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ABSTRACT 
 

Adenoviruses are common causes of acute respiratory infection and 

myocarditis, but limited therapies exist. It is unclear if the clinical manifestations 

of adenovirus disease are mediated by virus-induced tissue damage or the host 

immune response to the virus. The main focus of this dissertation was to identify 

host factors that regulate inflammatory responses and contribute to pathogenesis 

of acute adenovirus respiratory infection. Due to the species-specificity of 

adenoviruses, which precludes animal studies with a human adenovirus, I used 

mouse adenovirus type 1 (MAV-1) to study the pathogenesis of an adenovirus in 

its natural host. 

PGE2 is a lipid mediator that can promote proinflammatory cytokine 

production and pulmonary inflammation. Exaggerated PGE2 production in the 

setting of hematopoietic stem cell transplantation has been linked to increased 

susceptibility to microbial infections. Using pharmacologic inhibitors and mice 

deficient in PGE2, I determined that while PGE2 promotes the expression of a 

variety of cytokines in response to acute MAV-1 infection, PGE2 synthesis is not 

essential for generating pulmonary immunity to MAV-1 in immunocompetent 

mice. IL-17, a cytokine that is highly induced during MAV-1 infection and can be 

upregulated by PGE2, is likewise not essential for control of virus infection or for 

virus-induced pulmonary inflammation. Adenovirus infections are an important 
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complication in immunocompromised individuals, such as transplant patients. I 

demonstrated that bone marrow transplant (BMT) mice display exaggerated 

PGE2 production and significantly delayed clearance of virus from the lungs. 

BMT-induced T cell dysfunction likely contributes to impaired virus clearance. 

However, T cell dysfunction is independent of excess PGE2 production.  

In addition to causing respiratory disease, adenoviruses are important 

causes of myocarditis. I used MAV-1 to establish a mouse model of adenovirus 

myocarditis in neonatal mice. I demonstrated that IFN-γ is a proinflammatory 

mediator during MAV-1 myocarditis, and persistent MAV-1 infection may 

contribute to ongoing cardiac dysfunction. The immunoproteasome, a specialized 

type of proteasome that can be induced by IFN-γ and regulate inflammatory 

responses, is robustly induced during MAV-1 myocarditis. IFN-γ is important for 

induction of the immunoproteasome following MAV-1 infection, and the 

immunoproteasome likely has organ-specific effects. Inhibition of the constitutive 

proteasome or the immunoproteasome impairs induction of some 

proinflammatory cytokines during MAV-1 myocarditis.  

By determining contributions of various host factors to MAV-1 

pathogenesis and viral clearance, we have gained insight into mechanisms of 

acute disease and persistence. My work suggests that minimizing some host 

immune responses during acute infection of immunocompetent hosts may be a 

useful strategy to prevent excess inflammation without impacting antiviral 

immunity. In immunocompromised hosts, in which viral clearance is impaired, 

interventions to restore anti-adenoviral immunity could prevent prolonged 
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disease associated with excess viral replication. Finally, approaches to clear 

persistent adenovirus may lessen the impact of chronic disease in the lungs or 

heart. Understanding the role that host factors play during adenovirus 

pathogenesis is an essential step in determining whether modulation of 

adenovirus-induced inflammation could provide an alternative to antiviral drugs to 

treat patients with adenovirus infection. 
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Chapter 1:  
Adenoviruses  

Adenovirus Biology 

 Adenoviruses (AdVs) are non-enveloped icosahedral viruses with a 

double-stranded DNA genome of 26-45 Kb (1). They were first identified in 1953 

during attempts to establish cell culture lines from surgically removed tonsils and 

adenoid tissue (2). Multiple serotypes of AdV were identified soon after and a 

nomenclature was adopted before being reclassified in 1999 (3). Phylogenetic 

analyses have grouped the family Adenoviridae into four genera: 

Mastadenovirus, originating from mammals and containing all human AdV 

(HAdV); Aviadenovirus, from birds; and Atadenovirus and Siadenovirus, isolated 

from a wide range of hosts including reptiles, birds, and mammals. A fifth genus 

contains the only fish adenovirus isolated to date (4). Human adenoviruses 

(HAdVs) are grouped into seven species (A, B, C, D, E, F, and G) based on their 

ability to agglutinate red blood cells and based on sequence. Species B AdV are 

further divided into species B1 and B2. HAdVs are named based on the format 

“type HAdV-C5,” where the letter “C” indicates the species and each type has a 

unique number (5). There are currently 58 known human types, which are 

increasingly defined based on DNA sequence and bioinformatics rather than 

serology. 
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Adenovirus Infections in Humans 

 AdV have been associated with a number of clinical conditions in humans, 

including acute respiratory disease, conjunctivitis (including epidemic 

keratoconjunctivitis, EKC), acute hemorrhagic cystitis, hepatitis, gastroenteritis, 

and myocarditis (6). Some generalizations can be made regarding the 

relationship between the serotype and disease. Species C and some B1 

serotypes (Ad3 and Ad7) are common in infants and younger children, while 

species E AdV (Ad4 and Ad7) cause acute respiratory distress (ARD) in military 

recruits. Species B2 affects the kidney and urinary tract. Adenoviruses in species 

F (Ad40 and Ad41) are common causes of gastroenteritis. Species D (especially 

Ad8, Ad19, and Ad37) cause EKC. 

 Much of the information regarding adenovirus epidemiology in civilian 

populations was learned from two virus watch studies that were undertaken in 

New York and Seattle (7, 8). While initial spread of HAdV can occur by the 

respiratory route, fecal-oral transmission accounts for most infections, especially 

in young children. A large number of HAdV infections are asymptomatic or 

subclinical, but there is a high incidence of recurrent shedding in fecal samples. 

Live virus can be isolated and grown from the gastrointestinal tract many months 

after the initial infection and immune response.  

HAdV are responsible for approximately 5-10% of upper respiratory 

infections in early childhood (7, 9). Adenoviruses can also cause lower 

respiratory tract infections in children, and a few epidemics have resulted in 

substantial mortality (10-12). Neonates, in particular, are at increased risk for 
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morbidity and mortality due to HAdV infection, especially when infection is 

disseminated and involves the respiratory tract (13). Fatal HAdV respiratory 

infections in military recruits and children with severe HAdV disease are 

characterized by necrotizing bronchitis, bronchiolitis, and interstitial pneumonia 

(14). Persistent HAdV infections in the respiratory tract have been implicated in 

the development and pathogenesis of asthma and chronic obstructive pulmonary 

disease (COPD) (15, 16).  

Immunocompromised populations are at particular risk for severe HAdV 

disease. Human adenoviruses cause considerable morbidity and mortality in 

hematopoietic stem cell transplant (HSCT) patients (17, 18) and solid organ 

transplant patients (19). Depending on the assay used and clinical sample 

analyzed, adenovirus infection rates in HSCT patients vary from 5% to 47% ((20, 

21) and reviewed in (22)). Disease rates as high as 6.5% have been reported, 

with >50% mortality rates in some studies of HSCT patients with HAdV disease 

(21, 23). Pediatric patients are at a higher risk for HAdV disease (24, 25), likely 

due to higher infection rates of lower serotypes of species C HAdV in this 

population, and a relative lack of species cross-reactive T and B cell responses 

compared to adults where some adenovirus-specific immunity has been 

established (26). Severe graft versus host disease (27), T-cell-depleted grafts, 

and leukopenia (28) are additional risk factors for adenovirus infection following 

transplant. Depending on the patient age, HAdV serotype and affected organ, 

clinical manifestations of HAdV infections in immunocompromised patients 

include pneumonia, hepatitis, hemorrhagic cystitis, pancreatitis, 
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meningoencephalitis, and disseminated disease (reviewed in (22)). Immune 

recovery appears to play a significant role in HAdV infection post-HSCT. A 

number of studies have documented a strong association between lymphocyte 

count (both absolute lymphocyte count and CD4 count) and clearance of HAdV 

and survival (28-30). Clearance of HAdV is also associated with an increase in 

titers of serotype-specific antibodies (29), indicating that both B and T cell 

function may be important for control HAdV post-HSCT. 

It is unknown whether HAdV infections post-transplant occur as a result of 

endogenous reactivation of persistent virus or primary infection, although 

evidence suggests that both routes could contribute. In a subset of liver 

transplant recipients who developed HAdV hepatitis, concomitant HAdV infection 

with the same serotype was demonstrated in a close relative, suggesting that 

infection occurred as a result of spread rather than virus reactivation (31). 

Persistence of HAdV DNA has been documented in T lymphocytes of tonsil and 

adenoid tissue (32, 33), supporting the possibility that persistently infected 

lymphocytes within the transplant may be the source of infection in transplant 

patients. However, a previous study demonstrated absence or low (<2%) 

frequency of HAdV DNA in peripheral blood of healthy volunteers, suggesting 

that there is very little HAdV found in circulation (34). Whether HAdV DNA can be 

found in cells within the bone marrow or in bone marrow progenitors elicited into 

the bloodstream by GM-CSF (a common source of stem cells for HSCT) is 

unknown. Still, endogenous reactivation from T cells could be a significant source 
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of infection in solid organ transplant recipients, where there are likely to be 

numerous persistently infected lymphocytes within the transplanted organ. 

Adenoviruses are also common causes of myocarditis. HAdV genome 

was detected in 38% of pediatric (<18 years old) patients with clinical and 

histologic diagnosis of myocarditis (35). In a study of over 600 patients with 

clinically diagnosed myocarditis, HAdV genome was detected by PCR in 

endomyocardial biopsy samples in 23% of patients (n = 142) (36). Approximately 

80% of these patients were positive for Ad2 and the rest were positive for Ad5, 

except for one patient who was positive for Ad6. HAdV was the most common 

virus detected regardless of age group. Interestingly, only 40% of HAdV -positive 

patients had acute myocarditis by histology, in contrast to the majority of 

enterovirus-positive patients. This suggests that HAdV myocarditis is associated 

with less inflammation than enterovirus myocarditis. The presence of HAdV 

genome in endomyocardial biopsies of pediatric heart transplant recipients is 

associated with coronary vasculopathy and graft loss (37). 

Dilated cardiomyopathy (DCM) is a long-term sequella of acute 

myocarditis. HAdV was detected by PCR in endomyocardial biopsy samples of 

18 of 149 (12%) of patients with DCM (36). In another study, HAdV DNA was 

detected in 8% of DCM patients (38). Left ventricular (LV) ejection fraction 

significantly improved in patients where viral genomes were cleared, while 

persistence of viral genome was associated with decreased LV function. Another 

study from the same group documented AdV DNA in only 1.6% of patients with 

DCM (39). The reason for the relatively low rate of AdV detection in this study 
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compared to previous studies is unknown. HAdV DNA was detected in 12 of 94 

adult patients with idiopathic LV dysfunction, which is also called idiopathic DCM 

(40). In a follow-up phase II clinical study of patients with persistent LV 

dysfunction who tested positive for enterovirus or HAdV genomes, IFN-β 

treatment led to clearance of virus that was accompanied by improved LV 

function (41).  

HAdV clearly cause a wide variety of diseases in humans, with many 

involving the respiratory tract or the heart. The manifestations and outcome of 

disease vary widely and depend on the HAdV serotype involved, the affected 

organ(s), and the immune status of the host. Persistent HAdV infections are 

implicated as causes or major contributors to the development of a number of 

diseases, including COPD, asthma, and DCM. 

 

Immune Responses to Adenoviruses 

Studies on the pathogenesis of adenovirus infection have been limited by 

the strict species-specificity of adenoviruses. Although HAdV can infect cells of 

most mammals, they do not replicate well even in simian species. Early proteins 

(which are expressed prior to the onset of DNA replication) are highly expressed 

in nonhuman mammals, but adenovirus DNA does not replicate and therefore 

late genes are expressed at very low levels or not expressed at all. HAdV 

replication can be achieved in monkey cells, although this requires either 

coinfection with simian virus 40 (SV40) or infection with an adenovirus host range 

mutant (Ad5hr404), which contains a point mutation in the DNA-binding protein 
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(42). Inoculation of mice with HAdV does not result in a fully permissive infection, 

as the virus does not replicate in mouse tissue (43). Pneumonia can be induced 

in mice following intranasal inoculation with Ad5, but this requires an infectious 

dose >1010 plaque-forming units (pfu) (43). Although cotton rats have been used 

in some HAdV models and are permissive for HAdV replication, a high virus 

inoculum is required to cause respiratory disease (43, 44). Syrian hamsters are 

permissive for HAdV replication in the lung (45), but this model is not well 

characterized.  

Most information regarding the immune response to adenoviruses has 

been gleaned from in vitro studies or from exposure of mice to high doses of non-

replicating HAdV vectors. In vitro studies do not provide an adequate way to 

comprehensively study interactions between a virus and host inflammatory 

responses. While in vivo studies using non-replicating AdV provide a means to 

study immune responses to some AdV early proteins and capsid proteins, this 

does not fully recapitulate steps that occur during a natural infection, in which the 

immune system would encounter an actively replicating virus. Nevertheless, 

much has been learned about early AdV-host interactions through nonpermissive 

infection studies.  

In mouse pneumonia models following nonpermissive infection with 

species C HAdV, the inflammatory response is characterized by early infiltration 

of lymphocytes, monocytes, and macrophages (43, 46). Early viral gene 

expression is detected in bronchiolar epithelial cells and bronchioles of the lung 

and nasal mucosa, with some damage occurring in these cells. The late phase of 
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cellular infiltration is thought to consist almost entirely of virus-specific 

lymphocytes, because this response does not occur in athymic nude mice. 

Inflammation in HAdV -exposed lungs is accompanied by induction of IL-1β, IL-6, 

IFN-γ, IL-12 and TNF-α. Each of these cytokines may be playing major roles 

during AdV infection. Signaling of TNF-α through two of its receptors, p55 and 

p75, plays an important role in determining the scale of humoral immune 

responses to HAdV. Mice deficient in TNF-α or the p55 TNF receptor show 

significantly reduced humoral responses compared to wild-type mice following 

intratracheal instillation with HAdV vector (47). Although IL-12 is induced in many 

animal models of HAdV infection, the generation of Th1-responses and humoral 

responses is not reduced in IL-12-deficient mice exposed intranasally to high 

doses of human AdV (48). IL-18, a cytokine that can compensate for IL-12 in 

some settings, is required for induction of IFN-γ after HAdV infection, but does 

not affect Th1 responses (48).  

Alveolar macrophages provide a first line of defense in the respiratory tract 

through immune surveillance and the initiation and regulation of inflammation. 

Upon intratracheal administration of HAdV vectors to the mouse lung, alveolar 

macrophages recovered within the first 30 min contain large amounts of vector 

genome (49). In another study, HAdV labeled with a fluorescent dye was 

localized in alveolar macrophages within 1 min of administration (50). Because 

they are among the first cells to encounter AdV in the lung, alveolar 

macrophages are an important source of initial cytokine signaling during AdV 

infection. Alveolar macrophages isolated 30 min after infection, but not airway 
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epithelial or vascular endothelial cells, express TNF-α and IL-6 mRNA (50). 

Activation of alveolar macrophages by HAdV can be caused by detection of 

HAdV capsid proteins or by detection of HAdV and vector DNA via Toll-like 

receptors (TLRs) (51).  

Human macrophages produce IL-1α and IL-1β after exposure to HAdV. 

Induction of IL-1β in bone marrow-derived macrophages requires HAdV 

endosomal membrane penetration and TLR9 sensing of HAdV DNA in order to 

activate the NLRP3 inflammasome (52). IL-1α induction occurs independently of 

TLR9 and NLRP3, and instead requires interactions between RGD motifs on 

virus capsid proteins and β3 integrins on the surface of macrophages (53). 

Interference with the IL-1 signaling pathway through genetic deletion of IL-1R1 

results in significantly reduced inflammatory responses to intravenously 

administered HAdV vectors in mice (54). Intranasal administration of 

replication-deficient HAdV vectors to mice results in signs of acute respiratory 

distress and high mortality (55). However, mice deficient in caspase-1 or P2X7R 

(an extracellular ATP receptor that activates the inflammasome) have increased 

survival compared to control mice that correlates with reduced IL-1β, IL-6, and 

neutrophil recruitment early during infection. These results indicate that activation 

of the inflammasome pathway through diverse mechanisms plays an important 

role in the regulation of inflammatory responses to HAdV. 

Dendritic cells (DCs) also play important roles in immune responses in the 

lung through efficient antigen presentation and initiation of the adaptive immune 

response. HAdV can trigger DC activation through viral capsid proteins (56-58), 
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and viral gene expression is not required for DC activation (59, 60). Although 

DCs can be activated through TLRs during HAdV infection (51), accumulating 

evidence suggests that TLR-independent pathways may be important for DC 

activation in response to HAdV as well (61, 62). Elimination of tissue 

macrophages and splenic DCs in vivo in mice results in significantly reduced IL-

6, IL-12, and TNF-α release and an impaired HAdV -specific CD8 T cell response 

(63). Interestingly, HAdV infection of lung-resident murine DCs suppresses DC-

induced T cell proliferation by making T cells nonresponsive to IL-2 (64). 

Suppression is not due to factors secreted by DCs or downregulation of MHC or 

costimulatory molecules, but it does require viral protein synthesis and DC-T cell 

contact. These effects are not observed in mouse bone marrow- or monocyte-

derived DCs, suggesting that HAdV may have different effects in DCs depending 

on their source and activation/maturation state. It also suggests that results 

obtained from DC-depleted or DC-deficient mice systemically exposed to HAdV 

vectors may not fully reflect the role that lung-resident DCs play during natural 

AdV respiratory infections.  

Type I IFN-deficient mice exhibit a similar phenotype to that of DC-

depleted mice, with less IL-6, IL-12, and T cell activation compared to wild-type 

mice following exposure to HAdV (65). DCs and macrophages appear to be 

important producers of type I IFNs in response to HAdV (61, 62, 66). A 

specialized type of DC, the plasmacytoid DC (pDC), produces large amounts of 

type I IFNs when stimulated and is known as a professional IFN-producing cell 

(67, 68). pDCs express only the endosomal nucleic acid sensors TLR7 and TLR9 
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(69). When exposed to HAdV vectors, TLR9-deficient mice secrete significantly 

less IL-6 and IL-12 than wild-type mice (70). This suggests a role for TLR9 

sensing of AdV DNA in the induction of proinflammatory cytokines, possibly 

through the induction of type I IFNs in pDCs. However, a later study suggested 

that type I IFN induction in response to HAdV does not occur through TLR9 at all. 

In mice administered high doses of HAdV intraperitoneally (i.p.), myeloid DCs 

(mDCs) rather than pDCs are the primary producers of type I IFN (62). 

Production of type I IFN in this model occurs independently of TLR signaling. 

Furthermore, distinct pathways mediate initial IL-6 and type I IFN production, 

although type I IFNs positively regulate the IL-6 response. The induction of type I 

IFN and proinflammatory cytokines clearly involves a complicated interplay 

between multiple cell types, mechanisms of AdV sensing, and feedback loops. 

Many redundant pathways are likely involved in this process and more studies 

are required to assess the contribution of these pathways to inflammatory 

responses during a natural AdV infection.  

Neutrophil recruitment to the lung following exposure to HAdV is a 

common finding in a number of animal models (44, 71-73). HAdV induces robust 

production of the chemokine IL-8 in human airway epithelial cells (74-76). 

Increased levels of the neutrophil chemokines CXCL1 and CXCL2 (mouse IL-8 

homologs, also known as KC and MIP-2, respectively) have been observed in 

lungs of mice exposed to HAdV (46). Neutrophils are the main cell type 

recovered by bronchoalveolar lavage in mice at early times following 

intratracheal administration of HAdV-B3 or HAdV-B7 (46). Neutrophils can 
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internalize HAdV in the presence of complement or IgG (77) and may be a 

prominent source of proinflammatory cytokines during AdV infection. 

Many of the observed proinflammatory cytokine responses to HAdV 

vectors in nonpermissive models have also been observed in HAdV infections in 

humans. Increased concentrations of circulating IL-6, IL-8, and TNF-α are 

significantly associated with severity of HAdV infection in children (78). IL-6, in 

particular, was detected in children with severe and fatal HAdV infection, but not 

in children with HAdV infections classified as moderate in severity. Serum IL-8 

levels also correlated with clinical outcome in children with HAdV pneumonia. In 

another study, high IL-6 serum levels correlated with serum concentrations of C-

reactive protein and also associated with severity of HAdV infection (79).  

While there are indications that some of the cytokines induced during 

severe HAdV infections and studies with animal models are similar, it is difficult 

to use nonpermissive animal models to assess the role of these cytokines or 

other factors at different stages during an infection. The distribution of virus, as 

well as the kinetics and magnitude of inflammatory responses are likely to be 

quite different in natural human infections, when the immune system is faced with 

an AdV that is actively spreading and evading these responses, compared to 

animal infections by non-replicating HAdV vectors. A permissive animal model is 

particularly important for the study of persistent AdV infections, which may play 

important roles in a number of patient populations and disease states, including 

BMT, asthma, COPD, and DCM.  
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MAV-1 as a Model for Adenovirus Pathogenesis 

Mouse adenovirus type 1 (MAV-1, also known as MAdV-1) was first 

identified in 1960 and designated Ad-FL (80). MAV-1 causes disseminated 

infections and replicates to high titers in multiple organs of susceptible mouse 

strains (81-84). Shortly after identification of MAV-1, a second mouse adenovirus 

(K87) was identified and later designated MAV-2 (85). MAV-2 replicates in the 

intestinal tract of neonatal and adult mice without causing overt signs of disease, 

and it is shed in the feces for a long period of time (86). Recently, another mouse 

adenovirus was isolated from tissue culture and designated MAV-3, as it is 

genetically and serologically distinct from MAV-1 and MAV-2 (87). Following 

intravenous (i.v.) inoculation, MAV-3 DNA was detected at high levels in heart 

tissue and, unlike MAV-1, was undetectable in the brain. Detailed studies of 

pathogenesis have yet to be carried out using MAV-2 or MAV-3, and MAV-1 is 

the best characterized of the mouse adenoviruses to date. MAV-1 provides a 

useful model system to study adenovirus pathogenesis. The virion morphology 

and genomic organization of MAV-1 are similar to that of HAdV (88, 89). 

However, there are some notable differences in one early region 1A (E1A) 

protein, the early region 3 (E3) proteins, and some early region 4 (E4) open 

reading frames (90-96). MAV-1 also lacks virus-associated RNAs (VA-RNAs) 

that are found in all HAdV (89).  

MAV-1 causes both acute and persistent infections in mice, just as human 

AdV cause acute and persistent infections in human hosts. Susceptibility to and 

the outcome of MAV-1 infection depend on the dose of virus and the inoculation 
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route, as well as the strain and age of mice infected (81, 84, 97, 98). Although 

mice of all ages are susceptible to MAV-1 infection, morbidity and mortality are 

generally observed in mice infected as neonates [at least in outbred NMRI mice 

(Swiss type strain) and the unknown mouse strain used in Hartley & Rowe, 

1960], but not in newly weaned or adult mice (2, 99). In the original 1960 paper 

detailing the identification of MAV-1, it was noted that i.p., intracerebral, or 

intranasal (i.n.) inoculation of neonatal mice resulted in disseminated pathological 

changes in the adrenal gland, myocardium, salivary glands, and kidney (80). In 

these studies, no transplacental transmission of virus was observed between an 

infected mother and pups, and mice born of previously infected mothers were not 

susceptible to MAV-1 infection, presumably due to protection by maternal 

antibodies. Infection of neonatal outbred Swiss Webster mice resulted in viral 

replication in the heart, as well as lesions of necrosis and inflammatory cells in 

the myocardium, endocardium, and heart valves (100). Another study observed 

necrosis in the kidney, heart, spleen and brain in neonatal (9 day old) mice 

infected with a high dose of MAV-1, with the most severe necrosis and highest 

concentration of viable virus present in heart tissue, although the mouse strain 

used in this study was not specified (101).  

MAV-1 disease outcome also depends on the strain of mice infected, as 

some strains of adult mice develop signs of overt disease after MAV-1 infection 

(81, 83, 97, 102). BALB/c mice are generally resistant to MAV-1-induced 

disease, while i.p. inoculation of C57BL/6 mice results in a dose-dependent 

encephalomyelitis (81). Susceptibility to MAV-1-induced encephalomyelitis is 
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associated with a major quantitative trait locus Msq1 that maps to a 0.75 

megabase region of mouse Chromosome 15 and contains genes of the Ly6 

family (102-104). Following i.p. inoculation, virus can be found in cells of the 

monocyte/macrophage linage and in vascular endothelial cells (81-83). Infection 

of outbred NIH Swiss Webster mice results in a persistent infection, with viral 

DNA detected in kidneys, brain, spleen, and lymph nodes up to 55 weeks post 

infection (105). Another study detected MAV-1 shed in the urine of outbred Swiss 

mice for 2 years after either i.p. or i.n. inoculation (106). 

 

Immune Response to MAV-1 Infection 

The immune response to MAV-1 is multifaceted. MAV-1 is relatively 

resistant to the inhibitory effects of type I and II IFN in vitro (107), but there are 

few published studies documenting MAV-1 pathogenesis in type I or II IFN-

deficient mice. Little is known about the contribution of other cytokines and 

chemokines to MAV-1 pathogenesis. As previously mentioned, i.p. infection of 

C57BL/6 mice results in acute encephalomyelitis. The inflammatory response in 

the brain is characterized by recruitment of macrophages, T cells, B cells, and 

neutrophils (108). 

Depletion of macrophages by administration of clodronate-loaded 

liposomes results in increased viral loads in the spleens of BALB/cJ mice (109), a 

strain that is largely resistant to MAV-1-induced encephalitis. However, spleen 

viral loads do not differ in wild-type or mice deficient in CCR2, a chemokine 

receptor that is important for macrophage recruitment in many models. Viral 
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loads in the brain are unaffected by macrophage depletion or CCR2 deficiency. 

This suggests that resident splenic or peritoneal macrophages are important for 

protection from MAV-1 infection in the spleen. However, viral dissemination to 

other organs such as the brain may occur by independent or redundant 

mechanisms. The role of resident macrophages in other organs during MAV-1 

pathogenesis, such as Kupffer cells in the liver or alveolar macrophages in the 

lung, has not been investigated. 

Mice deficient in α/β T cells, MHC class I, or the cytolytic granule perforin 

do not show signs of acute MAV-1 encephalomyelitis following i.p. inoculation 

(110). MHC class II-deficient mice display no difference in the development 

MAV-1-induced encephalomyelitis compared to wild-type mice. This suggests a 

critical role for T cells, and CD8 T cells in particular, in the development of 

immunopathology during MAV-1 encephalomyelitis. Clearance of MAV-1 from 

the spleen and brain following i.p. infection occurs in mice deficient in perforin, 

MHC class I or II, CD4 T cells, or CD8 T cells. However, mice deficient in α/β T 

cells fail to control MAV-1 replication and succumb between 9 and 16 weeks post 

infection, indicating that either CD4 or CD8 T cells are required for long-term host 

survival of MAV-1 i.p. infection. In contrast to T cells, natural killer (NK) cells are 

not required for control of viral replication or survival following i.p. MAV-1 

inoculation (111). The role of various T cell subsets during MAV-1-induced 

disease in other organs, such as the lung or heart, and through other inoculation 

routes is largely undefined.  
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Mice infected either i.p. or i.n. develop MAV-1-specific neutralizing 

antibodies in the first 2-3 weeks post infection (106). Mice lacking B cells or 

Bruton’s tyrosine kinase (Btk) show increased susceptibility to MAV-1, and 

antiserum from immune wild-type mice protects Btk-/- mice (112), suggesting that 

B cells play an important role in control of MAV-1 replication.  

Recent studies have provided insight into the immune response to MAV-1 

during respiratory infection. Following i.n. inoculation of adult mice, MAV-1 gene 

expression and infectious virus is present in lung tissue (113). MAV-1 E3 protein 

can be detected in respiratory epithelial cells by immunohistochemistry. 

Pulmonary inflammation during MAV-1 respiratory infection is characterized by 

the accumulation of mononuclear cell infiltrates around medium and large 

airways, along with interstitial pneumonitis and thickened alveolar walls. The 

percentage of neutrophils is significantly increased in bronchoalveolar lavage 

fluid of infected mice. Cellular inflammatory responses peak between 7 and 14 

dpi, and largely resolve by 21 dpi. Intranasal inoculation of MAV-1 does not 

increase overall mucus production in the lung (109). Mice deficient in Muc1, a 

mucin that is a major constituent of mucus barriers in the lung, have marginally 

higher viral loads at early times post infection, indicating that Muc1 may 

contribute to a protective physical barrier against MAV-1 respiratory infection.  

Several chemokines are upregulated in the lungs of mice after infection, 

notably CXCL1 and CCL5 (113, 114). Macrophage inflammatory proteins 

(MIP)-1α and MIP-1β (now called CCL3 and CCL4, respectively) are significantly 

upregulated in lungs of infected mice. These cytokines are important in 
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recruitment of immune cells to sites of infection and induction of proinflammatory 

cytokines in other models of inflammation (115). 

A Th1 cytokine response is observed in the lungs of MAV-1-infected mice, 

with upregulation of IFN-γ, but not the Th2 cytokines IL-4 or IL-13. Lung viral 

loads are slightly higher at both 7 and 14 dpi in adult IFN-γ-/- mice (on a BALB/cJ 

background) than wild-type mice, suggesting that IFN-γ may make a small 

contribution to control of MAV-1 replication in the lung. Following infection, there 

is an increase in the overall percentage of CD8+ T cells in the lungs. Effector 

memory CD4 and CD8 T cells (CD62LlowCD4+ and CD62LlowCD8+) begin to 

appear in lungs as early as 7 dpi. BALB/cJ mice infected as neonates (7 days of 

age) have significantly higher lung viral loads during the acute phase of infection 

that correlate with blunted pulmonary inflammation and cytokine responses 

compared to adults. Although lung IFN-γ responses are substantially lower in 

neonates than in adults, administration of exogenous IFN-γ to neonates does not 

affect viral loads, suggesting that the blunted IFN-γ responses in neonate lungs 

do not explain increased susceptibility to infection. Neonates exhibit similar 

kinetics and magnitude of T cell responses in the lung compared to adults, and 

they are able to develop protective immunity to virus rechallenge. Therefore, 

although neonates are more susceptible to acute MAV-1 respiratory infection 

than adults, the development of protective immunity to MAV-1 is intact (114). 
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Chapter Outlines 

In Chapter II, Eicosanoids and Respiratory Viral Infection, I discuss 

eicosanoid synthesis and functions, and their role during respiratory viral 

infection. In Chapter III, Immunoproteasome, I provide an overview of the MHC 

class I antigen processing pathway and the role of the immunoproteasome in 

CD8 T cell responses and other aspects of inflammation relevant to viral 

infection. 

In Chapter IV, PGE2-deficient mice were infected with MAV-1 to assess 

the role of PGE2 during MAV-1 respiratory infection. While PGE2 promotes the 

expression of a variety of cytokines in response to acute MAV-1 infection, PGE2 

synthesis does not appear to be essential for generating pulmonary immunity in 

immunocompetent mice. 

In Chapter V, I used a mouse model of bone marrow transplant (BMT) to 

determine the susceptibility of BMT mice to MAV-1 respiratory infection. BMT 

increases susceptibility to MAV-1 infection, but this is not due to exaggerated 

PGE2 overproduction following infection. Instead, BMT-induced T cell dysfunction 

likely contributes to impaired virus clearance. 

Due to substantial evidence that PGE2 promotes IL-17 responses during 

inflammation, I studied the role of IL-17 during MAV-1 infection. In Chapter VI, I 

characterized T cell polarization and IL-17 responses to MAV-1 in wild-type mice. 

Although MAV-1 induces robust Th17 responses during MAV-1 respiratory 

infection, these responses are not essential for control of virus infection or for 

virus-induced pulmonary inflammation. 
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Adenoviruses are important causes of myocarditis. In Chapter VII, I 

established a model of MAV-1-induced myocarditis in neonatal mice. I 

demonstrate that IFN-γ is a proinflammatory mediator during MAV-1 myocarditis, 

and persistent MAV-1 infection may contribute to ongoing cardiac dysfunction. 

In Chapter VIII, I show that the immunoproteasome is significantly induced 

during MAV-1 myocarditis. IFN-γ is important for induction of the 

immunoproteasome following MAV-1 infection. While treatment of mice with a 

nonspecific proteasome inhibitor leads to decreased proinflammatory cytokine 

induction after MAV-1 infection, an immunoproteasome-specific inhibitor does not 

have seem to have a similar effect.  

Finally, in Chapter VIV, I summarize findings of the dissertation, discuss 

implications of this work, and propose directions for future research. 
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Chapter 2:  
Eicosanoids and Respiratory Viral Infection: Coordinators of Inflammation 

and Potential Therapeutic Targets 

Abstract 

Viruses are frequent causes of respiratory infection, and viral respiratory 

infections are significant causes of hospitalization, morbidity, and sometimes 

mortality in a variety of patient populations. Lung inflammation induced by 

infection with common respiratory pathogens such as influenza and respiratory 

syncytial virus is accompanied by increased lung production of prostaglandins 

and leukotrienes, lipid mediators with a wide range of effects on host immune 

function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene 

production often results in a dampened inflammatory response to acute infection 

with a respiratory virus. These mediators may therefore serve as appealing 

therapeutic targets for disease caused by respiratory viral infection. 

 

Respiratory Viruses  

Viruses are the most frequent cause of respiratory infection in humans. It 

has been estimated that viruses cause up to 90% of lower respiratory infection 

(LRI) hospitalizations in children less than 5 years of age and up to 40% of 

hospitalizations in children age 5-18 years (1). Among the most common causes 

of viral respiratory infection in children and adults are respiratory syncytial virus 

(RSV), influenza, rhinovirus (RV), adenovirus, parainfluenza virus (PIV), and 
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human metapneumovirus (hMPV) (2). Viral respiratory infection also causes 

substantial disease burden in the elderly and immunocompromised populations 

(3, 4). 

The host immune system faces the task of effectively clearing a virus 

while limiting local tissue damage and inflammation. The immune response to 

viruses can be protective, aiding with clearance of virus from the lungs and 

resolution of disease caused by viral replication. Disease associated with 

respiratory viruses can also be caused by immune-mediated pathology. Virus-

induced inflammation can be detrimental to the host, causing symptoms during 

acute infection and leading to damage that contributes to long-term residual lung 

disease. Eicosanoids are potent lipid mediators that play a role in many biological 

processes, including inflammation and immune function. Two classes of 

eicosanoids, the prostaglandins (PG) and leukotrienes (LT), have been 

increasingly studied in the context of respiratory viral infection. Because of these 

effects, eicosanoids are likely to make significant contributions to the 

pathogenesis of respiratory virus infection.  

 

Eicosanoid Synthesis 

Eicosanoids are generated from arachidonic acid and other related 

polyunsaturated fatty acids derived from phospholipid membranes. There are 

three major metabolic pathways for eicosanoid biosynthesis: the cyclooxygenase 

pathway (COX-1 and COX-2), the lipoxygenase pathway (5-LOX, 12-LOX, and 

15-LOX), and the cytochrome P450 pathway. For the purposes of this review, the 
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discussion is limited to the role of PGE2, the major product of the COX-1 and 

COX-2 pathway, and the leukotrienes, the major products of the 5-LOX pathway, 

during respiratory viral infection.  

 

Prostaglandins 

PGs are generated when phospholipase A2 (PLA2) releases arachidonic 

acid (AA) from membrane glycerophospholipids (Figure 2-1). Released AA is 

oxidized to the intermediate prostaglandin H2 (PGH2) by cyclooxygenase (COX). 

COX exists in three isoforms. COX-1 is generally constitutively expressed, while 

COX-2 expression is rapidly induced by growth factors and cytokines (5). COX-3 

is a recently discovered isoform whose biological role, if any, remains poorly 

understood (6, 7). Once formed, PGH2 can be converted by specific synthases to 

thromboxane A2 (TXA2), PGD2, PGE2, PGF2, and PGI2. As described below, 

PGE2 has multiple effects on host immune function. PGE2 is transported from the 

cell by multidrug resistance protein (MRP) 4 and possibly by other unknown 

transporters (8). The effects of PGE2 are mediated by its signaling through four 

distinct G protein-coupled E prostanoid (EP) receptors, EP1-4. The EP1 receptor 

is coupled to an unidentified G protein and mediates PGE2-induced increases in 

intracellular Ca2+ (9). The EP2 and EP4 receptors mediate increases in cyclic 

AMP (cAMP) concentration by coupling to Gαs. Four isoforms of the EP3 

receptor are coupled to different G proteins, although the major EP3 receptor 

signaling pathway involves adenylate cyclase inhibition via Gαi coupling with 

subsequent decreases in intracellular cAMP (10). The EP2 and EP4 receptors 
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are expressed in almost all mouse tissues, while expression of EP1 is restricted 

to several organs, including the lung. EP2 expression is the least abundant of the 

EP receptors, however several stimuli induce expression of EP2 (10).  

 

Leukotrienes 

LTs are also generated by liberation of AA from cell membranes (Figure 

2-1). This is modified by a series of enzymes beginning with 5-lipoxygenase (5-

LOX), which acts in concert with 5-LOX-activating protein (FLAP) to form 

leukotriene A4 (LTA4) (11). LTA4 can then be metabolized by LTA4 hydrolase to 

form leukotriene B4 (LTB4). Alternatively, LTA4 can be conjugated to reduced 

glutathione by leukotriene C4 (LTC4) synthase to form LTC4. LTC4 is exported 

from the cell by specific transporters (12) and can be acted on by extracellular 

peptidases to form LTD4 or LTE4. Leukotrienes C4, D4, or E4 are collectively 

known as the cysteinyl leukotrienes (cysLTs).  

Expression of 5-LOX is tightly regulated and is primarily restricted to cells 

of the myeloid lineage, such as monocytes/macrophages, mast cells, 

eosinophils, and neutrophils. Although LT synthesis was once thought to be 

restricted to leukocytes, it has subsequently been shown that human bronchial 

epithelial cells and fibroblasts are capable of producing both cysLTs and LTB4 

(13, 14). In addition, the intermediate LTA4 can be transferred from an activated 

donor cell to a recipient cell. LTA4 can then be metabolized to either LTB4 or 

LTC4 by LTA4 hydrolase or LTC4 synthase, respectively, in a process termed  
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Figure 2-1. Synthesis of PGE2 and the leukotrienes.  

cPLA2 – cytosolic phospholipase A2, AA – arachidonic acid, FLAP – 5-
lipoxygenase activating protein, 5-LOX – 5-lipoxygenase, LTA4 – leukotriene A4, 
LTA4H – leukotriene A4 hydrolase, LTB4- leukotriene B4, BLT1 & BLT2 – B 
leukotriene receptor 1 and 2, LTC4S – leukotriene C4 synthase, LTC4 – 
leukotriene C4, γ-GT - γ-glutamyl transpeptidase, γ-GL - γ-glutamyl 
leukotrienease, LTD4 – leukotriene D4, DiP – dipeptidase, LTE4 – leukotriene E4, 
cysLTs – cysteinyl leukotrienes, cysLT1 & cysLT2 – cysteinyl leukotriene 
receptor 1 and 2, COX-1 & COX-2 – cyclooxygenase 1 & 2, PGH2 – 
prostaglandin H2, mPGES-1 & -2 – microsomal prostaglandin E synthase-1 and -
2, PGE2 – prostaglandin E2, EP1-4 – E prostanoid receptors 1-4 
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“transcellular biosynthesis” (15). These enzymes are expressed in most tissues. 

In this way, other cell types, such as epithelial cells, can become an important 

source of LTs during an inflammatory response.  

Like PGE2, the effects of LTs are mediated by signaling through G protein-

coupled receptors. Among the receptors for cysLTs, two have been thoroughly 

characterized. The cysLT1 receptor binds LTD4 with high affinity and binds LTC4 

and LTE4 with lower affinities (16). The cysLT2 receptor binds LTC4 and LTD4 

with equal affinity. A number of studies have alluded to the existence of  

additional cysLTR subtypes, although these have yet to be characterized (17). 

The chemoattractant and proinflammatory effects of LTB4 are mediated by the 

high affinity B leukotriene receptor 1 (BLT1). A second receptor, B leukotriene 

receptor 2 (BLT2), binds LTB4 with lower affinity, but its biological function 

remains poorly understood (18). Studies in transfected cell lines have shown that 

the four LT receptors can couple to both Gαi and Gαq proteins to decrease cAMP 

and increase intracellular Ca2+, respectively (19-23). Studies in primary cells 

have yielded differing results and the specific signaling programs initiated by 

GPCRs remain to be dissected (24). Within the human lung, cysLT1 mRNA is 

expressed in epithelial cells, bronchial smooth muscle cells, interstitial 

macrophages, and the nasal mucosa. CysLT2 is expressed by bronchial smooth 

muscle cells, interstitial macrophages, and nasal mucosa (17). Human BLT1 is 

expressed primarily in leukocytes and its expression can be altered in response 

to various inflammatory stimuli (18, 25). BLT2 is expressed more ubiquitously, 
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with high mRNA expression detected in the spleen and low levels in most human 

tissues, including the lung (26).  

 

Eicosanoids and Immune Function 

Prostaglandin E2 

PGE2 regulates immune function in a myriad of ways that are likely to 

affect viral pathogenesis (Table 2-1). Widespread expression of COX-2 has been 

demonstrated in airway epithelial and resident inflammatory cells in the absence 

of overt inflammation, suggesting a role for COX-2 in regulation of human airway 

homeostasis (27). High concentrations of COX products are present in the 

epithelial lining fluid of human airways, potentially playing a role in inhibiting 

lymphocyte activity and fibroblast proliferation in the absence of inflammation 

(28). Additionally, constitutive secretion of PGE2 by airway epithelial cells 

contributes to modulation of DCs under homeostatic conditions (29). PGE2 can 

promote inflammation through vasodilatory mechanisms, yielding edema, 

warmth, erythema, and passive leukocyte recruitment. However, PGE2 is also 

capable of inhibiting neutrophil chemotaxis, phagocytosis, and bacterial killing 

(30, 31). PGE2 suppresses phagocytosis by non-alveolar 

monocytes/macrophages (32-35), and PGE2 inhibits alveolar macrophage (AM) 

phagocytosis via a mechanism that involves EP2 activation and increases in 

cAMP (36). Bacterial killing and reactive oxygen intermediate generation by AMs 

is also inhibited by PGE2 in an EP2/EP4- and cAMP-dependent manner (37).  
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The production of various pro-inflammatory cytokines and chemokines is 

inhibited in the presence of PGE2 (38, 39), while production of the anti-

inflammatory cytokine interleukin (IL)-10 is enhanced (40). PGE2 suppresses 

production of the Th1 cytokines interferon (IFN)-γ and IL-12, leading to a Th2-

polarized environment (41, 42). However, a number of studies have also reported 

PGE2-mediated enhancement of Th1 cytokine secretion and differentiation in 

vivo (43, 44). The role of PGE2 is not strictly suppressive, as it has been shown 

to promote certain pathways in immune differentiation. For example, PGE2 can 

act on uncommitted B lymphocytes to promote isotype switching to IgE or IgG1 

(45-47). COX inhibitors inhibit antibody production in activated human B 

lymphocytes (48, 49). PGE2 augments IL-17 production and Th17 differentiation 

by increasing IL-23 production in T cells and dendritic cells (44, 50-53), an 

activity that likely occurs via EP2- and EP4-mediated increases in cAMP (54, 55). 

