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ABSTRACT 

Integrated SOFC/GT Systems with Improved Dynamic Capabilities for Mobile 

Applications 

by 

Zhenzhong Jia 

 

Chair: Jing Sun 

This work is focused on developing control and system integration solutions to 

achieve rapid and reliable load following operation of solid oxide fuel cell/gas turbine 

(SOFC/GT) systems for mobile applications. Both the traditional recuperating-SOFC/GT 

system and the newly proposed sprinter-SOFC/GT system are studied through model-

based methodologies. It is shown that solutions developed in this research could enhance 

system performance and meet operating objectives. 

For the recuperating system, the generator/motor (G/M) dual mode operation and 

its implications are investigated. Active shaft load control is used to manage transients 

by: (a) pre-conditioning of G/M power for load step-up transients; and (b) absorbing the 

excessive power through motoring operation for load step-down transients. Feedback and 

optimization algorithms are developed. By taking advantage of the dual operating G/M, 

better trade-offs between power tracking and thermal safety can be achieved, the battery 

requirements can be reduced and system performance can be enhanced. 

The sprinter-SOFC/GT system, which has far superior load following capability 

than traditional systems, is proposed in this research. In the system, the SOFC operated at 

constant temperature provides only the baseline power with high efficiency while the GT-

generator‟s transient capability will be fully explored for fast dynamic load following. 

System design and control framework suited for the proposed system are investigated. 
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An SOFC operational strategy is derived to keep fairly constant SOFC power and 

temperature over the entire load range. A design procedure is also developed to determine 

various component sizes. The “actual” operational envelope is determined by integrating 

the SOFC power/temperature constraints with safety factors. An optimization problem is 

proposed to determine the optimal feed-forward operation map.  

Control analysis and feedback design are presented for the sprinter system. The 

stability of steady-state operation is studied through numerical simulations and linearized 

analysis of a simplified “2-state” model. Open-loop instability was identified for the low 

and medium airflow regions. Open-loop analysis and relative gain array (RGA) technique 

are used to gain insights on system operation and input-output interactions. Feedback 

control design is performed to address transient issues. The sprinter system achieves far 

superior performance than its recuperating counterpart for fast and safe load following. 
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CHAPTER 1 

Introduction 

1.1 Overview of Integrated SOFC/GT Systems 

Integrating high temperature (~1000K) solid oxide fuel cells (SOFCs) with a gas 

turbine (GT) is an effective strategy to develop highly efficient and clean (i.e., ultra-low 

emissions) power generation solutions. By leveraging the complementary features of 

these two power sources, i.e., SOFC and GT, the integrated system could achieve up to 

70% theoretical fuel-to-electric efficiency for stationary applications [1] - [5]. Several 

SOFC/GT-based power plants have been successfully installed in practice. For example, 

Siemens-Westinghouse demonstrated a 220kWe (i.e., 220kW electric power) unit at the 

University of California, Irvine (UC-Irvine) [3] and a 300kWe unit at Pittsburgh [31]. 

Around 53% overall system efficiency has been achieved by the 220kWe system during 

the continuous test operation for more than 3000 hours [3]. Outside the United States, the 

Mitsubishi Heavy Industries, Ltd. (MHI, Japan) also tested a 75kWe SOFC-MGT (i.e., 

micro-GT) facility and a 200kWe class system [32]. 

Besides their high system efficiency and low emissions, other main advantages of 

the integrated SOFC/GT systems include:  

(1) Features related to the high-temperature SOFCs are preserved. No noble catalyst such 

as platinum is required [24]. The internal reforming capability [4] and flexible fueling 

options [41] help to reduce the complexity and cost of the fuel processing system. 

(2) Even higher efficiency can be achieved by recuperating the other wasted energy from 

the SOFC exhaust through the catalytic burner and GT [4], [24]. 

(3) High power density, which is critical for mobile applications, can be achieved [4].  

(4) The hybrid systems scale easily and have inherent advantage in CO2 separation for 

carbon capture and sequestration/utilization [4], [41]. 



  

2 

 

Due to the aforementioned benefits, the SOFC/GT system has been considered as 

a promising power solution for many mobile applications, e.g., auxiliary power units 

(APUs) for ground vehicles [6], [7] and aircrafts [8], the primary propulsion system for 

mid-sized vehicles [9] and marine power generations [10], [11]. SOFC/GT-based APU 

systems are able to provide electrical power for auxiliary devices independent of engine 

operation, bringing many practical benefits [24]. For example, using SOFC/GT-based 

APUs in heavy-duty trucks can greatly reduce the engine idling time, thus reducing fuel 

costs and emissions. Delphi expects that ~30% overall efficiency can be achieved by its 

SOFC-based APU (note: w/o GT), which is developed for idle reduction [79] regulations 

[42]. In our cooperative project with US ARMY TARDEC, model-based analysis shows 

that adding a recuperating GT improves the efficiency of a 5kW-class APU from 35% to 

40% for military ground vehicles [7]. In [8], the author claimed that about 63% efficiency 

can be achieved by the 440kW-class APU system developed for aircrafts. In [9], model-

based analysis indicates that around 55% overall efficiency is attainable for a 75kW-class 

SOFC/GT electrical propulsion system designed for mid-sized cars. 

The SOFC/GT system is also a promising clean and efficient power generation 

solution to provide both propulsion and auxiliary service power for marine applications 

[10], [11]. For example, for vessels running at hotel mode in harbors, SOFC/GT-based 

APU systems can provide electricity with high efficiency and low emissions. Meanwhile, 

to improve efficiency and sustainability of vessels with reduced emissions (note: ships 

contribute 4.5% to global CO2 emissions [43]), the integrated SOFC/GT system has been 

considered as the primary power source for both civilian, e.g., primary propulsion system 

for a LNG (liquefied natural gas) carrier [44], and military, e.g., the combined heat and 

power (CHP) generation for military sealift ships [11], applications. 

Although the SOFC/GT concept is very appealing for mobile applications from 

the efficiency point of view, its feasibility depends critically on the system‟s dynamic 

characteristics and load following performance. However, many studies have shown that 

the SOFC/GT system has very limited dynamic capability due to system characteristics, 

e.g., large thermal inertia of the SOFC stack, stringent operation requirements [13], [14] 

for operating safety considerations and closed thermal/mechanical couplings [7]. Detailed 
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analysis of operation challenges of the SOFC/GT system for mobile applications and the 

overview of mitigating strategies are presented in Section 1.3. 

In this dissertation, in order to achieve fast, safe and efficient load following for 

mobile applications, we focus on developing control and system integration solutions to 

improve the dynamic capabilities of integrated SOFC/GT systems. The remainder of this 

chapter is organized as follows: Section 1.2 presents the SOFC/GT system configuration 

and operational principles. Section 1.3 elucidates the operational challenges and control 

strategies for mobile applications. Dissertation overview and contributions are presented 

in Section 1.4 and Section 1.5, respectively. 

1.2 System Configuration and Operational Principles 

 

Figure 1.1: The hybrid SOFC/GT system configuration. Note that the “basic system 

configuration” discussed in this dissertation does not include any bypass valve. 

 

Figure 1.1 presents the configuration of a representative SOFC/GT system. The 

key system components include an SOFC stack, a catalytic burner (CB), a heat exchanger 

(HEX), and a GT-generator where a compressor, a turbine and a generator are connected 

by a mechanical shaft. During operations, the pre-heated air is supplied to the cathode 

side of the SOFC, while pre-reformed fuel is fed to the anode side. The high-temperature 
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exhaust from the SOFC can be fed into the CB where the unused fuel is burned to further 

increase the temperature and thermal energy of the high temperature SOFC exhaust flow, 

which will be used to drive the turbine. This provides a mechanism [4] to recuperate the 

exhaust energy for improved system efficiency. The turbine drives both the compressor 

(delivers air into the SOFC stack) and the generator (produces additional electric power) 

through a mechanical shaft. The high-temperature turbine exhaust then passes through the 

HEX to pre-heat the air supplied to the SOFC. 

If the bypass valves are excluded from the SOFC/GT system in Figure 1.1, the 

remaining layout is the most commonly used system setup reported in the literature [4], 

[14], [21]. It is referred to as the “basic system configuration” throughout this dissertation. 

There are many variant system setups, e.g., system with a dual-spool GT [4] and multiple 

HEXs. In order to achieve improved performances, the basic system setup could also be 

augmented with additional components and functionalities, e.g., various bypass valves [4], 

independent fuel supplying system to the catalytic burner [4], [15], and variable geometry 

compressor/turbine (VGC/VGT) [16], [17].  

In particular, there might be a mismatch between the desired airflow for the SOFC 

and that supplied by the GT, leading to over-cooling or over-heating of the SOFC. In this 

case, bypass valves [18] or a heater/cooler [19] are used to extend the operating range at 

the expense of efficiency and complexity [17]. For example, an SOFC bypass valve and a 

recuperator bypass valve (see Figure 1.1) have been used in the Siemens-Westinghouse 

test facility to regulate the inlet air flow rate and temperature, respectively [4]. Similar 

valves have also been utilized in the Department of Energy Hyper (Hybrid Performance 

Project) hardware-in-the-loop (HIL) simulation facility [20]. 

Given that the additional components used in the augmented systems will further 

complicate the system operation and increase the system size (which is very critical for 

mobile applications), capital cost and malfunction rate, one objective of this study is to 

keep the integrated system as simple as possible [14] while achieve efficient and reliable 

operations. Meanwhile, instead of explicitly modeling the external fuel reformer such as 

the on-board JP8 fuel reformer, an alternative approach is adopted, by assuming that the 

pre-reformed fuel is a mixture of multiple species [34] (e.g., CH4, CO, and H2), where 

concentration ratios could be varied to reflect different pre-reforming results. In doing so, 
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we can simplify the system analysis and focus on the dynamic couplings of the SOFC 

and the GT-generator [7] in this research. 

1.3 Operation Challenges and Strategies for Mobile Applications 

1.3.1 Operation Challenges  

Fast load following and safe transient operation are considered to be the most 

critical factors for reliable operation of SOFC/GT systems for mobile applications [14]. 

However, both model-based analysis [14], [15] and experimental studies [4] reveal that 

the integrated SOFC/GT system has very limited transient capabilities, which limit its 

widespread applications to mobile platforms [7]. 

First, the large thermal inertia of the SOFC stack and the slow fuel path dynamics 

associated with the fuel processing/delivery system, often lead to slow transient responses 

[7]. For example, typical power transients might take several minutes or longer while the 

thermal transients might take hours to settle [14]. Although batteries or ultra-capacitors 

are commonly used to provide the bridging power during load transients, it is desirable 

for the hybrid SOFC/GT system to have fast load following capability to meet the desired 

size target without relying on an oversized energy storage system [7]. This is particularly 

important for mobile applications with stringent space limits. 

Second, although the SOFC is generally able to respond to quick (e.g., 10 seconds 

[80]) load changes, a sudden large change in SOFC operating condition could seriously 

impact the components and their life cycle due to thermally induced stresses [14]. Hence, 

fast changes in SOFC operation are usually prohibited in practice. Moreover, to limit the 

SOFC thermal fatigue and degradation, it is preferred to keep the SOFC temperature at 

constant levels for efficient and long life-cycle operation [1], [14]. Therefore, it becomes 

very challenging to achieve fast load following while enforcing effective thermal safety 

management [7], [14].  

Third, the closed thermal and mechanical couplings, which are essential for high 

system efficiency operation, make fast and safe load following extremely challenging [7]. 

In fact, the operational challenges in SOFC/GT systems arise from two competing goals, 

namely, maximizing system efficiency versus fast and safe load transients. For instance, 
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the optimal operating points are located at the boundary of the feasible operation region 

to maximize power production for a given fuel supply. However, this leaves no sufficient 

safety margin for fast and safe load transient operations. A phenomenon which has been 

observed in both real systems and model-based analysis is the temporary large and rapid 

shaft speed drop during transients that might eventually lead to system shutdown [15]. 

Therefore, effective strategies to extend dynamic capabilities of SOFC/GT systems are 

becoming critical enablers for their widespread applications to mobile platforms [7]. 

