Figure 3.9G) with no differences between groups 5 days after lengthening contractions 

(Figure 3.9H). 

Finally, we questioned whether enhanced neutrophil and macrophage content in 

injured muscles from old mice relative to young reflected a general increase in 

circulating levels of neutrophils and monocytes with age. In mice that were not 

subjected to lengthening contractions, circulating levels of neutrophils and monocytes 

were significantly greater in old animals relative to young (Figure 3.10). 

 

Discussion 

 

Our results indicate that the myeloid cell response to injury was altered in old 

mice relative to young. However, contrary to our hypothesis, the altered myeloid cell 

response was not characterized by a persistence of neutrophils, impaired total 
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macrophage accumulation, or a delay in the accumulation of M2 macrophages. The 

supporting evidence is that in old muscles, neutrophils did not remain elevated 5 days 

after lengthening contractions, but similar to the young group, declined between 2 and 5 

days. Neutrophil levels were greater 5 days after lengthening contractions in old 

muscles relative to young, but this does not reflect a persistence of neutrophils since 

quiescent muscles from old mice also had greater neutrophil content. Five days after 

injury, total macrophage content was about 25% less in muscles from old mice relative 

to young, but the smaller number may be explained by the proportional reduction 

(~20%) in initial damage in muscles of old mice relative to young rather than impaired 

macrophage accumulation. Furthermore, when total macrophage accumulation was 

normalized to the amount of initial damage, total numbers of macrophages in injured 

muscles from old mice were greater compared to the numbers observed in young mice. 

M2 macrophage content increased in injured muscles between 2 and 5 days after 

lengthening contractions for both young and old mice, but was greater in old muscles 

relative to young. Thus, neither total macrophage accumulation nor M2 macrophage 

accumulation was impaired in injured muscles from old mice. 

Although an age-related persistence or impaired/delayed accumulation of 

leukocytes after muscle injury has been suggested by other studies, these studies are 

limited by the use of nonspecific leukocyte markers, failure to quantify cellular or protein 

content, or a failure to normalize data to the amount of initial damage. Prolonged 

expression (mRNA) of inflammatory markers, including the leukocyte marker CD18, was 

observed in muscles from old rats up to 3 days after myotoxin injury (48). While this 

finding could reflect an age-related persistence of neutrophils, macrophage levels would 
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also affect CD18 expression and actual neutrophil and/or macrophage cell content was 

not examined. Hamada et al. 2005 found that CD18 mRNA levels were increased in 

vastus lateralis muscles of young subjects 3 days after downhill running but increased 

to a lesser degree in muscles of old subjects (49). This finding suggests impaired or 

delayed leukocyte infiltration with age, but a trend toward less damage in old subjects 

as reflected by serum levels of creatine kinase was also reported (49). Thus, reduced 

leukocyte recruitment could explain decreased CD18 mRNA levels, but cellular content 

of leukocytes was once again not assessed in injured muscles in the Hamada study. 

Sadeh reported delayed recruitment of macrophages in muscles from old rats injured 

with myotoxin relative to young controls (1). However, this qualitative study estimated 

macrophage numbers based on nuclei observed in muscle sections stained with H&E, 

which would represent multiple cell types including neutrophils and satellite cells. In 

contrast, the present study, which uses cell specific markers, can not only quantify 

neutrophil and macrophage content in injured muscles but can also interpret the data 

with a consideration of the amount of initial damage in young and old muscles.   

Instead of an age-related persistence of neutrophils or impaired or delayed 

macrophage accumulation after injury, the results indicated an enhanced response in 

the magnitude of neutrophils, total macrophages and M2 macrophages to injury in old 

relative to young mice. Our observations of enhanced neutrophil and macrophage 

accumulation in old mice in response to muscle injury is generally supported by other 

studies. Increased leukocyte infiltration was reported in muscles of old rats compared 

with young after ischemia/reperfusion injury of plantaris muscles (50). In addition, 

muscles from adult and old rats displayed elevated CD68 protein content relative to 
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young, 3 days after a contusion injury (5). Although CD68 content does not necessarily 

reflect the number of CD68+ cells, this finding generally agrees with ours. Koh et al. 

2003 assessed neutrophil (Ly6G+ cells) and macrophage (F4/80+ cells) content after 

lengthening contractions (51). The authors observed similar levels of injury in young and 

old groups as assessed by force deficit and the number of injured fibers, but observed 

almost a 2-fold increase in neutrophils and a trend toward increased macrophages in 

muscles from old animals relative to young, in agreement with our findings. However, an 

age-related increase in myeloid cell content after injury is not a universal finding. Paliwal 

et al. 2012 found no difference in leukocyte (CD11b+ cell) content in muscles from 

young and old mice 3 and 5 days after a cardiotoxin injury, as assessed by flow 

cytometry (52). Nevertheless, the majority of studies, including the present study, 

suggest an age-related increase in leukocyte content after muscle injury. 

Our observation of elevated levels of neutrophil and macrophage content in 

injured muscles from old mice relative to young may reflect a compensatory effect of 

impaired function of aged myeloid cells. In order to address this question, we measured 

mRNA levels of genes expressed by different myeloid cell populations after muscle 

injury. Consistent with previous reports of elevations in iNOS, TNFα, arginase-1, and IL-

10 in injured muscles (33, 41, 53) and in myeloid cells isolated from injured muscles 

(22, 41), we detected iNOS, TNFα, arginase-1, and IL-10 mRNA in injured muscles at 

both 2 and 5 days after lengthening contractions. Our finding that after 5 days, mRNA 

levels of iNOS and TNFα were elevated in muscles from old mice relative to young 

suggests that rather than an age-related impairment of macrophage function, iNOS and 

TNFα were produced in excess by macrophages in the old mice. In support of this 
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conclusion, macrophages have been identified as a source of TNFα and iNOS after 

muscle injury (22, 41) and in the present study, iNOS and TNFα mRNA levels were 

elevated in muscles of old mice despite fewer macrophages in injured muscles from old 

compared with young mice at this time point. Although low concentrations of TNFα and 

some iNOS expression appear to benefit repair (41, 54), an overproduction of TNFα 

and iNOS can be detrimental. TNFα can inhibit myogenic differentiation in vitro and in 

vivo, lead to the degradation of transcription factors critical for muscle regeneration (55, 

56) and induce muscle protein degradation and apoptosis (54) while iNOS-expressing 

macrophages can injure muscle cells in vitro (57) and in vivo (58). Therefore, excessive 

TNFα or iNOS production by macrophages could undermine or impair muscle 

regeneration in aged animals. Macrophages and specifically anti-inflammatory 

macrophages have been identified as the source of IL-10 after muscle injury (22, 59). 

After 2 days, we found less IL-10 mRNA in muscles of old mice relative to young, in 

spite of more CD163+ cells in old muscles as compared with young at this time point. 

Thus, the age-related decrease in IL-10 mRNA could suggest impaired IL-10 production 

in aged macrophages. Impaired IL-10 production can be detrimental to muscle repair. 

Mice lacking IL-10 show persistent fiber damage and greatly slowed regeneration and 

growth after an unloading/reloading muscle injury (33). IL-10 can contribute to repair by 

several mechanisms. IL-10 stimulated macrophages promote the proliferation and 

differentiation of myogenic precursors in vitro and in vivo (58, 59). IL-10 can also play a 

regulatory role, suppressing the production of pro-inflammatory cytokines IL-1, IL-6 and 

TNFα	
   (60), while stimulating production of the growth factor IGF-1 (59). Therefore, 

insufficient IL-10 production by aged macrophages could lead to deficient repair. 
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Overall, our findings suggest age-related changes in the expression of macrophage-

associated genes, which have the potential to undermine or impair muscle regeneration 

in aged animals.  