Additionally, PGE2 enhances the production of the proinflammatory cytokine IL-6 

by leukocytes (56) and airway epithelial cells (57). PGE2 potently inhibits the 

production of a number of antimicrobial peptides (AMPs) such as human 

β-defensin by epithelial cells (58). This effect of PGE2 is likely to be relevant for 

viral pathogenesis, because AMPs can inhibit the replication of viruses (59, 60). 

  

Leukotrienes 

The diverse effects of LTs on innate immunity have been reviewed 

elsewhere (61) and are briefly summarized in Table 2-1. LTB4 promotes 

neutrophil migration and survival (62, 63) and enhances neutrophil granule 
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enzyme secretion (64) and superoxide anion generation (65, 66). T lymphocyte 

recruitment to sites of inflammation can be induced by LTB4 (67-70). In addition 

to neutrophil and T cell trafficking, LTB4 can promote the migration of dendritic 

cells (DCs) in vitro (71) and to draining lymph nodes as mice deficient in BLT1/2 

show reduced DC migration (72). Both cysLTs and LTB4 can enhance Fcγ 

receptor-mediated phagocytosis by AMs, though by different mechanisms (24, 

73, 74). LTB4 induces antimicrobial peptide release from neutrophils in vivo, in 

some cases inhibiting viral replication (75-77). Lung generation of the 

proinflammatory cytokine TNF-α is enhanced by LTB4 (78). A number of studies 

have reported that LTB4 acts synergistically with IL-4 to induce activation, 

proliferation, and differentiation of human B lymphocytes (79-81), although a 

separate study reported that 5-LOX inhibitors actually enhanced B lymphocyte 

proliferation (82). 

CysLTs can promote microvascular leak (11), enhance leukocyte survival 

(83, 84), and induce nitric oxide (NO) generation in neutrophils (85, 86). CysLTs 

induce DC chemotaxis to CCL19 and DC trafficking to lymph nodes is impaired in 

LTC4 transporter-deficient mice (87). In addition, cysLTs have been suggested to 

play a role in allergen-induced DC migration from blood (88). Addition of LTD4 to 

activated B lymphocytes leads to a modest upregulation of IgE and IgG 

production (89). CysLTs also play a role in regulation of a pulmonary Th2 

response as mice deficient in LTC4 synthase showed reduced Th2 cytokine 

mRNA expression and Ag-specific IgE and IgG1 in the lung (90). CysLTs are 

recognized as important mediators in the pathogenesis of asthma by their ability  
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Table 2-1. Effects of PGE2 and Leukotrienes on Immune Function 

  
 PGE2 LTB4 cysLTs 

Neutrophils • Inhibits neutrophil 
chemotaxis, 
phagocytosis, and 
bacterial killing 

• Promotes 
neutrophil 
chemotaxis, ROS 
generation, and 
survival 

• Induces NO 
generation in 
neutrophils 

Macrophages • Inhibits AM 
phagocytosis, ROS 
generation, and 
bacterial killing 

• Enhances AM 
phagocytosis 

• Enhance AM 
phagocytosis 

T cells • Promotes Th17 
differentiation 

• Induces T cell 
recruitment 

• Enhances Th2 
response 

B cells/Antibody 
Production 

• Promotes isotype 
switching to IgE 
and IgG1 

• Induces activation, 
differentiation, and 
proliferation of B 
cells 

• Upregulate IgE 
and IgG1 
production by B 
cells 

Dendritic Cells • Varies • Promotes DC 
migration 

• Promotes DC 
migration 

Cytokines • Suppresses IFN-γ 
and IL-12 
production 

• Enhances IL-10 
and IL-6 
production 

• Enhances TNF-α 
production 

• Enhances IL-5, 
IL-13, and eotaxin 
expression 

Antimicrobial Peptides • Inhibits AMP 
production by 
epithelial cells 

• Induces AMP 
production by 
neutrophils 

• Unknown 
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to promote airway microvascular permeability, mucus secretion and smooth 

muscle contraction (91-95). The prostaglandins and leukotrienes modulate many 

host immune responses that are important contributors to viral pathogenesis, 

such as cytokine signaling, neutrophil and macrophage phagocytosis, trafficking 

and activation of DCs and T cells, and antibody production by B cells.  

 

Eicosanoids and Respiratory Viruses 

Influenza 

Influenza infections account for over 200,000 hospitalizations annually in 

the US (96). In addition to hospitalizations, influenza is also associated with a 

substantial number of outpatient visits each year, causing considerable 

healthcare burden and economic costs. Influenza upregulates COX-2 expression 

both in vitro and in vivo, and it has been suggested that COX hyperinduction 

contributes to the exaggerated cytokine response observed in severe human 

H5N1 infections (97-99). Alteration of the COX pathway has contrasting effects 

on inflammatory responses to influenza virus depending on the model of 

pharmacologic inhibition (COX-1- or COX-2-specific or dual inhibition) or of 

genetic deficiency. Treatment of influenza-infected mice with celecoxib, a 

selective COX-2 inhibitor, did not significantly affect viral titers or disease 

severity, although treatment did suppress production in the lung of the 

proinflammatory cytokines tumor necrosis factor (TNF)-α, IL-6 and granulocyte-

colony stimulating factor (G-CSF) (100). In contrast, influenza infection of mice 
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genetically deficient in COX-2 resulted in reduced mortality, inflammation and 

cytokine responses compared to infection of wild-type control (101). Peak lung 

viral titers were significantly elevated in COX-2-/- mice but returned to levels seen 

in wild-type mice by day 6, suggesting a role for COX-2 in controlling early viral 

replication but not in virus clearance. Interestingly, levels of PGE2 in influenza-

infected COX-2-/- mice were equivalent to levels measured in infected wild-type 

mice. The lack of PGE2 deficiency in COX-2-/- mice could be due to 

compensatory upregulation of COX-1 activity, as has been described before 

(102). 

Mice infected with highly virulent H5N1 and treated with a combination of 

celecoxib, the neuraminidase inhibitor zanamivir, and mesalazine (an 

aminosalicylate drug that exhibits weak 5-LOX and COX inhibition (103)) showed 

significantly improved survival even when treatment was delayed 48 hours (104). 

The beneficial effect of celecoxib and mesalazine likely stemmed from their 

effects on immunopathology, as mice treated with triple therapy had similar viral 

loads as those treated with zanamivir alone. Triple therapy significantly reduced 

levels of the proinflammatory cytokines IL-6, TNF-α and IFN-γ.  

Another group treated influenza-infected mice with paracetamol 

(acetominophen), a selective inhibitor of COX-2 (105, 106), although it does 

exhibit some inhibitory activity toward heme oxidases, such as myeloperoxidase 

(107). Paracetamol-treated mice had improved lung function and reduced 

immunopathology compared to control mice. A separate group of mice treated 

with celecoxib also showed improvements in cellular infiltrates, lung function and 
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pathology. However, the degree of improvement was generally less than that 

seen in paracetamol-treated mice. In contrast to mice genetically deficient in 

COX-2 (101), paracetamol- and celecoxib-treated mice had viral loads equivalent 

to those in untreated control mice. Virus-specific CD4+ and CD8+ T cell numbers 

were not altered in treated mice, and treatment with paracetamol or celecoxib did 

not interfere with the establishment of protective immunity to a second infection 

with a different influenza subtype. 

The significantly increased viral titers seen in COX-2-/- mice but not 

observed in mice treated with COX-2 inhibitors could be due to a functional 

defect in innate immunity, as COX products are known to be involved in 

modulating the innate immune response (108). In addition, COX-2-/- mice have a 

complete loss of COX-2 activity, whereas mice treated with inhibitors still retain 

some COX-2 activity due to insufficient inhibition by the drug. COX-2-/- mice had 

levels of PGE2 in bronchoalveolar lavage (BAL) fluid similar to wild-type mice, 

suggesting that the effects of COX-2 deficiency in this model may not be due to 

lack of PGE2. As COX-2-/- deficiency is likely to affect the production of other 

prostaglandins (such as TXA2, PGD2, PGF2, and PGI2), it is possible that 

decreased levels of one of the other COX products are responsible for increased 

survival. 

Influenza infection upregulates 5-LOX expression and/or levels of LTs in 

cell lines as well as in lungs of infected mice and humans (109-111). However, 

few studies have examined influenza infection in the context of altered 5-LOX 

production (either due to genetic deficiency or pharmacologic inhibition). One 
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study has reported a beneficial effect of exogenous LTB4 administration during 

influenza infection of mice (75). Mice treated daily with LTB4 had significantly 

reduced lung viral loads. The lungs of LTB4-treated mice showed increased 

levels of multiple antimicrobial peptides, decreased inflammatory cell infiltration, 

and partially restored lung architecture. The antiviral effect of LTB4 was mediated 

by neutrophils and the high affinity BLT1 receptor, as viral loads were unaffected 

in neutrophil-depleted or BLT1-deficient mice. LTB4 treatment of primary human 

neutrophils in this study induced antimicrobial peptide release and decreased 

influenza titers, demonstrating that the effects of LTB4 on neutrophils are similar 

in both mice and humans. This is in agreement with another study, in which 

human neutrophils treated with LTB4 showed significantly more myeloperoxidase 

(MPO) activity and α-defensin production than untreated cells, and LTB4-treated 

neutrophils had enhanced virucidal activity against influenza virus, human 

coronavirus, and RSV (112). The role of cysLTs during influenza infection has yet 

to be defined in detail. Enhanced levels of cysLTs seen in COX-2-/- mice infected 

with influenza are associated with increased survival (101), but whether the 

decreased mortality in COX-2 deficient mice is directly due to cysLTs in this 

model is unknown. High levels of proinflammatory 5-LOX mediators, particularly 

the cysLT LTE4, are tightly correlated with the highly pathogenic phase of 

sublethal influenza infection in mice (113). Similarly, in nasopharyngeal lavage 

fluid collected from patients during the 2009-2011 influenza seasons, increasing 

levels of 5-LOX-derived mediators (LTB4 and the cysLT LTE4) and decreasing 
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levels of 12-LOX-derived mediators correlated with increasing clinical symptoms 

and immune response (113). 

The beneficial effects of COX-2 deficiency may also be due to shunting of 

released AA to the 5-LOX pathway. A number of reports suggest that COX 

inhibitors enhance production of LTs (114, 115). Indeed, COX-2-/- mice showed 

higher BAL fluid levels of cysLTs than wild-type mice following infection with 

influenza. However, in mice treated with a combination of zanamivir, celecoxib, 

and mesalazine, increased survival was associated with lower LT levels and 

higher PGE2 levels in the treated mice compared to wild-type. The discrepancies 

in COX and 5-LOX products in these models may reflect the different 

pathophysiology of the influenza strains used. Perhaps increased LT production 

during severe H5N1 infection promotes inflammation and local tissue damage, 

while PGE2 provides a balancing protective influence. In contrast, during infection 

with the less virulent H3N2 virus, enhanced LT production may contribute to virus 

clearance without a detrimental effect on host inflammation. However, in the case 

of either virus lower levels of the proinflammatory cytokines IL-6, TNF-α and IFN-

γ were correlated with decreased morbidity and increased survival. Other 

differences in the studies could be accounted for by differences in virus subtype, 

virus inoculum, mouse strain, or drug dose and delivery method. However, partial 

COX inhibition by pharmacologic intervention appears to be beneficial in 

reducing immunopathology while still controlling viral replication during influenza 

infection in mice. 
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Respiratory Syncytial Virus 

Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and 

pneumonia in infants (116, 117). RSV is also a significant pathogen in the elderly 

population, particularly those living in long-term care facilities or with underlying 

cardiopulmonary disease (118). The immunocompromised are at risk for severe 

RSV infection, with mortality rates of up to 80% reported for RSV pneumonia 

(119). RSV induces PGE2 release in vitro, in animal models, and in lungs of 

infants with RSV bronchiolitis (120-123). Treatment with COX inhibitors reduces 

RSV replication in vitro and diminishes immunopathology in vivo. Blocking PG 

production with NS-398, celecoxib, or the cPLA2 inhibitor pyrrophenone reduced 

virus particle production in the A549 airway epithelial cell line (120). COX 

inhibition also reduced transcription and production of the proinflammatory 

cytokines IL-8 and RANTES (CCL5). RSV-induced activation of interferon 

regulatory factor (IRF) and NF-κB activation was suppressed by a high 

concentration of celecoxib. Another study demonstrated that the nonselective 

COX inhibitor indomethacin decreased lung histopathology in RSV-infected 

cotton rats, but COX inhibition did not significantly affect viral replication (121).  

RSV also induces production of LTB4 and cysLTs in both animal models 

and infants afflicted with RSV bronchiolitis (123-129). LT concentrations during 

RSV infection have been correlated with development of symptoms and in some 

reports are associated with disease severity (110, 126, 130, 131). Treatment of 

RSV-infected mice with the 5-LOX inhibitor zileuton reduced inflammatory cell 

numbers in the lung, prevented RSV-induced weight loss, and decreased RSV-
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induced airway constriction (126). Viral titers were somewhat lower in the lungs 

of zileuton-treated mice, although the difference was not statistically significant. 

Even when administered after the emergence of respiratory symptoms, zileuton 

reduced airway resistance and weight loss compared to untreated mice. 

Treatment with the cysLTR1 antagonist MK-571 decreased RSV-induced airway 

hyperreactivity (AHR) (125). In contrast to treatment with zileuton, MK-571 did 

not affect inflammatory cell recruitment or production of IL-4 and IFN-γ in RSV-

infected mice. A possible effect of MK-571 on viral titers was not examined in this 

study.  

Similar to highly virulent influenza H5N1, successful treatment of RSV 

infection may require the use of an antiviral agent in combination with an anti-

inflammatory agent that limits immunopathology. In support of this, treatment of 

RSV-infected cotton rats with the RSV-specific humanized monoclonal antibody 

palivizumab and a glucocorticoid resulted in enhanced clearance of RSV and 

limited lung histopathology compared to controls (132). Further support comes 

from a model of pneumonia virus of mice (PVM), a paramyxovirus that is a close 

phylogenetic relative of RSV. PVM infection increased levels of cysLTs in the 

lung (133). In this model, administration of either the cysLT1 antagonist 

montelukast or the nucleoside analog ribavirin did not affect disease severity. 

However, combined therapy of montelukast with ribavirin substantially decreased 

morbidity and mortality of PVM-infected mice.  

Administration of montelukast during primary RSV infection prevented 

enhanced AHR, airway eosinophil recruitment, and mucus overproduction upon 
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reinfection (124). Montelukast administered only during secondary infection did 

not affect this enhanced response. Previous studies have shown that LTs are 

only transiently elevated during the acute phase of infection and that levels drop 

to baseline shortly after (134). This suggests that LT inhibitors may have a 

beneficial effect during the early phase of infection but may no longer be useful 

as treatment for the long-term airway dysfunction observed post-RSV infection 

when LT levels are no longer elevated. 

The above reports demonstrate a beneficial effect of 5-LOX product 

inhibitors or cysLT1 receptor antagonists during primary infection with RSV. 

However, the studies in animal models used pharmacologic agents given to mice 

starting on the day before infection, whereas treatment in humans is typically 

initiated later during the course of infection after the emergence of symptoms. 

Delaying zileuton treatment until 3 days post infection, after respiratory 

symptoms emerged, still reduced clinical signs during primary RSV infection in 

mice. However, there have been conflicting results when 5-LOX inhibitors and 

cysLT antagonists were used as treatment in children with RSV bronchiolitis. 

One study suggested a beneficial effect of the cysLTR1 antagonist montelukast 

on lung symptoms post-RSV bronchiolitis (135), but further studies have failed to 

corroborate these findings (136-138). To our knowledge, there are no human 

studies that examine prophylactic administration of 5-LOX pathway inhibitors or 

receptor antagonists to high-risk children. Further studies are needed to define 

the role of LT inhibitors in patients with primary RSV infection and in those 

experiencing persistent airway dysfunction post-RSV. 
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While many viruses are capable of causing respiratory infections, 

relatively little is known about the contributions made by eicosanoids to the 

pathogenesis of respiratory viruses other than influenza and RSV. Rhinovirus 

(RV) infection increases expression of 5-LOX, FLAP, and COX-2 in human 

bronchial cells (139). In addition, cysLT levels in BAL fluid are increased upon 

rhinovirus infection in humans and correlate with emergence of upper respiratory 

symptoms (110, 139). Adenovirus induces COX-2 expression and PGE2 release 

in murine fibroblasts (140) and in human primary synovial fibroblasts (141). 

Additional studies are necessary to examine adenovirus-induced PG production 

in lung-relevant cell types, but in vivo studies of human adenovirus pathogenesis 

are limited by the strict species specificity of adenoviruses. Using mouse 

adenovirus type 1 to study the pathogenesis of adenovirus respiratory infection 

(142) will provide a useful tool to define the roles of eicosanoids to adenovirus 

respiratory infection. 

Human cytomegalovirus (HCMV) can also cause respiratory infections, 

although symptomatic disease is uncommon in immunocompetent individuals 

(143). HCMV induces 5-LOX expression and LTB4 production (144) in vascular 

smooth muscle cells as well as COX-2 expression and PGE2 production in 

fibroblasts (145). COX-2 inhibition reduces levels of the immediate-early 2 mRNA 

and protein in addition to viral DNA replication and transcription of some early 

and late mRNAs. Treatment of HCMV-infected fibroblasts with COX inhibitors 

inhibits cell-to-cell spread of virus (146). Of note, while many reports with other 

viruses have shown inhibition of viral replication or gene transcription by COX 
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inhibitors at non-physiologic concentrations, these results with HCMV were 

obtained with concentrations of COX inhibitors that are achievable in human 

plasma. Although few studies have examined the effect of 5-LOX products on 

HCMV pathogenesis, one study reported that exogenous LTB4 inhibited 

reactivation of CMV following allogeneic bone marrow transplantation (BMT) in 

mice, demonstrating a beneficial effect for this LT (147). 

 

Common Themes 

From the data summarized above, it is clear that the effect of COX or 

5-LOX inhibition or antagonism of cysLT receptors on host responses to 

respiratory viral infection is variable and in some cases may be pathogen- and/or 

model-specific (Table 2-2). In general, COX inhibition or deficiency is associated 

with less exuberant inflammation and in some cases improved survival. COX 

products may play a role in controlling early viral replication, although this 

possible role is only evident for influenza infection in mice completely lacking 

COX-2 activity and not in mice treated with a COX-2 inhibitor. These data are 

consistent with the role of PGE2 as an immunomodulatory mediator, balancing 

pro-inflammatory actions with suppressive effects on innate and adaptive 

immune function. Inhibition of LT production or signaling during respiratory viral 

infection is associated with less inflammation accompanied by variable (but 

generally beneficial) effects on lung physiology. However, administration of 

exogenous LTB4 also blunted inflammatory responses to influenza virus in one  
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Table 2-2. Effects of PGE2 and Leukotrienes on Respiratory Syncytial Virus and 
Influenza Infection 

 
 PGE2 Leukotrienes 
 COX Inhibition COX-2 Deficiency  

RSV • Reduction in viral 
replication in vitro 

• Suppression of virus-
induced cytokine 
production in vitro 

• No effect on viral 
replication in the lungs 
in vivo 

• Decreased lung 
pathology in vivo 

 

 • Reduction in pulmonary 
inflammatory, weight loss, 
and RSV-induced airway 
constriction in mice treated 
with 5-LO inhibitor 

• CysLTR1 antagonism 
during primary infection 
prevents enhanced AHR 
upon reinfection 

• Decreased RSV-induced 
AHR but no effect on 
cytokine production in 
mice treated with cysLTR1 
antagonist 

Influenza • No effect on viral 
replication or disease 
severity in mice treated 
with celecoxib 

• Suppression of virus-
induced cytokine 
production in mice 
treated with celecoxib 

• Improved survival and 
reduced 
proinflammatory 
cytokine levels in mice 
treated with zanamivir, 
celecoxib, and 
mesalazine  

• Improved lung function 
and reduced 
immunopathology in 
mice treated with 
paracetamol 

• Decreased mortality, 
pulmonary inflammation 
and cytokine responses in 
COX-2-/- mice 

• Increased viral titers in 
lungs of COX-2-/- mice 
compared to controls 

• Reduced lung viral loads 
and decreased pulmonary 
inflammatory in mice 
treated with exogenous 
LTB4 
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study (75), suggesting that various 5-LOX products may be differentially involved 

in promoting inflammation and affecting host immune responses to viral infection. 

 

Therapeutic Implications 

Respiratory viral infections cause substantial disease and are associated 

with significant morbidity, mortality, and healthcare utilization. Many antiviral 

drugs are available to treat infection with human immunodeficiency virus, and a 

smaller number of drugs such as acyclovir and ganciclovir are available to treat 

infections with herpesviruses such as herpes simplex virus, varicella zoster virus, 

and HCMV. In contrast, far fewer drugs are available to treat viruses that most 

frequently cause respiratory infections. Neuraminidase inhibitors such as 

oseltamivir and zanamavir can be used as prophylaxis to prevent infection by 

influenza virus or used to treat infection. Older drugs such as amantadine and 

rimantadine can also be used to prevent or treat influenza. However, the 

emergence of drug-resistant influenza strains has the potential to increasingly 

limit the utility of these drugs. The nucleoside analog cidofovir has been used to 

treat adenovirus infections, although it has substantial toxicities and no 

randomized clinical trials have been performed to show clinical benefit. Currently, 

there are no drugs that have consistently been shown to be safe and effective for 

the treatment of disease caused by infection with RSV, rhinovirus, human 

metapneumovirus, or other viruses that commonly cause respiratory infections. 

Preventing virus-induced inflammation may serve as an important adjunct 

to any antiviral therapy. When antiviral drugs are not available, modulation of 
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virus-induced inflammation by itself may serve as an effective strategy to treat 

disease caused by viruses. Drugs with the ability to modulate eicosanoid 

production, such as ibuprofen and acetaminophen, are already frequently used in 

patients with respiratory infections to alleviate fevers, myalgias, and nonspecific 

symptoms. Studies described above that show decreased virus-induced 

inflammation and increased survival in animals treated with an inhibitor of PG or 

LT synthesis or in PG- or LT-deficient animals support the potential benefit of this 

approach. Drugs that modulate eicosanoid production may be particularly useful 

to prevent or treat infections in patients with exaggerated eicosanoid production 

at baseline. For instance, exaggerated PGE2 production in the setting of bone 

marrow transplantation has been associated with increased susceptibility to 

bacterial infection that is linked to impaired neutrophil and macrophage 

phagocytosis and killing (148, 149). Increased PGE2 production has been 

reported in humans with a variety of disease states including cancer (150), aging 

(151), HIV infection (152), malnutrition (153, 154), and stem cell and solid organ 

transplant recipients (155, 156), making the potential benefits of this approach 

more widespread. 

Any therapy that involves modulation of eicosanoid production must 

consider the potential for deleterious effects on the development of adaptive 

immunity and subsequent protection from secondary infection. PGE2 plays an 

important role in optimal antibody synthesis, as COX inhibitors reduce antibody 

production in activated human B lymphocytes (48, 49). In addition, mice 

genetically deficient in COX-2 produce significantly less IgM and IgG than wild-
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type mice (48). There is evidence that COX-2 plays a role in potentiating 

antibody production in humans as well. Human volunteers challenged with RV 

showed increased nasal symptoms and a suppressed serum neutralizing 

antibody response when treated with aspirin or acetaminophen, suggesting a 

protective role for COX products in reducing symptoms and promoting an 

antibody response (157). One large-scale study has been performed in which 

children were administered prophylactic paracetamol when receiving routine 

childhood vaccinations (158). Antibody responses to several of the vaccine 

antigens were less robust in patients receiving prophylactic paracetamol. 

Evidence also exists that LTs, like PGE2, promote appropriate antibody 

responses (79-81, 89), but the effect of 5-LOX inhibitors and receptor antagonists 

on antibody production has not yet been described. 

 

Conclusions 

Eicosanoids modulate many host immune responses that are important 

contributors to viral pathogenesis. It will be essential to better define mechanisms 

underlying the effects of eicosanoids on both innate and adaptive immune 

responses to respiratory viral infection in order to develop therapies with maximal 

anti-inflammatory benefit and minimal impact on protective immune responses. 

For instance, the use of specific receptor agonists or antagonists may eventually 

provide a better-tailored approach than inhibitors of PG or LT synthesis to treat 

patients with respiratory viral infections. In general terms, however, alteration of 
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eicosanoid production or antagonism of eicosanoid receptors has the potential to 

serve as a useful treatment strategy for respiratory viral infections. 
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Chapter 3:  
Immunoproteasome 

 

MHC Class I Antigen Presentation Pathway 

CD8 T cells recognize peptides bound to MHC class I molecules. The 

generation of peptide-MHC class I complexes involves many steps (Figure 3-1). 

Peptides that bind tightly to MHC class I are 8-11 amino acids in length and have 

anchor residues, which are generally in the C-terminus, but can be present 

elsewhere in the peptide sequence (1). In humans, C-terminal anchor residues 

can be either basic or hydrophobic, whereas MHC class I molecules from mice 

only accept peptides that contain hydrophobic C-terminal anchor residues. The 

vast majority of these peptides are generated by proteasomes (2), although 

extended versions can be trimmed by aminopeptidases in the cytosol (3) or 

endoplasmic reticulum (ER) (4, 5). Peptides are transported from the cytoplasm 

to the ER by an ER-resident heterodimeric protein called TAP (transporter for 

antigen processing) (6). TAP is a subunit of the MHC class-I-loading complex, a 

~1 MDa complex within the ER, that clusters the molecules involved in MHC 

class I loading in order to increase efficiency of the process. Within the complex, 

TAP interacts with 3-4 copies of tapasin, a molecular chaperone that binds empty 

MHC class I molecules and is required for loading of peptides (7, 8). Tapasin 

interacts with ERp57, which in turn interacts with the molecular chaperone  
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Figure 3-1. MHC Class I Antigen Presentation Pathway.  

Proteins with ubiquitin tags (red spheres) are degraded by proteasomes and the 
resulting peptides are transported into the ER by TAP. In the ER, the peptide is 
loaded onto MHC class I molecules by many molecular chaperones. The 
peptide-MHC class I complex is then transported to the cell surface for 
presentation to CD8 T cells.   
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calreticulin and is required for peptide loading (8, 9). Once a peptide is 

successfully bound, the MHC class I molecule is released from the MHC class-I-

loading complex and delivered to the cell surface for presentation to CD8 T cells.  

 

Standard Proteasomes and Immunoproteasomes 

Proteasomes are large complexes responsible for the regulated 

degradation of almost all cellular proteins, and as such proteasome activity is 

required for cell viability (2, 10). Proteasomes also play a primary role in 

generation of antigenic peptides for presentation on MHC class I molecules, but 

not on MHC class II (2, 11, 12). The 20S proteasome core is a barrel-shaped 

complex that is composed of four stacked heptameric rings: two outer alpha rings 

(dark blue) and two inner beta rings (light blue and orange) (Figure 3-1) (13, 14). 

The proteasome may be associated with activator caps (lavender), discussed 

below. The catalytic activity is restricted to three of the beta subunits, β1 (also 

called Y in vertebrates), β2 (Z) and β5 (X), that account for the caspase-like, 

trypsin-like, and chymotrypsin-like activities of the proteasome, respectively (15). 

The active sites of each of these proteins face toward the lumen of the 

proteasome cylinder, preventing unrestricted exposure of cytosolic proteins to 

proteolysis.  

Almost 25 years ago, two more β-type proteasome subunits that are 

homologous to β1 and β5 were identified: proteasome subunit β1i (also known as 

PSMB9 and LMP2, low molecular weight protein 2) and proteasome subunit β5i 

(also known as PSMB8 and LMP7) (16-18). These subunits are encoded by 
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genes in the MHC class II region and are induced by IFN-γ and TNF-α (19), 

leading to the designation of these subunits as “immunosubunits” and the 

complex they form as the “immunoproteasome” (20) (Figure 3-2). A third IFN-γ-

inducible proteasome subunit, this one outside of the MHC region, was 

subsequently identified: proteasome subunit β2i (also known as PSMB10, 

LMP10, and MECL-1, multicatalytic endopeptidase complex-like 1), which is 

homologous to β2 (21-23). Expression of the three immunosubunits following 

IFN-γ stimulation is mediated by interferon regulatory factor-1 (IRF-1) (24-27). 

Type I IFNs can also upregulate the immunoproteasome, although higher 

concentrations are needed to achieve the same upregulation induced by IFN-γ 

(28-30). 

An additional type of specialized proteasome, termed the 

thymoproteasome, was identified in cortical thymic epithelial cells (cTECs). This 

proteasome contains the immunosubunits β1i and β2i as well as a cTEC-specific 

proteasome subunit β5t (also known as PSMB11). Expression of β5t is essential 

for positive selection of T cells, and expression of the homologous subunits β5 or 

β5i cannot compensate for deficiency in this specialized subunit (31-33).  

 

Immunoproteasome Formation and Tissue Expression 

Immunoproteasome assembly occurs in a cooperative manner whereby 

the immunosubunits interact with one another to favor the assembly of 

homogenous immunoproteasomes containing all three immunosubunits.  
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Figure 3-2. Immunoproteasome Formation.  

The catalytic core of the 20S proteasome is comprised of two outer α rings and 
two inner β rings. IFN-γ exposure induces the synthesis of three β 
“immunosubunits,” which are incorporated into newly formed proteasomes in 
place of their constitutive counterparts to form the 20S immunoproteasome. 
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This occurs even in cells that coexpress both standard and immunosubunits (34). 

The immunosubunit β1i is incorporated more quickly than β1, and incorporation 

of β2i depends on that of β1i (35, 36). Incorporation of β5i is required for the 

maturation (removal of the propeptides) of β1i and β2i, which would otherwise 

prevent their catalytic activity (34, 35). β5i is the only subunit that can be 

incorporated into immunoproteasomes independently of the other subunits, 

allowing for the existence of “mixed” or intermediate proteasomes that contain 

both β1i-β5i or β5i without other immunosubunits (34, 37). Mixed proteasomes 

are present in some human tissue types in the absence of stimulation or 

inflammation, especially the liver and colon, but not the heart. They are 

particularly abundant (50% or greater of the proteasomes in cell lysates) in 

antigen presenting cells (APCs), such as monocytes and both immature and 

mature DCs (38).  

The spleen has the highest level of immunoproteasome expression and 

activity compared to other organs (39, 40). This makes sense given that the 

immunoproteasome is abundantly expressed in cells of hematopoietic origin, 

including professional APCs such as macrophages and B cells, found in the 

spleen (41, 42). Malignant cell lines derived from B cells or multiple myeloma 

express high levels of immunoproteasome subunits (43, 44). There has been 

some disagreement regarding the regulation of immunoproteasome expression 

in DCs. Initial reports suggested that immature DCs constitutively express 

immunoproteasomes at equal levels to that of the standard proteasome. Upon 

maturation, immunosubunit expression is dramatically upregulated and synthesis 
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of new proteasomes switches exclusively to immunoproteasomes (45). Later 

reports showed that immunoproteasome content is unchanged or even 

decreased in DCs following maturation (46-48). The disagreements regarding 

immunoproteasome expression in DCs may have been due to lack of 

immunosubunit-specific antibodies at the time of those studies. A more recent 

study demonstrated the presence of mostly immunoproteasomes and mixed 

proteasomes (β1-β2-β5i and β1i-β2-β5i) in immature DCs that does not change 

after maturation (38). In response to TLR stimulation, the immunosubunits are 

only upregulated transcriptionally in maturing DCs, and this upregulation is not 

followed by an increase at the protein level (49).  

The constitutive expression of immunoproteasome subunits by immune 

cells appears to be independent of external signaling requirements, such as 

persistent stimulation by cytokines in vivo, because immune cells maintain their 

immunoproteasome expression in vitro in the absence of cytokines or other 

external stimuli. Rather, the high basal levels of immunoproteasome expression 

in immune cells are likely due to permanent activation of intracellular signaling 

pathways. One report demonstrated minor reductions in β1i and β5i mRNA in 

thymus and spleen tissue of mice lacking either type I or type II IFN receptors 

(50), but a second study demonstrated that the spleens of IFN-γ-deficient mice 

have levels of immunoproteasome protein expression similar to that of wild-type 

mice (51). In STAT1-/- mice, however, mRNA and protein expression of 

immunoproteasome subunits is markedly reduced (50, 51), suggesting that basal 

immunoproteasome expression does not require IFN-γ signaling (and therefore 
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phosphorylated STAT1), but is at least partially dependent on nonphosphorylated 

STAT1. This is supported by evidence that nonphosphorylated STAT1 and IRF1 

form a complex that occupies the IFN-γ-activated sequence (GAS) elements of 

the β1i promoter to support its constitutive expression (52). There is still some 

basal immunoproteasome expression in spleens and thymus of STAT1-/- mice. 

This may reflect equal reduction of immunoproteasome subunits in all immune 

cell types present in these tissues (i.e., STAT1 greatly enhances basal 

expression), or could be due to complete absence of immunoproteasome 

expression in some cell types and not others (i.e., a cell-type-specific 

dependence on STAT1 for basal expression).  

While nonimmune cells express standard proteasomes almost exclusively, 

immunoproteasome expression can be induced in such cells following exposure 

to IFN-γ. As mentioned above, type I IFNs can also upregulate the 

immunoproteasome, although less efficiently than IFN-γ (28-30). An initial report 

suggested that TNF-α could act synergistically with IFN-γ to upregulate β5i 

expression (53), implying that other proinflammatory cytokines may be capable of 

regulating immunoproteasome expression. However, in three murine cell lines of 

non-hematopoietic origin, only IFN-γ was capable of upregulating 

immunoproteasome subunits, and there was no effect of IL-1, IL-4, IL-6, TNF-α, 

TGF-β, IL-3, or GM-CSF treatment on immunoproteasome subunit protein levels 

(51). Therefore, it seems that other proinflammatory cytokines cannot regulate 

immunoproteasome expression and that IFN signaling is required for 

immunoproteasome induction in non-hematopoietic cells. There are some 
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exceptions to reports that nonimmune cells express exclusively standard 

proteasomes. Constitutive immunoproteasome expression has been reported in 

immune-privileged sites that are highly unlikely to receive persistent cytokine 

stimulation, such as the eye and brain (54-56), suggesting a role for 

immunoproteasomes in non-immune processes.  

 

26S and 20S Proteasomes 

Proteasomes exist in many forms in cells, with different regulatory or 

activator cap complexes that associate with the 20S core to control access to the 

proteolytic inner chamber (57). The α rings serve as scaffolds for the β subunits 

during proteasome assembly, but also as binding sites for regulatory and 

activator complexes. The 26S proteasome, which is composed of a 20S core 

particle and one or two 19S (also known as PA700) regulatory caps, degrades 

proteins in an ATP- and largely polyubiquitin-dependent manner. The 19S 

regulator complex recognizes and binds polyubiquitin moieties, then unfolds and 

feeds substrate proteins into the 20S core for degradation (58). Although 26S 

proteasomes preferentially degrade ubiquitinated proteins, degradation can occur 

without ubiquitination if the protein is first denatured (59). The 26S proteasome is 

responsible for the majority of normal protein turnover within cells. Because the α 

subunits are unchanged between different types of proteasomes, the 19S 

regulator complex can associate with 20S cores containing either standard or 

immunosubunits. This makes possible a number of different proteasome and 

immunoproteasome combinations: 20S alone, asymmetric 26S proteasomes  
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Figure 3-3. Possible combinations of 20S proteasome core with proteasome 
activator complexes.  

The 19S (PA700) regulatory cap can associate at one or both ends of the 20S 
proteasome core to form an asymmetric 26S proteasome or a 26S proteasome, 
respectively. The IFN-γ-induced 11S (PA28) regulatory complex can bind at the 
free end of a 19S-20S complex to form a hybrid proteasome, or it can associate 
with both ends of the 20S immunoproteasome core.  
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(19S-20S), or 26S (19S-20S-19S), with each capable of having either the 

standard or immunosubunits in the 20S core (Figure 3-3).  

It was originally thought that cells have little to no free 20S proteasome, 

and that the 20S complex is incapable of acting independently of its regulators or  

activators (60). Without the 19S regulatory cap, the 20S proteasome does not 

have the ability to recognize and unfold polyubiquitinated proteins. The 20S core  

seems to exist in an autoinhibited state, where the N-terminal tails of the α 

subunits at the openings on either end of the complex prevent substrate access 

to the internal proteolytic chamber (61). Binding of activator or regulatory 

complexes to the 20S core displaces the N-terminal tails, opening a channel into 

the lumen of the proteasome (62, 63). However, even in the absence of 

activating agents (such as heating or low detergent concentrations (64)), the 20S 

core is capable of degrading proteins at low, albeit detectable and reproducible, 

rates. Degradation of proteins by the 20S core probably involves partial or 

transient opening of the inner channel and is not an active process (62, 65-67). 

Indeed, the 26S proteasome and immunoproteasome hydrolyze unstructured 

polypeptides at rates nearly 10-fold higher compared to 20S proteasomes and 

immunoproteasomes (59, 68, 69). However, the free 20S core is capable of 

binding to and degrading proteins in a process that is both ATP- and ubiquitin-

independent (64, 70). Rather than recognizing ubiquitin moieties, the 20S 

proteasome has a selective preference for degradation of damaged or oxidized 

proteins, while the 26S proteasome does not (71-73). Thus, it appears that the 

majority of normal protein turnover occurs through the 26S proteasome, while the 
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20S proteasome plays a specialized role in degradation of damaged or oxidized 

proteins. It has been suggested that oxidation may act as a marker for targeting 

proteins to the MHC class I pathway (74). This notion, termed the PrOxI (protein 

oxidation and immunoproteasome) hypothesis, would represent a new 

mechanism of substrate generation by the proteasome and may act in concert 

with other pathways (such as the DRiPs pathway discussed below) to efficiently 

generate peptides for MHC class I presentation.  

 

Proteasome Processing of Peptides for MHC Class I 

Depending on the cell type, up to 30% or more of translation products are 

defective, found as incorrect (mistranslated or prematurely stopped), misfolded, 

or misassembled proteins. This group of proteins is known as defective 

ribosomal products, or DRiPs. Because peptides generated for MHC class I 

molecules are generated by proteasomes, they are derived either from DRiPs or 

from proteins undergoing normal turnover (proteins termed by Yewdell as 

‘retirees’ (75)), a process that occurs stochastically (76, 77) or due to age-

associated damage and folding (78). Yewdell was the first to suggest that DRiPs 

are a major source of peptides for MHC class I molecules (79). Multiple lines of 

evidence have supported this notion (80, 81). The majority of peptides bound to 

TAP originate from newly synthesized proteins, and turnover from ‘retirees’ 

appears to be a relatively insignificant source of peptide for MHC class I 

molecules (82). DRiPs likely play a crucial role during viral infection, as the 

majority of abundant viral proteins are stable and long-lived. Rather than wait 
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hours or days for a stable viral protein to be degraded, DRiPs allow for the 

generation of suitable MHC class-I-binding peptides almost immediately after 

these proteins are synthesized. In this way, CD8 T cells can respond immediately 

to a viral infection and begin to eradicate a virus before it spreads (83). 

The efficiency of proteasomes in generating antigenic peptides is quite 

low. Based on in vitro observations of rates of various steps in MHC class I 

antigen presentation (84, 85), Yewdell has estimated this efficiency to be on the 

order of 1 per 10,000. This means that only one MHC class-I-binding peptide is 

produced for every 10,000 proteins degraded. Thus, out of the estimated 2 

million peptides generated in a cell per second, only 150 MHC class I molecules 

are loaded with peptides (75, 86). While these values are based on estimates 

obtained from a single cell line and may vary widely depending on different cell 

types or activation states, other studies have confirmed the low generation of 

MHC class I peptides by proteasomes. When ovalbumin (OVA) is used as a 

proteasome substrate, purified proteasomes produce SIINFEKL, a well-studied 

OVA-derived MHC class I peptide, or N-extended versions (that could be 

trimmed to the correct length by cytosolic or ER peptidases) only ~5% of the time 

(69, 87). It is likely that much of the SIINFEKL peptide is lost after generation due 

to peptidase activities in the cytosol. In fluorescence loss in photobleaching 

(FLIP) experiments, less than 2% of microinjected peptides enter the ER (84). 

Less than 1% of cytosolic peptides are recruited for MHC class I presentation, 

and this efficiency is at least 2 log units lower for peptides with low affinity for 

TAP (88). When vaccinia virus is used to encode various forms of SIINFEKL 
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peptide, only ~2% of proteasome-generated SIINFEKL is successfully loaded on 

H-2Kb molecules (85). Given that proteasomes produce SIINFEKL only 5% of the 

time, this would predict an efficiency of SIINFEKL-MHC class I complex 

generation of 5% x 2%, or 0.1%. Pamer and Cresswell estimated that from every 

100 molecules of Listeria proteins degraded in vivo, between 3 and 30 MHC 

class I peptides were generated, depending on the epitope (89). Others have 

estimated the efficiency to be closer to 1 MHC class I peptide for every 30 

Listeria proteins degraded (90). This is a significantly higher efficiency than has 

been reported using different antigens in other systems, and it may relate to 

cross-presentation mechanisms in phagocytic cells such as DCs and 

macrophages. More studies are needed to determine efficiencies of MHC class I 

peptide generation using different antigens and cell types, and under varying 

conditions (including viral infections). The low efficiency of MHC class I epitope 

generation by proteasomes underscores that their main function is to degrade 

proteins to amino acids, and that the cleavages that yield MHC class I peptides 

are relatively rare occurrences. 

The changes in proteasome subunit composition from standard to 

immunosubunits in response to IFN-γ stimulation alter the proteolytic activity of 

the complex. Purified 20S and 26S immunoproteasomes from IFN-γ-treated cells 

substantially increase the rate at which they cleave after hydrophobic and basic 

residues (19, 91, 92) and decrease the rate of cleavage after acidic residues 

(93). As the vast majority of peptides presented on MHC class I have 

hydrophobic or basic C-termini, the immunoproteasome is thought to generate 
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peptides better suited to binding to MHC class I molecules compared to the 

constitutive proteasome and thus be more efficient at eliciting immune responses 

(91, 94). Rates of OVA degradation by 26S proteasomes and 

immunoproteasomes, or 20S proteasomes and immunoproteasomes, are 

indistinguishable (69). All produce peptides of similar sizes ranging between 3 

and 22 residues. 26S particles yield peptides with a mean size of 7-8 residues, 

while the mean size of products from 20S particles is slightly larger, at 8-9 

residues (95). So the different β subunits do not affect rates of protein 

degradation or peptide size, but rather seem to affect the cleavage sites within a 

protein to generate peptides with more hydrophobic C-termini.  

 It was uncertain whether proteasomes cleave proteins to the exact length 

(8-10 residues) that would be directly loaded onto MHC class I molecules, or 

whether they produce larger precursors that are further cleaved by other 

peptidases. Some initial experiments indicated that isolated 20S proteasomes 

could cleave larger peptides to antigenic epitopes (96-98). However, these 

experiments used short (less than 50 amino acid) precursors that are likely very 

different from the ubiquitinated or damaged full-length protein substrates that the 

proteasome would encounter under normal conditions. 20S proteasomes also 

release a different spectrum of products than do 26S proteasomes (95, 99). A 

number of studies have indicated that proteasomes release N-extended versions 

of antigenic peptides, which are then trimmed by aminopeptidases in the cytosol 

(3) or ER (4, 5). Moreover, one of these aminopeptidases, leucine 

aminopeptidase (LAP), is induced by IFN-γ (100). Following IFN-γ treatment, 
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cytosolic LAP activity accounted for all trimming of an N-terminal extended 

version of the well-studied OVA-derived epitope SIINFEKL to the correct length.  