1.3.2 Mitigating strategies for Recuperating Systems 

Most papers found in the literature focus on the design [14], [21] and optimization 

[22] of recuperating-SOFC/GT (referred to as R-SOFC/GT in this dissertation) systems, 

in which a recuperating GT, whose primary function is to recuperate the exhaust energy, 

is integrated with the SOFC. In comparison, the control and system integration solutions, 

especially those aimed at addressing aforementioned operating challenges, have not been 

fully explored [6], [14]. Currently, strategies that mitigate the limited SOFC/GT transient 

capabilities mainly focus on two directions: one is to find effective operating strategies 

without modifying the existing system configuration; the other on augmenting the system 

with additional components and functionalities through system integrations [7]. 

For the first approach, many control strategies have been developed. In [48], the 

impact of GT speed on dynamic performance and controllability of the SOFC/GT system 

is investigated. A multi-loop feedback control scheme has been developed by controlling 

the current, fuel, and airflow for safe part-load operations in [13], [14]. Even though there 

are strong interactions among different loops in the system, the multi-loop control design 

could be made stable due to the time scale separation between those loops. The results are 

presented in Figure 5.23 and Figure 5.24 of this dissertation. Similar feedback control 

strategies can also be found in [45] - [47], [49]. Besides the integrated SOFC/GT system, 

feedback control strategies have also been used to improve the transient performance of 

the SOFC stack, i.e., the primary power source of the traditional R-SOFC/GT system, as 

demonstrated in [50] - [52].  

Optimization-based controls have also been studied for the R-SOFC/GT systems. 

For instance, an incremental step reference governor (IS-RG) has been developed in [15] 
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for fast load step-up operations. At each sampling time, the IS-RG controller determines 

the maximum permissible generator power while avoiding potential system shutdown. In 

addition, model predictive control (MPC) strategies, which can handle various operation 

constraints, e.g., the constraints on SOFC temperature and fuel utilization, have also been 

developed for coordinated power and thermal management [12], [53]. 

For the second approach, the uses of variable geometry compressor/turbine (i.e., 

VGC/VGT), bypass valves, and energy storages have been investigated. In [16], the VGT 

is used to address the shutdown problem and improve the transient performance during 

abrupt load changes. Similar techniques, e.g., the VGC, have also been used to improve 

the part-load performance [17]. In the SOFC/GT system, the operation of fast component, 

i.e., the GT, is primarily limited by its air delivery functions and cannot contribute much 

to transient operations. Bypass valves are used in [4] to mitigate this problem. However, 

the added components complicate the system design, control, and operation.  

In CHAPTER 3, an alternative method, i.e., the generator/motor (G/M) dual mode 

operation, is proposed to improve the airflow control authority and transient performance 

of the R-SOFC/GT system. In particular, without adding new components and by taking 

full advantage of the bi-directional operation of the electric machine (i.e., G/M), we will 

show that improved load following and thermal management can be achieved, power and 

energy requirements for the battery, which provides the bridging power in load transients, 

can be reduced, and overall system performance can be enhanced [7]. 

However, one common problem of the conventional R-SOFC/GT systems is that 

their transient performance, e.g., load and thermal transients, is dominated by transient 

limitations of the SOFC, which is the primary power source of R-SOFC/GT systems. The 

GT-generator, i.e., the component with fast shaft dynamics, is mainly used as an energy 

recovery device (ERD) to recuperate the otherwise wasted SOFC exhaust energy to drive 

the compressor for air delivery (primary task) while limited remaining shaft power can be 

used to drive the generator to produce additional electric power, which only contributes 

less than 20% of the system net power. Moreover, the power generation capability of the 

GT-generator is limited by its size, which is often optimized to match the SOFC in the R-

SOFC/GT system [17]. Therefore, one cannot take advantage of the fast dynamics of the 

GT-generator for improved transient operations in the conventional R-SOFC/GT systems. 
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This motivates us to pursue a new type of SOFC/GT system for mobile applications, as 

will be investigated in the following sections. 

1.3.3 Sprinter System: Concept and Research Problems 

To meet the fast and safe load following requirements for mobile applications, a 

sprinter-SOFC/GT (referred to as S-SOFC/GT) system, is pursued in this dissertation. As 

shown in Figure 1.2, the recuperating and sprinter SOFC/GT systems have the same base 

components and configuration. The main differences are: (1) the relative size of the GT-

generator with respect to the SOFC; and (2) the operation principles. 

 

 

Figure 1.2: The conventional recuperating-SOFC/GT (R-SOFC/GT) system versus the 

proposed sprinter-SOFC/GT (S-SOFC/GT) system, where      ,      and       refer to 

SOFC power, generator power and SOFC temperature, respectively. One main difference 

between these two systems is the relative size between the SOFC and the GT-generator. 

 

In the proposed S-SOFC/GT system, a “down-sized” SOFC stack that is operated 

at relatively constant temperature is integrated with a sprinter GT-generator assembly. 
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This sprinter GT-generator could produce a considerable amount of electrical power very 

quickly to meet the desired power demand. In the proposed system, only the fast dynamic 

component, i.e., the GT-generator, will be used for dynamic load following, while the 

SOFC is mainly used to provide the baseline power with high efficiency. Compared with 

traditional R-SOFC/GT systems, in which both the SOFC and GT-generator are used for 

dynamic load following operation, the proposed S-SOFC/GT system has the potential to 

achieve: (1) fast load following by taking full advantage of the fast dynamic capability of 

the GT-generator; (2) efficient and long life-cycle operation by running the SOFC cells at 

fairly constant temperature [39]. 

To the author‟s best knowledge, the S-SOFC/GT concept proposed herein has not 

been studied in the literature. Given the differences between the recuperating and sprinter 

systems (see Figure 1.2), the system design, dynamic operation and controls associated 

with the proposed S-SOFC/GT system need to be investigated. The design procedure for 

the R-SOFC/GT system is not well suited for the S-SOFC/GT system for several reasons. 

First, the design process from the full-load design point to part-load off-design analysis 

does not apply to the S-SOFC/GT system because at least two design points, i.e., the 

baseline and the peak load operating points, need to be determined. Second, the sprinter 

system has an additional design objective of keeping fairly constant SOFC temperature 

over all load conditions. Third, design guidelines for the traditional systems, e.g., typical 

values for fuel utilization and power split ratio, cannot be directly applied because their 

values will vary greatly over the entire operation range in the sprinter system. Fourth, the 

new system has significantly extended operating ranges for the GT-generator in terms of 

air/gas mass flows, pressures, temperatures and generator power. Hence, system design 

procedure suited for the proposed S-SOFC/GT systems needs to be developed. 

The proposed system also has different control implications. For example, in the 

proposed system, the load following and airflow management, which dominates the cell 

temperature, are both controlled by the generator. This poses different transient operation 

challenges since the airflow and the generator power will vary greatly over the entire load 

range, as shown in Section 4.4. Hence, specific control algorithms need to be developed 

for the S-SOFC/GT system to achieve fast transient operation while maintaining constant 

SOFC power and temperature over a wide load range.  
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1.4 Dissertation Overview 

This work aims to develop control and system integration solutions to achieve fast 

and safe load following operation of SOFC/GT systems for mobile applications. To this 

end, both the R-SOFC/GT system and the S-SOFC/GT system are investigated through 

model-based methodologies. For the R-SOFC/GT system, the G/M dual mode operation 

and its implications on system transient performance and energy storage requirements are 

studied. For the S-SOFC/GT system, model-based analysis is applied to gain fundamental 

understanding on the system efficiency, steady-state and transient operations as well as 

strategies for fast and safe load following through control design. 

To support the model-based studies, a dynamic model of the integrated SOFC/GT 

system is developed in CHAPTER 2. The modeling principles and governing equations 

for the main system components, e.g., tubular SOFCs, turbomachinery, catalytic burner 

and heat exchanger, are presented. The system model is derived by integrating models of 

those individual components. The finite volume method [23], [24] is applied to describe 

the spatial distributions of parameters along the SOFC stack. The catalytic burner model 

is developed by using mass and energy conservation and the ideal gas law [39]. Modeling 

of the heat exchanger is developed based on those commonly used in thermodynamics. 

Moreover, the tubular SOFC model and the turbomachinery model are validated against 

experimental data reported in the literature. The integrated SOFC/GT system model lays 

foundation for subsequent design and control studies.  

In order to improve transient performance, the R-SOFC/GT system is augmented 

by a battery and an electric machine capable of operating in both generator and motor 

mode in CHAPTER 3. Through case studies of a 5kW-class APU system, this chapter 

focuses on studying the G/M dual mode operation and its control and design implications 

on transient performance and battery requirements. Active shaft load control is used to 

manage transients by: (1) pre-conditioning of G/M power for load step-up operations; and 

(2) absorbing the excessive power through motoring mode operation for load step-down 

operations. Feedback control and optimization algorithms are developed while numerical 

simulations are carried out to show their effectiveness and computational efficiency. The 
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G/M dual mode operation is evaluated in terms of load following performance, thermal 

safety and battery requirements. 

The remaining chapters (chapter 4-5) are devoted to the new S-SOFC/GT system, 

which is designed to tackle the fundamental limitations of R-SOFC/GT systems. Model-

based analysis is applied to an example system, which is intended to be used as a primary 

electrical propulsion system for military vehicles, to gain fundamental understanding on 

system design and control. In particular, we investigate the feasibility problem, whether 

the S-SOFC/GT system has the ability to achieve desired design objectives of (1) keeping 

constant SOFC power and temperature over the entire load range; and (2) achieving fast 

and safe load following. System design procedure and control algorithms associated with 

the proposed S-SOFC/GT system will also be developed. 

To this end, an operational strategy is proposed in CHAPTER 4 to maintain fairly 

constant SOFC power and temperature over the whole load range. Based on this strategy, 

a design procedure that helps to size different components is developed for the sprinter 

system. The “actual” operating envelope is determined by integrating the constant SOFC 

power and temperature constraints with multiple operational safety factors, as shown in 

Section 4.4. A constrained optimization problem is formulated in Section 4.5 to identify 

the optimal feed-forward map, which is used to schedule the actuators and power split for 

different power demands. The S-SOFC/GT system is compared with the conventional R-

SOFC/GT system in terms of feasible operation region, steady-state feedforward map and 

system performance, as well as the operating safety margin.  

Stability analysis and feedback control design are presented in CHAPTER 5 for 

the S-SOFC/GT system. In Section 5.1, BIBO stability of steady-state operation points is 

evaluated through numerical simulations and is further investigated by linearized analysis 

of a simplified model. System analyses are carried out in Section 5.2 to gain insights on 

system transients and operation challenges. In Section 5.3, feedback control design suited 

to the S-SOFC/GT system is performed for both load step-up and step-down transients. In 

the end, the transient performance of the S-SOFC/GT system is compared with the “state-

of-the-art” results for the R-SOFC/GT system reported in the literature. 

Finally, a summary of the dissertation is given in CHAPTER 6 and the important 

conclusions are highlighted. 
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1.5 Contributions 

 The contributions of this dissertation on system modeling, configuration analysis 

and control design of integrated SOFC/GT systems with improved transient capabilities 

for mobile applications are summarized as follows: 

1. Dynamic models are developed for the integrated SOFC/GT system. Modeling of key 

components such as SOFCs, turbomachinery, catalytic burner and heat exchanger are 

discussed. Finite volume method is used to discretize the tubular SOFC while curve 

fitting techniques are used to express the GT maps in compact functional forms. The 

SOFC and GT models are validated against experimental data available from the open 

literature. Finally, individual component models are integrated to represent the overall 

system dynamics. The modeling effort leads to a comprehensive model library, which 

can be used for the studies of hybrid SOFC/GT systems. 

2. For the R-SOFC/GT system, G/M dual mode operation and its implications on system 

operation and energy storage requirements are investigated. Active shaft load control 

is achieved through pre-conditioning operation of G/M load and motoring operation 

for load step-up and step-down transients, respectively. Model-based analysis reveals 

that by taking full advantage of the dual mode operation of the G/M, better trade-offs 

between power tracking and thermal safety can be achieved, the battery power/energy 

requirements can be reduced, and overall system performance can be enhanced. The 

findings provide a practical way to enhance the transient capabilities of conventional 

R-SOFC/GT systems without modifying the base components or system layout. 

3. Operational strategy and design procedure well-suited to the S-SOFC/GT system are 

developed. In particular, through model-based analysis, an SOFC operating strategy 

is derived to coordinate multiple inputs to keep fairly constant SOFC temperature and 

power over the entire load range, thereby establishing the feasibility of the proposed 

S-SOFC/GT system. A design procedure, which helps to determine component sizes 

and the approximated steady-state operation line from the given power requirements, 

is developed for the proposed S-SOFC/GT system. 

