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A C K N O W L E D G M E N T S

I might get top billing on this thing by convention, but it took a village to shove me

this far. Rather than be morti�ed for eternity about excluding one person I forgot,

I would rather include everyone � but nobody by name. I even got paralyzed by

indecision trying to list broad categories. Thanks for bearing with me. Y'all know

who you are.

ii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Rational approaches to understanding human behavior . . . . . . . 2
1.2 Key theoretical components of the thesis model . . . . . . . . . . . 3
1.3 An overview of key results . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Adaptation to task payo� in reading . . . . . . . . . . . . . 5
1.3.2 Exploring lexical frequency spillover e�ects in reading . . . . 5

1.4 The structure of the dissertation . . . . . . . . . . . . . . . . . . . . 6

2 Relevant empirical phenomena and current accounts . . . . . . . . . 8

2.1 Rational approaches to understanding behavior . . . . . . . . . . . 8
2.1.1 Rational Analysis . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 From rational analysis to computational rationality . . . . . 9
2.1.3 Other approaches to rationality under bounds . . . . . . . . 11

2.2 Empirical e�ects in eye movements in reading . . . . . . . . . . . . 12
2.2.1 Eye movements in reading: basic de�nitions and phenomena 12
2.2.2 Basic constraints on the oculomotor system in reading . . . 13
2.2.3 Frequency phenomena in reading . . . . . . . . . . . . . . . 14

2.3 Sequential sampling as a model of moment-by-moment decisionmaking 16
2.4 Models of eye movement control in reading . . . . . . . . . . . . . . 16
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 A Theoretical Model and Empirical Paradigm for Understanding

Adaptive Eye Movement Control . . . . . . . . . . . . . . . . . . . . . 20

3.1 The list lexical decision task . . . . . . . . . . . . . . . . . . . . . . 21
3.2 The core theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Lexical processing perceptual identi�cation . . . . . . . . . . 24
3.2.2 Decision dynamics . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Oculomotor architecture: delays and distributions . . . . . . 30

iii



3.2.4 Direct control and serial attention: current debates . . . . . 33
3.2.5 How the model makes predictions . . . . . . . . . . . . . . . 36
3.2.6 Putting it all together: the full architecture . . . . . . . . . 37

4 Evidence for Adaptive Eye Movement Behavior in the LLDT . . . 39

4.1 Model and simulation speci�cation . . . . . . . . . . . . . . . . . . 41
4.1.1 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 The relationship between policy and payo� . . . . . . . . . . 43

4.2 Human experiment methods . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Human and model results . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Trial level e�ects . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 String level e�ects . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.3 How could it be otherwise? Why a match in adaptation and

its locus is important . . . . . . . . . . . . . . . . . . . . . . 53
4.4 How does architecture shape adaptation? . . . . . . . . . . . . . . . 54
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 Summary of major results . . . . . . . . . . . . . . . . . . . 56
4.5.2 Comparing the LLDT to normal reading . . . . . . . . . . . 57
4.5.3 The Accuracy discrepancy . . . . . . . . . . . . . . . . . . . 57
4.5.4 The speed of payo� adaptation . . . . . . . . . . . . . . . . 61

5 Spillover frequency e�ects in the masked LLDT . . . . . . . . . . . . 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.1 Spillover frequency e�ects . . . . . . . . . . . . . . . . . . . 67
5.1.2 Spillover in the unmasked LLDT . . . . . . . . . . . . . . . 68

5.2 Spillover in the masked LLDT . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 A new masking method . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Adaptation to payo� . . . . . . . . . . . . . . . . . . . . . . 74
5.2.4 Frequency and spillover e�ects . . . . . . . . . . . . . . . . . 74

5.3 Exploring other explanations for spillover e�ects . . . . . . . . . . . 77
5.3.1 An overview of E-Z Reader . . . . . . . . . . . . . . . . . . 78
5.3.2 Modeling the LLDT in E-Z Reader . . . . . . . . . . . . . . 81
5.3.3 The implications for spillover-as-delay for models of reading 88

6 Computationally rational spillover . . . . . . . . . . . . . . . . . . . . 91

6.1 Introduction and overview . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 A model of saccadic control with noisy memory for recent perception 92
6.3 A computational rationality analysis . . . . . . . . . . . . . . . . . 96

6.3.1 Spillover as computationally rational behavior . . . . . . . . 97
6.3.2 Spillover-capable policies dominate . . . . . . . . . . . . . . 97

6.4 Why spillover arises from sequenced thresholded samplers . . . . . . 99

iv



6.5 Rational parafoveal preview in the LLDT . . . . . . . . . . . . . . . 99
6.5.1 Adding parafoveal preview to the model . . . . . . . . . . . 100
6.5.2 Parafoveal preview is rational in most speed-accuracy trade-

o�s in the LLDT . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5.3 Interaction of parafoveal preview and memory review . . . . 103
6.5.4 Spillover e�ects in the preview model . . . . . . . . . . . . . 104

6.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 105

7 Fitting the model to human data . . . . . . . . . . . . . . . . . . . . . 115

7.1 The advantage and importance of model �ts . . . . . . . . . . . . . 115
7.2 Comparing single �xation durations in humans to the memory-delay

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Comparing single �xation durations in humans to the parafoveal pre-

view model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4 On the problems with quantiatively �tting human data . . . . . . . 118

7.4.1 Spillover as a departure from rationality . . . . . . . . . . . 119
7.4.2 Spillover as a consequence of architecture . . . . . . . . . . . 120
7.4.3 Spillover as rational under other constraints or architecture

variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 122

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.1 An overview of results . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2.1 Individual Variation . . . . . . . . . . . . . . . . . . . . . . 133
8.2.2 Sentence Reading . . . . . . . . . . . . . . . . . . . . . . . . 134
8.2.3 Adaptive control of attention . . . . . . . . . . . . . . . . . 137

8.3 A �nal word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

v



LIST OF FIGURES

3.1 Sequence diagram of reading two words in base model. . . . . . . . . . . 24
3.2 Architecture for the base model. . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Expected model payo�s across the policy space . . . . . . . . . . . . . . 44
4.2 Trial-leve empirical results in the human and the model. . . . . . . . . . 49
4.3 Single �xation durations and frequency e�ects. . . . . . . . . . . . . . . 62
4.4 Single Fixation Durations in the humans and the model. . . . . . . . . . 63
4.5 Root mean squared error of model predictions of di�erent architectural

variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Payo� surface and optimal policies for a model with minimal oculomotor

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Single �xation durations for model with minimal oculomotor constraints. 65
4.8 Response time and percentage correct by block. . . . . . . . . . . . . . . 66

5.1 Spillover e�ect in the unmasked LLDT . . . . . . . . . . . . . . . . . . . 69
5.2 Single �xation duration by masking type . . . . . . . . . . . . . . . . . . 73
5.3 Response Time by condition by block, masked and unmasked . . . . . . 75
5.4 Single �xation duration by condition by block, masked and unmasked . . 76
5.5 E-Z Reader timecourse diagram . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Timecourse of stages in full E-Z Reader and the simpli�ed model as a

function of frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.7 Testing E-Z Reader on LLDT data based on past �ts . . . . . . . . . . . 85
5.8 Testing E-Z Reader trained on unmasked LLDT on LLDT data . . . . . 86
5.9 Testing E-Z Reader trained on masked LLDT on LLDT data . . . . . . 87
5.10 E-Z Reader RMSE as a function of α2 . . . . . . . . . . . . . . . . . . . 88
5.11 E-Z Reader RMSE as a function of α1 . . . . . . . . . . . . . . . . . . . 89
5.12 E-Z Reader RMSE as a function of ∆ . . . . . . . . . . . . . . . . . . . 90

6.1 Example dynamics of a single saccade decision. . . . . . . . . . . . . . . 92
6.2 Detailed sequence diagram for the memory model. . . . . . . . . . . . . 95
6.3 Spillover e�ects generated by the top 5% of policies. . . . . . . . . . . . 108
6.4 Spillover e�ects in human participants. . . . . . . . . . . . . . . . . . . . 109
6.5 Speed-accuracy tradeo� curves with and without the perceptual priority

bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.6 An example for how the prior of a thresholded sampler a�ects its prior in

expectation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.7 Parafoveal preview capable model sequence diagram. . . . . . . . . . . . 111

vi



6.8 Best Speed-accuracy curve for preview and non-preview model, selected
noises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Best Speed-accuracy curve for preview model with perceptual priority bit
set and unset, selected noises. . . . . . . . . . . . . . . . . . . . . . . . . 113

6.10 Spillover e�ects in preview model. . . . . . . . . . . . . . . . . . . . . . 114

7.1 SFD by previous-frequency bin, base model. . . . . . . . . . . . . . . . . 124
7.2 SFD by previous-frequency bin, very low noise. . . . . . . . . . . . . . . 125
7.3 SFD by previous-frequency bin, 2ms sample rate. . . . . . . . . . . . . . 126
7.4 SFD by previous-frequency bin, short saccade planning time. . . . . . . 127
7.5 SFD by current-frequency bin, base model. . . . . . . . . . . . . . . . . 128
7.6 SFD by previous-frequency bin, preview model. . . . . . . . . . . . . . . 129
7.7 Spillover e�ects in non-computationally-rational model. . . . . . . . . . . 130

vii



LIST OF TABLES

4.1 Quantitative payo�s given to both model and human participants. . . . 40
4.2 Oculomotor architecture parameters. . . . . . . . . . . . . . . . . . . . . 41
4.3 Fit model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Trial-level measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Single Fixation Durations. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Statistical Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Summary of frequency and spillover e�ect statistics . . . . . . . . . . . . 77

viii



ABSTRACT

Adaptive Eye Movement Control in a Simple Linguistic Task

by

Michael Shvartsman

Co-Chairs: Richard L. Lewis and Satinder Singh

This dissertation pursues a computationally rational analysis of eye move-

ments in a simple list-reading task. The strength of the computationally

rational approach is in the ability to explain why certain phenomena may

emerge under the assumption that behavior is an approximately optimal

adaptation to the joint constraints of an organism's intrinsic computational

constraints and task demands. The provided theory and model integrates a

framework of lexical processing as active perception (Norris, 2006) with ocu-

lomotor constraints derived from a broad-coverage model of eye movement

control in reading (Reichle, Warren & McConnell 2009). The �rst portion of

the thesis provides experimental evidence of adaptation of �xation durations

to quantitatively-expressed payo�s in a simple reading task, and adaptation

in the model on the same dimension. The second portion explores spillover

lexical frequency e�ects in the same framework and how they may emerge

from a model that can adaptively allocate processing resources to informa-

tion drawn from perception (foveal or parafoveal), or memory. In addition

to implications for eye movement control in reading, these �ndings can be

interpreted to bear on task adaptation in reading, as well as the adaptive use

of perception and memory in a sequential sampling framework.
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CHAPTER 1

Introduction

This dissertation is intended to advance the scienti�c understanding of human eye

movement behavior in reading. It pursues this work from a perspective of computa-

tional rationality. In contrast to solely descriptive theories, the computational ratio-

nality approach provides explanations of how certain properties of the eye movement

process may re�ect adaptation to underlying constraints imposed by the reader's

cognitive and behavioral architecture, task structure, and task goals. The key con-

tributions are an adaptive model of eye movement control in reading, experimental

evidence of adaptation of the same kind that the model exhibits, and an exploration

of spillover frequency e�ects in a rational adaptive control framework. Broadly inter-

preted, these �ndings bear on task adaptation in reading, as well as the adaptive use

of perception and memory in a sequential sampling framework.

The theoretical work integrates a sequential sampling model of lexical processing

(Norris, 2006, 2009) with a cognitive and oculomotor machine architecture based

on a state-of-the-art model of eye movement control in reading (Reichle, Warren &

McConnell, 2009). The number of sequential samples used can be varied to produce

di�erent speed-accuracy tradeo�s. In this way, the sequential sampling component

provides a parametric locus of adaptive control. The model generates predictions by

�nding near-optimal behavior with respect to this adaptive locus, as constrained by a

particular machine architecture. These predictions are tested on humans performing

the same task as the model, under the same speed-accuracy tradeo�s imposed via

quantitatively-expressed payo�s. The task used is the List Lexical Decision Task

(Meyer, Schvaneveldt & Ruddy, 1974), a simple widely-spaced list-reading task that

has some useful similarities to sentence-reading in a more naturalistic context.

The remainder of this chapter motivates the approach and key theoretical compo-

nents, provides an overview of the key results, and concludes with a roadmap of the

remainder of the dissertation.
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1.1 Rational approaches to understanding human be-

havior

The theoretical work in the thesis assumes that human behavior is an approximately

optimal solution to the control problem posed by the combination of the human's

environment, underlying cognitive architecture, and task goals. In doing so, it draws

on earlier work in related formalisms such as bounded rationality (Simon, 1955),

rational analysis (e.g. Anderson, 1991), and most recently computational rationality

(Lewis, Howes & Singh, 2013). Outside of psychology, the work draws some of its

terminology from reinforcement learning (Sutton & Barto, 1998), and draws on the

precise statement of the assumption of bounded optimality provided by Russell &

Subramanian (1995).

The rational perspective is supported by a body of work on the adaptation to

task context and goals, long known to have major e�ects on human performance

in a variety of cognitive tasks (e.g. Green & Swets, 1966). More recent work on

visual attention in both linguistic and nonlinguistic contexts in particular indicates

that attention strategies are strongly shaped by prevailing task goals (e.g., Rothkopf,

Ballard & Hayhoe, 2007; Ballard & Hayhoe, 2009; see Salverda, Brown & Tanenhaus

2011 for a recent review). In general, e�ects of strategic adaptation penetrate all

levels of human performance (Newell, 1973), from the most elementary perceptual

decisions (Green & Swets, 1966) to more complex multi-tasking scenarios (Meyer &

Kieras, 1997; Howes, Lewis & Vera, 2009).

In psycholinguistic research, task e�ects likewise have a longstanding history (for

an early analysis see the seminal chapter by Forster, 1979). For example, in the

area of single-word lexical processing, there are robust di�erences in how frequency

and other important e�ects are manifest in naming vs. lexical decision tasks (e.g.

Grainger, 1990). Task context in the form of experimental list composition and goal

manipulation via instructional emphases have signi�cant e�ects, and have received

detailed theoretical treatments (Wagenmakers, Ratcli�, Gomez & McKoon, 2008).

There is also a small but growing line of empirical work demonstrating task e�ects

on eye movements in reading. McConkie, Rayner & Wilson (1973) have shown that

participants tend to read longer when anticipating di�cult questions (for example,

questions of a factual nature), as well as when they were �nancially incentivized to

answer the questions correctly. Rayner & Raney (1996) have shown that the lexical fre-

quency e�ect is eliminated when subjects read words in search of a target word rather

than reading for comprehension. Wotschack (2009) replicated the question-di�culty

2



�nding of McConkie and colleagues and also found that increasing the frequency of

comprehension questions, as well as instructing the participants to proofread, led to

slower reading speeds. Finally, Reichle, Reineberg & Schooler (2010) polled partic-

ipants to determine when they `zoned out', and showed that the `mindless' reading

during those periods is signi�cantly di�erent from normal reading, again consistent

with eye movements in reading being actively and adaptively controlled.

Rational models have also provided novel explanations for certain phenomena in

reading. In particular, ideal observer models has shown how saccade targetting deci-

sions might be a consequence of rational perceptual recognition (Legge, Klitz & Tjan,

1997; Legge, Hooven, Klitz, Mans�eld & Tjan, 2002; Bicknell & Levy, 2010b), and

how regressive eye movements might be a rational adaptation to falling con�dence in

past inputs (Bicknell & Levy, 2010a). In addition, work in a reinforcement learning

context has shown how certain basic properties of eye movements like viewing posi-

tion e�ects and parafoveal preview might emerge as an adaptive consequence of basic

physiological and psychological constraints on the eye movement system (Reichle &

Laurent, 2006; Liu & Reichle, 2010). The thesis adds to this body of work by showing

how quantitative variation in speed-accuracy tradeo� imposed by quantiatively vary-

ing payo�s rationally yields qualitative and quantitative changes in reading strategy,

and also by showing how and why spillover lexical frequency e�ects may emerge in

response to the noise structure of the information processing system.

1.2 Key theoretical components of the thesis model

Lexical processing as sequential sampling. The lexical processing component

in the model is implemented as a sequential probability ratio test (SPRT Wald, 1945;

Wald & Wolfowitz, 1948) and one of its multihypothesis variants (Baum & Veeravalli,

1994; Draglia, Tartakovsky & Veeravalli, 1999). In doing so, the dissertation follows

models of lexical decision and naming by Norris (2006, 2009) and models of reading

by Bicknell & Levy (2010a,b). The SPRT is a sequential statistical test that works

by computing the log likelihood ratio between hypotheses (i.e. words) as a function of

incoming samples (i.e. noisy percepts), stopping when the ratio crosses a threshold. In

addition to the successes above, it has also been used to explain neural �ring patterns

in the basal ganglia associated with perceptual decision-making (Bogacz & Gurney,

2007). Because the changing likelihoods over time form a random walk, the SPRT is

also compatible with �ndings of random walk models like the Drift Di�usion Model

3



(DDM, Ratcli�, 1978), though Norris (2009) argues that the DDM is less parsimonious

than the SPRT.

Oculomotor architecture. The oculomotor architecture used in the model is

inspired by a longstanding model of eye movement control in reading, E-Z Reader

(Reichle et al., 2009). The architectural constraints are realized as stochastic delays

in the oculomotor system. The �rst delay is on the visual information arriving from

the eye to the lexical processor due to preattentive visual processing. This delay is

called the eye-brain lag (EBL). The second is a delay from when a saccade decision

is made to when the eye starts moving (SPT: saccade planning time). One of the

challenges for eye movement control models is the fact that typical estimates of sac-

cade planning time take up a considerable portion of the total duration of a �xation

(Becker & Jürgens, 1979; Rayner, Slowiaczek, Clifton & Bertera, 1983), leaving lit-

tle time for lexical processing to in�uence �xation duration in a strictly serial stage

model. The third delay is the time it takes the saccade to be executed. These de-

lays are all modeled using gamma distributions. There are additional well-accepted

ideas about saccade target and landing site distributions present in E-Z Reader that

are not included in the dissertation model because they are of less relevance to the

experimental task in the thesis.

The thesis model also follows E-Z Reader in assuming that only one word is

processed at a time. This assumption is under debate: Engbert, Nuthmann, Richter

& Kliegl (2005) make a strong case for a parallel model based on work in dynamic �eld

theory by Erlhagen & Schöner (2002), as well as their own modeling results. However,

the short words and wide word spacing of the LLDT, combined with visual acuity

limitations, may limit even a parallel attention model to a near-serial behavior. The

model also assumes that saccade plans are directly triggered by lexical processing,

another area of active debate. The alternate choice is that saccades are triggered

by an autonomous brainstem mechanism and only indirectly modulated by lexical

processing (again as advocated by Engbert et al., 2005 following Findlay & Walker,

1999).

Generating predictions by optimization to payo�. The model generates

predictions by treating the thresholds of the SPRT as a locus of adaptive control

and �nding the setting of these threshold parameters that maximizes mean payo�

in the task given to the humans. This optimization is necessary for the model to

make predictions, but is not a part of the theory in the sense that the theory makes

4



no predictions about learning or task-level adaptation, only about its endpoint. The

remainder of model parameters are �xed to a priori estimated values whenever possi-

ble, either taken from prior literature, or estimated from human participants outside

of the model. A few remaining parameters are either �xed to reasonable values and

justi�ed in the text, or optimized to some aspect of human data. In this optimization,

only near-optimal settings of the adaptive threshold parameters are considered. In

this way, the model makes nearly zero-parameter predictions of data.

1.3 An overview of key results

The thesis provides two sets of key results. The �rst is on the adaptation of human

eye movement control to task payo�s, and the second is an exploration of lexical

frequency spillover e�ects in reading.

1.3.1 Adaptation to task payo� in reading

While adaptation to task di�erences in reading has been shown previously (e.g. Mc-

Conkie et al., 1973; Rayner & Raney, 1996; Wotschack, 2009), the thesis provides the

�rst precise quantitative payo� manipulation in reading. Participants are sensitive to

payo� feedback even when the payo� has no intuitive interpretation (i.e. participants

are not explicitly told to try to be fast or accurate and nothing about the payo�

provides that intuition). In addition, there are models of active perception in reading

(e.g. Bicknell & Levy, 2010b) that assume readers attempt to identify words, and

models outside of reading that assume that perception is explicitly optimized to the

task humans are attempting to perform rather than for more general information ac-

quisition (e.g. Ballard & Hayhoe, 2009; Tatler, Hayhoe, Land & Ballard, 2011). But

this is the �rst model to combine both ideas and do the latter kind of optimization

(i.e. model doing the task) in the domain of reading.

1.3.2 Exploring lexical frequency spillover e�ects in reading

The second set of key result deals with so-called lexical frequency spillover e�ects in

reading 1. Spillover e�ects in general are e�ects on words that `spill over' or appear

downstream from the word that drives them. In the case of lexical frequency spillover

e�ects, these are when words that follow high-frequency words are read more quickly

1While there are other types of spillover e�ects, the thesis will always take spillover to mean
lexical frequency spillover.
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(Inho� & Rayner, 1986). The thesis provides a number of related results in an e�ort

to understand these e�ects.

First, the thesis provides empirical evidence that explanations of spillover relying

on parafoveal preview (Reichle, Pollatsek & Rayner, 2006) cannot account for spillover

e�ects in the LLDT. This is because the e�ects persist with parafoveal preview gaze-

contingently masked. Second, it shows how a dominant model of eye movement con-

trol in reading (E-Z Reader, Reichle et al., 2009) is partially consistent with spillover

e�ects arising from post-perceptual delay as well as parafoveal preview. Third, it

explores how an adaptive model that can allocate its processing resources to current

perception or post-perceptual memory-based reprocessing might recover spillover fre-

quency e�ects as a rational consequence of noise in lexical processing, and how this

e�ect arises from a counterintuitive but fundamental fact about sequential samplers

used in series. Fourth, it introduces parafoveal preview into this model and shows

that using parafoveal preview can be adaptive in spite of it being noisier than foveal

processing, and how parafoveal preview may amplify the memory-based spillover ef-

fect, yielding spillover e�ects in a broader portion of the free parameter space of the

model. Finally, it attempts a direct �t of the model's free parameters to human data,

with mixed results. Some discussion of implications is provided for future iterations

of the model.

1.4 The structure of the dissertation

The chapters are structured as follows: Chapter 2 provides de�nitions and background

on the terms and concepts used in the dissertation, including a broader discussion

of terms-of-consensus in the �eld and justi�cation for major assumptions. Chapter 3

discusses in detail the structure of the model that is used for the adaptation results

and serves as the baseline for additional modeling later in the thesis.

Chapter 4 provides evidence that human participants adapt to quantitatively-

expressed payo�s in the LLDT. Furthermore, it shows that they do so by adjusting

individual �xation durations, a �ne-grained component of their control strategy (in

contrast to coarse strategic adjustments like increasing focus on the task). This

chapter also details modeling results that recover adaptation along the same locus

and provide a theory of adaptive eye movement control in the LLDT, and shows how

the architecture bounds help constrain the model's predictions and in fact improve

its predictive power. Finally, some discrepancies between model and humans are

discussed.
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Chapter 5, is the beginning of the thesis exploration of spillover e�ects. It shows

that participants in the LLDT do show lexical frequency spillover e�ects even though

LLDT was designed to maximize single �xations and minimize word-to-word depen-

dence. The chapter reports on a gaze-contingent masking paradigm used to test

whether the spillover e�ect is driven by parafoveal preview in spite of the wide word

spacing in the LLDT, and shows that spillover persists without preview. Modeling

results in E-Z Reader are reported showing that it (and models that share its key as-

sumptions) can only recover the qualitative pattern of these results without parafoveal

preview by assuming that processing of a word can delay the processing of the next

word.

Chapter 6 develops an explanation of the spillover frequency e�ect in the frame-

work of the model discussed in Chapter 3. Speci�cally, it develops a model that can

adaptively allocate its processing to either current foveal perception, or a memory-

based review of past input. Such a model recovers spillover e�ects when the memory-

based review delays the start of processing on the next word. This delay is shown

to be sensitive to frequency due to a property of sequenced thresholded samplers.

Implications of this property are discussed for a broader theory of the integration of

information across decisions. The chapter also compares this model with one that

is able to give priority to perception over memory, and shows that the perception-

priority policies in such a model do not perform as well over a range of noise settings

Parafoveal preview is introduced into the model and shown to improve model perfor-

mance in some portions of the speed-accuracy tradeo� curve.

Chapter 7 shows attempted quantitative �ts of noise settings to human data, and

shows that the model with memory sampling but no-preview cannot simultaneously

recover spillover e�ects and single �xation durations close to human values. A number

of modi�cations to the model are undertaken in light of this problem. The same �tting

exercise is reported on the preview-capable model, with greater success.

A conclusion addresses some current challenges and future directions, including

extending the model to a fuller sentence-reading setting and pursuing a richer policy

space for the adaptive control of attention.
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CHAPTER 2

Relevant empirical phenomena and current

accounts

2.1 Rational approaches to understanding behavior

The work in this thesis explores behavior as an adaptation to both task and the

intrinsic computational constraints on the organism. Theories developed from this

perspective attempt to explain why particular phenomena appear, in addition to some-

times describing how they work. This approach is often contrasted with mechanistic

approaches (e.g. the review by Chater & Oaksford, 1999) that attempt to describe

the structure and sequence of operations that yield phenomena of interest without

assuming or attempting to understand why they come about. This section provides

an overview of Rational Analysis (Anderson, 1990), arguably the most in�uential of

the rationalist approaches to cognition. It then discusses the role that the cognitive

architecture or bounds of an organism might play in changing what rational behavior

looks like, and an alternate formalism called Computational Rationality that explicitly

makes agent bounds part of the theory. This is the approach taken in the thesis.

2.1.1 Rational Analysis

An in�uential formalization of the adaptationist approach to understanding behavior

is Rational Analysis (Anderson, 1990, 1991). It attempts to understand the problem

human agents are trying to solve by specifying the environment they operate in and

their goals, and seeking to capture signature correspondences between modeled and

measured behavior. Here is Anderson's procedure:

1. Specify precisely the goals of the cognitive system.

2. Develop a formal model of the environment to which the system is adapted.
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3. Make minimal assumptions about computational limitations.

4. Derive the optimal behavior function given 1-3 above.

5. Examine the empirical literature to see whether the predictions of the behavioral

function are con�rmed.

6. Repeat, iteratively re�ning the theory de�ned by 1-3 under the optimality as-

sumption.

Some notable early successes of this approach are work on the power-law relation-

ship in forgetting (Anderson, 1990), on apparent irrationalities in the Wason selection

task (Oaksford & Chater, 1994), on patterns in human categorization (Anderson &

Matessa, 1990), and on saccade targeting in normal and pathological reading (Legge

et al., 1997). Recent work is even more widespread. A few examples from the domain

of psycholinguistics and reading bear mentioning: Bicknell & Levy (2010b) extended

the model of Legge et al. (2002) by introducing uncertainty in word identity and pro-

vided better predictions of saccade targets. They also showed how a rational model

might choose to regress as a result of falling con�dence in past inputs (Bicknell &

Levy, 2010a). In addition, Hale (2011) provided a general framework for rational

analyses of the comprehender's parsing choices, and used this framework to explain

garden path e�ects and the subject-object assymetry, phenomena of longstanding

interest in psycholinguistics.

2.1.2 From rational analysis to computational rationality

The statement of Anderson's steps 2 and 3 places the explanatory burden on the

environment �rst and mechanism second, which is part of the reason for the contrast

drawn between this work and mechanistic approaches. However, architecture bounds

carry part of the explanatory burden in rational analysis, even if they are not given

credit for doing so. This is the case for a few reasons. Simon (1955) foreshadowed one

by remarking that there is substantial room for debate on what aspects of the system

are environmental or part of the organism, and foreshadowed another (Simon, 1991),

by noting that the notion of minimal assumptions on computational limitations is

technically imprecise.

A rational theory must assume costs to information processing, limitations on

knowledge availability or acquisition, and other limits, and the minimal limitations

needed depend on the empirical phenomenon of interest, which means that the theory
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partially relies on them for its explanation. Indeed, Anderson (1990) explicitly adds

a `capacity limit' as a cost in information processing, and adds a limitation on short

term memory as well. In ideal-observer approaches to vision and perceptual decision-

making closer to the thesis work (e.g. Green & Swets, 1966; Legge et al., 1997; Norris,

2006, among many), the computational limitation is the notion of noisy perceptual

information. In the case of signal detection theory, one can appeal to this noise as

being a part of the stimulus itself, but in a sequential model putting the noise inside

the organism (i.e. as a part of the architecture) is more natural, by the following

argument: if the stimulus on the page or screen is a single unchanging draw from a

noisy distribution, then a rational agent might observe it once to make its inference.

But if a single unchanging sample on the page is noisily transmitted through the

information processing system, then a rational agent may well use multiple samples

to update over its intrinsic noise.

This is not a criticism of the powerful method that rational analysis provides

for understanding why behavior is the way it is, only of the emphasis it places on a

the task and environment portion of the theory. The computational assumptions may

truly be the minimally needed computational limitations needed for emergence of par-

ticular behavior. And even if the assumptions made were not the minimally required

ones, the theories may still yield plausible predictive explanations of human behavior.

Rather, thde argument is that rational models are already organism-bounded and

that `minimal assumptions about computational limitations' serves as an important

but underexplored theoretical degree of freedom. Therefore, it is better to have a

formal place in the theory for computational constraints (i.e. cognitive architecture)

in addition to task constraints. The parsimony requirement for minimal assumptions

then applies to both the computational limitations, and the agent's task environment.

Howes, Lewis, Vera and Singh (Howes, Vera & Lewis, 2006; Howes et al., 2009;

Lewis et al., 2013) have championed such an approach explicitly making room as

needed for both task and cognitive architectural constraints in the theory, and explic-

itly making a distinction between constraints imposed by the organism, constraints

imposed by the task environment being performed, and constraints imposed by the

broader environment the organism operates in outside of the task. Most recently

termed Computational Rationality, this is the approach taken in the thesis.

10



2.1.3 Other approaches to rationality under bounds

Computational rationality is not the �rst rationalist approach explicitly making room

for agent bounds in the theory. Two other theoretical frameworks explicitly tackle the

agent bounds question: the framework of Bounded Rationality (Simon, 1955) and the

cognitive model ACT-R (Anderson, 1990) ACT-R. They are brie�y contrasted with

computational rationality here.

Bounded Rationality. Simon (e.g. 1955; 1991), makes the same observation

that leads Lewis et al. to their proposal of computational rationality: that behav-

ior is jointly determined by the task constraints, and the internal constraints on the

organism. But the focus of bounded rationality is in using rational behavior as an

upper limit of performance, and in understanding which good-enough satis�cing so-

lutions humans can more easily �nd and therefore choose over the exactly optimal

ones. The emphasis on optimization bounds is in contrast to the approaches above,

which implicitly treat optimization as free (having been done over time by evolution

or extensive practice).

In addition, in bounded rationality there is no precise notion of optimality under

bounds, and reasonable suboptimal solutions are preferred and justi�ed under the

organism's adaptive constraints. The notion of bounds in the optimization process it-

self may be useful, but the computationally rational approach can explicitly take that

into account, deriving the complex interaction between bounds on the agent imposed

by the task, internal computational constraints, and the optimization process.

