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CHAPTER I

Introduction

1.1 Introduction

Large and complex data are common to the modern life. Adapting existing sta-

tistical methods to large/complex data face challenges. These data sets are mines

of information, statisticians are now developing new statistical techniques to explore

information from them. This dissertation contributes statistical methods that can be

used to explore such challenging types of data sets. I will present the results from

three projects concerning assessing dissimilarity, functional summaries, and correla-

tion paths. The first project proposes a method to assess the dissimilarity among

several effect sizes in a regression analysis. The second and third projects explore the

dependence information in a set of variables.

In chapter II, we propose a measure to quantify the degree to which the effects of

risk factors differ form each other. Our measure is a nonstandard quantity. The naive

plug-in estimate can be used to derive a point estimate. However, the performance

deteriorates as the number of predictors grows or as the magnitudes of the effect sizes

become similar. Alternative estimates like bootstrap bias corrected estimate and a

Bayesian estimate are considered.

When the parameter of interest is not a smooth function of the data, analytic

approaches like the delta method cannot be applied. The profile likelihood method
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remains well-defined, but computation is difficult. We therefore develop a stochastic

search algorithm to approximate the profile likelihood function, and then use the

approximation to build a confidence interval. Our simulation results show that the

Bayesian estimate outperforms the plug-in and bootstrap estimates, and the coverage

rates of the profile likelihood confidence intervals are good as the parameter of interest

is not fall close to the boundary value and the information from data is appropriate.

Our algorithm can reduce the computation complexity. We apply the procedures to

National Health and Nutrition Examination Survey (NHANES) from 2011 to 2012.

In chapter III, we propose a functional summaries to reveal dependence structure

in multivariate data. When analyzing high dimensional data, merely calculating the

mean and the standard deviation of each component fails to identify many relation-

ships among the variables. Sample correlation and covariance matrices aim to capture

the covariance structure in full, but are often too large to be directly interpreted. It

is desirable to summarize such a p by p covariance structure in an accessible and

easily visualized form. Some existing methods like the effective variance and effective

dependence use univariate summaries that allow us to compare different data sets.

The “corrgram” is a graphical tool used to display the magnitudes of the data and

reorder variables in the correlation matrix such that similar variables are positioned

adjacently. However, it can be difficult to extract useful information from a corrgram

when the dimension is high.

We propose to summarize the covariance structure in a way that treats the vari-

ables anonymously. The proposed functional summaries allow us to visualize the

differences in the covariance structures between two data sets, even when they have

different dimensions. Our summaries emphasize the degree by which each variable is

predictable from the others, with a special focus on the number of variables required

to predict another variable. We apply our functional summaries to two gene expres-

sion data sets, one consists of 108 normal heart tissue samples from the Cleveland
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Clinic Kaufman Center, and the other consists of 734 whole-blood RNA samples from

the Estonian Biobank.

In chapter IV, we propose a projection-based approach for exploring conditional

correlations. To explore the dependencies among a set of variables, many existing

methods use either Pearson correlation coefficients (marginal correlation) or the par-

tial correlation coefficients (the conditional correlation between two variables after

removing effects that are due to other variables). There are many other correlation

coefficients that can be defined through conditioning. We propose a graphical tool

that enables us to explore the change in dependencies from marginal correlations to

partial correlations. This path is built via adding information gradually to reach the

partial correlation.

The proposed projection-based approach can be applied to another type of condi-

tional correlation matrix - the conditional correlation matrix conditioned on a linear

statistic of the data. We can explore the change in correlation matrices when the

values of these linear statistics are varied. We apply this approach to a gene expres-

sion data set containing 108 normal heart tissue from the Cleveland Clinic Kaufman

Center.
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CHAPTER II

Assessing the Dissimilarity among Several Effect

Sizes in a Regression Analysis

2.1 Introduction

Consider the common statistical problem of modeling the relationship between a

response variable Y and its associated predictors (or features) X1, X2, · · · , Xp, based

on a sample of size n. In regression analysis, we estimate the coefficients that capture

the strength of the relationship between each predictor and the response conditioned

on the other predictors.

In some settings, the goal is to evaluate the effect sizes of several variables that are

strongly believed to have nonzero effects. For example, in a study of health outcomes,

we might be interested in the contributions of several risk factors. Specifically, we

might wish to quantify the degree to which the effects of risk factors differ form each

other. This can be measured as the ratio of the maximum magnitude to the minimum

magnitude among the effects, i.e.

g(β) =
maxi |βi|
mini |βi|

∨K, (2.1)

with K being a tuning parameter. Point estimation and confidence intervals for this

nonstandard quantity are the subject to this chapter.

There exists a naive plug-in estimate ĝ = g(β̂) where β̂ are the estimated param-
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eter values. However, to estimate g(β) precisely is challenging since g(β) involves

estimation of extreme values and also involves a ratio. The performance of the naive

plug-in estimate deteriorates when the power to differentiate some effects from zero

is small. The denominator can fall close to zero, in which case the ratio goes up.

In addition, the plug-in estimate performs poorly when some effect magnitudes are

close to the two extreme effect magnitudes. Taking the ratio of extreme values will

make the bias upward. The problem is increasingly severe as p grows. Clipping the

estimate using the tuning parameter in (2.1) substantially resolves this issue.

When the ultimate goal is to estimate g precisely, we use mean squared error

(MSE) or root mean squared error (RMSE) to judge the performance. The MSE can

be partitioned into the sum of the squared bias and the variance of estimator. To

achieve good estimation performance, both of these quantities need to be as small

as possible. However, there is a trade-off between bias and variance. The decrease

in bias generally causes an increase in variance and vise-versa. Therefore, a bias

correction procedure might or might not be preferred to a naive estimate.

There is no obvious procedure to build an interval estimate for g. Unlike the point

estimation setting where we can use the natural plug-in estimate of g, the information

for interval estimation for each coefficient βj cannot be employed to build an interval

estimate for g(β). In addition, standard analytic techniques such as linearization do

not apply here. This is because g is not smooth.

The question studied here is distinct from well-studied classical questions involving

ratio estimation or extreme values. When a linear regression model is used, the ratio

estimation is related to calibration problems, the Fieller-Creasy problem (cf. Fieller,

1954; Creasy, 1954), slope-ratio assay, parallel-line assay, and bioequivalence. By

using an orthogonal parameterization, Ghosh et al. (2003) present a Bayesian analysis

using objective priors. Ghosh et al. (2006) showed that approaches based on the

profile likelihood and modifications can result a interval that is infinitely wide. Bebu
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et al. (2009) use the generalized confidence interval and shown good performance of

coverage probabilities and their procedure can be implemented for slope-ratio assays,

and parallel-line assays under a probit model. The general ratio estimation does not

involve the extreme values. To our setting, both the numerator and the denominator

of g are extreme values. In addition, extreme values in our setting are different from

the setting of extreme value theory (cf. Gumbel, 2004) where the goal is to assess the

behavior on a sequence of samples.

In section 2, we discuss procedures for point estimation. In addition to the plug-in

estimate, alternative approaches like bootstrap bias correction and the approximate

Bayesian computation (ABC) are discussed. In section 3, we build interval estimates

for g(β). In section 4, we use simulation studies to discuss the properties. In section

5, we apply our procedures to a study of health risk factors.

2.2 Point Estimation

The naive estimate for g is the plug-in estimate ĝ = g(β̂) where β̂ are the estimated

coefficient values from the multiple regression model. This estimator for g(β) can be

quite biased. Reducing the bias has the potential to decrease the MSE, which is our

goal. Since the target of interest g involves extreme values, g is not differentiable.

Techniques based on the delta method (cf. Oehlert, 1992) therefore cannot be used

here.

2.2.1 Bias Correction

The Bootstrap method (Efron, 1979) can be used to do the bias correction, al-

though it is unclear if this is theoretically supported in the case of extreme values.

For ith bootstrap sample of size n, i = 1, · · · , B, we let β̃(i) be the estimate for β and

estimate g(β) using the plug-in estimate g(β̃(i)). The bootstrap based approximation

6



to bias is

B̂ias =
1

B

B∑
i=1

g(β̃(i))− g(β̂).

The bootstrap bias corrected estimator for g(β) is g(β̂)− B̂ias which is equivalent to

2g(β̂)− 1

B

B∑
i=1

g(β̃(i)).

This procedure is widely used for bias correction of smooth estimators. We apply it

here to the parameter of interest in which g involves a more complex form.

The bootstrap bias correction generally increases the variance even though it may

reduce the bias. The behavior in terms of RMSE will depend on the trade-off between

bias and variance.

2.2.2 Approximate Bayesian Computation

2.2.2.1 Estimating the Dissimilarity among Effect Sizes

In this section, a method called approximate Bayesian computation (ABC) (Rubin

(1984), Diggle and Gratton (1984), Tavare et al. (1997), and Sunnaker et al. (2013))

is used to construct the estimate. ABC can be used to improve the performance of

an arbitrary estimator g(β̂) of the parameter θ ≡ g(β). The basic idea is to replace

g(β̂) with

Q[θ|g(β̂) = g(β̂obs)], (2.2)

where a prior is specified for the unknown parameter θ, β̂obs is the observed regression

estimate from (Y,X), and Q is a numerical summary of the distribution (e.g. mean,

median, or mode). If g(β̂) is a sufficient statistic for θ, this is equivalent to Q[θ|Y,X],

the standard Bayesian estimation (cf. Gelman et al., 2004).

The specification of a prior distribution is described as follows. The empirical
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Bayes method is used to obtain the prior distribution for θ. The plug-in estimate of

the sampling distribution

Np+1(β̂, s
2(XTX)−1), (2.3)

is our prior distribution for β and this implies the prior distribution for θ. This

specified prior distribution in (2.3) should place non-negligible density around the

true value of θ.

2.2.2.2 Implementation Details

To approximate the posterior g|g(β̂) in (2.2), we generate samples D̃ = (Ỹ , X)

from the model

Ỹ = Xβpr + στe,

where βpr is drawn from the prior distribution, X are the observed covariates, e

is standard Gaussian noise, and στ indicates the variability of error terms in the

model which equals to the maximum likelihood estimator (MLE) of the error standard

deviation using the observed data.

For each combination of βpr and D̃, we have an ordered pair (g̀, g̃), where g̀ ≡

g(βpr) and g̃ is the plug-in estimate from regressing Ỹ on X. If the generated g̃

values are close to the g(β̂obs), the corresponding g̀ values are used to approximate

the posterior distribution. In other words, we use

{g̀||g̃ − g(β̂obs)| ≤ δ} (2.4)

with a small δ value as an empirical counterpart to the distribution of g|g(β̂) = g(β̂obs).

In our study, we specify Q as the median function, and use the empirical median

of the set {g̀||g̃ − g(β̂obs)| ≤ δ} as an estimator for g(β).

8



2.3 Interval Estimation

In this section, we construct the interval estimate for g(β). Using standard tech-

niques, confidence intervals for smooth functions of the parameters can be easily built.

However, since g is not differentiable, we cannot apply analytic approaches like the

delta method in the present setting.

The parameter of interest is a function of the parameters, Venzon and Moolgavkar

(1988) used the profile likelihood to construct a confidence interval for parameter of

interest. The idea is to invert a series of likelihood ratio tests to obtain a confidence

interval for the parameter of interest.

Let {(yi, xi), i = 1, · · · , n} be the observed variables with density function f(x, y; β).