4. Feasible operating regimes and steady-state performance are studied for the proposed 

S-SOFC/GT system. The “actual” operating envelope is determined by integrating the 
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constant SOFC power/temperature constraints with those pertinent to different safety 

factors. Steady-state trends of various variables, such as cell voltage, CB temperature 

and generator power, are analyzed. A constrained optimization problem is formulated 

to determine the static feed-forward map of the S-SOFC/GT system. The results offer 

guidelines to schedule the actuators to achieve maximum efficiency for different net 

power demands while satisfying the safety and operational constraints. Finally, the S-

SOFC/GT system is compared with the R-SOFC/GT system in terms of safe/feasible 

operation envelope, static feedforward map and performance. 

5. Stability analysis and feedback control design are performed for the new S-SOFC/GT 

system. The BIBO stability with respect to the generator load is investigated through 

numerical simulations and linearized system analysis. Shaft speed control is proposed 

to stabilize the system at desired operating points. Meanwhile, open-loop analysis and 

relative gain array (RGA) analysis are used to gain insights on system transients, loop 

interactions and operation challenges. Based on the characteristics of the S-SOFC/GT 

system, a cascade feedforward-feedback control strategy is developed for the sprinter 

system. It is shown, through numerical simulations, that by taking full advantage of 

the GT-generator‟s fast dynamic capabilities, the proposed S-SOFC/GT system could 

achieve far superior load following performance, compared with the “state-of-the-art” 

results for the conventional R-SOFC/GT system. 
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CHAPTER 2 

Modeling of Integrated SOFC/GT Systems 

Due to the limited availability of SOFC/GT experiment facilities and the lack of 

experimental data in the open literature, simulation-based study remains the only viable 

option for most research groups [14], [39]. There are many publications focusing on the 

modeling of hybrid SOFC/GT systems. For example, detailed reviews of dynamic SOFC 

models and the integrated SOFC/GT system models can be found in [5] and [33], each of 

which reviews more than 100 papers. Given the difficulties in system-level experimental 

validations and the importance of model-based analysis, it is critical to validate the key 

system components with respect to experiment data. Otherwise, the numerical simulation 

might produce questionable results. In this chapter, we will describe the modeling of the 

integrated SOFC/GT system and key components, including the SOFC, turbomachinery, 

catalytic burner, and heat exchanger. We will also delineate how these component models 

are validated with data reported in the open literature. Other components, such as the fuel 

reformer [14], are not included in order to focus on the dynamic couplings between the 

SOFC stack and the GT-generator [39] throughout this dissertation.  

2.1 Modeling of Tubular SOFCs 

2.1.1 Tubular SOFC cells 

In this research, the tubular SOFC cells developed by Siemens-Westinghouse are 

selected due to their advantages in thermal expansion and gas sealing [23]. As shown in 

Figure 2.1 [54], the pre-heated air enters the injector, i.e., the air feeding tube, and travels 

to the closed end of the cell tube. Pre-reformed fuel enters the SOFC outside the cell tube 

from the closed end. The air and fuel both flow along the cell in the same direction from 

the closed end to the open end of the cell. This is known as a co-flow configuration [1]. 
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Figure 2.1: Gas flows in the co-flow tubular SOFC cell [54]. 

 

The SOFC model utilized in this work is mainly based on Oh‟s model [34], which 

was developed based on SOFC models in [23] and [24]. Moreover, a significant amount 

of work has been done to improve Oh‟s model [34], leading to close agreements between 

the model responses and experiment data, as will be shown in Section 2.1.5. The model is 

included here for a self-contained system model presentation. The model is composed of 

three sub-models, namely, the electro-chemical sub-model, the mass balance sub-model 

and the energy balance sub-model [24]. The full model is developed by integrating these 

sub-models as presented in the following sections. 

Our SOFC modeling approach takes into account the trade-off between acceptable 

computational load and sufficient modeling accuracy. The following strategies have been 

used to reduce the complexity of the resulting model without significant compromise on 

the modeling accuracy. First, the anode, cathode, and electrolyte are considered as one 

assembly, called the PEN (Positive electrode-Electrolyte-Negative electrode) structure. 

Based on the physical structure, five temperature layers could be defined for the SOFC, 

namely, the temperatures for fuel flow, air flow, PEN, injector, and feeding air, as shown 

in Section 2.1.4. Second, the SOFC can be treated as a distributed parameter system to 

capture the spatial distribution along the flow field for variables such as the temperature, 

species concentration, and current density. The governing equations are described using 

the discretization technique, such as the finite-volume method [23], [24]. In doing so, the 

SOFC is divided into user-defined number (e.g.,   ) along the flow axis and each section 
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is modeled as a lumped parameter sub-system, i.e., variables such as temperatures and the 

current density are assumed to be homogeneous in each discretized unit. In this research, 

the tubular cell is discretized into four (i.e.,   =4) sections [7]. Third, the fuel is assumed 

to be a mixture of 6 gas species, consisting of    ,   ,    ,   ,     and   , where the 

species concentrations can be varied to reflect different pre-reforming results [34]. 

The following assumptions, which are commonly used in the literature [14], [24], 

are used for developing the SOFC model in this chapter: 

1. The SOFC cell is considered equipotential (i.e., all the discretized units have the same 

voltage) because of the high electrical conductivities of the interconnectors. 

2. The current is produced only by the oxidation of   , and    reacts only through the 

water gas shift (WGS) reaction (see Figure 2.2). 

3. Ideal gas laws are applied for the bulk flows in the fuel, air and feeding air channels. 

4. Adiabatic boundary conditions are applied for the SOFC by assuming that the cell is 

located in the middle of a large stack [14]. 

2.1.2 Electrochemical Sub-model 

The voltage of one discretized unit of the SOFC cell can be calculated by: 

  

       
 

 (    
 

     
 

     
 

)             (2.1) 

  

where   is the index of discretization units.     
 

 is the open circuit voltage in the  th unit. 

For notation simplicity, the superscript   will be omitted in the following equations. The 

open circuit voltage can be determined by the Nernst Equation as follows: 

  

        
 ̃    

  
  (

    

   
   

   )  (2.2) 

  

where  ̃ and   are the ideal gas constant and Faraday constant, respectively;      is the 

temperature of the PEN structure;    
,    

, and      are the partial pressures of   ,   , 

and    , respectively. The Nernst potential                            [61]. 
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The last three terms in Eqn. (2.1) represent various potential losses.      is the 

ohmic loss due to the electrical and ionic resistance along the current path in the SOFC. 

The activation loss,     , is due to the energy barrier to overcome in order for the electro-

chemical reaction to occur, and can be described by the Butler-Volmer equation [24]. The 

concentration loss,     , reflects the over-potential due to species diffusion between the 

reaction site and the bulk flow in the gas channels. Expressions for these potential losses 

can be found in [24]. The polarization relation in each discretization unit, as denoted by 

the following nonlinear algebraic function, can be identified in the electro-chemical sub-

model based on the local conditions, including      and species pressures: 

  

   (     
    

        
        )  (2.3) 

  

where   
    is the total pressure of the bulk flow in the air channel while the details on 

Eqn. (2.3) are given in [24]. Note that there is no state in the electro-chemical sub-model. 

2.1.3 Mass Balance Sub-model 

 

Figure 2.2: Operating principle of co-flow tubular SOFCs. The figure shows electro-

chemical reactions and mass flows across one discretization unit of the SOFC cell.  
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balance sub-model. As shown in Figure 2.2, the chemical species considered in the fuel 
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and   . Table 2.1 lists the reactions considered in the model. As shown in Figure 2.2, in 

the fuel channel, three reactions are taken into account: methane steam reforming (SR), 

water gas-shift (WGS), and hydrogen electro-chemical oxidation (Ox). In the air channel, 

only the reduction (Red) reaction from    to     ions is considered [34]. According to 

Faraday‟s law, the rates of oxidation (Ox) and reduction (Red) reactions are related to the 

current density as follows [24]: 

  

            ⁄   (2.4) 

  

Table 2.1 Reactions considered in the SOFC model 
Location Reaction Expression 

Fuel Channel 
SR 

WGS 

               

              

Anode Ox                

Cathode Red               

  

Note that the SR reaction is slow and highly endothermic, while the WGS is fast 

and weakly exothermic. Thus, the reforming process is dominated by the endothermic SR 

reaction that requires the heat generated by the electro-chemical reaction. In this study, 

the formula described in Eqn. (2.5), which is widely used in the literature [24], [55], [56], 

is adopted for the reaction rate of the steam reforming reaction: 

  

                
    ( 

   

 ̃  
)  (2.5) 

  

where               , and    is the temperature of the fuel channel. Note that     

only depends on the partial pressure of    ,     
, and fuel temperature   . In addition, 

the formula in [55] is adopted to calculate the rate of WGS reaction as follows:  

  

              (  
    

   

              
)  (2.6) 
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where          , reflecting the very fast kinetics of the WGS reaction, and         is 

the equilibrium constant with            (            ⁄ ) [24]. 

The mass balance dynamics of gas species in the bulk flow of the fuel channel for 

each discretization unit can be expressed as follows: 

  

 ̇   (              )
 

  
 ∑          

 

  
  {         }

 

   {                    } 

 (2.7) 

  

where     is the molar concentration of species   ;        and         are the inlet and 

outlet molar flow rates of species   , respectively;    is the volume of the fuel channel in 

one discretization unit;       is the stoichiometric coefficient of species    in reaction  ; 

   is the rate of reaction  ; and    is the characteristic length of the fuel channel [23]. As 

mentioned above, all the variables refer to the same discretization unit. 

Similarly, the mass balance dynamics of the bulk flow in the air channel is: 

  

 ̇   (              )
 

  
         (

    

  
)     {     }  (2.8) 

  

where     is the molar concentration of species   ;     is the volume of the fuel channel 

in one discretization unit; and    is the characteristic length of the cathode air channel. 

2.1.4 Energy Balance Sub-model 

The temperature dynamics in the SOFC is calculated in the energy balance sub-

model [24]. The temperatures in five layers, i.e., the fuel flow (  ), the air flow (  ), PEN 

structure (    ), the injector (    ) and feeding air (    ), are calculated by solving the 

dynamic equations of the energy balance in each layer. As in Figure 2.3, the heat transfer 

considered in the model includes the convection between the bulk flows (i.e., fuel, air, 

and feeding air flows) and their surrounding solid structures, the conduction       in the 

solid layers (i.e., PEN and injector) as well as radiation      between PEN and injector 
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[23], [24]. In particular,               ⁄  indicates the conduction heat transfer between the 

solid structure       and the air/gas bulk flow    . 

The energy balance dynamics in the fuel flow can be expressed as follows: 

  

(∑        

  

)
   

  
 (            )

 

 
       (       )

 

  
 

    (    
          

(  ))
 

  
  

   {                    }  

(2.9) 

  

where       is the heat capacity of gaseous species   ;       and        are the inlet and 

outlet enthalpy flux of the fuel flow, respectively;        is the coefficient of heat transfer 

between PEN and the fuel flow; and     
       and    

(  ) are the specific enthalpies 

of     at temperature      and of    at   , respectively. The first term in the right hand 

side (RHS) of Eqn. (2.9) is due to the enthalpy flux of the bulk flow; the second term 

accounts for the convective heat exchange between fuel flow and PEN; the last term is 

caused by the enthalpy flux due to the oxidation reaction at the anode [24]. 

 

  

Figure 2.3: Heat transfer in the tubular SOFCs. 
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Similarly, for the air flow, we have: 

  

(∑        

  

)
   
  

 (            )
 

 
                

 

  
 

       (       )
 

  
           

    
 

  
  

   {     }  

(2.10) 

  

where the second and the third term in RHS of Eqn. (2.10) account for the heat exchange 

between the air bulk flow and its surrounding solid walls; the last term is caused by the 

enthalpy flux due to the reduction reaction at the cathode. 

The energy balance dynamics in the PEN structure can be described as follows: 
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(2.11) 

  

where     ,        and      are density, specific heat capacity and thickness of the PEN 

structure, respectively. The first term           accounts for the conductive heat transfer 

in the PEN structure and the last term in Eqn. (2.11) represents the radiation between the 

injector and PEN. The remaining terms account for the convective heat transfer between 

PEN and the surrounding flows, the enthalpy flux caused by the electro-chemical reaction 

and the electrical work done by the SOFC cell. 