An age-related increase in neutrophil and macrophage content in injured muscles 

may also reflect an increased pool of cells available to respond to the injury or an age-

related increase in recruitment signals. The former possibility is supported by our 

observation of elevated levels of circulating neutrophils and monocytes in old compared 

with young mice. While correlation does not necessarily imply causation, the possibility 

exists that more neutrophils and macrophages accumulated in injured muscles of old 

animals relative to young because more neutrophils and monocytes were available to 

respond to recruitment signals by damaged muscle. Recruitment signals for neutrophils 

and monocytes may also be elevated with age. Resident myeloid cells can recruit other 

inflammatory cells to injured muscle (61). In uninjured muscles we observed more 

neutrophils in old mice than in young, a finding that is in agreement with others (51). 

Total macrophages in uninjured muscles were not different between the age groups, 

also in agreement with other reports (5, 51) but more CD163+ cells were observed in 

the present study in muscles from old mice relative to young. These findings suggest 

that muscle displays an age-associated change in the composition of resident myeloid 

cells. Age-related changes in resident cell populations could affect recruitment of 

myeloid cells after muscle injury, but this hypothesis remains to be tested.  

An unexpected finding of the present study was that we found slightly less 

damage in muscles from old mice relative to young. Previous studies using the in situ 

EDL injury model using mice of the same strain, sex, and of similar age have found 
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force deficits that were not different between young and old mice (51, 62) while one 

study found greater force deficits in old mice (63). It may be that the difference we saw 

was due to the specific cohort tested. The old mice in the present study generated less 

absolute force and less specific force than young controls, but significant differences in 

these measures are not always observed (7, 51, 63), suggesting that our cohort showed 

more of an aged phenotype than cohorts from other studies. If activation was somewhat 

impaired in the old mice in the present study due to aging-associated degeneration of 

neuromuscular junctions (64), impaired blood flow (65) or other factors, less damage 

would be expected after lengthening contractions in the old group relative to the young. 

Regardless of which factors contributed to the difference in initial damage between 

groups, normalizing neutrophil and macrophage content to the initial force deficit 

provided a measure of the cellular response to a given amount of damage. 

Our study is not without limitations. We assessed only two measures of 

regeneration, the number and size of regenerating fibers as observed by H&E staining 

of muscle cross-sections. Despite these limited data, age-related impairments in 

regeneration after muscle injury have been firmly established by a variety of studies (1-

10). To examine function of myeloid cells in injured muscle, we examined mRNA levels 

at the tissue level. Therefore, we could not confirm the cellular source of the mRNA and   

altered mRNA levels do not necessarily reflect changes in protein content. Future 

studies could address these limitations by isolating different myeloid cell populations 

from injured muscles of young and old mice and examining mRNA and protein levels of 

purified cells. 
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In summary, our findings indicate that the myeloid cell response to injury was 

altered in old mice relative to young. However, contrary to our hypothesis, the altered 

myeloid cell response was not characterized by a persistence of neutrophils, impaired 

total macrophage accumulation, or a delay in the accumulation of M2 macrophages.  

The results indicated an enhanced response in the magnitude of neutrophils, total 

macrophages and M2 macrophages to injury in old mice relative to young, perhaps due 

to elevated circulating levels of neutrophils and monocytes in aged mice. In addition to 

the altered magnitude of the myeloid cell response to injury, aged myeloid cells may 

differentially express genes that have implications for muscle repair. Despite the 

impairments in muscle regeneration observed in old animals as well as the 

accumulating evidence that myeloid cells play a critical role in muscle repair following 

injury, the effect of aging on the magnitude and the timing of the myeloid cell response 

has received little attention. This study addresses gaps in our knowledge of aging-

related changes in the myeloid cell response to injury, including the response of M2 

macrophages, which to our knowledge, have not been examined in aged muscle after 

injury.  
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Figure 3.1: Initial force deficit after lengthening contractions was about 20% less in 
muscles from old mice relative to young (*P = 0.014).    
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Figure 3.2: Damage 2 and 5 days after lengthening contractions in young and old mice. 
Force deficits (A). Force deficits increased between 2 and 5 days (day effect, P = 0.016) 
and were significantly less for muscles of old mice relative to young (age effect, P < 
0.001). There was no significant interaction between day and age (P = 0.151). A similar 
result was found when force deficit was calculated relative to the contralateral muscle 
{Force deficit = [(force of contralateral muscle in vitro – force of injured muscle in vitro) / 
(force of contralateral muscle in vitro)] * 100} (age effect, P = 0.004; day effect, P = 
0.008; interaction, P = 0.231). Injured fibers (B). The percentage of fibers showing signs 
of histological damage increased between 2 and 5 days (day effect, P = 0.008) and 
were significantly less for muscles of old mice relative to young (age effect, P < 0.001). 
There was no significant interaction between day and age (P = 0.151). Total number of 
fibers (C). Two days after lengthening contractions, the total number of fibers was 
unchanged from contralateral control muscles of young and old mice (Table 2) and not 
significantly different between young and old groups (NS, P = 0.446). Five days after 
lengthening contractions, the number of total fibers decreased in young and old 
muscles, indicating that some fibers had completely degenerated (#P < 0.001). The 
number of total fibers was greater in muscles from old mice relative to young at this time 
point (*P = 0.039). Representative partial sections of muscles from young mice (D, F, H) 
and old mice (E, G, I) stained with H&E. Sections are from contralateral muscles (D, E), 
muscles 2 days after lengthening contractions (F, G) and muscles 5 days after 
lengthening contractions (H, I). Scale bar = 200 µm and applies to all images. 
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Figure 3.3: Regenerating fibers in injured muscle from young and old mice, 5 days after 
lengthening contractions. Number of regenerating fibers per muscle cross-section (A). 
While there were fewer regenerating fibers in muscle sections from old mice relative to 
young, the difference was not significant (P = 0.197). Average cross-sectional area of 
regenerating fibers (B). Cross-sectional area was significantly less in muscles from old 
mice (*P < 0.001). Representative partial sections of muscles from young (C) and old 
(D) mice showing regenerating fibers. Scale bar = 50 µm and applies to both images. 
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Figure 3.4: Neutrophil content in injured muscles from young and old mice. Neutrophil 
(Gr-1+ cell) content relative to size of tissue section (A). Neutrophil content declined 
between 2 and 5 days (day effect, P = 0.006) and was significantly greater in muscles 
from old mice relative to young (age effect, P < 0.001). Neutrophil content normalized to 
initial damage (i.e. initial force deficit) (B). Neutrophil content relative to initial damage 
declined between 2 and 5 days after lengthening contractions (day effect, P < 0.001) 
and was significantly greater in muscles from old mice relative to young (age effect, P < 
0.001). Representative partial sections of muscles from young mice (C, E, G) and old 
mice (D, F, H) labeled for Gr-1. Sections are from contralateral muscles (C, D), muscles 
2 days after lengthening contractions (E, F) and muscles 5 days after lengthening 
contractions (G, H). Scale bar = 200 µm and applies to all images. 
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Figure 3.5: CD68+ and CD163+ cells co-localize in injured muscles. Partial muscle 
sections labeled for CD68 (red) and CD163 (green) 2 (A, C, E) and 5 (B, D, F) days 
after lengthening contractions. Cells that were CD163+ were also CD68+ (yellow), 
consistent with CD163 labeling a subset of total macrophages (CD68+ cells). 
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Figure 3.6: CD163+ and CD301+ cells co-localize in injured muscles. Partial muscle 
sections labeled for CD163 (green) and CD301 (red) 2 (A, C, E) and 5 (B, D, F) days 
after lengthening contractions. Cells that were CD163+ were also CD301+ (yellow), but 
not all CD301+ cells were CD163+. 
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Figure 3.7: Total macrophage content in injured muscles from young and old mice. 
Total macrophage (CD68+ cell) content relative to size of tissue section (A). 
Macrophage content increased between 2 and 5 days (#P < 0.001) and was 
significantly greater in muscles from old mice relative to young 5 days after lengthening 
contractions (*P < 0.001) but not after 2 days (NS, P = 0.871). Total macrophage 
content normalized to initial damage (i.e. initial force deficit) (B). Macrophage content 
relative to initial damage increased between 2 and 5 days after lengthening contractions 
(day effect, P < 0.001) and was significantly greater in muscles from old mice relative to 
young (age effect, P = 0.003). Representative partial sections of muscles from young 
mice (C, E, G) and old mice (D, F, H) labeled for CD68. Sections are from contralateral 
muscles (C, D), muscles 2 days after lengthening contractions (E, F) and muscles 5 
days after lengthening contractions (G, H). Scale bar = 200 µm and applies to all 
images. 
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Figure 3.8: M2 macrophage content in injured muscles from young and old mice. M2 
macrophage (CD163+ cell) content relative to size of tissue section (A). M2 
macrophage content increased between 2 and 5 days (day effect, P = 0.015) and was 
significantly greater in muscles from old mice relative to young (age effect, P < 0.001). 
M2 macrophage content normalized to initial damage (i.e. initial force deficit) (B). M2 
macrophage content relative to initial damage increased between 2 and 5 days after 
lengthening contractions (day effect, P < 0.001) and was significantly greater in muscles 
from old mice relative to young (age effect, P < 0.001). Representative partial sections 
of muscles from young mice (C, E, G) and old mice (D, F, H) labeled for CD163. 
Sections are from contralateral muscles (C, D), muscles 2 days after lengthening 
contractions (E, F) and muscles 5 days after lengthening contractions (G, H). Scale bar 
= 200 µm and applies to all images. 
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Figure 3.9: Messenger RNA levels of M1 macrophage genes (iNOS, TNFα) and M2 
macrophage genes (Arg1, IL-10) in old injured muscles relative to young 2 and 5 days 
after lengthening contractions. Messenger RNA levels of iNOS (A, B), TNFα (C, D), 
Arg1 (E, F), and IL-10 (G, H) were normalized to β2-microglobulin mRNA. Messenger 
RNA levels of M1 macrophage genes were not different between young and old 
muscles 2 days after lengthening contractions but were increased in old muscles 
relative to young 5 days after lengthening contractions (iNOS: *P = 0.003, TNFα: *P = 
0.014). Messenger RNA levels of Arg1 were not different between young and old 
muscles 2 or 5 days after lengthening contractions, although there was a trend toward 
elevated Arg1 mRNA levels in old muscle relative to young after 5 days (P = 0.083). 
Messenger RNA levels of IL-10 were significantly less in muscles from old mice relative 
to young 2 days after lengthening contractions (*P = 0.013) but not 5 days after 
lengthening contractions. 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