The corresponding log-likelihood based on {(yi, xi), i = 1, · · · , n} is

l(β) =
n∑
i=1

log f(yi, xi; β) ≡ log f(Y,X; β). (2.5)

Since we are interested in g(β) = maxi |βi|
mini |βi| ∨ K, we can profile g to obtain a log-

likelihood function

l∗(g) = sup
β:g(β)=g

n∑
i=1

logf(yi, xi; β) ≡ sup
β:g(β)=g

logf(Y,X; β). (2.6)

From the invariance property of the MLE (Casella and Berger, 2001), the MLE for

g in (2.6) will be g(β̂) with β̂ being the MLE from (2.5). Although this is not a regular

setting, motivated by statistical theory for regular likelihood ratio tests (LRT), the

interval for g(β) can be built using

2(l∗(ĝ)− l∗(g)). (2.7)

In a regular setting, the LRT 2(l∗(ĝ)− l∗(g)) in (2.7) is approximately χ2
1 distributed

9



when the sample size n is large. The 95% confidence interval thus consists of all the

values of g for which

{g|l∗(g) ≥ l∗(ĝ)− 1.92}.

Here we use the χ2
1 reference distribution, although it may not be asymptotically

correct. We explore the implications of this choice using simulation.

The value of the profile log-likelihood of l∗ at g = ĝ in (2.7) is known. However,

the nonlinear constraint makes the computation of l∗(g) = supg(β)=g log f(Y,X; β)

at g 6= ĝ difficult. Therefore, we use a stochastic search algorithm (Spall, 2003) to

approximate l∗(g).

The basic idea is to generate many β values and use the local maximum max{l(β)|g(β) ≈

g} as the approximation for the value of l∗ at g. As an illustration, we sample 100 ob-

servations from Y = 2X1 +X2 + ε with X1 ∼ N(0, 1), X2 ∼ N(0, 1), and ε ∼ N(0, 1).

In Figure 2.1, the red line is the true log-likelihood function and the dots are the

likelihood values evaluated at sampled β values. In this example, the distribution

used to draw β is Np+1(β̂, s
2(XTX)−1) which is same as the prior distribution used

in ABC. We know that all likelihood values from the sampled β are below the true

likelihood function. As long as we can draw sufficiently many β, the pointwise local

maximum can be used to approximate l∗(g) in (2.6).

The distribution Np+1(β̂, s
2(XTX)−1) tends to oversample values of g that are

close to the plug-in estimate, and therefore well inside the confidence interval. We

can improve the algorithm by modifying the distribution used to sample β. A random

convex combination of Np+1(β̂, s
2(XTX)−1) and a point mass at βc chosen such that

g(βc) = 1 can enable us to obtain more g values that are around the lower bound of

the interval. That is, we set sampled β equal to

λ ∗ βc + (1− λ) ∗ βsd, (2.8)
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Figure 2.1: An illustration showing how the profile likelihood function is approximated
using a stochastic search algorithm.

where βc is derived from the constrained likelihood under g(βc) = 1, the distribution

of βsd is Np+1(β̂, s
2(XTX)−1), and λ follows a uniform distribution in (0, 1).

Another way to improve the performance of the algorithm is to precede in two

stages. We first draw β from a given distribution, e.g. the random convex combination

discussed above. Specifically, let β̌ = (β̌0, β̌1, · · · , β̌p)T be the sampled β and we

split it into two components, the intercept component β̌(1) = (β̌0, 0, · · · , 0)T and the

slope component β̌(−1) = (0, β̌1, · · · , β̌p)T . Next, we maximize l(aβ̌(1) + bβ̌(−1)) over

a, b ∈ R, which is a least squares problem that yields β̃. Note that l(β̃) ≥ l(β) and

g(β̃) = g(β). This algorithm yields points that are closer to the profile likelihood

function. By doing this, we use the slope component of β̌ as a direction constraint

and find the corresponding constrained maximum log-likelihood. Figure 2.2 is the

contour plot of log-likelihood for the example used in Figure 2.1. The log-likelihood

is optimized for any given (β1, β2). We draw a line with g(β) = 2 and the labeled

point is the local maximum. For a sampled β with g(β) = 2, its log-likelihood l(β)

must be less than or equal to the log-likelihood at the labeled point. In Figure 2.3, we

displays the scatterplot of log-likelihood using either l(β) or l(β̃). The improvement
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Figure 2.2: An illustrative example showing how searching direction improves the
computation.

via using l(β̃) to replace l(β) is pretty good here. While p increases, we still see the

improvement but the difference between l(β) and l(β̃) diminishes. In addition, the

computation complexity is reduced.

2.4 Simulation Study

In this section, we first explore the behavior of our Bayesian estimate and then

use simulation studies to demonstrate the performance of our procedures on point

estimation and interval estimation.

2.4.1 Study I: Behavior of ABC

In this section, we show that the ABC procedure using an empirical Bayes ap-

proach to set the prior provide a shrinkage estimator, and the procedures using a

prior that is not data-dependent approximate the plug-in estimate.
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Figure 2.3: Comparing likelihood value between l(β) (black circle) and l(β̃) (red
triangle).

We generate n samples from the linear model

Y = Xβpr + ε, (2.9)

where X ∼ Np(0, Ip), ε ∼ N(0, σ2), βpr ∼ N(β, σ2(XTX)−1), and σ2 = 1−r2
r2
|β|22.

We let r2 = 0.8, p ∈ {3, 5, 7}, and the components of β are equally spaced from

1 to g(β) with g(β) ∈ {2, 3, 4, 6}. For example, if g is 2 and p is 5, β will be

(1, 1.25, 1.5, 1.75, 2)T . The range for the sample size n is {100, 200, 400, 800}. For

each scenario, 100,000 replicates are generated, and the local estimate is used to find

the posterior median Q.

Figure 2.4 displays the relationship between the plug-in estimate and the estimate

from ABC procedures under p = 3 and n = 100, 800. When the sampling distribution

of β̂ is used to set the prior, this empirical Bayes structure results an estimate that

shrinks toward g(β). With this informative prior, the Bayes estimate is preferred. As

n increases, the range for g(β̂) will be narrower. This is because the variability of

g(β̂) decreases as sample size increases. The results for other scenarios are similar.
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Figure 2.4: The relationship between plug-in estimate and estimate from ABC proce-
dures. The upper two rows are with sample size 100, and the others are with sample
size 800.

14



Next, we let the distribution of βpr be more diffuse to demonstrate the behavior of

ABC procedure under a prior that is not data-dependent. We let the prior distribution

for βpr be

Np(β, k
σ2

n
Ip)

with k ∈ {2, 3, 4, 5}. Figure 2.5 displays the results with k = 2, 5 and n = 100. As k

increases, the prior is more diffuse. The prior information becomes less informative.

We find that the difference between the plug-in estimate and the Bayes estimate will

become small as k increases. We have similar conclusions for other scenarios.

2.4.2 Study II: Performance Evaluation

We generate n samples from the linear model

Y = Xβ + ε, (2.10)

where X ∼ Np(0,Σ) and ε ∼ N(0, σ2). We let p ∈ {3, 5, 7}, and the coefficient

vector β has equally spaced values ranging form 1 to g. The covariance structure

Σ can be either Σi,j = 0, Σi,j = 0.3|i−j|, or Σi,j = 0.6|i−j| which are denoted as

AR(0), AR(0.3), and AR(0.6), respectively. The value of σ2 is controlled by specifying

r2 ∈ {.2, .4, .6, .8, .9, .95} and the relationship between σ2 and r2 for given Σ and β is

σ2 = 1−r2
r2
βTΣβ.

Since the covariance structure for the sampling distribution of β̂ is 1−r2
r2n

(βTΣβ/(XTX/n))−1,

some population structures can yield identical sampling distributions of β̂. Table 2.1

shows the choices of (n, r2) that have the same sampling distribution provided that

XTX/n are the same. Therefore, the sample size n is fixed at 100 for the simulation

studies.

For the ABC procedures, we generate 100,000 prior β values for each (Y,X) and

use the closest 1% to build the posterior distribution to estimate g(β). To build the
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Figure 2.5: The relationship between the plug-in estimate and the estimate from
ABC procedures with more diffuse prior. The upper two rows are with k = 2, and
the others are with k = 5.
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r2

r2100 0.1 0.2 0.3 0.4 0.5
0.2 225 100 54 38 25
0.4 600 267 156 100 67
0.6 1350 600 350 225 150
0.8 3600 1600 934 600 400
0.9 8100 3600 2100 1350 900

0.95 17100 7600 4434 2850 1900

Table 2.1: Population structures yielding identical sampling distributions for β̂. A
sample size of n = 100 with r2 = r2100 is equivalent to the sample sizes given in the
table for the five specified values of r2. The sampling distributions are equivalent
when XTX/n is equal in the two populations.

profile interval, we also sample 100,000 β values.

To begin with, we demonstrate the performance of three procedures using different

tuning parameter K. Figure 2.6 displays the difference in RMSE and bias under

different K. The values inside the parenthesis indicate the value of K used, and

no parenthesis indicates K = ∞. It shows that the plug-in estimate (PI) and the

bootstrap bias corrected estimate (BS) are sensitive to K, and the Bayesian posterior

median (PM) is less affected or unaffected by K. When r2 increases, the influence

from K diminishes. When the information from the data is low, clipping the estimate

using tuning parameter reduces the bias. Through the end of this chapter, we let

K = 20.

Figure 2.7 to Figure 2.15 display the performance for point estimation. Each

figure contains 6 graphs that plot the RMSE and bias for three procedures under

a specific g, and different figures represent different choices of p and Σ. The solid

line is used to represent the RMSE over 400 replicates, and the dashed line shows

the bias. We use black color to indicate the results for plug-in estimate, red color

for bootstrap bias corrected estimate, and blue color for posterior median. In some

figures (e.g. 6th graph in Figure 2.7), the bias and the RMSE for the plug-in estimate

are not monotone decreasing function of r2 which is counterintuitive. The reason is

because the proportion of minimum magnitude mini |β|i, the denominator of g, that

17
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Figure 2.6: The RMSE and bias under different clipping values given g(β) = 3 with
Σij = .3|i−j|. The value inside the parentheses indicates the clipped value.
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are around zero will increase first and then decrease as r2 increases.

Both the plug-in estimate and Bayesian posterior median are biased toward posi-

tive values. For the bootstrap bias corrected estimate, they are positively biased for

g(β) = 1 and can be negatively biased for other g(β) values. The bootstrap bias

corrected estimate is generally less bias than the other two approaches. However,

the trade-off between bias and standard deviation makes its RMSE larger than the

others, which makes the bootstrap bias corrected estimate less favorable.

All the estimates have their bias move toward 0 eventually as r2 increases. When

r2 is small, the RMSE can be larger than g(β), which makes the estimate become less

useful. While r2 is large, the difference in RMSE among three procedures becomes

small. Since the goal is to estimate g precisely, we use RMSE as a criterion to

judge the performance. The Bayesian posterior median is preferred since its RMSE

is generally better than the other two approaches.

Next, we compare the performance on interval estimation via using χ2
1 as reference

distribution. Figure 2.16 displays the coverage rate when p = 3. When g = 1, the

coverage rates for the 95% confidence intervals are underestimated. The coverage

rates for the other g values will move toward 95% as r2 increases.

Figure 2.17 displays the coverage rate when p = 5. The coverage rates for g = 1 are

underestimated and the values are lower than those with p = 3. When g(β) = 1.5, the

coverage rates are underestimates for small r2 and the coverage rates will move toward

95% as r2 increases. With large g(β), the coverage rates tend to be overestimated

with smaller r2, but will move toward 95% eventually.