Similarly, for the injector tube, we have: 
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(2.12) 

  

where           accounts for the conductive heat transfer in the injector and the last term 

in Eqn. (2.12) represents the radiation between injector and PEN. The remaining terms 

account for the convective heat transfer between the injector and the surrounding flows. 

For the temperature      of the feeding air inside the injector, we have: 

  

          

     

  
 

                

 
         (         )

 

    
  (2.13) 

  

2.1.5 Dynamic Simulation and Model Validation 

The model of the SOFC is obtained by integrating the dynamic equations of all 

discretization units and following the flow continuity, boundary conditions, and current 

distribution relations [24]. Based on the equipotential assumption, we have: 

  

{
 

 
                    

∑   

  

   

 ∑    

  

   

      
 (2.14) 

  

where    is the total number of discretization units;       is the cell voltage;    and      

are the currents drawn from the  th unit and the entire cell, respectively. 

Given the small pressure drop along the SOFC, it is assumed that the bulk flows 

through the gas channels are governed by the linear orifice equation as follows: 
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         (    
       

    )     {       }  (2.15) 

  

where      is the orifice constant for the gas flow channel    ;     
  

 and     
     are the 

total pressure of the upper-stream and downstream flows [24]. 

The tubular SOFC model has been implemented in Matlab/Simulink. The model 

predicts various temperatures along the flow path, the gas compositions in the fuel and air 

channels, all the electrochemical-related variables such as voltage and current density as 

well as the cell efficiency and power output. The SOFC parameters, such as those for the 

cell materials and geometries, are taken from [23], [24]. The key operation variables for 

the SOFC cells are summarized in Table 2.2.  

Figure 2.4 (a) shows results of different temperature profiles along the flow axis 

for the five temperature layers. In Figure 2.4, „0‟ and „1‟ at the x-axis represent the closed 

end and the open end of the cell tube (see Figure 2.1). It can be seen that the cell (PEN) 

temperature first increases and then decreases along the fuel/air flow direction with the 

maximum temperature occurring at the mid-section of the SOFC. The temperature of the 

feeding air increases along the injector flow direction, i.e., the direction from the open 

end to the closed end of the cell tube. These results capture the general trends of those in 

[23]. Figure 2.4 (b) presents the mole fraction profiles in the fuel/air channel streams. The 

consumption of hydrogen   , methane    , and carbon monoxide    and production of 

steam     and carbon dioxide     can be identified along the cell as the oxidation (Ox) 

reaction and the internal reforming process (see Table 2.1) proceeds. 

Figure 2.5 presents the cell voltage and power density as a function of current 

density. The simulation results are compared to the actual experimental data of Siemens-

Westinghouse tubular SOFCs [1] for voltage and power output corresponding to different 

current density. This comparison shows a good match between the simulation model and 

the actual test data as the percent error between the model prediction and experimental 

data is less than 3% over the entire current density range. 
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Table 2.2 Nominal operation variables of tubular SOFCs 

Key 

Parameters 

Cell 

Voltage 
Current Density Cell Power 

Fuel 

Utilization 

Air Excess 

Ratio 

Value [Unit] 0.67 [V] 2000 [   ⁄ ] 90 [W] 0.85 4.0 

Pre-reformed 

Fuel 

    = 1.6%,     = 1.8%,    = 16.3%,     = 3.7%,    = 32.4%,    = 

44.2% (molar fraction ratio, data acquired from [15], [34]) 

  

 

 

Figure 2.4: Simulation results: (a) temperature distributions and (b) molar flow rates. 
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Figure 2.5: Close agreement between the simulation and experiment results: (a) cell 

voltage and (b) cell power versus current density. 
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2.2 Modeling of Turbomachinery 

 

Figure 2.6: Compressor, turbine, shaft and generator schematic. 

 

The turbomachinery model incorporates the shaft dynamics, the compressor and 

the turbine model. Only the shaft dynamics are considered [15], while map-based models 

are used for characterizing the GT. This is sufficient for SOFC/GT system modeling [14]. 

As shown in Figure 2.6, the main variables used in the modeling include mass flow rate 

 , pressure  , temperature  , and power  . The subscripts denote the component (  for 

compressor and   for turbine) and inlet and outlet (  or  , respectively). For instance,     

and     denotes the turbine inlet temperature and turbine inlet pressure, respectively. 

2.2.1 Shaft Rotational Dynamics 

The shaft rotational dynamics [15] are determined by the turbine generated power 

  , the power required to drive the compressor    and the generator power      as: 

  

  

  
 

            

     
  (2.16) 

  

where   is the turbocharger speed,   is the turbocharger inertia,        ⁄    is a factor 

used to convert the shaft speed from     (revolution per minute) to           (radian 

per second), and    is the turbine mechanical efficiency that accounts for energy losses 

due to friction. In addition, instead of using Eqn. (2.16), alternative formulas presented in 

[35] can also be used to model the speed-dependent bearing loss terms. 

C T GEN
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2.2.2 Compressor Model 

The compressor and turbine models provide the thermodynamic equations for the 

input-output relations of the working fluid based on the pressure ratio, shaft speed and 

temperature (referred to as Type-I models in [28]).  

Neglecting heat losses and assuming that the specific heat coefficients of air do 

not change, the power    required to drive the compressor can be calculated as: 

  

       
              (2.17) 

  

where    is the mass flow rate through the compressor;   
    is the constant specific heat 

coefficient of the air;     and     are the absolute temperature (i.e., with units in Kelvin) 

at the inlet and outlet of the compressor. The compressor outlet temperature,    , can be 

calculated as follows: 

  

        (  
 

  
((

   

   
)

   
 

  ))  (2.18) 

  

where   is the heat capacity ratio, which is defined to be the ratio of the constant pressure 

specific heat over the constant volume specific heat as       ⁄ ;    is the compressor 

efficiency, which accounts for the fact that the compression process is not isentropic [28]. 

Plug Eqn. (2.18) into Eqn. (2.17), the power required to drive the compressor,   , can be 

calculated as: 

  

       
      

 

  
((

   

   
)

   
 

  )  (2.19) 

  

The relation between speed  , mass flow   , and pressure ratio    (i.e.,       ⁄ ) 

are often presented in the form of compressor map. Figure 2.7 presents such a map for 

several speed-lines, i.e., lines of operating points of    versus    for constant speeds. 
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For each speed-line, there are two limits for the air flow range. The upper limit is due to 

chocking, where the flow reaches the sound‟s velocity at some cross-section. No further 

flow increase in this region can be achieved by reducing    and the slope of the speed-

line becomes infinite beyond the choking point. The lower limit is due to the dangerous, 

aerodynamically/mechanically undesirable “surge” process [57]. During surging, a noisy 

and often violent flow process can occur, causing backflow through the compressor [28]. 

It may also damage the rotor bearing and sealing system, compressor driver and affect the 

whole operation. The value of    at which the surge occurs depends on the compressor 

characteristics and the downstream properties. Typically, this value is where the slope of 

the speed-line is zero or slightly positive [28]. The lower flow (i.e., the left-hand side in 

Figure 2.7) extremities of the speed-lines can be joined to form the so-called surge line. 

 

 

Figure 2.7: Compressor map as a function of mass flow rate and pressure ratio. 

 

Instead of using look-up tables as in [6], it is preferred to use curve fitting [28], 

[29] techniques to express the GT maps in compact functional forms with coefficients 

determined from experiment data. This guarantees a smooth interpolation and allows 

reliable extension of the maps beyond the region where experimental data is available. 

The fitting expressions and methodology used to derive them are discussed next. 
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Define the normalized air mass flow rate  ̃, the normalized shaft speed  ̃ and the 

compressor pressure ratio    as follows: 

  

 ̃  
  

  
      

  ̃  
 

  
      

    
   

   
  (2.20) 

  

where   
      

 and   
      

 are the airflow rate and the shaft speed at the design point of 

the compressor. By using these normalized parameters, the user can apply the similarity 

principle [25] to scale existing compressor maps to meet specific requirements without 

repeating the curve fitting process or changing the already-fitted coefficients. Analogous 

to the Zero Slope Line Method (ZSLM) in [28], the flow parameter  ̃ can be expressed 

as a function of pressure ratio    and the normalized speed  ̃, as explained as follows.  

First, the curve connecting the maximum mass flows on each speed line, i.e., the 

choke line in Figure 2.7, can be characterized as follows: 

  

,
 ̃         ( ̃)     ̃

     ̃     

            ( ̃   )     ̃   
      

 (2.21) 

  

where       is the pressure ratio corresponding to the maximum mass flow  ̃    at each 

speed-line in the compressor map. Then, the     ̃ relation for the speed-lines can be 

modeled as the following exponential function [28]: 

  

 ̃

 ̃   

        (   ̃)(     ( (
  

     
  )))  (2.22) 

  

where  ,    and    are constant coefficients to be determined from the compressor data-

sheet by using curve-fitting techniques, e.g., Matlab Curve Fitting Toolbox.  

In order to avoid the dangerous surge process, the compressor surge margin    , 

as defined in Eqn. (2.23) , should always be kept above 1.05-1.10 [36]. 
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     ⁄       

     
  (2.23) 

  

where      ⁄        is the value of       where compressor surging occurs. 

 

 

Figure 2.8: Curve fitting of the compressor efficiency map. 

 

Instead of representing the compressor efficiency in the form of look-up tables as 

in [58], it is preferred to use curve fitting to model the efficiency map. Analogous to [29], 

the compressor efficiency can be expressed as a second-order polynomial function as: 

  

            
( ̃  ̃)        ̃     ̃

     ̃     ̃
     ̃ ̃  (2.24) 

  

where constant coefficients   ‟s can be determined by weighted least square method [59]. 

As shown in Figure 2.7, good agreement between experiment data and the curve 

fitting results has been achieved for the Garrett [30] GTX2867R centrifugal compressor 

by using Eqn. (2.20) - Eqn. (2.22). The second-order polynomial in Eqn. (2.24) has been 

extended to the third order (the expression is not shown here) for better fitting results of 

the compressor efficiency, as shown in Figure 2.8. The compressor map in Figure 2.7 and 

Figure 2.8 will be used for the sprinter-SOFC/GT system in this dissertation. 
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2.2.3 Turbine Model 

The turbine is powered by the energy from the SOFC exhaust. Neglecting the heat 

transfer and treating the exhaust gas as an ideal gas with constant specific heat, the power 

output of the turbine,   , can be obtained from the first law of thermodynamics, as: 

  

                  (2.25) 

  

where    is the mass flow rate though the turbine;    is the specific heat capacity of the 

exhaust gas;     and     are the inlet and outlet temperatures of the turbine, respectively. 

Note that Eqn. (2.25) has the same form as Eqn. (2.17). 

Let    denote the isentropic efficiency of the turbine, which accounts for the fact 

that the expansion process is not isentropic [28]. Similar to the compressor case, we can 

get the following expressions for the turbine outlet temperature and turbine power: 

  

        (    (  (
   

   
)

    
  

))  (2.26) 

            (  (
   

   
)

    
  

)  (2.27) 

  

where    is the heat capacity ratio of the exhaust gas. It should be noted that variation of 

the heat capacity ratio values (due to the change of exhaust gas compositions) can often 

be neglected for the integrated SOFC/GT systems, as discussed in [36]. 

In the turbine maps [25], it is conventional to use the non-dimensional mass flow 

parameter   , corrected turbine speed    , expansion ratio   , that are defined as: 
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  (2.28) 
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Analogous to the compressor, we introduce the normalized mass flow parameter, 

     , and the normalized speed parameter,  ̃  , for the turbine: 

  

      
  

      
  ̃   

   

   
      

 
 

  
      

 √
   

      

   
  (2.29) 

  

where        is the corrected flow capacity where turbine choking occurs,   
      

 and 

   
      

 are the turbine speed and turbine inlet temperature at the design point. 

 

  

Figure 2.9: Turbine mass flow and efficiency maps: experimental and fitting results. 

 

  

Figure 2.10: Fitting results of the turbine mass-flow map by formulas given in [28]. 
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The relation between the turbine flow parameter, shaft speed and expansion ratio 

can be represented in the form of turbine map. Figure 2.9 presents the map of a typical 

radial turbine for diesel engine turbo-chargers in [26], [27]. However, formulas based on 

typical nozzle flow equations [25] that are used in [28] do not give good fitting results, as 

shown in Figure 2.10. An alternative fitting method is proposed. The normalized turbine 

flow parameter       can be expressed as a function of the expansion ratio   : 

  

                        (2.30) 

  

where the speed-dependent coefficients    and    are defined as: 

  

        ̃  
               ̃        (2.31) 

  

where               and             are constant coefficients. 