ACT-R. Rather than consider cognitive architectural and mechanistic bounds on

rationality, ACT-R looks in the other direction and implements mechanisms and cog-

nitive architectural features that are justi�ed by rational analyses. Such a formulation

can be taken as a strong modularity claim (Fodor, 1983), in the sense that the adap-

tation of each module of the architecture happens independently. It also implies a

view in which the adaptation of interest is to the challenges the organism faces in its

environment and not to the task in a particular experiment. This is problematic given

evidence of within-task adaptation discussed previously. To reiterate, such evidence

seems to exist across the task complexity spectrum: for example, adaptation to payo�

in a simple psycophysics discrimination task (Green & Swets, 1966) and adaptation

to question frequency and di�culty in a reading task (Wotschack, 2009).
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2.2 Empirical e�ects in eye movements in reading

There is a substantial body of empirical work on what determines when and where the

eyes move during reading � far beyond the scope of this chapter. Instead, this section

will review the basic facts about eye movements, and then use lexical frequency e�ects

as a case study for how a single property of words a�ects reading times. This latter

portion serves double duty, as foveal and spillover frequency e�ects are of empirical

and theoretical interest in the latter parts of the dissertation.

2.2.1 Eye movements in reading: basic de�nitions and phe-

nomena

The subjective perspective on reading is that of slow, methodical scanning across the

page. In reality, slow eye movements are rare in reading. Rather, the eye makes rapid

movements from position to position called saccades. Saccades are fast, with peak

velocities of as much as 500 degrees of visual angle per second (Rayner, 1998). Due

to this speed, very little information is recovered during saccades, in a phenomenon

called saccadic suppression (Matin, 1974). Instead, information is recovered when the

eye is relatively still1 in stops called �xations mostly lasting betwen about 250 and

350ms in length in normal reading.

The duration of �xations is determined by many factors correlated with the di�-

culty of individual words, ranging from typographic variability, to linguistic properties

at higher levels of abstraction. Some core word-level e�ects are those of lexical fre-

quency (e.g. Inho� & Rayner, 1986), length (e.g. Just & Carpenter, 1980), lexical

neighborhood size (Andrews, 1997), all of which lead to slower reading times. Many

others are reviewed in detail by Rayner (1998). Other e�ects re�ect processing above

the word level, either as omnibus e�ects of predictability given context (e.g. Balota,

Pollatsek & Rayner, 1985) or as narrower e�ects of sentence processing (e.g. garden

path e�ects, Frazier & Rayner, 1982).

A major reason that the eye needs to move at all in reading is that the acuity

function of the eye, i.e. its e�ective receptive resolution, is far higher in the center

than in the periphery. The area of highest acuity, the fovea, covers approximately

the central 2 degrees of visual angle, or about 6-8 characters of typically-sized text

at typical reading distances (Rayner & Bertera, 1979). Within this area, letters and

words are identi�ed with very high accuracy (Bouma, 1973), falling o� rapidly outside

1The eye experiences a slight tremor even during �xations, called nystagmus.
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of it. This fact, and the fact that typical saccades are about 7-9 characters in length

(Rayner, 1978), both suggest that one of the primary functions of eye movements in

reading is to bring information into the fovea.

More precisely, the eyes typically target a position just left-of-center of words in

left-to-right writing systems (e.g. Vitu, O'Regan & Mittau, 1990), and just right-

of-center in right-to-left systems (Deutsch & Rayner, 1999). This preferred viewing

position seems to yield faster word identi�cation and a lower probability of re�xation

(another �xation on the same word, usually due to error in the saccade landing loca-

tion). Given that the fovea is symmetric around the center of �xation, it is surprising

that the eye tends to �xate o�-center in words. Likewise surprising is the fact that the

word identi�cation span is asymmetric, extending farther in the direction of reading

than away from it (McConkie & Rayner, 1975).

At least part of the explanation might rely on the fact that readers tend to preview

words in their parafovea (the area between about 2 and 10 degrees of visual angle

from center). There are two pieces of evidence for this e�ect: �rst, time viewing

words in the parafovea shortens their eventual foveal vieweing; second, short words

are occasionally skipped altogether rather than being �xated (e.g. Balota et al., 1985).

Both interact with the predictability of the word (i.e. highly predictable words are

likelier to be skipped, and receive a greater preview bene�t). Finally, the eyes also

occasionally return to previously read text, in movements called regressions. They are

considered di�erent from re�xations because they are too distant to be due to saccadic

motor error alone, and have recently been compellingly explained as a consequence

of dropping con�dence about past inputs (Bicknell & Levy, 2010a).

2.2.2 Basic constraints on the oculomotor system in reading

The section above already alluded to the most substantial constraint on the oculomo-

tor system: that the acuity of the eye is limited, and falls o� rapidly outside the center

of vision. A second constraint is that eye movement planning takes time. Becker &

Jürgens (1979) used the double-step paradigm (discussed in greater depth later) to

place a lower limit of about 100ms on how long it takes to plan the motor saccadic

movement when the intended target is known, though the actual delays between se-

quential �xations seems to be longer (Rayner et al., 1983). A third constraint is that

there is a delay from when the eye lands on a word to when cortical activity begins to

be correlated with perceptual information from that word. The lower bound on these

delays comes from event-related potential (ERP) studies of the visual system, with
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the earliest de�ection at 50-75ms (Clark, Fan & Hillyard, 1994; Mouchetant-Rostaing,

Giard, Bentin, Aguera & Pernier, 2000), but higher values have been found depend-

ing on the type of visual stimulus (e.g. Tarkiainen, Helenius, Hansen, Cornelissen &

Salmelin, 1999; VanRullen & Thorpe, 2001). These two mandatory delays add up

to at least 150ms. Considering that �xations only last about 250-350ms, theories of

eye movement control typically assume that some sort of processing continues during

saccade planning, if not during the preattentive visual delay as well.

2.2.3 Frequency phenomena in reading

Lexical frequency phenomena are a useful case study for the relationship between word

properties and reading times. Their robustness has permitted a detailed investigation

into their nature in di�erent situations and the extent of their in�uence. Consider

a taxonomy of frequency phenomena, based on the word driving the e�ect and the

word that the e�ect is seen on. In this taxonomy there are foveal frequency e�ects

(when the foveal word frequency a�ects foveal reading times), preview e�ects (when

parafoveal frequency a�ects the eventual reading times on the same word), parafoveal-

on-foveal e�ects (PoF, when parafoveal frequency a�ects reading times on the foveal

word), and spillover e�ects (when foveal frequency a�ects the eventual reading time

on the parafoveal word).

While the physical parafovea extends up to 10 degrees of visual angle to the right

and left of �xation (or about 30-40 characters at typical reading distances), the useful

parafovea in reading seems to largely be limited to one word forward. While n+2

preview e�ects have been documented, they seem to appear in only very particular

situations, for example when words n+1 and n+2 are short, high-frequency words

(Kliegl, Risse & Laubrock, 2007). Likewise n+2 PoF e�ects have been recently shown

(Bicknell & Levy, 2014) but they seem to only be sensitive to visual features of word

n+2 such as length. With this in mind, the remainder of the thesis will assume that

the useful parafovea extends to the next word only.

Foveal frequency e�ects. Words of higher frequency are recognized more quickly

in visual presentation (Howes & Solomon, 1951) than words of lower frequency. The

relationship appears to logarithmic, with the natural logarithm of lexical frequency

counts predicting a variety of reading measures (Inho� & Rayner, 1986; Rayner &

Du�y, 1986; Henderson & Ferreira, 1990; Just & Carpenter, 1980, and many others).

This is true independent of both word length, and predictability from context as

estimated from the cloze task (a �ll-in-the-blank task).
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Parafoveal preview frequency e�ects. Parafoveal preview e�ects occur when

parafoveal information obtained from a word shortens that word's later foveal view-

ing time (e.g. Balota et al., 1985; McConkie & Rayner, 1975; Rayner, 1975). The way

these e�ects are investigated is by manipulating the quality of the preview of a word

and testing the e�ect of the quality of preview on reading time. For example, the

preview could be the true word, a phonologically or orthographically related word,

an unrelated word, or a nonword. Recent work has shown that the frequency of pre-

viewed words also has some e�ect on the quality of the preview: high-frequency words

only receive preview bene�t from identical previews, whereas previewed orthographic

neighbors may provide a bene�t for lower frequency words, so to this extent parafoveal

preview is sensitive to frequency as well (Williams, Perea, Pollatsek & Rayner, 2006).

Parafoveal frequency e�ects on foveal words. The e�ect of parafoveal words on

foveal processing is investigated in experiments which manipulate the orthographic

material available in the fovea. Readers slow down in response to a variety of or-

thographic irregularities in the parafovea, such as complete masking (Rayner, 1975;

Blanchard, Pollatsek & Rayner, 1989), all-capitals strings (Inho�, Starr & Shindler,

2000) and orthographically irregular nonwords (Starr & Inho�, 2004). The extent to

which lexical information in the parafovea such as frequency a�ects foveal processing

is far less well-established: while some evidence for this has been found in corpus

studies (Kennedy & Pynte, 2005) and non-reading tasks (Kennedy, Pynte & Ducrot,

2002), these e�ects do not replicate in more ordinary reading tasks unless the foveal

word is very short (Angele & Rayner, 2011; Kliegl et al., 2007) and may be partially

due to mis-targeted saccades (Drieghe, Rayner & Pollatsek, 2008).

Foveal frequency e�ects on parafoveal words. The frequency of a word a�ects

the reading time of the following word (Rayner & Du�y, 1986; Inho� & Rayner, 1986).

This spillover e�ect is most often investigated in the context of the parafoveal preview

phenomenon discussed above. The amount of parafoveal preview bene�t is a�ected by

foveal frequency (Inho� & Rayner, 1986; Henderson & Ferreira, 1990; White, Rayner

& Liversedge, 2005). However, the e�ect of word N foveal frequency on reading

times on word N+1 occasionally remains even in the absence of parafoveal preview

(Kennison & Clifton, 1995; Schroyens, Vitu, Brysbaert & D'Ydewalle, 1999). This

e�ect is of substantial interest in the latter part of the dissertation, and is discussed

in greater detail in �5.1.1.

15



2.3 Sequential sampling as a model of moment-by-

moment decisionmaking

Thresholded random walk models of decisionmaking (e.g. Ratcli�, 1978; Edwards,

1965) have a long and successful history in the cognitive science literature: they

recover reaction time and accuracy distributions consistent with human behavioral

data, as well as �ring patterns of neural populations (e.g. Cook & Maunsell, 2002;

Gold & Shadlen, 2007). They have also been applied to lexical processing, both using

the random walk Drift Di�usion model (DDM, Ratcli�, Gomez & McKoon, 2004), and

using a sequential statistical test called the sequential probability ratio test (SPRT,

Norris, 2006, 2009).

The DDM assumes that there is some noisy decision signal available outside of

the decision mechanism. In the case of lexical decision this signal is `wordness', and

it is assumed to be sensitive to things like frequency, predictability, length etc. The

DDM accumulates this signal to a threshold until a decision is made. Since the signal

is noisy, the practical realization of the process is as a random walk in this `wordness'

space.

Norris (2009) makes a strong case for the SPRT or its multihypothesis variant

(MSPRT, Baum & Veeravalli, 1994) as a better model of decisionmaking, at least

for the case of lexical decision. The claim is that since the SPRT operates explicitly

in probability space, there is no need for the ill-de�ned notion of wordness. Indi-

vidual samples of the wordness signal in the DDM become likelihoods of hypotheses

(i.e. words) in the SPRT, making the random walk a walk in log-likelihood space

of the words being perceptually identi�ed. The decision thresholds can now also be

interpreted as desired error probabilities, and the starting points of the walk as prior

probabilities. If the priors are based on lexical frequency counts, the SPRT recovers

the log-frequency e�ect on reading times. With mild assumptions about the likeli-

hood function, it can also recover neighborhood density e�ects, and some di�erences

between naming and lexical decision tasks.

2.4 Models of eye movement control in reading

This section will review two current dominant models of eye movement control in

reading: E-Z Reader (Reichle et al., 2009) and SWIFT (Richter, Engbert & Kliegl,

2006). These two models are chosen because they claim broad coverage, have seen

recent theoretical and empirical treatment, and fall on opposite points of the theo-
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retical debates on attention and directness of oculomotor control in reading. While

many other models exist, they either aim for narrower coverage (e.g. regressive eye

movements, Bicknell & Levy, 2010a), or are similar variants of those two models: the

autonomous-saccade Push-Pull model (Yang & McConkie, 2001) is a less formalized

variant of many of the ideas in SWIFT; Glenmore (Reilly & Radach, 2006) is a con-

nectionist model that shares many of the SWIFT assumptions but adds ideas about

lexical processing from the connectionist literature (McClelland & Rumelhart, 1981);

EMMA (Salvucci, 2001) is a production system model sharing many assumptions of

E-Z Reader; and so on. Reichle, Rayner & Pollatsek (2003) provides a more detailed

review of some of these models and others. Some narrower-coverage models in a

rational perspective will be given additional consideration below.

E-Z Reader E-Z Reader (Reichle et al., 2009) is a serial-attention, direct oculomo-

tor control model of reading that makes minimal assumptions about the mechanistic

content of the lexical processing system. It is serial-attention in the sense that only

one word can be lexically processed at a given time. It is direct-oculomotor-control

in the sense that oculomotor control decisions are directly triggered by the lexical

processing system (though lexical processing and oculomotor programming can pro-

ceed in parallel). It makes minimal assumptions about the mechanistic content of

the lexical processing system in the sense that it does not provide a theory of lexical

processing or access. Rather, it includes a lexical processing delay that varies with

the logarithm of word frequency, predictability, and length, assuming that any theory

of lexical processing will have to at minimum account for those facts. E-Z Reader also

makes a number of assumptions about saccade targetting error that let it �t saccade

landing site distributions, and assumptions about parafoveal preview that let it �t

spillover e�ects. The total set of �t phenomena in E-Z Reader includes the frequency,

predictability, length and spillover e�ects mentioned above, as well as saccade land-

ing site distributions, re�xations, word skipping rates, and both intra- and inter-word

regressions.

The E-Z Reader modeling paradigm is entirely descriptive: only training �ts to

data are provided, and the model is considered to account for phenomena if it can

�t the training data with low error. Moreover, �ts are done on aggregate and highly

colinear data, yielding unrealistically low error (Feng, 2003). E-Z Reader uses over a

dozen free parameters to �t 30 means that are correlated with coe�cients as high as

0.9. This is not to say that E-Z Reader is necessarily an incorrect model or that its
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assumptions and claims are unrealistic, but its apparently low-error �ts to data may

not impl yits ability to strongly constrain the space of possible explanations.

SWIFT In contrast to E-Z Reader, SWIFT (Richter et al., 2006) is a parallel

(gradient) attention, indirect oculomotor control model. It is a gradient attention

model in the sense that multiple words are processed in parallel, constrained by

an activation function. Saccade targets are selected based on ongoing competition

between activations of di�erent words, so in that sense the saccade target decision

is directly controlled. But the saccade timing is randomly determined by a low-

level saccade generation mechanism, so in this sense it is an indirect oculomotor

control model. To recover frequency and spillover e�ects (or in fact any e�ect of

word properties on reading times), SWIFT allows lexical processing to slow down the

autonomous saccade generator. This slowdown is itself delayed in what Richter et al.

call time-delayed foveal inhibition, allowing SWIFT to recover both word N and word

N+1 (spillover) e�ects using a single mechanism.

The activation function over time forms a random walk in the eyes-are-likely-to-

target space, rising to a maximum activation computed from frequency, predictability

and length in a similar equation to the one used by E-Z Reader, and falling back to

zero. SWIFT has similar empirical coverage to E-Z Reader on word-level e�ects

(frequency, predictability etc) and saccade targetting, and also makes predictions

about parafoveal-on-foveal e�ects (Kennedy & Pynte, 2005). As with E-Z Reader, its

modeling paradigm is descriptive, with 13 free parameters. It �ts them to minimize

total error on 8 di�erent measures on 850 words. This is an improvement over E-Z

Reader's �t to means, but not a substantial one since individual word-level measures

should be highly correlated across subjects and words.

Rational analyses of eye movements The work in the thesis draws some inspira-

tion from previous work that also considers eye movements as emerging from adaptive

constraints on the organism itself. For example, the Mr. Chips model (Legge et al.,

1997, 2002) modeled the reading process from an ideal observer perspective, i.e. as a

process of rational adaptation to noise. Legge et al. showed how saccade targeting de-

cisions (including viewing position e�ects, skips, and regressions) can be understood

as a rational adaptation to acuity, and moreover how increasing acuity limitations

(such as in low-vision participants) change the near-optimal reading pattern. Bick-

nell & Levy (2010b) extend Mr. Chips to consider uncertainty over incoming word

information, and show that this improves the predictive power of the model. They

18



also show how regressions in particular may be a rational adaptation to increasing

uncertainty over past inputs (Bicknell & Levy, 2010a).

Reichle and colleagues (Reichle et al., 2006; Liu & Reichle, 2010; Reichle, Liu &

Laurent, 2011) likewise show how simple bounds on acuity and attention might yield

adaptive behavior like �xating close to the centers of words, anticipating the saccade

planning decision before lexical processing is complete, and choosing to preview short

words to eliminate costly saccades.

2.5 Summary

This chapter reviewed a few di�erent approaches to understanding behavior as adap-

tive, and motivated the use of computational rationality rather than one of the other

approaches. In addition, it explained the basic terminology and phenomena in eye

movement control, and used lexical frequency e�ects to illustrate the kinds of rela-

tionships between cognitive processing and eye movement control that models of eye

movement control seek to understand. It provided an overview of recent sequential

sampling approaches to lexical recognition that will form the core of the lexical pro-

cessing component in the theory advanced in the thesis. Finally, it reviewed other

rational approaches to eye movement control in reading, as well as dominant non-

rational approaches, one of which forms the basis for the oculomotor architecture

used in the theory advanced in the thesis.
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CHAPTER 3

A Theoretical Model and Empirical

Paradigm for Understanding Adaptive Eye

Movement Control

This chapter introduces the List Lexical Decision Task (LLDT), a simple empirical

paradigm for understanding adaptive eye movement control, as well as the theoretical

model of this task, from which inference to reading will be drawn. To introduce it

and compare it to the other models reviewed in the previous chapter, consider the

following view on theorizing in cognitive science: there is some cognitive skill of

interest, supported by aspects of the human cognitive architecture � for example,

reading; there is a task or set of tasks that are used to empirically investigate this

skill of interest, that hopefully tap the same underlying architecture � for example, a

self-paced moving window paradigm; and there is a theory of the skill and architecture

built based on data from these tasks. Under this view, there are two inferential steps:

one from theory to task data, and one from task data to the actual ecologically

interesting task that humans do outside of the lab and the components of cognitive

architecture that support it.

With both steps come abstraction choices. E-Z Reader makes the choice to ab-

stract away from sentence-level complexity in its theory, but not in the task measured

in the lab. Therefore, there is a challenging inferential step from theory to task, ex-

pressed as the criticism that E-Z Reader is a theory of sequential word recognition

applied to sentence-reading, or as the criticism that the architecture of E-Z Reader

cannot support the task of naturalistic reading. But the bene�t is that of a simple

inferential step from the laboratory task E-Z Reader uses to the skill of reading in

the world outside the lab (i.e. the cognitive architecture components recruited in the

lab are more likely those recruited in the naturalistic environment).
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The thesis makes a di�erent set of abstraction choices. The advanced theory is

a theory of wordlist-reading, but the empirical task used is also a task of wordlist-

reading. Therefore, the inferential step from theory to task is much smaller than

in the case of E-Z Reader, i.e. the model is doing the same task as the humans,

and the architecture constructed is su�cient to support the wordlist-reading task.

On the other hand, the inferential step from the list-reading task to the ecologically

interesting skill of reading is more challenging: is the list-reading task like sentence-

reading? This is similar to the challenge that can be leveled at models like E-Z Reader,

except that it is made on the level of empirical data rather than theoretical argument.

By gathering data from the simpler task that the theory is modeling, it is possible

to address empirically the question of the similarity between the experimental task,

tasks like sentence-reading, and reading outside of the lab.

3.1 The list lexical decision task

The dissertation uses the List Lexical Decision Task (LLDT). A simple extension of

a paradigm �rst introduced by Meyer et al. (1974), it requires participants to make

a single lexical decision on a list of character strings. On each trial of the LLDT,

participants �xate on a target on the left side of the screen, and are then presented

with a list of character strings, with the �rst string where the �xation target was.

The list of strings is either a set of six English words, or �ve words with a single

pronouncable nonword. Strings are never repeated within a list. The participants

are required to indicate by buttonpress, for each trial, which of the two cases it is

(all-words or one-nonword). Participants are given a precisely expressed quantitative

payo� re�ecting some intended speed-accuracy tradeo� (e.g. losing some number of

points for inaccurate responses but gaining some number of points as a function of

response time independent of response), and are given point feedback after every trial.

This is in contrast to more typical instructions to �respond as quickly and accurately

as they can,� and the precision means that the model can be provided with the same

feedback.

Strings are kept short (four characters each) to minimize re�xations and maximize

single �xations. This will help simplify the modeling e�ort, as a successful model

might only need to perform single �xations. The consistent length should also yield

clean estimates of frequency e�ects unconfounded by length and only minimally con-

founded by predictability: because of the at-most-single-nonword and non-repetition

constraint, previous strings are only slightly predictive of upcoming strings. Strings
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are also widely spaced (six character spaces) to minimize parafoveal preview and any

skips it may drive.

Despite its simplicity, the LLDT has several desirable features:

� The precisely expressed payo� makes it amenable to subtle quantitative payo�

manipulations.

� The task requires linguistic processing at the word level (to make the lexical

decision), and possibly processing above the word level as well (via the subtle

predictability e�ect noted above).

� Because participants always start viewing the strings �xated on the �rst one,

and because strings are widely spaced, it is expected to yield a left-to-right

reading pattern similar to that in normal reading.

� Because information is acquired at each �xation but the task response is global

to the trial, the LLDT requires the control of visual attention and the integration

of information across multiple saccades to yield a response, and thus poses a

joint optimization problem over both sets of decisions.

Later chapters will revisit some of these features and provide some evidence that

they are indeed present in the task as performed by human participants.

3.2 The core theory

The theoretical work in the thesis proceeds as follows: it speci�es a reading agent that

performs the full LLDT � choosing eye movement actions (with some simpli�cations),

as well as the eventual motor response. At each point in time, the agent produces

a Bayesian solution to the inference problem posed by the LLDT: it takes in noisy

observations of strings in di�erent positions, and updates its beliefs about word and

trial identity over time. Summary statistics over this belief distribution form the

agent's state: the set of observations on which it conditions its actions. This inference

problem is wrapped in a parametric machine architecture that forms the agent's

bounds : durations of saccade planning and execution, etc. The mapping of states

to actions is the agent's policy. The agent's policy is speci�ed as a set of threshold

parameters de�ned over the summary statistics in its state.

To generate predictions, the theory �xes the parametric architecture whenever

possible to a priori estimated values (taken from prior work or estimated outside of
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the model), and then �nds the set of near-optimal policies with respect to the same

payo� given to human participants, i.e. ones that maximize this payo� rather than

a �t metric to human data. Some machine architecture parameters cannot be �xed

from prior work and are treated as free parameters optimized to data. Values for those

parameters are found by only considering near-optimal policies, and then selecting

the free parameter settings for which the optimal policy is closest to human data.

Figure 3.1 shows a block sequence diagram of the model reading two words, chip

and dive. A detailed description of each stage is provided below, but �rst consider

the sequence of events in reading a single pair of words in the LLDT model. The

model begins �xated on the word chip. Before it can begin processing the word and

making its decision to saccade, it must �rst complete some early visual processing,

marked as EBL on the �gure for eye-brain lag. It then begins lexical processing in

service of its saccade decision. This process is a sequential Bayesian sampling process,

or equivalently a random walk in log probability space, that will be discussed below.

Eventually the saccade decision is made (based on an adaptively-set threshold on a

summary statistic over the random walk) and saccade planning begins, as the eye is

preparing to move on to the next word, dive. While the oculomotor plan is being

computed, the eye continues receiving information from the current word, annotated

as `free' sampling in the �gure because unlike the saccade decision sampling, it is not

under adaptive control.

Eventually the saccade planning is complete and the eye begins moving (annotated

as Sac. Exec. on the �gure, i.e. saccade execution). Some perceptual samples are

still available for part of the saccade, so `free' sampling continues for a short time �

these are samples that arrived at the eye before the saccade began and are only now

done with early visual processing. Eventually the saccade is completed and the eye

has now landed on dive. Another eye-brain lag delay begins now, after which the

saccade decision on dive will begin, and the whole process will repeat on the next

word. Ongoing throughout and not notated on the �gure is the trial-level decision

process. The trial level decision is also based on an adaptively-set threshold, but

de�ned over a di�erent summary statistic of the state of the random walk.

The next section will explain and motivate the set of decision processes the model

uses as it reads, and then provide more motivation for the other delay stages in the

model.
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Figure 3.1: The sequence of stages as the model reads one word and moves onto the
next. See �3.2 for a discussion.

3.2.1 Lexical processing perceptual identi�cation

The modeling framework in the thesis views lexical processing as a process of per-

ceptual identi�cation: the reader proceeds from not knowing what the word is on

the page (but perhaps having a guess) to knowing what it is, up to some level of

certainty. A model of such a process should admit at least the following three sources

of variability in recognition times:

1. Intrinsic properties of words (e.g. frequency, predictability, length).

2. External properties of the task (e.g. imposed by adaptive pressures).

3. Properties of the recognition process itself (e.g. perceptual noise).

Rise-to-threshold drift models such as the Drift Di�usion Model (DDM; Ratcli�,

1978) admit at least three sources of variability (the start point, the threshold, and

the drift rate) and as such can capture these sources of variability. However, and as

noted by Norris (2009), such models su�er in interpretability: their random walk is in

abstract decision units in an abstract decision space (e.g. `wordness') rather than in

units and space directly corresponding to task. A related alternative is the Sequential

Probability Ratio Test (SPRT, Wald, 1945).

The SPRT can be thought of as a dynamic version of Signal Detection Theory

(Green & Swets, 1966). Green & Swets were interested in the basic building blocks

of visual psychophysics: understanding how much light needs to reach the retina for

perceptual recognition to be made. What they found is that there was no �xed amount

needed and that the decision participants made depended on what the distributions

of signal and noise looked like, and what value was assigned to hits (identifying signal

trials) and correct rejections (identifying noise trials). They modeled this behavior
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using a threshold test: given a signal and noise distribution one can place a threshold

somewhere over their combined support. If a given observation is on the signal side a

`yes' response is made; otherwise a `no' response. If the signal and noise distributions

overlap, the model generates false alarms and misses for highly unusual signal or noise

trials. The threshold precisely speci�es a tradeo� between misses and false alarms

that is necessary for any solution to the decision problem with overlapping signal and

noise distributions.

The SPRT is analogous to the SDT model, with the addition of the option to

wait and receive another sample. At every time step, the log likelihood of the sample

observed is computed given both hypotheses (signal and noise). The sum of the log

likelihood ratios of samples seen so far is compared to two thresholds. If it is above

the upper threshold, one hypothesis is selected. If it is below the lower threshold,

the other hypothesis is selected. If it is between the thresholds, another sample is

drawn. It is the optimal sequential test between two hypotheses, as long as one of

the hypotheses corresponds to the true sample generation scheme. It is sequential in

the sense that samples are observed iteratively, optimal in the sense that it provides

the lowest error rate for any desired sample size, or the smallest sample size for

any desired error rate (Wald & Wolfowitz, 1948), and the condition on the sample

generation scheme means that the test may do arbitrarily poorly if the samples are

drawn from some distribution that is not one of the hypotheses (Anderson, 1960).

In such a formulation, the SPRT is equivalent to a random walk in summed log

probability space. It also has an equivalent Bayesian formulation, where a Bayes up-

date is performed at each step on the incoming evidence samples. In this formulation

it is easy to map the SPRT to the sources of variability above: the initial prior (or �rst

log likelihood) re�ects the distribution of words in the environment, the thresholds

re�ect desired sample counts and error probabilities dictated by task constraints, and

the likelihood function re�ects properties of the recognition process itself.

The multihypothesis variant of the SPRT, the MSPRT (Baum & Veeravalli, 1994;

Draglia et al., 1999) only approximates the optimal multihypothesis sequential test.

But unlike the optimal test (Tartakovsky, 1988) it has the same threshold form as the

SPRT, and is optimal in the lower limit of noise (and equivalently upper limit of sam-

ple rate). It has been successfully applied to model lexical decision and single-word

recognition data, recovering e�ects of frequency and neighborhood density, among

others (Norris, 2006, 2009). The model variants in the dissertation all share Norris'

choices of word representation and evidence likelihood function, though the Bayes up-
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dates and decisions are rendered more complicated because of the trial-level statistical

structure in the LLDT.

The Bayes update used in the thesis has a correct generative model of the trial

(i.e. probability of word and nonword trials, probability of generating words and

nonwords in each position, the sample generation noise, etc) with one exception: the

update computation does not include the constraint that words in the real LLDT are

never repeated within a trial. At each unit of time, the model's belief representation

contains the correct probability distribution over strings in each position in light of

the samples received so far under this simpli�cation.

Speci�cally, the value computed is P (Sk = si|ek, T = t), that is, the probability

that the string in position K (Sk) is the ith string in the lexicon (si) conditioned

on an incoming evidence sample from position k (ek) and the current belief about

the trial identity (T = t, with T a multinomial distribution consisting of outcomes

�all words� and �nonword in position k� for all k). Then, an update of the posterior

distribution over trial types is also computed, speci�cally P (T = t|ek). Mathematical

detail of the update is provided in the appendix.

An adaptively set threshold. The model makes its decisions when particular

summary statistics over the belief distribution cross an adaptively set threshold. This

summary statistic for the trial-level motor decision is the probability that the trial

is an all-words trial (and its complement, the probability that the trial contains a

nonword). For the position-level eye movement decision two summary statistics are

used in di�erent models. In the �rst model in the thesis, it is the probability of a word

(and its complement, probability of a nonword) in a given position. In the remaining

model it is the probability of the most likely string in the current position. Reasoning

for these choices is discussed in the next section.

The threshold is is adaptively set in the sense that it is set to maximize a payo�

function � the same one given to the humans in the task. The model's predictions for

behavior are drawn only from those parameter settings that are near-optimal in the

task, in contrast to models that �t all free parameters to data. There is no learning

claim here, however: while there is some work on how to set decision thresholds rapidly

in an online setting (Simen, Cohen & Holmes, 2006), the model in the thesis is agnostic

on this front and �nds near optimal thresholds by brute-force o�ine search. This

also permits the exploration of contrasts between optimal and suboptimal policies

under the model's assumptions, i.e. explanations that it includes or excludes under
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the bounded optimality assumption. The particular choice of summary statistics is

discussed later.

Sample Rate and Sample Noise. Besides the threshold, the sequential sampler

has parameters re�ecting the sample rate, the noise terms in the sample generation

function, and the functional terms of the likelihood computations. Under the assump-

tion that the model has the correct noise model of the word, the likelihood function is

taken to be the inverse of the sample generation function, with the same parameters

(i.e. if the sample generation function is a random draw from the gaussian distribution,

the likelihood function is the gaussian probability density function with the same pa-

rameters). Higher noise means the belief probability will move less at each time step,

and lower will make it move more.