Although immunoproteasomes degrade proteins at the same rate as 

standard proteasomes, immunoproteasomes generate more antigenic peptides 

than standard proteasomes (69). Degradation of OVA by standard 26S 

proteasomes isolated from muscle tissue produces SIINFEKL or an N-extended 

version only 6-8% of the time. When 26S immunoproteasomes from the spleen 

are used, the percentage of peptides containing SIINFEKL at the C-terminus 

increases to 11%. This is not due to an increase in the amount of final SIINFEKL 

peptide generated, as standard proteasomes and immunoproteasomes release 

the same amount of SIINFEKL. Instead, 20S or 26S immunoproteasomes 

generate 2-4 times the amount of N-extended versions of this peptide, which 

could be trimmed by the cytosolic enzyme LAP, compared to their standard 

proteasome counterparts. Therefore, it seems that the effect of IFN-γ on 

antigenic peptide generation within cells is at least three-fold: changes from 

standard to immunosubunits in the 20S proteasome core directly affect C-

terminal processing and generate more N-extended versions of antigenic 

peptides, while induction of aminopeptidase activity in the cytosol alters N-

terminal processing.  

 

IFN-γ-induced Proteasome Regulator PA28 

Another protein complex induced by IFN-γ is PA28 (also known as REG or 

11S), a large regulatory complex that binds the ends of the 20S proteasome in 
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an ATP-independent manner (Figure 3-3). In mammals, PA28 is made of two 

homologous subunits, PA28α (REGα or PSME1) and PA28β (REGβ or PSME2) 

(101-107). It was originally predicted that PA28 either enhanced the rate of 

protein degradation by proteasomes or generated peptides better suited to 

binding to MHC class I. However, the biological functions of PA28 are still 

relatively unknown. PA28 does not enhance rates of protein degradation by 

either the standard proteasome or the immunoproteasome. In fact, PA28-20S 

particles degrade proteins at the same slow rate as 20S particles alone (68). 

PA28 appears to enhance the ability of the 20S proteasome to degrade short 

peptide substrates, but not proteins or polyubiquitinated proteins (108, 109). 

PA28 is also able to associate with asymmetric 26S proteasomes (20S 

proteasomes with only one 19S regulatory complex, usually denoted as 19S-

20S) to form hybrid proteasomes (19S-20S-PA28) (Figure 3-3) (110-113). Hybrid 

proteasomes hydrolyze 3- and 4-residue peptides at faster rates than standard 

26S particles.  

An extensive study of the molecular mechanisms of PA28 was recently 

undertaken by Raule et al., who performed in vitro degradation of full-length 

proteins (insulin-like growth factor-1, or IGF-1, and casein) by 20S, 26S and 

PA28α/β-20S immunoproteasomes and analyzed the range of peptides released 

(68). Rather than increase the fraction of 8-10 residue peptides that is generated, 

association of PA28 with 20S immunoproteasomes reduces it from 10% to 

approximately 6% of the total, with the majority of peptides being <6 amino acids 

in length. This may occur through allosteric modification of proteasome active 
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sites by PA28α/β. Alternatively, PA28α/β may control the efflux of longer 

peptides out of the proteolytic chamber and contribute to their ongoing hydrolysis 

(68, 114).  

Binding of PA28 to the 20S catalytic core also appears to favor the release 

of a specific subset of longer peptides with an acidic C terminus, several of which 

contain the correct C-terminal anchor residue required for binding to MHC class I 

(68). Several studies have demonstrated that PA28 expression enhances MHC 

class I presentation of certain antigens (115-118) but not others (119). It was 

proposed that this small fraction of peptides specifically generated by PA28-20S 

immunoproteasomes may be important in stimulating an effective CD8 T cell 

response under certain pathophysiological conditions in which a ubiquitin-

independent proteolytic pathway is favored. However, since the vast majority of 

peptides released by PA28-20S immunoproteasomes are too short to serve as 

MHC class I antigens, an alternative possibility is that PA28 may play a 

regulatory role by preventing excessive cytotoxic response against self-antigens, 

and decrease the risk of autoimmune reactions. A recent study demonstrated 

that purified PA28α/β increases the capacity of both the constitutive 20S 

proteasome and the immunoproteasome to selectively degrade oxidized proteins 

in response to hydrogen peroxide-induced oxidative stress, supporting a role for 

PA28 that is independent of MHC class I antigen processing (120).  

Although PA28 does not stimulate proteolytic degradation under normal 

conditions, PA28 does increase catalytic rates of the immunoproteasome under 

conditions of ATP depletion (29). The implications of PA28 regulation by cellular 
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ATP levels are unknown. Proinflammatory cytokines, such as IL-1 and IFNs, 

significantly decrease total cellular ATP levels (121, 122). It is possible that 

decreases in ATP levels that could occur during inflammatory conditions such as 

viral infection trigger increased association of PA28 with 20S 

immunoproteasomes and enhance rates of protein degradation. However, given 

that the majority of peptides degraded by PA28-20S proteasomes and 

immunoproteasomes are not suitable for binding to MHC class I, it seems 

unlikely that this added level of regulation is related to MHC class I antigen 

processing. It may instead be related to possible roles for PA28 in degradation of 

oxidized proteins or decreasing the potential for autoimmune reactions at sites of 

inflammation, as discussed above. If PA28 does dampen autoimmunity, then one 

would expect to see an increase in autoimmune responses in PA28-deficient 

mice after an inflammatory response. These are intriguing possibilities that bear 

further investigation. 

 

Strategies to Study Immunoproteasome Function 

Until recently, traditional gene deletion has been the main strategy 

employed to study immunoproteasome function. There are numerous drawbacks 

to this approach. Due to cooperative assembly of immunoproteasomes, 

deficiency in one subunit could affect the structure and assembly of the 20S core, 

as well as impair binding or activity of regulatory subunits. Mice deficient in one 

or more of the immunosubunits since birth could develop compensatory 

mechanisms of proteasome or immunoproteasome assembly, leading to 
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alteration in subunit composition that could detrimentally affect peptide 

processing. They also could also have defects in maturation of the immune 

system, since the thymoproteasome (composed of β1i, β2i and the cTEC-specific 

subunit β5t) is important for positive selection of T cells (31). Most studies of 

immunoproteasome function have been undertaken with mice in which only one 

or two immunosubunits are deleted, rather than all three. It is possible that a 

standard proteasome subunit is able to compensate when only one or two 

immunosubunits are missing, in which case a phenotype would not be observed 

unless the mice are lacking all immunoproteasome activity. Therefore, caution 

must be taken in drawing conclusions from studies using mice deficient in one or 

more immunosubunits.  

 Small molecule peptide screens have led to the identification of inhibitors 

specific to immunoproteasome activity. The use of small molecule inhibitors 

offers several advantages over traditional gene deletion approaches, the most 

obvious of which is their potential for use as therapeutics. Because small 

molecule inhibitors are unlikely to affect the assembly or structure of the 

immunoproteasome, they allow for the study of how the catalytic activity of a 

specific subunit affects immune responses. Furthermore, these inhibitors are 

unlikely to affect the positive selection of T cells in the thymus, since most 

studies are undertaken in adult mice after maturation of the immune system.  

The first reported immunoproteasome-specific inhibitor, PR-957 (now 

known as ONX 0914), inhibits β5i with an IC50 value of approximately 10 nM 

(123). ONX 0914 is 20- to 40-fold more selective for β5i than for the next two 
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most sensitive subunits, β1i and β5. Another β5i-specific inhibitor, PR-924, 

targets β5i and has less specificity toward other subunits compared to ONX 0914 

(124). UK-101 was the first identified compound to specifically inhibit β1i (125, 

126), with two more (IPSI-001 and YU-102) identified shortly thereafter (127, 

128). Leupeptin is a recently described inhibitor of the trypsin-like activity of the 

proteasome (β2 and β2i) that does not affect activity of other β subunits (129, 

130). There are currently no available compounds that specifically inhibit the 

activity of β2i. A recent crystal structure of the murine constitutive proteasome 

and the immunoproteasome in complex with ONX 0914 revealed important 

structural differences in the binding pockets of the different subunits (131). While 

the crystal structures demonstrated that β1 and β5 have distinct substrate 

binding pockets from their immunosubunit counterparts, the substrate binding 

pockets of β2 and β2i are essentially identical. Therefore, it will be difficult to 

develop β2i inhibitors that do not also target its constitutive counterpart. Several 

other proteasome- and immunoproteasome- specific inhibitors are in 

development and are of significant interest as potential therapeutic agents (127).  

 

Immunoproteasome and Activation of the NF-κB Pathway 

The nuclear factor-κB (NF-κB/Rel) family of transcription factors plays a 

central role in regulation of immunity and inflammation. NF-κB transcription 

factors interact as homodimers or heterodimers with other NF-κB family 

members, including p65 (RelA), RelB, c-Rel, p50 (NF-κB1), and p52 (NF-κB2). 
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Under normal conditions, these factors exist in the cytoplasm in an inactive state 

because of interaction with inhibitory IκB proteins (IκBα, IκBβ, IκBε) or the 

unprocessed forms of NF-κB1 and NF-κB2 (p105 and p100, respectively). The 

NF-κB pathway is activated in response to many different stimuli, including 

exposure to inflammatory cytokines such as TNF-α or IL-1 family members (132). 

In the canonical or classical pathway of NF-κB activation, the proteasome 

degrades IκBα, releasing the active NF-κB dimer (usually p65/p50) and allowing 

translocation to the nucleus. In the noncanonical or alternative pathway of NF-κB 

activation, the proteasome degrades the inhibitory portion of p105 or p100 to 

generate the active transcription factors p50 or p52. These transcription factors 

can then associate with p65, RelB, or each other to form homodimers and 

heterodimers. The classical and alternative NF-κB pathways regulate distinct 

sets of target genes, in part because different populations of NF-κB dimers are 

regulated by either IκBα degradation or p100 processing (133).  

It is widely accepted that the standard proteasome plays a crucial role in 

the processing of the p105 precursor of the p50 subunit and in the degradation of 

IκBα (134, 135). However, a role for the immunoproteasome in NF-κB pathway 

activation is controversial. Nonobese diabetic (NOD) mice were reported to have 

a specific defect in β1i production that resulted in defective activation of NF-κB 

(136). This finding has been debated, but contradictory results were likely due to 

different cell populations and the phenotype (non-diseased versus diseased) of 

NOD mice analyzed (136-138). Nevertheless, Hayashi et al. did directly 

demonstrate impaired NF-κB activation in lymphocytes from β1i-/- mice (136). 
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The human lymphocyte cell line T2, which lacks both β1i and β5i, has substantial 

defects in NF-κB activation compared to the parental T1 cell line and is sensitive 

to TNF-α-induced apoptosis (139).  

In support of a role for the immunoproteasome in NF-κB activation, 

another study reported delayed termination of the classical NF-κB activation 

pathway and reduced activation of transcription factors associated with the 

alternative NF-κB pathway in β1i-/- mice, but not β1i/β5i double knockout mice 

(140). B cells isolated from β1i-/- mice exhibit slightly delayed NF-κB signaling, 

although the authors posited that defects in these mice were likely due to the 

presence of mixed proteasomes containing β1, β2i and β5i because a B cell 

phenotype was not observed in mice lacking both β1i and β2i (141). It is 

important to note that the mixed proteasomes may have abnormal function that is 

directly responsible for observed defects in NF-κB activation in β1i-/- mice 

(discussed in more detail below). If that is the case, then the deficiencies in these 

cell types in β1i-/- mice are not a true reflection of immunoproteasome function.  

In support of this possibility, another study used two small molecule 

inhibitors of the immunoproteasome, UK-101 and LKS01, which target β1i and 

β5i, respectively, to study the role of the immunoproteasome in NF-κB activation 

in lung and pancreatic adenocarcinoma cells (142). Their results suggest that the 

catalytic activity of β1i and β5i is not required for canonical NF-κB activation, and 

they support the notion that deficiencies in NF-κB activation in β1i-/- mice may 

instead be an artifact of mixed proteasomes. One study demonstrated reduced 



 91 

NF-κB activation in cardiomyocytes and B-cell-depleted splenocytes in β5i-/- mice 

following exposure to IFN-γ (143). However, because NF-κB activation in this 

study was measured by assessing p50 levels in whole cell homogenates, it is 

unknown whether the reduced levels in β5i-/- mice were due to impaired 

activation of the classical or alternative NF-κB pathway.  

Since some studies have reported impaired activation of the alternative 

NF-κB pathway in β1i-/- mice, it will be important to repeat the UK-101 and LKS01 

inhibitor studies to determine whether the catalytic activity of β1i or β5i is 

important in the alternative pathway of NF-κB activation. Additionally, it remains 

to be determined whether other cell types, such as those of the immune system 

that express the immunoproteasome constitutively, use immunoproteasome 

activity in the either the classical or alternative pathway of NF-κB activation. 

  

Immunoproteasome Functions in Antigen Processing and Viral Infection 

Because β1i and β5i are encoded on the MHC locus, it was originally 

thought that the major function of the immunoproteasome is to regulate the 

immune response via optimization of MHC class I peptide processing. Although 

proteasome activity in general is required for MHC class I antigen presentation, 

the immunoproteasome does not appear to be essential for that function. In fact, 

some epitopes are processed more efficiently by the 20S proteasome than the 

immunoproteasome (144, 145). However, the immunoproteasome is certainly 

more effective than the standard proteasome at producing many MHC class I 

epitopes, particularly when it comes to immunodominant epitopes derived from 
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infectious organisms. Many of the epitopes processed inefficiently by the 

immunoproteasome are derived from self proteins (145). While these epitopes 

may be important for generating an immune response to tumor antigens and 

could have implications for design of cancer vaccines, it is unlikely that they play 

a role in the immune response to an infectious organism.  

The immunoproteasome appears to play important roles in T cell 

responses that are independent of MHC class I antigen presentation. A common 

phenotype of immunoproteasome-deficient mice is reduced number of CD8+ T 

cells in the spleen, supporting a role for the immunoproteasome in T cell 

development or maturation (141, 146, 147). A number of studies have reported 

increased CD4/CD8 T cell ratios β2i-/- mice (148-150), and this has recently been 

ascribed to a T-cell-intrinsic process that occurs independently of both thymic 

selection and antigen processing (151). T cells from β1i-/-, β2i-/-, or β5i-/- mice are 

impaired in proliferation and survival when transferred into virus-infected wild-

type mice, suggesting a role for the immunoproteasome in the expansion and 

maintenance of T cell populations during an immune response (149, 152, 153).  

The immunoproteasome may also play a critical role in B cell 

development, as mice deficient in β1i, but not β1i/β2i or β5i/β2i, have reduced 

numbers of mature B cells in the spleen (141). These authors reported reduced 

survival and impaired immunoglobulin (Ig) isotype switching in B cells from β1i-/- 

mice compared to wild-type B cells. However, the observed defects have been 

attributed to the presence of mixed proteasomes containing β2i and β5i in these 

mice, and may not be a true reflection of immunoproteasome function. A 
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separate report was unable to recapitulate the finding of reduced B cells in β1i-/- 

mice, and it demonstrated equivalent numbers of CD19+ B cells in the spleens of 

mice deficient in β1i, β2i, or both β1i/β2i (146). B cell responses were not 

examined in detail in that study. Therefore, the role of the immunoproteasome in 

B cell development or induction of a humoral response following a viral infection 

is still largely undefined.  

The immunoproteasome, or at least the β5i subunit, plays a critical role in 

generating nearly all mouse cytomegalovirus (MCMV)-derived epitopes (154). 

Interestingly, memory “inflating” epitopes, or epitopes for which the pool of 

specific CD8 T cells is sustained or even increased over time, show a reduced 

dependence on the immunoproteasome compared to non-inflating epitopes. This 

suggests that immunoproteasomes play a role in stimulating immune responses 

during acute infection, but not during chronic MCMV infection. Although this 

study did not monitor the effect of β5i deficiency on MCMV viral loads over time, 

it was suggested that β5i deficiency likely would not have an impact on MCMV 

replication because neither CD8 nor MHC class I deficiency have an impact on 

viral loads in this model.  

The immunoproteasome (subunits β1i and β5i) moderately influences the 

magnitude and specificity of CD8 T cell responses to hepatitis B virus (HBV) 

polymerase and envelope proteins (155). Although type I IFNs and IFN-γ inhibit 

HBV replication, the antiviral effect of IFNs occurs independently of their 

induction of β1i and β5i. 



 94 

The majority of studies examining the effect of immunoproteasome 

deficiency on the generation of antigenic epitopes during viral infection have 

been performed with influenza virus or lymphocytic choriomeningitis virus 

(LCMV), two well-studied viruses for which the immunodominant CD8 T cell 

epitopes are known. APCs from β1i-/- mice show a reduced capacity to generate 

an influenza virus nucleoprotein-specific epitope, while presentation of OVA-

derived antigens was unaffected (147). Two later studies using seven defined 

peptides from influenza virus showed that β1i (and to a lesser extent the other 

immunoproteasome subunits) plays a major role in establishing the 

immunodominance hierarchy of responding CD8 T cells (149, 156). Responses 

to the two most immunodominant epitopes significantly decreased in β1i-/- mice. 

One of these was due to decreased generation of the epitope by APCs, while the 

other was due to reduced frequency of epitope-specific T cells in the CD8 T cell 

repertoire. The overall number of influenza virus-specific CD8 T cells was 

decreased in β1i-/- mice, even when β1i-/- CD8 T cells were restimulated with 

influenza virus-infected splenocytes from wild-type mice as APCs. Because this 

defect was observed for epitopes produced equally by standard proteasomes 

and immunoproteasomes, it was suggested that immunoproteasomes might play 

a role in T cell activation and proliferation.  

Interestingly, influenza virus titers are reduced approximately 50% in sera 

of β1i-/- mice. While B cells from influenza virus-infected β1i-/- mice proliferate as 

well as those from wild-type mice, they display a survival defect and impaired Ig 

isotype switching. DCs from the same mice show reduced innate cytokine 
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production in response to influenza virus infection (141). The altered response of 

many cell types in β1i-/- mice to influenza virus is likely due to the presence of 

mixed proteasomes containing β2i and β5i.  

Care must be taken in the interpretation of results obtained using β1i-/- 

mice, since results cannot be attributed solely to absence of β1i catalytic activity, 

but may rather be due to dysregulated proteasome assembly and function. While 

mixed proteasomes containing both standard and immunosubunits have recently 

been isolated, these mixed proteasomes contain either β1i-β5i or just β5i, in 

accordance with the rules of cooperative immunoproteasome assembly (38). The 

authors of that study were unable to detect the presence of mixed proteasomes 

containing β2i, as all of the β2i subunits were associated with 

immunoproteasomes. Cooperative assembly rules should preclude formation of 

mixed proteasomes containing β2i, because both β1i and β5i are required for its 

inclusion in the immunoproteasome. It is possible that β5i could compensate 

(perhaps partially or inefficiently) for β1i in the assembly process, or that β2i 

could interact with the standard β1 subunit in the complete absence of β1i (as in 

β1i-/- mice). This may explain the seemingly contradictory presence of mixed β2i-

β5i proteasomes in β1i-/- mice. It is doubtful that mixed proteasomes containing 

β2i exist in wild-type mice, although this has not been formally analyzed in all 

tissues or cell types. Mixed proteasomes (containing β1i-β5i or β5i alone) are 

highly expressed in human immature and mature DCs. Human monocytes also 

contain a particularly high abundance of mixed proteasomes, up to 50% of the 

total proteasome content. The mixed proteasome content of B and T cells is 
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unknown. However, the finding that mixed proteasomes are expressed at high 

levels in some cell types, particularly APCs, suggests that they may play an 

important role in shaping CD8 T cell responses. Indeed, work from Zanker et al. 

using mice deficient in β1i, β2i or β5i/β2i demonstrated that mixed proteasomes 

increase viral peptide diversity and broaden antiviral CD8 T cell responses to 

influenza virus (157).  

Mice deficient in β2i have ~20% lower numbers of CD8 T cells in the 

spleen and reduced response to some LCMV-derived epitopes. This is not due to 

impaired generation or presentation of these epitopes, but rather to either 

decreased precursor frequency or reduced expansion of the epitope-specific T 

cells, further supporting a role for the immunoproteasome in T cell survival or 

expansion rather than just antigen presentation (152). One strategy that has 

been employed to study mice lacking all immunoproteasome activity has been to 

use β1i/β2i double knockout mice treated with the β5i-specific inhibitor ONX 0914 

(146). Although these mice have reduced CD8 T cells in the spleen, and CD8 T 

cell responses to several LCMV-specific MHC class I epitopes are changed (two 

are increased and others are decreased), these double knockout mice mount 

largely normal CD8 T cell responses to LCMV infection. Spleen viral titers at 4 

dpi were unchanged in immunoproteasome-deficient mice treated with ONX 

0914, although it remains to be seen whether viral titers at later times (such as at 

8 dpi, when CD8 T cell responses were analyzed) would be affected by lack of 

immunoproteasome activity. Splenocytes isolated from these mice and 

stimulated with LPS or α-CD3/CD28 had reduced production of IL-6, TNF-α and 
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IFN-γ. However, this defect was observed in stimulated splenocytes from wild-

type mice treated with ONX 0914 alone (and has been observed previously by 

the same group (158)), suggesting a specialized function of β5i in promoting 

cytokine production that is not shared by the other immunosubunits. Because the 

cytokine studies in mice lacking immunoproteasome activity were performed in 

splenocytes stimulated ex vivo or in other models, it is unknown whether these 

mice display defects in cytokine production in response to LCMV or other viruses 

in vivo. The relatively modest effect of impaired immunoproteasome activity on 

the generation of LCMV-specific IFN-γ+ CD8 T cells suggests that overall IFN-γ 

production may be unaffected. However, these mice may still have defects in 

production of other cytokines, such as IL-6 or TNF-α, in response to LCMV or 

other viruses. 

Immunoproteasome subunits are transcriptionally induced in the brain 

following LCMV infection (159). Mature immunoproteasome assembly is almost 

exclusively restricted to microglial-like cells, while only immunoproteasome 

precursors exist in astrocytes and do not exist at all in neurons or 

oligodendrocytes. LCMV-induced meningitis is delayed and less severe in β5i-/- 

mice, suggesting a role for microglial immunoproteasomes in exacerbating 

immunopathology. The lack of mature immunoproteasome assembly in 

astrocytes may be due to a posttranslational mechanism that prevents excess 

immunoproteasome assembly in the brain. Since cells in the central nervous 

system (CNS) regenerate poorly or not at all, inhibition of immunoproteasome 
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assembly might be a strategy to protect these cells from immunopathological 

destruction.  

The above studies demonstrate subtle and possible organ- or virus-

specific roles for the immunoproteasome during viral infection using mice 

deficient in only one or two immunosubunits. To assess the role of complete 

immunoproteasome deficiency, a recent study generated mice deficient in all 

three immunoproteasome subunits (triply deficient mice) (160). This had not 

been performed previously because the LMP2 and LMP7 genes (encoding β1i 

and β5i, respectively) are closely linked on the same chromosome and flank the 

TAP1 transporter gene, so that breeding β1i-/- and β5i-/- mice with each other 

would not likely result in a double knockout and leave TAP1 unaffected. 

However, Kincaid et al. used a sequential deletion strategy to first generate 

β1i/β5i doubly deficient mice, which were then bred to β2i-/- mice to generate the 

triply deficient mice. APCs from these mice display profound defects in MHC 

class I antigen presentation, defects that are much more severe than those 

previously described in β1i, β2i, or β5i single knockout mice. These findings 

suggest that there may be functional overlap between the immunosubunits, and 

that the crucial role of immunoproteasomes in MHC class I antigen presentation 

has been obscured or underestimated by the use of mice deficient in only one 

immunosubunit. Triply deficient mice have an approximately 50% reduction in 

surface levels of MHC class I (160). This is likely due to a reduction in the supply 

of peptides available to bind to MHC class I molecules within the cell, rather than 

a defect in MHC class I expression itself. Of note, a similar 50% reduction of 
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MHC class I surface expression is also observed in β5i-/- mice, but not mice 

lacking either β1i or β2i, probably because β5i-/- mice have a more severe defect 

in immunoproteasome assembly than β1i-/- or β2i-/- mice (161). Presentation of 

nearly all MHC class I epitopes examined is significantly decreased in 

immunosubunit triply deficient mice both in vitro and in vivo. During LCMV 

infection, triply deficient mice display substantially weaker CD8 T cell responses 

than wild-type mice. This is due to defects in antigen presentation (and not to 

pleiotropic effects on T cells), because weaker T cell responses are also 

observed in wild-type T cells transferred into triply deficient mice. MHC class II 

epitope presentation and CD4+ T cell responses are similar in wild-type and triply 

deficient mice, suggesting that the immunoproteasome does not affect 

processing of MHC class II antigens. It remains to be seen whether complete 

immunoproteasome deficiency (and the resulting substantially weaker CD8 T cell 

response) affects viral replication or other virus-induced inflammatory responses, 

such as cytokine production.  

In addition to defects in antigen presentation, triply deficient mice have a 

peptide repertoire that substantially differs from wild-type or singly deficient mice 

(160). Only about 50% of the peptides presented on MHC class I molecules are 

shared between wild-type and triply deficient mice. This difference is significant 

enough that wild-type cells are rejected when transplanted into triply deficient 

mice, but not vice versa, suggesting that the triply deficient mice are not tolerant 

of epitopes generated by immunoproteasomes in wild-type mice. Although the 
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finding is intriguing, this study was not the first to demonstrate rejection of wild-

type cells in immunoproteasome-deficient mice. 

Two previous studies made similar findings in mice missing only one or 

two immunosubunits. Toes et al. analyzed the peptides generated by 

proteasomes from wild-type and β5i-/- B cells using the protein enolase-1 as an 

unmodified substrate (162). In comparing peptides from the two mouse strains, 

the authors concluded that approximately 50% of cleavage fragments were 

produced by the standard proteasome alone, and only 25% of peptides were 

produced by both standard proteasomes and immunoproteasomes. When these 

mice were used in skin grafting experiments, β5i-/- mice rejected skin transplants 

from wild-type mice, but not vice versa. This indicates that wild-type cells, which 

express both standard proteasomes and immunoproteasomes, trigger a CD8 T 

cell response in the β5i-/- mice, which express standard proteasomes only (or 

possibly also a minor population of mixed proteasomes). Transplanting β5i-/- cells 

into wild-type mice does not trigger the same response, however, because all of 

the peptides presented by β5i-/- cells are shared by wild-type cells. Expanding on 

these findings, de Verteuil et al. performed an analysis of peptides presented on 

MHC class I molecules of DCs from wild-type and β2i-/-β5i-/- mice (163). Their 

results indicate that approximately 15% of MHC class I peptides are completely 

dependent on the immunoproteasome. When β2i-/-β5i-/- mice were immunized 

with wild-type DCs, they generated wild-type-specific CD8 T cells. This again 

suggests that immunoproteasomes generate a unique set of peptides that direct 

CD8 T cell responses.  
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The finding that standard proteasomes and immunoproteasomes generate 

such vastly different peptide repertoires has important implications. Under non-

inflammatory conditions, the peptides presented on DCs (which constitutively 

express both standard proteasomes and immunoproteasomes) will be 

significantly different from the peptides displayed on nonimmune parenchymal 

cells (which express only standard proteasomes). This implies that CD8 T cells 

stimulated by DCs may not efficiently recognize peptides displayed by 

nonimmune cells until immunoproteasomes are induced in those cells by IFN. In 

cells that do not respond to IFN-γ and/or do not express immunoproteasomes, 

such as cells infected with a virus that inhibits IFN-γ signaling, this could 

suppress CD8 T cell responses and contribute to immune evasion. The different 

peptide repertoires observed between standard proteasomes and 

immunoproteasomes also have implications for acute inflammatory responses 

and vaccine design. During LCMV or Listeria monocytogenes infection, standard 

proteasomes in the liver are almost completely replaced by immunoproteasomes 

within the first 7 days of infection, leading to strongly altered proteasome activity 

(164). This suggests that CD8 T cell responses during the acute phase of viral 

and bacterial infection are primarily directed at immunoproteasome-dependent 

epitopes. Vaccines directed against epitopes that are poorly processed by the 

immunoproteasome would likely exhibit a less robust CD8 T cell response and 

not generate optimal protection against a particular pathogen.  

Interestingly, immunoproteasomes assemble approximately four times 

faster than, and show greatly reduced stability relative to standard proteasomes 
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(165). This suggests that immunoproteasome induction is a tightly regulated 

process, in which cytokines induced during the first few days of a viral infection 

signal a pressing need for immunoproteasome activity in the infected tissue. The 

relative instability of immunoproteasomes would provide a means for infected 

cells and tissues to quickly return to a normal state once immunoproteasomes 

are no longer needed, and it may suggest that ongoing or long-term 

immunoproteasome expression could actually be detrimental. 

The role of the immunoproteasome during viral infection is still largely 

undefined, and there is evidence for organ-, virus- and mouse strain-specific 

effects. Further studies are needed, especially with the newly-generated triply 

deficient mice in which immunoproteasome activity is completely absent. Most 

studies examining immunoproteasome function during viral infection have 

focused almost exclusively on the effect of immunoproteasome subunits in 

shaping the repertoire of peptides available for MHC class I processing, and thus 

the hierarchy of CD8 T cell responses. However, the main function of the 

immunoproteasome during viral infection may actually be independent of the 

MHC class I antigen processing pathway. This is supported by the fact that B and 

T cells, which do not generally have a significant role as antigen-presenting cells 

(via MHC class I), express immunoproteasomes. A number of studies have 

suggested major roles for the immunoproteasome in T cell proliferation and 

survival, and there are hints from β1i-/- mice that the immunoproteasome is also 

important for B cell development, as described above.  
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Accumulating evidence suggests that the immunoproteasome is critical for 

the removal of oxidized proteins and adaptation to oxidative stress (56, 72, 166-

169). During coxsackievirus B3 (CVB3)-induced myocarditis, β5i-/- mice 

developed more severe myocardial tissue damage compared to wild-type mice 

(143). This was not due to a direct effect on viral replication. It is interesting to 

note that CD8 T cell responses in the heart, as measured by flow cytometry and 

immunohistochemistry, were equivalent or even slightly enhanced in β5i-/- mice 

after CVB3 infection, suggesting that severe tissue damage in β5i-/- mice was not 

due to an alteration in the CD8 T cell response. Rather, cardiomyocytes and 

inflammatory cells from β5i-/- mice showed increased accumulation of poly-

ubiquitinated protein conjugates and oxidant-damaged proteins following 

treatment with IFN-γ. Hearts from CVB3-infected β5i-/- showed significant 

apoptotic cell death compared to infected wild-type mice. These findings suggest 

that the immunoproteasome protects cells from cytokine-induced proteotoxic 

stress by removing polyubiquitinated or oxidant-damaged proteins. Whether this 

role for the immunoproteasome is unique to CVB3-induced myocarditis or can be 

applied to other viral infections and disease states is unknown.  

A recent study has suggested a new role for immunoproteasomes in 

maintaining cellular homeostasis (130). Raule et al. demonstrated that 26S 

immunoproteasomes degrade basic proteins at 4-6-fold higher rates compared to 

26S standard proteasomes. This effect is observed specifically for proteins with a 

basic isoelectric point (high content in lysine and arginine residues), and not for 

neutral proteins. Histones, in particular, are extremely basic. Stimulation of cells 
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with proinflammatory cytokines induces transcription of hundreds of genes 

through multiple regulatory pathways (170, 171). Accumulation of free histones 

released from these sites of transcription could result in genomic instability and 

transcriptional inhibition (172). The ability of immunoproteasomes to remove 

excess free histones more efficiently than standard proteasomes could be an 

important mechanism by which immunoproteasomes maintain cellular 

homeostasis under conditions of stress and inflammation. This also suggests an 

additional reason for why CVB3-infected β5i-/- mice display increased cellular 

damage and apoptotic cell death in heart tissue compared to wild-type mice. 

Perhaps β5i-/- mice are unable to cope with the combined accumulation of 

oxidant-damage proteins and excess free histones in response to cytokine-

induced stress and transcriptional activation. 

Few studies have examined the effect of immunoproteasome deficiency 

on inflammation and protection of cells from virus- or cytokine-induced death 

during viral infection. It would be interesting to extend studies with influenza, 

MCMV, LCMV, or other viruses to assess the role of the immunoproteasome in 

other aspects of the inflammatory response besides the generation of virus-

specific epitopes for CD8 T cell responses.  

 

Pathogen Interaction with the Immunoproteasome 

 Components of many pathogens have been shown to interact with the 

immunoproteasome pathway. Perhaps not surprisingly, many of these pathogens 

establish chronic or persistent infections. Interference with the 
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immunoproteasome pathway may be a common mechanism by which these 

pathogens inhibit CD8 T cell responses, either during acute infection to establish 

persistence or during long-term infection to evade the immune system.  

HIV-1 inhibits immunoproteasome function, likely by a number of 

mechanisms (41). Expression of viral p24 downregulates PA28β, β2i, and β5i in a 

DC line (JAWS II) and primary DCs. Exposure of those cell lines to HIV-1 p24 

leads to a decrease in antigen presentation that can be overcome by 

pretreatment of cells with IFN-γ (such that the immunoproteasome is already 

upregulated by the time of p24 addition) (173). HIV-1 Tat protein interacts with 

six β subunits of the standard 20S proteasome, as well as the immunosubunits 

β2i and β5i, to decrease catalytic activity (174). Tat also binds to two α subunits, 

α4 and α7, preventing interaction of PA28 with the 20S core (175).  

 The HCV non-structural protein NS3 directly binds to β5i and reduces 

immunoproteasome activity (176). Downregulation of immunoproteasome 

protease activity has been suggested as a mechanism by which HCV could 

interfere with processing of viral antigens for presentation on MHC class I and 

could avoid host immune surveillance during persistent infection.  

Human adenovirus E1A interacts with the immunoproteasome subunit β2i, 

but not its constitutive counterpart β2. E1A expression (either through adenovirus 

infection or transient transfection) prevents IFN-γ-induced upregulation of 

immunoproteasome subunit expression by interfering with STAT1 

phosphorylation (177). Adenoviruses have developed many other pre- and post-

translational strategies to interfere with MHC class I processing and presentation 



 106 

that are independent of direct interactions of viral proteins and 

immunoproteasome subunits (reviewed in (178)). 

Both HCMV and MCMV inhibit IFN-γ-induced immunoproteasome 

formation in fibroblasts in vitro (179). Inhibition of immunoproteasome formation 

occurs at a pretranscriptional level, because transcriptional upregulation of 

PA28α/β, as well as all three immunosubunits, is impaired. When cells are 

infected with an MCMV virus lacking M27, a gene that encodes a STAT2 inhibitor 

that interferes with IFN-γ receptor signaling, immunoproteasome expression is no 

longer inhibited.  

 Infection of HeLa cells with the protozoan Trypanosoma cruzi 

downregulates IFN-γ-induced biosynthesis of virtually all components of the MHC 

class I pathway, including all three immunosubunits, the immunoproteasome 

regulatory subunit PA28β, plus TAP1 and MHC class I. T cruzi infection also 

decreases proteolytic activity of the immunoproteasome. This was attributed to 

an unknown posttranscriptional mechanism that inhibits expression of 

components of the MHC class I pathway, probably a parasite component that 

inhibits IFN signaling (180). However, an earlier study concluded that T. cruzi 

reduces IFN-γ-mediated immunoproteasome expression in macrophages through 

release of reactive oxygen species (ROS), which leads to inhibition of protein 

tyrosine phosphatase activity (181). This in turn activates c-Jun/AP-1 signaling, 

which has been previously shown to negatively regulate MHC class I expression 

(182). It therefore seems possible that T. cruzi has developed multiple ways to 
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inhibit IFN-γ-induced immunoproteasome formation, or that mechanisms of 

inhibition vary between cell types.  

 

Conclusions 

CD8 T cells often play significant roles during viral infection. In 

endogenous antigen presentation, the proteasome is crucial for the generation of 

antigenic peptides for binding to MHC class I and promoting CD8 T cell 

responses. The immunoproteasome is a specialized type of proteasome with 

altered peptide cleavage properties that is constitutively expressed in 

hematopoietic cells and induced in nonimmune cells under conditions of 

inflammation. Evidence suggests that the immunoproteasome may play an 

important role during viral infection through regulation of CD8 T cell responses, 

activation of the NF-κB pathway, and management of oxidative stress. Many 

pathogens have mechanisms of interfering with MHC class I processing, 

including direct interaction with immunoproteasome subunits. It is essential to 

better understand the role of the immunoproteasome in different cell types, 

tissues, and hosts in the context of diverse inflammatory states. An improved 

understanding of the mechanisms of immunoproteasome function could aid in 

the development of vaccines and treatment strategies for viral infections. 
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Chapter 4:  
Prostaglandin E2 Induction During Mouse Adenovirus Type 1 Respiratory 
Infection Regulates Inflammatory Mediator Generation but Does not Affect 

Viral Pathogenesis 
 

Abstract 

Respiratory viruses cause substantial disease and are a significant 

healthcare burden. Virus-induced inflammation can be detrimental to the host, 

causing symptoms during acute infection and leading to damage that contributes 

to long-term residual lung disease. Prostaglandin E2 (PGE2) is a lipid mediator 

that is increased in response to many viral infections, and inhibition of PGE2 

production during respiratory viral infection often leads to a decreased 

inflammatory response. We tested the hypothesis that PGE2 promotes 

inflammatory responses to mouse adenovirus type 1 (MAV-1) respiratory 

infection. Acute MAV-1 infection increased COX-2 expression and PGE2 

production in wild type mice. Deficiency of the E prostanoid 2 receptor had no 

apparent effect on MAV-1 pathogenesis. Virus-induced induction of PGE2, IFN-γ, 

CXCL1, and CCL5 was reduced in mice deficient in microsomal PGE synthase-1 

(mPGES-1-/- mice). However, there were no differences between mPGES-1+/+ 

and mPGES-1-/- mice in viral replication, recruitment of leukocytes to airways or 

lung inflammation. Infection of both mPGES-1+/+ and mPGES-1-/- mice led to 

protection against reinfection. Thus, while PGE2 promotes the expression of a 
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variety of cytokines in response to acute MAV-1 infection, PGE2 synthesis does 

not appear to be essential for generating pulmonary immunity. 

 

Introduction 

Eicosanoids are lipid mediators generated by the release of arachidonic 

acid from cell membrane phospholipids in response to diverse stimuli. 

Prostaglandins (PGs) are derived from the oxidation of arachidonic acid by 

cyclooxygenase (COX) enzymes. Modification of arachidonic acid by COX forms 

the unstable intermediate molecule PGH2, which is converted by specific 

synthases to form various PGs such as thromboxane, PGD2, PGE2, PGF2α, and 

prostacyclin (PGI2). At least three different synthases have been shown to 

catalyze the conversion of PGH2 to PGE2 in vitro: microsomal prostaglandin E2 

synthase (mPGES)-1, mPGES-2, and cytosolic PGES (cPGES/p23) (1-3). 

However, neither mPGES-2 nor cPGES is required for in vivo PGE2 synthesis (4-

6) and mPGES-1 is solely responsible for both basal and inducible PGE2 levels 

in vivo (7, 8).  

PGE2 regulates immune function in many ways that are likely to affect viral 

pathogenesis ((reviewed in ref. 9)). For example, PGE2 promotes inflammation 

through vasodilatory mechanisms, leading to edema and facilitating passive 

leukocyte recruitment. Additionally, PGE2 augments production of the 

proinflammatory cytokine IL-6 by leukocytes (10) and airway epithelial cells (11). 

In regard to adaptive immunity, PGE2 exerts an immunosuppressive effect at 

high concentrations by inhibiting production of the Th1 cytokines interferon 



 124 

(IFN)-γ and IL-12 (12, 13). However, nanomolar concentrations of PGE2 enhance 

Th1 cytokine secretion and differentiation in vivo (14, 15). PGE2 plays an 

important role in optimal antibody synthesis. COX inhibitors suppress antibody 

production in activated human B lymphocytes (16, 17), and PGE2 can act on 

uncommitted B lymphocytes to promote isotype switching to IgE or IgG1 (18-20). 

PGE2 production increases in vitro and in vivo in response to many respiratory 

viruses, including respiratory syncytial virus (RSV) (21-24), influenza (25-27), 

human cytomegalovirus (28) and rhinovirus (29). During RSV or influenza 

infection, pharmacologic inhibition of COX enzymes or a genetic deficiency of 

COX-2 decreases virus induction of pro-inflammatory cytokine production and 

pulmonary inflammation (22, 30).  

Adenoviruses are non-enveloped double-stranded DNA viruses that are 

common causes of respiratory infection (31). HAdV-5 and recombinant HAdV-5-

based vectors induce COX-2 expression and PGE2 release in murine fibroblasts 

(32) and in human primary synovial fibroblasts (33) in vitro, respectively. 

However, little else is known about the role of PGE2 in the pathogenesis of 

adenoviruses or other viruses that commonly cause respiratory infection. Since 

species-specificity of adenoviruses complicates animal studies with a human 

adenovirus, we previously established mouse adenovirus type 1 (MAV-1, also 

known as MAdV-1) as a model to study the pathogenesis of adenovirus 

respiratory infection in the natural host of the virus (34-40). Antibodies have a 

crucial role in preventing severe disseminated MAV-1 infection. Mice lacking B 

cells or Bruton’s tyrosine kinase (Btk) have increased susceptibility to MAV-1, 
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and antiserum from immune Btk+/+ mice protects Btk-/- mice (41). T cells cause 

acute immunopathology and are required for long-term host survival following 

intraperitoneal (i.p.) MAV-1 infection. We previously demonstrated that lung viral 

loads in mice rechallenged with MAV-1 28 days following primary infection 

remain at or below the limit of detection (35), indicating that adaptive immune 

responses to MAV-1 are protective. 

 Because previous studies of other respiratory viruses used COX-deficient 

animals or COX inhibition, their results could be attributed to deficiency of PGE2 

or other COX-derived mediators. We hypothesized that PGE2 production is 

necessary for the appropriate coordination of inflammatory responses after 

adenovirus respiratory infection. To test this hypothesis, we evaluated the role of 

PGE2 after MAV-1 respiratory infection using mice deficient in the terminal PGE2 

synthase, mPGES-1. Consistent with our hypothesis, induction of pro-

inflammatory cytokines was reduced in mPGES-1-deficient mice following MAV-1 

infection compared to mPGES-1+/+ mice. However, PGE2 deficiency did not affect 

virus-induced lung inflammation, viral replication, or the development of 

protective immunity in this model. 