The results for p = 7 are in Figure 2.18. While g = 1, the coverage rates are

far smaller than those with p = 5. When g is small but g 6= 1, the corresponding

coverage rates are underestimated for small r2, and will increase and move toward

95% as r2 increases. When g is larger, the coverage rate will overestimate at small r2,

and move toward 95% as r2 increases. That is, the coverage rate will move toward
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Figure 2.7: The RMSE and the bias under p = 3 and Σij = 1[i=j]
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Figure 2.8: The RMSE and the bias under p = 3 and Σij = .3|i−j|
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Figure 2.9: The RMSE and the bias under p = 3 and Σij = .6|i−j|
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Figure 2.10: The RMSE and the bias under p = 5 and Σij = 1[i=j]
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Figure 2.11: The RMSE and the bias under p = 5 and Σij = .3|i−j|
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Figure 2.12: The RMSE and the bias under p = 5 and Σij = .6|i−j|
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Figure 2.13: The RMSE and the bias under p = 7 and Σij = 1[i=j]
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Figure 2.14: The RMSE and the bias under p = 7 and Σij = .3|i−j|
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Figure 2.15: The RMSE and the bias under p = 7 and Σij = .6|i−j|
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Figure 2.16: The coverage rate for the interval estimation under p = 3.
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Figure 2.17: The coverage rate for the interval estimation under p = 5.
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95% as r2 increases provided that g is not too close to 1.

To explore why the coverage for large g with small r2 always overestimates, we

examine the length of the profile confidence interval. Since the upper bound can be

large, we set an upper bound of 50 for the profile confidence intervals. We find that

for a given r2 the average length or the median length of confidence interval under a

larger g tend to be higher. For example, when r2 = .8 and Σ = I5, the median and

the mean length of the profile intervals under g = 6 are 36.88 and 29.05, respectively.

Under g = 1.5, the corresponding median and average lengths are 1.105 and 2.207,

respectively. As r2 increases, the lengths decrease. When r2 is smaller, it is more

likely to observe a profile interval with upper bound exceeds 50.

When g ≈ 1, we found that the performance from the confidence interval is not

good. If the goal is to apply hypothesis testing on g, the likelihood ratio test (LRT)

can be carried out easily for H0 : g(β) = 1. For this LRT, the degree of freedom

will be p− 1. We apply the LRT to different choices of p, Σ, and r2, and the results

for 54 (3*3*6) coverage rates are ranging from 0.919 to 0.964 which are pretty good.

However, when the null value for g(β) is not 1, the computation of the maximum

likelihood value under the null hypothesis is difficult.

2.5 Application to a Study of Health Risk Factors

In this section, we apply our procedures to the National Health and Nutrition

Examination Survey (NHANES) from 2011 to 2012. The response of interest is the

mean arterial pressure (MAP) and the predictors are age, gender, and body mass

index (BMI). We apply our procedures to estimate the dissimilarity among standard-

ized effect sizes of age, gender, and BMI. Since the unusual blood pressures for young

people are more likely caused by diseases or other factors, we exclude subjects who

are less than 18 years old. The sample size for this study is 4938.

We fit a linear regression model, and the coefficients for standardized age, gender,
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Figure 2.18: The coverage rate for the interval estimation under p = 7.
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and BMI are 5.78, -1.81, 1.71, and the r̂2 is 0.19. The plug-in estimate for dissimilarity

is 3.37. Since the sample size is 4938 and the r̂2 is 0.19, Table 2.1 yields a sampling

distribution that is roughly equivalent to a sample size of n = 100 with r2100 that is

between 0.9 and 0.95.

Based on the simulation results presented in Section 2.4, we expect the difference

among plug-in estimate, bootstrap bias corrected estimate, and the Bayesian estimate

with all data used to be small. To further explore the behavior of our approach in

this type of data, we apply procedures to random subsamples. We let the subsample

size n∗ ∈ {100, 200, 400, 600, 1000, 2000}. For each subsample size n∗, we take 50

subsamples and apply our procedures. The average values of r̂2, point estimates, and

the average length of confidence interval are recorded.

Table 2.2 presents the results of our procedures using MAP as the response vari-

able. The values inside parentheses are the bootstrap estimate of standard errors.

The values for plug-in estimate, bootstrap bias corrected estimate, and the Bayesian

estimate using all data are 3.37, 3.18, and 3.40 respectively, which are similar. The

length of the confidence interval using all data is 1.57. From simulation studies, we

show that the estimates from the three methods are similar when the information is

higher.

Next, we describe the results based on subsamples. From our simulation studies,

we know that the bootstrap bias corrected estimate has the least bias among the three

methods, and the other two methods are biased upward. In this example, we find

that the bootstrap bias corrected estimate on average over subsamples is generally

smaller than the other two methods which is consistent with the simulation study. We

also note that the bootstrap bias corrected estimate approximates the full data value

of the plug-in estimate with less data than the other methods. However, even with

n ≈ 5000 the width of confidence interval is 1.57, indicating considerable uncertainty

about the population value of g remains. Thus, we cannot exclude the possibility
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n r̂2 PI BS PM CI width
100 0.21 8.26(6.31) 7.18(7.90) 7.76(4.93) 48.39
200 0.20 6.03(5.18) 4.67(6.18) 5.90(4.43) 38.41
400 0.19 4.72(3.08) 3.08(3.35) 4.82(2.82) 27.73
600 0.20 4.63(2.52) 3.39(2.69) 4.72(2.82) 18.37

1000 0.20 4.16(1.40) 3.33(1.03) 4.21(1.45) 9.86
2000 0.19 3.75(0.68) 3.37(0.59) 3.79(0.67) 3.71
4938 0.19 3.37 3.18 3.40 1.57

Table 2.2: Results for different subsample sizes via using MAP as response.

that the larger subsample estimates given by the Bayesian posterior median are more

accurate.

We find that the average length of the confidence intervals decreases as the sample

size increases. When the information from the data is low, except for a large upper

bound some intervals have their lower bounds reach the boundary value 1. The

corresponding coverage rate can be higher than expected. By comparing the width

of confidence intervals with subsample size 1000 or 2000, even though a few of the

intervals with subsample size 1000 are truncated, the length of confidence interval

decreases more than a factor of
√

2 which is faster than the general rule that the

width is inversely proportional to the square root of sample size.

2.6 Discussion

Since the parameter of interest g involves estimation of extreme values and also

involves a ratio, the performance of the plug-in estimate might be poor given that

the information from the data is low. We showed that the bootstrap bias corrected

estimate can have lower bias than other methods, but the trade-off between bias and

variance makes it less favorable. We use the ABC procedure to provide a shrinkage

estimator and show that it outperforms the plug-in estimate, provided that the infor-

mation level is low. When the information level is high, its performance is comparable

to the plug-in estimate.

34



To build a confidence interval, we use a stochastic search algorithm to approxi-

mate the profile likelihood, and we propose two ways to improve the algorithm. The

simulation studies show that the coverage rate is reasonable when g is not too close to

1 and the information level is appropriate. When g is close to 1, the coverage rates are

low and deteriorate as p increases. Even in the simple setting where one is considering

the ratio between two regression coefficients that have been pre-specified, previous

research has shown that the profile confidence interval may be infinitely wide. Thus,

we should not be surprised to see such a wide interval in our setting. In application

to NHANES data, the values for plug-in estimate, bootstrap bias corrected estimate,

and the Bayesian estimate using all data are 3.37, 3.18, and 3.40 respectively. The

length of the confidence interval using all data is 1.57, and we do not exclude the pos-

sibility that the larger subsample estimates given by the Bayesian posterior median

are more accurate.
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CHAPTER III

Functional Summaries of Covariance Structures

3.1 Introduction

When analyzing high dimensional data, it is often desirable to summarize the co-

variance structure in an accessible and easily visualized form. A complete description

of a covariance structure is generally impossible to represent in a compact way. A

major simplification results if we summarize the covariance structure in a way that

treats the variables anonymously. Such a summary is unchanged if the variables are

permuted. By treating variables anonymously we can compare data sets with differ-

ent numbers of variables. The average squared correlation coefficient between pairs

of variables
∑
i<j

Cor2(Xi, Xj)/
(
p
2

)
is of this form. Our goal in this chapter is to develop

new summaries of this type.

The covariance matrix can be seen as a type of summary. However, this is a large

p×p object that cannot be summarized or visualized easily if the dimension is large. In

order to reduce the dimension, it is common to apply an orthogonal transformation

to rotate the data such that the principal axes align with the coordinate frame.

This essentially amounts to linearly transforming the data to the coordinates defined

by the principal components. Since this transformation removes all correlations, it

converts the original p× p covariance matrix into a p dimensional vector of variance

components. In other words, we focus only on the length of the principal axes rather

than on their orientations relative to the original covariate axes. Doing this reduces
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the size of summary from O(p2) elements to p elements. However in some applications,

the information that is lost in this reduction may be important.

In this chapter, we present a new framework for constructing summaries of covari-

ance structures. The summaries should reflect interpretable patterns in the data, and

as noted above should satisfy certain invariances, such as being unaffected by relabel-

ing of the variables. Our summaries emphasize the degree by which each variable is

predictable from the others, with a special focus on the number of variables required

to predict another variable. The proposed functional summaries allow us to visualize

the differences in the covariance structures between two data sets, even when they

have different dimensions.

This chapter is organized as follows. In section 3.2, we review some correlation

summaries proposed in previous research. These include both scalar and functional

summaries. In section 3.3, we propose a new type of functional summary for covari-

ance structures. In section 3.4, we illustrate the proposed functional summaries using

artificial populations with known structure. To focus on the population behavior,

we use large sample size. In section 3.5, we apply the functional summaries to two

genomics data sets. In section 3.6, we use simulations to show that the functional

summaries have power to distinguish correlation structures. In section 3.7, we discuss

approaches for bias correction. In section 3.8, we consider an alternative approach

for functional summaries using ridge regression.

3.2 Literature Review

In this section, we review several existing summaries for covariance structures. Let

X ∈ Rp be a random vector with covariance matrix Σ and correlation matrix R. To

summarize the covariance structure, it is sometimes useful to use a scalar summary.

A summary that takes all pairwise correlation coefficients into consideration is

the generalized variance (Wilks, 1932). This is defined as the determinant of the
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covariance matrix |Σ|. The generalized variance takes on a small value when there

are strong correlations among the variables. This is related to the fact that when

correlations among the variables are very strong, the covariance matrix Σ is nearly

singular. The total variance (Seber, 1984) is the trace of the covariance matrix
p∑
i=1

Σii

that can be used as a measure for overall dispersion. When comparing two data sets

of same dimension, these two measures can be used. However, they do not allow us

to make comparisons between data sets of different dimension. This is because the

generalized variance is a measure of the hypervolume that the distribution occupies

in the space and the total variance tends to increases as p increases. The effective

variance |Σ|1/p and the effective dependence 1−|R|1/p introduced and studied by Pena

and Rodriguez (2003) are descriptive summaries of covariance matrices that allow us

to make comparison between data sets of different dimensions.

The heatmap of a correlation or covariance matrix, a graphical representation, can

be used to gain a quick overview of pairwise correlation or covariance relationships.

However, the heatmap is not invariant under permuting variables. The “corrgram”

proposed by Friendly (2002) extends the idea of a correlation or covariance heatmap.

It displays not only the correlations but also reorders the variables in the correlation

matrix such that similar variables are positioned adjacently.

Graphical models (Dempster (1972), and Edwards (2000)) use graphs to repre-

sent multivariate dependence. Each node in the graph represents a random variable.

The edges in the graph represent the dependencies between variables. When present-

ing the relationships among variables as a graph (network), the degree distribution

(Dorogovtsev and Mendes, 2002) that counts the number of edges for each variable

can be treated as a summary for covariance structure. The degree of a node is the

number of edges incident to the node, and the degree distribution is the probability

distribution of these degrees over the whole network.