The sample rate is a what allows the model to make timing predictions in millisec-

onds rather than samples. If processing a single sample takes less time, the belief will

move more in the same amount of time. Sample noise and sample rate in the model

can therefore be thought of as jointly determining a scaling factor between samples

and milliseconds: higher noise has the same e�ect as slower samples, that of mak-

ing the belief probability move less per millisecond. Making the sampling duration

interpretable in millisecond-space is also important for understanding how sampling

durations interact with millisecond-level estimates of architectural delays.

The theoretical interpretation of these parameters depends on whether the theory

treats the SPRT as a convenient discrete approximation of a continuous-time decision

process, or as a discrete model of a discrete process. Treating the discreteness of the

SPRT as a theoretical claim rather than a modeling convenience aligns with evidence

for discrete oscillations in human perceptual processing (visual, Dehaene, 1993; and

auditory, Giraud & Poeppel, 2012) as well as short-term memory (Elliott & Müller,

2000). Likewise, recent work implementing the MPSRT using Poisson spiking neurons

(Zhang & Bogacz, 2010), together with a way of estimating such Poisson spike train

parameters from neural sequence data (Lehky, 2010) may pave the way for a priori

noise estimates in the future, as well.

The thesis makes the simpler choice of treating these parameters as free. Since

they exhibit perfect parameter trading, sample rate is �xed and noise used as the

�t parameter. The �xed value is 10ms, which is coarse enough to keep simulation

tractable while not being so coarse it wipes out e�ects of interest.
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3.2.2 Decision dynamics

Recall that the model's belief representation contains the probability distribution

over strings in each position. It must condition decisions on this probability distri-

bution. It does so by computing summary statistics corresponding to hypotheses of

interest and comparing those probabilities to adaptively-set decision thresholds, as

in the SPRT or MSPRT. Under the rationality assumption, these summary statistics

should be selected such that the decision over them optimizes payo�. But optimal-

ity explanations implicitly admit optimization over payo�s in two di�erent kinds of

environments. One is the actual task environment � in this case, the LLDT � and

the other is the ecological environment that the humans are adapted to � in this case,

ordinary reading. Humans could be adapted to the latter either if the adaptation cost

is high, and therefore it is not worthwhile to adapt to the experimental task, or if the

adaptation is on the level of populations rather than organisms. Lewis et al. (2013)

call the latter case ecological optimality to emphasize the role of the organism's out-

of-the-laboratory environment in the explanation. Explanations that do not appeal

to ecological bounds are stronger because they require fewer assumptions, so they

should be preferred. The decision dynamics in the model are discussed in context of

these two options.

3.2.2.1 Motor response decision and action.

In the case of motor responses, there are two decisions: respond-yes and respond-no.

The simple optimality assumption is that participants map the decisions onto the two

possibilities indicated in the task instructions; all-words, and not-all-words. That is,

assuming w.l.o.g. that T = t1 re�ects the outcome that the trial is an all-words trial

(T = w, and that T = tk+1 re�ects the outcome that the trial has a nonword in

the kth position (T = nk), the model computes P (T = w|ek) = P (T = t1|ek) and
P (T = tn|ek) =

∑
k P (T = nk|ek) =

∑
k P (T = tk+1|ek). The maximum of those

two values is the decision variable, such that when it is equal or greater than the

threshold, the motor response decision is made.

The two-choice case might appear to map the decision onto Wald's original SPRT,

inheriting its optimality. However, the analytical form of the expected sample size in

Wald's work relies on samples being i.i.d. which is not the case in the LLDT because

they arrive from di�erent word positions, so it may be the case that the optimality

result does not apply in the LLDT hypothesis set.
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The ecological optimality alternative is adding the assumption that participants

are relying on preexisting, highly-practiced reading strategies � for example, respond-

ing when either all words are identi�ed or when a nonword conclusively fails to be

identi�ed as a known word. This is the back-o� choice if the non-ecological option is

not successful. As it will turn out, the simpler option above seems to work well and

the additional assumption is not added.

3.2.2.2 Eye movement decision and action.

In the case of eye movements, there is no mapping from probabilities to eye movement

decisions provided in the task instructions. The full space of actions might include

targeting a saccade on any word, or even on any character (as is in the case in

related models, Legge et al., 1997, 2002; Bicknell & Levy, 2010b). But the LLDT

was designed to maximize sequential left-to-right eye movements in part to simplify

the eye movement action space, so by assumption the action the model will take will

always be to saccade to the next word. Such a model will fail to recover word-skipping

and regressions, and will therefore likely behave suboptimally (Bicknell & Levy 2010a

showed that regressive policies outperform non-regressive ones). On the other hand,

it will simplify the rest of the modeling e�ort.

This leaves the model with one eye movement action: plan-saccade-forward. The

choice that remains is the decision that the action is conditioned on. A simple option

from the perspective of task optimality is the same choice as in the buttonpress

decision: to condition the eye movement decision on the probability that the string

being �xated is a word (or nonword). That is, assuming without loss of generality

that the words are si, i = 1..n and nonwords are si, i = n..m and m is the full size

of the lexicon, the model computes
∑n

i=1 P (Sk = si|ek, T = t) and
∑m

i=n P (Sk =

si|ek, T = t). At each time step the higher of the two is compared to the threshold.

If the threshold is crossed, eye movement planning begins.

This is the choice used in successfully modeling the lexical decision task by Norris

(2006), and is also the choice taken in the modeling of payo� adaptation in Chapter 4.

An alternative under the ecological optimality argument is that participants plan

a saccade when the current word is su�ciently identi�ed, rather than just su�ciently

discriminated between word and nonword, again with the caveat that conditioning on

probabilities over past words, the nature of the trial, or something else might perform

better. That is, make the decision variable becomes maxi P (Sk = si|ek, T = t).

When the posterior probability of some speci�c string is high enough, eye movement
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planning begins. This back-o� choice will be made in the modeling of spillover, and

motivated in Chapter 6.

3.2.3 Oculomotor architecture: delays and distributions

The oculomotor architecture in the model takes the form of stochastic delays. These

are an abstract way of modeling processes that are not lexical processing, the primary

adaptive component of the model. In particular, the computational details of motor

planning and execution, saccade planning and execution, and early visual processing

are all abstracted away and modeled as delays with �xed gamma distributions. The

speci�c values chosen and the justi�cation for the distributional form are detailed

below.

3.2.3.1 Gamma-distributed delays

The gamma distribution is continuous and zero-bounded, making it convenient to use

for delays that cannot take on negative values. It has been used to model delays on

saccade planning and related values with some success in prior work (Reichle et al.,

2009). In addition, one of its interpretations is as the distribution of waiting times

on poissson-distributed events (such as neural spikes), making it a natural choice for

simulating durations of neural processes of interest that are not given a more detailed

treatment.

For ease of interpretation, one can recast gamma distribution parameters in terms

of desired mean and variance. In particular, the scale α and rate β of the gamma

distribution are computed from means and variances as follows:

α =
µ2

σ2
β =

µ

σ2
(3.1)

For all the stochastic delays, σ is set to 0.3 × µ, which is close to values used in

prior work (Engbert et al., 2005; Reichle et al., 2006)

3.2.3.2 Manual motor delays.

A delay on planning and executing a buttonpress response is needed to be able to

model the full LLDT. For this delay, the dissertation draws upon the EPIC cognitive

architecture (Kieras, Wood &Meyer, 1997), which provides a model of motor planning.
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In EPIC, motor planning and execution take 50ms per motor feature activated. Kieras

et al. (1997) provide an example of a simple `peck' keypress that involves �ve features:

the motor style used, the hand, the �nger, the direction of the motion, and the extent

of the motion. A mean of 250ms for motor planning and execution is therefore used.

3.2.3.3 Eye-brain lag: early visual processing

The eye-brain lag re�ects the processing that happens from when the eye lands on a

word to when linguistic processing begins. Typical estimates are taken from the elec-

trophysiology literature, by looking for the �rst appearance of stimulus-correlated or

task-related activity in the electrophysiological record. The time of the �rst stimulus-

related activity and �rst task-related activity, however, depend on stimulus and task.

Early visual evoked potentials in response to checker stimuli peak as early as 65ms

and start earlier (C1; Clark et al., 1994). Stimulus-related potentials in more com-

plex tasks tend to come later: 40-90ms in face discrimination (Mouchetant-Rostaing

et al., 2000), 75ms in visual category discrimination (VanRullen & Thorpe, 2001), and

as late as 125ms in letter discrimination Tarkiainen et al. (1999), in MEG, though

these are peak measurements and the �rst de�ection is earlier. Task-related activity

comes even later, at about 150ms for category discrimination (VanRullen & Thorpe,

2001) and 143ms for letter discrimination (Tarkiainen et al., 1999). There is one

outlier in these �ndings: Seeck, Michel, Mainwaring, Cosgrove, Blume, Ives, Landis

& Schomer (1997), showed a task-related de�ection as early as 50ms, in both ERP

and intracranial EEG in a face recognition task.

If eye-brain lag is a shorthand way of modeling the processing between the retina

and the lexical recognition process, then the duration of eye-brain lag might re�ect

an implicit claim about the kind of features available to the linguistic process, and

the location where it occurs. One might address this theoretically by making a strong

theoretical commitment to a particular lexical representation, or empirically by inves-

tigating �rst de�ections of the kind discussed above in a task closer to the LLDT.

A simpler option, taken in the dissertation, is to use the value of 50ms motivated

by prior modeling work (Reichle et al., 2009), which is also consistent with some of

the shorter estimates discussed above.

3.2.3.4 Saccade planning time

Saccade planning time in the model is the duration from when the decision to make

a saccade is made, to when the oculomotor action can actually begin execution. Pre-
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vious estimates used in eye movement control modeling have ranged widely, from

around 125ms (Engbert et al., 2005; Reichle et al., 2009) to 240ms (Reichle et al.,

2003). Estimating this value is challenging because saccades might be partially pre-

planned if the decisions of where and when to move are not made at the same time,

and because the planning duration might be proportional to the distance the eye

travel, or some properties of the content of the visual �eld.

Rayner et al. (1983) tackled this question by trying to create a saccade task with a

visual �eld and goals somewhat similar to reading: targets arranged in a horizontal se-

quence. Their speci�c concern was with whether there is a minimal refractory period

between saccades, and whether advance targeting or timing information (i.e. a pre-

dictable time-to-move or predictable location) can shorten saccades by pre-planning

them. But the results can also be interpreted to understand the general question of

how long saccade planning takes.

Most similar to reading is the second experiment in (Rayner et al., 1983): partici-

pants see a series of �xation crosses, but only move from one to the next in response

to a cue (presented foveally or parafoveally). By delaying the timing of the cue, it

is possible to estimate the time to plan a saccade when the saccade target is known,

but the time to start planning it is not known in advance. This is similar to ordinary

reading where most saccades are targeted in a consistent left-of-center position in

words, but the timing is variable.

Rayner et al. found that with cues delayed 50ms or less, saccade planning took

about 220-240ms (depending on whether the cue was foveal or parafoveal), dropping

closer to 200ms with cues delayed more than 50ms and up to the limit tested of 200ms.

There is one problem with this estimate, however: Rayner and colleagues removed

all �xations 100ms or less after the cue, treating them as anticipatory. Treating such

ultra-fast saccades as anticipatory is largely consistent with what is known about

saccadic reaction times, but will bias the data if there are more anticipatory saccades

at longer delays.

A di�erent way to estimate saccade planning duration is to use the double-step

paradigm (Becker & Jürgens, 1979). In this paradigm, participants are asked to

saccade from a �xation cross to a target � but a second target is occasionally added

after the �rst, in which case participants attempt to saccade to both in sequence. The

second saccade is usually faster, suggesting that it is partially programmed in parallel

with the �rst after the second target appears. Becker & Jürgens �t a linear model

to their saccade latencies as a function of second target delay and use its slope to

estimate a theoretical minimum amount of time needed to plan a saccade when its
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target and timing are both known, in parallel with other saccade planning processes.

More recent modeling e�orts (Reichle et al., 2006, 2009; Engbert et al., 2005) use the

lower values estimated from this task.

This lower value (between 112ms and 148ms depending on where the second target

appears) is the minimum amount of time saccade planning takes, even assuming that

the reader can do as much parallel or anticipatory saccade planning as possible. The

dissertation model uses a mean of 125ms, following the latest version of E-Z Reader

(Reichle et al., 2009) and close to the mean value of 115ms used by SWIFT (Richter

et al., 2006). Chapter 4 will brie�y discuss what the consequences might have been

of choosing the higher estimate from the cued saccade task rather than the lower one

from the countermanding paradigm.

3.2.3.5 Saccade Execution time.

The duration that the saccade takes can be estimated from the eye movement task

without using the model. The only challenge is determining the boundaries between

�xations and saccades in the eye movement record, and standard methods for this are

provided in the software shipped with eyetracking systems. A mean value of 40ms was

estimated from participants in the LLDT (full experiment reported in Chapter 4).

3.2.4 Direct control and serial attention: current debates

Two of the major debates in the current literature are on the allocation of atten-

tion and the directness of control in reading. The thesis model is a serial-attention

model: samples from only one word are processed at a time. It is a direct-oculomotor-

control model, meaning that saccade decisions are conditioned on the lexical process-

ing stream, rather than some other autonomous process. Justi�cation for these choices

is provided below.

3.2.4.1 Serial Attention

Inheriting a debate from the attention community, models of eye movement control

are split based on whether they view attention as essentially serial (i.e. focused on

one word at a time), or parallel. Serial models are defended on several grounds: they

are easy to formulate and interpret, because they always make it clear what is being

processed; they are more strongly constrained than the parallel alternative, in the

sense that a parallel attention model reduces to serial attention as a special case; and

they provide word-order information to the sentence processing system `for free'.
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Reichle, Liversedge, Pollatsek & Rayner (2009) make additional challenges to

parallel models on the grounds that mental representations of words as separate units

might be di�cult to create if they are not processed ont at a time, and that word

order might be di�cult to compute if the perceptual input is not over word-size units.

These latter arguments are, however, not compelling: Bayesian theories that assume a

generative model of sentences and the availability of letter information (Legge et al.,

1997, 2002; Bicknell & Levy, 2010b) can rationally update word-level beliefs from

information of multiple partial words. In addition, as Reichle and colleagues note, the

focus on word-level units is if anything a disadvantage for understanding reading in

non-alphabetic languages like Chinese, or languages like Thai where word boundaries

are not marked.

The challenge to purely serial models like E-Z Reader is accounting for spillover,

preview, and parafoveal-on-foveal e�ects: all e�ects where the current word reading

time is a�ected by properties of words that precede or follow. E-Z Reader addresses

this challenge by imposing parallelism between oculomotor and lexical-attentional

processing rather than in attention. By decoupling attention from eye position, the

theory allows attention (and therefore processing) of one word extend into �xations

on words that precede or follow. This explanation is not su�cient to cover parafoveal-

on-foveal e�ects (when words forward of the �xated word a�ect �xation durations on

the �xated word), but there is still an ongoing debate in the literature on the existence

and robustness of these e�ects (Kennedy et al., 2002; Kennedy & Pynte, 2005; Kliegl

et al., 2007; Drieghe et al., 2008).

The advantage of parallel attention models empirically is in their ability to account

for the aforementioned parafoveal-on-foveal e�ects, as well as the full set of empirical

facts serial models cover. The challenge to them is on grounds of predictive �exibility:

theoretically, the space of parallel models can in principle span the range from full

parallelism, through word-level serialism, down to phoneme- or grapheme-level serial

models. Such models therefore require additional a priori estimates or constraints as

to the extent of parallelism.

When it comes to the LLDT, this distinction may not be important, however.

Given the short words and wide spaces used in the LLDT, parafoveal words may well

be at far enough eccentricity for their processing to be minimal even in a fully-parallel

model. A serial model is simpler to build, faster to simulate, and easier to interpret

because it is easy to understand which words and �xations trigger each action in the

model's near-optimal policies. It also greatly simpli�es the choice of policy space for

the model: a model that has information coming from multiple words at a time might
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also condition its behavior on multiple words at a time, whereas it is natural for a

model that only takes in information from one word position to also condition its

behavior on a single position. Therefore, a serial attention scheme is used for the

dissertation model.

3.2.4.2 Direct oculomotor control

Another debate in the literature on eye movement control in reading is on the direct-

ness of the link between lexical and oculomotor processing. At one extreme of the

spectrum are models that assume saccade targets and timings are primarily governed

by visual features like the location of letters and spaces rather than ongoing lexical

processing (e.g. Reilly & O'Regan, 1998). At the other are models that assume both

saccade targets and timings are directly controlled by the lexical processing stream,

though with the delays noted above (e.g. Reichle et al., 2009). In between are mod-

els that make intermediate choices, for example keeping saccade targets controlled

by lexical processing but letting timings be largely autonomous (e.g Engbert et al.,

2005). See Reichle et al. (2003, Table 1) for a more detailed review and taxonomy of

models on this dimension.

This debate is driven by two fundamental facts about eye movements: on the one

hand, standard estimates of saccade planning durations for sequential eye movements

range as high as 200ms (Rayner et al., 1983), and typical �xations in reading are only

slightly longer. Even lower bounds on how long a saccade takes to plan in a simple

psychophysics task is at about 100ms (Becker & Jürgens, 1979). On the other hand,

word-level properties do a�ect reading times (as reviewed in �2.2). The time left for

cognitive processing to a�ect a direct eye movement control decision and yield these

word-level e�ects is therefore only about 50-150ms, with at least about 50ms of this

time taken up by eye-brain lag.

In light of these duration estimates, the reader appears to spend more time viewing

a word after deciding to move on to the next one than he or she takes to makes the

decision. There are two primary ways of understanding this fact. The �rst is taken

by so-called primary oculomotor-control models. These models argue that the above

facts mean that decisions of when and where to saccade are driven primarily by

the same low-level perceptual considerations as the decisions in the sequential cued

saccade tasks. Some example proposals are that the reader always attempts to �xate

on the so-called optimal viewing position, just left-of-center (O'Regan & Lévy-Schoen,

1987), or to the longest word within some reasonable range to the right (Reilly &

O'Regan, 1998), and to do so after a �xed amount of time. Other proposals claim
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that �xation targets are determined by the lexical processing system, but the timing

is nonetheless controlled by an autonomous saccade clock (Engbert et al., 2005). In

practice, all of these models must allow some higher level information to make it

indirectly into the oculomotor stream, otherwise they will fail to capture the known

e�ects of word- and sentence-level properties on reading times.

The second way of handling this empirical puzzle comes from from a key insight by

Morrison (1984): that if saccade planning can occur in parallel with lexical processing,

and given that saccades can be canceled after planning starts but before execution

(Becker & Jürgens, 1979), then lexical processing can play a signi�cant role in the

where and when decisions in eye movements by operating in parallel with saccade

planning. Among the most prominent models of this type is E-Z Reader (Reichle

et al., 2009), discussed in greater detail in chapter 5.

The thesis model assumes that saccade timing is directly controlled by lexical

processing (as delayed by saccade planning). When the lexical processing threshold

is reached, saccade planning begins. The theory remains agnostic on the question of

saccade targeting by assuming that in the LLDT both direct and indirect control of

saccade targets will look quite similar and can be approximated by assuming saccades

sequentially target each word. The choice is made in part in the interest of simplicity:

understanding and interpreting what the model is doing is far easier when the actions

of theoretical interest are under active control. But direct control was also used in

ideal-observer approaches to eye movements similar to the thesis work (e.g. Bicknell

& Levy, 2010a,b) so it has some empirical support.

3.2.5 How the model makes predictions

The model generates predictions by �nding the optimal policy (i.e. a mapping from

its probabilistic belief space to eye and hand actions), optimal in the sense that it

maximizes the same payo� given to the human participants. To the extent possible, it

makes these predictions without making direct contact with data from the LLDT. In

the ideal case, there would be no `free' model parameters: all architecture constraints

would be determined a priori from previous research, and the remaining parameters

would all be policy parameters optimized to maximize payo� in the same task given

to human participants. This is in contrast to typical computational modeling outside

a rational framework, where many or even all model parameters are `free' parameters

�t to data, and their values are part of the descriptive power of the model (with
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respect to the dataset it is �t against) and its predictive power (with respect to new

datasets other than the one it is �t against).

In most practical cases, it is hard or impossible to eliminate all free parameters. In

the dissertation model, the free parameters are the sample rate, and the noise in the

sample generation and likelihood function. The former is �xed to 10ms as discussed

above, and the latter estimated. To correctly estimate it while maintaining bounded

optimality assumption, a nested �t is undertaken. First, near-optimal models with

respect to payo� are found by varying policy parameters, over a range of noise param-

eters. Then, the noise parameters are selected for which near-optimal models best

match human data.

3.2.6 Putting it all together: the full architecture

Figure 3.2 shows the diagram of the full model. On the right is a schematic view

of the (M)SPRT lexical processor and its decision dynamics, indicating the �ow of

information (green arrows). On the left is the oculomotor architecture, indicating the

sequence of events (blue arrows). The red arrows indicate the adaptive decisions. Note

in particular the blue arrow between saccade planning and sample draws: consistent

with Morrison's assumption, samples continue to be drawn during saccade planning.

This is the architecture used in the treatment of payo� adaptation in chapter 4.

The decision dynamics and lexical processing components will change in the treat-

ment of spillover e�ects, as memory and parafoveal processing force some changes in

model assumptions. The task, oculomotor architecture and payo� all remain �xed

throughout the dissertation.
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Figure 3.2: Architecture for the base model. The blue arrows re�ect the sequence of
events: samples are drawn during saccade planning or if the eye movement decision
has not been made; saccade execution follows saccade planning, and is itself followed
by the eye arriving at the next word; manual (buttonpress) planning and execution
leads to the end of the trial and feedback. The green arrows re�ect the �ow of
information: samples from the eye are delayed by the eye-brain lag before arriving
at the word-level and trial-level updates discussed in the text; information from the
content of the updates arrives at the decision mechanism. Red arrows re�ect actions of
the decision mechanism: motor planning starts if the word probability mass exceeds
the threshold and does not otherwise; motor response planning begins if the task
decision belief crosses threshold.
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CHAPTER 4

Evidence for Adaptive Eye Movement

Behavior in the LLDT

This chapter discusses results of a human experiment in the LLDT showing that

participants do adapt their eye movement decisions on the single �xation level to a

quantitative payo� manipulation. The same manipulation is undertaken in the model

introduced in the previous chapter, and model results show a behavioral signature of

adaptation similar to that in the human participants. These results are also reported

in Lewis, Shvartsman & Singh 2013.

Task goals and context have long been known to have major e�ects on human

performance in psycholinguistic experiments (for an early analysis see the seminal

chapter by Forster, 1979). For example, in the area of single-word lexical processing,

there are robust di�erences in how frequency and other important e�ects manifest in

naming vs. lexical decision tasks (e.g. Grainger, 1990). Task context in the form of

experimental list composition and goal manipulation via instructional emphases have

signi�cant e�ects, and have received detailed theoretical treatments (Wagenmakers

et al., 2008).

There is also some work investigating task e�ects on eye movements in reading.

For example, McConkie et al. (1973) have shown that participants tend to read longer

when anticipating more di�cult questions (for example, questions of a factual nature),

as well as when they were �nancially incentivized to answer the questions correctly.

Rayner & Raney (1996) have shown that the lexical frequency e�ect is eliminated

when subjects read words in search of a target word rather than reading for com-

prehension. Finally, Wotschack (2009) replicated the question di�culty �nding of

McConkie et al. and also found that increasing the frequency of comprehension ques-

tions or instructing the participants to proofread led to slower reading speeds.

Recent work on visual attention in both linguistic and nonlinguistic contexts indi-

cates that attention strategies are a�ected by task goals (e.g., Rothkopf et al., 2007;
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Accuracy Balanced Speed

Incorrect

penalty

-150 -50 -25

Speed bonus

(per second

under 5s)

8 6.7 5.7

Table 4.1: Quantitative payo�s given to both model and human participants.

Ballard & Hayhoe, 2009), and more broadly there is a history of research showing

that e�ects of strategic adaptation appear on multiple levels of complexity, from sim-

ple perceptual decisions (Green & Swets, 1966) to complex multi-tasking scenarios

(Meyer & Kieras, 1997; Howes et al., 2009).

But while this prior work manipulates task type and di�culty, there has not been

a manipulation of quantitative speed-accuracy tradeo�s of the kind pursued here. The

advantage of this quantitative manipulation comes when adding the assumptions that

humans are attempting to maximize the quantitative payo�s given. Under this as-

sumption one can map model behavior under di�erent payo�s to behavior of di�erent

participant groups under those same payo�s, and attempt to understand the graded

nature of the adaptive process.

This is exactly what is done in this chapter. Three payo� were designed to impose

di�erent speed-accuracy tradeo�s for a given level of success, and were all de�ned in

terms of a bonus for speed and penalty for incorrect responses. The bonus was

continuous at the millisecond level, starting at zero points for responses longer than

5s and rising by a di�erent number of points per second for each payo�. The three are

detailed in Table 4.1. The labels of `accuracy', `balanced' and `speed' are intended

to re�ect the intended emphasis of the payo�. For example, the speed payo� gives a

smaller bonus for going fast, requiring participants to go faster than they would for the

same time bonus in the accuracy payo�, but has a smaller inaccuracy penalty to yield

an approximately equal payo� to the accuracy payo�. The accuracy payo� in turn

gives a bigger bonus for going fast while imposing a larger inaccuracy penalty, allowing

participants to spend longer and achieve more correct responses without sacri�cing

as many points as they would in the speed payo�. The payo�s were designed to be

approximately equal in expectation based on an earlier model (Shvartsman, Lewis,

Singh, Smith & Bartek, 2011).
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Parameter Mean Std Deviation

Eye-Brain Lag 50ms 15ms

Saccade programming time 125ms 37.5ms

Saccade execution time 40ms 12ms

Motor preparation and execution time 100ms 30ms

Trial onset detection and re�xation 150ms 45ms

Sample duration 10ms 0

Gaussian sample noise 0 1.2

Table 4.2: Oculomotor architecture parameters; all are �xed in advance as described
in Chapter 1, except sample noise, which is �t as described in the text. Standard
deviation for all but the sample duration and sample noise is �xed at 0.3 times the
mean.

4.1 Model and simulation speci�cation

The core of the model is as described in Chapter 3: a sequential sampler embedded in

an oculomotor architecture. The key �xed parameters are summarized in Table 4.2.

The �rst four items in the table are architectural delays described in the previous

chapter. The next item is a trial onset detection and re�xation delay: participants in

the LLDT see a gaze-contingent trial start, and it may take some time for them to

detect the appearance of the list of strings and potentially re�xate in a more optimal

viewing position on the �rst string. This delay was simulated in the model by adding

another Gamma deviate with a mean of 150ms and SD of 45ms in the beginning of

each trial. While it provided a slight improvement of the overall quantitative �t, it

was not of substantial theoretical interest and was dropped from the models in the

remaining chapters. The next two items are sample rate and sample noise. Sample

rate is �xed at 10ms as discussed previously, and sample noise was �t to single �xation

durations, with only near-optimal policies considered.

4.1.1 Simulation details

To implement the simultaneous optimization of threshold parameters to payo� and

noise parameters to �xation duraions, a grid search was undertaken, with values

described in Table 4.3. The threshold parameter grid ranged from low enough to

yield near-chance performance to high enough to be unreasonably accurate (and cor-

respondingly slow). The noise parameter grid ranged widely enough to identify a

clear minimum of error against single �xation duration. Each point in this grid was
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evaluated for 300,000 monte carlo simulation trials. Expected values were computed

for each of the measures of interest (payo�s, reaction times, single �xation duration,

etc.) by taking means of these values over the simulated model trials.

The words and nonwords in the trials were drawn from the experimental list used

for human participants according to the same drawing rules as in the human exper-

iment: the probability of a word trial was 0.50 (and thus a nonword trial 0.50), the

nonword position was uniform in nonword trials, and words and nonwords were drawn

uniformly from the lexicon. Across the 300,000 trials there were 50 di�erent word

and nonword lexicons of approximately 500 strings each. The word lexicons always

included the experimental words and an additional set of words drawn uniformly

randomly from the set of 1,500 English four letter words represented in Ku£era &

Francis (1967); the nonword lexicons always included the experimental nonwords and

an additional set of nonwords constructed from letter bigrams that appeared in the

word list. The model's performance is always evaluated on the words and nonwords

from the human experiments, but for the model these strings are not distinguished

in any way from the rest of the model's lexicon. Aggregating results across di�erent

model lexicons ensures that the results are not driven by a particular lexicon choice

(though preliminary explorations indicated the results are robust against this choice,

as well as the choice of lexicon size).

Statistical tests are not reported on the empirical measures that the model pro-

duces: at 300,000 simulated trials for each noise and policy setting, the con�dence

intervals around the reported means are negligible. From the expected values thus

estimated, mean trial payo�s were computed for each architecture (determined solely

by the noise parameter; the remaining architecture parameters were �xed as described

in Chapter 1). A set of near-optimal policies1 was found with respect to each of the

three payo�s. Among these optimal policies, one was selected to yield the smallest

root mean square error (RMSE) against the mean human SFDs, across all payo�

conditions.
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Parameter Search range Final value Source

Saccade

Threshold

0.80, 0.85, 0.86, 0.87, 0.88, 0.89,

0.90, 0.91, 0.92, 0.93, 0.94, 0.95,

0.96, 0.97, 0.98, 0.99, 0.995,

0.999, 0.9999, 0.99999

0.99 (Acc),

0.97 (Bal),

0.92 (Speed)

Maximizing payo�

given task and archi-

tecture

Decision

Threshold

0.80, 0.85, 0.90, 0.92, 0.94, 0.95,

0.96, 0.97, 0.98, 0.99, 0.999,

0.9999, 0.99999

0.999 (Acc),

0.999 (Bal),

0.99 (Speed)

Maximizing payo�

given task and archi-

tecture

Sample noise 1.05, 1.1, 1.15, 1.2, 1.25, 1.3 1.2 Minimize deviation

from human SFD,

within optimal

policies

Table 4.3: Fit model parameters. Only the sample noise parameter is `free' in the
conventional sense (i.e. it is estimated by maximizing �t to human data), and even in
this case it is only �t to a single empirical measure and evaluated against many. The
remaining parameters (the thresholds) are �t by maximizing payo� in a particular
condition (just as the humans are being asked to do).

4.1.2 The relationship between policy and payo�

Figure 4.1 provides views of the payo� surface in the two-dimensional policy space.

In the �rst three panels, payo� is plotted against saccade threshold and each separate

line corresponds to a separate decision threshold. In the fourth panel, payo� is plotted

against decision threshold and each line corresponds to a separate saccade threshold�

thus these are di�erent views of the same 2-D payo� surface. Recall that a policy is

simply a pair of threshold values (saccade-threshold, decision-threshold). The circled

point at the top of each payo� plot represents the policy that yields the maximum

expected payo� under this formulation of the policy space, and its value is given as

the pair of numbers to the left of the point. The colored points represent policy points

that are within 0.2 payo� units of the optimal. Values of each point are computed

from means of 300,000 Monte Carlo trials.