 

Results 

Induction of COX-2 expression and PGE2 production by MAV-1 in vivo  

To investigate whether MAV-1 respiratory infection induces COX-2 

expression and PGE2 production in vivo, we infected wild-type (mPGES-1+/+) 

mice intranasally (i.n.) with MAV-1 and harvested bronchoalveolar lavage (BAL) 
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cells and lung tissue at times corresponding to early infection (4 days post 

infection, dpi), the peak of viral replication at 7 dpi (34, 35), and later times (14 

and 21 dpi) corresponding to clearance of virus from the lungs. Because 

inflammatory stimuli, including infection with a variety of pathogens, are 

frequently associated with upregulated COX-2 expression (42-46), we first used 

reverse transcriptase quantitative real-time PCR (RT-qPCR) to measure COX-2 

mRNA levels following MAV-1 infection. COX-2 mRNA was significantly 

increased in the lungs and BAL cells of infected mice compared to mock infected 

mice at 7 dpi and decreased to baseline levels seen in mock infected mice by 14 

dpi (Figure 4-1A,B). Although it was detected in both mock infected and infected 

mice, COX-1 expression was not upregulated by MAV-1 infection (data not 

shown). PGE2 concentrations measured in lung homogenates steadily increased 

after infection, with significantly elevated levels at 14 and 21 dpi (Figure 4-1C, 

mPGES-1+/+ mice). These data demonstrate that acute MAV-1 infection 

increases COX-2 mRNA and induces PGE2 production in the lung.  

 

Effects of EP2 deficiency on MAV-1 respiratory infection  

The physiological effects of PGE2 depend on its activation of four distinct 

cell membrane-associated G protein-coupled E prostanoid (EP) receptors (47). 

PGE2 inhibits alveolar macrophage (AM) phagocytosis via EP2 activation and 

subsequent increases in cAMP (48), and PGE2 also inhibits bacterial killing by 

AMs and reactive oxygen intermediate generation by AMs in an EP2/EP4- and 

cAMP-dependent manner (49). The inhibitory effects of PGE2 on host  
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Figure 4-1. Induction of lung COX-2 expression and PGE2 production.  

Mice were infected i.n. with MAV-1 (grey bars) or mock infected (white bars) with 
conditioned media. A-B) RNA was extracted from BAL cells or lungs harvested at 
the indicated time points and RT-qPCR was used to quantify COX-2 expression, 
which is expressed in arbitrary units. C) ELISA was used to quantify PGE2 
concentrations in lung homogenates from both mPGES-1+/+ and mPGES-1-/- 
mice at the indicated time points. Combined data from n=8-9 (for BAL COX-2), 
n=5-23 (for lung COX-2) and n=3-5 (for ELISA) mice per group are presented as 
means ± S.E.M. Statistical comparisons were made using two-way ANOVA 
followed by Bonferroni’s multiple comparison tests. *P<0.05, **P<0.01 and 
***P<0.001, comparing mock to MAV-1 for a given genotype. †††P< 0.001, 
comparing genotypes within the same condition. 
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inflammatory responses have been linked to signaling through EP2 and EP4 

(50), and PGE2 signaling through EP2 suppresses clearance from the lungs of 

Pseudomonas aeruginosa (45) and Streptococcus pneumoniae (47). To  

determine whether PGE2 has a similar effect on control of MAV-1 infection or 

modulation of MAV-1-induced lung inflammation, we first studied acute MAV-1 

respiratory infection in EP2-deficient (EP2-/-) mice. Following i.n. infection with 

MAV-1, no deaths occurred in either EP2-/- or EP2+/+ controls. Lung viral loads 

were comparable in EP2-/- and EP2+/+ mice at 7 dpi (Figure 4-2A), which we have 

previously described as the peak of viral replication in the lungs (34, 35). Viral 

loads were substantially less in both EP2-/- and EP2+/+ mice at 14 dpi, with no 

significant differences between the groups at this time point. 

 Acute MAV-1 respiratory infection induced a moderate pneumonitis in 

EP2+/+ mice, with the accumulation of inflammatory cells around airways and 

hypercellularity in alveolar walls by 7 dpi that decreased somewhat by 14 dpi 

(Figure 4-2C,D). We observed similar patterns of MAV-1-induced inflammation in 

the lungs of EP2-/- mice at both 7 and 14 dpi (Figure 4-2E,F). Pathology index 

scores (Table 4-1) quantifying lung inflammation confirmed that there was not a 

significant difference between EP2+/+ and EP2-/- mice at either time point (Figure 

4-2B). 

 

Effects of mPGES-1 deficiency on MAV-1-induced lung inflammation 

It is possible that redundancy of function between EP2 and EP4, which 

both mediate PGE2-induced increases in cAMP, accounted for the lack of  
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Figure 4-2. Effects of EP2 deficiency on MAV-1 respiratory infection.  

Mice were infected i.n. with MAV-1. A) DNA was extracted from lungs from 
EP2+/+ and EP2-/- mice at the indicated time points. qPCR was used to quantify 
DNA viral loads, which are expressed as copies of MAV-1 genome per 100 ng of 
input DNA. Individual circles represent values for individual mice and horizontal 
bars represent means for each group. B) Pathology index scores were generated 
to quantify cellular inflammation. Combined data from 4 to 6 mice per group are 
presented as means ± S.E.M. C-F) Hematoxylin and eosin-stained sections were 
prepared from paraffin-embedded sections (bottom panels). Scale bars, 100 µm. 
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differences seen between EP2+/+ and EP2-/- mice. To capture the possible 

contributions of PGE2 to MAV-1 pathogenesis without regard to individual 

receptors, we used mice deficient in mPGES-1. This enzyme is responsible for 

the majority of the conversion of PGH2 to PGE2, so mPGES-1-deficient  

(mPGES-1-/-) mice are almost completely PGE2-deficient (Figure IV-1C and refs. 

7, 51)). This strategy also allows us to assess whether PGE2 may influence 

MAV-1 infection via interactions with EP1 or EP3 receptors as well. Consistent 

with this, PGE2 levels in lung homogenates from mPGES-1-/- mice were 

substantially lower than in mPGES-1+/+ control mice and remained unchanged 

after MAV-1 infection (Figure 4-1C). We did not detect any compensatory 

increase in mRNA levels of mPGES-2 or cPGES in mPGES-1-/- mice compared 

to mPGES-1+/+ controls at baseline before infection or at any time after infection 

(data not shown). 

Decreased PGE2 production is associated with decreased virus-induced 

cytokine production following influenza virus infection of COX-2-/- mice or mice 

treated with the COX-2 inhibitor celecoxib (30, 52). We hypothesized that PGE2 

promotes virus-induced cytokine and chemokine production following MAV-1 

infection. To determine whether PGE2 deficiency in mPGES-1-/- mice affected 

MAV-1-induced cytokine responses, we measured mRNA and protein levels of 

cytokines and chemokines that are commonly induced by MAV-1 infection (34, 

35). At 7 dpi, IFN-γ mRNA was significantly increased in lungs of infected mice 

compared to mock-infected mice, although induction did not differ between 

mPGES-1+/+ and mPGES-1-/- mice (Figure 4-3A). MAV-1 infection induced similar 
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increases of TNF-α mRNA in mPGES-1+/+ and mPGES-1-/- mice at 7 and 14 dpi 

(Figure 4-3B). At 7 and 14 dpi, lung CCL5 mRNA was significantly increased 

after infection, although the magnitude of induction was similar in mPGES-1+/+ 

and mPGES-1-/- mice (Figure 4-3C). The kinetics and magnitude of CXCL1 

mRNA were similar in infected mPGES-1+/+ and mPGES-1-/- mice, with maximal 

induction occurring at 7 dpi (Figure 4-3D). 

For each cytokine examined, peak induction of protein in BALF occurred 

at 7 dpi and protein levels then decreased over time, returning to baseline by 21 

dpi. Peak IFN-γ protein concentrations were detected at 7 dpi in BALF from both 

infected mPGES-1+/+ and mPGES-1-/- mice, but the amount of IFN-γ protein was 

significantly less in mPGES-1-/- mice than in mPGES-1+/+ mice (Figure 4-3E). By 

14 dpi, IFN-γ in both mPGES-1+/+ and mPGES-1-/- mice decreased to baseline 

levels. We did not detect changes of IL-4 protein in BALF at any time point (data 

not shown), suggesting that PGE2 deficiency did not result in Th2 skewing 

following MAV-1 infection. Concentrations of TNF-α protein in BALF were also 

less in infected mPGES-1-/- mice than in mPGES-1+/+ mice at 7 dpi, although this 

difference was not statistically significant (Figure 4-3F). TNF-α protein 

concentrations in BALF returned to baseline by 14 dpi. CCL5 protein induction 

was also lower in infected mPGES-1-/- mice compared to infected mPGES-1+/+ 

mice at 7 and 14 dpi, although the difference was only statistically significant at 7 

dpi (Figure 4-3G). At 7 dpi, concentrations of CXCL1 protein in BALF were less in 

infected mPGES-1-/- mice than in mPGES-1+/+ mice (Figure 4-3H). By 14 dpi, 

CXCL1 decreased to baseline levels in both mPGES-1+/+ and mPGES-1-/- mice.  
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Figure 4-3. Effects of mPGES-1 deficiency on MAV-1-induced cytokine 
production. 

mPGES-1+/+ and mPGES-1-/- mice were infected i.n. with MAV-1 or mock 
infected with conditioned media. A-D) RNA was extracted from lungs harvested 
at the indicated time points and RT-qPCR was used to quantify cytokine 
expression, which is shown in arbitrary units. E-H) ELISA was used to quantify 
cytokine concentrations in BALF at the indicated time points. Combined data 
from 3 to 5 mice per group are presented as means ± S.E.M. Statistical 
comparisons were made using two-way ANOVA followed by Bonferroni’s multiple 
comparison tests. **P<0.01  
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To determine whether these effects on proinflammatory cytokines and 

chemokines correlated with changes in other measures of virus-induced lung 

inflammation, we enumerated leukocytes in BALF obtained from mPGES-1+/+ 

and mPGES-1-/- mice after infection. There were no statistically significant  

differences between infected mPGES-1+/+ and mPGES-1-/- mice in the numbers 

or types of leukocytes in BALF at any time point examined (data not shown). 

Next, we evaluated MAV-1-induced cellular inflammation in the lungs of 

mPGES-1+/+ and mPGES-1-/- mice. As we have previously described (34, 35), we 

observed focal areas of inflammation surrounding medium and large airways, 

accompanied by scattered interstitial infiltrates in both mPGES-1+/+ and 

mPGES-1-/- mice (Figure 4-4A). Lung inflammation peaked at 7 dpi and became 

somewhat less pronounced by 14 dpi. By 21 dpi, cellular inflammation had 

largely resolved in both mPGES-1+/+ and mPGES-1-/- mice. We used pathology 

index scores (Table 4-1) to quantify lung inflammation. Pathology scores were 

greater in infected mice than in mock infected controls at 7 and 14 dpi, when 

inflammation was greatest (Figure 4-4B). There were no statistically significant 

differences in pathology index scores measured in mPGES-1+/+ and mPGES-1-/- 

mice at any time. 

It is possible that mPGES-1 deficiency could result in shunting of the 

COX-derived intermediate PGH2 to other synthases such as the prostaglandin I2 

(PGI2) synthase, leading to increased production of the next most abundant COX 

pathway product, PGI2. Because PGI2 signaling through the IP receptor also 

involves increases in intracellular cAMP, PGI2 overproduction could potentially  
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Figure 4-4. Effects of mPGES-1 deficiency on MAV-1-induced lung inflammation.  

mPGES-1+/+ and mPGES-1-/- mice were infected i.n. with MAV-1 or mock 
infected with conditioned media. Lungs were harvested at the indicated time 
points. A) Hematoxylin and eosin-stained sections were prepared from paraffin-
embedded sections. Scale bars, 100 µm. B) Pathology index scores were 
generated to quantify cellular inflammation. Combined data from 3 to 6 mice per 
group are presented as means ± S.E.M. 
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compensate for PGE2 deficiency in our model. To determine whether this was 

the case, we measured concentrations of the PGI2 metabolite 6-keto-PGF1α in 

lung homogenates before and after infection. We observed small but insignificant 

increases of 6-keto-PGF1α in both mPGES-1+/+ and mPGES-1-/- mice after 

infection compared to mock infected mice. However, there were no significant  

differences between 6-keto-PGF1α concentrations in mPGES-1+/+ and 

mPGES-1-/- mice at any time point (data not shown). This suggests that PGI2 

overproduction does not substantially compensate for any effect of PGE2 

deficiency in mPGES-1-/- mice infected with MAV-1.  

 

Effects of mPGES-1 deficiency on susceptibility to MAV-1  

PGE2 deficiency in mPGES-1-/- mice was associated with less production 

of IFN-γ and other cytokines in the airways of infected mice (Figure 4-3). To 

determine whether these differences correlated with increased susceptibility to 

MAV-1 infection, we used qPCR to quantify viral loads in the lungs and other 

target organs. Virus was detectable in the lungs by 4 dpi, and viral loads peaked 

at 7 dpi in both mPGES-1+/+ and mPGES-1-/- mice (Figure 4-5). Lung viral loads 

decreased substantially in both mPGES-1+/+ and mPGES-1-/- mice at 14 and 21 

dpi, consistent with clearance of virus from the lungs in both groups (Figure 4-5). 

There were no statistically significant differences in lung viral loads measured in 

mPGES-1+/+ mice compared to mPGES-1-/- mice at any time point. Likewise, 

there were no statistically significant differences in viral loads measured in the 

brains and spleens of mPGES-1+/+ mice compared to mPGES-1-/- mice at any  
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Figure 4-5. Effects of mPGES-1 deficiency on MAV-1 viral loads.  

mPGES-1+/+ and mPGES-1-/- mice were infected i.n. with MAV-1 or mock 
infected with conditioned media. DNA was extracted from lungs harvested at the 
indicated time points. qPCR was used to quantify MAV-1 genome copies in lung 
DNA. DNA viral loads are expressed as copies of MAV-1 genome per 100 ng of 
input DNA. Individual circles represent values for individual mice and horizontal 
bars represent means for each group. 
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time point (data not shown). Collectively, these data suggest that PGE2 

deficiency does not affect the control of viral replication in the lungs during acute 

infection, clearance of virus from the lungs, or dissemination of virus to other 

target organs. 

 

Effect of the nonselective COX inhibitor indomethacin on MAV-1 infection 

 To determine whether COX-derived products other than PGE2 contribute 

to MAV-1-induced inflammatory responses, we infected mice i.n. with 105 pfu 

MAV-1 and treated mice daily with an i.p. injection of indomethacin as previously 

described (53) and then harvested samples at 7 d.p.i. Indomethacin treatment 

reduced lung PGE2 concentrations by approximately 30% in infected mice (data 

not shown). Unlike our findings in mPGES-1-/- mice, treatment of MAV-1-infected 

mice with indomethacin did not affect virus-induced production of IFN-γ, CXCL1, 

CCL5, or TNF-α (Figure 4-6A and data not shown). Likewise, indomethacin did 

not affect the development of lung pathology after MAV-1 infection (Figure 4-6B) 

or MAV-1 lung viral loads (Figure 4-6C). 

 

Adaptive immunity to MAV-1 is not substantially affected by PGE2 deficiency  

PGE2 has a variety of effects on T and B cell function that are likely to 

affect the development of adaptive immunity and subsequent protection from 

secondary infection. Because of the various effects of PGE2 on T and B 

lymphocyte function, we reasoned that PGE2 deficiency might inhibit appropriate 

adaptive immune responses to MAV-1 infection. To examine this, we infected or  
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Figure 4-6. Effects of COX inhibition on MAV-1 respiratory infection.  

Wild type mice were infected i.n. with MAV-1 or mock infected with conditioned 
media. Mice were treated daily with indomethacin (1.2 mg/kg given i.p.) or 
vehicle control until samples were harvested at 7 d.p.i. A) ELISA was used to 
quantify IFN-γ concentrations in BALF. Combined data from 4 to 5 mice per 
group are presented as means ± S.E.M. B) Pathology index scores were 
generated to quantify cellular inflammation in lungs. Combined data from 4 to 5 
mice per group are presented as means ± S.E.M. C) DNA was extracted from 
lungs and qPCR was used to quantify MAV-1 genome copies in lung DNA. DNA 
viral loads are expressed as copies of MAV-1 genome per 100 ng of input DNA. 
Individual circles represent values for individual mice and horizontal bars 
represent means for each group. 
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mock infected mPGES-1+/+ and mPGES-1-/- mice i.n. with 105 p.f.u. of MAV-1 and 

then rechallenged them with virus or conditioned media at 28 dpi. We measured 

lung viral loads at 7 days after the second challenge, using protection (lower lung 

viral loads following rechallenge) as a marker of adaptive immune function. Virus 

was readily detectable in mPGES-1+/+ mice that were originally mock infected  

and then infected with virus 28 days later (Figure 4-7A). mPGES-1+/+ mice that 

were initially infected with virus and then rechallenged with virus at 28 dpi had 

viral loads that were significantly lower than viral loads measured in mice that 

were initially mock infected and then infected with virus 28 days later (Figure 

4-7A). This suggests that mPGES-1+/+ mice were capable of generating a 

protective adaptive immune response. When we rechallenged mPGES-1-/- mice, 

we observed protection equivalent to that observed in mPGES-1+/+ mice (Figure 

4-7A). 

To verify that this experimental design could demonstrate a difference in 

adaptive immune responses, we performed a similar rechallenge experiment 

using Aβ-/- (MHC II-deficient) mice. Following primary infection, lung viral loads in 

Aβ-/- mice were approximately 1 log unit higher than in Aβ+/+ mice at 7 dpi (Figure 

4-7B). While lung viral loads were slightly lower in Aβ-/- mice rechallenged with 

virus than in Aβ-/- mice following primary infection, this difference was 

substantially less than the corresponding difference in Aβ+/+ mice (Figure 4-7B). 

As expected, the data from these rechallenge experiments indicate that MHC II 

(and thus CD4 T cells) are required for the development of protective immunity to 

MAV-1. Although subtle effects of PGE2 deficiency on specific aspects of T or B  
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Figure 4-7. Protective immunity to MAV-1 infection.  

A) mPGES-1-/- and B) Aβ-/- mice, along with appropriate mPGES-1+/+ and Aβ+/+ 
controls, were infected i.n. with MAV-1 or mock infected with conditioned media. 
At 28 dpi, mice were re-infected i.n. with MAV-1 and lungs were harvested at 7 
dpi. DNA was extracted from lungs and qPCR was used to quantify DNA viral 
loads, which are expressed as copies of MAV-1 genome per 100 ng of input 
DNA. Individual circles represent values for individual mice and horizontal bars 
represent means for each group. Statistical comparisons were made using the 
Mann-Whitney rank sum test for differences between conditions within a given 
genotype. *P<0.05 and **P<0.01 
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lymphocyte function remain possible, these data suggest that PGE2 does not 

make substantial contributions to adaptive immune responses that are required 

for protection against MAV-1 respiratory infection. 

 

Discussion 

The expression of COX-2 and production of PGE2 increases in response 

to acute respiratory infection with several viruses (21-29). Previous studies have 

typically used COX inhibition or COX-deficient animals to study contributions of 

PGE2 to viral pathogenesis. Because these strategies affect all COX-derived 

mediators, specific roles played by PGE2 during viral respiratory infection remain 

unclear. In this study, we demonstrate that acute MAV-1 respiratory infection also 

induces COX-2 expression and PGE2 production in the lungs. PGE2 regulates 

immune function in many ways that could potentially affect viral pathogenesis. 

Inhibition of PGE2 production during respiratory viral infection with RSV or 

influenza leads to decreased pro-inflammatory cytokine production and 

decreased pulmonary inflammation (22, 30). Based on these previous studies, 

we hypothesized that PGE2 coordinates inflammatory responses during 

adenovirus respiratory infection. Using mPGES-1-deficient mice, we 

demonstrated that PGE2 promoted the production of some inflammatory 

cytokines during MAV-1 infection. However, we were surprised to find no 

evidence that PGE2 regulated viral replication, inflammatory cell accumulation, 

inflammatory cell composition, or development of protective adaptive immune 

responses. 
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Our results differ from what has been observed with other respiratory 

viruses. For example, inhibition of PGE2 production during influenza or RSV 

infection has significant effects on virus-induced inflammatory responses. During 

influenza infection, treatment of mice with the COX-2 inhibitor celecoxib 

suppresses virus-induced production of proinflammatory cytokines in the lungs, 

although it does not affect viral titers or disease severity (52). Treatment of 

influenza-infected mice with COX inhibitors results in improved lung function and 

reduced immunopathology (54). In our study, treatment with the nonselective 

COX inhibitor indomethacin did not affect virus-induced lung pathology or 

cytokine production (Figure 4-6A,B), despite decreasing PGE2 levels. This lack of 

effect again suggest differences between the role of PGE2 and other COX-

derived mediators in MAV-1 pathogenesis compared to other viruses, although it 

may also reflect an incomplete suppression of PGE2 production by drug 

treatment. Genetic COX-2 deficiency has a more pronounced effect on influenza-

induced disease than does pharmacologic inhibition, because COX-2-/- mice 

have reduced mortality, inflammation and cytokine responses after influenza 

infection compared to wild-type control mice (30). Treatment of RSV-infected 

airway epithelial cells with the COX-2 inhibitors NS-398 or celecoxib reduces 

production of virus particles and proinflammatory cytokines in vitro (21), although 

COX inhibition does not appear to significantly affect RSV replication in vivo. 

Similar to the effects of COX inhibition in influenza-infected mice, COX inhibition 

results in decreased lung pathology in RSV-infected cotton rats (22).  



 143 

Our results showing reduced production of proinflammatory cytokines after 

MAV-1 infection of mPGES-1-deficient mice are similar to the effects of COX 

inhibition during influenza or RSV infection. This supports a role for PGE2 in 

promoting proinflammatory cytokine production in the lung during viral infection. 

However, unlike studies using COX inhibition during influenza or RSV infection, 

we did not observe a substantial effect of PGE2 deficiency on MAV-1-induced 

lung pathology. This suggests that the effects on lung pathology observed with 

COX inhibition during influenza or RSV infection could be due to decreased 

production of another COX-derived eicosanoid such as thromboxane, PGD2, 

PGF2, and PGI2. Interestingly, levels of PGE2 in influenza-infected COX-2-/- mice 

are equivalent to levels measured in infected COX-2+/+ control mice (30), further 

supporting the possibility that the effects of COX-2 deficiency on influenza 

pathogenesis may not be solely due to decreased production of PGE2. We 

typically observe host responses to acute MAV-1 respiratory infection that are 

generally similar to those seen with RSV and influenza infection. However, RNA 

viruses such as RSV and influenza are likely to interact with different pattern 

recognition receptors than a DNA virus such as MAV-1 or the human 

adenoviruses. It is possible that subtle differences in the mechanisms underlying 

the induction of inflammatory responses by these viruses, along with differential 

effects of PGE2 or other eicosanoids on those responses, could account for 

differences between our results with MAV-1 and those with RSV and influenza. 

We used mice deficient in mPGES-1 to specifically characterize the 

effects of reduced PGE2 production on viral replication and host responses to 
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primary MAV-1 infection. Although overproduction of other prostaglandins in the 

absence of mPGES-1 occurs in some models using mPGES-1-deficient mice (7, 

51, 55, 56), we did not detect significant overproduction of PGI2 metabolites in 

mPGES-1-/- mice at baseline or following infection with MAV-1. Therefore, we do 

not believe that overproduction of other prostaglandins compensated for PGE2 

deficiency in our experiments, reducing any potential effect on MAV-1 

pathogenesis. It is possible that other mediators not measured, such as 

leukotrienes, could be compensating for PGE2 deficiency in our model. The use 

of mPGES-1-/- mice instead of pharmacologic inhibition of PGE2 production 

allowed us to study the effects of almost complete PGE2 deficiency. COX or 

mPGES-1 inhibitors do not achieve complete inhibition of enzymatic activity by 

COX or mPGES-1, whereas mPGES-1-/- mice have a complete loss of mPGES-1 

activity and are therefore more completely PGE2-deficient (7, 51). It is possible 

that mice genetically deficient in mPGES-1 could have functional differences in 

the development of the immune system that we have not defined in our 

experiments, possibly establishing compensatory pathways to overcome any 

defects that would have been the result of PGE2 deficiency.  

We have previously demonstrated that MAV-1 induces a Th1 response in 

the lungs of infected mice, with significant upregulation of IFN-γ that peaks at 7 

dpi (35). Some reports have suggested that PGE2 promotes a Th2-polarized 

environment by suppressing production of the Th1 cytokines IFN-γ and IL-12 in 

vitro (12, 13). However, nanomolar concentrations of PGE2 enhance Th1 

cytokine secretion and differentiation in vivo (14, 15). We demonstrated less 
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induction of IFN-γ in mPGES-1-/- mice infected with MAV-1, supporting the notion 

that PGE2 could contribute to an appropriate Th1 response to MAV-1 infection. 

The decreased IFN-γ response observed in mPGES-1-/- mice is likely due to a 

decrease in IFN-γ production by CD4+ and CD8+ T cells, as these cell types are 

the major producers of IFN-γ during MAV-1 respiratory infection (Mary McCarthy 

and Jason Weinberg, unpublished data). Viral loads in mPGES-1-/- mice did not 

differ from those of mPGES-1+/+ mice at 7 dpi despite less induction of IFN-γ in 

mPGES-1-/- mice. We have previously demonstrated that IFN-γ does play some 

role in the control of viral replication (35), but results from that study and from the 

present experiments suggest that other factors are likely able to compensate for 

IFN-γ deficiency to control MAV-1 replication in the lung  

In addition to its contributions to T cell polarization, PGE2 plays an 

important role in promoting antibody synthesis and isotype switching (16-20). 

Due to the potential effects of PGE2 on T cell polarization and B cell antibody 

responses, we hypothesized that PGE2 deficiency might inhibit appropriate 

adaptive immune responses to MAV-1 infection. Total serum IgG levels were 

similar in mPGES-1+/+ and mPGES-1-/- mice (data not shown), suggesting that 

total antibody production in response to MAV-1 infection is unaffected by the 

absence of PGE2. It is possible that virus-specific antibody production and virus-

specific T cell functions were altered by PGE2 deficiency. However, the results of 

our rechallenge experiments, in which both mPGES-1+/+ and mPGES-1-/- mice 

were protected by prior infection, suggest that PGE2 is not likely to substantially 

affect the development of protective immune responses to MAV-1.  
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 COX inhibitors such as acetaminophen and ibuprofen are frequently used 

to alleviate fever and other symptoms in patients with respiratory infections. 

Decreases in RSV- and influenza-induced inflammation in animals treated with 

COX inhibitors or genetically deficient in COX-2 suggest that modulation of virus-

induced PGE2 production may have other benefits for patients with infections 

caused by some viruses. Our results with MAV-1 infection of PGE2-deficient mice 

suggest that PGE2 promotes MAV-1-induced cytokine production but does not 

have a dramatic effect on MAV-1-induced lung inflammation or control of viral 

replication. A more generalized inhibition of eicosanoids in addition to PGE2 may 

be necessary to achieve more pronounced effects on virus-induced inflammatory 

responses. Ultimately, this may provide an attractive approach to limiting damage 

caused by virus-induced inflammation without having a substantial effect on the 

control of viral infection by host immune responses. 

 

Materials and Methods 

Ethics Statement 

All animal work was conducted according to relevant national and 

international guidelines. All animal studies were approved by the University of 

Michigan Committee on Use and Care of Animals (Protocol Number 9054). 

 

Mice 

mPGES-1 heterozygous mice on a DBA1lac/J background (6) were 

originally obtained from Pfizer, Inc. (Groton, CT) and then backcrossed onto a 
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C57BL/6 background. Homozygous mPGES-1-/- mice and homozygous wild type 

mPGES-1+/+ mice derived from the same heterozygous mPGES-1+/- parents were 

bred at the University of Michigan. MHC class II deficient mice (Aβ-/-) (57) were 

purchased from Taconic and bred at the University of Michigan. Adult (4 to 6 

weeks of age) males were used in all experiments. All mice were maintained 

under specific pathogen-free conditions. 

 

Virus and Infections 

MAV-1 was grown and passaged in NIH 3T6 fibroblasts, and titers of viral 

stocks were determined by plaque assay on 3T6 cells as previously described 

(58). Adult mice were anesthetized with ketamine and xylazine and infected 

intranasally (i.n.) with 105 plaque forming units (p.f.u.) of MAV-1 in 40 µl of sterile 

phosphate-buffered saline (PBS). Control mice were mock infected i.n. with 

conditioned media at an equivalent dilution in sterile PBS. Mice were euthanized 

by pentobarbital overdose at the indicated time points. Lungs were harvested, 

snap frozen in dry ice, and stored at -80°C until processed further. In separate 

experiments, mice received an i.p. injection of indomethacin (1.2 mg/kg in PBS) 

or vehicle control (DMSO similarly diluted in PBS) starting on the day of infection 

and then on each day thereafter.  

 

Histology 

Lungs were harvested from a subset of mice and fixed in 10% formalin. 

Prior to fixation, lungs were gently inflated with PBS via the trachea to maintain 
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lung architecture. After fixation, organs were embedded in paraffin, and 5 µm 

sections were obtained for histopathology. Sections were stained with 

hematoxylin and eosin to evaluate cellular infiltrates. All sectioning and staining 

was performed by the Pathology Cores for Animal Research in the University of 

Michigan Unit for Laboratory Management. Slides were viewed through a 

Laborlux 12 microscope (Leitz). Digital images were obtained with an EC3 digital 

imaging system (Leica Microsystems) using Leica Acquisition Suite software 

(Leica Microsystems). Final images were assembled using Adobe Illustrator 

(Adobe Systems). Adjustments to the color balance of digital images were 

applied in Adobe Illustrator equally to all experimental and control images. 

To quantify cellular inflammation in the lungs, slides were examined in a 

blinded fashion to determine a pathology index as previously described (35), 

generating separate scores for the severity of cellular infiltrates around airway 

lumens and interstitial infiltrates (Table 4-1). Each score was multiplied by a 

number reflecting the extent of involvement in the lung (5% to 25% = 1, >25% to 

50% = 2, >50% = 3). The final pathology index was obtained by adding together 

the values for cellular infiltrates around airway lumens and for interstitial 

infiltrates. 

 

Isolation of DNA and RNA 

DNA was extracted from the middle lobe of the right lung using the 

DNeasy® Tissue Kit (Qiagen Inc.). DNA was extracted from approximately one-

fifth of the spleen using the DNeasy® Tissue Kit. For DNA extraction from brain, 
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half of each brain was homogenized using a sterile razor blade, and a portion of 

the homogenate was used to extract DNA using the DNeasy® Tissue Kit. Total 

RNA was extracted from lungs as previously described (38).  

 

Analysis of Viral Loads 

MAV-1 viral loads were measured in organs using quantitative real-time 

polymerase chain reaction (qPCR) as previously described (35, 38). Primers and 

probe used to detect a 59-bp region of the MAV-1 E1A gene are detailed in Table 

4-2. Five µl of extracted DNA were added to reactions containing TaqMan II 

Universal PCR Mix with UNG (Applied Biosystems), forward and reverse primers 

(each at 200 nM final concentration), and probe (200 nM final concentration) in a 

25 µl reaction volume. Analysis on an ABI Prism 7300 machine (Applied 

Biosystems) consisted of 40 cycles of 15 s at 90°C and 60 s at 60°C. Standard 

curves generated using known amounts of plasmid containing the MAV-1 EIA 

gene were used to convert cycle threshold values for experimental samples to 

copy numbers of EIA DNA. Results were standardized to the nanogram (ng) 

amount of input DNA. Each sample was assayed in triplicate. The limit of 

detection of this assay is typically between 101 and 102 copies of MAV-1 genome 

per 100 ng input DNA.  

 

Analysis of Host Gene Expression 

Cytokine gene expression was quantified using reverse transcriptase 

(RT)-qPCR. First, 2.5 µg of RNA were reverse transcribed using MMLV reverse 
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transcriptase (Invitrogen) in 20 µl reactions according to the manufacturer’s 

instructions. Water was added to the cDNA product to bring the total volume to 

50 µl. cDNA was amplified using duplexed gene expression assays for mouse 

CCL5, CXCL1 and GAPDH (Applied Biosystems). Five µl of cDNA were added to 

reactions containing TaqMan Universal PCR Mix and 1.25 µl each of 20X gene 

expression assays for the target cytokine and GAPDH. Primers used to detect 

IFN-γ, TNF-α, COX-1, and COX-2 are described in Table 4-2. For these 

measurements, 5 µl of cDNA were added to reactions containing Power SYBR 

Green PCR Mix (Applied Biosystems) and forward and reverse primers (each at 

200 nM final concentration) in a 25 µl reaction volume. When SYBR green was 

used to quantify cytokine gene expression, separate reactions were prepared 

with primers for mouse GAPDH (Table 4-2, used at 200 nM each). In all cases, 

RT-qPCR analysis consisted of 40 cycles of 15 s at 90°C and 60 s at 60°C. 

Quantification of target gene mRNA was normalized to GAPDH and expressed in 

arbitrary units as 2-ΔCt, where Ct is the threshold cycle and ΔCt = Ct(target) – 

Ct(GAPDH). 

 

Analysis of Inflammatory Cells in Bronchoalveolar Lavage Fluid 

  Mice were euthanized via pentobarbital overdose at the indicated time 

points. Lungs were lavaged three times with the same aliquot of 1 mL sterile PBS 

containing protease inhibitor (complete, Mini, EDTA-free tablets; Roche Applied 

Science). Cells in bronchoalveolar lavage fluid (BALF) were counted using a 

hemocytometer. When RNA was extracted from cells in BALF, the cells pelleted 
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in a tabletop microcentrifuge at 17,000 x g for 10 min at 4°C and then 

resuspended in 0.5 mL of TRIzol® (Invitrogen). RNA was subsequently isolated 

according to the manufacturer’s protocol. 

 

Analysis of Cytokine Protein in Bronchoalveolar Lavage Fluid 

  The remaining cells in BALF were pelleted by centrifugation and 

supernatant was stored at -80°C. Cytokine protein concentrations in supernatant 

were determined by ELISA (Duoset Kits, R&D Systems) according to the 

manufacturer's protocol. 

 

Lung PGE2 Measurements 

Lung tissue was suspended in CelLytic MT (Sigma-Aldrich) containing 

protease inhibitor (complete, Mini, EDTA-free tablets; Roche Applied Science) 

and 10 mM indomethacin (Sigma-Aldrich) at a concentration of 100 mg lung 

tissue per 1 mL homogenization buffer. Tissue was homogenized (MagNA Lyser, 

Roche Applied Science) in 2 x 60 s cycles at high speed (6,000) with 90 s cooling 

between cycles. After homogenization, tissue was spun twice at 17,000 x g for 10 

min at 4°C and supernatant was stored at -80°C until assayed. Samples were 

diluted in PGE2 enzyme immunoassay buffer and quantity of PGE2 was 

determined using PGE2 ELISA Kit (Enzo Life Sciences) according to the 

manufacturer’s protocol. 
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Statistics 

Analysis of data for statistical significance was conducted using Prism 3 

for Macintosh (GraphPad Software, Incorporated). Differences between groups 

at multiple time points were analyzed using two-way analysis of variance 

(ANOVA) followed by Bonferroni's multiple comparison tests. Comparisons 

between two groups at a single time point were made using the Mann-Whitney 

rank sum test. P values less than 0.05 were considered statistically significant.  



 153 

Table 4-1. Quantification of cellular inflammation in histologic specimens. 

 

Scorea Cellular Infiltrates Around 

Airway Lumens 

Interstitial Infiltrates 

0 No infiltrates No infiltrates 

1 1 to 3 cell diameters thick Increased cells visible only 

at high power 

2 4 to 10 cell diameters thick Easily seen cellular 

infiltrates 

3 >10 cell diameters thick Extensive consolidation by 

inflammatory cells 

 

 

aA score from 0 to 3 was given for each of the two categories. The score for each 
category was multiplied by a number reflecting the extent of involvement in the 
specimen (5% to 25% = 1, >25% to 50% = 2, >50% = 3). The final pathology 
index score was obtained by adding together values for each category, resulting 
in a total score that could range from 0 to 18. 
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Table 4-2. Primers and probes used for real-time PCR analysis 

 

Target Oligonucleotide Sequence (5′ to 3′) 

MAV-1 E1A Forward primer GCACTCCATGGCAGGATTCT 

 Reverse primer GGTCGAAGCAGACGGTTCTTC 

 Probe TACTGCCACTTCTGC 

IFN-γ Forward primer  AAAGAGATAATCTGGCTCTGC 

 Reverse primer  GCTCTGAGACAATGAACGCT 

COX-1 Forward primer  CTTCTTAGGGAATCCCATCTG 

 Reverse primer  CTTCAGTGAGGCTGTGTTGACAAG 

COX-2 Forward primer  TGACCCCCAAGGCTCAAAT 

 Reverse primer  GAACCCAGGTCCTCGCTTATG 

TNF-α Forward primer CCACCACGCTCTTCTGTCTAC 

 Reverse primer AGGGTCTGGGCCATAGAACT 

GAPDH Forward primer TGCACCACCAACTGCTTAG 

 Reverse primer GGATGCAGGGATGATGTTC 
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Notes 

This chapter was reprinted and modified from McCarthy, MK, Levine, RE, 

Procario, MC, McDonnell, PJ, Zhu, L, Aronoff, DA, Crofford, LE, and Weinberg, 

JB. 2013. Prostaglandin E2 induction during mouse adenovirus type 1 respiratory 

infection regulates inflammatory mediator generation but does not affect viral 

pathogenesis. PLOS One. 8:e77628. DOI: 10.1371/journal.pone.0077628
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Chapter 5:  
Increased susceptibility to mouse adenovirus type 1 infection following 

bone marrow transplant correlates with defective T cell response that is not 
mediated by exaggerated prostaglandin E2 production  

 

Abstract 

Adenovirus infections are an important complication following 

hematopoietic stem cell transplantation. We used mouse adenovirus type 1 

(MAV-1) respiratory infection in an allogeneic bone marrow transplant (BMT) 

mouse model, and demonstrated that BMT mice displayed significantly delayed 

clearance of virus from the lungs. CD4 and CD8 T cell function was impaired in 

BMT mice compared to untransplanted controls. Lung viral loads in 

untransplanted CD8-deficient mice were higher than CD8α+/+ control mice, 

suggesting that delayed MAV-1 clearance in BMT mice may be due to defective 

CD8 T cell function. Baseline PGE2 levels were higher in bronchoalveolar lavage 

fluid (BALF) from BMT mice than in non-BMT controls, and PGE2 levels in BALF 

from BMT mice were dramatically higher than in non-BMT controls after MAV-1 

infection. Allogeneic BMT using PGE2-deficient mice as donors or recipients 

failed to correct the defect in viral clearance, and treatment of untransplanted 

mice with the PGE2 analog misoprostol was not associated with increased lung 

viral loads. Thus, although PGE2 production is exaggerated in the lungs of BMT 

mice infected with MAV-1, PGE2 overproduction is not directly responsible for 
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delayed viral clearance. Instead, our data suggest that PGE2-independent effects 

on CD8 T cell function may contribute to the inability of BMT mice to clear virus 

from the lungs. 

 

Introduction 

Hematopoietic stem cell transplant (HSCT), including bone marrow transplant 

(BMT), is a common therapy for management of a variety of malignant and 

autoimmune diseases. However, its use is limited by a number of complications, 

particularly in the lung. Pulmonary complications may be caused by multiple 

factors, including the conditioning regimen prior to transplantation and the 

development of graft-versus-host disease (GVHD) in allogeneic transplantation, 

where the donor and recipient are not genetically identical (1, 2). Viral infection is 

an important complication in both allogeneic and autologous BMT (3-5). 

Human adenoviruses (HAdVs) cause considerable morbidity and mortality in 

BMT patients (6-8). Depending on the assay used, HAdVs have been detected in 

up to 29% of BMT patients during weekly surveillance screening (9, 10). Disease 

rates as high as 6.5% have been reported, with >50% mortality rates in BMT 

patients with HAdV disease in some studies (10, 11). Pediatric patients are at a 

higher risk for adenovirus disease (8, 12), likely due to higher infection rates in 

this population and a relative lack of species cross-reactive T and B cell 

responses compared to adults, in whom some adenovirus-specific immunity has 

been established (13). Severe GVHD (14), T-cell-depleted grafts, and leukopenia 

(15) are additional risk factors for adenovirus infection following BMT. 
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A number of studies have reported profound defects in both innate and 

adaptive immune function following BMT (reviewed in (2)). Prostaglandin E2 

(PGE2) is a lipid mediator that has a variety of effects on immune function. PGE2 

can be immunosuppressive in vitro, inhibiting production of the Th1 cytokines 

IFN-γ and IL-12 (16, 17). Alveolar macrophage and neutrophil phagocytosis and 

bacterial killing is inhibited by PGE2 (18, 19). Levels of circulating PGE2 are 

elevated in BMT patients (20). PGE2 contributes to the suppression of 

lymphocyte function observed in human BMT patients (21). Other groups have 

demonstrated exaggerated PGE2 production and increased susceptibility to 

Pseudomonas aeruginosa and Staphylococcus aureus infection in syngeneic 

BMT mice (22-24). The inability of mice to effectively control bacterial infections 

in the lung is directly linked to the immunosuppressive effects of PGE2 on 

macrophage and neutrophil function. Syngeneic BMT mice display defective 

control of viral replication in a mouse model of respiratory virus infection using 

murine gammaherpesvirus-68 (γHV-68) (25). This model is characterized by 

impaired CD4 T cell proliferation and Th1 responses due to overproduction of 

TGF-β1 in BMT mice. 

 Because adenovirus infections are an important complication following 

allogeneic BMT, we chose to study pulmonary immunity to adenovirus infection 

post-BMT using mouse adenovirus type 1 (MAV-1, also known as MAdV-1) as a 

model (26-32). Following intranasal (i.n.) MAV-1 infection, virus clearance from 

the lungs was significantly delayed in mice that received allogeneic BMT 

compared to untransplanted control mice. Our data suggest that activation of 
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both CD4 and CD8 T cells is impaired in BMT mice. Delayed virus clearance was 

not related to exaggerated PGE2 production, as allogeneic BMT using PGE2-

deficient mice as donors or recipients failed to correct the defect in viral 

clearance.  

 

Results 

Delayed viral clearance from lungs of mice after allogeneic BMT 

To determine whether mice were more susceptible to adenovirus infection 

following allogeneic BMT, we infected control (BALB/c and C57BL/6) and 

allogeneic (BALB/c donor, C57BL/6 recipient) BMT mice with MAV-1 at 5 weeks 

post-BMT, when numbers of hematopoietic cells are fully reconstituted and the 

majority of hematopoietic cells are donor-derived (33). We assessed viral loads 

in the lung at times corresponding to the peak of viral replication (7 dpi) and 

clearance of virus from the lungs (14 and 21 dpi). Peak lung viral loads at 7 dpi 

were comparable between control and BMT mice (Figure 5-1). Viral loads were 

substantially less in control mice at 14 and 21 dpi, as virus was cleared from the 

lungs. However, viral loads at 14 dpi in BMT mice were approximately two log 

units higher than in control mice and were equivalent to those at 7 dpi. By 21 dpi, 

viral loads in BMT mice were decreased, but they were still significantly higher 

than those in either control group. These data indicate that peak viral replication 

is equivalent in control and BMT mice, but viral clearance from lungs of BMT 

mice was significantly delayed. 
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Figure 5-1. Delayed viral clearance from lungs of mice after allogeneic BMT. 