80	
  

 
 
Figure 3.10: Circulating levels of neutrophils and monocytes are elevated in old mice. 
Summary of neutrophil data, *P = 0.008 (A). Summary of monocyte data, *P = 0.016 
(B).   
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Group n 
Body 

weight 
(g) 

Absolute 
force in 

situ 
(mN) 

Absolute 
force in 

vitro 
(mN)† 

Specific 
force in 

vitro 
(mN/mm²)† 

Muscle 
mass 
(mg)	
  † 

CSA from 
H&E 

stained 
sections 
(mm²)†	
  

Total 
number 

of 
fibers† 

         
Young 18 32.0 ± 0.8 407 ± 8 473 ± 8 250 ± 4 12.0 ± 0.2 1.9 ± 0.1 951 ± 26 

Old 19 32.7 ± 0.6 343 ± 9* 436 ± 13* 232 ± 6* 11.9 ± 0.3 1.6 ± 0.1* 936 ± 23 
 
Table 3.1: Characteristics of young and old groups. †data taken from contralateral 
muscles. *significantly less than young group (P < 0.05). CSA = cross-sectional area. 
Forces are maximum forces generated during isometric tetanic contractions. Two 
samples are missing from young group for CSA from H&E stained sections and for total 
number of fibers. 
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Group n Gr-1+ cells per 
mm3 tissue 

CD68+ cells per 
mm3 tissue 

CD163+ cells per 
mm3 tissue 

     
Young 18 337 ± 53  13444 ± 465 10130 ± 348 

Old 15 1470 ± 240* 14083 ± 569 12070 ± 421* 
 
Table 3.2: Neutrophils and macrophages in uninjured and contralateral muscles from 
young and old mice. Neutrophil and macrophage content was not significantly different 
in muscles from contralateral muscles from either day and in muscles from uninjured 
mice. Therefore, data shown was pooled from muscles from uninjured mice and from 
contralateral muscles. *significantly different from young, P ≤ 0.001. 
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Chapter 4 

 

Treatment with P/E-selectin blocking antibodies blunts neutrophil accumulation 

after lengthening contractions but does not reduce damage 

 

Abstract 

 

P- and E-selectins are expressed on the surface of endothelial cells and may 

contribute to neutrophil recruitment following injurious lengthening contractions of 

skeletal muscle. Blunting neutrophil, but not macrophage, accumulation after 

lengthening contractions may provide a therapeutic benefit as neutrophils exacerbate 

damage to muscle fibers while macrophages promote repair. In the present study we 

tested the hypothesis that P- and E-selectins contribute to neutrophil, but not 

macrophage, accumulation in muscles after contraction-induced injury and that reducing 

neutrophil accumulation by blocking the selectins would be sufficient to reduce damage 

to muscle fibers. To test our hypothesis, we treated mice with antibodies to block P- and 

E-selectin function and assessed leukocyte accumulation and damage in muscles two 

days after lengthening contractions. Treatment with P/E-selectin blocking antibodies 

reduced neutrophil content by about half in muscles subjected to lengthening 

contractions while macrophage content was reduced by about a third. In spite of the 
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reduction in neutrophil accumulation, we did not detect a decrease in damage two days 

after lengthening contractions, suggesting that the levels of neutrophils in the muscles 

(50% of controls) were sufficient to induce damage. From a therapeutic perspective, the 

implication is that blocking the selectins may not represent a beneficial approach, and 

additional adhesion proteins may need to be targeted to sufficiently reduce neutrophil 

accumulation to provide a benefit. 

 

Introduction 

 

Skeletal muscle injuries are common and have a variety of causes, including 

physical trauma, extreme temperatures, toxin exposure, invasive surgery, 

ischemia/reperfusion and unloading/reloading. Muscles can also be injured by their own 

contractions (i.e. contraction-induced injury), especially during lengthening contractions 

when muscles are stretched while activated. Regardless of the cause, the initial insult is 

followed by degeneration and necrosis of damaged muscle fibers followed by 

regeneration and repair. In the young and healthy, regeneration is typically rapid and 

complete, but advanced age, muscle disease, and severe injury is associated with 

delayed or incomplete repair. Therefore, reducing the degree of damage after injury is a 

worthwhile goal. 

Accompanying the degeneration and necrosis of fibers in injured muscle is the 

accumulation of inflammatory cells in the tissue. Neutrophils increase in the muscle 

within hours to days of the initial injury. Neutrophils can lyse muscle cells in vitro and 

damage membranes in vivo by mechanisms involving reactive oxygen species (1, 2), 
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and preventing neutrophil infiltration after injury reduces force deficits and histological 

damage to muscle fibers (3-6), suggesting that neutrophils contribute to muscle fiber 

damage. Subsequent to the rise in neutrophils, pro-inflammatory macrophages begin to 

accumulate in injured muscle. Pro-inflammatory macrophages are also capable of lysing 

muscle cells in vitro (7). However, in vivo studies suggest that these cells are ultimately 

beneficial to the repair process, as evidenced by observations that reducing the level of 

invading macrophages delays the clearance of necrotic fibers, reduces the number and 

size of regenerating fibers, and increases fibrosis and fat relative to controls (8-11). 