Consider the Accuracy payo� graph at the left. This graph indicates that there is

a �at region of the payo� surface when saccade thresholds are below about 0.85; this

1The thesis will always refer to these as near -optimal because they are not formally guaranteed to
be the absolute best policies, due to the fact that the dissertation uses brute-force discretized search
over the payo� function made noisy by randomness in architectural delays and sample generation.
More accurate estimates of the value of the payo� function found by running more trials may
help further separate these near-optimal policies into better and worse performers. Likewise �ner
discretization of the space may �nd slightly better policies close to the near-optimal ones found.
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Figure 4.1: Expected payo�s generated by the model over the 2-D policy space de�ned
by decision and saccade thresholds. The �rst three panels relate expected Accuracy,
Balanced, and Speed payo� to saccade thresholds; each separate line corresponds
to a separate decision threshold. The fourth (rightmost) panel relates the expected
Accuracy payo� to decision thresholds; each separate line corresponds to a separate
saccade threshold. (The Balanced and Speed payo�s, not shown, have rising but
shallower slopes). The circled points represent the optimal policies, whose value is
indicated at the left of the point. The colored points (red for Accuracy, blue for
Balanced, and green for Speed) represent policies that are within 0.2 expected payo�
units of the optimal point; thus the spread of these points in the Balanced and Speed
payo�s re�ects the �atter surfaces for those payo�s. Expected payo� values were
computed over 300,000 simulated trials.

corresponds to thresholds where the saccade program is initiated almost immediately

upon �xation. There is a steep rise in payo� as saccade thresholds increase�because

more samples are obtained and accuracies are increasing signi�cantly�up to a maxi-

mum point near a threshold of 0.99, followed by a steep decline as the additional gain

from increased accuracy diminishes and the time cost begins to dominate. This rela-

tionship holds for most of the good performing decision thresholds. The relationship

between decision threshold and payo� has a similar but simpler pro�le over the range

explored: a steady increase in payo� as the decision threshold increases, followed by

a steep drop as the time cost begins to dominate.

The Balanced and Speed payo�s have a similar pro�le as the Accuracy payo��for

the saccade thresholds, a �at region, a rise, and a sharp drop. But the qualitative

shape di�ers considerably in the region of the maximum; payo� surface is considerably

�atter for the Balance payo�, and very �at for Speed. Thus there is considerably more

spread in the range of thresholds that perform within some close threshold of the

optimum. The visualization of the payo� space suggests more success in separating
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the Accuracy condition from the other two than in separating Balanced and Speed

from each other, a fact somewhat consistent with the human data (Figure 4.2.

The graphs in Figure 4.1 provide a visualization of the fundamental basis of the

model's link between task payo� and predicted behavior: they depict the nature

of the adaptive space that the human participants must navigate according to the

model. The overall di�erences in payo� levels suggest that at least in the case of the

model, the attempt to make the payo�s approximately equal in attainable points was

not successful. While slightly unfortunate, this is not very important as long as the

model does show di�erences between policies that are near-optimal with respect to

di�erent payo�s.

The next step is to relate these same policy points to predicted behavior directly

� to do this, the next section will detail the human experimental methods, so that the

model and human results can be reported in parallel subsequently.

4.2 Human experiment methods

4.2.1 Participants

Sixty-one members of the University of Michigan community participated in the ex-

periments. Data from thirteen were unusable due to calibration problems, failure to

complete the experiment, or equipment malfunctions, leaving a total of 48. Partici-

pants were given a baseline of $10 for participation, plus a bonus of $1 for each 1000

points they earned in the task.

4.2.2 Stimuli

Participants responded to 200 trials of the LLDT divided into 10 blocks, preceded by

a 10-item practice block. There were two types of trials in each block: half of trials

contained all-words lists, and the other half contained 5 words and one non-word

in a randomly drawn position. Words were all 4 characters long and drawn from

a 234-word subset of the Brown Corpus (Ku£era & Francis, 1967), containing 117

high-frequency words (mean frequency count 239.2, SD 186.0) and 117 low frequency

words (mean frequency count 5.6, SD 12.8). Nonwords were also all 4 characters

long, and were drawn from a list of 53 nonwords pronounceable according to English

phonotactics. While this means that participants saw each string more than once,

the number of times a string was seen had no signi�cant e�ect on �xation durations

(e�ect of -0.64 ms per time seen, p=0.61).
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4.2.3 Procedure

Each participant was assigned to one of the three payo� conditions used to make

predictions from the model. They were not told the name of their payo�, only a

quantitative description of the requirements (e.g. �You will receive a point for each

125 milliseconds by which your response is faster than 5000 ms (5 s). You will lose 150

points if your response is incorrect. You will get a $1 bonus for each 1000 points.�).

Items were presented on a CRT monitor in a 20pt Courier font, separated by 6

characters of whitespace. This resulted in each word covering 0.7 inches or 1.6 degrees

of visual angle, and whitespace covering 1.48 inches or 3.4 degrees of visual angle at

a distance of 25 inches from the screen. Each trial started with a �xation dot at

the location of the �rst string. The entire six-string list would appear once subjects

�xated, and the trial ended after subjects responded using a Cedrus response box.

Eye movements were measured using an SR-Research Eyelink II head-mounted eye-

tracker operating at 500Hz. Single-point drift correction was performed before every

trial.

Statistical Methods Data analysis on the human data was carried out using mixed

e�ects regression (Pinheiro & Bates, 2000) using the lme4 package (Bates, Mächler,

Bolker & Walker, 2014) for the R environment for statistical computing (R Core

Team, 2014). For inference, models with maximal random-e�ects structures were �t:

in trial-level analyses of condition this included by-participant and by-trial random

intercepts, and by-trial random slopes (by-subject random slopes are not necessary

because ours was a between-subjects design). In string-level analysis of condition this

additionally included random slopes and intercepts of word and list position. In string-

level analysis of frequency this included random slopes and intercepts of position but

only random intercept of word (since frequency is a between-word factor). In string-

level analysis of position this included a random slope and intercept of word. Linear

models were �t to all timing measures, and a logit model was �t to accuracy.

Response times and single �xation durations (SFDs) that were farther than 3

standard deviations from the mean of those respective measures were removed. Some

additional response times had to be removed due to a bug in response collection

code. To mitigate against the possibility that some participants were quicker to

adapt to the payo� than others, all empirical measures were tested both for the full

set of participants and for only the top half of participants (in mean trial payo�) for

each condition. There was no di�erence in the signi�cance or direction of reported

e�ects between the full group and the top-half group; however, numerically some of
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the results from the top group appear closer to the model's performance. Fixation

durations from the �rst and last strings in the list were excluded to eliminate noise

associated with response selection and gaze-contingent re�xation. In addition, words

that appeared after a nonword in a trial were also excluded from the analysis. Over

17,000 single �xations remained in the dataset.

Hypothesis tests were conducted using a single pair of normalized orthogonal

contrasts. The �rst contrast, and the one of theoretical interest, is the contrast

between the accuracy and speed payo�s (i.e. coding accuracy and speed as ±0.5 and
balanced as 0). The second contrast is included for orthogonality (coding accuracy

and speed as 0.408 and balanced as −0.815) but is not theoretically informative, so

its results are not reported. This contrast design allowed the use of the balanced

condition for purposes of improving error estimates, increasing overall power. Log

frequency and position were treated as numeric linear predictions for the purposes

of those hypothesis tests. The e�ect of each contrast is reported as the p value of

a likelihood ratio test (using the Chi squared distribution) comparing two models

identical except for the presence of the contrast set of theoretical interest.

Reported condition means are estimates of �xed e�ect of condition in a model

containing random intercepts as described above, but no random slopes. This allowed

the use of Markov-Chain Monte Carlo (MCMC) sampling to estimate 68.2% (i.e. 1

standard error on each side) highest posterior density (HPD) intervals around these

estimates. While HPD intervals derived from such models may be overly small (i.e.

anti-conservative), they are useful due to being more interpretable than equivalent

con�dence intervals: the HPD interval is simply the interval within which the mean

is likely to lie with this probability. Table 4.6 details the speci�c contrasts tested, and

the sections below walk through them in more detail.

4.3 Human and model results

4.3.1 Trial level e�ects

Figure 4.2 shows the results for key trial-level measures: response times (on correct

and incorrect trials), and percentage correct. The top row is the set of human results,

and the bottom row is the set of model results from a set of policies at or near

optimal (within 0.2 payo� units) plotted. Table 4.4 shows condition means for human

participants and model.
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Response Time (ms) % Correct Payo�

Condition Human Model Human Model Human Model

Accuracy 1667 1644 92 98 12.91 23.44

Balanced 1548 1546 87 97 16.08 21.52

Speed 1494 1455 88 95 16.65 18.89

Table 4.4: Trial-level measures; payo� reported is mean payo� per trial. See Table 4.6
for signi�cance tests.

The key empirical result here is that the human participants show marginally

decreased accuracies and response times across the Accuracy-Balanced-Speed payo�

conditions: the accuracy condition results in slower response times (Table 4.6, con-

trast set (a)) and higher percentage correct (Table 4.6, contrast set (b)). The model

predicts this trend because the optimal thresholds for Accuracy are higher (Table 4.3)

than Speed, leading to slower but more accurate responses. This is also consistent

with the design goals of the payo� scheme, which is designed to encourage on average

slower but more correct responses in the accuracy as compared to the speed condi-

tion. There is a signi�cant discrepancy in predicted accuracies, addressed later in the

chapter.

The model correctly predicts that correct word trials will show slower responses

than incorrect trials, with the converse holding in nonword trials (a reliable cross-over

interaction, Table 4.6, contrast set (c)). This result is a consequence of the fact that

`all-words' responses (correct or incorrect) tend to come after reading the full list,

whereas `not-all-words' responses tend to come after only reading a subset of words.

Although this is not surprising behavior for the humans, the model need not have

behaved this way: there are suboptimal strategies in the explored space that set the

decision threshold low enough that an `all-words' response are made before all strings

are read, and ones that set it high enough that `not-all-words' responses are not made

until after the sixth string.

4.3.2 String level e�ects

Figure 4.3 shows the results of key string-level measures: single �xation duration

across �xation types and by frequency class. Single �xation durations are reported

because this is the measure that the model is able to quantitatively predict (re�xations,

regressions and skips are all not in the model). 71% of the strings were �xated only
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Figure 4.2: Empirical measures at the level of the trial for the full set of human
participants and the computational model. The colored points represent predictions
corresponding to the best-performing policies identi�ed in Figure 4.1, the lines connect
the means of this set. The error bars on the human data correspond to one standard
error estimated from posterior densities of the mixed e�ects models.

once, and other �xation-level measures (e.g. �rst �xation and total �xation times) do

show the same patterns2.

The key result here is that the human data is consistent with the model prediction

of slower �xation durations in the Accuracy as compared to the Speed condition

(Table 4.6, contrast set (d)). The model provides a straightforward explanation of

this e�ect: when a payo� provides pressure to respond more correctly, a higher saccade

2One interesting pattern the human results show that the model cannot recover is occasional re-
gressions from the �nal string to suspected nonword positions (both true nonwords and low-frequency
words). This pattern is broadly consistent with the rational explanation for regressions provided
by Bicknell & Levy (2010a): as more words are read, the probability of an all-words trial increases,
reducing the probability of a nonword in that past position, and resulting in a regression.
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threshold will increase the amount of information acquired, increasing the likelihood

of a correct response.

Single Fixation Duration

Condition Frequency Human Model

Accuracy High 253.57 255.59

Low 274.47 294.24

Balanced High 227.23 227.37

Low 244.46 256.71

Speed High 236.34 205.40

Low 251.29 224.30

Table 4.5: Single Fixation Durations for words in the high and low frequency bins,
indicating an e�ect of lexical frequency. See Table 4.6 for signi�cance tests.

The model also correctly predicts an e�ect of log frequency on �xation durations:

�xations on highly frequent words are faster (Table 4.6, contrast set (d)); see Table 4.5

for numeric estimates). Norris (2006) has already shown that this is a consequence of

an otherwise unconstrained ideal observer model making decisions on single words, but

the comparable magnitude of e�ects between the human was not a necessary outcome

of the model embedded in an architecture (see below for similar architectures yielding

the wrong e�ect magnitude).

The model also predicts a larger frequency e�ect in the Accuracy condition as

compared to the Speed condition, for the same reason: thresholds are set lower in

the Speed condition and fewer samples are obtained during the adaptively controlled,

pre-saccade-programming stage of sampling that a�ects �xation durations and thus

frequency e�ects. The human data are numerically consistent with this e�ect, but

the interaction is not reliable.

The model makes other interesting and more subtle predictions attested in the

human data (Figure 4.4, left two columns). First, nonwords are read more slowly

than words. In the model, this is a consequence of the fact that the prior probability

that any given string is a word is much higher than a nonword. It therefore takes

more evidence (more sampling time) to reach the nonword threshold. Note that these

predictions of the model are valid in spite of the simplistic nonword representation

chosen: a reasonable belief representation that does not explicitly assign probabilities

to nonwords will still be far likelier to expect known words than otherwise, and the
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SPRT provides a mechanism that explains why less expected visual items might take

longer to identify.

Furthermore, the word-nonword di�erence is predicted to be larger in the Accuracy

condition than Balance and Speed, an e�ect that appears in the human data as a

reliable interaction between condition and string type. This re�ects a nonlinear e�ect

of distance-to-threshold on the expected number of samples required for decision in

the SPRT, the same mechanism that yields the logarithmic frequency e�ect on single

�xation durations and its interaction with payo� condition.

In addition, the e�ect of trial accuracy is di�erent for words and nonwords (another

interaction): �xation durations on words are about the same in correct and incorrect

trials, but the model predicts that nonwords are read more quickly in incorrect trials,

and the human data shows this pattern (Table 4.6, set (g)). In the model this arises

because the prior is closer to the word threshold than the nonword threshold, and

the expected number of samples (i.e. time) to reach threshold is a function of the

distance from prior to threshold. Therefore, incorrect random walks to the word

threshold take fewer samples than correct random walks to the nonword threshold.

This latter insight will prove helpful in understanding spillover frequency e�ects in

the latter portions of the thesis.

Finally, the model predicts that strings in later positions are read somewhat more

slowly than strings in early positions for all three payo� conditions; this e�ect, though

tiny, is also reliable in the human data (Table 4.6, contrast set (e)). This is another

consequence of the list-level Bayesian update. The reason is a somewhat counterintu-

itive property of the probabilistic structure of the task: as evidence is accumulated

identifying strings as words in the list, the probability of an all-words list increases�

but the probability that any one of the individual strings remaining is a nonword

increases slightly. Thus, the prior belief that each remaining string is a word is

slightly lower, and in expectation additional samples are required to hit the word

threshold. This shows that participants are sensitive to the subtle inter-word depen-

dency in the LLDT, one of the task's desired properties. Unfortunately this suggests

a misalignment between the probabilistic structure of the LLDT and normal reading,

which is not reported to show such a systematic slowdown.

51



Contrast set E�ect Estimate p

(a) Condition on RT -180.36 0.09

(b) Condition on % Correct (logit) -0.40 0.08

(c) Trial Type (word vs nonword) on RT -355 <0.001

Correctness (correct vs incorrect) on RT -91 <0.001

Correctness x trialtype interaction on RT -596 <0.001

(d) Condition on SFD -21 0.04

Frequency on SFD -4.45 <0.001

Frequency x Condition interaction on SFD 1.64 0.29

(e) Position on SFD 3.26 0.007

Position x Condition interaction on SFD -0.65 0.44

(f) String (word vs nonword) type on SFD 97 <0.001

String type x Condition interaction on
SFD

-61 0.05

(g) String (word vs nonword) x Correctness
(correct vs incorrect) on SFD

71.2 <0.001

Table 4.6: Coe�cient estimates and p-values calculated using a likelihood ratio test
between two linear models identical except for the presence of the tested predictor.
Lines separate di�erent linear models. Condition was coded as a set of orthogonal
contrasts; reported here is the Accuracy vs. Speed contrast.
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4.3.3 How could it be otherwise? Why a match in adaptation

and its locus is important

The previous two sections showed a two-way correspondence between humans in

model both in the fact that they adapt to payo�, and in the fact that they adapt

along the same locus (individual �xation durations). This two-way correspondence

need not have been the case on either the trial payo� or the �xation duration level,

and there are reasonable alternative possibilities for both.

In the case of trial-level payo� adaptation, Both the model and the humans could

have failed to respond to the payo�. The humans could have failed to respond to payo�

if mapping the abstract numeric payo� to moment-by-moment strategy di�erences

was too di�cult in the short duration of the task � because the cost of creating a

new strategy was higher than using an old one, because the granularity of humans'

internal strategic representation is not su�cient to distinguish between the three

designed payo�s, or for some other reasons. They also could have failed to respond

to payo� because of other independent pressures like overall task di�culty (putting

them at ceiling or �oor), or con�icting task goals (such as �nishing the experiment

and leaving).

Likewise the model could have failed to respond to payo� if its cognitive archi-

tectural constraints overconstrain the policy space. For example, if saccade planning

duration is long enough, any word will be (nearly) perfectly identi�ed during saccade

planning, and active (threshold-controlled) sampling is not needed. In such an ar-

chitecture the best threshold would be as low as possible, regardless of payo�, and

optimal performance for all payo�s would look identical.

Even given that there was an a correspondence between model and humans in the

e�ect of payo� on trial response times, there need not have been that correspondence

in the case of �xation durations. The model could have behaved in other ways to yield

the same response time di�erences, for example by keeping the saccade threshold the

same across payo�s and only varying the trial decision threshold. This would yield

an unnatural (for humans) behavior where more or fewer words are read as a result

of di�erent speed-accuracy tradeo�s. The humans, too, have this unusual strategy

available and do not choose it. They could have also adapted via other strategies such

as minimizing mind wandering, increasing their attentional resources, etc. Rather

than (or more likely, in addition to) these other adaptations, humans show evidence

of adapting their moment-to-moment saccade timing to the di�erential speed-accuracy

pressures.
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Even �nding the benchmark frequency e�ect in the model is not a trivial �nding, as

any frequency e�ect whatsoever was not a necessary consequence of the architecture-

bounded model: the e�ect can disappear with su�ciently low saccade thresholds, even

though the model can still perform the task. Indeed, in the Speed condition, many

good-performing thresholds nearly make the frequency e�ect disappear. The reason

is that thresholds can be set that are near the prior belief in expectation, so a saccade

program is initiated immediately, before samples are taken. There is therefore little

or no opportunity for frequency to a�ect �xation duration, but samples continue to

arrive during the saccade programming time so the task can be performed. A di�erent

set of architecture bounds would also eliminate the e�ect: with a saccade planning

time long enough to identify the word and perform the task, low saccade thresholds

will perform increasingly better and again eliminate the frequency e�ect.

4.4 How does architecture shape adaptation?

The reported model predicts a detailed empirical signature of adaptation across task

payo�s that is attested in the human subjects, at the level of single �xation duration.

It does so by optimizing its policy (and therefore behavior) under the joint constraints

of task and oculomotor architecture. The previous sections and human empirical

design test its varied predictions under di�erent task constraints. What follows next

are two explorations of how the oculomotor architecture might a�ect the model's

predictions, the �rst analytical and the second computational. The goal here is not

to compare qualitative changes in architecture like changes from serial to parallel

attention. Rather, the intent is to take advantage of the parametric nature of the

machine architecture and see how the quantitative detail of the machine might make

a di�erence in predictions.

The �rst argument is made analytically: recall the discussion in Chapter 1 of eye-

brain lag and saccade-planning time. The eventual values selected were from a recent

version of E-Z Reader (Reichle et al., 2009) and consistent with shorter estimates in

the literature (EBL 50ms: Clark et al., 1994; Seeck et al., 1997; SPT 125ms: Becker

& Jürgens, 1979). But imagine that the values selected were instead the higher ones

used in earlier E-Z Reader variants (Reichle et al., 2003) and consistent with higher

estimates in the literature (EBL 90ms: Mouchetant-Rostaing et al., 2000; SPT 240ms:

Rayner et al., 1983). These estimates would yield a lower bound on expected �xation

durations of 330ms, since each �xation must include both saccade planning and eye-

brain lag, but does not have to include any sampling before saccade planning begins.
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Now recall the optimization procedure: �rst, optimal policies are found for each

noise setting, and then the best noise setting is found based on correspondence be-

tween SFD in the optimal policy for that setting and the human SFDs. Human SFDs

in the LLDT are approximately 250ms, so the noise setting that will be selected is

the one at which SFD is as close as possible to 250ms, which will be at the expected

minimum of 330ms. There will be some noise settings for which such a policy is op-

timal and saccade planning begins immediately, and these settings and policies will

be selected. At the very least, these policies will show neither frequency e�ects nor

e�ects of payo� on �xation durations.

Without simulation it is not clear whether they will also fail to recover other

e�ects, but the loss of these two e�ects is su�cient for the argument that bounds

play a strong role in adaptation. It is important to note that this extreme model

is still an adaptive, bounded optimal control model � it just so happens that the

same adaptive solution is optimal under any task settings. By this argument one can

conclude that long saccade planning and eye-brain lag duration are not compatible

with some aspect of the rest of the architecture in being able to yield human-like

behavior under the bounded optimality assumption.

The second argument is made by simulation. Consider a set of models with

increasingly simple and short oculomotor dynamics. As in the analytical argument

above, these are not `lesioned' variants of the model. They are each valid models in

their own right, each with new best-�tting noise parameters and new optimal policies.

The simplest of these is a minimal model that dispenses with eye-brain lag, saccade

programming time, and saccade execution times. In that sense, it is the simplest

kind of ideal observer model that can accomplish the task by controlling the timing

of sequential saccades. The next two architectural variants rely on the insight above

that the duration of saccade planning (and therefore `free' post-threshold sampling)

is the aspect of the architecture that most strongly interacts with the policy and

therefore the interesting adaptive component of the model. The �rst maintains only

the saccade programming time (thus eliminating eye-brain lag and saccade execution

duration), and the second keeps eye-brain lag and saccade execution and eliminates

saccade programming.

Figure 4.5 shows the best achievable �t available to each of those models, against

SFD (the metric to which the noise parameter is �t). The model with only saccade

planning performs nearly as well (in terms of recovering human data patterns) as the

model with the full architecture. The minimal model does least well, consistent with

the notion that the architecture is improving predictive power, but � remarkably � the
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architecture lacking only a saccade planning delay performs nearly as poorly. This is

consistent with the insight above that saccade planning is driving most of the impact

of the architecture.

These di�erences are driven by the following sequence of changes: First, as ex-

pected, less `free' sampling means that optimal policies would require higher thresh-

olds to achieve similar accuracies. The sharper, taller peaks in �gure 4.6 show this

for the most striking case, the minimal model. Notice that the optimal policy in the

speed payo� in the minimal model is the same as the optimal policy in the accuracy

payo� in the full architecture, and thresholds go higher from there.

Next, with a bigger role for threshold in the model's predictions, all e�ects that

rely on distance from prior to threshold are magni�ed. See Figure 4.7, which shows

single �xation durations by frequency class, and compare it to the bottom right panel

on Figure 4.3, noting the di�erence in y-axis scales. Both the e�ect of payo� and the

e�ect of frequency (high vs. low) are magni�ed. Recall from Figure 4.5 that the �t

to human data cannot be made better by adjusting the noise parameter; it is already

maximizing �t to single �xation durations possible within the space of optimal policies.

This also illustrates again that with a single free parameter, the model (whether with

a full oculomotor policy or a minimal one) is substantially restricted in its space of

predictions.

4.5 Discussion

4.5.1 Summary of major results

The key challenge in this chapter was demonstrating payo� adaptation in humans

in the LLDT, and showing that the model can correctly recover this adaptation

along the same adaptive locus chosen by the humans. The between-subjects payo�

manipulation in the LLDT was successful, and the detailed empirical predictions of

the model were largely supported in the human results, including the key result on

the locus of adaptation: single �xation durations in the human data were modulated

by payo� in ways predicted by the optimal control model.

Next, the adaptation to architecture as well as payo� was explored by manipulat-

ing the model architecture. The �rst key �nding from that exploration is that optimal

policies in di�erent architectures clearly di�er. The second is that the modi�ed archi-

tectures without saccade programming time provide poorer �ts to the human data,
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even if the single free noise parameter is allowed to be re�tted. In particular, they

overestimate the size of the payo� e�ects and frequency e�ects.

4.5.2 Comparing the LLDT to normal reading

The goal in designing the LLDT was to create a task that was similar to sentence-

reading while maximizing the number of single �xations, minimizing regressions and

word skipping, and keeping the overall reading patterns amenable to simple analysis.

The scanning pattern was primarily left-to-right as designed: 71.2% of strings in the

analysis were �xated once. This appears to be well above typical rates of SFDs in

reading experiments, likely driven in large part by the short length and wide spacing

of the strings in the LLDT.

The proportion of regressions originating in strings in the analysis (i.e. excluding

�rst, last, and post-nonword strings) was 7.5%, consistent with recent reading exper-

iments: Engbert et al. (2005) shows regression out probability between 1% and 6%;

Reichle et al. (2009) shows regression out probability between about 8 and 11%, and

Levy, Bicknell, Slattery & Rayner (2009) shows regression out probability between

about 10 and 20%. The proportion of regressions originating from the last string, how-

ever, was far above: as many as 50% of �nal strings were the source of a regression,

often to a nonword or low-frequency word (Sanders, 2013). This is likely higher than

in ordinary reading, but it is di�cult to make a direct comparison, since sentence-�nal

words are usually excluded from sentence-reading studies. However, the regressions

to nonwords or low-frequency words (likely suspected nonwords) are consistent with

sentence-reading behavior where participants regress to points of particular di�culty

like the beginning of ambiguous regions (e.g. Frazier & Rayner, 1982). One point of

departure from ordinary reading that LLDT behavior does make is the position e�ect:

in the LLDT, reading times get slower farther into the list. This is in contrast to the

commonly accepted pattern in sentence-reading.

4.5.3 The Accuracy discrepancy

There are two key discrepancies between model predictions and human performance:

�rst, that the model achieves higher accuracy overall than the human participants.

Second, and possibly related to the �rst, the maximum achievable mean trial payo�

in the model in the accuracy payo� condition is higher than that in the speed pay-

o� condition, whereas humans empirically achieve a higher mean trial payo� in the

speed payo� condition than in the accuracy payo� condition. These discrepancies
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cannot be straightforwardly addressed by simply increasing the noise parameter. The

model would adjust its thresholds to maintain higher accuracy levels (and in doing

so increase �xation durations and response times) to maximize payo�, illustrating

the constrained nature of the predictions. Thus there is a genuine discrepancy that

cannot be explained by the present model. There are a few possible reasons for this

discrepancy, likely acting in concert:

Fragility of Good Performance in Accuracy payo� Recall from Figure 4.1

that the peak in the Accuracy payo� is far more fragile than the one in the speed

and balanced payo�s. Under any payo�, the optimal policy is balanced between

two extremes: one where the model takes enough time to rarely receive the large

inaccuracy penalty, and one where the model is so fast that getting the inaccuracy

penalty is mostly compensated for by the RT bonus. Moving from the optimum

in either direction worsens performance, but this drop is far faster in the accuracy

payo� than the other two. The model is not sensitive to this fact in any way: the

optimization happens entirely o�ine and the best policy can generally be found, no

matter how fragile or unusual it might be. However, the humans have a much shorter

time to adapt to the task, so one can imagine that this narrow range is lost amidst

the variance present in the task and the noise in the subjects' own internal processing.

This idea is consistent recent work by Zacksenhouse, Bogacz & Holmes (2010), who

show that the behavior of lower-scoring participants is consistent with maximin rather

than reward maximization, i.e. maximizing some degree of guaranteed performance

under a presumed level of uncertainty rather than �nding absolute maxima. Exploring

this possibility would require a theory of adaptation or learning in the task.

A second possibility is that even if participants can �nd the right threshold and are

attempting to maximize reward, their ability of setting thresholds is not �ne-grained

enough to target this policy even if they are able to surmise its existence. This latter

possibility can be explored in the model by introducing noise in the threshold setting.

This would only the reversed best achievable mean trial payo� issue, not the overall

accuracy discrepancy.

Nondecision Error Human participants may occasionally make errors not strictly

related to their decision process: they can engage in mind wandering, they can execute

an erroneous or involuntary manual response, or make similar non-decision-related

actions, contributing to a higher error rate. To estimate the nondecision error, recall

that participants (and model) tend to respond on the nonword to nonword trials,
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and on the last word on word trials. Presumably then, `all-words' responses on the

nonword in nonword trials should be quite rare, and mostly a signature of `nonword'

responses that were accidentally realized as `all-words' responses. The percentage of

those (as a proportion of total errors) should be on the upper end of possible estimates

for non-decision error, for nonword trials. For all-words trials, it is likewise possible to

exploit the fact that participants tend to respond on the end of the trial. Therefore,

the proportion of `nonword' responses on the �nal word of all-words trials should be

an estimate of nondecision error on all-words trials.

The overall proportion of such errors in the LLDT (in both directions) is ap-

proximately 10% of total errors (varying between 6% and 25% depending on payo�

condition and trial type). Even taking the highest error rate in the model (about 5%,

in the Speed payo� condition) and boosting it by 25% would increase the error rate

only to 6.25%, which is still lower than the error in the Accuracy payo� condition in

the humans. Therefore, nondecision error cannot be the sole reason for the accuracy

discrepancy, though it can contribute to perhaps a percentage point of the di�erence.

Reward rate or time optimization Unlike the model, participants do have other

goals and plans in life besides the LLDT, and they know that when they are done

with the experiment they can go and pursue them. With the exception of a very

few participants genuinely excited about helping science or with enough competitive

spirit to attempt to set a performance record in the task, LLDT task participants

are typical undergraduate volunteers who are far more interested in getting their $10

baseline quickly than working hard to receive their bonus (which will vary between

$2 and $4 for most participants). Even without this large baseline, one can imagine

the additional opportunity cost imposed on the participant by spending additional

time in the testing room as compared to going about their day. In light of this, it is

surprising that the payo� manipulation worked as well as it has in this sample, and

even more surprising that it worked in unpaid pilot groups.

The overall increase in time pressure that reward rate optimization would engen-

der should yield faster but less accurate performance overall, and would dispropor-

tionately a�ect the Accuracy payo�. It can be explored in the model by optimizing

reward rate rather than mean trial reward, or empirically in humans by changing the

proportion of the baseline payment to the achievable bonus.

Uncertainty over nonword identity The model has veridical knowledge of which

strings are classi�ed as words and which are nonwords. But some of the very low-
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frequency words on the experiment list (e.g. bard and nigh) may simply not be in

the participant's lexicons, and no amount of additional sampling will overcome such

errors. These therefore represent a class of incorrect responses which are not possible

for the model to make. One can address this empirically in the humans, by explicitly

testing the full list of strings without time pressure post-experiment, and excluding

trials with words not known by the participant.

Another way of tackling this is addressing it in the model, in one of a few di�erent

ways. One is giving the model some uncertainty over which strings are words and

which are nonwords. The simplest way of doing that is giving each string a `wordness'

percentage based on its phonotactics or some other rating, and scale the posteriors

accordingly (vs. each string being 100% word or nonword). It is unclear, however,

what this `wordness' rating would be, and how it would be independent of frequency

and similarity to other words, both of which are already in the model (the latter via

neighborhood density). It also has the undesirable property of bringing a `wordness'

signal into the MSPRT, but as noted by Norris (2009), one of the advantages of

the (M)SPRT over related models like Ratcli�'s DDM is exactly the replacement

of a poorly-explained `wordness' signal with a well-motivated and easily explainable

appeal to prior experience.

A solution to this problem is to generate this wordness signal from a generative

model of nonwords that does not explicitly represent each nonword. Such a model

would provide an interpretable continuous `wordness' signal of exactly the right kind:

the probability that a string is a (phonotactically and otherwise) valid English string.