BMT mice and untransplanted BALB/c and C57BL/6 controls were infected 
intranasally (i.n.) with MAV-1. DNA was extracted from lungs harvested at the 
indicated time points. qPCR was used to quantify MAV-1 genome copies in lung 
DNA. DNA viral loads are expressed as copies of MAV-1 genome per 100 ng of 
input DNA. Individual circles represent values for individual mice and horizontal 
bars represent means for each group. Statistical comparisons were made using 
two-way ANOVA followed by Bonferroni’s multiple comparison tests. ***P<0.001, 
*P<0.05. 
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BMT mice have a defect in T cell recruitment and activation 

 T cells can play both inflammatory and cytolytic roles during viral infection, 

either by release of cytokines such as IFN-γ or TNF-α, or through secretion of 

cytolytic granules such as granzyme B (GzmB), that lyse virus-infected cells. 

During acute MAV-1 encephalomyelitis following intraperitoneal inoculation, mice 

deficient in α/β T cells fail to control MAV-1 replication and succumb 9 to 16 

weeks after the initial infection, indicating that either CD4 or CD8 T cells are 

required for long-term host survival of MAV-1 intraperitoneal (i.p.) infection (34). 

We hypothesized that the inability of BMT mice to efficiently clear virus from the 

lungs could be due to differences in T cell recruitment or activation after infection. 

To assess whether T cell activation is reduced in BMT mice, we measured 

mRNA levels of IFN-γ and GzmB. At 7 dpi, both IFN-γ and GzmB expression 

were increased in BALB/c and C57BL/6 infected groups compared to mock 

infected controls (Figure 5-2A,B). However, IFN-γ and GzmB induction were 

substantially reduced in BMT mice. At 14 dpi, both IFN-γ and GzmB were slightly 

upregulated in all three infected groups of mice, although upregulation was not 

statistically significant compared to the mock infected groups and did not differ 

between BMT and control groups (data not shown).  

The reduction in IFN-γ and GzmB transcripts in BMT mice could be due to 

defective T cell recruitment, activation, or both. To assess overall CD4 and CD8 

T cell recruitment and activation, we isolated lung lymphocytes from BALB/c and 

BMT mice (in which hematopoietic cells were derived from the BALB/c donor  
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Figure 5-2. Reduced IFN-γ and GzmB induction in lungs of BMT mice.  

BMT mice and untransplanted BALB/c and C57BL/6 controls were infected i.n. 
with MAV-1 or mock infected with conditioned media. RNA was extracted from 
lungs harvested at 7 dpi and RT-qPCR was used to quantify A) IFN-g mRNA and 
B) GzmB mRNA, which are expressed in arbitrary units. Combined data from 
n=2-4 (mock condition), n=5-8 (MAV-1 condition) mice per group are presented 
as means ± S.E.M. 
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strain) at 7 dpi and performed intracellular cytokine staining. We used TCRβ as a 

marker for T cells. The total number of TCRβ+ cells increased slightly in 

untransplanted BALB/c mice after infection, but not in BMT mice (Figure 5-3A). 

There were fewer TCRβ+CD4+ T cells in the lungs of BMT mice compared to 

BALB/c mice both before and after infection, although this difference was not 

statistically significant (Figure 5-3B). BALB/c and BMT mice had equivalent 

numbers of TCRβ+CD8+ T cells in the lungs after infection (Figure 5-3C). We next 

performed intracellular staining on lung lymphocytes at 7 dpi to evaluate T cell 

activation. In BALB/c mice, there was a significant accumulation of CD4 and CD8 

T cells producing IFN-γ or GzmB after MAV-1 infection (Figure 5-3D, E). 

However, the accumulation of IFN-γ+ and GzmB+ CD4 and CD8 T cells was 

markedly diminished in infected BMT mice. These data indicate that CD4 T cell 

recruitment, but not CD8 T cell recruitment, is slightly impaired in BMT mice. 

Moreover, BMT mice have significantly fewer CD4 and CD8 T cells producing 

IFN-γ or GzmB after infection. 

 

T cells from BMT mice respond poorly when stimulated 

 We observed a slight defect in CD4 T cell recruitment to the lungs of BMT 

mice after infection, which could account for the lower number of IFN-γ+ and 

GzmB+ CD4 T cells overall in these mice. To address T cell activation in BMT 

mice directly, we isolated lung lymphocytes at 7 dpi and restimulated T cells 

overnight with anti-CD3 antibody. We measured production of IL-2, IFN-γ, IL-4, 

and IL-17 in the supernatant as a marker for T cell polarization and activation. T 
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cells isolated from infected BALB/c mice produced significantly more IL-2, IFN-γ, 

and IL-17 upon restimulation than T cells isolated from mock infected BALB/c 

mice (Figure 5-4A, B and D). We observed slightly higher IL-4 production in 

stimulated T cells from infected BALB/c mice, but this was not significantly 

different from T cells from mock infected BALB/c mice (Figure 5-4C). Although T 

cells from infected BMT mice did produce somewhat more IL-2, IFN-γ, and IL-17 

compared to those from mock-infected BMT mice, their production was 

substantially lower than that observed in infected BALB/c mice. This indicates 

that even when equal numbers of T cells from the lungs of BALB/c or BMT mice 

are restimulated, T cells from BMT mice are impaired in activation. Therefore, 

even though we observed a slight defect in recruitment of CD4 T cells in BMT 

mice, the significant reduction in IFN-γ+ and GzmB+ T cells in the lungs of BMT 

mice is more likely due to an overall activation defect rather than a defect in 

recruitment.  

 

Delayed viral clearance in untransplanted mice lacking CD8 T cells 

 We observed a reduction in IFN-γ expression and IFN-γ-expressing cells 

in BMT mice, most likely due to impaired activation of CD4 and CD8 T cells. To 

assess the effect of complete IFN-γ deficiency on virus clearance, we infected 

IFN-γ+/+ and IFN-γ-/- mice on a C57BL/6 background and measured lung viral 

loads at 14 dpi. Viral loads were equivalent in IFN-γ+/+ and IFN-γ-/- mice (Figure 

5-5A), suggesting that IFN-γ does not play a significant role in viral clearance. We 

have previously shown that IFN-γ deficiency on a BALB/c background leads to a  



 169 

 
 
Figure 5-3. Reduced numbers of IFN-γ- and GzmB-producing CD4 and CD8 T 
cells in lungs of BMT mice.  

BMT mice and untransplanted BALB/c controls were infected i.n. with MAV-1 or 
mock infected with conditioned media, and lung leukocytes were isolated at 7 
dpi. Lung leukocytes were stimulated with PMA/ionomycin and stained to 
quantify the number of A) total TCRβ+ cells, B) TCRβ+CD4+ T cells, C) 
TCRβ+CD8+ T cells, D) IFN-γ+ T cells, and E) GzmB+ T cells per lung. Combined 
data from n=3-4 mice per group are presented as means ± S.E.M. Statistical 
comparisons were made using one-way ANOVA followed by Bonferroni’s 
multiple comparison tests. **P<0.01 and *P<0.05 comparing mock to MAV-1. 
††P<0.01 and †P<0.05 comparing BALB/c to BMT mice. 
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Figure 5-4. T cells from BMT mice respond poorly when stimulated.  

BMT mice and untransplanted BALB/c controls were infected i.n. with MAV-1 or 
mock infected with conditioned media, and lung leukocytes were isolated at 7 
dpi. Lung leukocytes were stimulated overnight with anti-CD3 antibody and 
ELISA was used to measure A) IL-2, B) IFN-γ, C) IL-4, and D) IL-17 production in 
the supernatant. Combined data from n=3-8 mice per group are presented as 
means ± S.E.M. Statistical comparisons were made using one-way ANOVA 
followed by Bonferroni’s multiple comparison tests. **P<0.01 and *P<0.05 
comparing mock to MAV-1. ††P<0.01 and †P<0.05 comparing BALB/c to BMT 
mice. 
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modest (<1 log) increase in viral loads at 14 dpi (27). Together, these results 

suggest that IFN-γ deficiency does not significantly affect viral clearance in the 

context of either a BALB/c or C57BL/6 background. 

 Although IFN-γ does not substantially contribute to viral clearance, other 

aspects of T cell activation, namely GzmB production, were clearly impaired in 

BMT mice and could be responsible for the delayed viral clearance that we 

observed. We next infected CD8α+/+ and CD8α-/- mice, which lack CD8 T cells, 

with MAV-1 and measured lung viral loads at 14 dpi. Viral loads were significantly 

greater in CD8α-/- mice compared to CD8α+/+ mice (Figure 5-5B). The difference 

was similar in magnitude to that observed in BMT mice compared to 

untransplanted controls at 14 dpi (Figure 5-1). These results suggest that CD8 T 

cells are one of the major contributors to clearance of virus-infected cells from 

the lung during MAV-1 infection.  

 

PGE2 is overproduced in BMT mice 

 Other groups have demonstrated exaggerated PGE2 production and 

increased susceptibility to bacterial infections in syngeneic BMT mice (22, 23). 

This increased susceptibility was directly linked to exaggerated PGE2 production 

in BMT mice and the immunosuppressive effects of PGE2 on macrophages and 

neutrophils. High concentrations of PGE2 exert an immunosuppressive effect on 

Th1 responses by inhibiting production of IFN-γ and IL-12 in vitro (16, 17). We 

hypothesized that excess PGE2 production in BMT mice was responsible for 

impaired T cell activation and delayed viral clearance. PGE2 concentrations  
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Figure 5-5. Delayed viral clearance in untransplanted mice lacking CD8 T cells.  

A) IFN-γ+/+ and IFN-γ-/- mice and B) CD8α+/+ and CD8α-/- were infected i.n. with 
MAV-1. DNA was extracted from lungs harvested at 14 dpi. qPCR was used to 
quantify MAV-1 genome copies in lung DNA. DNA viral loads are expressed as 
copies of MAV-1 genome per 100 ng of input DNA. Individual circles represent 
values for individual mice and horizontal bars represent means for each group. 
Statistical comparisons were made using Mann-Whitney test. ***P<0.001, 
comparing CD8α+/+ to CD8α-/-. 
  

IFN-γ+/+ IFN-γ-/-
100

102

104

106

108

V
ira

l G
en

om
e

(C
op

ie
s 

pe
r 1

00
 n

g)
 

Lung Viral Loads

CD8α+/+ CD8α-/-
100

102

104

106

108

V
ira

l G
en

om
e

(C
op

ie
s 

pe
r 1

00
 n

g)
 

Lung Viral Loads

***

A B



 173 

measured in bronchoalveolar lavage fluid (BALF) were slightly higher in BMT 

mice at baseline prior to infection (5 weeks post-BMT) (Figure 5-6). PGE2 levels 

 increased after infection in both untransplanted control groups, with a slight 

delay observed in BALB/c mice. PGE2 levels in BMT mice increased dramatically 

after infection, and PGE2 production was significantly higher in BMT mice than 

either control group at 14 and 21 dpi (Figure 5-6).  

 

PGE2 does not contribute to delayed viral clearance in BMT mice 

To determine whether excess PGE2 contributes to the delayed viral 

clearance in BMT mice, we performed allogeneic BMT with various combinations 

of mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1) as 

donors and recipients. mPGES-1 is an enzyme that is responsible for the 

majority of the conversion of PGH2 to PGE2, so that mPGES-1-deficient mice on 

a C57BL/6 background (indicated as mPGES-1-/-/B6) are almost completely 

PGE2-deficient (35, 36). We infected these mice with MAV-1 at 5 weeks post-

BMT and measured lung viral loads and BALF PGE2 at 14 dpi. PGE2 was 

overproduced following infection compared to untransplanted BALB/c and 

C57BL/6 control groups when wild-type C57BL/6 mice were used as recipients in 

the BMT, as we observed previously (Figure 5-6 and Figure 5-7A). When wild-

type BALB/c bone marrow was transferred into mPGES-1-/-/B6 recipients, PGE2 

levels were equivalent to those of wild-type C57BL/6 recipients. This suggests 

that hematopoietic cells from the BALB/c donor strain (which is not PGE2-

deficient) were the major source of PGE2 in the BMT.  
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Figure 5-6. PGE2 is overproduced in BMT mice.  

BMT mice and untransplanted BALB/c and C57BL/6 controls were infected i.n. 
with MAV-1 or mock infected with conditioned media. ELISA was used to quantify 
PGE2 concentrations in BALF at the indicated time points. Combined data from 
n=3-4 mice per group are presented as means ± S.E.M. Statistical comparisons 
were made using two-way ANOVA followed by Bonferroni’s multiple comparison 
tests. ***P<0.001. 
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In order to create mice in which the immune cell compartment was 

deficient in PGE2, we reversed the order of the BMT, this time using wild-type  

C57BL/6 or mPGES-1-/-/B6 mice as donors and wild-type BALB/c mice as 

recipients. Compared to BMT with wild-type BALB/c donors and wild-type 

C57BL/6 recipients, we observed significantly less PGE2 production at 14 dpi 

following BMT using C57BL/6 mice as donors and BALB/c mice as recipients. 

When mPGES-1-/-/B6 bone marrow was transferred into wild-type BALB/c mice, 

PGE2 production was equivalent to that of either control group, indicating that 

normal PGE2 production was restored (Figure 5-7A, far right side). The differing 

amounts of PGE2 observed between the BMT combinations using wild-type 

C57BL/6 mice and wild-type BALB/c mice as recipients likely relate to differing 

amounts of irradiation received at the time of transplant (1400 rad for C57BL/6 

versus 1000 rad for BALB/c, due to higher sensitivity of BALB/c mice to radiation 

(37)). 

 Despite varying levels of PGE2 production, all combinations of BMT using 

PGE2-deficient mice as donors or recipients had significantly higher lung viral 

loads at 14 dpi than either control group (Figure 5-7B). Furthermore, in the two 

BMT combinations in which we observed the lowest PGE2 concentrations 

(recipient strain was BALB/c), we still observed defective IFN-γ and GzmB 

expression at 7 dpi (Figure 5-7C, D). These results suggest that although PGE2 

is produced in excess in the BALF of BMT mice, it does not contribute to delayed 

viral clearance or affect T cell activation.  
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Figure 5-7. Restoration of normal PGE2 levels fails to correct viral clearance 
defect in BMT mice.  

BMT mice and untransplanted BALB/c and C57BL/6 controls were infected i.n. 
with MAV-1 or mock infected with conditioned media. A) ELISA was used to 
quantify PGE2 concentrations in BALF at the indicated time points. Combined 
data from n=5-15 mice per group are presented as means ± S.E.M. B) DNA was 
extracted from lungs harvested at 14 dpi. qPCR was used to quantify MAV-1 
genome copies in lung DNA. DNA viral loads are expressed as copies of MAV-1 
genome per 100 ng of input DNA. Individual circles represent values for 
individual mice and horizontal bars represent means for each group. RNA was 
extracted from lungs harvested at 7 dpi and RT-qPCR was used to quantify C) 
IFN-γ mRNA and D) GzmB mRNA, which are expressed in arbitrary units. 
Combined data from n=5-11 mice per group are presented as means ± S.E.M. 
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Excess PGE2 in untransplanted mice does not affect viral clearance 

 To examine the role of excess PGE2 outside of the context of BMT, we 

treated untransplanted C57BL/6 mice with misoprostol, a PGE2 analog, starting 

the day of infection. Mice treated with misoprostol produced significantly more 

IFN-γ after infection compared to vehicle-treated mice, indicating that excess 

PGE2 increased T cell responses to MAV-1 infection, rather than playing a 

suppressive role (Figure 5-8A). Misoprostol treatment did not affect peak viral 

replication at 7 dpi or viral clearance from the lungs at 14 dpi (Figure 5-8B). This 

indicates that excess PGE2 does not affect viral clearance in untransplanted 

mice, providing further support for the lack of an effect of PGE2 overproduction 

on MAV-1 clearance following BMT.  

 

Discussion 

We have shown that mice that underwent allogeneic BMT displayed 

significant defects in clearance of MAV-1 from the lungs. BMT mice had 

significantly fewer IFN-γ- and GzmB-producing CD4 and CD8 T cells in the lungs 

compared to untransplanted controls. Cytokine production by restimulated T cells 

was dramatically less in T cells isolated from BMT mice compared to controls. 

Lung viral loads in untransplanted CD8-deficient mice were higher than wild-type 

mice, suggesting that delayed MAV-1 clearance in BMT mice may be due to 

defective CD8 T cell function. Levels of the immunomodulatory lipid mediator 

PGE2 were dramatically higher in BALF from BMT mice than in controls after  
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Figure 5-8. Excess PGE2 in untransplanted mice does not affect viral clearance.  

C57BL/6 mice were infected i.n. with MAV-1 and treated once daily with 20 µg 
misoprostol or vehicle (DMSO). A) ELISA was used to quantify IFN-γ 
concentrations in BALF from mice at 7 dpi. Combined data from n=5 mice per 
group are presented as means ± S.E.M. ***P<0.001 comparing mock to MAV-1. 
†††P<0.001 comparing misoprostol- to vehicle-treated group. B) DNA was 
extracted from lungs harvested at the indicated time points. qPCR was used to 
quantify MAV-1 genome copies in lung DNA. DNA viral loads are expressed as 
copies of MAV-1 genome per 100 ng of input DNA. Individual circles represent 
values for individual mice and horizontal bars represent means for each group. 
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MAV-1 infection. However, allogeneic BMT using PGE2-deficient mice as donors 

or recipients failed to correct the defect in viral clearance, and treatment of 

untransplanted mice with the PGE2 analog misoprostol was not associated with 

increased lung viral loads. 

Our results are in agreement with other studies demonstrating impaired 

immunity following BMT (reviewed in (2)). Syngeneic BMT mice infected with 

γHV-68 display a defect in the ability to clear lytic virus from the lungs (25). In that 

study, the number of IFN-γ-producing CD4 T cells was significantly reduced and 

the number of IL-17-producing CD4 T cells was enhanced in lungs of BMT mice 

after γHV-68 infection. We also observed defective Th1 responses in BMT mice 

after MAV-1 infection. However, we did not observe an increase in IL-17 

production from BMT T cells, indicating that Th responses were not skewed 

toward a Th17 phenotype in MAV-1-infected BMT mice. Rather, T cells from 

BMT mice were impaired in their ability to produce both IFN-γ and IL-17 in MAV-1 

infected mice. We have previously demonstrated that IL-17 produced by CD4 

and γδ-T cells during MAV-1 infection contributes to neutrophil recruitment to the 

lungs, but IL-17 deficiency does not affect peak viral replication or viral clearance 

(38). Therefore, it is unlikely that decreased IL-17 from T cells was responsible 

for delayed clearance of MAV-1 in BMT mice.  

CD4 T cell-derived IFN-γ is critical for control of γHV-68 replication (39), 

and defective Th1 responses are probably a major contributor to increased 

γHV-68 susceptibility observed in BMT mice. However, we show that decreased 

IFN-γ is unlikely to be responsible for defective clearance of MAV-1 after BMT, 
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because untransplanted IFN-γ-/- mice had equivalent viral loads at 14 dpi 

compared to wild-type mice. Similarly, we have previously shown that IFN-γ 

makes only minor contributions to control of MAV-1 replication in another mouse 

strain background, BALB/c (27). Rather, the delayed viral clearance in BMT mice 

was likely due to decreased production of cytolytic effectors such as GzmB by 

CD4 and CD8 T cells. 

It is possible that decreased generation of MAV-1-specific antibodies by B 

cells contributed to delayed viral clearance in BMT mice. B cells are important for 

survival in mice with systemic MAV-1 infection (40). However, neutralizing 

antibodies do not appear until at least 14 dpi in the sera of mice infected i.p. with 

MAV-1 (41). Therefore, B cells would be unlikely to make substantial 

contributions to viral clearance until after 14 dpi. While B cells may play a role in 

control of viral replication between 14 and 21 dpi, our results strongly suggest 

that immune deficiencies occurring before 14 dpi were responsible for the 

delayed viral clearance in BMT mice. Mice deficient in CD8 T cells had similar 

viral loads to BMT mice at 14 dpi, suggesting that CD8 T cell function is a critical 

factor involved in MAV-1 clearance from the lungs.  

DCs are important antigen presenting cells that function as initiators of the 

adaptive immune response. Coomes et al. showed that DCs isolated from BMT 

mice are able to upregulate MHC class II and costimulatory molecules as well as 

untransplanted mice do, and DCs are efficient stimulators of T cell proliferation in 

a mixed lymphocyte reaction (MLR) (25). DCs derived from peripheral blood of 

HSCT patients are also efficient stimulators in MLR (42). In our work, T cells 
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produced similar amounts of IFN-γ when stimulated with MAV-1-infected APCs 

from either BALB/c or BMT mice (data not shown). This suggests that APC 

function, at least in terms of promoting Th1 cytokines, in BMT mice is not 

impaired.  

A number of studies have reported that PGE2 suppresses production of 

Th1 cytokines (16, 17), an effect that is observed when local PGE2 

concentrations are greater than 1 nM (43). Others have demonstrated PGE2 

inhibition of T cell proliferation in MLR (44). PGE2 inhibits T cell recruitment and 

delays the induction of virus-specific T cell responses in the lungs of influenza 

virus-infected mice (45). We hypothesized that overproduction of PGE2 in BMT 

mice was responsible for suppression of T cell responses that normally clear 

virus from the lung. BMT using PGE2-deficient mice as donors or recipients did 

not correct the defect in viral clearance or restore T cell activation (by 

measurement of IFN-γ and GzmB levels). Mice treated with the PGE2 analog 

misoprostol cleared virus as efficiently as controls. This suggests that while PGE2 

is overproduced after BMT and suppresses T cell responses in other settings, it 

does not contribute to delayed viral clearance post-BMT. 

Immune recovery appears to play a significant role in HAdV infections 

post-transplant. A number of studies have documented a positive correlation 

between lymphocyte count (both absolute lymphocyte count and CD4 count) and 

clearance of HAdV and survival (15, 46, 47). In adult and pediatric HSCT 

patients, clearance of HAdV from peripheral blood is associated with the 

emergence of HAdV-specific CD4 and CD8 T cell responses (48). Clearance of 
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HAdV is also associated with an increase in titers of serotype-specific antibodies 

(46), indicating that both B and T cell function may be important for control of 

HAdV post-transplant. Ex vivo generation and adoptive transfer of virus-specific 

CD4 or CD8 T cells has been explored as immunotherapy for HSCT patients with 

disease caused by HAdV and other viruses. This strategy has already been 

successfully used in transplant patients with Epstein Barr virus (EBV)-induced 

lymphoproliferative disease (49-51). It has also been used with some success in 

pediatric transplant patients with HAdV viremia (52) or prophylactically to prevent 

HAdV disease (53). A number of studies have demonstrated ex vivo generation 

of HAdV-specific cytotoxic CD4 and CD8 T cells, some of which were cross-

reactive against multiple HAdV serotypes (54-59). These studies show promise 

for the effective treatment of HAdV infections post-BMT. Further insight into the 

mechanisms of immune dysfunction post-BMT may assist in the development of 

treatment strategies for HAdV-infected patients. 

  

Materials and Methods 

Mice 

BALB/c, C57BL/6, CD8α-/- [B6.129S2-Cd8atm1Mak/J], and IFN-γ-/- 

[B6.129S7-Ifngtm1Ts/J] mice (all knockouts backcrossed onto a C57BL/6 

background) were obtained from the Jackson Laboratory. mPGES-1 

heterozygous mice on a DBA1lac/J background (60) were originally obtained 

from Pfizer, Inc. (Groton, CT) and then backcrossed onto a C57BL/6 background. 

Homozygous mPGES-1-/- mice and homozygous wild type mPGES-1+/+ mice 
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derived from the same heterozygous mPGES-1+/- parents were bred at the 

University of Michigan. Adult males were used in all experiments. All mice were 

maintained under specific pathogen-free conditions. 

 

Bone Marrow Transplantation 

Bone marrow transplantation was performed as previously described (22, 

25). Recipient C57BL/6 mice received 1400 rad of total body irradiation using a 

137Cs irradiator, delivered in two doses 3 hours apart. In experiments in which 

C57BL/6 mice were used as donors in the allogeneic transplant, recipient BALB/c 

mice received 1000 rad of total body irradiation delivered in two doses 3 hours 

apart. Bone marrow cells (5 x 106) harvested from donor mice were injected into 

the tail vein of irradiated recipient mice. Mice were given acidified water (pH 3.3) 

for the first 3 weeks after BMT. Total hematopoietic cell numbers are fully 

reconstituted in the lung and spleen at 5 weeks post-BMT (25, 33). All infections 

were carried out 5-6 weeks post-BMT. 

 

Virus and Infections 

MAV-1 was grown and passaged in NIH 3T6 fibroblasts, and titers of viral 

stocks were determined by plaque assay on 3T6 cells as previously described 

(61). Adult mice were anesthetized with ketamine and xylazine and infected 

intranasally (i.n.) with 105 plaque forming units (p.f.u.) of MAV-1 in 40 µl of sterile 

phosphate-buffered saline (PBS). Control mice were mock infected i.n. with 

conditioned media at an equivalent dilution in sterile PBS. Mice were euthanized 
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by pentobarbital overdose at the indicated time points. Lungs were harvested, 

snap frozen in dry ice, and stored at -80°C until processed further.  

 

Misoprostol treatment 

 Mice were injected intraperitoneally with 20 µg misoprostol once daily 

starting on the day of infection, a dosing regimen adapted from (62). 

 

Isolation of DNA and RNA 

DNA was extracted from the middle lobe of the right lung using the 

DNeasy® Tissue Kit (Qiagen Inc.). Total RNA was extracted from lungs using 

TRIzol® (Invitrogen) as previously described (30).  

 

Analysis of Viral Loads 

MAV-1 viral loads were measured in organs using quantitative real-time 

polymerase chain reaction (qPCR) as previously described (27, 30). Primers and 

probe used to detect a 59-bp region of the MAV-1 E1A gene are detailed in Table 

2. Five µl of extracted DNA were added to reactions containing TaqMan II 

Universal PCR Mix with UNG (Applied Biosystems), forward and reverse primers 

(each at 200 nM final concentration), and probe (20 nM final concentration) in a 

25 µl reaction volume. Analysis on an ABI Prism 7300 machine (Applied 

Biosystems) consisted of 40 cycles of 15 s at 90°C and 60 s at 60°C. Standard 

curves generated using known amounts of plasmid containing the MAV-1 EIA 

gene were used to convert cycle threshold values for experimental samples to 
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copy numbers of EIA DNA. Results were standardized to the nanogram (ng) 

amount of input DNA. Each sample was assayed in triplicate. The limit of 

detection of this assay is typically between 101 and 102 copies of MAV-1 genome 

per 100 ng input DNA.  

 

Analysis of Host Gene Expression 

Cytokine gene expression was quantified using reverse transcriptase 

(RT)-qPCR. First, 2.5 µg of RNA were reverse transcribed using MMLV reverse 

transcriptase (Invitrogen) in 20 µl reactions according to the manufacturer’s 

instructions. Water was added to the cDNA product to bring the total volume to 

50 µl. Primers used to detect IFN-γ and GzmB (PrimerBankID 7305123a1 (63)) 

are described in Table 5-1. For these measurements, 5 µl of cDNA were added 

to reactions containing Power SYBR Green PCR Mix (Applied Biosystems) and 

forward and reverse primers (each at 200 nM final concentration) in a 25 µl 

reaction volume. When SYBR green was used to quantify cytokine gene 

expression, separate reactions were prepared with primers for mouse GAPDH 

(Table 5-1, used at 200 nM each). In all cases, RT-qPCR analysis consisted of 

40 cycles of 15 s at 90°C and 60 s at 60°C. Quantification of target gene mRNA 

was normalized to GAPDH and expressed in arbitrary units as 2-ΔCt, where Ct is 

the threshold cycle and ΔCt = Ct(target) – Ct(GAPDH). 
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Analysis of Cytokine or PGE2 Levels in Bronchoalveolar Lavage Fluid 

  Mice were euthanized via pentobarbital overdose at the indicated time 

points. Lungs were lavaged three times with the same aliquot of 1 mL sterile PBS 

containing protease inhibitor (complete, Mini, EDTA-free tablets; Roche Applied 

Science). Cells in bronchoalveolar lavage fluid (BALF) were pelleted by 

centrifugation and supernatant was stored at -80°C until assayed. Cytokine 

protein concentrations in supernatant were determined by ELISA (Duoset Kits, 

R&D Systems) according to the manufacturer's protocol. BALF supernatants 

were diluted in PGE2 enzyme immunoassay buffer and quantity of PGE2 was 

determined using PGE2 ELISA Kit (Enzo Life Sciences) according to the 

manufacturer’s protocol. 

 

Isolation of Cells from Lungs  

In some experiments, left lungs were excised and cut into small pieces 

before digestion for 30 min at 37°C in a 1 mg/ml solution of collagenase A 

(Sigma). The digested tissue was then pushed through a syringe with a 1.5-in 22-

gauge needle and pelleted at 3,000 rpm (402 x g) for 5 min. After lysis of red 

blood cells in 1X lysing buffer (BD PharMingen) for 3 min, tissue debris was 

removed by a brief spin (~5 to 10 s) at 1,000 rpm (45 x g). The remaining cells 

were pelleted at 1,200 rpm (64 x g) for 6 min prior to staining. 
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Intracellular Cytokine Staining 

Cells isolated from lungs were plated at 106 cells/ml and stimulated with 

50 ng/ml PMA and 1.5 µM ionomycin (Calbiochem) for 5 h at 37°C. Cells were 

preincubated with anti-FcγR mAb 2.4G2 to block nonspecific binding before they 

were stained with the following PE-Cy7-, APC-H7, and V450-conjugated 

antibodies: CD4 (RM4-5), CD8 (53-6.7), and TCR-β (H57-597) (BD Biosciences). 

Cells were then fixed in 4% paraformaldehyde for 10 min at room temperature, 

and permeabilized with 0.2% saponin (Sigma). Finally, cells were stained with 

FITC- and AF-647-labeled IFN-γ (XMG1.2) and GzmB (GB11) antibodies (BD 

Biosciences) and analyzed by flow cytometry. Events were acquired on a 

FACSCanto (BD) flow cytometer, and data were analyzed with FlowJo software 

(Tree Star). Cells were classified as CD4+ T cells (TCRβ+CD4+) and CD8+ T cells 

(TCRβ+CD8+). 

 

Lymphocyte Stimulation 

Lymphocytes were seeded at a concentration of 3 x 105 cells/well in 96-

well plates coated with anti-CD3 antibody (BioLegend, 5 µg/ml) and incubated for 

24 h. Supernatants were then collected for ELISA. Cytokine protein 

concentrations in supernatant were determined by ELISA (Duoset Kits, R&D 

Systems) according to the manufacturer's protocol. 
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Statistics 

Analysis of data for statistical significance was conducted using Prism 6 

for Macintosh (GraphPad Software, Incorporated). Differences between groups 

at multiple time points were analyzed using two-way analysis of variance 

(ANOVA) followed by Bonferroni's multiple comparison tests. Comparisons 

between two groups at a single time point were made using the Mann-Whitney 

rank sum test. P values less than 0.05 were considered statistically significant.  
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 Table 5-1. Primers and probes used for real-time PCR analysis 

 

Target Oligonucleotide Sequence (5′ to 3′) 

MAV-1 E1A Forward primer GCACTCCATGGCAGGATTCT 

 Reverse primer GGTCGAAGCAGACGGTTCTTC 

 Probe TACTGCCACTTCTGC 

IFN-γ Forward primer  AAAGAGATAATCTGGCTCTGC 

 Reverse primer  GCTCTGAGACAATGAACGCT 

GzmB Forward primer  CCACTCTCGACCCTACATGG 

 Reverse primer  GGCCCCCAAAGTGACATTTATT 

GAPDH Forward primer TGCACCACCAACTGCTTAG 

 Reverse primer GGATGCAGGGATGATGTTC 
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Chapter 6:  
IL-17 contributes to neutrophil recruitment but not to control of viral 

replication during acute mouse adenovirus type 1 respiratory infection 
 

Abstract 

IL-17-producing CD4+ helper T cells (Th17 cells) promote inflammatory 

responses to many pathogens. We used mouse adenovirus type 1 (MAV-1) to 

determine contributions of IL-17 to adenovirus pathogenesis. MAV-1 infection of 

C57BL/6 mice upregulated lung expression of IL-17 and the Th17-associated 

factors IL-23 and RORγt. Only CD4+ T cells were associated with virus-specific 

IL-17 production. Fewer neutrophils were recruited to airways of IL-17-/- mice 

following MAV-1 infection, but there were no other differences in pulmonary 

inflammation between IL-17+/+ and IL-17-/- mice. Mice depleted of neutrophils 

using anti-Gr-1 antibody had greater lung viral loads than controls. Despite 

impaired neutrophil recruitment, there were no differences between IL-17+/+ and 

IL-17-/- mice in peak lung viral loads, clearance of virus from the lungs, or 

establishment of protective immunity. We demonstrate robust Th17 responses 

during MAV-1 respiratory infection, but these responses are not essential for 

control of virus infection or for virus-induced pulmonary inflammation. 
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Introduction 

The human adenoviruses (HAdV) are common causes of acute respiratory 

infection (1). Adenovirus respiratory infections can present with a wide range of 

clinical syndromes ranging from mild upper respiratory tract infections to more 

severe manifestations such as necrotizing pneumonitis and bronchiolitis 

obliterans (2). Immunocompromised patients, such as those who have 

undergone bone marrow transplantation, are at risk for greatly increased 

morbidity and mortality from adenovirus infection (3, 4). 

The strict species specificity of the adenoviruses complicates animal 

studies with a HAdV. We have established mouse adenovirus type 1 (MAV-1) as 

a model to study the pathogenesis of adenovirus respiratory infection in the 

natural host of the virus. Using this model, we have shown that acute MAV-1 

respiratory infection is associated with cellular inflammation and increased 

production of multiple cytokines and chemokines in the lungs (5-7). In particular, 

the marked induction of IFN-γ expression without induction of IL-4 production (6) 

is consistent with T helper type 1 (Th1) polarization in the lungs following MAV-1 

infection. IFN-γ deficiency is associated with small increases in MAV-1 lung viral 

loads (6), while Th2 polarization using cockroach antigen sensitization in an 

allergic airways disease model has no effect on MAV-1 replication in the lungs 

(5). 

Th1 CD4+ T cells are classically characterized by their production of IFN-γ, 

and Th2 CD4+ T cells are characterized by production of cytokines such as IL-4, 

IL-5, and IL-13 (8). An additional lineage of T cells, Th17 T cells, is defined by the 
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production by cytokines such as IL-17A and IL-17F (9, 10). Th17 cell 

differentiation from naïve CD4+ T cells is promoted by IL-1β, IL-6, TGF-β and IL-

23 and occurs under the control of the transcriptional regulators RORγt and 

RORα, while it is negatively regulated by IFN-γ, IL-4, and IL-13 (11). Th17-

associated cytokines have been implicated in a variety of inflammatory and 

autoimmune diseases, and animals deficient in IL-17 or its receptor, IL-17RA, are 

more susceptible to a variety of bacterial and fungal infections (11). 

Less information is available regarding the role of Th17 immune function 

in the pathogenesis of respiratory viral infections. IL-17 expression in the lungs is 

induced by infection with viruses such as respiratory syncytial virus (RSV), 

influenza virus, and pneumonia virus of mice, an RNA virus in the same family 

(Paramyxoviridae) and genus (Pneumovirus) as RSV (12-15). IL-17 promotes 

pulmonary inflammation and viral replication during RSV infection and negatively 

regulates the generation of RSV-specific CD8+ T cells (14). Signaling through 

IL-17RA is necessary for weight loss and neutrophil migration to the lungs 

following influenza infection, although IL-17RA signaling is not necessary for 

recruitment of virus-specific CD8+ T cells or viral clearance (12). Th17 function 

may play a role in an effective memory response to influenza, as antibody 

neutralization of IL-17 decreased protection from challenge with a different 

subtype of influenza virus (16). Importantly, Th17 responses to adenovirus 

respiratory infection have not been characterized. In this study, we used MAV-1 

to characterize Th17 responses to adenovirus respiratory infection and to test the 
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hypothesis that IL-17 is required for control of MAV-1 replication during acute 

respiratory infection. 

 

Results 

MAV-1 induces IL-17 production in lungs of infected mice. 

Acute MAV-1 respiratory infection increases production of the Th1 

cytokine IFN-γ in the lungs but not Th2 cytokines such as IL-4 and IL-13 (5, 6, 

17). To investigate whether MAV-1 respiratory infection induces lung IL-17 

production, C57BL/6 mice were infected intranasally (i.n.) with MAV-1 and 

bronchoalveolar lavage fluid (BALF) and lung tissue were harvested at times 

corresponding to early infection (4 days post infection, dpi), the peak of viral 

replication at 7 dpi (6, 7), and a later time corresponding to clearance of virus 

from the lungs (14 dpi). Reverse transcriptase quantitative real-time PCR 

(RT-qPCR) was used to measure IL-17A mRNA levels following MAV-1 infection 

(Figure 6-1A). IL-17A mRNA levels were increased in the lungs of infected mice 

compared to mock infected controls. IL-17A expression peaked at 7 dpi and then 

decreased by 14 dpi. The concentration of IL-17A protein (hereafter referred to 

as IL-17) was also increased in BALF at 7 dpi (Figure 6-1B), the time 

corresponding to the peak of IL-17A mRNA levels and the typical peak of MAV-1 

replication in the lungs (6, 7, 17). Likewise, the protein concentration of IL-23 was 

significantly increased in BALF at 7 dpi (Figure 6-1C). At the same time, the 

mRNA level of RORγt, a key regulator of Th17 differentiation (18), was  
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Figure 6-1. MAV-1-induced IL-17 responses in the lung.  

Mice were infected i.n. with MAV-1 or mock infected with conditioned media. A) 
RNA was extracted from lungs harvested at the indicated time points and RT-
qPCR was used to quantify IL-17A mRNA, which is expressed in arbitrary units. 
B-C) ELISA was used to quantify IL-17 and IL-23 concentrations in BALF from 
mice at 7 dpi. D) RT-qPCR was used to quantify lung RORγt expression at 7 dpi. 
Combined data from n=3-13 (A), n=10 (B and D) and n=5 (C) mice per group are 
presented as means ± S.E.M. Statistical comparisons were made using two-way 
ANOVA followed by Bonferroni’s multiple comparison tests (A) or Mann-Whitney 
test (B-D). *P<0.05, **P<0.01 and ***P<0.001, comparing mock to MAV-1. 
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significantly greater in lungs of infected mice than in mock infected controls 

(Figure 6-1D). 

 

Th17 cells and γδ T cells are the main contributors to IL-17A production following 

MAV-1 infection. 

To determine the source of IL-17 production in the lung, we isolated lung 

lymphocytes at 7 dpi and used intracellular cytokine staining to define the extent 

of Th1, Th2, and Th17 polarization following MAV-1 infection. Consistent with 

cytokine induction in the lungs (Figure 6-1), the percentage of IL-17+CD4+ T cells 

was significantly increased in the lungs of infected mice compared to mock 

infected controls (Figure 6-2A). As we have previously demonstrated (6), the 

percentage of IFN-γ+CD4+ T cells was also significantly increased (Figure 6-2B), 

whereas we detected a corresponding very small but statistically significant 

decrease in the percentage of IL-4+CD4+ T cells (Figure 6-2C). When stimulated 

ex vivo with anti-CD3 antibody, lymphocytes isolated from the lungs of infected 

mice produced significantly more IL-17 (Figure 6-2D) and IFN-γ (Figure 6-2E) 

than cells isolated from mock infected controls. T cells isolated from the MLN of 

mock infected and infected mice produced equivalent amounts of IL-17 (Figure 

6-2F), although T cells from MLN of infected mice produced more IFN-γ than 

cells isolated from mock infected controls (Figure 6-2G). 

Next, we isolated lymphocytes from the lungs of mice at 7 dpi and used 

intracellular cytokine staining following stimulation with phorbol-12-myristate-13-

acetate (PMA) and ionomycin to more specifically determine the lymphocyte  
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Figure 6-2. T cell polarization in lungs after MAV-1 infection.  

Mice were infected i.n. with MAV-1 or mock infected with conditioned media and 
lung lymphocytes were isolated at 7 dpi. A-C) Intracellular cytokine staining was 
used to quantify the percentage of CD4+ T cells that were IL-17+, IFN-γ+, or IL-4+. 
D-G) Lung leukocytes or mediastinal lymph node cells were stimulated overnight 
with anti-CD3 antibody and ELISA was used to measure IL-17 or IFN- γ 
production in the supernatant. Combined data from n=5 (A-C) and n=10 (D-G) 
mice per group are presented as means ± S.E.M. Statistical comparisons were 
made using Mann-Whitney test. **P<0.01 and ***P<0.001, comparing mock to 
MAV-1.  
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type(s) responsible for IL-17 production. The percentages of IL-17+CD4+ T cells 

and IL-17+ γδ T cells were significantly increased in the lungs of infected mice 

compared to mock infected controls (Figure 6-3A). In contrast, we observed no 

difference in IL-17+ (NK), natural killer T (NKT), or CD8 T cell populations 

obtained from mock infected and infected mice. In order to determine whether 

the IL-17-producing cell populations were antigen-specific, we stimulated lung 

lymphocytes with antigen presenting cells (APCs) exposed to MAV-1. We 

detected significantly more virus-specific IL-17+CD4+ T cells in lymphocytes 

obtained from infected mice compared to mock infected controls (Figure 6-3B). 

Virus-specific IL-17 production was not noted in other lymphocyte populations, 

suggesting that only the classical Th17 cells (IL-17+CD4+ T cells) are antigen-

specific. In contrast, virus-specific IFN-γ production was observed in both CD4+ 

and CD8+ T cells (Figure 6-3C). Together, these data demonstrate that both 

CD4+ and γδ T cells are major contributors to IL-17 production in the lungs 

following MAV-1 infection, but only IL-17 production by CD4+ T cells is virus-

specific.  

 

IL-17 contributes to neutrophil recruitment to the airways of mice infected with 

MAV-1. 

To investigate contributions of IL-17 to MAV-1 pathogenesis, we infected 

IL-17+/+ and IL-17-/- mice with MAV-1. No MAV-1-associated mortality occurred in 

IL-17+/+ or IL-17-/- animals (data not shown). Acute MAV-1 respiratory infection 

induced histological changes in the lungs of both IL-17+/+ and IL-17-/- mice at 7  



 204 

 
Figure 6-3. Cell types contributing to IL-17 and IFN-γ production after MAV-1 
infection.  

Mice were infected i.n. with MAV-1 or mock infected with conditioned media and 
lung lymphocytes were isolated at 7 dpi. A) Lung leukocytes were stimulated with 
PMA/ionomycin and intracellular cytokine staining was used to quantify the 
percentage of each cell type that was IL-17+. B) Lung leukocytes were stimulated 
overnight with MAV-1-infected APCs and intracellular cytokine staining was used 
to quantify the percent of each cell type that was IL-17+. C) Lung leukocytes were 
stimulated with PMA/ionomycin and intracellular cytokine staining was used to 
quantify the percentage of each cell type that was IFN-γ+. Combined data from 
n=5 mice per group are presented as means ± S.E.M. Statistical comparisons 
were made using two-way ANOVA followed by Bonferroni’s multiple comparison 
tests. ***P<0.001, comparing mock to MAV-1.  