The spectrum (the sorted eigenvalues) of a covariance matrix is another type of
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functional summary. This functional summary represents the length of the principal

axes. In principal component analysis (PCA), we use a linear transformation to

represent the variation in a collection of vectors. The scree plot of the spectrum

displays the variability explained by each of the principal components. The spectrum

can be viewed as a functional summary to express the extent to which the data have

an approximate low dimensional structure. However, rotating the variables makes it

difficult to interpret the results in terms of the original variables.

Other useful summaries could be the quantile or cumulative distribution function

of all pairwise correlations. These summaries are explicitly pairwise, and ignore the

joint dependence between three or more variables. However, we have better informa-

tion on how variables are pairwisely associated. In addition, the average of squared

correlation coefficients
∑
i<j

Cor2(Xi, Xj)/
(
p
2

)
can also be treated as a scalar summary.

It determine the degree of pairwise linear relationships since R captures only the

linear dependence among variables. The scalar summaries mentioned above are all

invariant under relabeling.

3.3 Proposed Functional Summaries

In this section, we propose a new type of functional summary to describe the

degree to which each variable is predictable by the others. We place special focus

on whether one variable can be predicted from the others using either a simple or

a complex model. For example, a variable may be easily predicted using just one

other variable in the data set. This is a special type of strong dependence and is

usually easy to detect. A more difficult situation is when a variable is predicted by a

combination of other variables in the data set but not by any single variable. Finally,

a variable may be impossible to predict from the remaining variables in any way, in

which it is independent of them.

For variable Xj, the ith row of correlation matrix with diagonal term removed
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shows the bivariate associations of Xj with each other variable. We use the maximum

value of squared correlation coefficients called r2j,1 to describe how Xj is predicted

by a single other variable. The sequence (r21,1, · · · , r2p,1) describes how variables are

explained by a single other variable. As a measure for dependence among variables,

we use the quantiles of (r21,1, · · · , r2p,1) denoted by F1 as a summary for dependence on

how variables are predicted by one other variable. If p is not big, we can use the sorted

sequence (r2(1),1, . . . , r
2
(p),1) instead. It allows us to see how predictability changes. For

example, we can use it to see how many of them are strongly/weakly predicted by a

single other variable. To compare the data sets with different dimensions, we use the

quantile summary F1 to describe the change in dependence structure.

With the correlation matrix, we can derive a dependence summary that describes

how variables are explained by a simple model with a single variable. To extend

the summary of predictability to more than one other variable, we consider the pre-

dictability of Xj from a specific subset of k other variables {Xq : q ∈ Qj} with Qj

being a subset of {1, 2 · · · , j−1, j+1, · · · , p} such that |Qj| = k. We use the squared

correlation coefficient between Xj and E[Xj|Xq, q ∈ Qj],

Cor2(Xj, E[Xj|Xq, q ∈ Qj]), (3.1)

as a dependence measure between Xj and specific {Xq : q ∈ Qj}. Since E[Xj|Xq, q ∈

Qj] is generally unknown, we can estimate it using regression techniques.

To measure the dependence on how Xj is predicted by k other variables, we could

go through all possible subsets and use the maximum value as dependence measure.

For convenience, we can rewrite the proposed measure as

r̃2j,k = max
θ,|θ|0=k

Cor2(Xj, X
T
(−j)θ), (3.2)

where X(−j) = X/Xj and |θ|0 be the 0-norm (the number of nonzero entries in θ).
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The non-zero θ values point out the variables used. As a measure for dependence

among k other variables, we use the quantile or sorted sequence of (r̃21,k, · · · , r̃2p,k) to

describe the predictability from k other variables.

Calculation of (3.2) requires checking
(
p−1
k

)
possible subsets of X(−j). To go

through all possible subset exhaustively requires heavy computations if p is high.

We consider an alternative for (3.2) that allows the computation to be substantially

reduced. Instead of whole subsets computations, variable selection based on convex

optimization is applied to determine a subset of X(−j) to approximate (3.2).

We use least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996)

to select specific k variables. The LASSO is applied to regress Xj on X(−j) to select

variables. Variables that have non-zero regression coefficients are “selected” by the

LASSO algorithm. We then regress Xj on the k selected variables, Xk
(−j), to find the

squared correlation coefficient. For Xj, we use the measure

r2j,k = max
θ

Cor2(Xj, X
k
(−j)

T
θ) (3.3)

as a measure of dependence to describe how Xj is predicted by k other variables,

where Xk
(−j) are the selected k variables from X(−j). By varying Xj, we derive a

summary Fk that describes the degree by which each variable is predicted from k

others.

3.4 Illustrations

In this section, we apply functional summaries using simulated examples as illus-

trations for descriptive measures. To first focus on the population behavior, func-

tional summaries with large sample size n = 100,000 are used. We use functional

summaries that describe how variables are predicted from up to five other variables;

i.e. F1, · · · , F5. We use a graph to display the correlations between variables. This
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is different from a traditional graphical model that uses a graph to represent the

inverse covariance matrix. To begin with, we let p = 20 and the edge indicates the

correlation coefficient is 0.4. If no edge exists between 2 nodes, these two variables

are independent. The data are sampled from multivariate Gaussian distribution with

mean 0 with diag(Σ) = Ip. We consider the functional summaries for the following

four scenarios:

1. All variables are independent.

2. Variables with consecutive indices are connected by an edge. The correlation

structure is Toeplitz matrix with two bands.

3. Edges exist among X1 and all other variables and no edge exists among other

pairs.

4. Generate random graph according to the Erdos-Renyi model (Erdos and Renyi,

1959). The number of edges is the same as scenario 2 and 3.

Figure 3.1 displays independent structure (scenario 1) and the corresponding func-

tional summaries. Since no edge exists between any two nodes, all variables are in-

dependent, we expect r2j,k in (3.3) used to derive Fk to be zero. The corresponding

functional summaries Fk, j = 1 · · · , 5, are zero vectors. The large-sample functional

summaries support these expectations.

In the second scenario (Figure 3.2), we use a chain structure such that adjacent

variables are connected by an edge. This means that except for variables X1 and X2,

all other variables are correlated with exactly 2 other variables and that two variables

are independent. For example, X2 is correlated with X1 and X3 and the correlation

between X1 and X3 is 0. Since all variables have at least one dependent neighbors, we

then expect F1 to be a non-zero constant function. The variable of F2 is derived from

(r22,2, · · · , r2p,2). Since X2, · · · , X19 are correlated with two uncorrelated (independent)
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Figure 3.1: Functional summaries for the independent case. The upper graph in-
dicates the pairwise relationship which indicates all variables are independent. The
lower graph shows the functional summaries for the independent case.
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variables. We expect r2j,2 = 2r2j,1, j = 2, . . . , 19. People may expect that r21,2 = r21,1,

since X1 has only one dependent variables. However, the chain structure will create

the indirect association between X1 and Xj, j ≥ 3. These indirect associations will

result in minor increases from r21,1. The same situation can apply to r220,2. The graphs

of F2 will have the form of step function. Comparing with F1, the first two values of F2

have minor changes and the others are doubled. Due to thees indirect associations, a

minor shift exists between F3 and F2. The large sample functional summaries support

these expectation.

In simulation scenario 3, we fix the number of edges and make one variable that

is correlated with all others and all others only have one dependent variable X1.

We expect F1 to be a constant non-zero function since all variables have at least

one dependent neighbor. Let Fk(j) be the jth value of Fk. The last value of F2,

F2(20), will be 2F1(20), since variable X1 has more than one dependent variables

that are independent of each other. The indirect associations cause the minor shift

from F1(l) to F2(l), l 6= 20. When comparing F3 and F2, there still exist minor shift

except for the F3(20). The difference from F3(20) to F2(20) is equal to difference

from F2(20) to F1(20). This is because variable X1 have several correlated variables

that are independent of each other. By looking at higher order of Fk(20), we expect

a constant shift from previous Fk−1(20). The large sample functional summaries in

Figure 3.3 support these expectations. If we remove variable X1, all other variables

are then independent and the functional summaries will degenerate to 0 values. The

removal of variables that have high degree of dependence may result in dramatic

change in functional summaries. To compare the function before and after removing

a data point, we can use the quantile version of Fk to visualize the change. From

scenario 2 and 3, we know that shift in Fk caused by indirect association is relatively

small.
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Figure 3.2: Functional summaries for the dependent case (scenario 2). The upper
graph indicates the chain relationship such that each variable is dependent with the
adjacent variables. The lower graph shows the functional summaries.
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Figure 3.3: Functional summaries for the dependent case (scenario 3). The upper
graph indicates the dependence relationship. The lower graph shows the functional
summaries for the independent case.
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In scenario 4, we randomly assign edges with fixed number of edges. The first

graph of Figure 3.4 displays the dependence structure among Xs. The dependence

structure can be divided into four independent blocks. One block has only one isolated

point, another has associations with only two other variables and the remaining two

blocks have more complex dependence structure. In addition to minor effects from

indirect relationship, variables that are associated with several other variables might

have the chance to contribute to the functional summary. We expect the functional

summaries to be a more complex form. The functional summaries in Figure 3.4 show

that one variable may be isolated from others and 7 variables may have one dependent

variables and others have at least 2 dependent variables.

From scenarios discussed above, the change in Fks may relate to the number of

edges each variable has, which is the degree distribution. Here, we provide an example

to claim that the proposed function can capture some information that the degree

distribution cannot given the correlations are either zero or a nonzero constant value.

The upper two graphs in Figure 3.5 display two correlation structures that have same

degree distribution, but the lower two graphs Figure 3.5 show that they have different

functional summaries.

In these illustrative examples, the functional summaries characterize some depen-

dence patterns. In the next section, we apply functional summaries to two gene data

sets to detect some patterns and claim that the results are reproducible.

3.5 Data Analysis

In this section, we apply the functional summaries to two genomics data sets.

The first data is the gene expressions in heart tissue from the left ventricular free

wall of organ donors with no diagnosed heart disease. Heart tissue was collected

by the Cleveland Clinic Kaufman Center for Heart Failure human heart tissue bank

(n = 108) between August 1993 - May 2005. There are 33297 gene expressions.
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Figure 3.4: Functional summaries for artificial dependence structure.
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Figure 3.5: Two structures that have same degree distributions but different func-
tional summaries
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We apply functional summaries to gene sets in the Molecular Signatures Database

(MSigDB) (Subramanian et al. (2005)). Here, we consider seven classes of gene sets:

• C1 Positional gene sets for each human chromosome and cytogenetic band.

• C2 Curated gene sets from online pathway databases, publications in PubMed,

and knowledge of domain experts.

• C3 Motif gene sets based on conserved cis-regulatory motifs from a comparative

analysis of the human, mouse, rat, and dog genomes.

• C4 Computational gene sets defined by mining large collections of cancer-

oriented microarray data.

• C5 GO gene sets consist of genes annotated by the same GO terms.

• C6 Oncogenic signatures defined directly from microarray gene expression data

from cancer gene perturbations.

• C7 Immunologic signatures defined directly from microarray gene expression

data from immunologic studies.

For each gene set in a class of gene sets, we match the gene id and apply the

functional summary to the matched genes. The number of matched genes might vary,

and we only use the gene sets such that the number of matched genes are greater than

or equal to 10. To compare gene sets with different dimensions, we apply the quantile

version of functional summary. One of our interests here is to show that the proposed

functional summaries can capture different dependence patterns. In addition, we also

claim that the proposed functional summaries are reproducible.