As shown in Figure 2.9 (a), close agreement between the curve fitting results and 

the experiment data has been achieved by using Eqn. (2.30) and Eqn. (2.31). Finally, the 

isentropic turbine efficiency can often be expressed as a function of the blade-speed ratio 

[57], which can be expressed as: 

  

  ⁄  
     

  √      (  (
   

   
)

    
  )

  
(2.32) 

  

where   denotes the turbine blade tip diameter. Figure 2.9 (b) shows the relation between 

the blade-speed ratio   ⁄  and the turbine efficiency as well as the fitting results. 

2.3 Modeling of the Counter-Flow Heat Exchanger 

A counter-flow heat exchanger (HEX) [37], as shown in Figure 2.11, is used to 

pre-heat the air in the integrated SOFC/GT system and its modeling is described in this 
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section. The HEX takes the compressed air, with temperature    , from the compressor 

and the exhaust gas, with temperature    , out of the turbine as the inputs and changes the 

temperature,    , of the pre-heated air (the inlet air supplied to the SOFC stack) and the 

temperature,    , of exhaust gas (system outlet to the environment) as its outputs. When 

given the inlet temperatures     and    , the pre-heated SOFC inlet air temperature     

and the cooled exhaust gas temperature    , can be determined as follows: 

  

                              
      

      
               (2.33) 

  

where    and             are the flow rates and specific heat capacities of flows along 

channel   and channel  , respectively;      is the HEX‟s efficiency [37], which depends 

on the HEX size and material, as well as properties of hot/cold fluids [38]. 

 

  

Figure 2.11: Temperature distributions along the counter-flow heat exchanger. 

 

It should be noted that the HEX model expressed in Eqn. (2.33) is a quasi-static 

model [37], meaning that the output temperatures are steady-state values. However, the 

HEX cannot react instantaneously to changes in the inflow conditions. In order to account 

this fact, a first order time delay [60] can be added into Eqn. (2.33) to get the following 

Temperature distributions
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dynamic model for the counter-flow HEX as: 
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[                     ] 

    

  
 

 

    
*    

      

      
                 +  

 (2.34) 

  

where      is the time constant for the HEX. 

Let     and     be defined as in Figure 2.11, the logarithmic mean temperature 

difference     , can be defined as: 

  

     
       

          ⁄  
 

    

         
  (2.35) 

  

where      is the exchanged heat duty (in  ),      is the HEX heat transfer coefficient 

(in         ), and      is the exchange area.      is a very important parameter to 

determine the HEX size for the integrated SOFC/GT system [14]. For instance, a value of 

around 50 Kevin is often selected for      to keep the HEX size reasonable [14], [61]. 

2.4 Modeling of the Catalytic Burner 

The catalytic burner (CB) is the device where the unused fuel from the SOFC fuel 

channel is burned with the remaining air from the SOFC cathode air channel to increase 

the gas flow temperature before it enters the downstream turbine. In many references [4], 

[14], a “magic” burner model is used by assuming complete reaction of all combustible 

gases (   ,   ,   ) from the SOFC stack. For example, a static CB model is developed 

to calculate the CB‟s outlet temperature by using conservation of energy in [14]. There is 

no dynamic state in this model. This method has been used by many researchers. 

By assuming adiabatic condition (i.e., no heat loss) and complete reaction of all 

combustibles, a dynamic CB model is derived in the following by using mass and energy 

conservation, as well as the ideal gas law.  

The dynamics for the mass (   ) of gases inside the CB can be described as: 
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             (2.36) 

  

where     and     are the cathode and anode outlet mass flows, respectively; and    is 

the mass flow through the turbine. 

By assuming uniform temperature distribution inside the burner, the temperature 

dynamics can be expressed using energy conservation: 
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(2.37) 

  

where      
  ,      

    are the inlet and outlet enthalpies of the gas species  ;      
  ,      

    are 

the associated inlet and outlet molar flow rates;   
   and     

   are mass and specific heat 

capacity of gas species   in CB, respectively;     
   and       

   are properties of the CB 

bed reactor and thus are considered as constant [15]. 

The ideal gas law is used to calculate the pressure in the CB as: 

  

    
       

      
 

(∑   
   

   )    

   (∑   
    

   
    ∑   

   
   )

  (2.38) 

  

where     is the volume of the burner. Hence, there are two independent states, i.e.,     

and    , in the dynamic CB model expressed in Eqn. (2.36) - Eqn. (2.38). 

It should be pointed out that there are many practical problems regarding the CB 

operation, especially those associated with mobile applications, need to be investigated. 

Discussions of these problems and operational safety issues, which are usually missing in 

the literature, will be presented in the following.  

The catalytically-coated substrates, which are made of metal or ceramic materials, 

must be able to withstand the operating environment, particularly with respect to thermal 
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gradient and thermal shock [40]. This is important for fast load following operation of the 

SOFC/GT systems. Metallic substrates, which best fit this need, must be operated below 

950  to ensure sufficient material strength. Ceramic substrates, which can be operated at 

higher temperatures, have thermal shock issues [40]. Note that both substrates should be 

operated above the light-off temperature (e.g., ~600  ) for catalytic combustion.  

 

  

Figure 2.12: Schematic of the multi-stage burner based on RCL combustion [40]. 

 

Despite the temperature limitations, the metal substrates have been considered for 

GTs with high firing temperatures, using advanced design [40]. An example is the metal-

based “rich-catalytic lean-burn” (RCL) combustion system in Figure 2.12. At high load 

conditions, total conversion of all combustible gases might destroy the metal substrates 

due to the high temperature. In this case, the RCL system [40], which combines fuel-rich 

operation of catalyst and fuel-lean gas-phase combustion, provides a practical solution.  

As shown in Figure 2.12, all the SOFC anode exhaust and part of the cathode air 

exhaust enter the pre-mixer and then pass through the catalytic reactor where only a part 

of the anode exhaust is reacted in the catalyst stage. The oxidation of the fuel is limited 

by the available oxygen; therefore, it is referred to as fuel-rich operation. Part of the air 

can be used for catalyst cooling, thereby keeping the catalyst temperature in the desired 

range, e.g., 600 - 950 . The fuel-rich effluent mixes with the catalyst cooling air prior to 

the fuel-lean gas-phase combustion, which requires a temperature  1100   for reaction. 
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If there is more exhaust air from the SOFC, the original RCL design cannot work 

because the CB temperature will be less than 1100  , which is the minimum temperature 

required to sustain the gas-phase combustion. In this case, the original RCL design can be 

modified by appending a bypass valve. The potential new RCL design can be operated as 

follows: bypass part of the cathode air to the post-combustion mixing chamber and mix it 

with the burned gas from the fuel lean combustor, as shown in Figure 2.12. In doing so, 

the CB‟s outlet temperature could be able to meet the low/high temperature requirements 

for the SOFC/GT system, as will be shown in Section 4.4. 

2.5 System Modeling 

  

Figure 2.13: Integrated SOFC/GT model schematic including states, inputs and controls. 

 

The overall model of the hybrid SOFC/GT system can be obtained by integrating 

all above component models. A schematic denoting the states, inputs, controls and main 

variables is presented in Figure 2.13. The interconnection of different components could 

also be identified in Figure 2.13. In order to integrate these component sub-models, the 

following conditions and assumptions are used [14], [15]: 

1. The inlet pressure of the SOFC stack is equal to the compressor outlet pressure    , 

by assuming zero pressure drop across the HEX. 

C T GEN

SOFC (4 units)

CB

HEX

Controls

Flows

Powers

States



  

38 

 

2. The turbine inlet pressure     and temperature     equal to the CB‟s pressure     and 

temperature    , respectively. 

3. The mass flow out of the CB, which equals the mass flow through the turbine,   , is 

dictated by the turbine maps, i.e., the turbine maps determine the mass flow    when 

given the turbine inlet pressure     and turbine inlet temperature    .  

4. The air/fuel flows, i.e.,     and    , from the SOFC to the CB are determined by the 

difference between pressure of the last SOFC discretization unit and that of the CB. 

5. The fuel flow supplied to the SOFC stack does not have any dynamics and is always 

equal to the commanded fuel flow input   . 

6. The generator load      is an input to the integrated system and is used to control the 

shaft speed   through shaft rotational dynamics shown in Eqn. (2.16). The dynamics 

(e.g., the generator voltage) of the generator/motor operation are not included. 

 

The first three assumptions are commonly used in modeling of automotive turbo-

chargers [63], [64] and the calculation error is negligible. Based on the fourth assumption, 

which is widely used in fluid dynamics, a linear orifice equation can be used to calculate 

the air/gas flows. The fifth assumption could potentially affect the system performance, 

though; most systems incorporate a fuel buffer, e.g., gas supply manifold, to achieve fast 

fuel changes. As shown in Figure 2.13, the integrated SOFC/GT system has three control 

inputs, namely, the fuel flow rate   , the current density      drawn from the SOFC and 

the generator/motor power     .  

The system model shown in Figure 2.13 lays foundation for the subsequent design 

and control studies. In CHAPTER 3, a 5kW-class R-SOFC/GT-based APU system will 

be studied. The specifications and GT maps are given in APPENDIX A. In CHAPTER 4 

and CHAPTER 5, an S-SOFC/GT system that is intended to be used as a primary electric 

propulsion unit for military ground vehicles will be investigated. The GT maps shown in 

Section 2.2 will be used as baseline maps for the proposed S-SOFC/GT system. One can 

refer to Table 4.2 for more specifications of the S-SOFC/GT electric propulsion system 

and its recuperating counterpart, which is designed for comparison purposes. 
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CHAPTER 3 

Generator/Motor Dual Mode Operation in Recuperating Systems 

In this chapter, in order to extend the dynamic capabilities of R-SOFC/GT system 

for improved load following performance, the system is augmented by an energy storage 

unit (e.g., battery) and a dual operating generator/motor (G/M). In particular, this chapter 

focuses on studying the G/M dual mode operation and its implications on the transient 

performance and energy storage requirements. Active shaft load control can be achieved 

by using pre-conditioning of the G/M load for load step-up transitions and absorbing the 

over-produced power for load step-down transitions, as demonstrated in Section 3.2 and 

Section 3.3, respectively. Feedback and optimization algorithms have been proposed to 

implement the G/M dual mode operation. The effectiveness and computational efficiency 

of these algorithms are demonstrated by the simulation results. By taking full advantage 

of the dual mode operation of the electric machine (i.e., G/M), better trade-offs between 

load following and thermal safety can be achieved, power and energy requirements for 

the battery can be reduced, and overall system performance can be enhanced. 

3.1 Introduction  

The SOFC/GT system studied in this chapter is intended to be used as an APU for 

military ground vehicles [7]. The proposed APU, with a rated power around 5 kW, could 

provide sufficient power to support surveillance and other missions with reduced aural 

detectability during engine-off operations [6]. The specifications, including the GT maps 

and other parameters, are listed in APPENDIX A for this APU system. It should be noted 

that techniques discussed in this chapter can be applied to other size power systems. 

As discussed in Section 1.3, the conventional R-SOFC/GT system has very poor 

dynamic capabilities and load following performance. In this chapter, to ease the power 

tracking operation and enhance transient capabilities, the SOFC/GT system is augmented 
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with new components and functionalities, as shown in Figure 3.1. First, an energy storage 

unit, e.g., a battery or capacitor pack is included to serve as the energy buffer during load 

transients. Second, the electric machine will be used as either a generator during normal 

operation or a motor (driven by the battery or the SOFC electrical output) when there is 

not enough turbine power for air delivery. Meanwhile, the motoring mode operation can 

also be used to entirely or partially absorb the excessive power during the load step-down 

transients, thereby reducing the battery power/energy requirements. This G/M dual mode 

operation, which is similar to the electrically assisted turbocharger used to improve the 

performance of automotive engines [67], [68], has not been studied for hybrid SOFC/GT 

systems in the literature, to the best of the author‟s knowledge.  

 

 

Figure 3.1: Schematic of the recuperating-SOFC/GT system augmented with G/M dual 

mode operation and energy storage (battery).  