But it is unclear what exactly such a model looks like: it seems like the main dis-

tinguishable property of well-designed, pronouncable, phonotactically valid nonwords

(as all the nonwords in the LLDT are) as compared to words is precisely the fact they

are nonwords. A related solution is to �nd a sequential test with H0=`samples are

drawn from distribution X' and H1=`samples are not drawn from distribution X'. In

the context of the (M)SPRT, this would require a way of computing the likelihood

that the sample is drawn from none of the hypotheses.

Finally, one can consider a related set of tests that can reject all hypotheses.

Consider an SPRT choosing between hypotheses H1 and H2 when evidence is actually

generated according to some other hypothesis H3 � for example, the case where the

test is determining between Gaussians with two means µ1 and µ2 when the actual

sampling mean is some µ1 > µ3 > µ2. In a degenerate case, one can imagine that µ3

yields samples equally likely under both H1 and H2, and therefore the SPRT never

converges. Even in more reasonable cases, the test can still do worse than the �xed-
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sample test, as noted by Anderson (1960), even though the SPRT in general does far

better (Wald, 1947). A truncated test with a time-dependent threshold is provided

by Anderson that is robust against the possibility of a third hypothesis and has a

better bound on the expected maximum sample size than the SPRT in this condition.

But this test still accepts one of the two original hypotheses. Perhaps a test can be

found that is robust against this property but actually makes the rejection decision

like a one-sided test. Such a test could be used to select one of the words, or reject

the possibility of any of them, consistent with the intuition of what happens in lexical

decision.

4.5.4 The speed of payo� adaptation

The payo�s used in the experiments reported here are fairly subtle: while the penalty

for incorrect trials is fairly large, especially in the Accuracy payo� condition, the

distinction between e.g. 6.7 and 5.7 points per second is not substantial. One might

therefore expect that the adaptation reported earlier in the chapter appears gradually

as participants get more familiar with a particular payo� scheme, and that behavior

would look similar across payo�s during the �rst few trials of the experiment, diverging

as time goes by. This is not the case, however. Instead, the gap between payo�s exists

starting at the �rst test block (following a half-size practice block), as indicated in

�gure 4.8. This is somewhat surprising but not entirely inconsistent with previous

results. For example, Simen et al. (2006) provide an algorithm for threshold-setting

in a di�usion model for a simpler two-alternative forced choice task that can adapt

to a new threshold in as few as 20-30 trials. One might expect a similar mechanism

to be in play here.
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Figure 4.3: The colored points represent predictions corresponding to the best-
performing policies identi�ed in Figure 4.1, the lines connect the means of this set.
The frequency e�ect is shown here here as means of low and high frequency bins
(median-split) but all statistical models used continuous predictors. The error bars
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Figure 4.4: Single �xation durations for word and nonword, by correctness (left two
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Figure 4.6: The payo� surface and optimal policies for the three payofs for theminimal
model that results from eliminating the oculomotor constraints; compare to Figure 4.1.
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yielding poorer �t to human data (compare to the bottom right panel on Figure 4.3).
See Figure 4.5 for source of the noise parameter.
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CHAPTER 5

Spillover frequency e�ects in the masked

LLDT

5.1 Introduction

This chapter adds to the body of work on spillover frequency e�ects in reading by

showing that they persist in the LLDT in spite of its wide word spacing and even

when parafoveal preview is masked. As such, it provides evidence for spillover as a

cognitive rather than perceptual phenomenon and puts it in the explanatory domain

of models such as the one advanced in the thesis. In addition, this chapter embarks

on a modeling exercise in E-Z Reader, the model of eye movement control on which

the architecture of the thesis model is based. It shows that there are in fact two

di�erent mechanisms for spillover e�ects possible under the E-Z Reader assumptions:

one relying on parafoveal preview and another using a post-perceptual delay (though

only some reported parameter �ts use both). This suggests a key revision to the

model that guides remainder of modeling work in the dissertation.

5.1.1 Spillover frequency e�ects

As discussed in Chapter 2, spillover frequency e�ects are de�ned as the speedup of

the reading time of a word as a function of the frequency of the preceding word.

One explanation for these e�ects is that they are a result of parafoveal preview in

a resource-constrained model. Such a model must make the tradeo� between foveal

and parafoveal processing. Easier foveal processing (e.g. on higher frequency words)

makes more resources available for parafoveal processing, speeding up the eventual

recognition of the next word.

This explanation is supported by evidence that spillover e�ects disappear when

parafoveal preview is incorrect (Inho� & Rayner, 1986; Henderson & Ferreira, 1990).
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This evidence comes from experiments using gaze-contingent boundary paradigms

(McConkie & Rayner, 1975): a target word is replaced with a non-useful preview

(typically a set of consonants), and then changed to the correct preview when the eye

crosses an invisible boundary placed before the target word. The measurement is of

the �xation time on the target word as a function of the frequency of the pre-target

word.

However, the disappearance of spillover e�ects with incorrect preview is not always

attested. In particular, Kennison & Clifton (1995) show only a reduction but not a

disappearance of the e�ect, and Schroyens et al. (1999) show little e�ect of masking on

spillover. Most interestingly, White et al. (2005) show no disappearance of spillover

e�ect at all in participants who were aware that something unusual was going on in

how the words were displayed, but an e�ect about twice the size as the ones shown

in the other paper in unaware participants.

One explanation for this contrast, in light of the �ndings by White et al., is

that participants who are not aware that the display change occasionally provides

inaccurate preview attempt to take advantage of preview, whereas participants aware

of the preview's occasional uselessness adapt to this constraint and �nd another way

to extend processing one word into the next. This explanation also provides a new way

of making sense of a �nding by Morrison & Rayner (1981), who showed that saccade

distances depend on characters skipped independent of the visual angle traversed. If

participants target saccades the same character distance forward regardless of where

in their acuity function the target lies, they might be able to vary the amount of

processing they apportion to di�erent parts of their perceptual span and therefore

choose to use or ignore parafoveal information.

5.1.2 Spillover in the unmasked LLDT

The LLDT was explicitly designed to minimize parafoveal preview and other word-

to-word dependencies. Under the explanation for preview provided above, one might

therefore expect not to see spillover e�ects in the LLDT. However, this is not the

case: �gure 5.1 shows single �xation durations by condition, split into bins based

on frequency of the current and previous word, with both foveal and spillover fre-

quency e�ects readily apparent. Statistical analysis (using the methods described in

section 4.2.3) bears this out (foveal β = 4.6633, χ2 = 219.85, p < 0.0001, spillover

β = 3.9639, χ2 = 5998.9, p < 0.0001).
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Figure 5.1: Plot shows single �xation durations by condition in the unmasked LLDT,
by foveal and spillover (previous) frequency bin. Both foveal frequency (indicated by
separation between blue and red lines) and parafoveal frequency (indicated by line
slopes) have a signi�cant e�ect on single �xation durations.

This evidence is consistent with one of two possibilities: the �rst is that this is

a parafoveal preview e�ect and that participants are able to preview more distant

words than expected. In the LLDT experiment in the previous chapter, participants'

heads were not �xed, so they could have been sitting farther from the screen than

25 inches and therefore �tting adjacent words into their reading span in spite of the

wide spacing. Even if their screen distance was as intended, perhaps the reading span

estimates in the literature are variable or incorrect, again allowing for unintended

preview.

To mitigate against both of those possibilities, another LLDT experiment was

run, this time in a gaze-contingent moving window paradigm. Two di�erent imple-

mentations of the gaze-contingent paradigm were implemented, one a novel predictive

unmasking design. The experiment is described in the next section, with both a com-

parison of the two masking variants and an investigation of spillover.
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5.2 Spillover in the masked LLDT

5.2.1 Methods

Participants 46 members of the University of Michigan community participated in

the predictive unmasking experiment. Data from 14 was unusable due to calibration

problems, failure to complete the experiment, or equipment malfunctions, leaving a

total of 32. The data loss disproportionately a�ected the Speed payo� condition, with

only 8 participants retained in that condition (compared to 11 and 13 in the other

conditions, and 15-16 per condition in the experiment in chapter 4). Participants

were paid a $10 baseline for participation, plus $1 per 1000 points as in the previous

experiment. 51 participants participated in the boundary paradigm experiment, all

in the Balanced payo� condition. Data from 18 was unusable due to calibration

problems, failure to complete the experiment, or equipment malfunctions, leaving a

total N of 33. Participants in one of the masking variants (the boundary paradigm)

participated for course credit.

Stimuli The stimulus generation mechanism was exactly the same as in chapter 4:

participants responded to 10 blocks of 20 trials of the masked LLDT, with half of the

trials in each block containing all-words lists, and the other half containing a single

nonword per list. Words were all 4 characters long and drawn from a bimodal dis-

tribution containing high and low frequency words. Nonwords were all pronouncable.

The mask was four hashmark characters (####).

Procedure Items were presented on an LCD monitor in a 20pt Courier font, sepa-

rated by 6 characters of whitespace. This resulted in each word covering 0.7 inches

or 1.6 degrees of visual angle, and whitespace covering 1.48 inches or 3.4 degrees of

visual angle at a distance of 25 inches from the screen. Each trial started with a

drift correction, and then a �xation dot at the location of the �rst string. The entire

six-string list would appear once subjects �xated (with a mask on words 2-6), and

the trial ended after subjects responded using the keyboard. Eye movements were

measured using an SR-Research Eyelink 1000 table-mounted eye-tracker operating at

1000Hz (preditive unmasking) or a Eyelink-II head-mounted eye-tracker operating at

250Hz (boundary paradigm). Each participant was given an explanation of the task,

as well as a quantitative description of the payo� requirements (i.e. �You will receive

a point for each 150 milliseconds by which your response is faster than 5000 ms (5
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s). You will lose 50 points if your response is incorrect.�). Participants were told that

words other than the one �xated will be masked.

Statistical methods Data analysis was carried out using mixed e�ects regression

(Pinheiro & Bates, 2000) using the lme4 package (Bates et al., 2014) for the R en-

vironment for statistical computing (R Core Team, 2014). Barr, Levy, Scheepers &

Tily (2013) recommend using random intercepts for all grouping factors and addi-

tionally random slopes for grouping factors for which the manipulation of interest is

within-factor. In the LLDT, the payo� and masking manipulation is between-subject

and the frequency manipulations are between-word, so in those cases intercepts are

su�cient. The payo� and masking manipulation are within-word so random slopes

might be indicated for those tests (consistent with the assumption that some words

may re�ect the payo� manipulation more than others). Additionally, previous-string

frequency is a within-word factor, so a random slope there is recommended as well.

Such `maximal' (in Barr and colleagues' terminology) �ts were attempted, backing

o� to a model with uncorrelated slopes and intercepts �rst and then to an intercepts-

only model as needed. Fixed e�ect covariates of trial type and trial number were

additionally used in trial-level analyses. In string-level analysis covariates of posi-

tion and string type (word or nonword) were additionally used. The �rst and last

strings in each trial were excluded from analysis, as were all nonwords and all strings

that appeared after a nonword. Though the plots show binned means, centered and

log-transformed frequency were used as predictors in the statistical models. Statis-

tical signi�cance was tested by likelihood ratio test between the model with the key

contrast of interest and one otherwise-identical one without it.

5.2.2 A new masking method

Typically, gaze-contingent masking designs are implemented using either moving win-

dow (McConkie & Rayner, 1975) or boundary (Rayner, 1975) paradigms. In the

former, the display is redrawn after each saccade to maintain a consistent viewing

window around the �xation point, with the surrounding information masked. In the

latter, the display is only redrawn if an invisible boundary (usually between words) is

crossed, with the information on the �xation side of the boundary unmasked and the

remainder masked. The challenge with such methods is to redraw the display quickly

enough for a seamless reading experience, considering that saccades last only about

30-40ms. In the moving window paradigm, the redraw can only commence when the

eye lands, so the eye will keep �xating on the mask for the duration of the display
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change, which is reported to be as short as 8-17ms (Slattery, Angele & Rayner, 2011)

on what must be highly specialized hardware, but can be as long as 30-40ms in the

hardware used for the dissertation experiments. The boundary paradigm can subtract

about 20ms from this amount (assuming a 40ms saccade and a boundary placed at

the midpoint between strings) but creates a new problem: longer-distance saccades

that cross multiple boundaries will create noticeable �icker as multiple redraws are

queued in the system and just-unmasked strings are re-masked.

In spite of far faster overall processors, noticeable �icker appears to be a bigger

problem on modern commodity hardware than it was on those earlier specialized

systems. To create a masked variant of the LLDT maximally similar to unmasked

reading, such delays or �ickers are undesirable. Consequently, a novel masking method

was developed that is faster than the boundary paradigm and does not create �icker for

long-distance saccades1. The masking was performed by detecting saccades (based on

a velocity and accelleration cuto�), at which point the word to the immediate right

of the current word was unmasked. After the command to unmask the rightward

word is sent to the display, the approximate midpoint of the saccade is detected

by waiting for a deceleration of the eye, and used to predict the intended landing

position. If the intended landing position is not the next word to the right, the

word that was just unmasked is masked again, and the predicted landing position

unmasked. This complicated scheme was necessary to keep redraw delays short: short

saccades tended to conclude before their deceleration could be detected, whereas long

ones could be accurately extrapolated. The double-redraw was less noticeable than

in the boundary paradigm because in this case the re-masked word was farther in

the parafovea, whereas re-masked words in long distance saccades in the boundary

paradigm are always adjacent. The subjective impression of the swapping was overall

seamless, except on rare occasion when the saccade extrapolation is incorrect and the

wrong word is unmasked.

The mask always consisted of four hashmark characters (####) which replaced

each string except for the one being �xated. Figure 5.2 shows single �xation durations

in the unmasked experiment reported in the previous chapter, as well as the boundary

paradigm (the theoretically faster of the two types of masking in prior work) and

the new predictive unmasking method. Only the balanced payo� was used for this

comparison because it was the only payo� used in all three masking types. Total N

was 15 for unmasked, 11 for predictive unmasking, and 33 for the boundary paradigm.

1Many thanks to Craig Sanders for experimenting with di�erent methods of gaze-contingent
masking and for the eventual implementation of this method.
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Figure 5.2: The predictive masking algorithm yields �xation di�erences similar to
those in unmasked reading, unlike an otherwise-equivalent conventional boundary
paradigm design.

The comparison is not entirely well-matched: the three datasets were gathered on

three di�erent semesters, the boundary paradigm participants participated for credit

rather than for pay, and the predictive unmasking manipulation took advantage of a

new 1000Hz eyetracker. However, these mismatches are not su�cient in explaining

the di�erences: moving from 250Hz to 1000Hz should only provide a bene�t of a

handful of milliseconds for detecting the eye position, and even unpaid participants

optimize points when they are provided (e.g. Schumacher, Lauber, Glass, Zurbriggen,

Gmeindl, Kieras & Meyer, 1999).

Two sets of mixed e�ects models were �t to the single �xation durations, di�ering

by how the experiment contrast was coded. In the �rst pair of models, the experiment

was coded as a zero-sum contrast between the boundary and unmasked conditions,

with the orthogonal contrast to it used as a covariate. In the second pair, the contrast

was coded between the predictive and unmasked contrast, with the orthogonal con-
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trast to this contrast used as a �xed covariate instead. Backo� to uncorrelated slope

and intercept of the random e�ect by word was needed for convergence of the bound-

ary paradigm models. A signi�cant slowdown was found for the boundary paradigm

as compared to the unmasked dataset (β = 53.5ms, χ2 = 17.835, p < 0.0001) but

not for the predictive unmasking paradigm (β = 2.9ms, χ2 = 0.0388, p = 0.8438).

This is consistent with the claim that the predictive unmasking paradigm provides a

more natural reading experience (or at least more similar to reading in the unmasked

LLDT).

5.2.3 Adaptation to payo�

Only the predictive masking manipulation was performed on all three payo�s. Fig-

ure 5.3 shows response time by payo� overall, as well as separated by block. Un-

fortunately, the payo� manipulation in this masked experiment appears less clean

than in the unmasked one: there is in fact no signi�cant e�ect of the contrast

between the speed and accuracy payo�s on RT, though the direction is correct

(β = −16.7, χ2 = 0.0168, p = 0.8968). There are two apparent reasons for this.

First, the masked experiment is likely underpowered to estimate the payo� condition

e�ect (especially in the speed condition, where it has half as many participants as

the unmasked experiment). Second, the masking manipulation may have made adap-

tation to payo� more di�cult overall. The block-level plots support this argument

somewhat, with the speed payo� condition speeding up more overall as a function of

block than the others. Statistical analysis bears this out, with a signi�cant payo�-

trial index interaction: participants speed up overall as a function of trial, but speed

up more in the speed payo� (β = −1.41, χ2 = 28.3423, p < 0.0001). The situation in

single �xation durations (plotted in �gure 5.4) is similar: directionally correct but non-

signi�cant e�ect of payo� (β = −1.3, χ2 = 0.011, p = 0.9163) and a small but highly

signi�cant interaction with trial number (β = −0.08474, χ2 = 10.555, p = 0.0012).

The lack of a signi�cant payo� adaptation �nding here is of concern, but should not

be viewed as a full nonreplication of the results in Chapter 4 due to the apparent lack

of power.

5.2.4 Frequency and spillover e�ects

For analysis of frequency and spillover (previous-word frequency) e�ects, models were

�t with uncorrelated intercept and slope of the previous-word frequency e�ect by

word, because the model with correlated slope and intercept failed to converge. To
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test the e�ect of foveal frequency, a current-word frequency predictor was added

to a model already containing previous-word frequency. Likewise to test spillover

(previous-word) frequency, a previous-word frequency predictor was added to a model

already including a current frequency e�ect. Both e�ects were highly signi�cant in

all three datasets (summarized in table 5.1). If anything, the spillover e�ect appears

larger in the predictive unmasking manipulation and the frequency e�ect appears

smaller. Both of these di�erences are re�ected in signi�cant interactions (frequency

by experiment interaction β = −0.96, χ2 = 5.7351, p = 0.017; spillover by experiment

interaction β = 1.573, χ2 = 15.418, p < 0.0001). These two interactions suggest that

perhaps not exactly the same process is going on in both masked and unmasked

experiments, and chapter 6 explores this possibility in greater depth. But certainly

it is the case that spillover e�ects persist even in the absence of parafoveal preview

in the LLDT.

Frequency e�ects Spillover e�ects

Dataset β χ2 p β χ2 p

Unmasked -4.66 179.84 <0.0001 -3.89 99.008 <0.0001

Masked (boundary paradigm) -4.63 113.64 <0.0001 -4.88 86.384 <0.0001

Masked (predictive unmasking) -3.65 193.35 <0.0001 -5.46 68.102 <0.0001

Table 5.1: Both current-word (foveal) and previous-word (spillover) frequency e�ects
are highly signi�cant regardless of masking manipulation.

5.3 Exploring other explanations for spillover e�ects

The experiments discussed above are problematic for explanations that rely solely on

parafoveal preview to explain spillover e�ects. One solution is to take the avenue

of models like SWIFT (Engbert et al., 2005), which include spillover e�ects as a

fundamental property of the oculomotor architecture. In the case of SWIFT, this is

because saccades are autonomously generated and can only be delayed by di�cult

cognitive processing. This delay is itself delayed, so that occasionally the `wrong'

(next) saccade is delayed instead of the current one, producing a spillover e�ect.

This solution is not the simplest move, however. To use the explanation presented

and previously motivated by SWIFT would require fairly dramatic changes to the

oculomotor architecture that was quite successful in recovering adaptive behavior

in the previous chapter. To diverge from the SWIFT attention assumption while
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retaining its notion of time-delayed foveal inhibition has the net e�ect is `building in'

the e�ect rather than understanding it as an adaptive process. This is not to say that

all e�ects must be understood as fundamentally emergent � some properties of the

output behavior might well be �xed by the architecture or task at hand. But especially

given the empirical fact that spillover e�ect sizes change as a function of parafoveal

masking, it is important to understand if the spillover e�ect could be explained as a

consequence of rational saccadic control.

Rather than build the e�ect in, the remainder of the chapter is devoted to exploring

alternative explanations possible within a serial attention, direct-oculomotor control

model like the one used in the thesis. A partial implementation of E-Z Reader is

used instead of the adaptive model for this purpose. This has a few bene�ts: �rst,

as a highly successful descriptive model of the oculomotor control process in reading,

the test of E-Z Reader against a new dataset is of interest for its own sake. Second,

by relaxing the bounded optimality assumption (which E-Z Reader does not make)

one achieves additional �exibility in modeling which, while undesirable in general,

is useful for understanding the type of explanations possible within the constraints

of a direct-oculomotor control, serial-attention model. Finally, using E-Z Reader's

analytic form for mean �xation duration provides for substantially faster simulation,

again facilitating easier exploration.

5.3.1 An overview of E-Z Reader

E-Z Reader (Reichle et al., 2009) is one of the major broad-coverage models of eye

movement control in reading. It makes a number of key assumptions. First, that

attention is allocated serially, such that only one word can be lexically processed

at a given time. Second, that oculomotor control decisions are directly triggered

by the lexical processing system. And third, that oculomotor and lexical processing

can proceed in parallel (i.e. that saccade programming and lexical processing can run

concurrently). In these ways, it is a direct architectural progenitor of the model in the

dissertation. �gure 5.5 shows the sequence of stages in a typical trial of E-Z Reader

(reprinted from Reichle et al., 2009). L1 is the initial stage of lexical processing, at the

end of which the process splits into two streams: a motor stream in which a saccade is

programmed to the next word, and the continuation of the lexical processing stream

(L2). This is the sense in which the eye-control in E-Z Reader is direct: eye movement

control is directly initiated by a completion of a stage in the lexical processor.
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USING E-Z READER TO MODEL LANGUAGE PROCESSING EFFECTS    7

fix the problem. We make no attempt to explain how the 
language system does this; but to avoid potential problems 
associated with infinite loops (e.g., due to integration’s 
always failing on a particular word), we assumed that the 
probability of integration failure was very small during 
the second pass through the sentence.

Finally, we assumed that regressive saccades take an 
additional 30 msec to program (i.e., M1 for regressions 
is increased by 30 msec), consistent with results showing 
that regressions to previously fixated viewing locations 
require an additional 20–36 msec to initiate or program 
(Rayner, Juhasz, Ashby, & Clifton, 2003). This 30-msec 
constant is added to all regressive saccades in all of the 
simulations reported below.

The main consequences of the preceding assumptions 
are schematically illustrated in Figure 2. The situation 
depicted in Figure 2A is the most frequently occurring 
one: Comprehension is proceeding without difficulty, 
and the eyes are continuing to move forward along the 
line of text. We will refer to this as the “default” reading 
process. In Figure 2A, the first stage of lexical processing 
(L1) of word n completes, causing the oculomotor system 

recting their gaze back to sources of processing difficulty, 
rather than, for example, simply rereading the entire sen-
tence (Frazier & Rayner, 1982; Kennedy, Brooks, Flynn, 
& Prophet, 2003; Kennedy & Murray, 1987; however, 
cf. Weger & Inhoff, 2007). However, to fully implement 
directed long-distance regressions like this in our model 
would require a more detailed account of language pro-
cessing and reanalysis. It would also require an account of 
how the spatial coordinates of the words are represented 
in memory. To make our modeling possible in the absence 
of such accounts, we adopted the simplifying assumption 
that whatever comprehension problem occurred during 
the integration of word n will, with probability pN, cause 
the eyes and attention to be directed back to word n, and 
with probability 1  pN, cause the eyes and attention to 
be directed back to some earlier location in the sentence. 
For the sake of convenience, this earlier location was al-
ways defined to be word n 1. Our assumption is that by 
moving the eyes and attention back to the “problematic” 
word (whether it be n or n 1), that word can be repro-
cessed (i.e., L1, L2, and I are completed a second time 
on the word), allowing the language system to attempt to 

A B C

word n word n+1 word n word n+1 word n word n+1

Figure 2. Schematic diagram showing three possible sequences of events that 
can occur in E-Z Reader 10. In all three panels, arrows indicate completed pro-
cesses and solid circles indicate terminated processes. Panel A depicts the most 
common situation—when integration occurs without difficulty. The completion 
of the first stage of lexical processing (L1) of word n results in the continua-
tion of the second stage (L2) and the initiation of a saccadic program (M1) to 
move the eyes to word n 1. The completion of L2 causes attention (A) to shift 
to word n 1 and initiates postlexical integration (I) of word n. As soon as at-
tention finishes shifting to word n 1 (represented by the dotted line labeled 
“a”), lexical processing (L1) of that word begins. The nonlabile stage of saccadic 
programming (M2) then completes and the saccade is executed (S), moving the 
eyes to word n 1 (represented by the dotted line “b”). (Parafoveal processing 
of word n 1 thus occurs in the time interval between “a” and “b.”) Finally, the 
meaning of word n is integrated (indicated by “c”) before lexical processing (L2) 
of word n 1 finishes, and the eyes continue to move forward. Panel B shows the 
situation where the integration (I) of word n fails to complete before the lexical 
processing (L2) of word n 1 completes. With this “stalling out” of integration, 
the labile saccadic program to move the eyes to word n  2 is canceled, and both 
the eyes and attention are drawn back to the location where comprehension 
difficulty first became apparent (represented by the gray arrows labeled “A” 
and “M1”). Finally, panel C shows what can happen when the early detection of 
a violation during the integration (I) of word n results in the termination of in-
tegrative processing, interrupting lexical processing (A, L1, or L2) of word n 1 
and causing both the eyes and attention to move back.

Figure 5.5: A timecourse diagram for E-Z Reader. Note that the �rst stage of lexical
processing L1 on word n+1 cannot begin until the second stage of lexical processing
L2 and the attention shift A is complete on word n. However, the motor processing
stream, consisting of a labile phase M1, non-labile phase M2 of saccade program-
ming and actual saccade execution S, can proceed in parallel with lexical processing.
Postlexical integration I stands in for higher-level language processing.

Saccade programming has two phases: a labile (i.e. cancelable) M1 phase and

non-labile M2 phase. It is followed by the saccade itself (S) and an additional delay

imposed by pre-attentive visual processing (the eye brain lag, V , not displayed in

�gure 5.5), after which the lexical processor begins receiving information from the

foveated word. In parallel with the eye stream, lexical processing (L2) completes, and

is followed by a postlexical integration phase as well as an attention shift (A) to the

following word. In this sense the model allows solely for serial attention allocation �
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the model can only process one word at a time, so if the attention shift occurs before

the eyes have foveated on a word, that word begins to be previewed parafoveally.

In a given model run, all of the above stages have durations drawn from Gamma

distributions, with �xed means in the case of all parameters except the lexical pro-

cessing stages. Mean durations for the delays are motivated by prior empirical work

(though not directly set to prior work estimates) or �t to data. The data used to �t

the model are means of six di�erent eye movement measures computed for �ve word

frequency classes from the 48-sentence Schilling corpus (Schilling, Rayner & Chumb-

ley, 1998). This method of �tting a large number of free parameter to a small number

of correlated empirical measures generated from a small dataset has been criticized

for potentially over�tting the target training set (Feng, 2003).

The mean duration of the lexical processing time L1 is calculated as a function of

frequency and predictability, using the following formula2:

t(L1) = α1 − α2 ln(fn)− α3pn (5.1)

Here, fn is the frequency of word n, pn is the predictability of that word given

context computed from a cloze task, and the alpha parameters are all free parameters

�t to minimize deviation from the training set. The mean of the distribution of

t(L2) is constrained to be a �xed proportion of t(L1), though the proportion is a �t

free parameter in the model (∆). The model also takes into account the fact that

visual information is of highest �delity in the fovea by penalizing the L1 duration as

a function of the mean distance from the �xation point to the letters in the processed

word according to the following formula:

t(L1)← t(L1)ϵ
∑ |fixation−letter|

N (5.2)

Here ϵ is a free parameter. The way that the adjustment is computed does take into

account the fact that L1 could be going on during multiple �xations (i.e. a word could

be previewed and then viewed foveally).

Frequency e�ects in E-Z Reader The duration of the lexical processing stages

in E-Z Reader, L1 and L2, are de�ned to be a function of lexical frequency. Given that

in model �ts the value of parameter α2 in equation 5.1 is constrained to be positive,

2For conciseness the word-skipping case is omitted, in which t(L1) is set to zero with probability
equal to the word's probability given context.
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the duration of these stages will be shorter for higher frequency words. The decision

of when to move the eyes is a function of when L1 completes, so in this sense E-Z

Reader provides a descriptive account of the frequency e�ect.

Spillover e�ects in E-Z Reader In E-Z Reader, the total time the eyes spend on

a word is a function of the time of the two oculomotor programming stages M1 and

M2, plus the time for the initial lexical processing stage L1, minus the proportion of

this stage that is completed during parafoveal preview from the previous word. Given

that attention allocation is assumed to be serial in E-Z Reader, L1 can only begin

parafoveally when lexical processing on the previous word is complete and attention is

shifted. Since lexical processing time (the time of both L1 and L2) is in part a function

of frequency, higher frequency previous words will complete processing quicker, allow

for more of L1 to be completed parafoveally, and shorten the �xation time on the

current word. This is a mathematical formalization of the preview-driven spillover

e�ect explanation provided in the beginning on the chapter.

There is an alternate explanation for spillover e�ects in E-Z Reader: that L2

extends past the start of L1 on the next string if an unusually long L2 is drawn. The

reports on E-Z Reader do not discuss this possibility, but the E-Z Reader codebase

does not exclude it. This explanation will come into play when L2 is longer than

V + M1 + M2 (saccade planning and eye-brain lag), or 200ms. Since L2 is a �xed

proportion of L1, L1 needs to be longer than 200
∆

for L2 to cause a spillover delay.

The mean duration of a �xation will be L1 +M1 +M2 = L1 + 150; for typical single

�xation durations of 250ms on short words, this implies a value of L1 of about 100ms,

and therefore a ∆ of about 2. With typical reported �t values for ∆ of about 0.5

and upper limits of 1.0 in searches (Reichle et al., 2006, 2009; Reichle, Pollatsek &

Rayner, 2012) the delay possibility seems underexplored in the literature, and is of

primary interest here.

5.3.2 Modeling the LLDT in E-Z Reader

A simpli�ed version of E-Z Reader 10 was implemented to model the LLDT and

explore di�erent possibilities for the source of the spillover e�ect.

Simpli�cation Details. The simpli�ed codebase implements all of the stages de-

tailed in Figure 5.5 except lexical integration, and penalizes lexical processing as a

function of eccentricity in exactly the way the full E-Z Reader model speci�es. The

main simpli�cation made is to simplify saccade targeting and timing in the model:
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all saccades depart from and arrive on the second letter of the string in question. All

strings in the LLDT are four letters long, so this approximates the preferred viewing

position (Vitu et al., 1990). In addition, all �xations in the simpli�ed implementation

are single �xations. There are no re�xations or regressions, hence lexical integration

is not necessary, so it is also not included. This is justi�ed in that the short, widely

separated words in the LLDT are likely to encourage a high proportion of single �xa-

tions. Finally, string predictability in the LLDT is very minimal and its e�ects subtle

(i.e. the position e�ect in Chapter 4), so the predictability of all strings was set to

zero for simplicity.