Thus, preventing or blunting the neutrophil response while keeping the macrophage 

response intact may protect the muscle from unnecessary damage without interfering 

with repair, and provide a therapeutic benefit in cases of delayed or incomplete repair.  

Methods explored to reduce neutrophil accumulation consist of systemic 

approaches, such as depleting cells from the circulation (6, 12) or genetically knocking 

out genes for proteins involved in neutrophil migration out of blood vessels (5, 13). 

These are appropriate experimental approaches for proof-of-concept studies but are not 

feasible as therapeutic interventions. One option for targeted therapeutic intervention is 

the administration of a compound to block the endothelial selectins, P- and E-selectin. 

P- and E-selectins are adhesion proteins expressed by activated vascular endothelial 

cells. Once expressed on the luminal surface of blood vessels, the selectins interact 

with corresponding ligands on neutrophils, “capturing” them from the rapidly flowing 

blood stream and enabling slow rolling along the vessel wall. Capture and slow rolling of 

neutrophils are initial steps in a well-characterized cascade that culminates with 

neutrophil migration out of the blood vessel and into the surrounding tissue (14). 
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Genetic knockout of both P- and E-selectin prevents neutrophil infiltration after an 

unloading/reloading injury but keeps macrophage accumulation intact (13) but, the 

degree to which endothelial selectins contribute to neutrophil and macrophage 

accumulation after other types of muscle injury is unknown. Furthermore, whether 

reducing neutrophil accumulation by targeting the endothelial selectins is sufficient to 

reduce damage to muscle fibers after contraction-induced injury has not been 

examined. 

Therefore, in the present study we tested the hypothesis that endothelial 

selectins contribute to neutrophil, but not macrophage, accumulation in muscles after 

contraction-induced injury and that reducing neutrophil accumulation by blocking the 

selectins would be sufficient to reduce damage to muscle fibers after contraction-

induced injury. To test our hypothesis, we subjected extensor digitorum longus (EDL) 

muscles of mice to lengthening contractions in situ and treated the animals with 

antibodies to block binding of neutrophils to P-selectin (RB40.34) and E-selectin (9A9). 

Two days after lengthening contractions, damage was assessed by functional measures 

and by histology, and neutrophil and macrophage accumulation was assessed by 

immunohistochemistry. 

 

Methods 

 

Animals. Male C57BL/6N mice, 3-5 mo of age were purchased from Charles 

River Laboratories and housed in a specific-pathogen-free facility at the University of 

Michigan until experimentation. Between experimental procedures, mice were housed in 
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a separate specific-pathogen-free return room. All animal use procedures were 

approved by the University of Michigan Committee on the Use and Care of Animals 

(UCUCA). 

In situ evaluation of contractile properties. Procedures for in situ evaluation of 

muscle contractile properties were based on previous studies (15, 16). Each mouse was 

anesthetized with 3% isoflurane in oxygen delivered at a rate of 1 L/min. Anesthesia 

was maintained throughout in situ procedures with 2% isoflurane in oxygen and depth of 

anesthesia was confirmed by failure of the mouse to respond to tactile stimuli. 

Ophthalmic ointment was placed on the mouse’s eyes to prevent corneal drying and 

trauma and this was re-administered throughout in situ procedures. The mouse was 

placed on a platform warmed to 37 °C with a circulating water bath. The hind limb fur 

was removed with animal clippers followed by a minimal amount of fur removal cream. 

The skin was disinfected with chlorhexidine and a small incision was made at the ankle 

to expose the distal tendon of the EDL muscle. Another small incision was made distal 

to the knee to expose the peroneal nerve. A secure knot was tied around the tendon 

with 6.0 braided silk suture. The hind limb was immobilized by pinching the knee and 

the foot with small clamps secured to the platform. Using the tails of the silk suture, the 

intact tendon was tied to the lever arm of a servomotor (300C-LR-FP, Aurora Scientific), 

which controlled the length of the muscle and measured the force generated. A 

computer with custom-designed software controlled stimulus pulses, the servomotor, 

and collected and stored force data. The small area of exposed tendon was kept moist 

by frequent administration of sterile saline. The EDL muscle was activated using a 

stimulator (701C, Aurora Scientific) and platinum electrodes placed under the peroneal 
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nerve. A stimulus pulse duration of 0.2 ms was used for all contractions. Stimulation 

current and muscle length were adjusted in order to elicit maximum twitch force. Tetanic 

contractions of 200 ms duration were elicited with trains of pulses and the frequency of 

the pulses was increased until the force plateaued at the maximum isometric force (Po), 

typically at a frequency of 200 Hz. Finally, small adjustments in the ankle position were 

made to elicit maximum isometric tetanic force. The tetanic contractions were spaced 1 

min apart to prevent fatigue. Optimal muscle length (Lo), defined as the muscle length at 

which maximum isometric force is achieved, was measured with calipers using the knee 

to estimate the location of the proximal end of the EDL muscle. Optimal muscle fiber 

length (Lf) was determined by multiplying Lo by the previously determined Lf-to-Lo ratio 

of 0.45 (17). 

In situ lengthening contraction protocol. Following evaluation of contractile 

properties, the EDL muscle was exposed to a protocol of 75 lengthening contractions 

spaced 4 s apart for a total duration of 5 min. Each contraction was 300 ms in duration. 

100 ms after the onset of stimulation, near maximum isometric force was generated and 

a stretch of 20% strain relative to Lf was initiated. Muscles were lengthened at the 

appropriate rate (1 Lf/s) to cause the peak of the stretch to coincide with the end of the 

tetanic stimulation. Ten minutes after the lengthening contraction protocol, the muscle 

was re-lengthened to achieve maximum twitch tension and Po was re-measured. The 

small incisions at the ankle and distal to the knee were closed with 7.0 sterile 

monofilament nylon suture and bathed with povidone-iodine solution, and mice were 

monitored until they recovered from anesthesia. 
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Administration of blocking antibodies. Approximately 1 hour following in situ 

lengthening contractions, antibodies were administered via intraperitoneal injection(s). 

Mice received either tandem injections of rat anti-mouse monoclonal antibodies specific 

for P-selectin (200 µg, clone RB40.34, BD Pharmingen, 553741) and E-selectin (200 

µg, clone 9A9, generously provided by Dr. Klaus Ley, La Jolla Institute for Allergy & 

Immunology) or a single injection of irrelevant isotype control antibodies (400 µg, A110-

1, BD Pharmingen, 559157). Uninjected mice served as an additional control group.  

The blocking function of RB40.34 and 9A9 has been demonstrated in many 

studies in vitro and in vivo. In vitro, both antibodies prevent attachment of myeloid cells 

to their respective selectins (18, 19). In vivo, RB40.34 alone or together with 9A9 

prevents cytokine-induced leukocyte rolling along blood vessel walls and both 

antibodies reduce chemically-induced neutrophil migration into the peritoneal cavity (18-

23). RB40.34 was detected on platelets in the blood 3 hours after a single 

intraperitoneal injection, and platelets with bound RB40.34 were detected up to 7 days 

after injection when a dose of 200 µg was administered (24). Therefore, this dose of 

RB40.34 and 9A9 was used in the present study to provide blocking coverage over the 

time period studied. 