 

The focus of this chapter is to investigate the G/M dual mode operation and its 

implications on battery sizing and system operation. In particular, we will study whether 

the motoring operation can help in (1) eliminating system shutdown that is often caused 

by large/rapid shaft speed drop during load step-up transients; (2) improving transient 

responses; and (3) reducing the battery power and energy requirements.  

Let      denote the net power of the system when the battery is not included. As 

shown in Figure 3.1,      is the sum of the SOFC power      , and the G/M power     . 
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Meanwhile, we assume that the battery is used as an energy buffer to provide the deficit 

power or absorb the excessive power to meet the desired power demand     
    for perfect 

load following. Then, the battery power output          is equal to   , which denotes the 

difference between     
    and      defined as: 

  

       
             

    (          )  (3.1) 

  

 

 

Figure 3.2: Steady-state optimal set-points for current density     , fuel flow rate    and 

generator power      as a function of system net power     . 

 

Without the battery, the SOFC/GT system has three control inputs, namely, fuel 

flow   , current density      and generator load     . Figure 3.2 presents the static feed-

forward map [15] of the optimal set-points (i.e., achieving maximum system efficiency) 

of these inputs with respect to the system net power     . As shown in Figure 3.2, around 

45% overall efficiency can be achieved by the recuperating-SOFC/GT based APU system 

over a wide load range.  

We will investigate the G/M dual mode operation for load step-up and step-down 

operations through case studies in Section 3.2 and Section 3.3, respectively. Note that the 

G/M transient is much faster than those of the SOFC and GT. Therefore, we assume that 

instantaneous control of the G/M load can be achieved in the following sections.  
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3.2 Step-Up Transient Operation 

In this section, the G/M dual mode operation will be investigated through the load 

step-up transition from 4.20 kW to 6.06 kW (at time    in Figure 3.3), which correspond 

to the optimal set-points A and B in Table 3.1, respectively.  

 

Table 3.1 Feed-forward optimal set-points used for case studies in this chapter 
Variables    [       ]      [     ]      [  ]      [  ] 

Set-point A 1.3 1370 0.32 4.20 

Set-point B 1.9 2040 0.50 6.06 

Set-point C 1.5 1580 0.34 4.77 

  

 

3.2.1 Analysis of the Load Step-Up Operation 

 

Figure 3.3: Illustration of the load step-up transition. The G/M dual mode operation is 

evaluated by combining the pre-conditioning (applied at region-1: [  ,   )) of the 

generator load with the load governor (LG) applied after time   . Fuel path delay and 

dynamics are modeled in region-2, while the system settles down at the end of region-3. 
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Consider Figure 3.3, in ideal situations, the inputs to the SOFC/GT system can be 

stepped up instantaneously at time    for fast load transition. However, it was shown that 

such operation can cause system shutdown due to sudden shaft speed drop [15]. To avoid 

system shutdown, the fuel flow rate    and current density      to the SOFC should be 

changed slowly for safe transient operation. Besides the fuel path dynamics, which can be 

represented by the fuel supply ramping time   , there is also some time delay    caused 

by the fuel supply and reforming system, as shown in Figure 3.3. This simplification is 

expected to be a reasonable representation of the complex fuel reforming/supply system, 

given the focus herein is to investigate the G/M dual mode operation [7]. In addition, to 

prevent possible hydrogen starvation and/or burner over-heating [15], the current density 

should be adjusted accordingly to match the fuel supply.  

With    and      given in Figure 3.3, simulation indicates that the system could 

experience a shutdown if the generator load      is stepped up from 0.32 kW to 0.50 kW, 

i.e., from         to         shown in Table 3.1, at time   . This is because increasing of 

     deprives the turbocharger from having enough power for air delivery to support the 

SOFC operation during transients, causing the shaft to stall, as shown in Figure 3.4.  

 

   

Figure 3.4: Load step-up transient responses (  =20sec,   =120sec). A direct step-up of 

     from         to         at    causes the shaft speed to drop below the critical 

speed, which eventually leads to system shutdown. A load governor (LG) can be used to 

manipulate      for shutdown mitigation. 
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In order to achieve fast load following while avoiding possible system shutdown, 

one can identify the maximum permissible step change of      at each time step [15] by 

solving the following optimization problem: 

  

   
    

(    
        )  (3.2) 

subject to: no system shutdown and     
          (3.3) 

  

where     
    is the desired generator load. 

The solution to Eqn. (3.2) and Eqn. (3.3) can be reformulated as a load governor 

(LG) problem [78] as follows: 

  

                     
  [   ]

 (    
              )   

subject to: Eqn. (3.3) for    such that     [    ]  

(3.4) 

  

where   is calculated for each time step by a one-dimensional (1-D) optimization search, 

   is the sampling time, and   is the end of the simulation horizon. The LG results for 

     and shaft speed   are given in Figure 3.3 and Figure 3.4, respectively. Note that for 

this moderate load step-up, since        for all the time, motoring mode operation (i.e., 

      ) is not required for shut-down mitigation. However, the LG results in Figure 3.3 

and Figure 3.4 also reveals two issues: (1) large speed drop at the onset of load step-up, 

making the shaft speed close to the critical speed,     , which corresponds to the lower 

boundary of the feasible operating region of the compressor; and (2) relatively large cell 

temperature change rate. Note that safer load transients can be achieved by imposing a 

more stringent shaft speed limit      (         ) in the LG design. 

3.2.2 Leveraging G/M Dual Mode Operation: A Feasibility Study 

Given that the rapid shaft speed drop, which is caused by the increase of     , was 

shown to be the main cause of system shutdown, an intuitive solution is to increase the 

shaft speed by reducing      or running the generator at the motoring mode (i.e.,     < 0) 
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to safely guide the system through transients. This operation, which is applied in region-1 

in Figure 3.3, is referred to as the “pre-conditioning” of generator load in this dissertation. 

In particular, we would like to investigate the implication of pre-conditioning on transient 

performance and energy storage requirements. To this end, six different cases (Table 3.2), 

with different levels of G/M load for pre-conditioning, are implemented together with the 

LG to understand the effects of this particular strategy. 

 

Table 3.2 Generator load during the pre-conditioning phase 
Case      [ ]    [ ] Note 

#1 320 0 Baseline: LG, no pre-conditioning 

#2 160 -160 Reduced      for pre-conditioning + LG 

#3 0 -320 Disengaging the generator for pre-conditioning +LG 

#4 -160 -480 Motoring mode + LG 

#5 -320 -640 Motoring mode + LG 

#6 -480 -800 Motoring mode + LG 

  

The same fuel flow rate and current density profiles are used for all these cases, as 

shown in Figure 3.3, where    = 20 sec,    = 120 sec and    = 20 sec. The generator load, 

    , applied at the pre-conditioning phase keeps decreasing from case #1 to case #6, as 

shown in Table 3.2. For the baseline case (#1), no pre-conditioning operation is applied. 

The generator is disengaged (i.e.,       ) from the system in case #3. The generator is 

operated in the motoring mode (i.e.,       ) in the pre-conditioning phase for case #4, 

#5, and #6. The LG is used to determine the      profile after pre-conditioning operation. 

The simulation results are presented in Table 3.3 and Figure 3.5. 

From Figure 3.5, we see that better power tracking performance and smaller cell 

temperature variations have been achieved by the pre-conditioning strategy. Meanwhile, 

compared with the baseline case, i.e., case #1, the minimum shaft speed is kept relatively 

far away from the critical shaft speed for the last three cases, i.e., case #4 to case #6. This 

is mainly because of the fast shaft speed increase enabled by the motoring operation at 

the pre-conditioning phase, as shown in Figure 3.5. 

The performance of different power transients is further analyzed in Table 3.3 in 

terms of three different metrics: (1) the power response and load following performance 
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measured by the settling time       and the RMS power tracking error      ; (2) the 

battery sizing requirements indicated by the battery‟s maximum discharging power      

and the energy capacity     ; and (3) SOFC thermal stresses measured by the maximum 

cell temperature change rate      
    and the temperature settling time          . 

 

 

Figure 3.5: System performance in the load step-up transient: (a) net power response; (b) 

shaft speed; and (c) cell temperature change rate. By reducing      in the pre-

conditioning phase from case #1 to case #6, the minimum shaft speed keeps increasing 

while the maximum cell temperature change rate (absolute value) keeps decreasing. 

 

As shown in Table 3.3, the proposed pre-conditioning operation of      provides 

improvements to the system performance for most attributes: 

 It shortened the power settling time       by up to 15% and reduced the RMS 

power tracking error       by up to 6%. 
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 It lessened energy storage requirements by reducing the bridging energy capacity 

     by up to 15%. 

 It reduced the maximum cell temperature change rate (the absolute value) by up 

to 20%, thereby leading to safer thermal transient.  

 

Table 3.3 Results of G/M dual mode operation for load step-up transients 
Case #1 #2 #3 #4 #5 #6 

      

[   ] 

560 

(100%) 

576 

(102.9%) 

552 

(98.6%) 

488 

(87.1%) 

476 

(85.0%) 

476 

(85.0%) 

      

[ ] 

585.73 

(100%) 

601.77 

(102.7%) 

564.90 

(96.4%) 

551.26 

(94.1%) 

552.68 

(94.4%) 

556.90 

(95.1%) 

      

[ ] 

1681.29 

(100%) 

1655.14 

(99.0%) 

1647.93 

(98.0%) 

1636.47 

(97.3%) 

1633.79 

(97.2%) 

1631.38 

(97.1%) 

     

[  ] 

245.67 

(100%) 

242.00 

(98.5%) 

233.25 

(94.9%) 

210.32 

(85.6%) 

207.61 

(84.5%) 

207.95 

(84.7%) 

     
    

[       ] 

7.70 

(100%) 

7.60 

(97.4%) 

7.20 

(93.5%) 

6.70 

(87.0%) 

6.37 

(82.7%) 

6.00 

(79.2%) 

          

[   ] 

900 

(100%) 

940 

(104.4%) 

620 

(68.9%) 

710 

(78.9%) 

830 

(92.2%) 

1000 

(111.1%) 

  

It should be noted that further reduction in the generator load      (i.e., increasing 

the motoring power) offered very limited or no further improvement of the overall system 

performance as shown in case #5 and case #6, compared with case #4. This is especially 

true for the power tracking performance and the energy storage requirements. 

3.2.3 Pre-conditioning Strategy for Load Step-up Transients 

The above case study provides evidence that the G/M dual mode operation has the 

benefit of improving operational safety and load following performance. In particular, we 

see that system shutdown can be avoided by pumping additional mechanical energy into 

the shaft through motoring operation. In order to achieve fast (i.e., minimizing the RMS 

power tracking error      ) and safe (i.e., keep limited cell temperature change rates and 

sufficient distance from the critical shaft speed     ) load following performance, we can 

formulate the following trajectory planning problem: 
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where      is the number of optimization variables, and      
   is the limit of the SOFC 

cell temperature change rate for safety considerations. 

 

  

Figure 3.6: The look-up table (LUT) for   (  →  ). The solid line is the upper 

boundary for the region of     , i.e., no pre-conditioning of      is required for a safe 

step-up transition for the regions in the lower-right direction of this curve. 

 

However, the trajectory planning problem formulated in Eqn. (3.5) is difficult to 

solve due to its large dimension and complex system dynamics, thereby making online 

implementation impossible. The optimization dimension of (3.5) is equal to     , where 

         in our case study. An alternative approach can be proposed as follows: First, 

through an off-line simulation process, we determine the minimum shaft speed increase, 

  , that is required to sustain the system operation before the actual load increase can be 

applied. This is equivalent to determining the required additional energy that should be 

pumped into the shaft by the motoring operation or reducing      in the pre-conditioning 

phase. Once    is determined, the pre-conditioning strategy is formulated by solving the 

1-D optimization problem defined in Eqn. (3.6) and (3.7). This 1-D optimization problem 
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determines the maximum permissible      for each sampling time of the pre-conditioning 

phase. Second, once the desired shaft speed,     , is achieved by the pre-conditioning, 

the controller is switched to the LG to increase      for fast load following. 

The off-line process for    is explained as follows. Using the SOFC/GT system 

model,      can be determined by a 1-D search algorithm for different power transitions. 

Given an initial (  ) and final (  ) power level, the incremental shaft speed           

is the speed increase required for a safe transition, and this becomes the control objective 

for pre-conditioning. The results are given in Figure 3.6, where      implies that pre-

conditioning is not required. If     , the pre-conditioning control will be activated to 

identify the optimal G/M power to achieve the desired shaft speed. The results shown in 

Figure 3.6 are stored as a look-up table (LUT) for online implementation. 