This leaves three free parameters in the model: α1 (the baseline duration of the

time from processing start to saccade planning start), α2 (the additional e�ect of

log frequency on the time from processing start to saccade planning start), and ∆

(the ratio of the duration from processing start to saccade planning start to the

duration from saccade planning start to processing end). Masking in the simulation

is implemented by setting the preview bene�t to zero: when the model completes L2

on one word, lexical processing simply stops until preattentive visual processing (V )

on the following word is complete.

Parameter search settings. Parameter ranges were chosen that both subsumed

the ranges previously used in the E-Z Reader literature and contained minima with

respect to the �t metric chosen. Speci�cally, α1 ranged from 25 to 175, α2 from 0

to 10, and ∆ was initially swept from 0 to 5, discretized evenly into 100K parameter

combinations. The ∆ ranges was then extended to 10 with another 100K combina-

tions, since �t minima for ∆ were not found in the �rst range. The resultant step

size on α1 was about 3, the step size on α2 was about 0.2, and on ∆ was 0.1.

For all simulations, 10,000 trials were used for each of four di�erent word pairs: a

high-frequency word followed by another high-frequency word, a low-frequency word

followed by another low frequency word, and then two mixed types with a high

frequency word followed by a low frequency word and vice versa. This is consistent

with the E-Z Reader practice of �tting the model on means of binned frequencies. The

frequencies were set to the means of those bins in the human data (240 per million

for high-frequency and 7 per million for low). Reading times were only measured on

the second word. The large number of trials reduced standard errors in the �xation

duration estimates to under 1ms in most parameter combinations, and below 3.5ms

in all of them. Error bars for such small errors are nearly invisible on the scale of

the plots provided, so they are not plotted. To provide some indication that the
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simpli�ed implementation arrives at similar results to those of the full E-Z Reader

model, Figure 5.6 shows a plot of the cumulative durations of the various stages in

E-Z Reader 10 as a function of word lexical frequency (Reichle et al., 2012), and below

it the same plot generated from the simpli�ed implementation.

The mean time (in ms) required to complete the second stage of
word identification, t(L2), is given by Equation 2, where ! is a free
parameter that sets t(L2) to some fixated proportion of t(L1), as
specified by the lower branch of Equation 1. In contrast to the
familiarity check, this second stage of lexical processing always
requires some amount of time to complete; thus, even when a word
is guessed from its context (i.e., t(L1) " 0 ms), t(L2) reflects
whatever minimal amount of time is necessary to activate the
word’s meaning. However, as in the familiarity check, the actual
value of t(L2) during any given Monte Carlo simulation is sampled
from a gamma distribution with a mean of t(L2) and a standard
deviation of #$ % t(L2).

t&L2' ! ()1 " )2 ln&frequencyn' " )3 predictabilityn*! (2)

Because the mean duration of t(L2) is some fixed proportion of
the mean time to complete L1, and because the mean times that are
required to move both the eyes and attention are unaffected by
parameters having to do with ease of word identification, the mean
amount of time that is available for parafoveal processing of
wordn+1 depends upon the mean time required to complete t(L2)
on wordn. This relationship is depicted in the Figure 2, which
shows how the preview time (i.e., the difference between when
attention shifts to wordn+1 and when the eyes move to wordn+1)
varies as a function of the duration of t(L2) on wordn. For sim-
plicity, the figure shows the range of mean t(L2) durations only
across the domain of a word’s natural log frequency; as indicated
above, however, the mean duration of t(L2) also varies as a
function of a word’s predictability. As the figure indicates, the
amount of time that is available for parafoveal processing of
wordn+1 decreases as the processing difficulty of wordn increases,
allowing the model to explain the finding that foveal processing

load interacts with parafoveal preview (Henderson & Ferreira,
1990). The fact that less time is available for parafoveal processing
from difficult-to-process words also allows the model to explain
spillover effects, or the finding that fixations on words immediately

Table 1
E-Z Reader Parameter Interpretations With Their Default and New Values

Type of processing Parameter Interpretation Old default values New default values

Word identification )1 Mean maximum L1 time (ms) 98 104
)2 Effect of frequency on L1 time (ms) 2 3.5
)3 Effect of predictability on L1 time (ms) 27 39
! Proportional difference between L1 and L2 0.25 0.34
A Mean attention-shift time (ms) 50 25

Higher level language processing I Mean integration time (ms) 25 25
pF Probability of integration failure 0.01 0.01
pN Probability of regression being directed to prior word 0.5 0.5

Saccadic programming and execution M1 Mean labile programming time (ms) 125 125
, Proportion of M1 allocated to “preparatory” substage 0.5 0.5
M1,R Additional time required for labile regressive programs (ms) 30 30
M2 Mean nonlabile programming time (ms) 25 25
- Optimal saccade length (character spaces) 7 7
.1 Effect of launch-site fixation duration of systematic error 7.3 6.0
.2 Effect of launch-site fixation duration of systematic error 3 3
/1 Mean minimum random error (character spaces) 0.5 0.5
/2 Effect of saccade length on random error (character spaces) 0.15 0.15
0 Increase in refixation probability (character spaces) 0.05 0.16
S Saccade duration (ms) 25 25

Visual processing V Eye-to-brain transmission time (ms) 50 50
1 Effect of visual acuity 1.15 1.15

General #$ Standard deviation of gamma distributions 0.22 0.22

Note. The parameter values that were evaluated in the simulations are indicated in bold font. Parameter values in the column labeled “Old Default Values”
are those used in the simulations reported by Reichle, Warren, & McConnell (2009); values in the column labeled “New Default Values” were obtained
as described in Appendix A.

Figure 2. Time course of lexical processing as a function of the process-
ing difficulty of wordn and how this relationship modulates parafoveal
preview of wordn+1. As indicated, the time courses of the two stages of
lexical processing, t(L1) and t(L2), vary as a function of processing diffi-
culty (e.g., frequency) of wordn. Because saccadic programming is initiated
by the completion of L1, and because the mean times to shift attention, t(A),
and to initiate a saccade, t(M1) + t(M2), are constants, the amount of time
available for parafoveal processing of wordn+1 (indicated by the shaded
region) varies as a function of the processing difficulty of the fixated word.
Note that the indicated durations are the expected values, ignoring visual
acuity limitations (which would increase the durations) and including the
50-ms eye–mind lag associated with the preattentive visual processing of
wordn that is normally canceled out via parafoveal processing.
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Figure 5.6: Timecourse of stages in full E-Z Reader and the simpli�ed model as
a function of frequency, suggesting that the simpli�ed variant recovers key timing
properties of E-Z Reader. Top plot reprinted from Reichle et al. 2012; bottom plot
generated from the simpli�ed model.

Model training and evaluation. Standard practice in the psychological modeling

literature is to only report descriptive training set �ts rather than predictive test-set

�ts. This is of concern because of the potential to over�t the training set and capture
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random noise in it rather than systematic regularity (see Roberts & Pashler, 2000;

Pitt, Myung & Zhang, 2002; Pitt & Myung, 2002, for broader discussion of over�tting

issues in psychology). This chapter provides test-set �ts using two di�erent published

sets of parameter values: those from �tting E-Z Reader 10 on the Schilling corpus

(Schilling et al., 1998), and those from �tting on a sentence-reading dataset from

Rayner & Fischer (1996). The former is selected because the Schilling corpus has

been the standard training set for E-Z Reader for many years. The latter is used

because it uses high values of α1, α2 and ∆ (167, 7.5 and 0.97, respectively) and

might therefore yield high enough values of L2 to show delay-spillover rather than

preview-spillover. Both use the parameter values provided by Reichle et al. (2012).

For training on the LLDT, the loss function was the sum of the root-mean-squared

error of �xation durations in the four frequency classes tested (the interaction between

high and low foveal frequency, and high and low previous word frequency). Separate

�ts were produced based on minimizing error on the unmasked and predictive un-

masking datasets, and then tested on the remaining datasets in each case. Fits on

the boundary paradigm behave similarly to the predictive unmasking �ts, except with

slower �xations overall (as one might expect from the overall slower �xations in that

dataset), and are not reported.

The test sets are not necessarily a fair comparison: if participants are choosing

di�erent strategies in response to the masking manipulation, then it is not reasonable

to expect the same parameters of E-Z Reader to re�ect both strategies. Therefore,

this chapter also discusses individual training �ts to the three di�erent LLDT datsets,

as a descriptive assessment of what might be going on there. Chapter 6 revisits the

question of preview and delay in the adaptive framework of the rest of the thesis.

Predictions from previous �ts Figure 5.7 shows predicted �xation durations for

the four word classes tested. A few conclusions can be drawn from these predictions:

�rst, E-Z Reader predicts quite di�erent �xation durations in the LLDT depending on

the training set use. This is somewhat surprising given that both datasets are similar

sentence-reading sets, and speaks to the over�tting concern noted above. It is also

puzzling that such di�erent parameter values (e.g. scaling the frequency e�ect by a

factor of nearly 4) are needed to �t those two similar sentence-reading datasets. The

�t from the Schilling corpus signi�cantly underestimates both the foveal and spillover

frequency e�ects in the LLDT. Second, E-Z fails to recover the spillover frequency

e�ect in the presence of masking using the Schilling corpus �t. Third, as suspected

given the relatively high values of α1 and ∆, the �t on the Rayner and Fischer corpus
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does predict spillover e�ects in the LLDT, though it overestimates �xation durations

overall.
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Figure 5.7: E-Z Reader provides poor predictive �ts on the LLDT dataset when
trained on the Schilling corpus, but somewhat better ones using the �ts from the
Rayner and Fischer experiment. Schilling corpus �t parameters: α1 = 98, α2 =
2,∆ = 0.25. Rayner and Fischer �t parameters: α1 = 162, α2 = 7.5,∆ = 0.97

Predictions from �ts on the LLDT Figure 5.8 shows predicted �xation du-

rations using the parameters estimated to minimize error on the unmasked LLDT

dataset. The training �t is good (left green panel compared to left red panel), re-

covering both frequency and spillover e�ect sizes, though overestimating the �xation

durations on high frequency words following low frequency words (left blue point).

The prediction for the unmasked �t (right green panel compared to the two right-

most red panels) underestimates the spillover frequency e�ect, consistent with the

argument that the spillover e�ect is primarily driven by preview in that �t.
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Figure 5.9 shows the predicted �xation durations with the predictive unmasking

data as the training set, with essentially the opposite e�ect. The training �ts are

again good (right green panel as compared to right red panel), but the large delay

times in the masked condition turn into preview times when preview is available,

creating substantial overestimates of the spillover e�ect (left green panel compared

to left red panel).
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Figure 5.8: E-Z Reader captures the frequency e�ect in both masked and unmasked
data, but greatly underestimates the spillover e�ect in the masked case when trained
on unmasked data. Parameters: α1 = 83.7, α2 = 4.13,∆ = 1.2

Understanding parameter values at best �ts As noted above, the training/test

split between masked and unmasked data is somewhat unfair because something

strategically di�erent is likely be going on in the two task variants. Therefore, it

may be instructive to look at what best training �ts to the three di�erent LLDT

variants might look like and what they imply descriptively about what might be
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Figure 5.9: E-Z Reader trained on maksed data greatly overestimates the spillover
e�ect in the unmasked case. Parameters: α1 = 34.78, α2 = 4.13,∆ = 5.33

going on. Figure 5.10 shows the SFD error at di�erent values of α2, at the best

values of the other parameters. α2 is the parameter that adds a frequency-based

delay to �xations, and as one might expect the minima map nearly directly onto

foveal frequency e�ect sizes in the data. They are nearly in the same location for the

unmasked and predictive-unmasking masked sets, and slightly larger for the boundary

paradigm.

Of greater interest are the other two parameters. Figure 5.11 shows the SFD error

at di�erent values of α1, at the best value of the other parameters in that range, for the

three task variants. α1 is the baseline duration of the pre-saccade-planning portion

of processing (L1). The error on the unmasked task is not extremely sensitive to α,

with a fairly wide range of values yielding relatively low errors. This is a positive

result for E-Z Reader, in the sense that its �ts do not seem strongly sensitive to

this free parameter. The loss minima for the other two datasets, however, are far
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sharper. Both lie to the right of the minimum for the unmasked dataset, consistent

with the argument that to �t the masked dataset E-Z Reader chooses shorter times

before saccade planning and (in order to �t mean SFD) longer processing times after.

Bolstering this argument further is the loss surface for ∆ (Figure 5.12), which shows

the minima in the exact opposite order. To �t the short �xation durations and larger

spillover e�ects in the predictive-unmasking dataset, the �t selects very short pre-

saccade processing times, and then very long lexical recognition times that extend far

into the following word.
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Figure 5.10: E-Z Reader RMSE as a function of α2. Minima are nearly in the same
location independent of dataset �t because this parameter primarily governs the foveal
frequency e�ect.

5.3.3 The implications for spillover-as-delay for models of read-

ing

The previous section illustrated how a serial, direct-oculomotor control model of

reading like E-Z Reader can recover frequency and spillover e�ects in two di�erent

parafoveal masking tasks by combining parafoveal preview and delay. The delay

processing cannot be perceptual, both because the word recognition span is strongly

asymmetric forward, and because the e�ect persists when previous strings are masked.

This is again consistent with spillover being not solely a perceptual phenomenon. In

the context of E-Z Reader, this is a fairly natural move due to L2 already not being
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Figure 5.11: E-Z Reader RMSE as a function of α1. While the minimum for the
unmasked data is fairly shallow (suggesting many reasonably-good �ts available),
those in the masked datasets are far sharper, and at lower values of α1. These
shorter baselines (and the correspondingly longer post-saccade-planning portions of
processing seen in the values of ∆ in �gure 5.12) are consistent with a delay-based
explanation for spillover e�ects.

perceptually bound. It is also consistent with response hysteresis accounts such as

those informally discussed in the buttonpress moving-window paradigm (i.e. that it is

hard to get out of a buttonpress rhythm) or formally embodied with the time-delayed

foveal inhibition mechanism of autonomous-saccade models like SWIFT (Engbert

et al., 2005).

In addition, the previous section illustrated a challenge of non-adaptive models

of behavior: their free parameters provide no locus of adaptation and their �tting

procedures cannot distinguish between di�erences in strategy and di�erences in the

architecture of the reading agent. The remainder of the thesis will extend the model

presented in the second chapter to include both delay and preview. To do so, it

will need to provide a rational explanation for why a delay might extend into the

processing of the next word.

This is necessary because the move of simply adding a lexical access stage is

undesirable: a signi�cant portion of the elegance of the SPRT as a model of lexical

access is that it provides a mechanistic explanation for lexical access making contact

between the lexicon (via the priors) and perception (via incoming noisy samples).
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Figure 5.12: E-Z Reader RMSE as a function of ∆. The upper of 1.0 limit used in
typical �ts is marked with a dashed vertical line. The higher values needed to �t un-
masked data are consistent with delay-based rather than preview-based explanations
of spillover.

To maintain this elegance, the delay should consist of continued sampling, but with

the eye moved on this continued sampling cannot be from perception. A plausible

extension is to assume that this sampling continues from memory, but this introduces

the question of why a rational reader might choose to sample from memory instead

of either spending longer on the word in the �rst place, or moving on and sampling

from perception on the following word.

The next chapter explores this notion, and introduces a model in which it is

rational to reprocess past samples after the eye has moved on, and therefore yield

spillover e�ects. The �nal data chapter adds parafoveal preview into the model, in an

attempt to build a model that can adaptively change its behavior to yield predictions

on both masked and unmasked paradigms under a single architecture.
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CHAPTER 6

Computationally rational spillover

6.1 Introduction and overview

The previous chapter provided evidence that spillover e�ects persist in the absence

of parafoveal preview in the LLDT and reviewed evidence of spillover persisting with

incorrect preview in other tasks (Schroyens et al., 1999; Kennison & Clifton, 1995).

This evidence is used to make a case for a delay-based explanation for spillover ef-

fects. This chapter provides such an explanation in the context of the adaptive model

presented earlier in the thesis, and shows why delaying perception in favor of process-

ing past inputs may be rational. The speci�c idea explored is that delay is due to

memory-based reprocessing of past inputs, which may be rational as a way to mitigate

against noise in the update process itself.

The model in this chapter extends the model described in Chapter 3 by adding

a second MSPRT that draws its samples from a simple short-term memory bu�er.

A few results are provided using this model: �rst, that frequency spillover emerges

in top-performing policies, where performance is evaluated on the same task and

payo� given to human participants as in Chapter 4. Second, that a model capable of

spillover does no worse than an otherwise identical model that can eliminate spillover

by always attending to perception when it can. Third, that the spillover-capable

policies in such a model perform no worse than spillover-incapable ones across the

speed-accuracy tradeo� curve (in the sense that they achieve a no worse a speed at

the same accuracy or no worse an accuracy at the same speed), and in fact perform

better in some portions of the noise parameter space. And fourth, that the origin

of the e�ect is in a counter-intuitive but fundamental property of the dynamics of

sequenced thresholded samplers.

Building on this memory model, a parafoveal preview model is constructed. This

model is capable of navigating a tradeo� between foveal, parafoveal and memory
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Figure 6.1: Example dynamics of a decision to saccade from word N-1 to word N. The
memory-driven attention shift decision can delay the start of perceptual sampling on
the next word even though eye-brain lag (EBL) is complete, potentially creating
spillover. A detailed description of the dynamics depicted in this �gure is in �6.2.

sampling. The preview-capable model performs better (in speed-accuracy tradeo�)

at high RTs and equally or only slightly worse at lower RTs. The practical impact

on spillover is shown to be minimal, however, in the widely-spaced setting of the

LLDT, with spillover e�ects primarily driven by the memory delay even in the preview-

capable model. However, parafoveal preview is shown to increase the range of free

parameter values in the model that show rational spillover, due to a property of the

memory component of the model.

6.2 A model of saccadic control with noisy memory

for recent perception

The key extension to the model in Chapter 3 is a noisy memory that bu�ers perceptual

input. It is most easily understood by �rst considering the dynamics of a single

decision to saccade from one word to the next, as presented in Figure 6.1. As in

the earlier model variant, there is an eye-brain lag (EBL) delay from when the eye

�rst �xates on word N to when information from the retina becomes available for

perceptual processing. A sequence of noisy perceptual samples then arrive and are

integrated via an incremental and noisy Bayesian update of a probability distribution

over lexical hypotheses as in the previous model variant. In addition, the perceptual

samples are also bu�ered by storing them in a memory that contains samples from

only the most recent word.

As in the previous model variant, saccade planning is initiated when a saccade

threshold is reached � but the decision variable is di�erent, as will be described below.

Then, perceptual sampling continues in parallel with saccade planning until the �x-

ation ends, and then for another EBL amount longer (these are samples received at
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the retina during the �xation and only now arriving at the lexical processor). This

perceptual sampling period is marked as free sampling in Figure 6.1 because its length

is not under adaptive control.

The model then switches to sampling from its memory, continuing the sampling

process until an attention shift threshold is reached. If this threshold had already

been reached during the earlier perceptual sampling stages, attention shifts instantly.

Otherwise attention remains on word N-1 even if the eye has saccaded to word N

and the eye-brain lag on word N is completed1. Perceptual samples from word N will

not be processed until attention is shifted away from the memory-based processing of

word N-1. Thus the memory processing on word N-1 may delay processing of percep-

tual samples from word N and produce delays of the kind explored using E-Z Reader

in the previous chapter (though note that these delays must be frequency-sensitive

for spillover frequency e�ects to arise). Perceptual samples arriving during this time

are bu�ered in the memory. In this way the posterior update is a limited computa-

tional resource and its relative allocation to perception or memory is determined by

the saccade and attention shift thresholds. If the time to reach the attention shift

threshold is sensitive to the frequency of word N-1, the model may exhibit a spillover

frequency e�ect.

One more departure made from the previous model is the decision variable. In

the model in Chapter 4, the eye movement decision was conditioned on the word or

nonword belief in a given position. �3.2.2.2 discusses the possibility of making the

decision conditioned on either the speci�c task at hand or on the task most similar

to it in humans' ordinary life. The move in this model is from using the former to

the latter, after preliminary

Preliminary simulations showed that with that prior and the substantial amount

of `free' sampling that saccade planning time imposes after a �rst threshold is crossed,

nearly any second threshold would be crossed during this portion of sampling, elimi-

nating all opportunity for delay.

: the model is assumed to have a correct model of the trial generation procedure

and set the prior probability of words and nonwords accordingly.

In particular, that the probability that the trial is an all-words trial is 0.5 and

nonwords are distributed in nonword trials uniformly. Therefore the prior probability

for the word hypothesis at each position is 0.5 + (5
6
∗ 0.5) = 11

12
= 0.916.

1Because there is a �xed set of memory samples available, the attention shift decision is not
guaranteed to converge, unlike the saccade decision. It nearly always converges, but a 30-sample
deadline is used to prevent in�nite sequences.
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The theoretical interpretation of this change is that participants might choose to

rely on their highly-honed eye movement strategy tuned to word identi�cation rather

than a new strategy for lexical decision. One can attempt to address this empirically:

facilitatory e�ects of lexical neighborhood density on response times tend to appear in

lexical decision whereas inhibitory ones appear in word recognition (see Norris, 2006;

Andrews, 1997 for reviews). The explanation provided by Norris in the context of the

SPRT is that if the hypotheses are individual words (as in perceptual identi�cation),

they will compete, leading to inhibition on word identi�cation times. If the hypotheses

are the classes of words and nonwords (as in lexical decision), one word will facilitate

other words and lead to facilitation in word identi�cation times.

This was investigated in the LLDT using lexical neighborhood norms computed

from the MCWord orthographic wordform database (Medler & Binder, 2005). The

dataset used was the full set of LLDT experiments (masked and unmasked) with co-

variates of experiment type and condition in addition to the ones reported in �4.2.3.

There was no signi�cant e�ect of lexical neighborhood density size on single �xation

duration for words in either direction (β = −0.12, χ2 = 0.9174, p = 0.3382). With

neither facilitatory nor inhibitory e�ect of lexical neighborhood density on reading

times, this analysis does not provide guidance as to which decision variable partici-

pants are using for their eye movement decision. Figure 6.2 shows a more detailed

view of the model in this chapter, analogous to Figure 3.1 in Chapter 3.

A decoupled noise schema As in the previous variant of the LLDT model, the

decisions to plan a saccade, shift attention, and make a motor response are realized

as Sequential Probability Ratio Tests. With the change in decision variable, the test

used is formally the multihypothesis variant of the MSPRT (Baum & Veeravalli, 1994;

Dragalin, Tartakovsky & Veeravalli, 2000). At each timestep, the model performs a

Bayes update based on a noisy sample drawn from perception or memory, with the

posterior at each timestep becoming the prior for the next timestep. The choice of

word representation is unchanged from the previous model and follows Norris (2006)

in representing a letter as a unit-basis vector encoding and a word as a concatenation

of such vectors.

Samples are generated by adding mean-zero Gaussian noise to these vectors. With

the introduction of di�erent samplers, the model also introduces a set of decoupled

noise components, as follows: to generate a perceptual sample, mean-zero Gaussian

perception noise with standard deviation (SD) σp is added to each component of

the word representation vector (this is also notated as the shorthand pNoise in some
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All words

Figure 6.2: A typical all-words trial in the memory-sampling model. The six strings
are plotted at the top of the �gure, folowed by the �xations, and the oculomotor
and lexical processing stages. Perceptual and memory sampling bars are plotted
separately, with the pereptual sampling in dark red when perceptual samples are
ignored in favor of memory. At the bottom is the max a posteriori belief for each
position as a function of time in color and the trial-level belief in gray, with the
background color indicating perceptual sampling (dark grey) or memory (lighter gray).
The dashed horizontal line is the saccade threshold and the solid line is the attention
threshold.

plots). Each perceptual sample is also stored in a memory bu�er, and memory samples

are generated by uniformly drawing a stored sample from memory (with replacement),

and adding an additional mean-zero Gaussian memory noise with SD σm to each

position (notated om plots as mNoise). Before each Bayesian update, whether using

a sample from perception or memory, mean-zero Gaussian update noise with SD σu

is added to each component of the word representation vector (notated on plots as

uNoise). In the remainder of the chapter, all references to a noise value refer to one of

these standard deviations (so `perception noise is 0.5' means `the standard deviation

of the mean-zero Gaussian pereption noise is 0.5').

As before, the Bayes update uses the correct noise in its likelihood computation,

i.e.
√
σ2
p + σ2

u as the noise in its likelihood computation for a perceptual update,
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and
√

σ2
p + σ2

u + σ2
m in the likelihood computation for a memory update. All noises

are drawn independently. The three SD's, σp, σm and σu, are free parameters in the

model, explored in some detail below and then �t to human data in the next chapter.

6.3 A computational rationality analysis

Unlike the model in chapter 4, this model has three distinct noise parameters that

can no longer be interpreted as simply scaling the controlled sampling portion of the

�xation, because now di�erent permutations of the parameters will yield the same

mean SFD in optimal policies. For example, one might expect memory sampling to

be dispreferred when memory noise is high. In a setting where memory sampling

is minimal, any combination of σp and σu that sums to the same amount will yield

exactly the same behavioral outcome (because perceptual samples always su�er from

both noises). An alternative pursued in this chapter is exploring the range of the free

noise parameter values, showing the range of predictions with which the model is com-

patible, and explaining how aspects of the architecture (whether a priori determined

or `free') constrain the class of explanations possible.

Two analyses are undertaken. First, it is shown that top-performing policies (with

respect to the same payo� given to human participants) yield frequency spillover

consistent with human data, and poor-performing policies do not, as long as there

is a relatively high noise in the update process. Second, the model's policy space

is extended to allow it to prioritize perception over memory samples when both are

available, eliminating spillover in those policies. In the resultant model, the spillover

portions of the policy space perform better than non-spillover ones under any imposed

speed-accuracy tradeo� in some noise settings, and never perform worse.

On the question of scaling. In setting aside the use of noise as a scaling factor

it is useful to reevaluate what appropriate comparisons to human data look like. For

example, high-noise models might show numerically large frequency e�ects that are

nontheless far too small against the backdrop of 1500ms �xations. One solution is

to use the sample rate, �xed at 10ms in the previous model variant, as another free

parameter �t to �xation durations at each noise permutation. This would be at the

cost of computational tractability, already a scarce resource in grid-searches of a six-

parameter model. Backing o� from grid searches to a faster optimizer would eliminate

the ability to explore the noise and policy space and understand how behavior changes

throughout the parameter space. A third option chosen here is to look at frequency
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and spillover e�ects scaled by mean �xation duration. This addresses the scaling

issue and allows a comparison to human e�ect sizes, at the expense of being able to

compare raw �xation durations themselves.

6.3.1 Spillover as computationally rational behavior

The �rst evaluation of the model asks the question of whether spillover e�ects emerge

in approximately optimal policies. Since only balanced payo� data is available for all

three masking conditions (unmasked and the two types of masking), the model was

evaluated on this payo�. The policy space was discretized as follows: the saccade

threshold θs ranged between 0.199 and 0.999 in steps of 0.05; the attention shift

threshold θa between 0.19999 and 0.99999 in steps of 0.05, and also including θa = 0

which prevents memory sampling; and the response threshold θr between 0.599 and

0.999 in steps of 0.1. All 1530 permutations were explored.

Figure 6.3 shows the distribution of spillover e�ect sizes in the top 5% of policies

(evaluated by task payo�, not �t to human data), for a range of noise parameter set-

tings. At higher noise settings, even the best policies are close to chance performance.

The �gure shows that top-performing policies show little to no spillover when update

noise is low, positive but small spillover e�ects when update noise is moderate (es-

pecially when the other two noises are relatively high), and sizable positive spillover

e�ects when update noise is relatively high and the other noises (especially perception)

are relatively low. These results are consistent with spillover as a rational adaptation

to belief update noise. Figure 6.4 shows the same measure on the same scale, in the

human data. The e�ect size in the humans is noticeably higher, but otherwise the

plots look similar. This includes the fact that the whiskers on the boxplots cross 0,

i.e. that neither all participants nor all top policies show spillover e�ects.

6.3.2 Spillover-capable policies dominate

Even though the previous section established that spillover frequency e�ects can

emerge as a computationally rational adaptation to a particular payo� in the LLDT,

a potential concern is that the model excludes some better-performing variant that

does not show spillover. The strong version of this criticism is that the policy space

excludes the optimal policy: the model must either take no advantage of memory

sampling by setting the threshold to 0 (thereby introducing slack time during the sac-

cade and eye-brain lag), or set it higher and risk delaying better perceptual samples

in favor of noisier ones from memory.
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To address this concern, this section introduces a model that is capable of always

giving priority to processing perceptual samples over memory samples. Such a model

can take advantage of memory sampling to make up for slack time during the saccade

without the risk of prioritizing memory over perception. This model adds a single

binary policy parameter, the perceptual priority bit. If this bit is set, then when

the model has the choice between memory sampling from word N-1 and perceptual

sampling from word N, it always chooses the latter. Such an option is not available in

the previous model�there is no setting of the saccade and attention shift thresholds

that will always use memory samples when only they are available, but also never

choose to use memory samples when perceptual samples can be used. With the

perceptual priority bit set, the model is capable of exploiting the least noisy samples

available to it, but is incapable of exhibiting spillover e�ects.

Figure 6.5 shows speed-accuracy tradeo�s for the model, with the perceptual-

priority bit unset (spillover-capable) and set (spillover-incapable), in three represen-

tative noise settings. Individual points are policies and the lines mark the best accu-

racy available at a particular reaction time for the two classes of policies; i.e. these

lines represent the best speed-accuracy tradeo� possible for both spillover-capable

and spillover-incapable policies.

In the left plot of the �gure, noise is low enough overall such that responses are

very fast and spillover-capable policies do no worse and no better than spillover-

incapable policies. In the middle plot, update noise is higher, and the optimal speed-

accuracy tradeo� is better for the model that can yield spillover, consistent with

the exploitation of memory sampling to mitigate update noise. In the right plot,

perception and memory noise are high enough that it is no longer useful to sample

from memory at the expense of perception.

All the noise settings explored (see Figure 6.3 for the range) yield one of these three

patterns, or the uninteresting case of near-chance performance. In no setting does

the spillover-capable model perform worse than the spillover-incapable one. The noise

settings cover a range from implausibly-high accuracy to chance performance, leading

to the conclusion that spillover-capable policies dominate, in that they do no worse,

and occasionally do better, than those constrained to give priority to perception over

memory.
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6.4 Why spillover arises from sequenced thresholded

samplers

The model yields frequency spillover through a composed sequence of perception and

memory sampling, which presents the following puzzle: if there is a �xed threshold

at which memory sampling is initiated, then it should be surprising for the duration

of memory sampling to depend on the prior of the perception sampler. Given that

memory sampling is what leads to delay and spillover, it should be therefore surprising

that frequency-sensitive spillover arises at all in the model.

The crucial insight is that it is not always the case that the true word hypothesis

reaches the threshold �rst; i.e., the decision to initiate saccade planning may be

based on (partial) recognition of a di�erent word than the true word. In such cases,

at the start of memory sampling, the hypothesis for the true word is farther from

the attention shift threshold θa than if the true word had been (partially) recognized.

Incorrect decisions are more likely for low frequency words, so in expectation the

memory-driven attention shift mechanism will start farther from its threshold for low-

frequency words, and therefore take longer to reach threshold, delaying the following

word more.

To illustrate this phenomenon, Figure 6.6 shows data summaries from a minimal

two-sampler model, without any architectural constraints. The top panel of Figure 6.6

illustrates the dynamics of such a recovery trial. In this panel, the threshold is crossed

for the incorrect hypothesis (green line) in the �rst sampler, triggering the start of

the second sampler. The second sampler recovers from the mistake, allowing the

correct (red) hypothesis to cross the threshold, but at the cost of additional time.