In vitro evaluation of contractile properties. Two days following administration of 

the lengthening contraction protocols, mice were again evaluated for Po. This time point 

was chosen because preliminary experiments suggested the neutrophil content of 

injured muscles was greatest 2 days after administration of the injury protocol used in 

the present study. Procedures for the in vitro evaluation of EDL contractile properties 

have been previously published (17). Each mouse was anesthetized with an 
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intraperitoneal injection of Avertin (tribromoethanol, 250 mg/kg) (chemical components 

from Sigma-Aldrich). After the mouse was unresponsive to a tactile stimulus, the injured 

EDL muscle was isolated from the hindlimb of the mouse. 5-0 silk suture was tied to the 

proximal and distal tendons of the muscle and the muscle was placed into a chamber 

containing Krebs Mammalian Ringer solution composed of (in mM): 137 NaCl, 5 KCl, 2 

CaCl2·2H2O, 1 MgSO4·7H2O, 1 NaH2PO4, 24 NaHCO3, 11 glucose, 0.03 tubocurarine 

chloride. The solution was maintained at 25 °C and bubbled with 95% O2-5% CO2 to 

maintain a pH of 7.4. The proximal tendon was attached to a stationary object and the 

distal tendon was attached to a force transducer (BG-50, Kulite Semiconductor 

Products). Muscles activation was accomplished by electric field stimulation via a high-

power current stimulator (701C, Aurora Scientific) and parallel plate electrodes.  

A computer and custom-designed software controlled stimulus pulses and 

collected and stored force data. Stimulus pulses of 0.2 ms in duration were used for all 

contractions. Stimulation current and the muscle length were adjusted in order to elicit 

maximum twitch force. A digital calipers was used to measure Lo. Muscles were held at 

Lo and tetanic contractions of 300 ms in duration were elicited with trains of pulses. The 

frequency of the pulses was increased until the force plateaued at Po, typically at 

frequencies from 150-200 Hz. The tetanic contractions were spaced 1 min apart to 

prevent fatigue. Optimal muscle fiber length (Lf) was determined as previously 

mentioned. Force deficit was defined as the difference between the Po measured 

immediately prior to lengthening contractions and the Po measured two days after 

lengthening contractions expressed as a percentage of the pre-injury Po. Following 

evaluation of the injured EDL, the contralateral EDL was removed and evaluated as 
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described. Muscles were trimmed of their tendons and weighed. Muscles were then 

immersed in Tissue Freezing Medium (Electron Microscopy Sciences) and frozen in 

isopentane cooled by liquid nitrogen. The mouse was euthanized with an overdose of 

Avertin followed by induction of a bilateral pneumothorax. 

Histology and immunohistochemistry. EDL muscles were cut into 10 µm thick 

sections on a cryostat. The sections were fixed in cold acetone and stained with 

Hematoxylin (Ricca Chemical Company) and Eosin Y (EMD Millipore). Stained sections 

were imaged with a Nikon E-800 light microscope. The number of injured fibers was 

counted per section and expressed as a percentage of the total number of fibers. 

Injured fibers included those with a swollen appearance, pale or variable staining, and 

obvious infiltration of inflammatory cells (16). 

Muscle sections were analyzed for neutrophil and macrophage content using 

immunohistochemistry. Sections were fixed in cold acetone and air-dried. Sections were 

exposed to BLOXALL solution to block endogenous peroxidase activity followed by 10% 

normal rabbit serum in PBS (Phosphate Buffer Solution, Fisher Scientific) to block non-

specific binding of subsequent antibodies. Neutrophils were detected with a rat anti-

mouse Gr-1 antibody (clone RB6-8C5, 1:50 dilution, BD Pharmingen, 550291) and 

macrophages were detected with a rat anti-mouse CD68 antibody (clone FA-11, 1:1000, 

AbD Serotec, MCA1957) diluted in PBS containing 10% rabbit serum. After incubation 

in primary antibodies, sections were exposed to biotinylated mouse adsorbed anti-rat 

IgG in PBS containing 10% rabbit serum. Following exposure to the secondary 

antibodies, the sections were treated with the VECTASTAIN Elite ABC reagent 

containing peroxidase followed by the peroxidase substrate 3, 3’-diaminobenzidine 
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(ImmPACT DAB). The sections were rinsed with PBS after each step except after the 

treatment with rabbit serum. All reagents were from Vector Laboratories unless stated 

otherwise. In the periphery, neutrophils express high levels of Gr-1 while monocytes 

express low or no levels of Gr-1 (25). Therefore, dark brown cells indicating high levels 

of Gr-1 were counted as neutrophils while the occasional light brown cell of similar size 

was not counted. CD68 is expressed on macrophages and labels early-invading 

macrophages that accumulate in injured skeletal muscle (26-28). An image analysis 

program (Image J) was used to count the number of neutrophils (Gr-1+ cells) or 

macrophages (CD68+ cells) in one transverse section from the middle of each muscle. 

The same program was used to calculate the area of each section and neutrophil or 

macrophage content was expressed per mm3 of muscle.  

The location of neutrophils relative to blood vessels was also analyzed using 

immunohistochemistry. Neutrophils were labeled first according to the methods 

described in the preceding paragraph, except that the normal rabbit serum was 

replaced with Carbo-Free Blocking Solution. Carbo-Free Blocking Solution does not 

contain glycoproteins, which can interfere with subsequent lectin-based detection. To 

label blood vessels, muscle sections were first treated with solutions from an 

Avidin/Biotin Blocking Kit to block endogenous avidin and biotin. Sections were 

incubated in Carbo-Free Blocking Solution to block non-specific binding of the lectin. 

The sections were then treated with a biotinylated Griffonia (Bandeiraea) Simplicifolia 

Lectin I (GSL I, 10 µg/ml in PBS). GSL I labels all blood vessels in skeletal muscle (29). 

The biotinylated lectin was detected by exposing sections to a VECTASTAIN Elite ABC 

reagent containing peroxidase followed by a peroxidase substrate (ImmPACT SG). The 
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sections were rinsed with PBS containing 0.05% Tween 20 (Sigma-Aldrich) following 

the lectin and ABC reagent steps. All reagents were from Vector Laboratories unless 

stated otherwise. The number of neutrophils detected within blood vessels was counted 

and expressed as a percentage of total neutrophils per section. This sequential labeling 

technique may not detect neutrophils within capillaries but within larger vessels only. 

Blood analysis. Blood was collected via a scalpel nick of the lateral tail vein (50-

100 µl per day). Whole blood was analyzed with a cell counter (Hemavet 950FS, Drew 

Scientific) to determine circulating white blood cell counts.  

Statistics.  Data are expressed as means ± 1 SEM. Experimental groups were 

compared with a Student’s t-test unless otherwise indicated, with significance set a 

priori at P < 0.05.    

 

Results  

 

There were no differences among the experimental groups for body weight, 

maximum force generation by the EDL muscle prior to lengthening contractions, or force 

deficit 10 min after the lengthening contractions (Table 4.1). Injecting the irrelevant 

control antibody A110-1 had no significant effect on any of the variables measured 

(selected variables shown in Figure 4.1). Therefore, the A110-1 injected group was 

pooled with the uninjected group to make one “control” group. 

As hypothesized, treatment with P/E-selectin blocking antibodies reduced 

neutrophil content by about half in muscles subjected to lengthening contractions 

(Figure 4.2A). To assess whether the neutrophils that were present in spite of blocking 
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antibody treatment had indeed migrated out of the circulation, we examined neutrophil 

localization relative to blood vessels (Figures 4.2D-4.2E). Irrespective of the 

experimental group, only about 5% of neutrophils were clearly inside blood vessels 

(control: 6 ± 1% vs. anti-P/E-sel: 5 ± 2%), suggesting that most of the neutrophils we 

detected were extravascular. Contrary to our hypothesis, the decrease in neutrophil 

content was not associated with a decrease in damage as assessed by force deficit, 

which was approximately 50% for muscles of both treated and control mice (Figure 4.3). 