In order to achieve the desired pre-transition shaft speed     , the G/M load      

during the pre-conditioning phase can be determined as follows. At each sampling time 

  [      , i.e., the pre-conditioning phase, consider: 

  

            
  for   [       (3.6) 

  

where     
  is determined by solving: 

  

       
  

                      
 (3.7) 

  

where               with       being the steady-state shaft speed corresponding 

to power    and    given in Figure 3.6. Note that since        ⁄   , the optimization 

problem in Eqn. (3.7) is well-posed and has a unique solution. The solution to Eqn. (3.7) 

can be found by using 1-D optimization search such as the bisectional algorithm starting 

from the search region [    ,       ] for each time   [      , where      and        are 

a feasible and an infeasible input respectively for the pre-conditioning operation. In order 

to reduce the computational cost of online implementation, the procedure in Figure 3.7 

can be used to reduce the size of the initial search region. 
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Figure 3.7: Flowchart to identify the G/M load for the pre-conditioning phase. 

 

As shown in Figure 3.6, the incremental shaft speed,   , that is required for the 

load step-up transition from         to         with    and      given in Figure 3.3, is 

12853 rpm. Note that      equals      in the design. With            and        

    , the G/M load required for the pre-conditioning phase, which can be determined 

by using the algorithm presented in Figure 3.7, is             for   [      . When 

there is a disturbance in the system,         determined by the algorithm in Figure 3.7 

will vary with time, as the state, which may be different from the predicted value, will be 

fed back at each time instant in the 1-D optimization procedure. 

3.3 Step-Down Transient Operation 

In this section, we investigate the G/M dual mode operation for downward load 

transition through an example of load step decrease from 6.06 kW to 4.77 kW, which 

correspond to the optimal set-points B and C in Table 3.1, respectively. 

3.3.1 Analysis of Load Step-down Operation 

Transient issues associated with downward load transition are quite different from 

those in upward transition. While system shutdown is not an issue here, the slow transient 
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and large power tracking error are the main concerns. In this section, we will analyze the 

dynamic characteristics of step-down operation through case studies, where five different 

operating strategies summarized in Table 3.4 are applied.  

As discussed previously, slow ramping inputs for    and      should be applied 

to the SOFC for safe operation. If      is ramped down accordingly (baseline: case #1), 

there will be a considerable power tracking error caused by power over-production, as 

shown in Figure 3.8. Intuitively, the over-produced power can be absorbed by the battery 

for fast load following. It could also be entirely or partially absorbed by operating the 

generator at motoring mode, thereby reducing the charging current for the battery. In the 

sequel, we will investigate the G/M dual mode operation and its implications for load 

step-down transient operation and battery requirements. 

Table 3.4 G/M dual mode operation during load step-down transients 
Case Control of the generator load      

#1 Baseline case: directly ramp down      from         to         

#2 Pre-scheduled      control for fast load following 

#3 Direct      compensator for fast power tracking 

#4 & #5 Feedback control for coordinated power and thermal management 

  

 

    

Figure 3.8: The system inputs and the net power response for the baseline case during 

load step-down operation. 
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3.3.2 Fast Load Following By G/M Dual Mode Operation 

Analogous to Eqn. (3.5) for load step-up transitions, a trajectory planning problem 

can be formulated for fast load following (i.e., minimizing power tracking error      ) 

for load step-down transitions as: 

  

   
{       }

∑ (            
      )

     

   
 

           |        ⁄ |       
                            

 (3.8) 

  

Similar to Eqn. (3.5), the trajectory planning problem formulated in Eqn. (3.8) is 

difficult to solve due to of its large dimension. Therefore, alternative solutions should be 

developed. Because of the large thermal inertia, the SOFC‟s electric power output       

is dominated by the    and      inputs during transients. Therefore, we can predict       

by using the SOFC/GT model and pre-schedule the G/M load to compensate for the slow 

SOFC power transients. For    and      inputs shown in Figure 3.8, the pre-scheduled 

     control, which corresponds to case #2 in Table 3.4, can be expressed as: 

  

        {

                             

                                 

        
                

 (3.9) 

  

An alternative method for fast load following is to use      to directly compensate 

the SOFC power      , which can be determined according to the measured voltage and 

current of the SOFC stack. Therefore, a direct      compensator by using: 

  

            
                          (3.10) 

  

has also been investigated in case #3, as shown in Table 3.4. 

As shown in Figure 3.9 (a) and (b), both the pre-scheduled      control (case #2) 

in Eqn. (3.9) and the direct      compensator (case #3) in Eqn. (3.10) achieved extremely 

good power tracking performance through G/M dual mode operation. However, this is 
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achieved by risking the thermal transient safety. For operation safety considerations, the 

cell temperature should be changed slowly, e.g., Siemens-Westinghouse tubular SOFCs 

often require a 4-6 hour start-up time [1], which corresponds to a temperature change rate 

of around 4        . Note that this strict requirement can be smoothed by using the 

micro-tubular SOFCs [65], [66], which have a high thermal shock resistance.  

As shown in Figure 3.9 (c) and (d), rapid drop of the cell temperature, which is 

represented by the mean PEN temperature in Figure 3.9 (c), and large cell temperature 

change rate can be observed for case #2 and case #3 in Figure 3.9 (d). The reason is that 

fast reduction of      or even motoring operation accelerates the shaft rapidly, as shown 

in Figure 3.9 (e). Consequently, more air is delivered to cool the SOFC rapidly, as shown 

in Figure 3.9 (f) and Figure 3.9 (c). Hence, it can be concluded that fast load following 

and safe thermal transients are two competing objectives, due to the strong correlation of 

the cell temperature change rate, the air flow rate, and the shaft speed. 

 

    

Figure 3.9: Transient response during load step-down transients. 
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3.3.3 Balancing Power Tracking and Thermal Management 

To balance fast load following and safe thermal transient, which are competing 

against each other, a feedback control scheme, which can be expressed as: 

  

     [    
         ]  [                ]  

where         {
        
           

 
(3.11) 

  

is proposed for the coordinated power and thermal management in case #4 and case #5. 

The first term of Eqn. (3.11), which is identical to the direct      compensator expressed 

in Eqn. (3.10), is used for fast power tracking. A proportional controller, i.e., the second 

term of Eqn. (3.11), is included to limit the shaft speed and airflow, thereby limiting the 

cell temperature change rate within a reasonable range, as shown in Figure 3.9 (d). This 

feedback controller is developed based on the strong correlation between the shaft speed 

and cell temperature change rate, as shown in Figure 3.9. The controller in Eqn. (3.11) 

has two design parameters: the proportional gain   and the threshold   , the latter is used 

to activate the thermal management through the indicator function        . 

 

Table 3.5 Results of G/M dual mode operation for load step-down transients 
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Detailed results for the load step-down transition are given in Table 3.5. Almost 

instantaneous load following can be achieved by the pre-scheduled      control in case 

#2 and the direct      compensator in case #3. However, they induce unacceptably large 

cell temperature change rates. The proposed coordinated power and thermal management, 

has moderate load following performance (case #4 and case #5), as expected. Moreover, 

the cell temperature change rates are limited to a proper range for safe SOFC operation. 

Therefore, the proposed coordinated power and thermal control, as shown in Eqn. (3.11), 

can manage the trade-offs between cell temperature and power transients effectively. In 

addition, compared with the baseline case (i.e., case #1), reduced battery requirements, 

i.e., reduced battery charging power       and energy capacity     , have been achieved 

through active control of      in all the other cases. 

3.4 Evaluation of the Proposed Control Strategies 

As shown in Figure 3.10, the proposed control strategies are evaluated through a 

typical load transition profile, in which the pre-conditioning strategy proposed in Section 

3.2.3, is applied during load step-up transition while the coordinated power and thermal 

control expressed in Eqn. (3.11) is used for load step-down transition. Compared with the 

baseline case, in which the load governor in Eqn. (3.4) and the direct      compensator in 

Eqn. (3.10) are used for load step-up and step-down transitions, respectively, improved 

load following performance has been achieved during load step-up transition. Meanwhile, 

the cell temperature change rate is limited in a reasonable range during load transitions, 

thereby ensuring thermal transient safety. 

It should be noted that the control strategy expressed in Eqn. (3.11) produces non-

monotonic power response for load step-up transition, as highlighted in Figure 3.10 (a). 

Similar results have also been observed for case #4 and case #5 in Figure 3.9 (b). This is 

mainly due to the indicator function,        , used in Eqn. (3.11). Once the load step-

down is applied, the controller (3.11) will work as the direct     compensator in (3.10) 

since   is less than   , as shown in Figure 3.9 (e). Consequently, the actual      tracks 

the net power demand perfectly, leading to rapid increase of shaft speed. Once   exceeds 

the threshold   , the thermal management function will be activated to increase      and 
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    , as shown in Figure 3.9 (a) and (b). In addition, as shown in Figure 3.9 (b),      

starts to decrease in case #4 and #5 about 40 seconds after the load step-down is applied. 

This is mainly due to the reduced SOFC power caused by the downward-ramping      

input. In the future, alternative control strategies such as model predictive control will be 

developed to improve the overall performance for load step-down transients. 

 

 

Figure 3.10: Transient performance of the baseline case and the proposed control 

strategies. A load step-up transition from 4.39kW to 6.23kW is applied at 500 seconds 

and a load step-down transition from 6.23kW to 4.90 kW is applied at 3000 seconds. 
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CHAPTER 4 

System Design and Steady-State Performance Evaluation of 

Sprinter SOFC/GT Systems 

4.1 Introduction  

Many strategies have been developed to improve the load following performance 

of SOFC/GT systems. However, one common problem of the conventional R-SOFC/GT 

systems is that their transient performance is limited by the slow dynamics of the SOFC 

since the SOFC provides about 80% of the system net power. To solve this problem, an 

S-SOFC/GT system concept is proposed, as explained in Section 1.3.3. In this system, a 

“down-sized” SOFC stack that is operated at constant temperature provides the constant 

baseline power while the GT-generator is used for dynamic load following. Compared to 

the R-SOFC/GT system, the GT-generator, i.e., the component with fast dynamics, has 

significantly enhanced power generation capability in the S-SOFC/GT system. Therefore, 

the proposed S-SOFC/GT system is expected to achieve: (1) fast load following by taking 

full advantage of the GT-generator‟s fast dynamic capability; (2) efficient and long life-

cycle operation by running the SOFC at fairly constant temperature [39]. 

Although the R-SOFC/GT and the S-SOFC/GT systems have the same layout and 

base components, as shown in Figure 1.2, they do have differences in (1) the relative size 

between the GT-generator and the SOFC; and (2) operation principles. Table 4.1 presents 

detailed comparisons of these two systems. The S-SOFC/GT system has a larger relative 

size ratio of the GT-generator with respect to the SOFC than its recuperating counterpart 

since more power is produced by the GT-generator in the sprinter system. Substantial 

variations of cell temperature, which occur in the R-SOFC/GT system, might damage or 

seriously degrade the SOFC due to thermal stresses [14]. This problem can be avoided by 

operating the SOFC at constant temperature in the S-SOFC/GT system. 
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Table 4.1 Recuperating-SOFC/GT system versus sprinter-SOFC/GT system. 
Systems R-SOFC/GT System S-SOFC/GT System 

SOFC 

- Provides ~80% of the net power  

- Fairly constant FU (e.g., FU equals 

about 85%) during operation 

- Varying SOFC power/temperature 

over the entire load range 

- “Down-sized” to provide the 

constant baseline power 

- Substantial FU variations (e.g., 50% 

- 90%) over the load range 

- Constant SOFC temperature  

GT-generator 

- Energy recuperation (GT), auxiliary 

device (generator) 

- Poor power generation capability 

mainly due to its limited size 

-          ⁄     , i.e., relatively 

constant power split ratio 

- Important power generation device 

(to provide the transient power for 

dynamic load following) 

- Significantly enhanced power 

generation capability  

-          ⁄  varies over 20% - 90%  

Load  

following 

operation 

- Both the SOFC and GT-generator 

are used for load following 

- Limited by the SOFC‟s slow 

dynamic capability 

- Fast dynamics of GT-generator 

cannot be used due to its size and 

power generation capability 

- SOFC is not used for dynamic load 

following; it only provides the 

constant baseline power  

- Fast load following by using GT-

generator‟s fast dynamic capability 

- Long life-cycle operation by 

keeping constant SOFC temperature 

  

 

The S-SOFC/GT system investigated in this dissertation is to be used as a primary 

electric propulsion system for military ground vehicles. It should be able to: (1) provide 

constant baseline power       when working in the recuperation mode; (2) meet a much 

higher power requirement, e.g., the peak power      , for tactic/battle-field maneuvers 

by running the GT-generator in the boosting mode [39]. In order to compare the concept 

and the operation, an R-SOFC/GT system and an S-SOFC/GT system are developed to 

cover the same power range over 100-170 kW. When combined with energy storage, e.g., 

battery, both systems could be used for military vehicles such as the hybrid HUMVEE 

and mid-sized trucks [72]. Note that while results reported in this chapter are specific for 

this particular targeted power, the proposed design procedure and analysis methodology 

are more general, and can be applied to other size power systems. 