IL-17+ Cells

NK NKT CD4 CD8 γδ T non-T
0.0

0.1

0.2

0.3

0.4

0.5

%
 IL

-1
7A

+  

Mock
MAV-1

***

IL-17+ Cells

NK NKT CD4 CD8 γδ T non-T
0.0

0.5

1.0

1.5

2.0

2.5

%
 IL

-1
7A

+  
Mock
MAV-1 ***

***

A

B

C
IFN-γ+ Cells

NK NKT CD4 CD8 γδ T non-T
0

1

2

3

4

5

%
 IF

N
-γ

+  

Mock
MAV-1 *** ***



 205 

dpi that were characterized by bronchopneumonia and interstitial infiltrates 

(Figure 6-4A). Minimal residual inflammation was present in the lungs of IL-17+/+ 

and IL-17-/- mice at 21 dpi. Next, we isolated cells from airways of IL-17+/+ and 

IL-17-/- mice by BAL. Following infection, fewer cells overall were recruited to the 

airways of IL-17-/- mice than IL-17+/+ mice at 7 dpi, the peak of histologically 

apparent inflammation (Figure 6-4B). Differential counting revealed that fewer 

neutrophils were recruited to the airways of IL-17-/- mice compared to IL-17+/+ 

mice, with a corresponding increase in the percentage of macrophages that were 

recruited to airways of IL-17+/+ mice (Figure 6-4C).  

 

IL-17 deficiency has little effect on T cell polarization in the lungs of MAV-1-

infected mice. 

 To determine whether IL-17 deficiency altered T cell polarization in the 

lungs following MAV-1 infection, we isolated lung lymphocytes from IL-17+/+ and 

IL-17-/- mice at various times following infection and measured cytokine 

production following ex vivo stimulation with anti-CD3 antibody. As expected, T 

cells harvested from the lungs of IL-17-/- mice did not produce IL-17 (Figure 

6-5A). IFN-γ was produced in equivalent amounts by lung T cells harvested from 

IL-17+/+ and IL-17-/- mice at 7 dpi (Figure 6-5B), while very little IL-4 was 

produced by stimulated T cells from IL-17+/+ or IL-17-/- mice at any time point 

(Figure 6-5C). We detected no IL-17A mRNA in the lungs or IL-17 protein in the 

airways of IL-17-/- mice following MAV-1 infection (data not shown). In addition, 

we did not observe increases in mRNA levels of other members of the IL-17  



 206 

 
 
Figure 6-4. Effect of IL-17 deficiency on MAV-1-induced inflammation.  

Wild type (IL-17+/+) and IL-17-/- mice were infected i.n. with MAV-1 or mock 
infected with conditioned media and lung tissue was harvested at 7 and 21 dpi. 
A) Hematoxylin and eosin-stained sections were prepared from paraffin-
embedded sections. Scale bars, 100 µm. B) Total numbers of inflammatory cells 
in BALF at 7 dpi were quantified using a hemocytometer. C) Differential counting 
of macrophages/monocytes (Mac), neutrophils (Neut) and lymphocytes (Lymph) 
was performed on cytospin preparations of BALF cells obtained at 7 dpi. 
Combined data from n=8-14 (B), and n=12-13 (C) mice per group are presented 
as means ± S.E.M. Statistical comparisons were made using two-way ANOVA 
followed by Bonferroni’s multiple comparison tests. **P<0.01 and ***P<0.001, 
comparing mock to MAV-1. †††P<0.001, comparing IL-17+/+ to IL-17-/- mice. 
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Figure 6-5. Effect of IL-17 deficiency on MAV-1-induced Th1, Th2, and Th17 
cytokine production.  

Wild type (IL-17+/+) and IL-17-/- mice were infected i.n. with MAV-1 or mock 
infected with conditioned media. A-C) Lung leukocytes isolated from mice at the 
indicated time points were stimulated overnight with anti-CD3 antibody and 
ELISA was used to measure IL-17, IFN-γ, and IL-4 production. D) ELISA was 
used to quantify IFN-γ concentrations in BALF at the indicated time points. 
Combined data from n=3-5 (A-C) and n=8-21 (D) mice per group are presented 
as means ± S.E.M. Statistical comparisons were made using two-way ANOVA 
followed by Bonferroni’s multiple comparison tests. **P<0.01 and ***P<0.001, 
comparing mock to MAV-1. †††P<0.001, comparing IL-17+/+ to IL-17-/- mice. 
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family, such as IL-17C, IL-17D or IL-17F, in IL-17-/- mice after infection that would 

suggest compensatory expression of these IL-17 subtypes (data not shown). 

IFN-γ concentrations were similar in BALF of IL-17+/+ and IL-17-/- mice at 7 and 

14 dpi (Figure 6-5D).  

 

IL-17 is not essential for control of viral replication. 

IL-17 deficiency was associated with decreased neutrophil recruitment to 

the airways during acute MAV-1 respiratory infection. To determine whether 

IL-17 deficiency and the associated defect in neutrophil recruitment could have 

an effect on control of viral replication in the lungs, we first depleted neutrophils 

from C57BL/6 mice using an anti-Gr-1 antibody. Antibody depletion decreased 

the total number of cells recruited to the airways of infected mice (Figure 6-6A), 

and no neutrophils were detected in the airways of depleted mice (Figure 6-6B). 

It is important to consider that the anti-Gr-1 antibody is also capable of depleting 

other types of cells including dendritic cells and monocytes (19), although we did 

not observe a significant decrease in the absolute number of monocytes 

recruited to the airways in anti-Gr-1-treated mice (Figure 6-6B). All anti-Gr-1-

treated and control animals survived infection (data not shown). Lung viral loads 

were significantly higher in the lungs of anti-Gr-1-treated mice than in control 

mice at 7 dpi, the peak of viral replication in the lungs (Figure 6-6C). This 

difference suggests that neutrophils contribute to the control of viral replication to 

some extent. In contrast, there were no statistically significant differences 
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between lung viral loads measured in IL-17+/+ and IL-17-/- mice at any time point 

(Figure 6-7A). 

To assess whether IL-17 affects the development of an adaptive immune 

response, we infected IL-17-/- and IL-17+/+ mice with MAV-1 and rechallenged 

with MAV-1 28 days after the first infection. In both IL-17+/+ and IL-17-/- mice, lung 

viral loads were substantially lower at 7 days following rechallenge (Figure 6-7B) 

than they were at 7 days following primary infection (Figure 6-7A), suggesting 

that protective immunity developed following primary infection. Lung viral loads 

did not differ between IL-17-/- and IL-17+/+ mice 7 days following rechallenge 

(Figure 6-7B). Thus, while MAV-1-induced IL-17 production in the lungs 

promotes recruitment of neutrophils to the lungs during acute MAV-1 respiratory 

infection, our data demonstrate that IL-17 is not essential for the control of viral 

replication in the lungs or for clearance of virus from the lungs during acute 

respiratory infection. In addition, IL-17 is not essential for the establishment of 

protective immunity following primary infection. 

 

Discussion 

IL-17 and related components of Th17 immune function are increasingly 

identified as contributors to the pathogenesis of many infections, including 

respiratory infections caused by viruses. Induction of IL-17 expression has been 

described in studies using recombinant HAdV-based vectors in mice or rats (20, 

21), but no data exist that describe IL-17 induction in the context of respiratory 

infection by an adenovirus in its natural host. Our results clearly demonstrate  
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Figure 6-6. Effect of neutrophil depletion on acute MAV-1 infection.  

Wild type mice were infected i.n. with MAV-1 or mock infected with conditioned 
media. Mice were treated every other day with anti-Gr-1 antibody (100 µg/dose 
given i.p.) or control serum until samples were harvested at 7 dpi. A) Total 
numbers of inflammatory cells in BALF were quantified using a hemocytometer. 
B) Differential counting of monocytes (Mono), macrophages (Mac), neutrophils 
(Neut) and lymphocytes (Lymph) was performed on cytospin preparations of 
BALF cells. C) DNA was extracted from lungs and qPCR was used to quantify 
MAV-1 genome copy number. Lung DNA viral loads are expressed as copies of 
MAV-1 genome per 100 ng of input DNA. Individual circles represent values for 
individual mice and horizontal bars represent means for each group. Combined 
data from n=3-5 (A-B) mice per group are presented as means ± S.E.M. 
Statistical comparisons were made using two-way ANOVA followed by 
Bonferroni’s multiple comparison tests (A-B) or Mann-Whitney test (C). **P<0.01 
and ***P<0.001, comparing mock to MAV-1. †††P<0.001, comparing Control to 
α-Gr-1. 
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Figure 6-7. Effect of IL-17 deficiency on control of MAV-1 replication in lungs.  

A) Wild type (IL-17+/+) and IL-17-/- mice were infected i.n. with MAV-1 or mock 
infected with conditioned media and lungs were harvested at the indicated time 
points. B) IL-17+/+ and IL-17-/- mice were infected i.n. with MAV-1 and then 
rechallenged with MAV-1 28 days after the primary infection. Lungs were 
harvested at 7 days post rechallenge. DNA was extracted from lungs and qPCR 
was used to quantify MAV-1 genome copy number. DNA viral loads are 
expressed as copies of MAV-1 genome per 100 ng of input DNA. Individual 
circles represent values for individual mice and horizontal bars represent means 
for each group. Statistical comparisons were made using two-way ANOVA 
followed by Bonferroni’s multiple comparison tests. 
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robust induction of IL-17A mRNA and protein in the lungs of mice infected with 

MAV-1. 

Although αβ+ CD4+ T cells are often considered to be the primary source 

of IL-17 production, other cell types are also capable of producing IL-17 (18). For 

instance, γδ T cells have been identified as the source of early, non-antigen 

specific IL-17 production in some circumstances (22, 23). IL-17 production by 

CD8+ T cells, NKT cells, neutrophils and macrophages has also been described 

(18). In this study, we detected IL-17 production by CD4+ T cells and γδ T cells 

but not in CD8+ T cells, NK cells, or NKT cells isolated from lungs of MAV-1 

infected mice (Figure 6-3A). Only CD4+ T cell production of IL-17 was virus-

specific (Figure 6-3B), consistent with nonspecific IL-17 production by γδ T cells 

observed in other studies (22). IL-17-producing CD8+ (Tc17) T cells can be 

detected in the lung as early as 4 days following influenza infection (16). We did 

not detect IL-17 production by CD8+ T cells at 7 days following MAV-1 infection, 

suggesting that the development of Tc17 responses may not be a universal 

feature of respiratory viral infections. We may have missed Tc17 responses that 

develop later during the course of MAV-1 infection. However, we detected typical 

Th1 and Th17 responses in the lungs of MAV-1-infected mice at 7 dpi, and Tc17 

responses develop with kinetics similar to those of Th1 and Th17 responses 

following influenza infection (16). It therefore seems unlikely that Tc17 responses 

are induced by MAV-1 respiratory infection. 

 IL-17 stimulates the production of growth factors such as G-CSF (24, 25) 

and chemokines such as CXCL1 (26, 27), which in turn lead to increased 
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neutrophil production and recruitment of neutrophils to sites of inflammation. 

Consistent with these functions of IL-17, we detected neutrophil recruitment to 

the airways of MAV-1-infected IL-17+/+ mice that was significantly less in IL-17-/- 

mice (Figure 6-4). Similar effects of IL-17 deficiency or IL-17 blockade on virus-

induced neutrophil recruitment have been reported in studies of influenza and 

RSV infection (12, 14). In addition, IL-17 deficiency is associated with overall 

decreases in pulmonary inflammation and lung injury following infection with RSV 

(14) or influenza (13). Other than decreased neutrophil recruitment to the 

airways, IL-17 deficiency had no substantial effect on the extent of MAV-1-

induced pulmonary inflammation at its peak, 7 dpi, or on the resolution of 

pulmonary inflammation by 21 dpi. This suggests that MAV-1 induces a variety of 

other proinflammatory cytokines and chemokines not affected by IL-17 that are 

more important contributors to pulmonary inflammation in our model.  

 Because neutrophil recruitment was impaired in IL-17-/- mice, we sought to 

characterize the effects of neutrophils on MAV-1 infection by depleting 

neutrophils with anti-Gr-1 antibody. Our results suggest that neutrophils do 

contribute to the control of viral replication in the lungs, although we are unable to 

rule out the possibility that depletion of other cell types by the anti-Gr-1 antibody, 

which recognizes Ly6G on peripheral neutrophils but also on dendritic cell and 

monocyte populations (19), may have been responsible for higher viral loads 

detected in animals treated with anti-Gr-1 antibody. Even though we detected 

fewer neutrophils in the airways of IL-17-/- mice following infection, there were no 

differences in lung viral loads between IL-17+/+ and IL-17-/- mice at any time point. 
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Neutrophil recruitment was impaired but not absent in IL-17-/- mice, potentially 

mitigating the effect in IL-17-/- mice compared to mice treated with anti-Gr-1 

antibody, in which neutrophils were almost completely absent. It is also likely that 

IL-17 deficiency does not have a substantial effect on other host factors that are 

important for control of viral replication in our model. For instance, IFN-γ has 

some suppressive effect on MAV-1 replication in vitro (28), and we have shown 

that lung viral loads are higher in IFN-γ-deficient mice on a BALB/c background 

(6). IFN-γ production in response to MAV-1 infection did not differ between 

IL-17+/+ and IL-17-/- mice (Fig. 5), suggesting that IFN-γ may continue to provide a 

protective effect even in the absence of IL-17 production. IL-17 signaling through 

IL-17RA is also dispensable for control of influenza replication during acute 

infection (12), and decreased instead of increased RSV viral loads were noted in 

mice treated with anti-IL-17 antibody (14). Using MAV-1, we therefore provide 

additional evidence that IL-17 is not crucial for control of viral replication in the 

lungs during acute infection. 

IL-17 may be important for the establishment of effective adaptive immune 

responses to respiratory viruses. IL-17-secreting CD4+ and CD8+ effector T cells 

can be detected in the lung in response to influenza infection, antibody-mediated 

neutralization of IL-17 diminishes the protection resulting from priming with 

heterosubtypic influenza virus, and transfer of ex vivo-generated IL-17+ CD8+ T 

cells (Tc17 effectors) to naïve mice protects against subsequent lethal challenge 

with influenza, (16). Interestingly, the protective effect of Tc17 cells was 

associated with early recruitment of neutrophils to the lungs of mice challenged 
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with influenza, again providing some evidence that neutrophils could contribute to 

control of respiratory virus infection. This does not seem to be a universal 

response to respiratory virus infection, as we did not detect IL-17+ CD8+ T cells in 

the lungs of mice infected with MAV-1 (Figure 6-3). However, IL-17-/- mice 

cleared virus from the lungs by 21 dpi as effectively as IL-17+/+ mice (Figure 

6-7A), suggesting that adaptive immune responses to MAV-1 are likely to be 

preserved in the absence of IL-17. Consistent with this, IL-17-/- mice controlled 

viral replication just as well as IL-17+/+ mice after MAV-1 rechallenge (Figure 

6-7B). 

 In summary, acute MAV-1 respiratory infection induces the production of 

IL-17 in the lungs. CD4+ T cells are the major source of IL-17 production in the 

lungs and MLN of MAV-1-infected mice. Although IL-17 facilitates the recruitment 

of neutrophils to the airways, and neutrophils may contribute to control of MAV-1 

replication, IL-17 is not essential for the control of viral MAV-1 replication in the 

lungs or for clearance of MAV-1 from the lungs during acute infection. In addition, 

IL-17 is not essential for the establishment of protective immunity following 

primary infection. Immunomodulation by targeting IL-17 may prove to be an 

appealing therapeutic target in situations in which IL-17-mediated inflammation 

plays a substantial role in the pathogenesis of virus-associated lung injury, as it 

may with pathogens such as influenza and RSV. Our results suggest that IL-17 

neutralization would have a small impact on adenovirus-induced lung injury, 

although it would likely not have a negative impact on host control of adenovirus 

replication in the lung. 
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Materials and Methods 

Mice 

All animal studies were approved by the University of Michigan Committee 

on Use and Care of Animals. C57BL/6J mice were obtained from The Jackson 

Laboratory. IL-17-/- mice on a C57BL/6 background (29) were obtained from 

Bethany Moore (University of Michigan) with the permission of Yoichiro Iwakura 

(Tokyo University of Science, Japan) and bred at the University of Michigan. All 

mice were maintained under specific-pathogen-free conditions. 

 

Virus and Infections 

MAV-1 was grown and passaged in NIH 3T6 fibroblasts, and titers of viral 

stocks were determined by plaque assay on 3T6 cells as previously described 

(11). Mice (4 to 6 weeks of age) were anesthetized with ketamine and xylazine 

and infected i.n. with 105 plaque-forming units (PFU) of MAV-1 in 40 µl of sterile 

phosphate-buffered saline (PBS). Control mice were mock infected i.n. with 

conditioned medium at an equivalent dilution in sterile PBS. To assess protective 

immunity, a subset of mice was rechallenged i.n. with 105 pfu of MAV-1 28 days 

following primary infection. Mice were euthanized by pentobarbital overdose at 

the indicated time points. Lungs were harvested, snap frozen in dry ice, and 

stored at -80°C until processed further. 
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Histology 

Lungs were harvested from a subset of mice and fixed in 10% formalin. 

Prior to fixation, lungs were gently inflated with PBS via the trachea to maintain 

lung architecture. After fixation, organs were embedded in paraffin, and 5 µm 

sections were obtained for histopathology. Sections were stained with 

hematoxylin and eosin to evaluate cellular infiltrates. All sectioning and staining 

was performed by the Pathology Cores for Animal Research in the University of 

Michigan Unit for Laboratory Management. Slides were viewed through an 

Olympus BX41 microscope and digital images were processed using Olympus 

DP Manager software. Final images were assembled using Adobe Illustrator 

(Adobe Systems). Adjustments to the color balance of digital images were 

applied in Adobe Illustrator equally to all experimental and control images. 

 

Isolation of RNA and DNA 

DNA was extracted from the middle lobe of the right lung using the 

DNeasy Tissue Kit (Qiagen Inc.). Total RNA was extracted from lungs using 

TRIzol (Invitrogen) as previously described (30).  

 

Analysis of Viral Loads 

MAV-1 viral loads were measured in organs using quantitative real-time 

polymerase chain reaction (qPCR) as previously described (6, 30). Primers and 

probe used in this assay to detect a 59 bp region of the MAV-1 E1A gene are 
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described in Table 6-1. Results were standardized to the nanogram (ng) amount 

of input DNA. 

 

Analysis of Host Gene Expression 

Cytokine gene expression was quantified using RT-qPCR. First, 2.5 µg of 

RNA were reverse transcribed using MMLV reverse transcriptase (Invitrogen) in 

20 µl reactions according to the manufacturer’s instructions. Water was added to 

the cDNA product to bring the total volume to 50 µl. Primers used to detect 

IL-17A, RORγt, and IFN-γ are described in Table 6-1. For these measurements, 5 

µl of cDNA were added to reactions containing Power SYBR Green PCR Mix 

(Applied Biosystems) and forward and reverse primers (each at 200 nM final 

concentration) in a 25 µl reaction volume. Separate reactions were prepared with 

primers for mouse GAPDH (Table 6-1, used at 200 nM each). In all cases, 

RT-qPCR analysis consisted of 40 cycles of 15 s at 90°C and 60 s at 60°C. 

Quantification of target gene mRNA was normalized to GAPDH and expressed in 

arbitrary units as 2-ΔCt, where Ct is the threshold cycle and ΔCt = Ct(target) – 

Ct(GAPDH).  

 

Analysis of Inflammatory Cells in Bronchoalveolar Lavage Fluid 

  Mice were euthanized via pentobarbital overdose at the indicated time 

points. Lungs were lavaged three times with the same aliquot of 1 mL sterile PBS 

containing protease inhibitor (complete, Mini, EDTA-free tablets; Roche Applied 

Science). Cells in BALF were counted using a hemocytometer. Samples were 
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centrifuged at 13,500 rpm for 10 min at 4°C, after which the supernatant was 

removed and the cell pellet was resuspended in 125 µL sterile PBS containing 

protease inhibitor. The remaining BALF was stored at -80°C. The cells were 

centrifuged in a Shandon Cytospin (Shandon Elliot) and differential cell counting 

was performed after staining with Hema 3 Stain Set (Fisher Scientific).  

 

Isolation of Cells from Lungs and Mediastinal Lymph Nodes 

In some experiments, left lungs were excised and cut into small pieces 

before digestion for 30 min at 37°C in a 1 mg/ml solution of collagenase A 

(Sigma). The digested tissue was then pushed through a syringe with a 1.5-in 22-

gauge needle and pelleted at 3,000 rpm (402 x g) for 5 min. After lysis of red 

blood cells in 1X lysing buffer (BD PharMingen) for 3 min, tissue debris was 

removed by a brief spin (~5 to 10 s) at 1,000 rpm (45 x g). The remaining cells 

were pelleted at 1,200 rpm (64 x g) for 6 min prior to staining. 

Single cell suspensions from mediastinal lymph nodes were prepared by 

grinding the tissue gently between glass slides and passing cells through a 64 

µm cell strainer. The cells were pelleted at 1,200 rpm (64 x g) for 6 min prior to 

staining. 

 

Intracellular Cytokine Staining 

Cells isolated from lungs or MLN were plated at 106 cells/ml and 

stimulated with 50 ng/ml PMA and 1.5 µM ionomycin (Calbiochem) for 5 h at 

37°C. For antigen presenting cell (APC) stimulation, 5 x 105 cells were cocultured 
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overnight in 96-well plates with MAV-1-pulsed APCs (106 cells/well). APCs were 

prepared by depleting T cells from single cell suspensions of splenocytes using 

anti-CD3 microbeads (Miltenyi Biotech). Prior to coculture with cells isolated from 

lungs or MLN, APCs were exposed to MAV-1 at a multiplicity of infection of 5 for 

48 h and then irradiated with 3000 rads. Monensin (Sigma) was added at 3 µM 

during the last 3 h of coculture. Cells were preincubated with anti-FcγR mAb 

2.4G2 to block nonspecific binding before they were stained with the following 

Per-CP-, APC-, FITC-, biotin- and PE-Cy7-conjugated antibodies: CD4 (L3T4), 

CD8 (53-6.7), TCR-β (H57-597), TCR-γδ (GL3), and NK1.1 (PK136) antibodies 

(BD Biosciences). Cells were then fixed in 4% paraformaldehyde for 10 min at 

room temperature, and permeabilized with 0.2% saponin (Sigma). Finally, cells 

were stained with APC-Cy7- and PE-labeled IL17A (TC11-18H10) and IFN-γ 

(XMG1.2) antibodies (BD Biosciences) and analyzed by flow cytometry. Events 

were acquired on a FACSCanto (BD) flow cytometer, and data were analyzed 

with FlowJo software (Tree Star). Cells were classified as CD4+ T cells 

(TCRβ+CD4+), CD8+ T cells (TCRβ+CD8+), NK cells (NK1.1+TCRβ-), NKT cells 

(NK1.1+TCRβ+), γδ T cells (TCRδ+TCRβ-), and non-T cells (TCRβ-TCRδ-NK1.1-). 

 

Lymphocyte Stimulation 

Lymphocytes were seeded at a concentration of 3 x 105 cells/well in 96-

well plates coated with anti-CD3 antibody (BioLegend, 5 µg/ml) and incubated for 

24 h. Supernatant was then collected for ELISA.  
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Analysis of Cytokine Protein 

  Cytokine protein concentrations in BALF and cell culture supernatant were 

determined by ELISA (Duoset Kits, R&D Systems) according to the 

manufacturer's protocol. 

 

Neutrophil Depletion 

Mice were pretreated intraperitoneally (i.p.) with 100 µg of anti-Gr-1 

antibody (clone RB6-8C5), a generous gift from Dr. Gary Huffnagle, beginning 24 

h before MAV-1 infection and then every other day until day 6. The control group 

received an equivalent amount of pre-immune mouse serum (Sigma) in sterile 

PBS. 

 

Statistics 

Analysis of data for statistical significance was conducted using Prism 6 

for Macintosh (GraphPad Software, Incorporated). Differences between groups 

at multiple time points were analyzed using two-way analysis of variance 

(ANOVA) followed by Bonferroni's multiple comparison tests. Comparisons 

between two groups at a single time point were made using the Mann-Whitney 

rank sum test. P values less than 0.05 were considered statistically significant.  
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Table 6-1. Primers and probes used for real-time PCR analysis 

 

Target Oligonucleotide Sequence (5′ to 3′) 

MAV-1 E1A Forward primer GCACTCCATGGCAGGATTCT 

 Reverse primer GGTCGAAGCAGACGGTTCTTC 

 Probe TACTGCCACTTCTGC 

IL-17A Forward primer  GGGTCTTCATTGCGGTGG 

 Reverse primer  CTCCAGAAGGCCCTCAGACTAC 

RORγt Forward primer  CCGCTGAGAGGGCTTCAC 

 Reverse primer  TGCAGGAGTAGGCCACATTACA 

IFN-γ Forward primer  AAAGAGATAATCTGGCTCTGC 

 Reverse primer  GCTCTGAGACAATGAACGCT 

GAPDH Forward primer TGCACCACCAACTGCTTAG 

 Reverse primer GGATGCAGGGATGATGTTC 
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Notes 

This chapter was reprinted and modified from McCarthy, MK, Zhu, L, Procario, 

MC, and Weinberg, JB. 2014. IL-17A contributes to neutrophil recruitment but not 

to control of viral replication during acute mouse adenovirus type 1 respiratory 

infection. Virology. 456-457:259-267. DOI: 10.1016/j.virol.2014.04.008 
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Chapter 7:  
Proinflammatory effects of interferon gamma in mouse adenovirus type 1 

myocarditis 
 

Abstract 

Adenoviruses are frequent causes of pediatric myocarditis. Little is known 

about the pathogenesis of adenovirus myocarditis, and the species-specificity of 

human adenoviruses has limited the development of animal models, which is a 

significant barrier to strategies for prevention or treatment. We have developed a 

mouse model of myocarditis following mouse adenovirus type 1 (MAV-1) 

infection to study the pathogenic mechanisms of this important cause of pediatric 

myocarditis. Following intranasal infection of neonatal C57BL/6 mice, we 

detected viral replication and induction of interferon-gamma (IFN-γ) in the hearts 

of infected mice. MAV-1 caused myocyte necrosis and induced substantial 

cellular inflammation that was predominantly composed of CD3+ T lymphocytes. 

Depletion of IFN-γ during acute infection reduced cardiac inflammation in MAV-1-

infected mice without affecting viral replication. We observed decreased 

contractility during acute infection of neonatal mice, and persistent viral infection 

in the heart was associated with cardiac remodeling and hypertrophy in 

adulthood. IFN-γ is a proinflammatory mediator during adenovirus-induced 

myocarditis, and persistent adenovirus infection may contribute to ongoing 

cardiac dysfunction.  
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Importance  

Studying the pathogenesis of myocarditis caused by different viruses is 

essential in order to characterize both virus-specific and generalized factors that 

contribute to disease. Very little is known about the pathogenesis of adenovirus 

myocarditis, which is a significant impediment to the development of treatment or 

prevention strategies. We used MAV-1 to establish a mouse model of human 

adenovirus myocarditis, providing the means to study host and pathogen factors 

contributing to adenovirus-induced cardiac disease during acute and persistent 

infection. The MAV-1 model will enable fundamental studies of viral myocarditis, 

including IFN-γ modulation, as a therapeutic strategy.  

 

Introduction 

Acute myocarditis is a significant cause of morbidity and mortality in 

childhood. Myocarditis has been identified in 16 to 21% of sudden deaths in 

children (1). The course of viral myocarditis is often more severe in neonates and 

infants than in older patients, with up to 67% mortality in newborns and 55% in 

infants less than 1 year of age compared to 20 to 25% in older children and 38% 

in adults (2, 3). Associations between myocarditis and adenovirus infection are 

well established (3-5). Persistent human adenovirus (HAdV) infections of the 

myocardium have been implicated in the development of dilated cardiomyopathy 

and cardiac dysfunction (6-8). Detection of HAdV genomes in myocardial 

biopsies of pediatric heart transplant recipients is predictive of coronary artery 
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vasculopathy and transplant loss (9). The histopathology of hearts in patients 

with HAdV myocarditis can be milder than that in patients with myocarditis 

caused by other viruses (3), suggesting that mechanisms underlying HAdV-

mediated disease may differ from those involved in myocarditis caused by other 

viruses.  

Much of what is known about viral myocarditis has come from the study of 

myocarditis resulting from coxsackievirus B3 (CVB3) and reovirus. The 

pathogenesis of viral myocarditis involves many interrelated processes. Direct 

damage to cardiac myocytes can occur by viral lysis, inhibition of host protein 

synthesis, or cleavage of host proteins such as dystrophin by viral proteases 

(10). Immune responses to acute infection contribute to the clearance of virus but 

can also cause further damage, either directly or due to cross-reaction between 

viral and cardiac antigens that leads to autoimmune myocardial injury (11). 

Interferon (IFN)-α and IFN-β, the type I IFNs, are essential for limiting viral 

replication in cardiac myocytes and are protective in a neonatal mouse model of 

reovirus myocarditis (12). IFN-γ, the type II IFN, is upregulated and is often 

protective in models of viral myocarditis (12-14), although other reports suggest 

that it can promote myocarditis associated with CVB3 (15, 16), and prolonged 

expression of IFN-γ may lead to a chronic inflammatory cardiomyopathy (17). 

Myocyte apoptosis induced by viral infection and virus-induced inflammation can 

also contribute to progressive cardiac damage (18). Ongoing injury can lead to 

myocardial remodeling and fibrosis accompanied by ventricular dilation and 

cardiac dysfunction. 
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We have previously established intranasal MAV-1 infection of C57BL/6 

and BALB/c mice as a model to study the pathogenesis of adenovirus respiratory 

infection (19). One previous report demonstrated that intraperitoneal (i.p.) MAV-1 

infection of neonatal outbred Swiss Webster mice led to cardiac inflammation, 

myocardial fibrosis, and calcification (20), and a related virus (MAV-3) was 

detected in the heart following intravenous infection of adult C57BL/6N mice (21). 

However, MAV-1 and MAV-3 have yet to be used in detailed studies of 

myocarditis pathogenesis. Here, we demonstrate that intranasal MAV-1 infection 

of neonatal mice led to viral replication and induction of IFN-γ expression in the 

heart that correlated with cellular inflammation and acute myocyte necrosis. 

Depletion of IFN-γ during acute infection reduced cardiac inflammation in MAV-1-

infected mice without affecting viral replication. Long-term persistence of viral 

DNA was associated with increased heart mass and cellular hypertrophy.  

 

Results 

MAV-1 infects primary cardiac myocytes ex vivo and hearts in vivo. 

To determine whether MAV-1 can productively infect cardiac myocytes, 

we isolated cardiac myocytes from adult mice and inoculated them with MAV-1. 

We used RT-qPCR to quantify the expression of the MAV-1 E1A and hexon 

genes and qPCR to quantify viral DNA in infected myocytes. Expression of E1A, 

a nonstructural gene expressed early in infection, and hexon, a virion structural 

protein expressed late, increased between 24 and 48 hpi (Figure 7-1A). Likewise, 

viral DNA increased between 24 and 48 hpi (Figure 7-1B), further suggesting 
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productive viral replication in these cells. To confirm that infectious progeny were 

produced from cardiac myocytes, we performed plaque assays with supernatants 

of infected cardiac myocyte cultures. Viral titers in the supernatants of infected 

cells increased slightly over time (Figure 7-1C), further indicating that cardiac 

myocytes were productively infected by MAV-1.  

To verify that MAV-1 replicates in hearts in vivo, we infected 7-day old 

C57BL/6 mice i.n. with MAV-1. We harvested hearts at multiple time points and 

used qPCR to quantify DNA viral loads. MAV-1 DNA was readily detectable at 4 

dpi (Figure 7-1D). Viral loads in the heart increased to peak levels between 7 and 

10 dpi and were reduced at 21 dpi. We also detected expression of MAV-1 E1A 

and hexon genes in the hearts of infected mice using RT-qPCR (Figure 7-1E, F). 

Expression of both E1A and hexon peaked at 7 and 10 dpi and then decreased 

over time, although we detected persistent expression at 21 dpi. The presence of 

viral gene expression and the logarithmic increases and subsequent decreases 

in heart viral loads over the time course suggest that MAV-1 replicates in the 

hearts of mice following i.n. infection. 

 

MAV-1 induces cellular inflammation in the heart.  

Cardiac inflammation was reported following i.p. MAV-1 infection of 

neonatal outbred Swiss Webster mice (20), but this inflammatory response was 

not characterized in detail. We evaluated the histologic appearance of hearts 

obtained from inbred mice at various times post infection. We observed no 

differences between hearts of mock-infected and infected mice at 4 dpi (data not  
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Figure 7-1. MAV-1 infects cardiac myocytes ex vivo and neonatal hearts in vivo.  

A) Primary cardiac myocytes from adult C57BL/6 mice were infected with MAV-1 
(MOI=5) and expression of the viral E1A and hexon genes was measured by RT-
qPCR, shown standardized to GAPDH in arbitrary units (A.U.). B) DNA was 
extracted from primary cardiac myocytes and qPCR was used to quantify copies 
of MAV-1 genome. C) Supernatants harvested from infected primary cardiac 
myocytes and viral titers measured by plaque assay. Error bars represent means 
± S.E.M of three samples per time point. D) Neonatal mice were infected with 
MAV-1. qPCR was used to quantify viral loads in hearts. DNA viral loads are 
expressed as copies of MAV-1 genome per 100 ng of input DNA. Individual 
circles represent values for individual mice and horizontal bars represent means 
for each group. Expression of the viral genes E) E1A and F) hexon were 
measured in the heart by RT-qPCR, shown in arbitrary units and standardized to 
GAPDH. Combined data from 4 to 9 mice per group are presented as means ± 
S.E.M. 
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shown) or at 7 dpi (Figure 7-2A). By 10 dpi, numerous focal accumulations of 

inflammatory cells were present, scattered throughout the myocardium (Figure 

7-2A). In many areas, these foci were associated with necrotic cardiac myocytes. 

Cellular inflammation was less severe at 14 and 21 dpi, although hearts of 

infected mice contained scattered focal accumulations of mononuclear 

inflammatory cells and necrotic cardiac myocytes (Figure 7-2A and data not 

shown).  

We used immunohistochemistry to evaluate and quantify recruitment of 

inflammatory cells to hearts following MAV-1 infection. Increased numbers of 

CD3+ T lymphocytes were first detected in hearts of infected mice at 7 dpi (Figure 

7-2B). By 10 dpi, we observed further increases in the number of CD3+ cells. At 

this time, recruited CD3+ cells were clustered around blood vessels and 

distributed throughout the myocardium (Figure 7-2A, B). Fewer CD3+ cells were 

detected at later times, but they were still present in greater numbers in the 

hearts of infected mice than mock infected mice at 14 and 21 dpi (Figure 7-2B). 

Both CD4+ and CD8+ cells were detected in the hearts of infected mice at 10 dpi, 

although CD8+ cells were more abundant than CD4+ cells (Figure 7-2C). We also 

observed recruitment of F4/80+ macrophages to the heart after MAV-1 infection 

(data not shown). 

Histological evaluation suggested that MAV-1 infection and/or MAV-1-

induced cardiac inflammation induces myocyte necrosis. To determine whether 

the histological findings described above correlated with other markers of cardiac 

injury during acute infection, we measured cardiac troponin I (cTnI) in the serum   
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Figure 7-2. Cellular inflammation in hearts of infected neonatal mice.  

Mice were infected with MAV-1 or mock infected with conditioned media. A) 
Hematoxylin and eosin-stained or CD3-stained sections were prepared from 
paraffin-embedded sections. Scale bars, 100 µm. B) CD3 staining was quantified 
by counting the number of CD3+ cells per high power field, averaging three fields 
per individual mouse. Combined data from 3 to 5 mice per group are presented 
as means ± S.E.M. C) CD4- and CD8-stained sections were prepared from 
hearts of infected neonatal mice at 10 dpi. Scale bars, 100 µm. D) Serum cTnI 
levels were measured by ELISA. Combined data from 4 to 6 mice per group are 
presented as means ± S.E.M. ***P<0.001, comparing Mock to MAV-1. 
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of mice after infection. We detected increased concentrations of cTnI in the 

serum of infected mice at 10 dpi (Figure 7-2D) but not at other times or in mock 

infected mice. 

 

IFN-γ and other proinflammatory cytokines are upregulated in hearts of infected 

neonatal mice. 

Because we observed recruitment of T cells to the heart following MAV-1 

infection, we used RT-qPCR to measure expression of proinflammatory 

chemokines and cytokines in the heart. We detected increased expression of 

IFN-γ in the hearts of infected mice beginning at 7 dpi (Figure 7-3A). IFN-γ 

upregulation peaked at 10 dpi and decreased in magnitude, but persisted in 

infected mice at 21 dpi. We observed no significant changes in expression of 

IFN-β, IL-4 or IL-17 (data not shown). We detected increased expression of the 

chemokine CCL5 starting at 10 dpi that persisted in infected mice until 21 dpi 

(Figure 7-3B). Expression of TNF-α (Figure 7-3C) and IL-1β (Figure 7-3D) was 

also increased in infected mice, whereas we detected no significant changes in 

expression of IL-6 (data not shown). 

 

MAV-1-induced cardiac disease is less pronounced in adult mice.  

 We have previously described increased susceptibility to MAV-1 

respiratory infection and blunted lung IFN-γ responses in neonatal mice 

compared to adults (22). To determine whether this is also the case in the heart, 
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we compared viral loads and inflammatory responses in the hearts of neonates 

and adult mice. We detected peak viral loads in the hearts of adults at 10 dpi 

(Figure 7-4A). There were no statistically significant differences between heart 

viral loads in neonates and adults at any time point. There was substantially less 

cellular inflammation and evidence of myocyte necrosis (data not shown) and 

fewer CD3+ cells in adult hearts (Figure 7-4B). cTnI was not detected in the 

serum of infected adult mice at any time point (data not shown). IFN-γ (Figure 

7-4C), CCL5 (Figure 7-4D), and TNF-α (Figure 7-4E) were upregulated in the 

hearts of infected adult mice, but the magnitudes of these responses were 

substantially lower and the kinetics were delayed compared to those in neonates, 

in contrast to our previous findings in the lungs (22). We detected marked 

increases in the expression of both IL-1β (Figure 7-4F) and IL-6 (Figure 7-4G) in 

adult mice at 14 dpi, but expression of both had decreased to baseline levels by 

21 dpi. Peak levels of IL-1β and IL-6 were greater in adults than in neonates at 

14 dpi. However, there was minimal difference between neonates and adults 

when comparing the fold change in mRNA levels relative to mock infected 

animals at 14 dpi for IL-1β (neonates, 1.83 ± 0.29; adults, 4.64 ± 2.26; P=0.44) or 

IL-6 (neonates, 1.56 ± 0.67; adults, 4.92 ± 2.67; P=0.34). 

 

MAV-1 infection is associated with cardiac dysfunction in neonatal mice. 

Acute viral myocarditis often results in decreased cardiac function (23, 

24). To determine whether our histological observations correlated with 

measurements of cardiac function, we assessed heart function by 
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echocardiography. In mice infected as neonates, there were no differences in left 

ventricular ejection fraction or cardiac output between mock- and MAV-1-infected 

mice at 5 dpi (Figure 7-5A,B). However, left ventricular ejection fraction and 

cardiac output were significantly lower in infected neonates compared to mock-

infected controls at 10 dpi. MAV-1 infection of neonatal mice did not cause left 

ventricle dilation (Figure 7-5C), and heart rate did not differ between groups 

(Figure 7-5D). MAV-1 infection of adult mice had no effect on left ventricular 

ejection fraction, cardiac output, left ventricle dilation, or heart rate at 10 dpi 

(Figure 7-5E-H). 

 

IFN-γ is proinflammatory during MAV-1 myocarditis 

Type I IFN (IFN-α and IFN-β) and type II IFN (IFN-γ) are upregulated and 

are often protective in other models of viral myocarditis (12-14). Although we did 

not observe virus-induced changes in IFN-β expression (data not shown), we did 

detect significant upregulation of IFN-γ in hearts after MAV-1 infection (Figure 

7-3A). To further define the role of IFN-γ during MAV-1 myocarditis, we depleted 

IFN-γ beginning on the day after infection. Due to accelerated mortality in the 

infected IFN-γ -depleted mice beginning at 9 days after infection (Figure 7-6A), 

mice were euthanized at 9 dpi. Heart viral loads did not differ between IFN-γ-

depleted and control mice at 9 dpi (Figure 7-6B). The severity of myocarditis was 

quantified by blinded scoring of histological sections of hearts. As before,  
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Figure 7-3. Induction of cytokines in hearts.  

Mice were infected with MAV-1 or mock infected with conditioned media. RT-
qPCR was used to quantify A) IFN-γ, B) CCL5, and C) TNF-α, and D) IL-1β 
expression, shown and standardized to GAPDH in arbitrary units (A.U.). 
Combined data from 4 to 13 mice per group are presented as means ± S.E.M. 
***P<0.001, **P<0.01 comparing Mock to MAV-1 at a given timepoint. 
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Figure 7-4. Age-based differences in MAV-1 myocarditis.  

Adult and neonatal mice were infected with MAV-1. A) qPCR was used to 
quantify MAV-1 genome copies in heart DNA. DNA viral loads are expressed as 
copies of MAV-1 genome per 100 ng of input DNA. Individual circles represent 
values for individual mice and horizontal bars represent means for each group. 
B) CD3 staining was quantified by counting the number of CD3+ cells per high 
power field, averaging three fields per individual mouse. Combined data from 2 to 
5 mice per group are presented as means ± S.E.M. ***P<0.001, **P<0.01 
comparing neonate to adult at a given time point. RT-qPCR was used to quantify 
expression of C) IFN-γ, D) CCL5, E) TNF-α, F) IL-1β, and G) IL-6,, all shown 
standardized to GAPDH in arbitrary units (A.U.). Combined data from 4 to 13 
mice per group are presented as means ± S.E.M. Neonatal data from Figures 
1D, 2B, and 3A-D are included in A, B, and C-F, respectively, for reference.  
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Figure 7-5. Cardiac dysfunction following MAV-1 infection.  

Neonatal and adult mice were infected with MAV-1 and echocardiography was 
performed to measure A,E) ejection fraction, B,F) cardiac output, C,G) left 
ventricle internal diameter, and D,H) heart rate. Combined data from 4 to 11 mice 
per group are presented as means ± S.E.M. *P<0.05 comparing Mock to MAV-1 
at a given time point.
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Figure 7-6. Role of IFN-γ in MAV-1 myocarditis.  