To use functional summaries to capture different dependence patterns, we calcu-

late F1, · · · , F5 for each gene set and convert functional summaries as a vector via

vectorize the functional summaries. We then project them to lower dimensions and
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Figure 3.6: Average of functional summaries among all gene sets. The average curves
are smooth.

examine some points. For example, to examine whether some gene sets have distinct

overall summaries, we can stack the Fks as a vector and apply principal component

analysis (PCA) to project them to lower dimensions. We then take the gene sets that

have unusual behavior in the projected space, and plot the corresponding functional

summaries. We can also calculate the difference F2 − F1 and apply same the proce-

dure to check whether some gene sets have distinct behavior on F2 − F1. To see how

F1 changes, we can converts Fks to the consecutive difference in F1 and apply PCA

to detect some gene sets.

We first plot the average of functional summaries among all gene sets. The average

summaries displayed in Figure 3.6 show that the shift will decrease as k increases and

the curves for each Fks are smooth. We list some functional summaries that have

extreme values when projecting them to low dimension space.
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To visualize the overall change, we stack the Fks as a vector and project them to

a low dimension space. We apply PCA to the stacked summaries. Figure 3.7 displays

the projected score for first two PCs and we label the 6 points that have extreme

projected values on each axis. The first PC accounts for 88% of the variability and

the second PC accounts for 8% of the variability. The loadings for the first PC are the

negative weighted average of the Fks with more weight placed on the tail Fks and the

loadings for second PC are the weighted difference between the tail Fks and the first

half Fks. Points A, B and F have small values in the first PC. Point C has the largest

value on the first PC score. Points D and E have larger values on the second PC

score. We expect that the behavior on C is different from A, B and F since the first

PC accounts for 88% of the variability. The graphs of A, B and F in Figure 3.8 show

that at least half of the variables are moderately or highly correlated with one other

variable, and graph C show that variables are weakly correlated. Even though A and

B have similar projected values, graph A and B show similar patterns except for the

early quantiles. Graphs D and E show a big difference between the early quantiles

and the tail quantiles.

Next, we apply the PCA on F2−F1 to find functional summaries that have distinct

patterns from F1 and F2. Figure 3.9 shows the projected scores for first two PCs

and Figure 3.10 plots functional summaries for the labeled points in Figure 3.9. The

loadings for the first PC are the negative weighted values of F2−F1 which accounts for

44% of the variability and the loadings for the second PC are the weighted difference

between the tail half F2−F1 and the first half F2−F1 which accounts for 14% of the

variability. Graph D in Figure 3.10 shows that the difference between F1 and F2 is

minimized, since the first PC is from the negative weighted average of F2 − F1. The

other 5 graphs showed difference exists between F1 and F2. Since graph A has the

largest first PC score, large differences exist between F1 to F2.
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Figure 3.7: Projection of PC scores for stacked Fks.
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Figure 3.8: Functional summaries for six points that are labeled in Figure 3.7. Distinct
summaries are captured via examining those that have extreme projected values.
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Figure 3.9: Projection of PC scores for F2 − F1.
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Figure 3.10: Functional summaries for six points that labeled in Figure 3.9. Distinct
summaries are captured via examining those that have extreme projected values.
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Figure 3.11: Projection of PC scores for consecutive difference of F1

To capture the change within F1, we calculate the consecutive differences and

project them to lower dimensions. Figure 3.11 presents the projected scores and

some points are labeled such that the corresponding functional summaries are in

Figure 3.12. The loadings for the first two PCs are roughly the linear combination of

tail consecutive difference of F1, and they account for 24% and 14% of the variability.

Since the consecutive difference is a nonnegative vector, the projected scores showed

cone shape in 3.12. When we apply the PCA on consecutive difference of F1 and

the loadings have more weight on tail consecutive difference of F1, we expect distinct

patterns on tail F1. All graphs in Figure show distinct tail behavior in F1.

Next, we use another gene data set that has larger sample size to confirm that

the proposed functional summaries are reproducible. That is, researchers should
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Figure 3.12: Functional summaries for the 6 points labeled in Figure 3.11. Distinct
tail F1 patterns are captured.

58



be able to replicate the analysis on equivalent data, and obtain similar summaries.

There are 734 whole-blood RNA samples from the Estonian Biobank were profiled

to find molecular mechanisms behind complex human diseases. We then take 2 non-

overlapping subsamples from the gene data set and apply the proposed functional

summaries to each gene set. We use gene sets from gene class C1 only. To see whether

the functional summaries from the same gene set behave similarly or not, we first stack

the functional summaries F1, · · · , F5 as a vector and merge the summaries from two

subsamples. The principal component analysis is then applied to the merged data

set to check reproducibility. If the proposed method is reproducible, the functional

summaries will be similar for each gene set even under different subsamples and hence

similar on the corresponding principal component scores. We treat the projected

scores from the same each gene set but under different subsample as a pair. The

scatter plot of those pairs are used to check the reproducibility. We plot the projected

scores for the first four principal components. We apply the procedure to subsample

of size 25, 50, 100, 200, and 300 under gene class C1 and the results are quite well

with sample size 100. Figure 3.13 displays the projected scores and the scatter plots

from the first PC is quite linear but other PCs are not given n = 25. With n = 100,

the plots in Figure 3.14 shows that the scatterplots for first three PCs are quite linear

which indicates that the proposed method is reproducible.

Another way to visually check the reproducibility is to apply the proposed func-

tional summaries on each split data and apply the dimension reduction procedures

to project them to lower dimension and compare the patterns for each split data.

We employ the principal component analysis again. We plot the first two PCs, find

4 extreme points in the first scatterplot, and also label the same gene sets on the

second split data. Figure 3.15 displays the results for n ∈ {25, 50, 100, 200}. The

results show that the position for the first PC scores is roughly the same, but the

position for the 2nd PC score might vary. When the sample size is 100 or large, the
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Figure 3.13: Check of reproducibility with n = 25. The projected scores for the first
two PCs are strongly linearly associated which indicates that the proposed method
is somewhat reproducible. The first two PCs account for 94 (87+7) percent of the
variability.
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Figure 3.14: Check of reproducibility with n=100. The projected scores for the
first 3 PCs are strongly linearly associated which indicate the proposed method is
reproducible.
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Figure 3.15: Check of reproducibility. Project functional summaries on lower dimen-
sional space and label the extreme value in the first split data set. In the second split
data, we label the gene sets that are labeled in the first split data.

relative positions are similar for both split data. With appropriate sample size, the

results are reproducible.

3.6 Simulation Study

In this section, we use a simulation study to show that the proposed functional

summaries have power to distinguish different structures. We consider a sparse co-

variance matrix with p = 21 which can be split into 7 independent blocks. There
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are 3 variables within each block and the dependence structure within each block is

exchangeable structure with correlation ρ. The sample size can be 100, 200, or 400

and ρ can be 0 , 0.3, or 0.6.

Figure 3.16 and 3.18 display the average curves for 400 Monte Carlo samples

and the corresponding low dimension projections. The low dimension projections are

calculated via applying PCA to a new response that treats Fks as a new vector. The

first PC accounts for 99% of variability. Even with n = 100, the average curves can

be used to distinguish three ρ values.

To measure how two arbitrary structure differ, we borrow Kullback-Leibler di-

vergence (Kullback and Leibler, 1951). We fit a bivariate normal distribution to the

first two PCs scores for each structure and calculate the average Kullback-Leibler

divergence between two structures since Kullback-Leibler divergence is asymmetric.

When n is 100, the distance between ρ = 0 and ρ = 0.3 is 21.20, the distance between

ρ = 0.3 and ρ = 0.6 is 100.34, and the distance between ρ = 0 and ρ = 0.6 is 513.61.

When n is 200, the corresponding distance will be 143.27, 205.73, and 2517.14, re-

spectively. When n is 400, the corresponding distance will be 685.17, 427.40, and

9911.08, respectively. With greater sample size, the distance becomes larger and the

summaries also support these.

3.7 Bias Correction

The r-squared values are used to build the functional summaries and the r-squared

values tends to overestimate the strength of association. Suppose that the true (pop-

ulation) correlation is zero, you will not get a sample r-squared that is zero. We call

this the model fitting bias. The sorting used in the functional summary will also

make the estimate biased. These two possible sources of bias will deteriorate the fi-

nite sample functional summary. We then consider several approaches to do the bias

correction.
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Figure 3.16: Simulation study with n=100. The upper row represents the average
curve for 400 Monte Carlo samples. The lower row represents the lower dimension
projections. Black points are projected scores given ρ = 0, the red points are projected
scores given ρ = 0.3, and blue points are projected scores given ρ = 0.6.
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Figure 3.17: Stimulation study with n=200. The upper row represents the average
curve for 400 Monte Carlo samples. The lower row represents the lower dimension
projections. The black points are the projected scores given ρ = 0, the red points
are the projected scores given ρ = 0.3, and blue points are the projected scores given
ρ = 0.6.
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Figure 3.18: Stimulation study with n=400. The upper row represents the average
curve for 400 Monte Carlo samples. The lower row represents the lower dimension
projections. The black points are the projected scores given ρ = 0, the red points
are the projected scores given ρ = 0.3, and blue points are the projected scores given
ρ = 0.6.
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The increase in the number of regressors will make the r-squared non decreasing,

even if we add noise variables to the model. To remove the bias that is due to the

model fitting bias, the adjusted r-squared or the predicted r-squared is considered. For

the predicted r-squared, we use LASSO to select variables. We then systematically

remove each observation from the data set, estimate the regression equation, and

determine the prediction for removed observation. The predicted r-squared is the

r-squared between response and prediction.

Another approach for bias correction is to remove the sorting bias. While the

sample size increases, the estimate for Fkj, the jth element in Fk, is less biased. We

consider determine a trend connect sample size n and Fkj and apply a simulation and

extrapolation (SIMEX) approach. We take bootstrap samples with different size n∗

to find the estimate for Fkj, call F̂ b,n∗

kj , where b indicates bth bootstrap sample, b =

1, · · · , B. Since the limiting distribution of sample r-squared is normally distributed,

√
n(r̂2 − ρ2)→ N(0, σ2

ρ),

and F̂kj is the jth order statistics over finite terms, we consider fit a line a + b/
√
n

and use the limiting value a as a bias corrected estimate. The least squares method

is used to derive the estimate. Note that the Fkjs are adjusted pointwisely.

We use the simulation study to demonstrate the performance for these three ap-

proaches. The average of mean integrated squared errors (MISE) over first five func-

tional summaries is used to measure the performance for bias correction. We use the

same blockwise structures. In the third approach, we let n∗ ∈ {.4n, .5n, · · · , n} and

set B to be 50 for each n∗.

Table 3.1 displays the average of mean integrated squared errors (MISE) for

F1, · · · , F5. The values inside the parenthesis are the corresponding squared bias.