Muscles of both groups also showed similar numbers of injured fibers, with 10% to 15% 

of the fibers in a cross section showing morphological evidence of injury (Figure 4.4A). 

Although the number of injured fibers was not different among experimental groups, the 

characteristics of the injured fibers were different (Figure 4.4E), with fewer fibers 

showing signs of inflammatory cell infiltration and more fibers with variable or pale 

staining in the muscles from mice injected with blocking antibodies. Also contrary to our 

hypothesis was the observation that macrophage content showed a trend (P = 0.076) 

toward a reduction by approximately one-third in muscles of treated compared with 

control mice.  

An unexpected finding was an effect of treatment with P/E-selectin blocking 

antibodies on the contralateral muscles that were not subject to lengthening 

contractions (Figure 4.6). Although force generation of contralateral control muscles 

was not affected by the treatment with the selectin blocking antibodies (control: 258 ± 5 

mN/mm2 vs. anti-P/E-sel: 248 ± 6 mN/mm2) nor was there any morphological evidence 

of injured fibers (control: 0.13 ± 0.07% vs. anti-P/E-sel: 0.23 ± 0.10%), neutrophil 

content was increased by more than 4-fold (Figure 4.6A). Thirteen percent of these 



 
 

101	
  

neutrophils were found within blood vessels, compared with 33% in control muscle 

sections (control: 33 ± 8% vs. anti-P/E-sel: 13 ± 5%, t-test, P = 0.089), suggesting that 

the majority of the neutrophils in the contralateral muscles were also extravascular. 

Blood analysis revealed that the blocking antibody treatment dramatically increased 

circulating neutrophils (Figure 4.7A) that may have driven neutrophils into contralateral 

muscles in the absence of lengthening contractions, as well as contributing to the 

increased neutrophil levels in injured muscles. Although neutrophils were elevated in 

contralateral muscles of treated mice the levels did not reach those observed in injured 

muscles from mice treated with P/E-selectin blocking antibodies (contralateral: 1210 ± 

159 Gr-1+ cells / mm3 tissue vs. injured: 2624 ± 530 Gr-1+ cells / mm3 tissue, t-test, P = 

0.045). Treatment with P/E-selectin blocking antibodies also increased circulating 

monocytes (Figure 4.7B), although the difference was less dramatic than for neutrophils 

and did not reach significance (effect of blocking antibody treatment, P = 0.066). The 

trend toward elevated numbers of circulating monocytes was not associated with 

increased macrophage content in contralateral muscles (Figure 4.6D).  

 

Discussion 

 

The major implication of the present study is that endothelial selectins (P- and/or 

E-selectin) contribute to, but are not necessary for, neutrophil accumulation after 

contraction-induced injury. Support for this conclusion is provided by our observation 

that treating animals with blocking antibodies for P- and E-selectin reduced but did not 

eliminate neutrophils in sections of injured muscles. Our results also indicate that 



 
 

102	
  

reducing neutrophil accumulation to approximately 50% of control levels is not sufficient 

to reduce damage after contraction-induced injury, as evidenced by the observations 

that the treatment and accompanying blunted accumulation of neutrophils did not result 

in a reduction of the force deficit or the number of fibers showing histological evidence 

of damage. Our study was not decisive on the question of whether or not blocking the 

endothelial selectins left macrophage accumulation intact. Muscles of mice treated with 

blocking antibodies showed two thirds as many macrophages following lengthening 

contractions compared with the numbers observed in untreated mice, but the decrease 

did not reach reach statistical signifcance. Therefore, the remainder of the discussion 

will focus primarily on neutrophils. 

The finding that endothelial selectins contribute to neutrophil accumulation after 

contraction-induced injury was not known but was expected. Many studies have 

demonstrated a role for the selectins in leukocyte capture and rolling along blood vessel 

walls in the cremaster muscle (20-23, 30). In addition, neutrophil accumulation in soleus 

muscle after unloading followed by reloading was reduced in mice deficient in P- and E-

selectin, suggesting that the endothelial sections contribute to neutrophil accumulation 

in this injury model (13). Despite these previous investigations of selectin function in 

skeletal muscle, neutrophils can accumulate in tissues using adhesion molecules other 

than P- and E-selectin (see discussion in following paragraph), and the involvement of 

endothelial selectins in neutrophil accumulation following contractions-induced injury 

had not been demonstrated prior to the present study. 

While our results indicate that P- and/or E-selectin contribute to neutrophil 

accumulation after contraction-induced injury, our observation that neutrophil content 
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was not completely eliminated in injured muscles after treatment with blocking 

antibodies suggests that selectins are not necessary for neutrophil accumulation in this 

model. In the absence of P- and E-selectin function, other adhesion molecules such as 

L-selectin or vascular cell adhesion molecule 1 (VCAM-1) may contribute to neutrophil 

accumulation. L-selectin expressed on free flowing leukocytes can interact with PSGL-1 

on rolling or adherent leukocytes in a process known as secondary capture, and the 

proportion of captured cells seized by this mechanism increases after P-selectin is 

blocked or absent (23). Furthermore, in cremaster or gracilis pedicle muscle, leukocyte 

rolling and neutrophil migration out of the vasculature is impaired when L-selectin is 

blocked or deficient (31-33). VCAM-1 expressed on endothelial cells can interact with α4 

integrins on leukocytes, and residual leukocyte rolling after blocking P- and E-selectin or 

in mice lacking all three selectins was further reduced with blocking antibodies to either 

VCAM-1 or α4 integrin (23, 30). Therefore, neutrophil rolling mediated by VCAM-1 and 

α4 integrin followed by secondary capture mediated by L-selectin and PSGL-1 may 

have contributed to the neutrophil accumulation in injured muscles observed in the 

present study. We also cannot rule out the possibility that P- and E-selectin are, in fact, 

required for neutrophil accumulation but that the amount of RB40.34 and 9A9 injected in 

the present study (200 µg for each antibody) was insufficient to completely block P- and 

E-selectin function. While we have no independent measure of selectin function to allow 

assessment of the effectiveness of our blocking treatment, 200 µg of RB40.34 almost 

completely eliminated macrophage migration out of injured arteries, suggesting that the 

dose of at least RB40.34 was sufficient for close to complete blockage (24). 
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Our finding that treatment with blocking antibodies reduced neutrophil 

accumulation in injured muscles but did not reduce damage is compatible with existing 

studies. Several studies examining damage after lengthening contractions found that 

effectively preventing neutrophil accumulation to a great extent (80-90% reduction in 

neutrophils) reduced force deficit and histological damage after injury caused by 

lengthening contractions, with specific reductions in damage ranging from 

approximately 30% to 80% (4-6). However, a reduction in damage by neutrophil 

depletion is not a universal finding. In one study, >90% of circulating neutrophils were 

depleted with antisera prior to lengthening contractions of hindlimb muscles, yet no 

reduction in force deficit or in the quantity of injured fibers relative to controls was 

observed (12). Nevertheless, the majority of studies to date suggest that the damage 

after lengthening contractions is at least in part mediated by neutrophils. In light of these 

studies, the most defensible interpretation of our findings is that the residual neutrophil 

accumulation in the presence of blocking antibody treatment, about 50% of control 

levels, was sufficient to induce neutrophil-mediated damage in injured muscles. 