Mice were infected with MAV-1 or mock infected with conditioned media and 
treated every other day with control IgG or anti-IFN-γ antibody beginning at 1 dpi. 
A) Survival of infected animals was compared using the log-rank (Mantel-Cox) 
test. B) qPCR was used to quantify MAV-1 genome copies in heart DNA. Viral 
loads are expressed as copies of MAV-1 genome per 100 ng of input DNA. 
Individual circles represent values for individual mice and horizontal bars 
represent means for each group. C) Pathology index scores were generated to 
quantify cellular inflammation. RT-qPCR was used to quantify D) CCL5, E) TNF-
α, and F) IL-1β expression, shown standardized to GAPDH in arbitrary units 
(A.U.). Combined data from 4 to 6 mice per group are presented as means ± 
S.E.M. G) ELISA was used to measure IFN-γ protein in heart homogenate. IFN-γ 
data from 3 to 5 mice per group are standardized to mg of heart tissue and 
presented as means ± S.E.M. ***P<0.001, **P<0.01, and *P<0.05 comparing 
Mock to MAV-1 within a given condition. †††P<0.001, ††P<0.001, and †P<0.05 
comparing MAV-1-infected control IgG- to anti-IFN-γ-treated mice.   
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substantial cellular inflammation was present in the hearts of control mice 

infected with MAV-1. In contrast, virus-induced cardiac inflammation was  

significantly lower in IFN-γ-depleted mice, equivalent to that in mock-infected 

animals (Figure 7-6C). Likewise, IFN-γ depletion reduced virus-induced CCL5, 

TNF-α, and IL-1β upregulation (Figure 7-6D-F). We confirmed IFN-γ depletion 

using ELISA to measure IFN-γ protein in heart homogenate (Figure 7-6G). 

 

Persistent MAV-1 infection is associated with cardiac hypertrophy. 

Both HAdV and MAV-1 establish persistent infections (25, 26). To 

determine whether MAV-1 persists in the heart, we infected mice at 7 days of 

age and harvested hearts from surviving mice at approximately 9 weeks post 

infection, when the mice had grown into adulthood. We detected viral genome in 

all infected mice by both nested PCR (Figure 7-7A) and qPCR (data not shown). 

To determine whether persistent MAV-1 infection affects cardiac function, we 

performed echocardiography at 9 weeks post infection. Although there was a 

trend toward lower left ventricle ejection fraction in mice that were infected as 

neonates compared to mock-infected mice (data not shown), the difference was 

not statistically significant, suggesting that the acute functional deficits of MAV-1 

infection were at least partially recovered. We observed a significant increase in 

the left ventricle mass (as measured by echocardiography) to tibia length ratio in 

MAV-1-infected mice compared to mock-infected mice (Figure 7-7B). There were 

no statistically significant differences between groups in tibia length (data not 

shown). To further assess long-term effects of infection, we quantified  
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Figure 7-7. MAV-1 persistence and cardiac hypertrophy.  

Mice were infected with MAV-1 and hearts harvested at 9 weeks post infection. 
A) Nested PCR was used to evaluate the presence of MAV-1 DNA (top) and β-
actin (bottom). B) Left ventricular mass (LV) was measured by echocardiography 
and normalized to tibia length (TL). C) Heart sections were stained with FITC-
conjugated wheat germ agglutinin to outline cell borders. Cardiomyocyte cross-
sectional area was measured from digital images using NIH ImageJ software. 
Combined data from >350 cells for each condition are presented as means ± 
S.E.M. ***P<0.001, **P<0.01 comparing Mock to MAV-1.  
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cardiomyocyte cross-sectional area in cardiac sections stained with wheat germ 

agglutinin. Mice that were infected as neonates displayed a significant increase 

in cardiomyocyte size, consistent with cellular hypertrophy (Figure 7-7C).  

 

Discussion 

HAdV are common causes of viral myocarditis (3, 4). They are implicated 

in the development of dilated cardiomyopathy (27) and cardiac dysfunction (28, 

29). The present study is the first to examine the pathogenesis of adenovirus 

myocarditis in detail, using MAV-1 to study an adenovirus in its natural host. We 

demonstrated that i.n. MAV-1 infection of neonatal C57BL/6 mice caused 

myocardial inflammation and tissue damage. Maximal viral loads, induction of 

IFN-γ and recruitment of CD3+ T cells correlated with markers of cardiomyocyte 

damage and cardiac dysfunction. Neutralization of IFN-γ during acute MAV-1 

infection reduced cardiac inflammation without affecting viral replication. Long-

term persistence of MAV-1 in hearts was associated with increased LV mass and 

cellular hypertrophy.  

Although it is possible that virus present in residual blood in hearts 

harvested from mice contributed to measured viral loads in our study, increases 

in viral gene expression and logarithmic increases in viral loads between 4 and 7 

dpi strongly suggest that MAV-1 replicates in hearts of mice after infection. 

Further, our in vitro data showing MAV-1 replication in primary cardiac myocytes 

suggest that cardiac myocytes are a likely cellular target of the virus in vivo, 

consistent with a previous report demonstrating the presence of MAV-1 in 
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cardiac myocytes using electron microscopy (20). In that study, virions appeared 

to be present in other cell types as well, including cardiac fibroblasts and 

endothelial cells. Cardiac fibroblasts may serve as another target of MAV-1 

replication in vivo, and we are currently investigating this possibility. HAdV DNA 

is often detected at high levels in lymphocytes of human tonsillar and adenoid 

tissue (30), and MAV-1 has been reported to replicate in macrophages (31), 

raising the possibility that MAV-1 could also infect resident or recruited immune 

cells in the heart.  

CD3+ T cells and F4/80+ macrophages were recruited to the hearts of 

neonatal mice after MAV-1 infection. This is consistent with observations that 

hearts of patients with HAdV myocarditis are infiltrated with T cells and 

macrophages (28, 32). The T cell infiltrates following MAV-1 infection were 

mainly CD8+ T cells, although CD4+ T cells were also present. Following i.p. 

MAV-1 infection of adult mice, either CD4+ or CD8+ T cells are required for viral 

clearance from brain, and perforin (Pfn) contributes to signs of acute 

encephalomyelitis (33). A previous study demonstrated a role for both CD4+ and 

CD8+ T cells in the development of CVB3 myocarditis (34), and Pfn is a major 

contributor to severe tissue damage during CVB3 myocarditis (35). T cells likely 

contribute to both tissue damage and control of viral replication in the heart 

during acute MAV-1 infection. Specific mechanisms regulating the effects of T 

cells in the heart during MAV-1 myocarditis have not yet been defined. 

CD8+ T cells may play both inflammatory and cytolytic roles during 

infection, either by secretion of cytokines, such as IFN-γ or TNF-α, or through 
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release of cytolytic granules such as Pfn (36). Both type I and type II IFN can 

play protective roles in other models of viral myocarditis (12, 14, 37). IFN-γ and 

Pfn play antagonistic roles during chronic myocarditis caused by Trypanosoma 

cruzi, with Pfn+CD8+ T cells implicated in causing tissue damage and IFN-γ 

+CD8+ T cells preventing tissue damage (36). In the current study, we identified 

robust induction of IFN-γ in the heart after MAV-1 infection, consistent with 

previous studies showing induction of IFN-γ in MAV-1-infected lungs (22, 38). 

During acute MAV-1 respiratory infection of adult mice, CD4+ and CD8+ T cells 

are the primary producers of IFN-γ in the lung (39). IFN-γ induced during MAV-1 

myocarditis is likely produced by infiltrating CD4+ and/or CD8+ T cells, because 

the robust IFN-γ induction that we observe correlates closely with recruitment of 

these cells to the myocardium. Cells not evaluated in this study, such as natural 

killer cells, may also contribute to early IFN-γ production in the heart during 

MAV-1 myocarditis. 

Although IFN-γ is induced in the lung during MAV-1 respiratory infection, it 

is not essential for control of MAV-1 replication in the lungs or for survival of adult 

mice following i.n. inoculation (22). Similarly, IFN-γ does not appear to be critical 

for control of MAV-1 replication in the hearts of neonatal mice, since IFN-γ 

depletion did not lead to increased viral replication in the heart. IFN-γ-depleted 

mice developed significantly less cardiac inflammation after MAV-1 infection, 

suggesting that IFN-γ plays a proinflammatory role in the heart as it does in some 

reports of CVB3 myocarditis (15, 16). At the same time, IFN-γ-depleted mice 

became moribund sooner than controls following infection. In addition, we 
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detected equivalent viral loads in neonates and adults despite substantially 

greater IFN-γ induction in neonates. MAV-1 can be detected in many different 

organs following both i.n. and i.p. inoculation (40). We speculate that IFN-γ has 

organ-specific effects on MAV-1 pathogenesis. IFN-γ depletion might lead to 

increased viral loads and/or increased immunopathology in other organs, in 

particular the lungs, due to the inoculation route used in this study, and brain, as 

central nervous system disease is a cause of mortality in susceptible mouse 

strains following i.p. inoculation (41, 42). Our findings indicate that IFN-γ exerts 

an important proinflammatory effect in the heart during MAV-1 myocarditis in 

neonatal mice, and that inflammation induced by IFN-γ signaling rather than 

direct antiviral effects of IFN-γ may be important for survival. Similarly, IFN-γ 

overexpression (13) or administration (43) ameliorates myocarditis in CVB3 and 

encephalomyocarditis virus models, respectively. However, this effect is likely 

due to the direct suppression of viral replication by IFN-γ or IFN-γ-mediated 

activation of natural killer cells (44). 

Acute MAV-1 infection caused cardiac dysfunction in neonatal mice, 

similar to decreased cardiac function seen after infection with influenza A or 

CVB3 (23, 24). The significantly decreased cardiac function in MAV-1-infected 

mice that we observed at 10 dpi correlated with the greatest degree of virus-

induced IFN-γ expression and also with peak levels of viral replication and 

cellular inflammation. It may be that cardiac dysfunction observed during MAV-1 

myocarditis is due to direct cardiomyocyte damage caused by MAV-1 infection 

itself or by cytotoxic effects of virus-induced immune responses. However, 
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because viral replication in hearts of adult mice was not associated with 

substantial inflammation, evidence of cardiac myocyte damage, or 

echocardiographic changes, it seems likely that host responses to viral infection 

are the most important contributors to cardiac dysfunction following MAV-1 

infection. For instance, IFN-γ itself contributes to contractile dysfunction in 

immune-mediated myocarditis (45). Given its pronounced upregulation during 

MAV-1 myocarditis, it seems possible that IFN-γ contributes to the physiological 

abnormalities that we detected in infected mice. Other cytokines induced in the 

heart by MAV-1 infection, including TNF-α, IL-1β, and IL-6, have also been 

reported to impair cardiac contractility (46-50) and may therefore also contribute 

to cardiac dysfunction during MAV-1 infection. 

Our results suggest that MAV-1 replicates equally well in hearts of 

neonatal and adult mice, but only neonatal mice are susceptible to 

MAV-1-induced myocarditis. Immune responses to many different pathogens 

differ between neonates and adults. Neonates are generally thought to mount 

inefficient Th1 responses (51, 52), although there is evidence that neonatal T 

cells can mount protective CD8+ T cell responses equivalent to that of adults 

(53). We have recently observed susceptibility differences between neonatal and 

adult BALB/c mice to MAV-1 respiratory infection that correlated with less 

exuberant IFN-γ responses in neonatal lungs (22). Our results in the present 

study using neonate and adult C57BL/6 mice, however, demonstrate that 

neonatal mice have an exaggerated IFN-γ response in heart tissue compared to 

adult mice after MAV-1 infection that correlates with infiltration of CD3+ T cells 
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and cardiac myocyte damage. This suggests that the response to acute MAV-1 

infection is both age- and organ-specific. Supporting this possibility, a previous 

study demonstrated that susceptibility of mice to group B coxsackieviruses differs 

by age of mice, organ, and virus type (54).  

The exuberant immune response observed in the hearts of neonatal mice, 

but not adult mice, after MAV-1 infection could be due to organ- and age-specific 

differences in cytokine receptor expression levels or function of antigen 

presenting cells. Age-based differences in the activity of intracellular signaling 

pathways could also lead to the age-specific outcomes we observe during MAV-1 

myocarditis. For instance, a previous study demonstrated high expression of 

components of the IL-1R/TLR signaling pathway in the neonatal period that is 

rapidly down-regulated by 12 months of age (55). Another study demonstrated 

hypersensitivity of neonatal mice to TLR stimulation compared to adult mice, 

which may increase susceptibility of neonates to infection (56). Interestingly, we 

detected a different pattern in overall levels of IL-1β and IL-6 mRNA late during 

infection, both of which were higher in adults than in neonates at 14 dpi (Figure 

7-4). Contributions of these cytokines to the control of MAV-1 replication and to 

MAV-1-induced disease in the heart or in other organs have not yet been 

described. These cytokines may serve to limit viral replication in adult mice, 

minimizing deleterious virus-induced inflammation and subsequent cardiac 

dysfunction. Our data emphasize both the complicated interplay of various 

immune responses that is likely to occur during MAV-1 myocarditis as well as the 

changes in immune function that occur with age. 
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Persistent HAdV infections have been implicated in the development of 

dilated cardiomyopathy (DCM) and cardiac dysfunction (8, 28, 29, 57). A wide 

range of viral genomes (enterovirus, HAdV, parvovirus B19 or human 

herpesvirus 6) were detected in endomyocardial biopsies from patients with 

clinically suspected myocarditis or dilated cardiomyopathy (29). We 

demonstrated that MAV-1 DNA persisted to at least 9 weeks post infection in 

hearts of mice infected with MAV-1 as neonates, and MAV-1 persistence was 

associated with cardiac hypertrophy. It is unclear whether long-term persistent 

MAV-1 replication occurs in the heart and in which cells MAV-1 persists. Using 

RT-qPCR, we were unable to detect viral gene expression in hearts at 9 weeks 

post infection (data not shown), although it is possible that this technique is not 

sensitive enough to detect isolated replication in a very small number of cells. 

Long-term effects of MAV-1 infection on cardiac remodeling could be due to 

chronic inflammation induced by persistence of virus in the absence of active 

replication. Long-term effects of infection on cardiac function can be caused by 

an autoimmune process, as occurs with autoreactive T cells that arise following 

CV3B infection (58). To our knowledge, no reports document this type of 

response during HAdV or MAV-1 infection, but we are in the process of 

characterizing virus-specific and autoreactive T cells in the context of MAV-1 

myocarditis. 

In summary, our findings demonstrate that IFN-γ is a proinflammatory 

mediator during adenovirus-induced myocarditis, and they suggest that 

persistent adenovirus infection may contribute to ongoing cardiac dysfunction 
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and cardiac remodeling. The MAV-1 model will enable fundamental studies of 

adenovirus myocarditis and facilitate investigation of therapeutic strategies such 

as modulation of IFN-γ and other host responses. 

 

Materials and Methods 

Cardiac myocyte primary culture and infection 

Cardiac myocytes were isolated as previously described (59), plated on 

laminin-coated coverslips, cultured in presence of the contraction inhibitor 25 µM 

S-(-)-blebbistatin (Toronto Research Chemicals), and infected at a multiplicity of 

infection (MOI) of 5. At 24 or 48 hr, supernatant was collected and the cells were 

incubated in 0.5 mL of TRIzol® (Invitrogen) for 5 min. RNA and DNA were 

isolated according to the manufacturer’s protocol and resuspended in HPLC-

grade water. Infectious virus in supernatant was quantified by plaque assay as 

previously described (60). 

 

Mice  

All work was approved by the University of Michigan Committee on Use 

and Care of Animals. C57BL/6 mothers with litters of neonatal mice and male 

C57BL/6 mice (4-6 weeks of age) were obtained from The Jackson Laboratory. 

All mice were maintained under specific pathogen-free conditions.  
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Virus and infections 

MAV-1 was grown and titered on NIH 3T6 fibroblasts as previously 

described (60). Neonates (7 days old) were manually restrained and infected 

intranasally (i.n.) with 105 plaque-forming units (pfu) in 10 µl of sterile phosphate-

buffered saline (PBS). Adult mice were anesthetized with ketamine and xylazine 

and infected i.n. with 105 pfu of MAV-1 in 40 µl of sterile PBS. Control mice were 

mock infected i.n. with conditioned media at an equivalent dilution in sterile PBS. 

Mice were euthanized by pentobarbital overdose at the indicated time points. 

Blood was collected from the posterior vena cava of euthanized animals and 

incubated on ice for 15-30 min. Samples were centrifuged in a tabletop 

microcentrifuge at 17,000 x g for 10 min at 4°C. Serum was transferred to a new 

microcentrifuge tube and stored at -80°C until assayed. After blood collection, 

hearts were harvested, snap frozen in dry ice, and stored at -80°C until 

processed further. One third to one half of each heart (~20 mg) was 

homogenized in 1 mL of TRIzol® (Invitrogen) using sterile glass beads in a mini 

Beadbeater (Biospec Products) for 30 seconds. RNA and DNA were isolated 

from the homogenates according to the manufacturer’s protocol. 

 

Analysis of Viral Loads by PCR 

MAV-1 viral loads were measured in organs and in cardiac myocytes 

infected ex vivo using quantitative real-time polymerase chain reaction (qPCR) 

as previously described (39). Primers and probe used to detect a 59-bp region of 

the MAV-1 E1A gene are listed in Table 7-1. Five µl of extracted DNA were 
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added to reactions containing TaqMan II Universal PCR Mix with UNG (Applied 

Biosystems), forward and reverse primers (each at 200 nM final concentration), 

and probe (20 nM final concentration) in a 25 µl reaction volume. Analysis on an 

ABI Prism 7300 machine (Applied Biosystems) consisted of 40 cycles of 15 s at 

90°C and 60 s at 60°C. Standard curves generated using known amounts of 

plasmid containing the MAV-1 EIA gene were used to convert threshold cycle 

values for experimental samples to copy numbers of EIA DNA. Results were 

standardized to the nanogram (ng) amount of input DNA. Each sample was 

assayed in triplicate. 

 

Nested PCR Detection of Viral DNA 

Primers used in nested PCR to detect a final 246-bp region of MAV-1 E1A 

are listed in Table 7-2. Five hundred ng of extracted DNA were added to 

reactions containing 10X Standard Taq Buffer (New England 

BiosystemsBioLabs), 4 mM MgCl2, 0.8 mM deoxynucleoside triphosphate 

(Promega), Taq polymerase (New England BioLabs), and 100 nM forward and 

reverse primers in a 100 µl reaction volume. The first PCR amplification was 

carried out with 1 cycle at 94°C for 10 min, 35 cycles of 94°C for 30 s, 55°C for 

30 s, and 72°C for 30 s, followed by 1 cycle at 72°C for 7 min on an Eppendorf 

thermocycler. After the initial round of PCR, 20 µl of primary PCR product was 

added to fresh PCR mixture and amplified in a second round of PCR. The 

second PCR round was conducted under the same conditions with the exception 

of 200 nM primer concentrations instead of 100 nM, and 30 cycles instead of 35. 
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Real-time PCR Analysis of Gene Expression 

Cytokine gene expression was quantified using reverse transcriptase 

(RT)-qPCR as previously described (22, 38). First, 2.5 µg of RNA were reverse 

transcribed using MMLV reverse transcriptase (Invitrogen) in 20 µl reactions 

according to the manufacturer’s instructions. Water was added to the cDNA 

product to bring the total volume to 50 µl. cDNA was amplified using duplexed 

gene expression assays for mouse CCL5 and GAPDH (Applied Biosystems). 

Five µl of cDNA were added to reactions containing TaqMan Universal PCR Mix 

and 1.25 µl each of 20X gene expression assays for the target cytokine and 

GAPDH. Primers used to detect IFN-γ, tumor necrosis factor alpha (TNF-α), 

GAPDH, early region 1A (E1A), and hexon are listed in Table 7-1. For these 

measurements, 5 µl of cDNA were added to reactions containing Power SYBR 

Green PCR Mix (Applied Biosystems) and forward and reverse primers (each at 

200 nM final concentration) in a 25 µl reaction volume. In all cases, RT-qPCR 

analysis consisted of 40 cycles of 15 s at 90°C and 60 s at 60°C. Quantification 

of target gene mRNA was normalized to GAPDH and expressed in arbitrary units 

as 2-ΔCt, where Ct is the threshold cycle and ΔCt = Ct(target) – Ct(GAPDH). 

 

IFN-γ Neutralization 

 Rabbit anti-mouse IFN-γ (α-IFN-γ) polyclonal antibody (61) and 

nonimmune rabbit serum were generously provided by Dr. Steven Kunkel 

(University of Michigan) and purified using protein A column purification (Thermo 
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Scientific). Beginning on the first day post infection, mice were treated with 50 µg 

of α-IFN-γ antibody or nonimmune rabbit IgG given i.p. every other day beginning 

at 1 dpi. Neutralizing activity of α-IFN-γ was confirmed by its capacity to block 

IFN-γ-mediated repression of MAV-1 replication in vitro (data not shown). 

 

Measurement of IFN-γ Protein 

 In some experiments, heart tissue (approximately half of a neonatal heart) 

was homogenized in PBS containing protease inhibitor (complete, Mini, 

EDTA-free tablets; Roche Applied Science) and 1% Triton X-100 (Fisher 

Scientific) at a concentration of 50 mg lung tissue per 1 mL homogenization 

buffer. Tissue was homogenized using sterile glass beads in a mini Beadbeater 

(Biospec Products) for 2 x 30 s cycles, resting on ice between cycles. After 

homogenization, tissue was spun twice at 17,000 x g for 15 min at 4°C and 

supernatant was stored at -80°C until assayed. IFN-γ protein concentrations in 

heart homogenates were determined by ELISA (Duoset Kits, R&D Systems) 

according to the manufacturer's protocol. 

 

Histology 

Hearts were fixed in 10% formalin and embedded in paraffin. Five µm 

sections were stained with hematoxylin and eosin to evaluate cellular infiltrates. 

Separate sections were stained with anti-CD3 antibody (Thermo Scientific). CD3+ 

cells were quantified at 40X magnification, using the average of at least three 

independent fields per sample. Results are expressed as the number of CD3+ 
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cells per high power field (HPF). In some experiments, hearts were removed and 

immediately frozen in Tissue-Tek OCT Compound (Sakura Finetek), and 5 µm 

sections were strained with antibodies to CD4 and CD8 (Serotec and BD 

Pharmingen, respectively). Sectioning and immunohistochemical staining were 

performed by the University of Michigan Unit for Laboratory Animal Medicine 

Pathology Cores for Animal Research. Heart sections were viewed through a 

Laborlux 12 microscope (Leitz). Digital images were obtained with an EC3 digital 

imaging system (Leica Microsystems) using Leica Acquisition Suite software 

(Leica Microsystems). Images were assembled using Adobe Illustrator (Adobe 

Systems). To quantify cellular inflammation in the hearts, slides were examined 

in a blinded fashion to determine a pathology index score for the size/intensity of 

cellular infiltrate and the extent of involvement in the heart (Table 7-3). 

To visualize cardiomyocyte cell membranes, paraffin-free left ventricular 

heart sections were incubated with 100 µg/ml FITC-conjugated wheat germ 

agglutinin (Sigma) in PBS for 2 hours and then washed 3 times with PBS. Slides 

were mounted using Prolong Gold Antifade reagent with DAPI (4,6-diamidine-2-

phenylindole; Invitrogen). Fluorescent images were viewed through an Olympus 

BX41 microscope and digital images were processed using Olympus DP 

Manager software. Cross-sectional areas were calculated from fluorescent 

images using NIH ImageJ software (62). 
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Determination of Serum Cardiac Troponin Levels 

Cardiac troponin I (cTnI) concentrations were measured using the Ultra 

Sensitive Mouse Cardiac Troponin-I ELISA Kit (Life Diagnostics) according to the 

manufacturer’s instructions. Samples were assayed in duplicate. 

 

Echocardiography 

In vivo echocardiography was performed as previously described (63), 

consistent with guidelines of the American Society of Echocardiography. Mice 

were anesthetized by inhaled isoflurane, chest hair was removed with NairTM 

(Church & Dwight), and imaging was performed using Vevo770 Ultrasound 

system (Visual Sonics Inc). Transducers used were an RMV707B (15-45Mhz) for 

adult mice or an RMV706 (20-60Mhz) for neonatal mice. Imaging and analysis 

were performed by a single blinded sonographer. Left ventricular (LV) mass was 

calculated by measuring the LV internal diameter (LVID), the LV posterior wall 

thickness (LVPW), and interventricular septal thickness (IVS) in diastole (d), 

using the following formula: LV mass=1.053*[(LVIDd+LVPWd+IVSd)3-LVIDd3. LV 

end systolic and end diastolic dimensions (LVs and LVd), as well as systolic and 

diastolic wall thickness were measured from M-mode tracings to calculate 

fractional shortening and ejection fraction assuming a spherical LV geometry 

[(LVd3-LVs3)/LV d3x100)],  
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Statistics 

Analysis for statistical significance was conducted using Prism 6 for 

Macintosh (GraphPad Software, Incorporated). Differences between more than 

two groups at a single time point were analyzed using one-way analysis of 

variance (ANOVA). Differences between groups at multiple time points were 

analyzed using two-way analysis of variance (ANOVA) followed by Bonferroni's 

multiple comparison tests. For viral load data, differences between groups at a 

given time point in log-transformed viral loads were analyzed using the 

Mann-Whitney test. Survival analysis was performed using the log-rank (Mantel-

Cox) test. P values less than 0.05 were considered statistically significant.  
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Table 7-1. Primers and probes used for real-time PCR analysis 

 

Target Oligonucleotide Sequence (5′ to 3′) 

MAV-1 E1A 

genomic 

Forward primer GCACTCCATGGCAGGATTCT 

 Reverse primer GGTCGAAGCAGACGGTTCTTC 

 Probe TACTGCCACTTCTGC 

GAPDH Forward primer TGCACCACCAACTGCTTAG 

 Reverse primer GGATGCAGGGATGATGTTC 

IFN-γ Forward primer  AAAGAGATAATCTGGCTCTGC 

 Reverse primer  GCTCTGAGACAATGAACGCT 

TNF-α Forward primer CCACCACGCTCTTCTGTCTAC 

 Reverse primer AGGGTCTGGGCCATAGAACT 

MAV-1 E1A Forward primer AATGGGTTTTGCAGTCTGTGTTAC 

 Reverse primer CGCCTGAGGCAGCAGATC 

MAV-1 Hexon Forward primer GGCCAACACTACCGACACTT 

 Reverse primer TTTTGTCCTGTGGCATTTGA 
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Table 7-2. Primers and probes used for nested PCR analysis 

 

Target Oligonucleotide Sequence (5′ to 3′) 

MAV-1 E1A 

Round 1 

Forward primer ATGTCGCGGCTCCTACG 

 Reverse primer CAACGAACCATAAAAAGACATCAT 

MAV-1 E1A 

Round 2 

Forward primer ATGGGATGGTTCGCCTACTT 

 Reverse primer CACCGCAGATCCATGTCCTCAA 

Actin Forward primer  CCTAAGGCCAACCGTGAAAAGATG 

 Reverse primer ACCGCTCGTTGCCAATAGTGATG 

  



 260 

Table 7-3. Quantification of cellular inflammation in histologic specimens. 

 

Severity 
Score* Description Extent 

Score Description 

0 no inflammatory infiltrates   

1 inflammatory cells present 
without discrete foci 1 mild (<25% of section 

involved) 

2 larger foci of 10 to 100 
inflammatory cells 2 moderate (~25-75% of 

section involved) 

3 larger foci of >100 
inflammatory cells 3 Severe (>75% of section 

involved) 
 

 

*A score from 0 to 3 was given for the size/intensity of cellular infiltrates. The 

score was then multiplied by a number reflecting the extent of involvement in the 

specimen to reach a single final severity score, resulting in a total score that 

could range from 0 to 9. 
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Chapter 8:  
Role of the immunoproteasome during MAV-1 myocarditis 

Abstract 

Adenoviruses (AdVs) are significant causes of pediatric myocarditis. Little 

is known about the pathogenesis of AdV myocarditis, which is a significant 

barrier to developing prevention or treatment strategies. The immunoproteasome 

is a complex induced by interferon-gamma (IFN-γ) that plays an important role 

during viral infection through regulation of CD8 T cell responses, activation of the 

NF-κB pathway, and management of oxidative stress. We used mouse 

adenovirus type 1 (MAV-1) to test the hypothesis that immunoproteasome 

activation contributes to AdV-induced myocarditis. Transcript and protein levels 

of the immunoproteasome subunit β5i and the immunoproteasome regulator 

PA28 were upregulated in infected hearts coincident with peak viral replication 

and IFN-γ expression. We detected an increase in β5i active subunits and a 

decrease in standard proteasome β5 active subunits, with an overall increase in 

the β5i:β5 ratio at 11 dpi. Treatment of mice with the nonspecific proteasome 

inhibitor bortezomib reduced proinflammatory cytokine production in infected 

hearts without significantly affecting mortality. However, treatment of mice with 

the immunoproteasome-specific inhibitor ONX 0914 did not have a substantial 

effect on proinflammatory cytokine induction or pathology. IFN-γ-/- mice showed 

less immunoproteasome induction and increased mortality after MAV-1 infection. 
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Brain tissue of infected IFN-γ-/- and ONX 0914-treated mice showed extensive 

inflammation and hemorrhage, suggesting that the immunoproteasome may play 

a protective role in other organs during MAV-1 infection. Inhibition of proteasome 

activity may provide a novel approach to decrease cardiac damage induced by 

AdV or other pathogens, and the role of the immunoproteasome and other 

inflammatory mediators may be organ-specific. 

 

Introduction 

Proteasomes play a primary role in the generation of antigenic peptides 

for presentation on MHC class I molecules (1-3). The 20S proteasome core is a 

barrel-shaped complex composed of four stacked heptameric rings: two outer 

alpha rings and two inner beta rings (4, 5). The catalytic activity is restricted to 

three of the beta subunits, β1, β2 and β5, that account for the caspase-like, 

trypsin-like, and chymotrypsin-like activities of the proteasome, respectively (6). 

Exposure of cells to IFN-γ results in the induction of three homologous β-type 

proteasome “immunosubunits”: β1, β2i, and β5i, which form a specialized 

complex called the immunoproteasome (7-14).  

The changes in proteasome subunit composition from standard to 

immunosubunits in response to IFN-γ stimulation alter the proteolytic activity of 

the complex. The immunoproteasome is thought to generate peptides better 

suited to binding to MHC class I molecules compared to the constitutive 

proteasome, and thus be more efficient than the constitutive proteasome at 

contributing to eliciting of immune responses (15, 16). Another protein complex 
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induced by IFN-γ is PA28, a large regulatory complex that binds the ends of the 

20S proteasome core to further enhance the ability of the proteasome to degrade 

short peptide substrates (17, 18). The immunoproteasome plays a role in the 

generation of CD8 T cell epitopes from a variety of viruses, included mouse 

cytomegalovirus, hepatitis B virus, influenza virus, and lymphocytic 

choriomeningitis virus (LCMV) (19-24). 

The constitutive proteasome plays a crucial role in activation of the NF-κB 

pathway through processing of the p105 precursor of the NF-κB p50 subunit or 

through the degradation of IκBα (25, 26). However, a role for the 

immunoproteasome in NF-κB pathway activation has been debated. 

Immunoproteasome inhibition or deficiency leads to decreased proinflammatory 

cytokine production by re-stimulated splenocytes (27, 28). Dendritic cells (DCs) 

from immunoproteasome-deficient mice show reduced innate cytokine production 

in response to influenza virus infection, possibly due to impaired NF-κB activation 

(29). The immunoproteasome may play a role in other host responses 

independent of MHC class I antigen processing or NF-κB activation. For 

example, accumulating evidence suggests that the immunoproteasome is critical 

for the removal of oxidized proteins and adaptation to oxidative stress (30-35). 

Adenoviruses (AdVs) are important causes of myocarditis, and persistent 

AdV infections have been implicated in the development of dilated 

cardiomyopathy and cardiac dysfunction (36-41). We have previously 

demonstrated that intranasal infection of neonatal mice with mouse adenovirus 

type 1 (MAV-1) leads to viral replication and induction of IFN-γ expression in the 



 269 

heart that correlates with recruitment of T cells, proinflammatory cytokine 

production, and acute myocyte necrosis (Chapter 7). We hypothesized that the 

immunoproteasome plays a proinflammatory role during MAV-1 myocarditis and 

is essential for coordinated inflammatory responses to MAV-1 infection in the 

heart. Nonspecific proteasome inhibition blunted proinflammatory cytokine 

production during MAV-1 myocarditis, but immunoproteasome inhibition did not. 

Mortality was increased in IFN-γ-deficient mice and mice treated with an 

immunoproteasome inhibitor after MAV-1 infection, possibly due to substantial 

inflammation and hemorrhage in the brains of these mice. Our results suggest 

that IFN-γ and the immunoproteasome plays organ-specific roles during MAV-1 

infection.  

 

Results 

Immunoproteasome induction in hearts after MAV-1 infection. 

To determine whether MAV-1 infection induces immunoproteasome 

activity in the heart, we infected neonatal mice i.n. with MAV-1 or mock infected 

with conditioned media and measured mRNA levels of β5i and PA28α at various 

times post infection. Both β5i and PA28α were significantly increased in hearts of 

infected mice compared to mock infected mice beginning at 7 dpi (Figure 8-1A, 

B). Levels remained elevated at 10 dpi and then decreased over time. Peak β5i 

and PA28α mRNA induction coincided with peak viral replication and induction of 

IFN-γ (Figure 7-3A). 
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Figure 8-1. Immunoproteasome expression in the heart after MAV-1 infection.  

Mice were infected i.n. with MAV-1 or mock infected with conditioned media. 
RT-qPCR was used to quantify A) β5i and B) PA28α expression, shown 
standardized to GAPDH in arbitrary units (A.U.). Combined data from 3 to 6 mice 
per group are presented as means ± S.E.M. ***P<0.001, **P<0.01 comparing 
Mock to MAV-1 at a given timepoint. 
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To determine whether the significant increase in immunoproteasome 

subunit mRNA levels observed between 7 and 14 dpi resulted in an increase at 

the protein level, we measured β5, β5i, and PA28α/β levels in heart lysates at 11 

dpi. We observed a significant increase in β5i protein and a corresponding 

decrease in β5 protein in heart lysates of infected mice compared to mock 

infected mice (Figure 8-2A and Table 8-1). Levels of the IFN-γ-induced 

immunoproteasome regulatory complex PA28α/β were also significantly greater 

in heart lysates from mice after MAV-1 infection (Figure 8-2A and Table 8-1).  

We measured proteasome activity in hearts of infected and mock infected 

mice at 11 dpi using a proteasome constitutive immunoproteasome subunit 

(active site) ELISA (ProCISE) assay (42). Consistent with the western blot data, 

activity of β5 was significantly decreased in lysates of infected hearts compared 

to mock infected hearts, while activity of β5i was substantially increased (Figure 

8-2B and Table 8-1). When β5i and β5 activities are expressed as a ratio of 

immunoproteasome/proteasome activity, the β5i:β5 activity ratio significantly 

increased from 0.36 ± 0.02 in mock-infected mice to 1.48 ± 0.08 in infected mice 

(Table 8-1), indicating that the immunoproteasome accounts for the majority of 

total proteasome activity in hearts at 11 dpi. These results demonstrate that 

immunoproteasome expression and activity are induced in the hearts of mice 

after MAV-1 infection. 
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Figure 8-2. Immunoproteasome protein expression and activity in the heart after 
MAV-1 infection.  

Mice were infected i.n. with MAV-1 and hearts were harvested at 11 dpi. A) 
Western blot was used to analyze expression of β5, β5i, PA28α, and PA28β in 
heart lysates. B) ProCISE assay was used to analyze β5 and β5i activity in heart 
lysates. Combined data from 4 mice per group are presented as means ± S.E.M. 
***P<0.001. 
  

Mock! MAV-1!A

B

β5 β5i
0

100

200

300

%
 a

ct
iv

e 
su

bu
ni

t o
f M

oc
k

ProCISE Assay
Mock
MAV-1

***

***



 273 

Protein 
Level Subunit Mock MAV-1 P (% control ± SEM) (% control ± SEM) 

  

β5 99.8 ± 3.1 17.0 ± 3.3 <0.001 
β5i 99.8 ± 12.3 1104.0 ± 101.6 <0.001 

PA28α 100.3 ± 11.6 212.8 ± 29.7 <0.001 
PA28β 100.0 ± 2.1 187.5 ± 17.0 <0.001 

      
Active Subunit Mock MAV-1 P Subunits (% control ± SEM) (% control ± SEM) 

  β5 100.0 ± 2.3 64.8 ± 1.7 <0.001 
β5i 100.0 ± 4.0 266.0 ± 15.9 <0.001 

      
Activity 
(ratio)   

Mock MAV-1 
P (active β5i:β5 ratio) (active β5i:β5 ratio) 

  β5i:β5 
ratio 0.36 ± 0.02 1.48 ± 0.08 <0.001 

 
 
Table 8-1. Quantification of immunoproteasome expression and activity in heart 
lysates.  

Mice were infected i.n. with MAV-1 and heart tissue was harvested at 11 dpi. 
Western blot and ProCISE assays were used to quantify proteasome subunit 
expression and activity in heart lysates. 
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Effect of nonspecific proteasome inhibition on MAV-1 myocarditis. 

To determine the effect of increased immunoproteasome activity on 

MAV-1 myocarditis, we used the reversible proteasome inhibitor bortezomib. 

Bortezomib nonspecifically inhibits both the β5 subunit of the constitutive 

proteasome and the β5i subunit of the immunoproteasome (43). Because 

immunoproteasome induction is not detected in infected hearts until after 4 dpi 

(Figure 8-1), and to avoid substantial inhibition of the constitutive proteasome 

before the immunoproteasome is induced, we treated mice with bortezomib 

every other day starting at 4 dpi. We harvested hearts at 10 dpi.  

Bortezomib treatment did not affect survival of infected mice (data not 

shown). Heart viral loads were equivalent in vehicle- and bortezomib-treated 

mice (Figure 8-3A). MAV-1 infection results in upregulation of multiple 

proinflammatory cytokines and chemokines in the heart, including CCL5 and 

TNF-α (Figure 7-3). We used RT-qPCR to measure expression of these 

mediators in the heart following bortezomib treatment. CCL5 and TNF-α 

expression were significantly increased in hearts of vehicle-treated mice after 

infection compared to mock infected vehicle-treated mice (Figure 8-3B, C). 

However, induction of CCL5 and TNF-α was blunted in bortezomib-treated mice 

after infection. The size and extent of inflammatory foci present in the heart at 10 

dpi were similar in vehicle- and bortezomib-treated mice (data not shown). This 

suggests that proteasome activity does not affect overall viral replication or 

pathology in the heart at 10 dpi, but it does contribute to induction of 

proinflammatory cytokines in the heart during MAV-1 infection. 
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Figure 8-3. Effect of proteasome inhibition on MAV-1 myocarditis.  

Mice were infected with MAV-1 or mock infected with conditioned media and 
treated every other day with vehicle or 0.5 mg/kg bortezomib starting at 4 dpi. 
Hearts were harvested at 10 dpi. A) qPCR was used to quantify MAV-1 genome 
copies in heart DNA. Viral loads are expressed as copies of MAV-1 genome per 
100 ng of input DNA. Individual circles represent values for individual mice and 
horizontal bars represent means for each group. RT-qPCR was used to quantify 
B) CCL5 and C) TNF-α expression, shown standardized to GAPDH in arbitrary 
units (A.U.). Combined data from 5 mice per group are presented as means ± 
S.E.M. ***P<0.001, **P<0.01 comparing Mock to MAV-1 within a given condition. 
†P<0.05 comparing MAV-1-infected vehicle- to bortezomib-treated mice. 
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Effect of immunoproteasome inhibition on MAV-1 myocarditis.  

 Because bortezomib inhibits both the proteasome and the 

immunoproteasome, its effects on the induction of proinflammatory cytokines 

after MAV-1 infection could be due to inhibition of the standard proteasome. To 

determine the effect of immunoproteasome activity on MAV-1 myocarditis, we 

treated mice with the β5i-specific inhibitor ONX 0914 every other day starting at 1 

dpi. ONX 0914 inhibits β5i with an IC50 value of approximately 10 nM (44). Due to 

increased mortality in the infected ONX 0914-treated group, we harvested heart 

tissue at 9 dpi. ONX 0914 treatment did not affect viral loads at 9 dpi (Figure 

8-4A). CCL5 and TNF-α expression were significantly increased in vehicle-

treated mice after infection compared to mock infected vehicle-treated mice 

(Figure 8-4B, C). CCL5 induction was blunted in mice treated with ONX 0914, but 

TNF-α expression was unaffected. ONX 0914 treatment did not affect the size 

and extent of inflammatory foci in hearts of MAV-1-infected mice (data not 

shown). These results suggest that immunoproteasome activity contributes less 

overall to virus-induced inflammation in the heart than does constitutive 

proteasome activity during MAV-1 infection.  

 

Impaired immunoproteasome induction and increased mortality in IFN-γ-deficient 

mice after MAV-1 infection.  

 MAV-1 infection of neonatal mice induces IFN-γ expression in the heart 

(Figure 7-3A). IFN-γ depletion starting the day after infection blunted the 

induction of proinflammatory cytokines and reduced pathology in the heart. IFN-γ  
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Figure 8-4. Effect of immunoproteasome inhibition on MAV-1 myocarditis.  

Mice were infected with MAV-1 or mock infected with conditioned media and 
treated every other day with vehicle or 5 mg/kg ONX 0914 starting at 1 dpi. 
Hearts were harvested at 9 dpi. A) qPCR was used to quantify MAV-1 genome 
copies in heart DNA. Viral loads are expressed as copies of MAV-1 genome per 
100 ng of input DNA. Individual circles represent values for individual mice and 
horizontal bars represent means for each group. RT-qPCR was used to quantify 
B) CCL5 and C) TNF-α expression, shown standardized to GAPDH in arbitrary 
units (A.U.). Combined data from 4 to 6 mice per group are presented as means 
± S.E.M. ***P<0.001, *P<0.05 comparing Mock to MAV-1 within a given 
condition. †P<0.05 comparing MAV-1-infected vehicle- to ONX 0914-treated 
mice. 
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depletion also reduced β5i mRNA levels after infection, although not completely 

(data not shown). We hypothesized that the immunoproteasome would not be 

induced in MAV-1-infected hearts in the complete absence of IFN-γ. To assess 

the role of complete IFN-γ deficiency on MAV-1 myocarditis, we infected neonatal 

wild-type (IFN-γ+/+) and IFN-γ-deficient (IFN-γ-/-) mice with MAV-1. MAV-1 

infection was almost uniformly lethal to IFN-γ-/- mice by 8 dpi, while approximately 

50% of IFN-γ+/+ mice survived (Figure 8-5A). Although heart viral loads were 

significantly higher in IFN-γ-/- mice compared to IFN-γ+/+ mice at 7 dpi, the 

magnitude of this difference was small (Figure 8-5B). Therefore, the increased 

mortality of IFN-γ-/- mice is unlikely to be due solely to increased viral replication 

in the heart. Expression of β5i was significantly reduced in infected IFN-γ-/- mice 

compared to infected IFN-γ+/+ mice at 7 dpi (Figure 8-5C) and was not different 

from baseline β5i expression previously observed in mock infected mice (Figure 

8-1A), indicating that IFN-γ is responsible for induction of the immunoproteasome 

in hearts after MAV-1 infection.  