All bias reduction approaches show smaller average MISE and squared bias. When
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Table 3.1: The average of mean integrated squared errors (MISE) for F1, · · · , F5 and
the value inside parenthesis is the squared bias. (Each value is multiplied by 100.)

r n R2 Adjusted R2 predicted R2 SIMEX

0.0
100 1.116(1.095) 0.641(0.620) 0.254(0.237) 0.125(0.093)
200 0.298(0.293) 0.163(0.157) 0.064(0.060) 0.054(0.046)
400 0.079(0.078) 0.042(0.041) 0.017(0.015) 0.019(0.016)

0.3
100 0.811(0.749) 0.520(0.458) 0.378(0.315) 0.438(0.358)
200 0.304(0.268) 0.232(0.196) 0.207(0.171) 0.197(0.151)
400 0.129(0.113) 0.110(0.094) 0.102(0.085) 0.077(0.056)

0.6
100 0.636(0.545) 0.575(0.485) 0.613(0.515) 0.467(0.352)
200 0.305(0.259) 0.281(0.237) 0.284(0.238) 0.167(0.115)
400 0.144(0.122) 0.137(0.112) 0.137(0.112) 0.074(0.050)

ρ is zero, the SIMEX approach has slightly negative adjusted values. However, the

functional summaries are supposed to be nonnegative. If we truncate the negative

values to zero, the average MISE and squared bias will be almost zero for SIMEX ap-

proach. From Table 3.1, the SIMEX approach is generally preferred and the predicted

r-squared is the next best performing method.

3.8 Alternative Approach Based on Ridge Regression

The LASSO is used in the proposed functional summaries. LASSO is a regularized

version of least squares that use the L1 regularization. One might consider using

another well-know regularized least square method, ridge regression (Hoerl, 1962).

Both regularized least squares methods shrink the parameter estimates. Since the

LASSO will reduce the parameter estimates to zero as the penalty increases, we use

it to select important features to derive the functional summary.

The ridge approach does not shrink the parameter estimates to zero. If we use

a small penalty, we incorporate more structures to the model. People might con-
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sider using ridge regression with effective degree of freedom controlled to derive the

functional summary. The r-squared value from ridge regression to regress Xj on X−j

with k effective degree of freedom controlled is use to replace r2j,k in Fk. However,

the control of effective degree of freedom in integral values doest not clearly reflect

the change in correlation structure. Figure 3.19 displays the functional summaries

via either ridge regression or LASSO. The difference from Fk to Fk+1 under ridge

regression is relative small compared to these from LASSO. The control of integer

values in effective degree of freedom do not clearly reflect the change in dependence

structure. Actually, the change in r-squared value is small if we set the effective de-

grees of freedom to be integer values. Figure 3.19 displays the functional summaries

for blockwise structures. The summaries with effective degrees of freedom controlled

do not reflect the change in dependence structure when more structures are included.

The purpose of ridge regression is used as a remedy for multicollinearity. It does effect

the r-squared values much. Instead, we consider using coefficient of determination,

1−
MSEk

Xj

V ar(Xj)
,

to replace the term r2j,k in Fk, where MSEk
Xj

is the MSE of ridge regression of Xj on

X(−j) with k effective degree of freedom controlled.

Figure 3.20 displays the functional summaries via ridge alternative with n = 400.

The first row plots the first five summaries for blockwise structure with ρ being

0, 0.3, and 0.6, respectively. These are the average curves over 400 Monte Carlo

samples. We can figure out that they look distinct, especially in higher effective

degree of freedom. In the second row, the projected scores from principal component

analysis that merge results from three structures are displayed. We apply PCA to the

vector (F1, · · · .F5). The colors are used to label the scores from the same structure.

The first components accounts for 99 percentage of variability and can be used to
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Figure 3.19: Comparing proposed functional summaries and summaries that derived
from ridge squared correlations.
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identify distinct structures. Again, we use the average Kullback-Leibler divergence

as a measure of difference between the two structures. When n is 100, the distance

between ρ = 0 and ρ = 0.3 is 14.88, the distance between ρ = 0.3 and ρ = 0.6

is 83.78, and the distance between ρ = 0 and ρ = 0.6 is 338.55. When n is 200,

the corresponding distance will be 81.37, 192.73, and 1373.54, respectively. When n

is 400, the corresponding distance will be 332.64, 502.64, and 5349.84, respectively.

With more sample size, the distance becomes larger and the summaries also support

these. However, the proposed functional summaries exist higher Kullback-Leibler

divergence than ridge alternative.

3.9 Discussion

The proposed functional summaries can be used to describe the dependence struc-

ture among variables. Our summaries emphasize the degree by which each variable is

predictable from the others, with a special focus on the number of variables required

to predict another variable. We have shown that the proposed summaries have power

to distinct different covariance structures. It allows us to compare structures with

different dimensions. The bias correction is also provided.

In the simulation study, the sparse covariance structures are used. The functional

summaries via LASSO have higher average Kullback-Leibler divergences than ridge

alternative. When applied to gene expression dataset, we identify gene sets that have

distinct dependence structures and confirm that the proposed functional summaries

are reproducible.
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Figure 3.20: Functional summaries via ridge alternative with n be 400
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CHAPTER IV

A Projection Based Approach for Exploring

Conditional Correlation Paths

4.1 Introduction

To explore the dependencies among a set of variables, many existing methods

start with the Pearson correlation coefficient (marginal correlation). It is a scale free

measure that describes the degree to which two variables are related. It can be used

to assess a direct relationship between two variables. A positive correlation indicates

two variables vary together positively. In a negative correlation, two variables vary

oppositely. This measure ignores effects from other variables. This may result in that

the strong correlation between variables that might due to some indirect interactions

or regulations by other variables. The marginal correlation does not allow us to

elucidate such complicated relationships.

People then explore the dependencies via using partial correlation, which is the

conditional correlation between two variables after removing effects that are due to

all other variables, to overcome some disadvantages in marginal correlation. It de-

termines the degree of dependency between two variables if influences from other

variables are removed. When we take previously ignored variables into consideration,

a well known statistical phenomenon called Simpson’s paradox might occur. It is

observed when the relationship between two variables is reversed after adjusting for

other variables, or the relationship between two variables differs within subgroups
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compared to that observed for the aggregated data.

The marginal correlation and the partial correlation are two example of correlation

coefficients conditioned on linear statistics of the data, one condition on nothing

(empty set) and the other conditions on all remaining variables. Falling between

these extremes is the vast set of correlation coefficients conditioned on arbitrary linear

statistics of the data. Techniques for exploring such huge space have only minimally

developed. In this chapter, we propose a projection-based approach for exploring

conditional correlations.

Two types of conditional correlations are considered. One is the expected value for

conditional correlation and the other is to treat conditional correlation as a random

variable such that the values will depend on the conditioned value. Both the marginal

correlation and partial correlation mentioned above are of the first type. We propose

a graphical tool that enable us to explore the change in dependencies from marginal

correlations to partial correlations. This path is built via adding information from

others gradually to reach partial correlations. This projection-based approach can

also be applied to second type of conditional correlations. Note that the proposed

approach can be applied to both correlation and covariance matrices.

The rest of of this chapter is organized as follows. In section 4.2, we describe

the correlation paths for two types of conditional correlations. In section 4.3, we use

simulation study as illustration. In section 4.4, we apply the correlation paths to the

real data set.

4.2 Correlation Paths

Let X = (X1, · · · , Xp)
T denote the variables of interest. To infer the structure

among a set of variables, one simple method is to compute the pairwise marginal
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correlations,

ρij = Cor(Xi, Xj), i, j = 1, · · · , p. (4.1)

The marginal correlation matrix describes the degree of relationships between a set

of variables. For example, gene-gene interactions play an important role in biological

processes. The study of correlated gene expression data is important because genes

that are strongly correlated might have similar functions. Since the marginal correla-

tion matrix is a p by p object, people devise approaches to summarize characteristics

from the data set. These often come with visual methods.

The biplot introduced by Gabriel (1932) is an enhanced scatterplot that uses both

points and vectors to represent data. Friedman and Tukey (1974) introduced projec-

tion pursuit to describe the process of finding interesting linear projections. Huber

(1985) tries to find the most“interesting” possible projections via using a search al-

gorithm that optimizes some fixed criterion of “interestingness”. Targeted projection

pursuit (Faith et al. (2006)) allows the user to explore the space of projections by ma-

nipulating data points directly in an interactive scatterplot. The “corrgram” proposed

by Friendly (2002) displays not only the correlation magnitudes but also reorders the

variables such that similar variables are positioned adjacently.

Since the high correlation between gene pairs might due to some indirect inter-

actions or regulations by common genes. This naive correlation does not allow us to

elucidate the complicated relationships. Instead, people use partial correlation, the

conditional correlation between two variables after removing effects that are due to

other variables, to determinate the dependency among variables. For a chosen pair
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(Xi, Xj), the partial correlation coefficient is defined as

ρij·V \{i,j} = E[Cor(Xi, Xj|X\{Xi, Xj})]

= E[(Xi − E[Xi|X\{Xi, Xj}])(Xj − E[Xj|X\{Xi, Xj}])]. (4.2)

In graphical Gaussian models (Dempster (1972), and Edwards (2000)), the precision

matrix (the inverse of covariance matrix) P is used as a measure of conditional de-

pendence of any two variables that are related to the partial correlation coefficients

via

ρij·V \{i,j} = − Pij√
PiiPjj

.

Both {ρij, 1 ≤ i < j ≤ p} and {ρij·V \{i,j}, 1 ≤ i < j ≤ p} are expected values

of conditional correlation coefficients, they capture the dependences among a set a

variables, and each set contains O(p2) elements. Between these two extremes is the

vast set of correlation coefficients conditioned on arbitrary linear statistics of the data.

We provide a projection-based graphical tool to enable us connect these two sets.

Another type of conditional correlation matrix is to treat conditional correlation

correlations as a random object that the values may vary when we vary the con-

ditioned value. For example, for a given linear statistics, θTX with θ = [θij], the

conditional correlation matrix is defined as

Cor(X|θTX). (4.3)

The conditional correlation matrix in (4.3) is a p by p random object, the proposed

graphical tool can also be applied to describe the change in dependencies.
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4.2.1 Correlation Paths for Expected Values of Conditional Correlation

Matrix

In this section, we build a correlation path to connect the marginal correlations

{ρij, 1 ≤ i < j ≤ p} and partial correlations {ρij·V \{i,j}, 1 ≤ i < j ≤ p} and use it to

describe the change in associations when more information is used to condition on.

Let S0 denote the marginal correlation matrix and S∗ with S∗ij = ρij·V \{i,j} being the

partial correlation between Xi and Xj after removing the effects from the remaining

variables. They describe the dependence at two extreme levels of conditioning. We

explore the change between them by adding information gradually to condition on.

One might aim to find a sequence of projection matrices θ`, ` ∈ 1, · · · , L, of in-

creasing rank such that E[Cor(X|θTLX)] contains the same information as S∗. How-

ever, the off-diagonal terms of S∗ are conditioned on different subsets of variables.

No such sequence of θ`s exist. Instead, we build a sequence of matrices that describe

the dependence at certain levels of conditioning to connect them.

To build a path to link ρij and ρij·V \{i,j} for a chosen pair (Xi, Xj), we start with

marginal correlations and add variables one by one gradually to condition on to reach

ρij·V \{i,j}. There are (p− 2)! possibility to connect these two correlations. There are

more possibilities to connect S0 and S∗. Instead, we let the data determine its path

automatically. We employ the principal component analysis to determine or order of

conditioning for each chosen pair and hence build a sequence of matrices to connect

S0 and S∗. Let PCij
k be the first k principal components from X\{Xi, Xj} and PCij

0

be an empty set. We use E[Cor(Xi, Xj|PCi,j
k )], k = 0, · · · , p− 2 to connect marginal

correlation and partial correlation. When k=p-2, E[Cor(Xi, Xj|PCi,j
k )] is equivalent

to ρij·V \{i,j} in (4.2). This is because the span of PCi,j
p−2 is the span of X\{Xi, Xj}.

We can further set Sk be a p by p matrix with Ski,j = E[Cor(Xi, Xj|PCi,j
k )],

k = 0, · · · , p − 2. The Sks describes the dependence structure at certain level of

conditioning. When k increases, each element of Sk is conditioned on more informa-
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tion from the remaining variables. Note that Sp−2 = S∗ and Sk, k ≥ 1, are not a

conditional correlation matrix of the form E[Cor(X|g(X)].