The bottom left panel shows that incorrect (and thus eligible for recovery) trials are

more frequent for low priors. The bottom right panel shows that the �nishing time of

the second sampler is proportional to the prior probability of the correct hypothesis

for the �rst sampler. It is also inversely proportional to accuracy (bottom left plot),

consistent with inaccurate trials driving the relationship between the �rst sampler

prior and second sampler �nishing times.

6.5 Rational parafoveal preview in the LLDT

The �rst portion of the chapter showed how spillover e�ects might emerge in the

absence of parafoveal preview, such as in the masked variant of the LLDT. But it

does not provide a full explanation of what happens in the unmasked LLDT, because
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in that case parafoveal preview is available (though likely not very useful due to

the wide spacing). This section introduces parafoveal preview into the model and

explores how it interacts with the memory delay mechanism. In particular, it shows

the following: �rst, that a model capable of preview performs better than a preview-

incapable model across a wide range of speed-accuracy tradeo�s, and performs only

slightly worse elsewhere. Second, that the preview-capable model shows spillover

frequency e�ects. And third, that the spillover e�ects it shows are still a result of

memory-driven delay, but that this e�ect appears in more of the model's parameter

space due to an interaction between parafoveal preview and the model's memory

mechanism. Some speculation is provided on how such a model might explain why

denying parafoveal preview sometimes but not always eliminates spillover e�ects (as

reviewed in S5.1.1).

6.5.1 Adding parafoveal preview to the model

In the memory delay model presented earlier in this chapter, saccade planning pro-

ceeds until a saccade threshold is hit, followed by `free' perceptual sampling while sac-

cade planning is ongoing, followed by memory sampling if the attention shift threshold

has not been hit during the saccade planning time. Memory sampling continues until

the attention shift threshold was hit if the perceptual priority bit was unset, or until

perceptual samples from the next word became available otherwise.

The proposed change to incorporate preview is to replace the aforementioned `free'

sampling portion with an adaptively controlled stage: if the attention shift threshold

is crossed during saccade planning time, then the next word is previewed. If it is

not crossed before the eye moves on, memory sampling will ensue, with the same

interactions with the attention shift threshold and perceptual priority bit as in the

no-preview model.

As with the other models in the thesis, the model should have the correct gen-

erative model of samples, i.e. generation noise of foveal and parafoveal samples is

known so that the correct likelihood function can be computed depending on the

memory sample drawn. But a model that labels memory samples according to their

noise might as well use the objectively less noisy foveal samples and avoid the noisier

parafoveal ones, and so the preview model only bu�ers foveal samples and only uses

them for the memory update.

Parafoveal sampling is implemented by scaling the perceptual noise very similarly

to the scheme provided by Bicknell & Levy (2010a). Bicknell & Levy multiplied the
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standard deviation of the noise generation function at each position by 1
λ(ϵ)

, where ϵ

is the eccentricity of the current character in characters 2, and:

λ(ϵ) =

∫ ϵ+0.5

ϵ−0.5

1

Z
exp

(
− x2

2σ2

)
dx, σ =

σL, x < 0

σR, x ≥ 0
(6.1)

This is the asymmetric processing rate function from the SWIFT model of eye

movement control (Engbert et al., 2005), with Z as a normalization constant. For the

dissertation model, Z is set to the perception noise parameter and the integral (which

is one character wide and centered at the eccentricity of the letter) approximated by

evaluating the function at the eccentricity of the current letter. σL is set to 2.41 and

σR to 3.74, following Engbert et al. (2005), and close to the value used by Laubrock,

Kliegl & Engbert (2006). This is smaller than the value of 4.55 used by Richter et al.

(2006), which would allow more parafoveal preview, but the latter paper also set σL to

0.05, which allows implausibly little perceptual processing even one letter to the left

of �xation. This choice �xes what would otherwise be another free noise parameter

(the parafoveal noise).

For purposes of computing the eccentricity of a string, the eye is assumed to

always be �xated on the second character of the �xated word (this is slightly left-

of-center in a four-letter word). The result is that the noise generation function for

the second letter of the �xated word uses exactly the standard deviation speci�ed

by the perceptual noise parameter, and grows according to λ(ϵ) in the rest of the

word. This means that in this model, foveal noise is slightly higher overall than in

the memory-only noise above, for the same setting of the perceptual noise parameter.

For purposes of computing noise of the parafoveal word, the model correctly takes

into account that it is separated by six spaces, as in the human task.

At one limit of the resultant policy space, where both thresholds are equal, the

model previews the next word during the entirety of the saccade planning time. At

the other limit where the di�erence between thresholds is large, the model will not

use preview and instead look identical to the memory model discussed earlier in the

chapter, except with slightly higher noise because of the eccentricity noise adjustment.

Intermediate values of the thresholds will yield intermediate behaviors. Because the

duration of saccade planning is random, intermediate values of the thresholds will

2The value reported in the paper is 1
λ(ϵ)2 but the correct value is not squared as per Klinton

Bicknell, p.c.

101



yield policies that include some preview and some memory-based review, depending

on the particular saccade planning time drawn, as long as the perceptual bit is unset.

If the perceptual priority bit is set, there will be mostly preview, with memory review

only if the current word has a very short saccade execution time and eye-brain lag,

and the next word has an unusually long eye-brain lag.

Figure 6.7 shows a sequence diagram of the preview-capable model for three illus-

trative cases: in the top diagram, attention shift happens during saccade planning,

resulting in preview. In the middle, attention shift happens after the eye has moved,

resulting in memory sampling. In the bottom, attention shifts exactly when saccade is

planned, resulting in maximum preview. The middle �gure is illustrated with the per-

ceptual priority bit unset; with it set, the attention shift decision would be truncated

at the end of EBL and there would be no memory-driven delay.

As in the memory-only model, the parameter space was explored to illustrate

the range of predictions the model is consistent with. Given that noise values above

2.5 were e�ectively at chance, higher noise values were not explored. In addition,

the attention shift threshold range was from 0.499 to 0.999 in steps of 0.05. The

perceptual priority bit was also allowed to take on both values to investigate whether

memory review is still rational in the presence of parafoveal preview. The removal of

the very low thresholds was done because preliminary experiments and the memory

model above both showed that lower attention shift threshold values perform poorly.

The move from �ve to three decimals allows exploring the maximum-preview policies

discussed above, i.e. ones with saccade and attention shift thresholds equal.

6.5.2 Parafoveal preview is rational in most speed-accuracy

tradeo�s in the LLDT

Figure 6.8 shows best speed-accuracy tradeo� curves, for the preview model intro-

duced in this section and the no-preview memory model discussed in the previous

section, in the same noise settings as Figure 6.5. These noise settings serve as rep-

resentative cases for this comparison as well the previous one: the preview model

achieves substantially better accuracies at higher RTs, but slightly worse ones at

lower RTs. This is most likely because at low RTs, both models avoid memory sam-

pling by keeping attention shift thresholds low, but the preview model replaces the

`free' foveal samples of the no-preview model with noisier preview samples. On the

other hand, at high RTs, both models move the thresholds higher and the preview

model replaces less informative memory samples (less informative because they only
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average over update noise) with more informative parafoveal samples (averaging over

perception and update noise).

When it comes to performance on the Balanced payo� given to human partici-

pants, the preview model performs better in nearly all noise settings. There are two

exceptions: �rst, when perceptual and update noise are very low, both models do

equally well, likely at ceiling; second, when perceptual noise gets slightly higher but

update noise is still low, the parafoveal preview model performs more poorly. A key

confound in this result is that as mentioned above, the noise for foveal words is slightly

higher in the preview-capable model than in the no-preview model because eccentric-

ity is correctly computed for foveal words. Therefore the preview model is expected

to perform slightly worse at equivalent noises, which might explain the slightly worse

payo�s at lower RTs.

This result is largely consistent with parafoveal preview being adaptively useful

to a rational reader, with the strong caveat that most of the di�erences in the model

appear at response times above 2000ms, higher than the human RTs even in the

Accuracy-emphasizing payo�.

6.5.3 Interaction of parafoveal preview and memory review

In the case of the memory-only model, policies with the perceptual priority bit unset

dominated policies with this bit set. But it need not still be the case when parafoveal

preview comes into the picture. Preview samples are enable complete averaging over

sample generation noise and the recovery of the true word, whereas memory samples

only permit averaging over memory and update noise and recovering the mean of the

noisy perceptual samples gathered. A model that can choose between the two may

well always choose the parafovea (i.e. set the attention shift threshold close to the

saccade threshold) and not show any advantage to the memory-driven delay.

Figure 6.9 shows the same illustrative noise set as Figures 6.5 and 6.8. As in the no-

preview model, delay policies do well when update noise is high (middle panel), likely

for the same reason (because it is worth delaying to average over update noise). The

picture in the rest of the space favors the delay-incapable model, with preview policies

that are not at risk of delaying the foveal processing of the next word performing

better. However, as in the case of comparing preview-capable to -incapable models,

much of the di�erence exists at unrealistically high RTs.
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6.5.4 Spillover e�ects in the preview model

The preview model is capable of recovering spillover e�ects in much of its policy

space, but not in its entirety: by setting the saccade threshold low, the attention

shift threshold high, and setting the perceptual priority bit, this model can choose

to neither preview nor delay the next word, eliminating spillover. Therefore it is

important to determine whether the model shows spillover in near-optimal policies.

Figure 6.10 shows distributions of spillover e�ects in the top 5% of policies (with

respect to the Balanced payo�), across noise settings, separated by whether they have

the perceptual priority bit set. The y-axis limits are set to be the same as the limits

on �gures 6.4 and 6.3 for ease of comparison, though this results in a truncation on

the upper end of the range. It is apparent from this �gure that spillover e�ects in the

preview-capable model are still due to memory-driven delay rather than parafoveal

preview. This is consistent with the claim that spillover e�ects are not driven by

preview even in the unmasked LLDT. Note also that this model is even more reliant

on the update noise for its explanation, as delay (and therefore spillover) in the

preview model is only rational at high update noise settings.

This result presents another puzzle. If parafoveal sampling has minimal impact on

spillover, then why is it the case that the e�ects in Figure 6.10 (the preview-capable

model) are obviously larger than those in Figure 6.3 (the memory-only model), as

well as present in more noise settings? A possibility has to do with the choice made

above to only use foveal samples in the memory bu�er. Under most policy settings in

the preview-capable model, there will be some parafoveal and some memory sampling

in a given trial (depending on architecture draws), though a single word will only see

one type of sampling. In the preview-incapable memory-only model, there is only

foveal and memory sampling. Therefore, under equivalent policies and noise settings,

the memory-only model would have more foveal samples available, be better able to

rationally average over update noise, and therefore have better speeds and accuracies

overall.

This bene�t is likely what drives better performance in the preview model when

update noise is not high, but will also make memory sampling drive bigger delays into

the following word. This is unlikely to be an e�ect of the deadline on the memory

sampler in the preview model: the deadline was extended to 100 samples (1000ms)

in the preview model to mitigate against this possibility, and spillover e�ects seem to

appear even in noise settings where �xation durations are far less than a second long.

It is not clear whether this explanation should be treated as an interesting theo-

retical �nding, or a curious modeling artifact. The memory bu�er used is of no deep
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theoretical commitment, so relying on it for the apparent recovery of spillover is no

great theoretical strength. Future work might investigate whether the same pattern

holds with bu�ered parafoveal samples, or in a more sophisticated memory model

(such as the one sketched in �7.4.3).

6.6 Discussion and Conclusion

This chapter built on the suggestion of a delay-based explanation for spillover e�ects

derived from the E-Z Reader modeling e�orts in Chapter 5 by introducing an explicit

mechanism that could extend processing into the next word. This mechanism is a

memory-driven attention shift: perceptual samples are bu�ered and continue to be

processed from memory until a second adaptive threshold is hit. Such a mechanism is

shown to be rational across a range of speed-accuracy tradeo�s, assuming independent

noise in perception and the update process. The reason for this is that it may be

rational to reprocess past perceptual samples with independent draws of noise in the

update process, to rationally average over this noise. This mechanism is also shown

to produce spillover e�ects in settings where update noise is high.

A puzzle is introduced for why the second sampling period duration would be

sensitive to the prior of the �rst under a threshold policy, as the threshold is expected

to make the starting probability of the second sampling period independent of prior.

It is shown that while the threshold of the max a posteriori hypothesis (i.e. string)

is equal to the threshold, the probability of that string being the true string is a

function of prior. The second sampling period can recover from an incorrect crossing

by the �rst, at the expense of additional time (because the correct string probability

is more likely to be below threshold as the prior gets lower). This appears to be a

fundamental property of combined samplers: information about the prior persists in

the posterior in spite of the threshold nature of the sequential test.

Next, parafoveal preview is introduced in the model in order to understand how

a model that can adaptively select between foveal, parafoveal and memory sampling

navigates that adaptive space, and by what mechanism it may yield the spillover

e�ect of interest. It is shown that the speed-accuracy tradeo� results are more mixed

in this case: the use of parafoveal preview performs better than an equivalent no-

preview model at higher RTs, but close or even slightly worse at lower RTs. Spillover

e�ects in the preview capable model, assuming the large word spacing used in the

LLDT, are entirely driven by the delay-based rather than preview-based explanation.

This supports the assertion that the LLDT minimizes parafoveal processing, and that
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spillover e�ects in this task are not parafoveally driven even when the parafovea is

not masked. With closer spacing (and therefore less noisy parafoveal samples), the

tradeo� between parafovea and memory will become more apparent. In particular,

for some values of memory noise and parafoveal noise, it will be advantageous to

always choose the parafovea over memory, and parafoveal preview will drive spillover.

Possibly even with both noises equal, parafoveal sampling may be preferred because

it draws `fresh' un-updated samples with completely independent noise draws rather

than bu�ered samples with only an independent memory noise draw. As parafoveal

noise increases (due to spacing or individual variation, or gaze-contingent manipula-

tion), memory delay will increasingly drive spillover.

An interesting future direction in light of this work is to revisit the question of

spillover results as a function of incorrect rather than obviously masked preview. As

noted in �6.1, some prior results show the disappearance of spillover e�ects in the

absence of parafoveal preview, while some show only a reduction. These results could

be understood as a mixture of two di�erent kinds of participants: those who notice

a display change and show large spillover e�ects, and those who do not notice the

change and show a reversal, i.e. slowdown for words that follow high-frequency words.

Slightly di�erent masking speeds and proportions of participants noticing the display

change might yield the gradation in results seen in prior work.

To investigate this, the preview model above might be modi�ed to reduce word

spacing from six characters to one (increasing the �delity of preview), but provide

incorrect preview. Instead of drawing parafoveal samples from the correct preview,

the model would draw them from a random set of four letters, which means that

sequential sampling from the parafovea would systematically bias the model's belief

away from the correct string. If higher frequency foveal words allow the model more

parafoveal sampling, then this parafoveal sampling will bias the following word away

from the correct decision.

This model would be structurally capable of producing the spillover e�ect reversal

seen in the White et al. (2005) display-change-aware group, speci�cally by setting the

attention shift threshold low and close to the saccade threshold. The model would

still be structurally capable of producing the spillover speedup e�ect as well, under

the memory mechanism discussed earlier in the chapter (by setting the attention shift

threshold high).

A key challenge in this e�ort is to model the display awareness of participants.

One possibility is to treat the no-preview model advanced in �6.2 as one extreme,

where participants know that parafoeval preview provides no useful information and
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can completely ignore the parafovea. As shown above, memory-driven spillover e�ects

may still emerge in this setting under certain noise conditions. The other extreme

on this spectrum is the preview model in �6.5.1, where participants might �nd the

rational adaptation to incorrect preview without being able to shut the parafovea

down completely.

However, the actual empirical setting in which the spillover reversal has been

found is neither of these two: parafoveal preview in those studies is disrupted in only

a small proportion of words, which is part of the reason participants rarely notice

the display change manipulation. In a typical design with a single critical word per

sentence, long sentences typical in psycholinguistic experiments, and many �llers,

only as few 5-10% of words have an incorrect preview. A reader who thinks display

changes are uncommon may therefore choose to utilize parafoveal preview in these

experiments, whereas a reader who thinks changes are common would ignore preview

in favor of memory-based review. Such a policy would yield rational behavior (and

presumably, parafoveal preview) in precisely the 90-95% of the experiment that is not

being measured.

Understanding rational behavior in this setting, therefore, might require optimiz-

ing the model in a setting where only some words are given incorrect preview, and

investigating what proportion of correct and incorrect previews drives which type of

spillover behavior. Such a manipulation could of course also be undertaken in human

participants.
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Figure 6.3: Spillover e�ects generated by the top 5% of policies across di�erent set-
tings of memory, perception, and update noise. Plotted is the ratio of the spillover
e�ect to single �xation durations, which normalizes out the long �xations at higher
noise settings. On each distinct machine de�ned by a combination of noise settings,
policies (settings of θs, θa, θr) were evaluated by the same task payo� given to hu-
man participants in the experiments described in Chapters 4 and 5. Boxplots show
spillover e�ects of the top-performing 5% of policies. Spillover e�ects are the di�er-
ence in mean single �xation durations on word N when word N-1 is low frequency and
when word N-1 is high frequency (low/high determined by median split). The highest
noise settings in the bottom row are not shown because performance was near-chance
even for the best policies.
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Figure 6.4: Spillover e�ects in the human participants. E�ects plotted using the
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computed in the same way as for the model.
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Figure 6.6: A simple example illustrating how the prior for a thresholded sampler
a�ects its �nal posterior, and therefore the prior for a subsequent coupled sampler,
despite the �xed threshold. Top: An example `recovery' trial for 500 hypotheses
(words). Bottom Left : Accuracy for the �rst sampler as a function of the prior of the
true hypothesis. Bottom Right : Second sampler �nishing times as a function of to
the true-hypothesis prior in the �rst sampler.
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Figure 6.7: Parafoveal preview capable model sequence diagram. See � 6.5.1 for
description.
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Figure 6.8: Best Speed-accuracy curve for preview and non-preview model, at the same
noises shown for the memory-only model. Shown is a smoothed line connecting
best accuracies available at each RT. At low noise, both preview and no-preview
policies are e�ectively at ceiling. With high update noise, the preview policy performs
substantially better at high RTs but slightly lower at at low RTs. The e�ect is more
pronounced at more moderate noise settings, with the preview policy performing
substantially better at slower RTs and slightly worse at faster RTs. The remainder
of the settings look like one of these three examples, with the rightmost one most
common. Vertical lines mark points of best performance under the Balanced payo�
for the two model variants: the preview model can a�ord to wait longer because the
boost in accuracy is worthwhile.
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Figure 6.9: Best Speed-accuracy curve for preview model with perceptual priority bit
set and unset, selected noises. Shown is a smoothed line connecting best accuracies
available at each RT. At low noise, both parts of the policy space do equally well.
With high update noise, the delay-capable policy performs better, consistent with
results from the no-preview model. At other noise values (of which the right plot is
one instance), delay-incapable policies do better.

113



pNoise: 0.5 pNoise: 1.5 pNoise: 2.5

●

●

● ●

●● ●
●

●

●●

●

●

●●● ●

●

●

●●

●

●

●

●

−0.05

0.00

0.05

0.10

−0.05

0.00

0.05

0.10

−0.05

0.00

0.05

0.10

m
N

oise: 0.5
m

N
oise: 1.5

m
N

oise: 2.5

1 2 1 2 1 2
Update noise

S
pi

llo
ve

r 
ef

fe
ct

 / 
S

F
D

Perceptual Priority

unset (delay−capable)

set (delay−incapable)

Figure 6.10: Spillover e�ect sizes scaled against SFD in the preview model, with the
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CHAPTER 7

Fitting the model to human data

7.1 The advantage and importance of model �ts

This chapter details the attempt to �nd a good �t to human data in the LLDT.

While the larger-scale exploration in the previous chapter provides some insight into

the conditions under which spillover might arise in the model, one of the bene�ts of

a theory that makes millisecond-level predictions is exactly the ability to test those

predictions against human data. As in Chapter 4, this section pursues �t against

single �xation duration �rst. As noted in Chapter 6, there may well be multiple best

�ts on single �xation duration that behave di�erently with respect to other measures.

Nonetheless, the recovery of frequency and spillover e�ects at reasonable SFD values

should be a minimal requirement of any �t against human data.

7.2 Comparing single �xation durations in humans

to the memory-delay model

Figure 7.1 shows mean �xation durations for high and low previous frequency bins for

the top 5% of policies for the spillover-capable memory (no-preview) model discussed

in the previous chapter. Dashed lines mark human performance in the Balanced

payo� in the LLDT with predictive unmasking: this is the empirical target. It is

easy to see that the range of noises where the spillover e�ect appears (indicated by

a separation between the two solid lines), yields single �xation durations far higher

than those in the humans. On the other hand, lower noises that yield single �xation

durations in the correct range for the humans show no spillover.

One possibility is that the search using the noises above was using too-high noises

overall. To investigate this, a model was tested with perception noise set to 0.1 and
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update noise set to 0.5, across a small range of memory noises. The same ratio in the

higher noise data (0.5 perception and 2.5 memory) produced a sizable spillover e�ect

in the top 5% of policies, so one might have expected to see the same with all the

noises scaled down. However, this is not the case: Figure 7.2 shows single �xations

only slightly shorter than those in the humans, but no sign of spillover e�ect.

A second possibility is that the sample rate is too low to see �ne-grained e�ects of

the prior, especially at such low noises. At 10ms per sample and 175ms non-controlled

sampling (125ms saccade planning and 50ms eye-brain lag), there are only about 7-8

samples that are actually under adaptive control without any memory-based delay.

With memory-based delay in play, this number shrinks further and the di�erences in

controlled sampling duration may be lost. To investigate this, sample duration was

reduced from 10ms to 2ms. Figure 7.3 explores �xation durations across previous-

frequency bins at a 2ms sample rate. While the �xation durations in this plot are

far closer to those in the humans, the spillover e�ect sizes are about an order of

magnitude too small.

A third possibility is that the lack of saccade cancellation removes an adaptive

locus available to human participants from the model. Evidence from saccade coun-

termanding tasks (e.g. Becker & Jürgens, 1979) is consistent with a majority of the

duration of saccade planning (as much as 80-90%) being labile, i.e. amenable to in-

hibition or cancellation. This was investigated by setting the saccade planning time

to 25ms instead of 125ms. This can be thought of as an extreme variant of a labile-

saccade model where saccades can be inhibited, canceled and resumed so precisely

that the e�ective maximum delay for a saccade plan is the short non-labile component.

Figure 7.4 shows a summary from model runs with mean saccade planning duration

set to 25ms instead of 125ms. Fixations are faster overall as compared to Figure 7.1

and spillover e�ects do appear at slightly lower noise values (and therefore slightly

faster mean �xation durations) than those in the long-SPT model.

This last modi�cation is the most promising, and one next step is to combine

some of the above ideas � i.e. a short saccade planning duration with lower noise and

a faster sample rate, which might �nally yield e�ects in the right magnitude at the

right mean SFDs. But such a model would at best be equal parts computationally

rational analysis and model-�tting exercise. Even with proper train-validate methods

(i.e. training on one payo� and validating on another), a parsimonious explanation

should not require a precise setting of �ve parameters (three noises, sample rate, and

saccade planning time) to recover a single e�ect of interest.
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This is particularly notable compared to e�ects like the frequency e�ect on single

�xation duration, which is consistent in its appearance and size in the top 5% of poli-

cies across the noise spectrum (Figure 7.5). Likewise this is unappealing in contrast

to the model in Chapter 4, which provided e�ects in the correct range over many

measures using a single �t parameter.

A better option might be to pursue the saccade planning direction in a more

sophisticated manner than turning it into a free parameter, by attempting to under-

stand how a decision to inhibit or cancel a saccade as well as to initiate one might

be triggered based on the ongoing state of lexical processing modeled as a sequen-

tial sampling machine. This would be a departure from the E-Z Reader inspired

architecture, which only uses saccade cancellation to handle higher level post-lexical

processing (Reichle et al., 2009).

The challenge in doing this would be to articulate how the saccade cancellation

decision is conditioned over the model's hypothesis space: random walk models of the

saccade countermanding paradigm (e.g. Boucher, Palmeri, Logan & Schall, 2007) or

saccade inhibition in reading (e.g. Engbert et al., 2005) that one might draw inspira-

tion from are expressed in terms of competition or inhibition of activation. A correct

treatment of inhibition in a model like the one in the thesis would need to explain

how inhibition of activation is re�ected in the model's probabilistic belief space and

how a cancellation action is conditioned on it.

7.3 Comparing single �xation durations in humans

to the parafoveal preview model

In light of the problems above in the memory-only model, one might expect a �t

using the preview model to be a futile exercise, with the preview model spillover

e�ects still driven by memory delays. But this may not be the case: recall the curious

result where parafoveal sampling limited the amount of information available to the

memory system, and made memory-driven spillover e�ects present in more of the

model's free parameter space.

Figure 7.6 shows �xation durations split by previous-word frequency bin, similarly

to the �gures above. The higher perceptual-noise setting is excluded because �xation

durations in that setting start above the y-limit of the rest of the plot. This plot

demonstrates that spillover e�ects do exist in the model's top 5% of policies, in a

range of single �xation durations close to those in the humans (though the spillover
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e�ects are slightly small). This is a promising result, though caveatted by its apparent

reliance on the modeling choice to not bu�er preview samples reducing the number of

memory samples available and reducing memory performance overall in the preview

model.

7.4 On the problems with quantiatively �tting hu-

man data

This chapter shows that the values of free noise parameters that yield spillover in

near-optimal policies also produce single �xation durations far higher than those in

the human data. This is a problem for the theory as stated, though in some sense

it is a good problem to have: a more abstract model without the ability to make

millisecond-level predictions would not be able to exclude this particular explanation

relying on a rational memory-bu�er-driven delay. Neither would a non-rational model,

which would �nd policies even at low noise settings showing spillover (ones with low

saccade thresholds and high attention shift thresholds).

The model including parafoveal preview su�ers from this issue to a lesser extent,

only underestimating spillover e�ects in the correct range of �xation durations rather

than missing them outright. However, parafoveal preview in this model has minimal

impact on spillover except by changing the success of memory sampling via a quirk

of the memory sampler implementation. Future work might introduce the memory

bu�ering of parafoveal samples into the model, in order to understand how strongly

this quirk of implementation is driving the e�ect.

Before considering alternate explanations, it is worth remarking that with the num-

ber of parameters and coarseness of discretization in the �tting exercise undertaken,

the parameter space may not have been adequately characterized, and qualitatively

and quantiatively better �ts may have been missed. Unlike the single-sampler model

in Chapter 4, the memory model is particularly vulnerable to this problem because

multiple noise parameters jointly contribute to the scaling of the sampler and trade

against each other. For example, the best �t could be when either update or percep-

tion noise is zero (with the other noise scaling the sampler alone) or there could be

multiple equally good �ts with di�erent settings of the trading parameters.

That said, based on the data collected it certainly seems like the model speci�ed

in the previous chapter cannot predict spillover e�ects at human-magnitude SFDs. It

is important to remark that what is rejected is not the full class of delay models, or
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of memory-delay models. Rather, it is this particular bu�ered memory model and

noise scheme, and the rationality of using memory to average out update noise at

human-magnitude SFDs.

This present section discusses a few other possibilities of how spillover might be ex-

plained in light of these results. Some of the variants sketched below retain the ideas

of memory sampling, delay-based spillover, or both, while changing other aspects of

the model. The intent is not to introduce free parameters or adjust the model archi-

tecture arbitrarily to make the e�ect appear rational. Rather, it is to understand how

the simpli�cations taken in the model (in terms of memory architecture, oculomotor

architecture, or the decision process itself) might have eliminated spillover e�ects at

human-like SFD magnitudes in the model space.

The �rst revision considered is the possibility of viewing spillover as a departure

from rationality. It is rejected because of how it would weaken the remainder of

the rational results in the thesis. More plausible is the possibility considered next

of treating spillover as an invariant consequence of architecture. Finally, some other

architecture variants are sketched within which post-perceptual processing might be

rational for other reasons.

7.4.1 Spillover as a departure from rationality

Within the framework of computationally rational analysis, behavior is viewed as

approximately rational by assumption. The advantage of this is that the space of

possible theories is constrained, but the disadvantage is that there is always the risk

that participants are not actually rational in the same way that the model proposes. In

light of evidence that participants do attempt to adapt their behavior to payo� (such

as that provided in Chapter 4), a complete rejection of adaptation is not warranted.

However, spillover could be a signature of some local minimum in the adaptive payo�

surface. It could also be rational with respect to some additional constraints on

sentence-reading but not rational in the LLDT, and participants may still use their

strategies practiced and trained to normal reading. Finally, the non-spillover policy

could be fragile or hard to optimize, again driving towards the selection of spillover

policies for the LLDT (this is a variant of the satis�cing argument from bounded

rationality, Simon, 1955).

To accept any of these possibilities would exclude spillover from the class of phe-

nomena explained as a rational adaptation. But the initial failure to explain spillover

under the bounded optimality assumption should not be su�cient cause to abandon
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the computationally rational approach with respect to the phenomenon. Rather, the

proper choice in the computationally rational approach is to iterate on the theory

to understand the link between task constraints, agent bounds, and the behavioral

outcome of interest. This is not to say that all phenomena must be understood as

rational: a future theory of biological, cultural, and within-the task individual adap-

tation may provide a taxonomy of bounded-rational and satis�ced behaviors.

7.4.2 Spillover as a consequence of architecture

The memory delay architecture makes the assumption that the existence of any post-

perceptual processing is under adaptive control, and that the only goal of this process-

ing is to facilitate perceptual recognition under update noise. Both of these assump-

tions can be plausibly relaxed: it is almost certain that post-perceptual processing

is required for additional reasons. In the case of reading post-perceptual processing

might be required to make contact with the conceptual or semantic system, and par-

ticipants may leverage this system in the LLDT as well. This system may well be

sensitive to frequency and capable of delaying perceptual processing like the simplistic

memory sampler proposed in the dissertation, producing spillover.

Other architectural explanations are provided in all of the non-adaptive models of

reading that provide explanations for spillover � these explanations are architectural

by de�nition, because no adaptive component is present. The non-preview expla-

nations are variations on the theme of hysteresis: in E-Z Reader, for example, the

portion of processing after saccade planning begins is a �xed proportion to the time

before saccade planning, and potentially extends into the next word. In SWIFT, deci-

sions to delay a saccade can spill forward into the next saccade, also yielding spillover

as a consequence of architecture.

Another variant of the architectural explanation would be to tie the noise parame-

ters to something that is possible to estimate a priori outside of the model (e.g. neural

�ring rates in relevant areas), and show how those a priori estimates match those in

the spillover model. Such a model would still need to be modi�ed to yield short SFDs,

but would do so with one degree of freedom fewer.

Building spillover into the architecture would provide a somewhat unsatisfying

answer to the question of why spillover e�ects exist: they exist because the architec-

ture is constrained to produce them. It would not be less true for being unsatisfying,

and as with the rest of the architecture would require a priori empirical or theoretical

motivation.
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7.4.3 Spillover as rational under other constraints or architec-

ture variants

This is the correct choie under both rational and computationally rational analysis:

iterating on the model speci�cation until the phenomenon of interest arises in rational

behavior. A minimal model change might retain the idea of a post-perceptual sam-

pling delay and investigate other reasons that such post-perceptual sampling might

be adaptive, i.e. ones not relying on a particular set of noise settings.