While the blocking antibody treatment did not affect the total number of injured 

fibers, the characteristics of injured fibers were different (Figure 4.4E). Increased 

intracellular calcium after muscle injuries can cause hypercontractions of portions of 

muscle fibers and leave adjacent portions of the same fibers barely visible or missing 

(34, 35). Thus, dark, swollen fibers (Category 1) or fibers with variable staining 

(Category 2) could represent portions of fibers that were hypercontracted. Pale fibers 

(Category 2) could represent segments of fibers that were adjacent to hypercontracted 

regions or fibers containing degraded contractile proteins, perhaps as a result of 
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calcium-sensitive proteases (36). Data from a parallel experiment using untreated mice 

showed that 5 days after lengthening contractions, the number of Category 1 and 2 

fibers declined while the number of Category 3 fibers increased (data not shown), 

suggesting that over the course of the degenerative stage of repair, fibers show signs of 

damage and degeneration and are subsequently invaded by inflammatory cells. Thus, 

an interpretation of Figure 4.4E is that the blocking antibody treatment did not affect the 

number of fibers showing signs of degeneration or necrosis, but decreased the number 

of degenerating or necrotic fibers that had subsequently been invaded by inflammatory 

cells. This finding could be explained by decreased neutrophil accumulation with 

antibody treatment, or it could be explained by the reduced macrophage accumulation 

with antibody treatment, as macrophages are frequently found within degenerating 

fibers 2 days after injury. Both neutrophils and macrophages are thought to participate 

in the removal of necrotic tissue after injury. Teixeira et al. 2003 depleted neutrophils 

prior to toxin-induced muscle injury and observed delayed clearance of necrotic fibers 

accompanied by fewer regenerating fibers and fibrosis. However, the impaired 

regeneration could have been due to the decrease in macrophage accumulation that 

was also observed (37) as other studies that have depleted only macrophages prior to 

muscle injury have found similar impairments in regeneration (8, 9). We did not examine 

whether the reduced neutrophil accumulation observed in the present study ultimately 

had an impact on the removal of necrotic tissue or on regeneration and repair, but this is 

an important consideration for future studies.  

Although our study was not decisive on the question of whether or not blocking 

the endothelial selectins left macrophage accumulation completely intact, we can say 
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that macrophage accumulation was not dramatically altered with P- and E-selectin 

blocking antibody treatment. This conclusion is consistent with a previous report that 

treatment with RB40.34 did not reduce accumulation of CD11b+ cells after lengthening 

contractions in mouse soleus muscles (38). Although CD11b is present on neutrophils, 

monocytes, and macrophages, the authors report very few neutrophils in their study. 

Therefore, their finding suggests that monocyte/macrophage accumulation is not 

dependent upon P-selectin, with the caveat that they may have not seen an effect due 

to the small concentration of RB40.34 injected (20 µg) or the targeting of only one 

selectin. Another report found that macrophage accumulation after unloading and 

reloading of mouse soleus muscle was not affected in P/E-selectin deficient mice (13). 

Overall, the data from the previous studies as well as the present study suggests that 

macrophages accumulate in injured skeletal muscle predominantly by P/E-selectin 

independent mechanisms. The trend toward decreased macrophage accumulation 

observed in the present study could be due to the decrease in neutrophil accumulation, 

as macrophage recruitment is one proposed role for neutrophils after muscle injury (37). 

We were surprised by the observation that treatment with P- and E-selectin 

blocking antibodies increased neutrophil content in the contralateral muscles that were 

not subject to lengthening contractions. Blood analysis showed that treatment with 

blocking antibodies after injury dramatically increased the level of circulating 

neutrophils. The latter finding is consistent with other reports also showing elevated 

levels of circulating neutrophils in selectin deficient mice or in mice treated with blocking 

antibodies for P- and E-selectin (13, 19, 39), and may reflect the displacement of 

marginated neutrophils from blood vessel walls. Therefore, the dramatic increase in 
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circulating neutrophils observed in the present study may have driven more neutrophils 

into the contralateral muscles and presumably into the injured muscles, as well. We did 

not see more macrophages in the contralateral muscles, perhaps because there was 

only a trend for an increase in circulating levels of monocytes. Despite the substantial 

increase in neutrophil content in the contralateral muscles, we saw no evidence that the 

presence of the neutrophils in the tissue had any damaging effects on the muscle as 

assessed by the maintenance of force generating capability and also by the lack of 

histological evidence of injury. The uncoupling between neutrophil accumulation and 

muscle injury implies that merely the presence of neutrophils is not sufficient to induce 

damage. Additional factors such as neutrophil transcriptional activity, degranulation or 

reactive oxygen species production, perhaps induced by the injured tissue environment, 

may be responsible for neutrophil-mediated exacerbation of damage to muscle fibers. 

In summary, the present study provides evidence that endothelial selectins (P- 

and/or E-selectin) contribute to neutrophil accumulation after contraction-induced injury, 

while macrophage accumulation appears to occur by mostly endothelial selectin-

independent mechanisms. In spite of the reduction in neutrophil accumulation, we did 

not detect a decrease in damage two days after lengthening contractions, suggesting 

that the levels of neutrophils in the muscles (50% of controls) were sufficient to induce 

damage. From a therapeutic perspective, the implication is that blocking the selectins 

may not represent a beneficial approach. Additional adhesion proteins may have to be 

targeted to fully prevent neutrophil accumulation.  An alternative approach would be to 

target specific functions of neutrophils that exacerbate damage. Determining the effect 

of these approaches on later stages of the repair process is also an important area of 
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investigation. Therapies targeting adhesion molecules or specific functions of 

neutrophils will also have to consider the effect on the muscle at later stages of the 

repair process. 
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Figure 4.1: Injection of irrelevant control antibody A110-1 has no significant effect on 
damage or inflammatory cells in muscles 2 days after lengthening contractions. Force 
deficit (A). Injured fibers (B). Neutrophils (Gr-1+ cells) (C). Macrophages (CD68+ cells) 
(D).  
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Figure 4.2: Treatment with blocking antibodies against P/E-selectin decreases 
neutrophil content in muscles 2 days after lengthening contractions. Neutrophils (Gr-1+ 
cells) ∗P = 0.005 by Mann-Whitney Rank Sum Test (A). Representative partial section 
of muscle from uninjected mouse (B) and mouse injected with blocking antibodies (C) 
with scale bars = 200 µm. Examples of neutrophil (Gr-1+ cells, brown) and blood vessel 
(GSL I, gray) co-labeling with scale bars = 50 µm (D, E). Neutrophils outside of vessels 
(D). Neutrophils on the inner surface of large vessels (E).    
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Figure 4.3: Treatment with blocking antibodies against P/E-selectin does not 
significantly decrease muscle damage 2 days after lengthening contractions, as 
assessed by force deficit.  
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Figure 4.4: Treatment with blocking antibodies does not reduce the total number of 
injured fibers but reduces the percentage of injured fibers that are invaded by 
inflammatory cells, 2 days after lengthening contractions. Total injured fibers expressed 
as a percentage of the total number of fibers in a muscle section (A). Representative 
partial section of muscle from uninjured mouse (B), uninjected mouse (C), and mouse 
injected with P/E-selectin blocking antibodies (D). Injured fibers expressed as a 
percentage of the total number of injured fibers in a muscle section (E). Injured fibers 
fell into one of three categories. Category 1 consisted of round and often swollen fibers 
stained dark with eosin Y. Category 2 consisted of fibers with variable or pale staining 
with eosin Y. Category 3 consisted of fibers similar to those in category 2 but with 
several nuclei within the fiber, assumed to be inflammatory cells. ∗significantly different 
from category 1 within experimental group. #significantly different from category 2 within 
experimental group. ψsignificantly different from control within category. Significance 
was determined by a Two Way ANOVA (P < 0.05) (E). Magnified views of fibers from C 
and D (F - I). Examples of category 1 (F), category 2 (G, H) and category 3 (I) fibers. 
Scale bars = 200 µm.  
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Figure 4.5: Treatment with blocking antibodies against P/E-selectin decreases 
macrophage content in muscles 2 days after lengthening contractions, although the 
decrease is not statistically significant (P = 0.076 by Mann Whitney Rank Sum Test). 
Macrophages (CD68+ cells) (A). Representative section of muscle from uninjected 
mouse (B) and mouse injected with blocking antibodies (C). Scale bars = 200 µm.  
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Figure 4.6: Treatment with blocking antibodies against P/E-selectin increases 
neutrophil but not macrophage content after 2 days, in contralateral muscles that have 
not been subjected to lengthening contractions. Neutrophils (Gr-1+ cells) (A). 
Representative partial section of muscle from uninjured mouse (B) and mouse injected 
with P/E-selectin blocking antibodies (C), Gr-1 labeled. Macrophages (CD68+ cells) (D). 
Representative partial section of muscle from uninjured mouse (E) and mouse injected 
with P/E-selectin blocking antibodies (F), CD68 labeled. Scale bars = 200 µm.  
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Figure 4.7: Circulating levels of major populations of white blood cells before and after 
lengthening contractions. Note that injection of blocking antibodies occurred within an 
hour of lengthening contractions. Neutrophils increased significantly with blocking 
antibody treatment ∗significantly different from control, #significantly different from 1 d 
pre-LC value ψsignificantly different from 1 d post-LC value (A). Monocytes increased 
with blocking antibody treatment but the increase did not reach significance (P = 0.066) 
(B). Lymphocytes increased 2 days after lengthening contractions in both experimental 
groups # significantly different from 1 d pre-LC value (C). Data was analyzed by a Two 
Way Repeated Measures ANOVA (significance set at P < 0.05).  
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Group 
Sample 