To determine the effect of IFN-γ deficiency on other MAV-1-induced 

inflammatory responses, we used RT-qPCR to measure expression of CCL5 and 

TNF-α in the heart. We have previously observed that CCL5 and TNF-α 

expression peak in hearts of infected mice at 10 dpi, and induction is low at 

earlier time points (Figure 7-3). Consistent with this, overall CCL5 and TNF-α 

mRNA levels were low in infected IFN-γ+/+ mice at 7 dpi compared to levels of 

expression observed at 10 dpi (Figure 7-3). CCL5 expression was not 
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significantly different between infected IFN-γ+/+ and IFN-γ-/- mice at 7 dpi (data not 

shown). Expression of TNF-α was slightly reduced in IFN-γ-/- mice compared to 

IFN-γ+/+ mice (Figure 8-5D). We observed minimal inflammation in hearts of 

IFN-γ+/+ mice, and there was significantly less inflammation in hearts of infected 

IFN-γ-/- mice at 7 dpi, although the magnitude of the difference was small (Figure 

8-5E). MAV-1 infection causes cardiac dysfunction in neonatal mice at 10 dpi, but 

not at 5 dpi (Figure 7-5). Consistent with low levels of proinflammatory cytokines 

and pathology present in infected hearts at 7 dpi, left ventricle ejection fraction 

was normal in IFN-γ+/+ mice at this time (Figure 8-5F) and did not differ from 

values we previously observed in mock-infected mice (Figure 7-5). We observed 

no difference in left ventricle ejection fraction between infected IFN-γ+/+ mice and 

IFN-γ-/- mice (Figure 8-5F), suggesting that increased mortality in IFN-γ-/- mice is 

not due to changes in overall cardiac function. Thus, while IFN-γ is responsible 

for immunoproteasome induction in heart tissue after MAV-1 infection, it does not 

have a substantial effect on viral replication or the early inflammatory response in 

the heart at 7 dpi. However, IFN-γ is critical for survival of neonatal mice after 

MAV-1 infection. 

 

Unexpected role for IFN-γ-induced immunoproteasome activity in the brain. 

 Previous data indicate that substantial inflammatory and necrotic lesions 

do not develop in heart tissue until 9 or 10 dpi (Figure 7-2 and data not  
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Figure 8-5. Effect of IFN-γ deficiency on MAV-1 infection.  

IFN-γ+/+ and IFN-γ-/- mice were infected i.n. with MAV-1 and A) monitored for 
survival. B) Hearts were harvested at 7 dpi and qPCR was used to quantify 
MAV-1 genome copies in heart DNA. DNA viral loads are expressed as copies of 
MAV-1 genome per 100 ng of input DNA. Individual circles represent values for 
individual mice and horizontal bars represent means for each group. RT-qPCR 
was used to quantify C) β5i and D) TNF-α expression, shown and standardized 
to GAPDH in arbitrary units (A.U.). E) Pathology index scores were generated to 
quantify cellular inflammation. F) Echocardiography was performed to measure 
ejection fraction. Combined data from 5 to 7 mice per group are presented as 
means ± S.E.M. **P<0.01, *P<0.05.  
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shown). We observed increased mortality in both ONX 0914-treated and IFN-γ-/- 

mice after MAV-1 infection. ONX 0914-treated mice showed only mild differences 

in virus-induced inflammatory responses in the heart. The increased mortality in 

MAV-1-infected IFN-γ-/- mice occurs prior to the development of significant 

cardiac inflammation and is not accompanied by defects in cardiac function. We 

hypothesized that the early mortality of ONX 0914-treated and IFN-γ-/- mice was 

independent of effects on inflammation in the heart and was due to a requirement 

for IFN-γ in another organ. 

 We examined H&E-stained sections of various organs from IFN-γ+/+ and 

IFN-γ-/- mice at 8 dpi, when all IFN-γ-/- mice are moribund. Inflammation in the 

lungs and liver did not differ between the two strains of mice (data not shown). At 

8 dpi, we observed scattered small foci of inflammatory cells surrounding blood 

vessels in the brains of IFN-γ+/+ mice, largely localized to the midbrain region 

(Figure 8-6, black arrow). However, in the brains of IFN-γ-/- mice at 8 dpi, 

inflammatory foci were more abundant throughout the tissue compared to 

IFN-γ+/+ mice. We also observed substantial areas of hemorrhage in brains of 

IFN-γ-/- mice (Figure 8-6). There was some degeneration of the cerebellar 

Purkinje layer in infected of IFN-γ+/+ mice. However, there was extensive Purkinje 

layer damage and some hemorrhage present in the cerebella of IFN-γ-/- mice 

(Figure 8-6, white arrow). This suggests that IFN-γ-/- mice may be dying rapidly 

due to extensive inflammation and hemorrhage in the brain after MAV-1 infection. 

Whether this is due to uncontrolled viral replication or another effect of IFN-γ on 

virus-induced host responses remains to be determined. 
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Figure 8-6. Effect of IFN-γ deficiency on cellular inflammation in brains of 
neonatal mice after MAV-1 infection.  

IFN-γ+/+ and IFN-γ-/- mice were infected i.n. with MAV-1 and brains were 
harvested at 8 dpi. Hematoxylin and eosin-stained sections were prepared from 
paraffin-embedded sections. Scale bars, 100 µm. Black arrows (left) indicate 
blood vessel and white arrows (right) indicate the Purkinje cell layer. 
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 We made similar observations in vehicle- and ONX 0914-treated mice at 9 

dpi, when the majority of ONX 0914-treated mice were moribund. The brains of 

vehicle-treated MAV-1-infected mice contained scattered foci of inflammatory 

cells around blood vessels, with some hemorrhage present (data not shown). 

However, in the brains of ONX 0914-treated mice the foci of inflammatory cells 

and hemorrhage were more abundant than in vehicle-treated mice (data not 

shown). These results suggest that infected ONX 0914-treated mice may have 

increased mortality because of extensive inflammation and hemorrhage in the 

brain. The increased inflammation in brains of ONX 0914-treated mice mirrors 

that of IFN-γ-/- mice, suggesting that the effects of IFN-γ on virus-induced brain 

inflammation may be mediated by immunoproteasome induction.  

 

Discussion 

We have shown that MAV-1 infection of neonatal mice results in induction 

of immunoproteasome expression and activity in the heart, coincident with peak 

viral loads and IFN-γ induction. Inhibition of proteasome activity using the 

nonspecific proteasome inhibitor bortezomib blunted the induction of 

proinflammatory cytokines after infection without affecting mortality. However, 

treatment of mice with the immunoproteasome-specific inhibitor ONX 0914 

reduced CCL5 induction, but did not affect induction of other proinflammatory 

cytokines or heart pathology. Mortality was increased in IFN-γ-/- mice after MAV-1 

infection, although immunoproteasome induction and inflammation was reduced 

in hearts of IFN-γ-/- mice compared to IFN-γ+/+ mice at 7 dpi. Extensive 
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inflammation and hemorrhage were present in brain tissue of infected IFN-γ-/- and 

ONX 0914-treated mice, suggesting that the immunoproteasome may play a 

protective role in other organs during MAV-1 infection. 

Immunoproteasome induction is observed in the heart during 

coxsackievirus B3 (CVB3)-induced myocarditis (45). Ongoing CVB3-induced 

myocarditis in susceptible mouse strains (A.BY/SnJ and SWR/J) is associated 

with increased formation and activity of immunoproteasomes in the heart. 

Interestingly, resistant strains of mice (C57BL/6 and DBA/J) also upregulate 

immunoproteasome expression after CVB3 infection, but peak expression occurs 

early (at 4 dpi) and is concurrent with type I IFN responses (46). Cardiomyocytes 

are likely the main contributors to immunoproteasome expression at early times 

after CVB3 infection, because there are no significant populations of 

inflammatory cells present in the heart at 4 dpi. In susceptible strains of mice, 

peak immunoproteasome expression occurs 1-2 weeks post infection and is 

associated with IFN-γ expression and the influx of inflammatory cells. 

Immunoproteasome induction is linked to enhanced CVB3 epitope generation 

(46). Thus, early immunoproteasome induction and enhanced generation of 

CVB3 epitopes coincides with less severe inflammation in resistant strains of 

mice, while delayed immunoproteasome induction correlates with severe 

inflammation and chronic infection. We observed immunoproteasome induction 

in the hearts of mice infected with MAV-1 that correlated with IFN-γ expression 

and the influx of inflammatory cells. We have not detected induction of type I IFN 

in heart tissue after MAV-1 infection (data not shown). Hematopoietic cells, such 
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as T cells and macrophages, constitutively express immunoproteasome subunits 

(47-50). IFN-γ induces immunoproteasome expression in non-hematopoietic cell 

types. Because immunoproteasome induction during MAV-1 myocarditis 

coincides with IFN-γ expression and inflammatory cell recruitment, it is likely that 

both resident heart cells (cardiomyocytes and fibroblasts) and recruited immune 

cells (macrophages and T cells) are contributors to immunoproteasome subunit 

expression and activity in MAV-1-infected hearts. 

Inhibition of the proteasome using the nonspecific proteasome inhibitor 

bortezomib blunted induction of proinflammatory cytokines and chemokines in 

heart tissue after MAV-1 infection. During LCMV infection, bortezomib treatment 

impairs priming of naïve T cells in the spleen, leading to increased viral 

replication (51). Bortezomib treatment during MAV-1 infection did not affect viral 

loads in the heart at 10 dpi, suggesting that overall CD8 T cell responses are 

intact. We administered bortezomib beginning at 4 dpi in order to prevent 

substantial inhibition of the constitutive proteasome before the 

immunoproteasome is induced in heart tissue. Priming of naïve T cells in the 

mediastinal lymph nodes (the primary draining lymph nodes of the lungs and 

heart) may have already occurred by 4 dpi. This may be why bortezomib 

administration starting at 4 dpi in our model did not directly affect viral replication 

in the heart. Bortezomib treatment inhibits proinflammatory cytokine production in 

murine models of colitis and collagen-induced arthritis (52, 53), likely due to 

inhibition of IκB degradation. We observed a similar effect of bortezomib 

treatment on MAV-1 infection, with blunted induction of CCL5 and TNF-α, 
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suggesting that proteasome activity is important for the induction of 

proinflammatory cytokines during MAV-1 myocarditis. It is possible that we would 

see a greater effect of bortezomib on cardiac inflammatory responses during 

MAV-1 infection by altering the dose and timing of bortezomib administration. 

In contrast to bortezomib, treatment of mice with the β5i-specific inhibitor 

ONX 0914 did not affect TNF-α induction and only slightly impaired induction of 

CCL5 in heart tissue after MAV-1 infection. ONX 0914 treatment also did not 

affect overall inflammation in infected heart tissue. This suggests that the 

immunoproteasome does not play a major role in proinflammatory cytokine 

induction or the recruitment of inflammatory cells to the heart during MAV-1 

myocarditis. We chose to initiate ONX 0914 treatment at 1 dpi in order to 

recapitulate our time course of IFN-γ depletion after MAV-1 infection. It is 

possible that we may observe greater effects of immunoproteasome inhibition on 

heart inflammation by delaying ONX 0914 administration until there is substantial 

immunoproteasome induction in the heart (for example, starting at 4 dpi or later).  

During CVB3-induced myocarditis, β5i-/- mice develop more severe 

myocardial tissue damage compared to wild-type mice (54). This is not due to a 

direct effect on viral replication, CD8 T cell responses, or induction of 

proinflammatory cytokines such as IL-6, TNF-α, or IFN-β. Rather, 

cardiomyocytes and inflammatory cells from β5i-/- mice have increased 

accumulation of poly-ubiquitinated protein conjugates and oxidant-damaged 

proteins following treatment with IFN-γ. Hearts from CVB3-infected β5i-/- have 

significant apoptotic cell death compared to infected wild-type mice. These 
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findings suggest that the immunoproteasome protects cells from cytokine-

induced proteotoxic stress by removing polyubiquitinated or oxidant-damaged 

proteins. We did not observe substantial differences in cardiac inflammation in 

infected ONX 0914-treated mice, although we did not examine apoptosis or 

oxidized protein levels in hearts after infection. Since β5i is required for 

incorporation of β1i and β2i into newly assembled immunoproteasomes, β5i-/- 

mice have a severe defect in immunoproteasome assembly (55). It is possible 

that a greater reduction of immunoproteasome activity during MAV-1 infection, 

such as in β5i-/- mice, would result in a greater effect on overall inflammation in 

the heart. We did observe accelerated mortality in infected ONX 0914-treated 

mice compared to vehicle-treated mice, suggesting that immunoproteasome 

activity may be important for overall survival during MAV-1 infection in neonatal 

mice. 

Mice deficient in IFN-γ did not upregulate β5i expression in heart tissue 

after MAV-1 infection, indicating that IFN-γ is required for immunoproteasome 

induction during MAV-1 myocarditis. IFN-γ deficiency did not affect viral 

replication in the heart. However, mortality was increased in neonatal IFN-γ-/- 

mice, which succumbed by 8 dpi, a time before substantial inflammation 

develops in the heart. We have previously shown that IFN-γ has only minor 

effects on viral replication in the lungs of adult mice after MAV-1 infection and 

does not affect mortality (56). It is surprising that there are striking age-based 

differences in the requirement for IFN-γ during MAV-1 infection. The early 
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mortality of neonatal IFN-γ-/- mice before significant cardiac inflammation 

suggested that IFN-γ may play an important role in another organ.  

Brains of neonatal IFN-γ-/- mice showed diffuse inflammatory foci and 

severe hemorrhage at 8 dpi, suggesting that early mortality in these mice may be 

due to excess inflammation and cell damage in the brain. ONX 0914-treated 

mice, which also displayed accelerated mortality following MAV-1 infection, had 

more hemorrhage in brain tissue compared to vehicle-treated mice at 9 dpi. This 

suggests that the requirement of IFN-γ for survival of MAV-1 infection in neonatal 

mice may be mediated by immunoproteasome activity. Little is known about the 

role of the immunoproteasome in brain tissue. Immunoproteasome assembly is 

induced in microglial-like cells in the brain following LCMV infection (57). 

LCMV-induced meningitis is delayed and less severe in β5i-/- mice, suggesting a 

role for microglial immunoproteasomes in exacerbating immunopathology. 

However, our results suggest that IFN-γ-induced immunoproteasomes in the 

brain may play a protective role during MAV-1 infection.  

In contrast, our results following IFN-γ depletion or immunoproteasome 

inhibition suggest that the immunoproteasome promotes some aspects of 

virus-induced inflammation in heart tissue. This would indicate that the role of the 

immunoproteasome during MAV-1 infection of neonatal mice is organ-specific, 

with the immunoproteasome playing a proinflammatory role in the heart and an 

anti-inflammatory, protective role in the brain. It is possible that the primary 

function of the immunoproteasome in the brain is to prevent the buildup of 

oxidized and damaged proteins within infected cells or neighboring cells exposed 
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to proinflammatory cytokines. In this case, immunoproteasome inhibition would 

lead to accumulation of toxic levels of damaged proteins within cells and excess 

cell death. This, in turn, could enhance the recruitment of inflammatory cells to 

the brain tissue in mice treated with an immunoproteasome inhibitor. 

In summary, our findings demonstrate that the immunoproteasome is 

induced during MAV-1-induced myocarditis. While proteasome activity promotes 

the expression of some proinflammatory cytokines, immunoproteasome activity 

affects only some aspects of virus-induced inflammation in the heart during 

MAV-1 infection. IFN-γ is required for immunoproteasome induction in heart 

tissue, and it is also required for survival of MAV-1 infection in neonatal mice. 

Our results suggest that the requirement of IFN-γ for survival is independent of 

an affect on cardiac inflammation and instead may be due to a protective role of 

IFN-γ-induced immunoproteasome activity in the brain. The constitutive 

proteasome and the immunoproteasome likely have non-redundant functions 

during MAV-1 infection, and the role of the immunoproteasome may be organ-

specific. The MAV-1 model will enable further studies of the role of the 

immunoproteasome and other inflammatory mediators during adenovirus 

myocarditis and disseminated adenovirus infection. 
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Materials and Methods 

Mice  

All work was approved by the University of Michigan Committee on Use 

and Care of Animals. IFN-γ-/- mice (originally from The Jackson Lab) on a 

C57BL/6 background were generously provided by Dr. Benjamin Segal 

(University of Michigan) and were bred at the University of Michigan. C57BL/6 

mothers with litters of neonatal mice were obtained from The Jackson 

Laboratory. All mice were maintained under specific pathogen-free conditions. 

 

Virus and infections 

MAV-1 was grown and titered on NIH 3T6 fibroblasts as previously 

described (58). Neonates (7 days old) were manually restrained and infected 

intranasally (i.n.) with 105 plaque-forming units (pfu) in 10 µl of sterile phosphate-

buffered saline (PBS). Control mice were mock infected i.n. with conditioned 

media at an equivalent dilution in sterile PBS. Mice were euthanized by 

pentobarbital overdose at the indicated time points. Hearts were harvested, snap 

frozen in dry ice, and stored at -80°C until processed further. One third to one 

half of each heart (~20 mg) was homogenized in 1 mL of TRIzol® (Invitrogen) 

using sterile glass beads in a mini Beadbeater (Biospec Products) for 30 

seconds. RNA and DNA were isolated from the homogenates according to the 

manufacturer’s protocol. 
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SDS-PAGE and Western Blot Analysis 

Tissues were lysed using 1X loading buffer (50 mM Tris-Cl at pH 6.8, 2% 

SDS, and 10% glycerol) for the preparation of total proteins (59). Western blots 

were performed using primary antibodies against PA28α (PW 8185, Affiniti 

Research Products), PA28β (PW 8240, Affiniti Research Products), proteasome 

subunit β5 (anti-PSMB5; customized antibody from (60)), or immunoproteasome 

subunit β5i (anti-LMP7, Enzo Life Sciences). All SDS-PAGE and western blotting 

were performed as previously described (60, 61).  

 

Measurement of proteasome and immunoproteasome activity 

The ProCISE assay, performed as in (61), involves the following steps: (1) 

incubation of the biotinylated active site probe with activated 20S proteasomes 

from tissue lysates, (2) denaturation with 6 M guanidine hydrochloride, (3) 

addition of streptavidin-coated beads to capture probe-bound active sites, (4) 

extensive bead washing, (5) addition of proteasome subunit-specific primary 

antibody followed by a secondary HRP-conjugated antibody, and (6) 

luminescence-based detection. 

 

Proteasome and Immunoproteasome inhibition 

Beginning at 4 dpi, mice were treated with 0.5 mg/kg bortezomib (Thermo 

Fisher Scientific) or DMSO given i.p. every other day until 8 dpi. For 

immunoproteasome-specific inhibition, mice were treated with 5 mg/kg ONX 
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0914 (SelleckChem) or vehicle (Captisol®, Captisol® Ligand Technology) given 

subcutaneously every other day starting at one day post infection.  

 

Analysis of Viral Loads by PCR 

MAV-1 viral loads were measured in organs using quantitative real-time 

polymerase chain reaction (qPCR) as previously described (62). Primers and 

probe used to detect a 59-bp region of the MAV-1 E1A gene are listed in Table 1. 

Five µl of extracted DNA were added to reactions containing TaqMan II Universal 

PCR Mix with UNG (Applied Biosystems), forward and reverse primers (each at 

200 nM final concentration), and probe (20 nM final concentration) in a 25 µl 

reaction volume. Analysis on an ABI Prism 7300 machine (Applied Biosystems) 

consisted of 40 cycles of 15 s at 90°C and 60 s at 60°C. Standard curves 

generated using known amounts of plasmid containing the MAV-1 EIA gene were 

used to convert threshold cycle values for experimental samples to copy 

numbers of EIA DNA. Results were standardized to the nanogram (ng) amount of 

input DNA. Each sample was assayed in triplicate. 

 

Real-time PCR Analysis of Gene Expression 

Cytokine gene expression was quantified using reverse transcriptase 

(RT)-qPCR as previously described (56, 63). First, 2.5 µg of RNA were reverse 

transcribed using MMLV reverse transcriptase (Invitrogen) in 20 µl reactions 

according to the manufacturer’s instructions. Water was added to the cDNA 

product to bring the total volume to 50 µl. cDNA was amplified using duplexed 
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gene expression assays for mouse CCL5 and GAPDH (Applied Biosystems). 

Five µl of cDNA were added to reactions containing TaqMan Universal PCR Mix 

and 1.25 µl each of 20X gene expression assays for the target cytokine and 

GAPDH. Primers used to detect β5i, PA28α, TNF-α, and GAPDH are listed in 

Table 2. For these measurements, 5 µl of cDNA were added to reactions 

containing Power SYBR Green PCR Mix (Applied Biosystems) and forward and 

reverse primers (each at 200 nM final concentration) in a 25 µl reaction volume. 

In all cases, RT-qPCR analysis consisted of 40 cycles of 15 s at 90°C and 60 s at 

60°C. Quantification of target gene mRNA was normalized to GAPDH and 

expressed in arbitrary units as 2-ΔCt, where Ct is the threshold cycle and ΔCt = 

Ct(target) – Ct(GAPDH). 

 

Histology 

Hearts or brains were fixed in 10% formalin and embedded in paraffin. 

Five µm sections were stained with hematoxylin and eosin to evaluate cellular 

infiltrates. Sectioning and staining were performed by the University of Michigan 

Unit for Laboratory Animal Medicine Pathology Cores for Animal Research. 

Slides were viewed through an Olympus BX41 microscope and digital images 

were processed using Olympus DP Manager software. Images were assembled 

using Adobe Illustrator (Adobe Systems). 
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Echocardiography 

In vivo echocardiography was performed as previously described (64), 

consistent with guidelines of the American Society of Echocardiography. Mice 

were anesthetized by inhaled isoflurane, chest hair was removed with NairTM 

(Church & Dwight), and imaging was performed using Vevo770 Ultrasound 

system (Visual Sonics Inc) and an RMV706 (20-60Mhz) transducer. Imaging and 

analysis were performed by a single blinded sonographer. LV end systolic and 

end diastolic dimensions (LVs and LVd), as well as systolic and diastolic wall 

thickness were measured from M-mode tracings to calculate ejection fraction 

assuming a spherical LV geometry [(LVd3-LVs3)/LV d3x100)],  

 

Statistics 

Analysis for statistical significance was conducted using Prism 6 for 

Macintosh (GraphPad Software, Incorporated). Differences between more than 

two groups were analyzed using one-way analysis of variance (ANOVA) followed 

by Bonferroni's multiple comparison tests. Differences between two groups were 

analyzed using Mann-Whitney test. For viral load data, differences between 

groups at a given time point in log-transformed viral loads were analyzed using 

Student’s t test. P values less than 0.05 were considered statistically significant.  
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Table 8-2. Primers and probes used for real-time PCR analysis 

 

Target Oligonucleotide Sequence (5′ to 3′) 

MAV-1 E1A  Forward primer GCACTCCATGGCAGGATTCT 

genomic Reverse primer GGTCGAAGCAGACGGTTCTTC 

 Probe TACTGCCACTTCTGC 

GAPDH Forward primer TGCACCACCAACTGCTTAG 

 Reverse primer GGATGCAGGGATGATGTTC 

β5i Forward primer  CATTCCTGAGGTCCTTTGGTGG 

 Reverse primer  ATGCGTTCCCCATTCCGAAG 

PA28α Forward primer GTCAAAGAGAAAGAGAAGGAGGAGC 

 Reverse primer GGTGTGAAGGTTGGTCATCAGC 

TNF-α Forward primer CCACCACGCTCTTCTGTCTAC 

 Reverse primer AGGGTCTGGGCCATAGAACT 
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Chapter 9:  
Discussion 

Overview 

Adenoviruses are DNA viruses that are important causes of acute 

respiratory disease and myocarditis. During a viral infection, the host immune 

system faces the task of effectively clearing a virus while limiting local tissue 

damage and inflammation. The immune response to viruses can be protective, 

aiding in clearance of virus from the affected organs and resolution of disease 

caused by viral replication. Disease associated with respiratory viruses can also 

be caused by immune-mediated pathology. Virus-induced inflammation can be 

detrimental to the host, causing symptoms during acute infection and leading to 

damage that contributes to chronic disease. It is unclear whether the clinical 

manifestations of adenovirus disease are mediated by direct virus-induced tissue 

damage, the host immune response to the virus, or both.  

The main focus of this dissertation was to identify host factors that 

regulate inflammatory responses and contribute to pathogenesis of acute 

adenovirus respiratory infection. Due to the species-specificity of adenoviruses, 

which precludes animal studies with a human adenovirus, I used mouse 

adenovirus type 1 (MAV-1) to study the pathogenesis of an adenovirus in its 

natural host. The role of the lipid mediator PGE2 in immunocompetent and 

immunocompromised (BMT) hosts was examined in Chapters 4 and 5, 

respectively. In Chapter 6, I investigated the contribution of IL-17 to recruitment 
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of inflammatory cells and control of viral replication in the lung. In Chapters 7 and 

8, I examined the role of IFN-γ and the immunoproteasome during MAV-1-

induced myocarditis. By determining contributions of lipid mediators (such as 

PGE2), cytokines (such as IL-17 and IFN-γ), and specific cell populations (such 

as T cells) to MAV-1 pathogenesis and viral clearance, we have gained insight 

into mechanisms of acute disease and persistence.  

 

Chapter Summary  

PGE2 is a lipid mediator that can promote proinflammatory cytokine 

production and pulmonary inflammation. In Chapter 4, I used mice deficient in 

mPGES-1, the enzyme responsible for conversion of the intermediate PGH2 into 

PGE2, to determine the effect of PGE2 on MAV-1 pathogenesis. I showed that 

while PGE2 promotes the expression of a variety of cytokines in response to 

acute MAV-1 infection, PGE2 synthesis does not appear to be essential for 

generating pulmonary immunity in immunocompetent mice. Adenovirus infections 

are an important complication for individuals who are immunocompromised due 

to hematopoietic stem cell transplantation. In Chapter 5, I used MAV-1 

respiratory infection in an allogeneic BMT mouse model. BMT mice displayed 

exaggerated PGE2 production and significantly delayed clearance of virus from 

the lungs. BMT-induced T cell dysfunction likely contributes to impaired virus 

clearance, and T cell dysfunction is independent of excess PGE2 production. 

During influenza A virus infection, PGE2 inhibits type I IFN production and 

apoptosis in macrophages to promote viral replication in these cells, but not 
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airway epithelial cells (1). We have not observed substantial type I IFN induction 

in the lungs of MAV-1-infected mice, and type I IFN receptor deficiency does not 

substantially alter MAV-1 pathogenesis following i.n. infection (data not shown). I 

have detected expression of early MAV-1 genes in alveolar macrophages from 

bronchoalveolar lavage fluid (BALF) of infected mice (data not shown), although 

we do not believe that alveolar macrophages are a major target of viral 

replication in the lungs. It is possible that the role of PGE2 during respiratory viral 

infection is virus-specific, and PGE2 may be more important during infection by 

viruses that target macrophages and induce significant type I IFN production. 

PGE2 also impairs antigen presentation and T cell mediated immunity during 

influenza A virus infection (1). In unpublished data, I have demonstrated that 

addition of 10 µM PGE2 to α-CD3-stimulated splenocytes from MAV-1-infected 

mice impairs production of IL-2, IFN-γ, and IL-17 (data not shown). However, we 

observe less IFN-γ induction in mPGES-1-/- mice during MAV-1 infection (Figure 

4-3E), suggesting that endogenous PGE2 promotes T cell cytokine production in 

our model. Moreover, treatment of mice with the PGE2 analog misoprostol 

significantly enhances IFN-γ production in the airways of infected mice (Figure 

5-8A). These results suggest that while PGE2 can suppress T cell responses ex 

vivo, both endogenous and exogenous PGE2 promote production of T cell 

cytokines, namely IFN-γ, during MAV-1 respiratory infection in vivo. While PGE2 

promotes IFN-γ responses in vivo, IFN-γ production is not a major contributor to 

control of peak MAV-1 replication or MAV-1 clearance from the lung ((2) and 

Figure 5-5A). However, CD8+ T cells do play an important role in viral clearance 
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because CD8α-/- mice have significantly higher viral loads than wild-type mice at 

14 dpi (Figure 5-5B). Viral clearance is unaffected in both PGE2-deficient 

immunocompetent and BMT mice, indicating that neither normal nor excess 

PGE2 levels suppress CD8+ T cell function to impact viral clearance from the 

lungs. 

In Chapter 6, I showed that MAV-1 induces robust Th1 and Th17 

responses during MAV-1 respiratory infection. Although IL-17 contributes to 

recruitment of neutrophils to the airways during acute MAV-1 infection, Th17 

responses are not essential for control of virus infection or for virus-induced 

pulmonary inflammation. In unpublished data, I have demonstrated that IL-17-/- 

mice are protected from MAV-1-induced weight loss (data not shown). This 

suggests that Th17 responses contribute to systemic inflammatory responses 

independent of the lung during MAV-1 respiratory infection. It is possible that 

IL-17 affects recruitment of neutrophils or another cell type to other MAV-1 target 

organs, such as the liver, brain, or spleen.  

Adenoviruses are important causes of myocarditis. In Chapter 7, I 

established a model of MAV-1-induced myocarditis in neonatal mice. I 

demonstrate that IFN-γ is a proinflammatory mediator during MAV-1 myocarditis, 

and persistent MAV-1 infection may contribute to ongoing cardiac dysfunction. 

Although heart viral loads are similar between neonatal and adult mice, 

inflammation and signs of cardiac damage are not present in adult mice. In 

Chapter 8, I show that the immunoproteasome is significantly induced during 

MAV-1 myocarditis. IFN-γ is important for induction of the immunoproteasome 
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following MAV-1 infection, and it likely has organ-specific effects. While treatment 

of mice with a nonspecific proteasome inhibitor leads to decreased 

proinflammatory cytokine induction in the heart after MAV-1 infection, an 

immunoproteasome-specific inhibitor does not have seem to have a similar 

effect.  

It is unknown whether cardiac dysfunction in MAV-1-infected neonatal 

mice is due to active viral replication or the immune response. However, adult 

mice infected with MAV-1 do not develop significant inflammation or cardiac 

damage (as measured by serum cardiac troponin I levels) despite similar viral 

loads in the heart. This suggests that immune responses are the major 

contributor to cardiac dysfunction in neonatal mice, rather than active viral 

replication. We observed less proinflammatory cytokine induction in hearts of 

MAV-1-infected neonatal mice treated with the proteasome inhibitor bortezomib 

and to a lesser extent in mice treated with the immunoproteasome inhibitor ONX 

0914 (Figure 8-3 and Figure 8-4). The effect that administration of either of these 

compounds has on the development of cardiac dysfunction during MAV-1 

infection is unknown. We may observe greater effects of these inhibitors on 

cardiac inflammatory responses during MAV-1 infection by altering the dose and 

timing of administration to target specific times post infection when 

immunoproteasome activity in the heart is highest. Preliminary results from a pilot 

experiment in which we delayed ONX 0914 treatment until 6 dpi suggest that 

delayed immunoproteasome inhibition leads to decreased cardiac pathology and 

decreased proinflammatory cytokine induction compared to vehicle-treated mice. 
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It is possible that the immunoproteasome plays dual roles in the heart during 

MAV-1-induced myocarditis. For example, immunoproteasome activity could both 

promote proinflammatory cytokine production and protect infected cells in the 

heart from oxidative stress induced by increased cytokine levels. Inhibiting 

immunoproteasome activity throughout the course of infection (starting at 1 dpi 

and continuing through 9 dpi) may cancel out any dual effects, whereas altering 

the timing of inhibition may reveal the different roles of the immunoproteasome 

during MAV-1 myocarditis.  

We observed increased mortality in neonatal IFN-γ-/- mice and in neonatal 

mice treated with ONX 0914 after MAV-1 infection. Brains of both neonatal 

IFN-γ-/- and ONX 0914-treated mice showed diffuse inflammatory foci and severe 

hemorrhage, suggesting that early mortality in these mice may be due to excess 

inflammation and cell damage in the brain because of less IFN-γ-induced 

immunoproteasome activity. IFN-γ-induced immunoproteasome activity in the 

brain could be playing multiple roles during MAV-1 infection. Following i.n. and 

i.p. infection of 4 week old outbred Swiss Webster mice, MAV-1 antigen in brain 

tissue is detected primarily in endothelial cells (3). The cellular targets of MAV-1 

replication in the brain may differ between neonates and adult mice. Moreover, 

IFN-γ production in neonatal mice may prevent spread of MAV-1 from endothelial 

cells to neurons or other cell types in the CNS, such as astrocytes or microglia. 

Although IFN-γ deficiency did not affect viral loads in the heart or the lungs, it is 

possible that viral loads in the brain are significantly higher in neonatal IFN-γ-/- 

mice compared to wild-type mice. Antiviral CD8 T cell responses in the brain may 
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depend on IFN-γ-induced immunoproteasome activity. Impaired production of 

immunoproteasome-specific peptides in infected cells in the brain due to IFN-γ 

deficiency or immunoproteasome inhibition could lead to reduced CD8 T cell 

activation. Alternatively, the primary function of the immunoproteasome in the 

brain may be to prevent the buildup of oxidized and damaged proteins within 

infected cells or neighboring cells exposed to proinflammatory cytokines. In this 

case, IFN-γ deficiency or immunoproteasome inhibition could lead to 

accumulation of toxic levels of damaged proteins within cells and excess cell 

death. This, in turn, could enhance the recruitment of inflammatory cells to the 

brain and may explain the increased mortality observed in IFN-γ-/- mice and in 

mice treated with ONX 0914.  

 

Future Areas of Study 

• CD8+ T cell-dependent mechanisms of MAV-1 clearance 

• Phenotypic and functional characteristics of CD4+ and CD8+ T cells 

recruited to lungs and heart 

• Role of the immunoproteasome during MAV-1 respiratory infection 

• Mechanisms of MAV-1 persistence in lungs and heart 

 

A future goal of these projects is to elucidate the CD8+ T cell-dependent 

mechanisms that contribute to MAV-1 clearance from the lung and heart. As 

stated above, IFN-γ production by CD8+ T cells (or other cell types) is not 

required for clearance of MAV-1 from the lung. CD8+ T cells kill infected target 
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cells by two major pathways: perforin/granzyme-mediated pathways and Fas-Fas 

ligand (FasL)-mediated pathways (4, 5). The Fas-mediated pathway involves 

engagement of TNFR1 family death receptors (Fas, TNFR1, TNFR2, and others) 

on target cells by CD8+ T cell-expressed FasL, membrane-bound or secreted 

TNF-α, or TNF-related apoptosis-inducing ligand (TRAIL) (5). In mice exposed to 

recombinant replication-defective HAdV vectors, clearance of virus gene 

products from the liver is dependent on CD8+ T cells (6). Clearance is unaffected 

in TNFR1-deficient mice, perforin-deficient mice, or dipeptidyl peptidase 

I-deficient mice, which are unable to process and activate GzmA or GzmB (7). 

However, Fas-deficient (Faslpr/Faslpr) mice display significantly delayed viral 

clearance from the liver, and clearance is further delayed in mice lacking both 

TNFR1 and Fas. TNF-α and TNFR2, but not TNFR1, play important roles in 

clearance of HAdV vector from the liver of infected mice, although the impaired 

viral clearance in TNF-α-deficient mice may be due to blunted humoral 

responses rather than defective CD8+ T cell killing (8, 9). A separate study 

demonstrated that perforin accounts for the majority of cytolytic activity in target 

cells in the spleen of mice transduced with HAdV vector, and that FasL and 

TNF-α are dispensable (10). These results suggest that multiple pathways may 

contribute to CD8+ T cell-dependent clearance of AdV after infection. Moreover, 

the mechanisms of infected target cell killing during AdV infection may be 

organ-specific, as is the case for NK-mediated control of MCMV infection (11). 

Preliminary data from our lab suggests that MAV-1 clearance from the 

lung may be independent of perforin (data not shown). Perforin is also 
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dispensable for MAV-1 clearance from the brain or spleen during MAV-1-induced 

encephalomyelitis (12). Our laboratory is now investigating the role of Fas and 

TNFR1 in MAV-1 clearance from the lung and heart. It is possible that 

mechanisms of CD8+ T cell-mediated MAV-1 clearance are relatively 

interchangeable, and the importance of one pathway may only become clear in 

the absence of another. These studies have important implications for studies of 

MAV-1 infection in BMT mice, which have impaired CD8+ T cell activation and 

delayed viral clearance, and in studies of persistent MAV-1 infection, in which 

incomplete viral clearance may contribute to ongoing disease.  

CD8+ T cell-independent mechanisms are likely to play important roles in 

MAV-1 clearance as well. For example, cytotoxic CD4+ T cells that kill target cells 

in an MHC class II-restricted manner have been identified in a number of viral 

infections (13-16). Virus-specific cytotoxic CD4+ T cells can confer protection 

against lethal influenza virus infection in mice (17). We identified a significant 

population of CD4+GzmB+ T cells in the lungs of infected BALB/c mice at 7 dpi 

(Figure 5-3E), which likely have cytotoxic activity. It is possible that class II-

restricted killing of some infected cell populations is important for complete viral 

clearance from the lung. Interestingly, type II alveolar epithelial cells constitutively 

express MHC class II and can present antigens to CD4+ T cells (18-20). It is 

unknown whether type II alveolar epithelial cells are targets of MAV-1 infection, 

but they could play an important role both as APCs and as secretors of 

chemokines in MAV-1-infected lungs. They may also regulate activation and 

expansion of cytotoxic CD4+ T cells during MAV-1 infection. B cells may also 



 311 

contribute to clearance of MAV-1 from the lungs or heart. Neutralizing antibodies 

appear around 2-3 weeks post infection in the sera of mice infected i.p. with 

MAV-1 (21), and B cells are important for survival in mice with systemic MAV-1 

infection (22). Successful clearance of HAdV from sera of human transplant 

recipients is associated with an increase in titers of serotype-specific antibodies 

(23). 

The aim of future work in our laboratory is to characterize the phenotypic 

and functional characteristics of virus-specific CD4+ and CD8+ T cells in the lungs 

and heart during MAV-1 respiratory infection. Development of tools to study 

MAV-1-specific T cells will aid in this regard. The immunodominant CD4+ and 

CD8+ T cell epitopes for MAV-1 are unknown. However, creation of recombinant 

MAV-1 expressing immunodominant LCMV epitopes or OVA will allow for the 

detection of virus-specific T cell populations in vivo. For example, in mice 

infected with a recombinant MAV-1 that expresses H-2Db CD8 (GP33-41) or I-Ab 

CD4 (GP61-80) T cell receptor epitopes of LCMV, cells could be stimulated with 

GP33-41 or GP61-80 and then evaluated by flow cytometry for the presence of Db-

GP33-41
+ tetramer+ CD8+ T cells or I-Ab-GP61-80

+ tetramer+ CD4+ T cells. Similar 

assays could be used with a recombinant MAV-1 expressing OVA and 

stimulation of cells with the peptide SIINFEKL. Ongoing work in our laboratory 

aims to identify immunodominant MAV-1 epitopes and develop the reagents 

(peptides and tetramers) that would allow us to identify and characterize virus-

specific T cell populations in vivo without the need for a recombinant virus.  
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We believe that virus-specific T cells likely contribute to both tissue 

damage and viral clearance from the lungs and heart during acute MAV-1 

respiratory infection. Perforin contributes to signs of acute encephalomyelitis 

following i.p. infection of adult mice, supporting a role for CD8+ T cells in 

immunopathology during MAV-1 infection (12). A previous study demonstrated a 

role for both CD4+ and CD8+ T cells in the development of CVB3 myocarditis 

(24), and perforin is a major contributor to severe tissue damage during CVB3 

myocarditis (25). Specific mechanisms regulating the effects of T cells in the 

lungs or heart during MAV-1 respiratory infection have not yet been defined. To 

determine the protective or immunopathological effects of CD4+ and CD8+ T cells 

on MAV-1 infection, we can purify CD4+ and CD8+ T cells from spleens of mock 

or MAV-1-infected mice and transfer to naïve mice at the time of infection to 

examine effects on viral replication and virus-induced inflammation. Transfer of T 

cells deficient in specific effectors, such as perforin or Fas, will allow us to further 

define the mechanisms of effects that we observe. The development of a 

recombinant MAV-1 expressing LCMV epitopes or OVA would allow us to purify 

and transfer virus-specific T cells into naïve mice rather than whole CD4+ and 

CD8+ T cell populations. 

Because of the important roles that CD8+ T cells play in viral clearance 

and are likely to play during acute infection, the effects of immunoproteasome 

inhibition on MAV-1 infection are of considerable interest for future investigation. 

The immunoproteasome plays a role in the generation of CD8 T cell epitopes 

from a variety of viruses, included mouse cytomegalovirus, hepatitis B virus, 
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influenza virus, and LCMV (26-31). Although immunodominant epitopes for 

MAV-1 are unknown, the development of recombinant MAV-1 viruses expressing 

immunodominant epitopes from LCMV (as discussed above) would allow us to 

analyze the role of the immunoproteasome in generating virus-specific T cell 

epitopes during MAV-1 infection. The availability of inhibitors such as bortezomib 

and ONX 0914 allows us to temporally regulate proteasome activity during 

MAV-1 infection and will aid in assessing specific contributions of the constitutive 

proteasome and the immunoproteasome to viral pathogenesis. We are currently 

breeding β5i-/- mice, which have a severe defect in immunoproteasome assembly 

and will likely have a more prominent phenotype compared to use of a 

pharmacologic inhibitor of the immunoproteasome (32).  

Another future goal of our work is to investigate mechanisms of MAV-1 

persistence in the lungs and heart. I demonstrated that MAV-1 genome is 

present in heart tissue at 9 weeks post infection, and this is associated with 

cardiac hypertrophy and decreased cardiac function (Figure 7-7 and data not 

shown). Other work in our laboratory has demonstrated persistent MAV-1 

genome in lungs of mice infected as neonates, which was associated with 

increased airway hyperreactivity (Megan Procario and Jason Weinberg, 

unpublished data). It is unknown whether these phenotypes are due to ongoing 

viral replication or persistent immune responses in each organ. MAV-1 DNA is 

detectable in the spleen, lymph nodes, brain, and kidney for up to 42 weeks post 

infection following i.p. inoculation (3, 33), although the specific cell types in which 

viral DNA persists is unknown. Persistent HAdV DNA has been demonstrated in 
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human tonsillar lymphocytes (34, 35). Isolation of various cell types 

(cardiomyocytes, fibroblasts, lung epithelial cells, lymphocytes, etc.) from hearts 

or lungs at long-term time points after acute MAV-1 infection will allow us to 

determine the cell populations that harbor persistent virus. It is likely that the 

adaptive immune system plays a role in ensuring that persistent MAV-1 does not 

replicate unchecked, as exposure to γ-irradiation increases the levels of virus 

detected in brains, spleens, and kidneys of outbred Swiss Webster mice 

persistently infected with MAV-1 (33). Sublethal irradiation or depletion of specific 

cell populations (such as CD4+ or CD8+ T cells) at late time points would allow us 

to determine the contribution of the adaptive immune response to control of 

persistent virus, although if MAV-1 persists primarily in lymphocytes then 

depletion of lymphocyte populations would eliminate the MAV-1 reservoir. 

 

Conclusions 

In conclusion, the work described in this dissertation has advanced our 

understanding of adenovirus respiratory infection. My work suggests that 

minimizing some host immune responses during acute infection of 

immunocompetent hosts may be a useful strategy to prevent excess 

inflammation without impacting antiviral immunity. In immunocompromised hosts 

in which viral clearance is impaired, interventions to restore anti-adenoviral 

immunity could prevent prolonged disease associated with excess viral 

replication. Finally, approaches to clear persistent adenovirus may lessen the 

impact of chronic disease in the lungs or heart. Limited treatment options exist for 
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human adenovirus infections. Currently, there are no antiviral agents that 

convincingly improve adenovirus-associated disease. A detailed understanding 

of the contributions of host factors to acute adenoviral disease and persistence is 

the first step in identifying targets to exploit for immunomodulatory therapies to 

improve disease in patients with adenovirus infections. 
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