To explore the change in dependencies among a sequence of p by p objects, we

compress them to lower dimensions to enable visualizations. We vectorize each Sk

and apply the dimension reduction technique to compress them to lower dimensions.

The principal component analysis is used as a dimension reduction technique. We

project each Sk into 2 coordinates. Dots are then connected with a line and called it

the correlation path. This enable us to visualize the change in dependence structure

among a set of variables. When a short path is observed, the cumulative difference in

dependence structure among consequent Sks is relative small compare to a long path.

When a path is loop around, we expect the difference between two arbitrary Sks to be

small and hence the difference from the marginal correlations to partial correlations

is small. When a straight line is observed, the change in the difference of consequent

Sks moves toward a fixed direction, but the increments may not be constant. One

application of correlation paths is to screen many data sets, to quickly see which sets

of variables have correlation structures that differ from the others.

4.2.1.1 Correlation Path From Sample Covariance Matrix

In this section, we show that each step of conditional correlations, Sk, used to de-

rive the correlation path can be derived from the sample covariance matrix, provided

that the regression model is used to remove the effects from others. That is, the entire

correlation path can be derived from the sample covariance matrix. Without loss of

generality, let x = (x1, · · · , xp) ∈ Rn×p be the observed data with empirical means

are zero. First, the marginal correlation matrix can be derived directly from the

sample covariance matrix. The next step is to show that each conditional correlation

among arbitrary chosen pair can be derived from the sample covariance matrix.

To ease notation, we let W = (xi, xj) ∈ Rn×2 be the chosen variables and Z =
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x\{xi, xj} ∈ Rn×(p−2) represents the remaining variables , 1 ≤ i < j ≤ p. The eigen

decomposition of Ĉov(Z) is PΛP T with Λ = diag(λ1, · · · , λp). If we let Pk be the

first k columns of P , ZPk will be the first k principal components. The conditional

correlation among W after removing the effects from the first k principal components

of Z can be derived from the covariance of residuals of ZPk regressed on W . The

residuals are derived as follows:

ê = {I − ZPk((ZPk)TZPk)−1(ZPk)T}W.

We then have

Ĉov(e) =
1

n
W T{I − ZPk((ZPk)TZPk)−1(ZPk)T}W

=
1

n
W TW − 1

n
{W TZPk}{n ∗ diag(λ1, · · · , λk)}−1{(ZPk)TW}

=
1

n
W TW − 1

n
{W TZPk}{diag(λ1, · · · , λk)}−1

1

n
{(ZPk)TW}.

Using sample covariance matrix to simplify, we have

Ĉov(e) = ̂Cov(W )− {P T
k

̂Cov(Z,W )}T ∗ diag(λ−11 , · · · , λ−1k ) ∗ {P T
k

̂Cov(Z,W )}.

(4.4)

We then have the conditional correlation among W after removing effects from

first k principal components of Z. Since ̂Cov(W ), ̂Cov(Z,W ), Pk, and (λ1, · · · , λk)

can be derived from sample covariance matrix, each element of Sk can be derived

from the sample covariance matrix.
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4.2.2 Correlation Paths For Conditional Correlation Matrix Conditioned

On Linear Statistics

Another type of conditional correlations matrix is to treat the conditional cor-

relations as a random object. Conditioned on linear statistics θTX, the conditional

correlation matrix in (4.3) is a p by p object that varies over the range of θTX. This

object can be estimated by using local correlation estimates. To get preliminary infor-

mation about the conditional dependence, we use the projection procedures described

in the previous section to project a sequence of conditional correlation matrices to

lower dimensions to enable visualization.

4.3 Simulation Study

In this section, we use simulation studies as illustrations and start with the corre-

lation path for S0, · · · , Sp−2. The correlation path that treats correlation matrix as

a random object will be discussed later. We start with three scenarios on correlation

matrix: exchangeable, blockwise exchangeable, and autoregressive. In the blockwise

exchangeable structure, we let m be the number of variables within each block if p is

a multiple of m. If not, all blocks except for the last block have m variables, and the

last block has p%m variables with % being a modulo operator. For each structure, we

use r as parameter to describe association among variables. In exchangeable struc-

ture EX(r), the correlations for arbitrary chosen pair is r. In blockwise-exchangeable

structure B-EX(r), the correlation is r if variables are in the same block and 0 oth-

erwise. In the autoregressive structure AR(r), the correlation between Xi and Xj is

r|i−j|.
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4.3.1 Simulation Results for Exchangeable Structure

Figure 4.1 displays the results for exchangeable structure EX(r) with different n

and p. We let the non-zero values of r be 0.2 and 0.4 and sample 20 replicates from

each structure. In addition, 20 replicates from independent normal are added to the

graph. Within each graph, row one through three contain results for sample sizes

50, 100, and 200, respectively. The columns represent different values of p. Column

one with sample size 10 and column two with sample size 20. Each line represents

a replicate and different colors indicate different dependencies. The thick dot is the

initial point of the correlation path which is the projected value for the vectorized

version of the marginal correlations S0.

We find that correlation paths for EX(0.4) generally have the longest trajectory

on the correlation path while comparing to EX(0.2) and independent Gaussian. The

difference between first two steps of correlation path in EX(0.4) is the largest and

the difference between the remaining consequent steps are small. The correlation

path for EX(0.2) has the similar forms. For further investigate, we can examine

the pairwise correlations from the marginal correlations to the partial correlations.

Figure 4.2 plots all pairwise correlations given n = 200, r = 0.4, and p = 20. Each

line represents a chosen pair and describes the change from the marginal correlation

to the partial correlation. The difference from the marginal correlations to the first

conditional correlations is the largest for each pair and the changes for remaining

conditional correlations were relative small. Results for different r and p.

Since the structure is known, we can derive the conditional correlations. Assuming

that the data is from a multivariate Gaussian distribution, we can derive the condi-

tional correlation between chosen pair W = (Xi, Xj) conditioned on first k principal

components of Z = X/Y via calculate the conditional covariance,

Cov(W )− {P T
k Cov(Z,W )}T{P T

k Cov(Z)Pk}−1{P T
k Cov(Z,W )}, (4.5)
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Figure 4.1: Correlation path under exchangeable structure. While r is larger, it has
linger trajectory. The difference from the projected value of S0 to the projected value
of S1 is the largest.

82



0 5 10 15

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Values of Conditional Correlations

Number of PCs conditioned

r

Figure 4.2: Pairwise correlations given r = 0.4, and p = 20 with sample size 200.
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where Pk is the first k eigenvectors from Cov(Z). The derivation of (4.5) is straight-

forward.

In exchangeable structure, the dependence structure for Z is still exchangeable.

The first eigenvalue and eigenvector are 1 + (p − 3)r, 1√
p−2(1, · · · , 1)T , respectively.

Since Cov(Z,W ) is a (p − 2) by 2 matrix with constant value r, all eigenvectors

except for the first one times Cov(Z, Y ) will be a zero vector. This means that the

conditional correlation conditioned on 2 or more principal components is equivalent

to the conditional correlation conditioned on the first principal component. The

conditional covariance conditioned on the first k principal components is

 1− (p−2)r2
1+(p−3)r r − (p−2)r2

1+(p−3)r

r − (p−2)r2
1+(p−3)r 1− (p−2)r2

1+(p−3)r

 ,

k ≥ 1. Except for the marginal correlation, the conditional correlations conditioned

on first k principal components of Z = X/Y, k ≥ 1, have a constant value

r − r2

1 + (p− 3)r − (p− 2)r2
.

4.3.2 Simulation Results for Blockwise-Exchangeable Structure

Figure 4.3 displays the results for blockwise-exchangeable structure B-EX(r) .

The organization of graphs is the same as the organization in Figure 4.1 except using

blockwise-exchangeable structure to replace exchangeable structure. When p is 10,

the sample size required to separate them well is 200. When p is 20, the sample size

required to distinguish them well is 100.

The results show that under appropriate sample size, the correlation path for each

structure preserves certain forms. The structure B-EX(0.4) had the longest trajectory.

We examine all pairwise correlations for one replicate in Figure 4.4. The sample size

is 200, p is 20, and r is 0.4. With the blockwise-exchangeable structure, we find
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Figure 4.3: Correlation path under blockwise-exchangeable structure.
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Figure 4.4: Pairwise correlations given r = 0.4 and p = 20 with sample size 200 under
blockwise-exchangeable structure.

that most of them have correlations around zero and some of them have nonzero

correlations. For those that have non-zero marginal correlations, the conditional

correlation would stay constant for a while and then drop by certain level and them

remain constant. This is because those curves indicate two variables in the same

block and variables from other blocks form PCs that have larger variability. For those

that had marginal correlations around zero, the variability in first couple conditional

correlations are quite irregular, but the variability will remain stable eventually.

Remark. While deriving the theoretical conditional correlations for blockwise-

exchangeable structure, it depends on whether the chosen pair are from the same

86



block or not and the size of each block. When two variables are from different blocks,

the principal components from the remaining variables will be dependent with at

most one of them. The conditional correlations then stay unchanged. However, the

fluctuation from sample conditional correlations might exist. When two variables are

from the same block, only one variable left given m = 3 and that variable will form

a principal component itself. Other blocks will form different principal components

and some of them have larger variance than the principal component from the chosen

block. The corresponding conditional correlation will stay the same for a while,

decrease at certain point, and then remain constant.

4.3.3 Simulation Results for Autoregressive Structure

Figure 4.5 represents results under different p and n. Three structures can be

separated given the sample size is at least 100. Three structures have different initial

points on the correlation path since the marginal correlation matrix are different.

When r decreases, the marginal correlation matrix becomes more sparse and hence

the shorter trajectory of correlation path. The correlation path for AR(0.4) generally

has longer trajectory than others.

Figure 4.6 plots one realization of all pairwise correlations under r = 0.4 and

p = 20. Results indicate that some of them have marginal correlations that are away

from zero and their conditional correlations decrease gradually and end with nonzero

partial correlations. For those that have marginal correlations around zero, their

conditional correlations move toward zero.

We put the correlation paths from three structures together. Since the AR and

B-EX have many marginal correlations that are zero or close to zero. We expect that

the initial value of the correlation paths will stay relative close when comparing all

three structures. In addition, the projected values for S1 will drop a lot in the EX

structure. The finite sample replicates in Figure 4.7 verify these expectations.
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Figure 4.5: Correlation path for AR structure.

88



0 5 10 15

−
0.

2
0.

0
0.

2
0.

4

Values of Conditional Correlations

Number of PCs conditioned

r

Figure 4.6: Pairwise correlations given r = 0.4 and p = 20 with sample size 200 under
autoregressive structure.

89



−2 0 2 4

−
2

0
2

4

black:AR; red:Exchangeable, blue: block exchangeable

r=0.4,p=20,n=100,m=3
PC1

P
C

2

●
●

●
● ●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●●

●●
●●

●

Figure 4.7: Correlation paths from three structures with fixed r = 0.4.
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4.3.4 Factor Structures

Next, we let the marginal covariance matrix that satisfies the following form

D + ABA′, (4.6)

where D is a diagonal matrix, A be a rank q orthogonal matrix and B be a q by q

matrix with q << p. In the simulation below, we set p = 20 and q = 2 and B be

 1 r

r 1

 (4.7)

with different r values.