size 
Body 

weight (g) 
Isometric force 

in situ (mN) 
Immediate 
force deficit 

(%) 
     

Uninjected 10 30.0 ± 0.6 414 ± 12 52 ± 3 

A110-1 injected 3 31.3 ± 1.4 411 ± 2 48 ± 6 

RB40.34/9A9 injected 8 29.1 ± 0.5 395 ± 7 52 ± 4 

 
Table 4.1: Summary of data collected from experimental groups prior to antibody 
injections. Body weight, initial force generation of EDL muscles, and immediate force 
deficit after lengthening contractions were not different among experimental groups. 
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Chapter 5 

 

Conclusions and future work  

 

Summary of objectives 

 

Aging is associated with progressive declines in skeletal muscle mass and 

function that can significantly impact quality of life and limit independence in older 

individuals. Muscles of aged individuals are more susceptible to damage and have a 

diminished ability for repair. Thus, cycles of injury and incomplete recovery may occur 

and contribute to progressive declines in muscle function. Therefore, finding ways to 

restrict damage after muscle injury and/or enhance repair is a worthwhile goal for the 

benefit of older individuals. Developing strategies to restrict damage or enhance repair 

for older individuals requires a mechanistic understanding of both the damage and 

repair processes following injury and the impact of aging on those processes. The 

overall objective of this dissertation was to address fundamental gaps in our knowledge 

of cellular and molecular events associated with a common form of muscle injury and to 

identify age-related changes in key events. The specific goals were to 1) determine the 

role of ROS in initiating lengthening contraction-induced injury, 2) to determine the 

contribution of alterations in the myeloid cell response to injury and/or 
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regeneration in adult and old mice, and 3) to determine the role of P- and E-selectin in 

neutrophil accumulation following lengthening contraction-induced injury.  

 

Summary of conclusions 

 

The primary conclusions of this dissertation are briefly summarized below: 

 

In vitro experiments in mouse lumbrical muscles revealed that lengthening 

contractions that damaged the muscle did not generate more ROS than isometric 

contractions that did not cause damage. This study argues against an increase in ROS 

in skeletal muscle fibers as an initiating factor in degenerative and regenerative 

processes occurring following the initial injury and does not provide support for 

antioxidant interventions early on in the injury process (Chapter 2). 

In situ experiments using mouse EDL muscles revealed that impaired 

regeneration in muscles from old mice was accompanied by an altered neutrophil 

response to injury (Chapter 3). The altered response was not characterized by a 

persistence of neutrophils. Rather, neutrophils were elevated in injured muscles of old 

mice relative to young. Neutrophils can exacerbate damage to injured muscle fibers and 

therefore, an age-related elevation in neutrophils could further exacerbate damage to 

injured muscles beyond levels in young mice and thus undermine repair. Experiments 

described in Chapter 4 provided insight regarding this possibility. Treating mice with 

blocking antibodies for P/E-selectin after lengthening contractions decreased neutrophil 

accumulation by half but did not reduce damage, suggesting that only a portion of 
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accumulating neutrophils are sufficient to exacerbate damage (Chapter 4). Therefore, 

we conclude that modest changes in neutrophil content does not affect damage to 

muscle fibers after lengthening contractions. We speculate that the age-related increase 

in neutrophil content did not further exacerbate damage to injured muscles beyond 

levels in young mice.  

In situ experiments using mouse EDL muscles also revealed that impaired 

regeneration in muscles from old mice was accompanied by an altered macrophage 

response to injury (Chapter 3). The altered response was not characterized by a delay 

or reduction in the accumulation of total or M2 macrophages. Instead, macrophage 

accumulation was generally elevated in injured muscles of old mice relative to young.  

Gene expression data revealed age-related changes in the expression of macrophage-

associated genes that have the potential to undermine or impair muscle regeneration. 

Thus, we propose the mechanism underlying age-related susceptibility to damage 

and/or deficient repair may include altered function of aged macrophages.  

In situ experiments using mouse EDL muscles revealed that endothelial selectins 

(P and/or E-selectin) contributed to neutrophil accumulation after lengthening 

contractions. However, blocking the endothelial selectins did not completely prevent 

neutrophil accumulation, and we did not detect a decrease in damage two days after 

lengthening contractions. We conclude that blocking only the selectins may not provide 

a therapeutic benefit, and that additional adhesion proteins may have to be targeted to 

fully prevent neutrophil accumulation and reduce damage after lengthening contractions 

(Chapter 4).  
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Future work 

 

The most exciting findings described in this dissertation were the age-related 

differences in the myeloid cell response to muscle injury, and the indication that myeloid 

cells from aged mice exhibit altered function that could influence the repair process. 

These findings provide direction for future studies that will ultimately be aimed at 

manipulating pathways to reduce injury or enhance repair. 

Further work should be done to clarify and further characterize the effects of 

aging on myeloid cell function. Because we examined mRNA at the tissue level, we 

could not confirm the cellular source of the mRNA and we did not assess changes in 

protein content. Future studies could isolate different myeloid cell populations 

(neutrophils and macrophages) from injured muscles of young and old mice via cell 

sorting methods (1) and examine mRNA and protein levels of purified cells. Enzyme 

activity could also be examined (e.g. arginase-1 or iNOS activity in macrophages and 

myeloperoxidase or elastase activity in neutrophils). In addition to the production of 

cytokines and molecules, other aspects of myeloid cell function could also be examined. 

For example, phagocytosis could be assessed by quantifying muscle protein in purified 

populations of myeloid cells, or by in vitro assays (1).  

Once the effects of aging on myeloid cell function were clarified and further 

characterized, identified targets could be manipulated in young and/or old mice and the 

effects on muscle injury and/or repair could be assessed. Mice that are genetically 

engineered to either lack expression or conversely, overexpress certain genes in 

myeloid cells could be used for experiments. Alternatively, levels of certain molecules 



 
 

126	
  

(e.g. IL-10) could be restored at different time points by injection to injured muscles of 

wild-type mice. Ultimately, promising targets identified from these studies could be 

manipulated to reduce injury or enhance repair in old animals.    
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