One possibility is to investigate the quantitative aspects of the oculomotor ma-

chine. The parametric machine architecture presented in the dissertation made strong

commitments to architecture parameters in state-of-the-art models, in particular E-Z

Reader and SWIFT. Such a commitment was shown to be useful in Chapter 4, which

showed how deviations from those architecture values worsen model �ts. However,

�7.2 showed that deviations from those consensus architecture parameters may also

improve �ts. Rather than turning the architecture parameters into free parameters

as discussed in that section, one might reconsider the architecture in light of the a

priori empirical work on architecture discussed in �3.2.3.

A second possibility is to replace the simple memory bu�er with a more theoret-

ically interesting memory retrieval process � even one still modeled as a sequential

sampler1 In such a sampler, the prior might be set by recency or some other function

of memory, and the sequential updates are done based on noisy samples from a cue.

When a threshold is reached, the cue is identi�ed well enough to retrieve a memory

trace it corresponds to. The noisy cue samples are drawn based on the current state

of the perceptual sampler. More perceptual sampling would yield more reliable cues

(i.e. ones better at averaging over perceptual noise; in the limit, the mean of the cue

sampling distribution is the true percept out in the world, a noiseless representation

of the word). If the memory hypothesis space is over words, then the closer match

between the hypothesis space and sampling distribution of the cue would result in

faster and more accurate memory retrievals. But a memory sampler prioritizing ac-

curacy might be able to mitigate against a lower-threshold perceptual sampler. In

this model, a memory delay may be adaptive not as a consequence of high update

noise, but as consequence of noisy perception. Such a model might also predict that

introducing noise in the visual display would magnify spillover e�ects by increasing

the emphasis on memory. A non-sampler memory could be introduced as well (e.g.

Lewis, Vasishth & Van Dyke, 2006; Lewis & Vasishth, 2005).

1Thanks are due to Rick Lewis for ideas regarding this memory mechanism.
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Yet another possibility is to make a dynamic treatment of the prior. It may

be the case that an informative prior is not instantly available, and instead comes

on-line dynamically. Early on, such a model looks like a uniform-prior model, and

later it looks like a highly-informative-prior model. The advantage of a memory-

driven delay would be in waiting for more prior bias to become available in di�cult

decisions. The dynamic prior could itself be a rational adaptation to something else:

for example, Hanks, Mazurek, Kiani, Hopp & Shadlen (2011) argue for a model that

integrates a time-varying bias signal in the drift di�usion model of decision-making,

which is analogous to a time-varying prior in the MSPRT. They make this argument

on two grounds: �rst, to account for the fact that low-probability stimuli are identi�ed

both more slowly and less accurately than high-probability stimuli; and second, as

a mechanism for the estimation of stimulus noise. The �rst of these is unexpected,

since both the MSPRT and related DDM both show the pattern of lower speed and

lower accuracy for lower-prior items (MSPRT: Figure 6.6; DDM: e.g. Wagenmakers

et al., 2008). But the second is intriguing: the argument that Hanks et al. make is

that time-on-decision can be used as a proxy for the reliability of incoming stimuli. If

the decision happens quickly, then presumably the incoming perceptual information

was reliable and should be weighted higher. On the other hand, if a long time passes

without a decision then perhaps the incoming information was unreliable, and the

prior should be trusted more.

7.5 Discussion and Conclusion

Based on the results from the previous section, one might be tempted to conclude

on a negative note. After all, while spillover e�ects do appear to be computationally

rational in some portion of the no-preview model's free parameter space, they do so

far from the range consistent with human data, and fairly drastic parameter manip-

ulations cannot seem to change this. Put di�erently, the model does not posses a

degree of freedom that corresponds to the scaling method undertaken in the initial

computationally rational explanations. The fact that the parameter-�tting exercise

largely fails is indication that the model is not overly �exible, but this might seem

like small consolation if it is constrained to not produce the result of interest. The

preview-capable model does provide more promising �ts on SFDs, but as discussed

in �6.5.4, may be relying on a quirk in the memory sampler implementation.

Nonetheless, a number of useful conclusions can still be made from this work.

First, a minor point: a non rational-analysis approach would have failed to reject
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the memory bu�er explanation for spillover. Figure 7.7 shows a spillover e�ect gener-

ated from the model that allows policy parameters to �t to human data rather than

optimizing to payo� performance.

Second � and more substantively � although a second sampler is an elegant way of

capturing continued processing of perceptual inputs, spillover may arise from another

process with access to the posterior of the perceptual sampling as long as such a

process can recover from perceptually misidenti�ed words and competes for processing

resources with perception. Such a process could be a lexical completion stage as in

E-Z Reader, probabilistic memory retrieval, or something else. Chapter 6 provides

the �rst illustration of why such a second process will have access to the priors of the

�rst even if the �rst is a �xed-threshold perceptual recognition machine.

In addition, while the present model motivates post-perceptual memory-based pro-

cessing by mitigating noise in the update process itself, it is almost certainly the case

that post-perceptual processing is required in the course of reading for independent

reasons. Such processing could also yield spillover frequency e�ects in a way that the

memory sampling process does, but without the limitation of only being rational at

unreasonable noise settings. A challenge for such an alternate process is that spillover

e�ects persist in the LLDT in the absence of required higher level syntactic or seman-

tic processing, but a more realistic model of memory need not require those higher

level properties.

Even the memory resampling process as yielding the delay is not categorically

excluded: �7.4.2 noted how a priori estimates of noise might yield spillover in the

memory-resampling model, but require other changes in scale to yield human-plausible

SFDs.

The present model and results suggest several avenues for future work. One is

a search for another delay-type mechanism that might yield spillover without being

rational only at unusual noise settings. A promising avenue on this front is a time-

varying e�ect of prior (Hanks et al., 2011).
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Figure 7.1: Model cannot simultaneously recover spillover e�ect and single �xation
duration of the correct magnitude. Plotted are single �xation durations by previous-
frequency bin for the top 5% of policies at each noise setting, with dashed horizontal
lines indicating the values in the humans. Lattice plots marked with perception and
memory noise, with update noise on the x-axis. It is clear that the model largely
overestimates single �xation durations, and moreover that it fails to recover spillover
e�ects in near-optimal policies at magnitudes of SFD that are consistent with those
in the human LLDT data.
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Figure 7.2: Model at low noises fails to recover spillover, even with the same ratio
of noises as the higher-noise model. Points on the line correspond individual policies
(i.e. setting of the three decision thresholds). Plotted are single �xation durations by
previous-frequency bin for the top 5% of policies at each noise setting, with dashed
horizontal lines indicating the values in the humans. While this model recovers �x-
ation durations close to those in the human data, it fails to recover spillover e�ects
entirely.
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Figure 7.3: Model with fast sample rate yields �xation durations close to those in
the humans, but the spillover e�ects are too small. Points on the line correspond
individual policies (i.e. setting of the three decision thresholds). Plotted are single
�xation durations by previous-frequency bin for the top 5% of policies at each noise
setting, with dashed horizontal lines indicating the values in the humans. Lattice
plots marked with perception and memory noise, with update noise on the x-axis.
While this model recovers �xation durations close to those in the human data, it
�nds spillover e�ects about an order of magnitude too small.
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Figure 7.4: Model with fast saccade planning times yields spillover e�ects close to
those in the humans, but overall �xation durations are too long. Points on the line
correspond individual policies (i.e. setting of the three decision thresholds). Plotted
are single �xation durations by previous-frequency bin for the top 5% of policies at
each noise setting, with dashed horizontal lines indicating the values in the humans.
Lattice plots marked with perception and memory noise, with update noise on the
x-axis. This model overestimates �xation durations at which spillover is rational, but
does so less than the original model. Moreover, it shows spillover e�ects in a larger
proportion of the noises explored than the original model.
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Figure 7.5: Frequency e�ects are present in the model across the range of free noise
parameters. This is in contrast to spillover e�ects, which only appear at a particular
setting of the noise parameters.
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Figure 7.6: SFD by previous-frequency bin, preview model. Unlike the memory-only
model, the preview model does succeed in recovering spillover e�ects close to those in
the human data at similar �xation durations (indicated by the fact that the separation
between the solid lines where they intersect the dashed lines). The e�ects are smaller
than those in the humans (the separation in the solid lines is smaller than in the
dashed lines).
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CHAPTER 8

Conclusion

This chapter discusses the key results in the thesis: the evidence for payo� adaptation

in human participants and its recovery in the model, and the exploration of spillover

e�ects derived from an adaptive tradeo� between processing foveal, parafoveal, and

memory information. In addition, it outlines a few directions for future research and

sketches how some of these directions might go forward.

8.1 An overview of results

The dissertation is concerned with exploring eye movement behavior from the per-

spective of computational rationality. It does so by introducing a simple empirical

paradigm (the LLDT) that in some ways approximates full sentence-reading (e.g. pro-

portions of single �xations, left-to-right reading, slight inter-word dependency). This

simpler task allows the construction of a theory far closer to the data it is simulating

than standard models in the �eld � i.e. the model `does the task.'

Using this empirical paradigm and model, the dissertation demonstrates that hu-

mans adapt their reading strategies to subtle quantitative properties of the task pay-

o� before them, adding to the body of work showing adaptation to qualitative task

instructions (e.g. Grainger, 1990; Wagenmakers et al., 2008) and task structure ma-

nipulations (e.g. Wotschack, 2009). More importantly, it provides a theoretical model

with the same apparent adaptive locus as the human participants (the ability to vary

�xation durations) and shows that it recovers many of the same empirical phenomena

seen in the humans, including subtle ones like variations in frequency e�ects and a

serial position e�ect.

A surprising result that emerges from this initial empirical e�ort is that spillover

lexical frequency e�ects, thought by a dominant theory to be driven by parafoveal

preview, persist in the LLDT in spite of wide word spacing intended to keep preview
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to a minimum. The spillover e�ect is a longstanding benchmark phenomenon in

the eye movement in reading literature in part because it is highly robust, and in

part because the mapping from underlying word and sentence processing to the eye

movement record is of substantial interest to related �elds that use it to investigate

underlying cognitive processing.

To verify that parafoveal preview is indeed not solely responsible for spillover in the

LLDT, an LLDT experiment is performed with parafoveal preview gaze-contingently

masked, in which spillover e�ects persist. In doing so, a new masking paradigm is

introduced that creates masks and unmasks stimuli based on extrapolated saccade

landing locations. This masking paradigm yields reading times far closer to unmasked

data than the traditional boundary paradigm, suggesting that it provides less visual

disruption and a more naturalistic reading experience.

With this empirical result in hand, the dissertation provides a new explanation for

spillover frequency e�ects as arising from a delay driven by post-perceptual processing,

and provides one explanation for why such delays might be rational in a particular

memory architecture. It then introduces parafoveal preview into the model in an at-

tempt to understand whether the adaptive interaction between memory-driven delays

and parafoveally-driven preview might explain whether parafoveal preview is rational,

and whether preview-driven spillover can arise in the LLDT. While preview does per-

form better across much of the speed-accuracy tradeo� curve, it does not seem to

drive spillover e�ects directly in the LLDT, and moreover makes the memory-driven

post-perceptual processing that drives preview suboptimal at many parameter set-

tings.

Finally, quantitative millisecond-level �ts against human data are attempted, with

mixed results. The no-preview model does not seem to be able to simultaneously �t

human-magnitude single �xation duration and spillover e�ects without substantial

adjustments to machine parameters intended to be �xed, and even then does not

provide strong quantitative �ts. The preview model does provide better quantitative

�ts, but the improved �t seems to be driven by a choice in the memory architecture

(i.e. that preview samples are not bu�ered, meaning fewer samples are available to

memory overall) rather than by the availability of preview itself.

8.2 Future Directions

There are many interesting directions that may now be pursued. Some are already

outlined in re�ecting on the quantitative �t problems with �xation duration discussed
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in �7.4 and with accuracy discussed in �4.5. A few more ambitious ideas rely on

the combination of cognitive architecture and rational analysis that computationally

rational analysis provides.

8.2.1 Individual Variation

One especially promising and novel direction is building models that explain individ-

ual di�erences in reading strategies as bounded-optimal adaptations to individually-

varying architectural constraints. This approach was demonstrated by Howes et al.

(2009) in their individual di�erences models of the PRP (Psychological Refractory

Period) task, where di�erences in dual-task costs were explained as signatures of

near-optimal adaptations to low-level processing characteristics (stage durations and

motor noise), not as di�erences in an underlying dual-tasking capacity. To undertake

this type of analysis in the LLDT model, one might estimate the architectural param-

eters individually by participant, using the same kinds of tasks used to arrive at the

consensus group averages used in the thesis. For example, saccade planning duration

might be estimated using the countermanding paradigm, and eye-brain lag by �nding

the �rst EEG de�ection to word or letter stimuli. The noise parameter would still be

�t in the same way as in the thesis but individually by participant, and the model

would make predictions of individual participant level performance characteristics,

including saccade duration, response time, and accuracy distributions. The richer

dataset of multiple architecture-performance pairings would provide both a stronger

test of the theory, and more constraints for optimizing the model's free parameters.

A model on this level of granularity may also reveal qualitative di�erences in how

participants approach the task.

In addition to exploring architectural di�erences, it is also possible to explore

e�ects of di�erences in internally modulated speed-accuracy tradeo�s�essentially

di�erences in intrinsic reward. For example, Chapter 4 an increase in the size of

lexical frequency e�ects under a payo� which emphasizes accuracy. This provides

a potential theoretical connection between the �ndings that older adults tend to

emphasize accuracy more so than young adults (Rabbitt, 1979; Smith & Brewer,

1995; Starns & Ratcli�, 2010) and also show higher lexical frequency e�ects on reading

times (Laubrock et al., 2006). In addition, this framework may also provide a way

to understand why undergraduate participants perform di�erently at di�erent times

of the semester (Grimm, Markman & Maddox, 2012; Nicholls, Loveless, Thomas,

Loetscher & Churches, 2014), e.g. by varying the mapping between the objective
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reward in the task (the imposed payo�) and the intrinsic reward of the agent (the

payo� that the model optimizes).

8.2.2 Sentence Reading

The LLDT as a way to understand adaptive control and eye movement behavior is

interesting in its own right. As a way to understand reading and sentence processing,

it is only interesting to the extent that it can be shown to be similar to more sophis-

ticated reading tasks. Chapter 4 showed that the LLDT does show some empirical

signatures of reading, such as proportions of single �xations and regressions. On the

other hand, Chapter 6 suggests that the wide spacing in the LLDT largely eliminates

parafoveal preview that could yield spillover � a convenient simpli�cation, but also a

departure from more closely-spaced reading behavior.

Therefore, one future direction must be scaling the model to more complex sentence-

level tasks. The challenge is largely methodological and computational rather than

theoretical: the Bayesian sequential sampling approach is agnostic as to both the

likelihood function and the form of the belief distribution. Recall that the string-

level belief update in the thesis computes two quantities: P (Sk = si|ek, T = t), i.e.

the posterior probability that the string in position k is some string si conditioned

on incoming evidence from position k and the multinomial T corresponding to trial

type; and P (T = t|ek), i.e. the posterior probability that the trial is of a particular

type (word or nonword) given incoming evidence. T could instead be a probability

distribution over sentence structures (i.e. a grammar), and the theory becomes � in

the abstract � a theory of sentence processing.

Practically speaking, the extension is less simple. On the computational front the

challenges are in specifying a likelihood function that lets words of di�erent lengths

be confused for each other, maintaining and updating a belief distribution over po-

tentially in�nitely many sentence structures, and handling a broader set of actions

than only saccading forward. On the methodological front, the challenge is in �nd-

ing a sentence-reading task with a decision variable that can be computed from the

distribution over sentence structures. These challenges are brie�y considered below.

Handling words of di�erent length The letter-level unit-basis vector representa-

tion of strings in the thesis model does not enable a likelihood function that confuses

strings of di�erent lengths. This is because the length of the vector implicitly pro-

vides noiseless information about the length of the string. An alternative is needed

that can represent uncertainty over string length. One such alternative is a weighted
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�nite state transducer (wFST) inspired by Levenshtein distance. Levenshtein dis-

tance is a string distance metric that counts the number of insertions, deletions, and

substitutions needed to transform one string into another. A wFST probabilistically

transforms its input `tape' into an output `tape'. One can de�ne a wFST that takes

in a sequence of letters and probabilistically inserts, deletes, or transposes letters to

generate another sequence.

Such a transducer will probabilistically transform some true word being viewed

into a sequence of letters. The likelihood of a particular word given this sequence of

letters is the probability of generating the sequence from that particular word using

that wFST. To compute it, one composes the deterministic �nite state automaton

representing the sample (letter sequence) with the reversed sample generation wFST.

The resultant wFST represents a probability distribution over all the strings that

could have generated the noisy sample (whether a word in the lexicon or not). As a

side bene�t, moving to this formulation of the likelihood function makes its parameters

possible to estimate from data, for example from letter confusability in a speeded

recognition task.

Maintaining and updating belief over many structures A model that can pro-

cess sentences will need to maintain and update its belief distribution over sentence

structures. Exhaustively listing all possible structures for all but trivial problems is

di�cult, and becomes impossible when any recursion is introduced and the grammar

produces an in�nite number of strings. The computational linguistics and natural

language processing literature provides a number of solutions to this problem, how-

ever.

One option, and the one chosen by Bicknell & Levy (2010a) in their sequential

sampling model used to understand regressions, is to represent the grammar as a

weighted �nite state automaton (wFSA). They induce their grammar by counting

bigrams in a large corpus. The primary advantage of this approach is that it is fast,

easy to estimate from data, and can have broad coverage. The chief disadvantage is

that wFSAs make it di�cult to engage with much of modern (psycho)linguistic theory,

which primarily works with context-free and mildly-context-sensitive grammars.

This leads to a second option, which is to use the state of an incremental parser to

maintain the current posterior probability over sentence structure. One such parser

is the Earley-Stolcke parser (Earley, 1970; Stolcke, 1995), which parses probabilistic

context-free grammars (PCFGs) and has previously been used to predict expectation-

based sentence processing di�culty Hale (2001). In a footnote, Stolcke notes that
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the input-recognition scanning action of the parser could be extended to probabilistic

input. Because the Stolcke parser is a dynamic programming parser (i.e. keeps track

of partial derivations), it may be possible to iterate the scanning step (this would

be the posterior update), normalizing correctly at each timestep. This option would

be slower than intersecting wFSAs but would allow use of a hand-written PCFG

to investigate psycholinguistically-interesting phenomena. The disadvantages of this

approach are that it will be slower than using wFSAs, and that while a PCFG is a more

expressive formalism than a wFSA, still cannot represent concepts like movement, and

other state-of-the-art aspects of linguistic theory.

A third option relies on a result from Bar-Hillel, Perles & Shamier (1961), who

showed a method for intersecting a context-free language with a regular language,

and that such an intersection is again context-free. Nederhof & Satta (2003) ex-

tended the result to a probabilistic grammar and probabilistic �nite state automaton,

and Chen, Hunter, Yun & Hale (2014) provide an implemented tool that intersects

wFSAs with a weighted multiple context-free grammar (WMCFG), a class of mildly

context-sensitive grammars that can be derived from minimalist grammars (Stabler,

1997). By iteratively intersecting wFSAs representing samples with the grammar,

this toolchain should allow sequential sampling with a probabilistic minimal gram-

mar as the representation of the belief distribution over sentence structures. But the

method is very slow: informal testing shows that it is about two orders of magnitude

slower than using the Earley-Stolcke parser, itself slower than the wFSA intersection

method or the method in the thesis.

Tasks and decision variables in sentence-reading With the question of the be-

lief representation and update tackled using one of the methods above, what remains

is the set of decision variables.

For the eye movement decision, if the action is to only move forward, then the

decision can still be conditioned on the max a posteriori string probability (as in

Chapter 6). But Bicknell & Levy (2010a) showed that agents that can also move

their eyes back to previous words perform better at any speed-accuracy tradeo� than

agents that cannot. They used threshold decisions for both the forward and backward

eye movement actions. This larger policy space may work at a �rst approximation,

but may also turn out to be suboptimal. The general problem in both the LLDT and

sentence-reading is that of choosing which sensor to attend to when there is a time

cost of switching sensors (i.e. the saccade itself), and neither the `always go forward'

nor the `go back when con�dence drops' policy space may contain the policy optimal
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in this setting. While any model with such a richer policy space could be compared to

human data using the same position-based measures used in the thesis, the inclusion

of movements to words other than the next one would also motivate the inclusion of

novel scanpath-based analyses (von der Malsburg & Vasishth, 2011) and in particular

explicitly computing similarity scores between the model's scanpaths and those of

human participants.

For the trial-level decision, the model outlined above could support any decision

variable that can be computed from a probability distribution over sentence structures.

Judgments about structure like subject-verb relations (`was it the feisty ballerina who

jumped?') or anaphor coindexing (`is himself referring to the tall milkman or the

stout wrestler?') could be computed at each timestep and thersholded. A criticism

of such a task may be that it does not tap into naturalistic reading, which likely

involves discriminating between meanings rather than merely between structures. But

the same criticism holds with respect to most psycholinguistic tasks, and in fact

the verb relation question variant looks remarkably like a standard comprehension

question in a psycholinguistic sentence-reading experiment). A notable exception to

this characterization of psycholinguistic tasks is recent work on sentence processing

during story comprehension (Brennan, Nir, Hasson, Malach, Heeger & Pylkkänen,

2012).

Moreover, in the computationally rational perspective the criticism about dissim-

ilarity between the experimental task used and naturalistic reading is not necessarily

valid because the notion of `normal reading' is ill-formed. If reading strategies vary

with task goals (as Chapter 4 and other work shows) then the goal of a theory of

reading is not to explain some abstract platonic notion of reading, but to build a

theory of the way reading strategy is adapted to the joint constraints of agent and

task. A theory of a sentence structure query task is very much on the path towards

that goal.

8.2.3 Adaptive control of attention

The model in the dissertation assumes that the attentional spotlight only applies

to a single word at a time, in light of the wide spacing of the LLDT. In practice,

a sequential sampling framework can rationally integrate information arriving from

multiple words and straightforwardly encode multiple perceptual streams in this way

(as done by Bicknell & Levy, 2010a, though see Reichle et al., 2009 for another opin-

ion). However, these previous e�orts on parallel information integration � both the
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Bayesian work by Bicknell and colleagues, and the processing functions of models like

Glenmore (Reilly & Radach, 2006) and SWIFT (Engbert et al., 2005) � all assume

some �xed, asymmetric parallel processing function. This is consistent with the �nd-

ing that the perceptual span is asymmetric in the direction of reading (McConkie &

Rayner, 1976), but puzzling given that foveal acuity drop-o� is symmetric.

An interesting direction of future research is an attempt to understand why such a

processing function arises in spite of the symmetric acuity function of the fovea. Such

a model would be a generalization of the model in Chapter 6 that can adaptively

allocate a gradient attention beam over fovea and parafovea rather than only allocate

it sequentially word by word. The goal would be to understand the asymmetry of the

perceptual span, and integrate this understanding with a theory of adaptive saccade

targeting of the kind Legge et al. (2002) and Bicknell & Levy (2010b) were interested

in. Such a theory might also have some bearing on why n+2 preview e�ects and

n+1 parafoveal-on-foveal e�ects appear to be fragile in the literature (Kennedy et al.,

2002; Kennedy & Pynte, 2005; Kliegl et al., 2007; Angele & Rayner, 2011).

8.3 A �nal word

The thesis work is a set of �rst steps in a theory of eye movement control in reading

that assumes a key role for the oculomotor machine humans possess, the task envi-

ronments they �nd themselves in, and their apparent ability to adapt their behavior

to the above. Already many challenges are seen in the e�ort, both in �nding good

quantitative �ts and in having a deep understanding of which aspects of architecture

and task drive particular aspects of behavior.

Future work building on these �rst steps will face these formidable computational

and empirical challenges. But in light of the ubiquity of adaptive e�ects at all levels of

human performance, these are challenges to any approach to understanding cognition.

The combination of rational analysis and mechanistic architecture modeling has the

strong advantage of putting the role of architecture and adaptation front-and-center,

and facing these challenges head-on.
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APPENDIX A

Mathematical details of the sequential

sampler

Here is the MSPRT as applied to the LLDT decisions. First, consider the case of

reading a single isolated word (analogous to Norris' Bayesian reader). Let S denote

the set of strings in the lexicon. Let S denote the random variable that can take

on values in S , and let si denote a particular realization of S. Let each string in

S be represented using unit-basis indicator coding (i.e. a vector of size 26 with a 1

in the position corresponding to the given letter and 0 elsewhere). Each string can

be represented as a concatenation of such vectors � or more conveniently, as a c× a

matrix where c is the length of the string (4 characters) and a is the length of the

alphabet (26 characters). Let µ denote this matrix for some particular word s ∈ S ,

such that µpq = 1 if the pth position in s has the qth letter, otherwise µpq = 0.

A noisy evidence sample et is created at time t by adding mean-zero Gaussian

noise with some standard deviation σ to each cell in this matrix. Since the samples

are independent and identically distributed (i.i.d.), the indexing by time is omitted

going further. The setting of σ is discussed in the main text of the dissertation. Based

on a stream of such noisy samples, the best that an ideal observer can do is integrate

the noisy evidence using Bayes' rule:

P (S = si|e) =
P (e|S = si)P (S = si)

P (e)
(A.1)

The model assumes that the reader has a good enough implicit model of their

visual system to use the sample generation function to compute the likelihood term

P (e|S = si):
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P (e|S = si) =
∏
p,q

f(epq;µpq, σ
2) (A.2)

where f(x;µ, σ2) is the probability density function of the Gaussian distribution

with mean µ and standard deviation σ.

The prior P (S = si) for the �rst update is set by normalizing the set of frequency

counts in the lexicon (i.e. dividing each by the total sum to map from counts to

probabilities). Then the posterior becomes the prior and the update repeats for the

next sample. As in many practical problems, there is no way to estimate P (e) directly

but one can rely on the fact that the posterior probability over all possible values of

S must sum to 1, compute the posterior for all all strings in S , and divide by the sum

to normalize.

Now, consider the list-reading case. For a list of length l there are l variables

Sk, k = 1, 2, . . . , l, each taking on some realization si from S . One might expect to

perform the updates above independently for each word as it is �xated � but this

would ignore an interdependence introduced by the constraints on trial construction,

namely that at most a single nonword can appear and that words are not repeated.

The simplest assumption is that readers are able to be sensitive to both constraints,

requiring that both be included in the update calculation. However, obeying the

latter constraint in the update would substantially complicate the computation to

no clear gain: with large lexicons, its practical e�ect would be minimal. The former

constraint is somewhat more important: with only two possible outcomes (word and

nonword), its e�ect might be more substantial. The correct update would ensure that

as the probability of a nonword in some position k goes up, the probability mass over

nonwords in other positions j ̸= k must go down.

One can address this on the level of the trial: let T denote the categorical dis-

tribution over trial types and t its realization. The possible types of t are an all-

words trial T = w), and a nonword trial, subdivided into possible nonword positions

(T = nk, k ∈ 1..l). One can decompose the possibilities in T into whether the nonword

is at the current position, T = nk, or it is not, T ̸= nk. This allows the decomposing

of the update into two components:

P (Sk = si|ek, T = t) = P (Sk = si|ek, T = nk) + P (Sk = si|ek, T ̸= nk) (A.3)
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Notice that in each of these only part of the support of Sk need be considered:

conditioned on T = nk, si can only be one of the nonwords and conditioned on T ̸= nk

it can only be one of the words. Put di�erently, one of the two right hand side values

above is zero, for any si. Let nm denote some nonword realization of Sk and wo denote

some nonword realization of Sk. Therefore, the equation above can be equivalently

written as:

P (Sk = si|ek, T = t) = P (Sk = nm|ek, T = nk) + P (Sk = wo|ek, T ̸= nk) (A.4)

Computing the Bayes update for both:

P (Sk = nm|ek, T = nk) =
P (ek|Sk = nm, T = nk)P (Sk = nm|T = nk)

P (ek|T = nk)
(A.5)

P (Sk = wo|ek, T ̸= nk) =
P (ek|Sk = wo, T ̸= nk)P (Sk = wo|T ̸= nk)

P (ek|T ̸= nk)
(A.6)

But P (Sk = nm, T = nk) = P (Sk = nm) by de�nition, since string Sk must be

a nonword if the trial has a nonword in position k, and likewise P (Sk = wo, T ̸=
nk) = P (Sk = wo). In addition, recall that the set of possible words is the set

of exhaustive and exclusive outcomes conditioned on the string being a word and

likewise for nonwords, so one can again replace the denominator with the sum over

possible numerators. Combining the two:

P (Sk = nm|ek, T = nk) =
P (ek|Sk = nm)P (Sk = nm|T = nk)

P (ek|T = nk)
(A.7)

=
P (ek|Sk = nm)P (Sk = nm|T = nk)∑
m P (ek|Sk = nm)P (Sk = nm|T = nk)

(A.8)

P (Sk = wo|ek, T ̸= nk) =
P (ek|Sk = wo)P (Sk = wo|T ̸= nk)

P (ek|T ̸= nk)
(A.9)

=
P (ek|Sk = wo)P (Sk = wo|T ̸= nk)∑
o P (ek|Sk = wo)P (Sk = wo|T ̸= nk)

(A.10)

Since each string si is either a nonword nm or word wo, the likelihood term is

now equivalent to that in Equation A.1. The prior terms P (Sk = nm|T = nk) and

P (Sk = wo|T ̸= nk) imply keeping track of the word and nonword belief distributions
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separately, conditioned on the trial possibilities, but are otherwise also straightfor-

wardly handled.

The model must also simultaneously update the trial-level belief (i.e. its belief

over the outcome of T ):

P (T = t|ek) = P (ek|T = t)P (T = t)

P (ek)
(A.11)

As above, it is useful to decompose t into relevant possibilities T = nk and T ̸= nk.

But T ̸= nk actually corresponds to two very di�erent possibilities with respect to

the LLDT: the possibility that the trial is a word trial T = w and the possibility that

the trial is a nonword trial, which just happens to have the nonword in some other

position T = nj ̸=k.

Therefore:

P (T = t|ek) =


P (ek|T=w)P (T=w)

P (ek)
if t = w

P (ek|T=nk)P (T=nk)
P (ek)

if t = nk

P (ek|T=nj)P (T=nj)
P (ek)

if t = nj, j ̸= k

(A.12)

The denominator term can be decomposed:

P (ek) = P (ek|T = nk)P (T = nk) + P (ek|T ̸= nk)P (T ̸= nk) (A.13)

Conveniently, the conditioned terms are the normalization terms from equation A.6,

and the others are the prior for T .

Next, the likelihood terms are handled slightly di�erently for each possibility. For

T = nk, the likelihood is again the denominator of equation A.6, expanded in equa-

tion A.10. For the other two, the key insight is that words are selected identically

in word and nonword trials, and therefore that P (ek|T ̸= nk) = P (ek|T = w) =

P (ek|T = nj), j ̸= k, and again the likelihood P (ek|T ̸= nk) is available in the

denominator of equation A.6. The �nal form is therefore:
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P (T = t|ek) =


P (ek|T=w)P (ek|T ̸=nk)

P (ek)
if t = w

P (ek|T=nk)P (T=nk)
P (ek)

if t = nk

P (ek|T ̸=nk)P (T=nj)
P (ek)

if t = nj, j ̸= k

(A.14)
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