The first graph in Figure 4.8 displays the correlation paths for r being -0.5, 0, or

0.5. Since the rank for ABA′ is 2, the rank for submatrix of the ABA′ is still 2. For

a chosen pair, the first two principal components from remaining variables tends to

explain more variability than others and other principal components are independent

of chosen pair. The first 2 steps of correlation paths then vary a lot. Different r values

have different marginal correlation structures and hence different initial points on the

correlation path. The graphs in the second row of Figure 4.8 display conditional

correlations for all pairs. This graph ignores the indices of the chosen pairs, we found

that the two graphs have similar behavior. If we take indices into consideration, they

behave differently. In the third row of Figure 4.8, we take 10 indices pairs from each

structure and draw the change from marginal to partial correlations. Same colors

indicate same indices and graphs show that they behave differently.

4.3.5 Sample from Similar Structures

In this section, we use simulation study to claim that the correlation path can be

used to distinguish different structures given the sample size is appropriate. We use
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Figure 4.8: Correlation paths from factor structure with q = 2. The first row repre-
sents correlation paths, the second row plots pairwise correlations for r being -.5 and
.5, and the third row plots 10 indices pairs.
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the scaled Wishart distribution 1
m
Wp(V,m), the Wishart distribution scaled by its

degree of freedom, to generate similar structures. We treat the samples from

1

m
Wp(AR(0.2),m)

as given covariance structures and sample data using multivariate Gaussian with those

structures. As m becomes larger, the sampled structures would be more similar. In

Figure 4.3.5, we consider 3 m values. In the top-left, the m is 100 with sample size

100. In the top-right, the m is 200 with sample size 100. In the lower-right, the m

is fixed at 500. The lower-left with sample size 100 and lower-right with sample size

50. The results show that the correlation paths for samples from the same structure

tend to cluster together. When m is larger, the underlying structures were be similar,

and exist overlaps among correlation paths. Large sample size are then required to

distinguish them.

4.3.6 Simulation Study for Correlation Paths Conditioned on Linear statis-

tics

In this section, we use simulation study to show that correlation paths conditioned

on linear statistics of the data. We apply the singular value decomposition on the

sample covariance to get the orthogonal matrix and each column of orthogonal matrix

is treated as a projection direction θ. These directions are equivalent to the loadings in

the principal component analysis on the sample data. In application, the directions of

θ may depends on researchers’ interests. The local estimate with Epanechnikov kernel

is used to estimate the conditional correlations conditioned on l-th quantile of θTX,

l ∈ {5, 10, · · · , 95}, provided that there are at least 30 observations for each quantile.

Each conditional correlation matrix is vectorized, projected to lower dimension, and

the dots with same θs are linked to create the correlation path.
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Figure 4.9: Generate data from similar structures and claim that the correlation paths
can be used to distinguish them when the sample size is appropriate.
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If the data is sampled from the multivariate normal distribution, the conditional

correlation matrix conditioned on a linear statistic θTX would be a constant matrix

for any θTX = u. The conditional covariance conditioned on a linear statistic θTX is

known to be

Σ− (θTΣ)T{θTΣθ}−1(θTΣ) (4.8)

That is, the analytical correlation path under a given direction will degenerate to a

single point.

Figure 4.10 plot the correlation paths under different sample sizes and population

structures with p = 20. For the correlation paths, we plot the first five and last five

correlation paths. The solid line is used to indicate the first five correlation paths

and dashed is for the last five paths. The black lines are the correlation path that

conditioned on the first or last direction, the red lines are conditioned on the second

or second to last direction, the green lines are for the third or third to last direction,

the blue lines are for the fourth or fourth to last direction, and the gray lines are

for the fifth or fifth to last direction. The dot labels are analytical projected values

conditioned on first five directions, the triangular labels are for last five directions,

and the color is used to indicate the order of directions.

As the sample size becomes larger, the distance from the sample correlation path to

the analytical value decreases and some of the correlation paths are less tangled with

others. The trajectories of the correlation paths became shorter. The correlation path

that conditioned on a direction that have larger variability have inclination to move

further away from others. These segregations are more clear when the sample size is

larger. In Figure 4.11, we increase the sample size to 10,000 and the corresponding

correlation paths tend to degenerate to a single point and each path is close to the

analytical projected value.
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Figure 4.10: Correlation path under different structure with different sample size.
While sample size is larger, the trajectories of correlation path becomes shorter and
the analytical projected values are close to the correlation paths.
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Figure 4.11: Correlation paths under different sample size. While sample size is
larger, the length of correlation path becomes shorter and the analytical projected
values are close to the correlation paths.
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Figure 4.12: Correlation paths for Gaussian and Non-Gaussian structures.

Next, we apply the correlation paths to the non multivariate normal data. To

begin with, we sample data from the multivariate normal N(0,Σ) and then replace

some of them to achieve non-Gaussianity by the following criterion:

• If Xp is less than 0, replace Xj by Xp + 0.2 ∗N(0, 1), j = 1, · · · , p− 1.

In Figure 4.12, we sample from EX(.4) and non-Gaussian structure. The non-

Gaussian structure is derived from a EX(.4) structure. As the sample size increases,

the correlation paths for non-Gaussian data did not degenerate. As a byproduct to

diagnosis Gaussianity, the large sample size is required.

4.4 Application to Normal Heart Tissue

In this section, we apply the correlation path to the gene expressions in the heart

tissue from the left ventricular free wall of organ donors with no diagnosed heart

disease. Heart tissue was collected by the Cleveland Clinic Kaufman Center for

Heart Failure human heart tissue bank (n = 108) between August 1993 - May 2005.

There are 33297 gene expressions. We consider apply the correlation paths for gene

sets in the Molecular Signatures Database (MSigDB). We use the gene set class C1:

Positional gene sets for each human chromosome and cytogenetic band. Gene sets
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are corresponding to each human chromosome and each cytogenetic band that has at

least one gene.

4.4.1 Correlation Paths for S0, · · · , Sp−2

To begin with, we apply the correlation paths to visualize the change from marginal

correlations to partial correlations. The first step is to apply correlation paths on Sks.

To compare gene sets, there exist a limitation. The number of match genes for differ-

ent gene sets generally are different. We have to narrow down the number of genes to

have same number of genes. For example, we use gene sets with number of matched

genes ranging from 10 to 20, and randomly select 10 variables from each gene set to

build the correlation paths for all matched gene sets.

Figure 4.13 represents the correlation paths for those gene sets that the number of

genes used is 10. There are 47 correlation paths (gene sets) in the graph. This figure

can be used to visualize what is similar and what is different. After we condition

on more other information, most of the correlation paths have the tendency to move

toward the origin. The conditional correlations for different gene sets are more similar

than the marginal correlations. Different gene sets have different paths and we label

some of them and examine them.

Figure 4.14 plots all pairwise movements from marginal correlation to partial cor-

relation for the labeled correlation paths in Figure 4.13. Each line represents a chosen

pair and describes the changes from marginal correlation to the partial correlations as

we add more informations from other variables to condition on. Since all four labeled

correlation paths have different initial and end points, the corresponding behaviors

on marginal correlations and partial correlations are different.

The red correlation path in Figure 4.13 has the longest trajectory and its first

step changed a lot and so is its second step. The corresponding pairwise correlations

(top-left in Figure 4.14) reflects this situation. Most of the correlation continued to
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Figure 4.13: Correlation paths for gene sets with p = 10.
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Figure 4.14: All pairwise conditional correlation for 4 selected correlation paths.
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drop as we add more information to condition on. Some of them are reverted and the

corresponding correlation path reflect this.

The green correlation path in Figure 4.13 has its difference from the second step

to the third step was the largest. While examining the pairwise correlations (top-

right in Figure 4.14), the correlations tend to diminish eventually. But the first two

conditional correlations vary a lot. Since some of the first conditional correlations

move away from zero and most of the second conditional correlations move toward

zero, we expect the second step of correlation paths moved more toward zero than

the first step.

The blue correlation path in Figure 4.13 has its first step changed a lot and

remainings have very small movement. The pairwise correlations (bottom-left in

Figure 4.14) show that most of the first conditional correlation move toward zero and

the fluctuations for remainings are quite small.

The first two steps of gray correlation path in Figure 4.13 change a lot and the

remaining steps have little movements. The pairwise correlations (bottom-right in

Figure 4.14) showed most of the first conditional correlation stay the same or don’t

move toward zero, but most of the second conditional correlations move toward zero.

The fluctuations for remainings paths are quite small.

Next, we use the gene sets with the number of matched genes ranging from 20 to

30 and randomly select 20 genes from each set. Figure 4.15 represents the correlation

paths for those gene sets that the number of genes used is 20. There are 46 correlation

paths (gene sets) in the graph. Since there are more variables within each gene set,

there are more pairwise correlations. The correlation path can be used to visualize

what is similar and what is different. After we condition on more information, some of

the correlation paths are still away from the origin. Different gene sets have different

paths and we label some of them and examine them.

Figure 4.16 displays pairwise correlations for selected correlation paths. Since p
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Figure 4.15: Correlation paths for gene sets with p = 20.
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is doubled, each plot have about 4 times the pairwise correlations than p = 10. Four

graphs had different overall patterns. Most of them have their correlations shrunk

eventually. Some of them have their correlation diminished, but reverted at the end.

While the blue correlation path in Figure 4.15 does not move toward zero. It stays

around its projected value for S0, the corresponding pairwise correlations (bottom-left

in Figure 4.14) show that most of them don’t move toward zero. The same situation

can be applied to the green correlation path. However, its first two steps varied

more than others, the corresponding pairwise correlations (top-right in Figure 4.14)

reflected these.

The pairwise correlations (top-left in Figure 4.14) for red correlation path in Figure

4.15 show that most of the first two conditional correlations changed a lot. The

pairwise correlations (bottom-right in Figure 4.14) for red correlation path in Figure

4.15 show that most of the first conditional correlations changed a lot and remaining

conditional correlations stay roughly the same.

4.4.2 Correlation Paths Conditioned on Linear Statistics of the Data

Next, we apply the correlation path to data that conditioned on a linear statistic

of the data. That is, the conditional correlation matrix is a random object. The

correlation paths were apply to the match gene sets with p reduced to 10 or 20. Figure

4.17 and Figure plot the correlation paths conditioned on a linear statistics. The

data sets used are the labeled correlation paths in previous section. The projection

directions are derived from the principal components. Except for the first couple of

projection directions, all other directions had small variability. We found that the

the correlation path for directions with small variability tend to tangled together.

To further investigate, we can plot the range against each projected score or plot all

pairwise correlations on each direction.
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Figure 4.16: All pairwise conditional correlations for 4 selected correlation paths.
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Figure 4.17: Correlation path conditioned on a linear statistics. The data sets are
the labeled data sets in Figure 4.14.
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Figure 4.18: Correlation path conditioned on a linear statistics. The data sets are
the labeled data sets in Figure 4.16.
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Remark We use local estimate to estimate the conditional correlations. In appli-

cation, some conditional correlations are not estimable. This is because there do not

have enough points within the grid. When creating the correlation path conditioned

on linear statistics, we connect points according to their order on the domain, and

the unestimable correlations are ignored. When creating graphs against the domain,

we can use linear extrapolation given there were not many unestimable points.

4.5 Discussion

In this chapter, we propose correlation paths that can be used to visualize the

behavior of a sequence of p by p objects. This means we can further extend it to

time-varying data. It enables us to figure out the similarity and dissimilarity in the

correlation structure. Once a distinct path is found, we can examine the correlations

to explore informations. For the correlation paths conditioned on a linear statistic,

we conditioned on each principal component. If we have certain directions that we

are interested, we use that direction. While conditioned on multivariate statistics,

the projection-based approach also works for visualizations.
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