The remainder of this chapter is organized as follows: an operational strategy to 

keep fairly constant SOFC power/temperature over the entire load range is presented in 

Section 4.2 while a design procedure for the sprinter system is elucidated in Section 4.3. 

The feasible operation regime and steady-state performance are studied in Section 4.4. In 

particular, the “actual” operation envelope is determined by applying the constant SOFC 
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power and temperature constraints over the “safe operation regime”. In Section 4.5, the 

steady-state optimization problem to achieve maximum fuel efficiency is investigated. 

4.2 Strategy to Maintain Constant SOFC Power and Temperature 

Like the R-SOFC/GT system, the S-SOFC/GT system also has three inputs: fuel 

flow   , current density     , and the generator load      [39]. In addition to the    and 

     inputs, there are some other parameters, e.g., the SOFC inlet airflow rate      and 

temperature     , which will affect the SOFC performance. Note that the SOFC block has 

four inputs:   ,     ,      and     . The inlet airflow      can be controlled by      [14] 

while      is the HEX cold flow channel outlet temperature (Figure 2.11), which depends 

on the fuel flow   , airflow     , compressor/turbine outlet temperatures     and    , as 

well as the HEX parameters (e.g., size and material related coefficients).  

In the proposed S-SOFC/GT system, a substantial variation of the turbine power 

is required to meet the varying power demands over the entire load range because       

remains fairly constant at all conditions. In this case, large variations of turbine flow    

(note:           ) and turbine inlet/outlet temperatures (which affects      by the 

HEX) are expected. All these variations are expected to have significant influence on the 

SOFC performance given the closed couplings of system components [7]. Hence, it is 

necessary to perform sensitivity analysis and find effective strategies to coordinate these 

inputs to keep fairly constant SOFC power and temperature over the entire load range. To 

this end, an SOFC stack consisting of 960 tubular cells presented in Section 2.1 will be 

used in the following analysis. The SOFC stack achieves a nominal power around 88 kW 

when operated at 1040K. A slightly up-scaled (scaled by a factor of 1.091) compressor 

[30] (see Figure 2.7 and Figure 2.8 for the original maps) and the radial turbine shown in 

Figure 2.9 are selected in the following case study. In addition, the HEX is sized to keep 

the SOFC inlet temperature      within a safe range. 

To keep fairly constant SOFC power      , the current density      is expected to 

be relatively constant, i.e., with a very limited variation range, over the entire load range. 

With a fixed      input, the main degrees of freedom for operating the system are fuel 
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flow    and airflow      (controlled by     ). Figure 4.1 shows the SOFC performance 

for fixed      (    =1950      ) and varying      and    inputs. Note that       and 

      (voltage) have very similar distributions over the     ~   plane. This is expected 

for fixed      input because                      where       represents the surface 

area where the electro-chemical reaction takes place. In addition, when we reduce the air-

flow      while keeping fuel flow    fixed,      ,       and       all increase due to the 

reduced cooling effect, as shown in Figure 4.1. Moreover, constant SOFC temperature is 

achieved, e.g.,      =1040K, along the solid lines in Figure 4.1.  

Along the constant       line, key operating variables, including      ,      , and 

    , are plotted in Figure 4.2. As shown in Figure 4.2 (c), when more air (     increases 

with respect to   ) is delivered to the SOFC,      should be elevated to counteract the 

cooling effect, thereby keeping constant      . Also, the cell voltage       increases with 

respect to    due to the increased open-circuit voltage     , as shown in Figure 4.2 (b). 

This can be derived from the Nernst equation in Eqn. (2.2). Consequently,       increases 

with respect to    when both       and      are fixed, as shown in Figure 4.2 (a). Hence, 

to keep constant       and       over the entire load range,      should be a decreasing 

function of   . In addition,      , as shown in Figure 4.2 (d), reduces with respect to    

because the increased airflow helps to smooth the SOFC temperature distributions. 

 

   

Figure 4.1: SOFC performance with fixed current input (              ). The 

SOFC temperature is constant at 1040K along the solid lines in the figure.  
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Figure 4.2: Operating variables for constant       operation: (a) SOFC power      ; (b) 

cell voltage; (c) SOFC inlet air temperature     ; and (d) temperature gradient      . 
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To keep       and       fairly constant over the whole load range, we will study 

the relations among system inputs when allowing      to vary. Figure 4.3 (a) shows the 

isosurface for a constant       of 88.5 kW, the isosurface for a constant       of 1040K, 

and the intersection line of these two isosurfaces. In theory, both       and       will be 

exactly constant along the intersection line. However, small variations are observed, as 

shown in Figure 4.3 (b), mainly due to the numerical errors in calculating the isosurfaces. 

Nevertheless, fairly constant       and       can be achieved along the intersection line. 

In particular, less than 1.0% and 0.2% percentage errors are achieved for       and      , 

respectively, as shown in Figure 4.3 (b). Figure 4.4 shows relations of the SOFC inputs 

along the intersection line. These relations can be approximated as follows:  

  

          (  )        (  )
 
                  (4.1) 

                             
                     (4.2) 

          (  )                   (4.3) 

  

It should be noted that although these results are generated by using specific GT 

maps and HEX parameters for this specific case study, the relations in Figure 4.4 to keep 

constant SOFC power and temperature are very strong and are expected to hold (at least, 

the relations hold at a qualitative level) for various component (e.g., the SOFC and GT) 

parameters. This has been verified in our simulation studies. 

Based on the above analysis, an effective SOFC operating strategy, which can be 

used to coordinate the SOFC inputs (i.e.,   ,     ,      and     ) to keep fairly constant 

      and       over the entire load range, is proposed as follows: 

 First, determine the air-fuel ratio: analogous to power sources such as the internal 

combustion engines (ICEs), a linear relation between the airflow      and fuel flow 

   is expected for the S-SOFC/GT system. However, it is observed that a quadratic 

relationship for      and   , as defined in Eqn. (4.1), which is quite close to linear, 

as shown in Figure 4.4 (a), gives better results in our case study. 

 Second, determine the inlet air flow and temperature relation: to keep fairly constant 
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     , the inlet air temperature      needs to be increased to counteract the cooling 

effect when more air is delivered to the SOFC, as shown in Figure 4.4 (b). To this 

end, a quadratic relation between      and     , as expressed in Eqn. (4.2), is used to 

keep constant       and       over the entire load range. 

 Third, find a relation between the current density and fuel flow: both      and      

can be expressed as functions of    by using Eqn. (4.1) and Eqn. (4.2). In this case, 

there are two independent input variables left for the SOFC block, i.e.,    and     . 

As shown in Figure 4.4 (c), an appropriate relationship between these two variables, 

which can be used to limit the variations of       and       over the entire load range, 

can be determined through model-based steady-state simulations. 

 

  

   

Figure 4.4: Strategies to maintain fairly constant SOFC power and temperature: (a) air 

flow     ; (b) SOFC inlet air temerpature     ; and (c) current density     . 
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4.3 A Design Procedure for the Sprinter Systems 

 

Figure 4.5: A design procedure for the proposed S-SOFC/GT systems. 

 

As shown in Figure 4.5, a design procedure, which helps to determine the sizes of 

different components (e.g., SOFC and GT) and the reference steady-state operation line, 

is formulated for the proposed S-SOFC/GT system as follows: 

 Step-I: determine the SOFC stack parameters. Based on the cell performance data 

and empirical parameters (e.g., the power split ratio         ⁄ ), the SOFC parameters 

(e.g., cell number      ,      , and      ) can be determined according to the baseline 

power requirement. For the target system, 960 tubular cells whose specifications are 

given in Section 2.1 are selected to produce an SOFC power of 88.5kW with a mean 

cell temperature around 1040K. 
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 Step-II: determine the GT parameters. To this end, the SOFC operational strategy 

developed in Section 4.2, in which the SOFC block inputs     ,      and      can be 

expressed as functions of   , is used to keep fairly constant       and       over the 

entire load range. Consequently, a relation between the CB temperature     and the 

turbine mass flow   , which equals the CB mass flow    , can be determined from 

the simulation results of the SOFC and CB blocks. We can pick the initial values for 

the compressor pressure ratio and turbine expansion ratio from available GT maps. 

Then, there is one unknown variable    left, which can be determined by matching 

the associated power          with            to meet the peak power requirement. 

In this chapter, a slightly up-scaled (scaled by a factor of 1.091) Garrett compressor 

(see Figure 2.7 and Figure 2.8 for the original compressor maps) [30] and the radial 

turbine shown in Figure 2.9 are selected for the target system. 

 Step-III: determine the HEX parameters. It should be pointed out that in the basic 

system setup where no active control of      is available, small variations of the HEX 

coefficients are required for different loads to keep constant       and       over the 

entire load range [39]. In this case, we can select the mean value of calculated HEX 

coefficients and tune the system inputs, e.g., fine-tuning      and/or      for a given 

fuel flow (  ) input, to get the desired results. In this study, the HEX is sized to have 

a logarithmic mean temperature difference (    ) value of          , thereby 

keeping the SOFC inlet air temperature      within an appropriate range. 

 

Table 4.2 lists key parameter values by applying the proposed design procedure in 

Figure 4.5 for the target system. The proposed design procedure also helps to determine 

the reference steady-state operation line [39], which is expected to be close to the optimal 

feed-forward map (refer to Figure 5.1 for its location in the compressor map). In addition, 

to compare the proposed S-SOFC/GT system with respect to its recuperating counterpart, 

an R-SOFC/GT system has also been designed, as shown in Table 4.2. 

A total number of 1320 and 960 tubular cells (see Section 2.1) are selected for the 

R-SOFC/GT system and the S-SOFC/GT system, respectively. The S-SOFC/GT system 

has reduced variation ranges for      ,      and      than the R-SOFC/GT system. Note 
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that the S-SOFC/GT system has a larger    variation range because more fuel is reacted 

in the CB, e.g., more about 50% of the fuel is burned in the CB in the sprinter system.  

Moreover, in order to take full advantage of the GT‟s fast dynamics, a larger GT-

generator with significantly enhanced power generation capability is selected for the S-

SOFC/GT system. In particular, the Garrett GTX2867R compressor [30] and the radial 

turbine from [26], [27] are used for the R-SOFC/GT system while up-scaled ones (scaled 

by the similarity principle in [25]) are used for the S-SOFC/GT system. Furthermore, low 

inertia GT-generator set should be used in order to achieve fast load following operation. 

For example, the low-inertia high-speed motor in [85] is used in this dissertation and the 

effective shaft inertia of the GT-generator is calculated based on the data in [85], [86].  

Analogous to [14], the HEX is sized to have an      value of          for 

the recuperating system. For the S-SOFC/GT system, a smaller HEX with           

is selected in order to recuperate less portion of thermal energy from the turbine exhaust, 

thereby keeping the SOFC inlet temperature      within a safe range. 

 

Table 4.2 Key parameters for the recuperating and sprinter SOFC/GT systems 
Components Parameters R-SOFC/GT S-SOFC/GT 

SOFC Stack 

Cell number       [-] 1320 960 

SOFC temperature       [K] 800 - 1150 960 - 1080 

SOFC power       [kW] 40 - 150 70 - 96 

Current density      [     ] 700 - 2300 1800 - 2100 

Fuel utilization    [-] 75% - 90% 50% - 90% 

GT-

Generator 

(@ design 

point) 

Compressor pressure ratio    [-] ~3.50 ~3.50 

Compressor flow    [       ] 320 360 

Turbine inlet temperature [K] 1273K (1000 ) 1273K (1000 ) 

Turbine expansion ratio    [-] ~3.50 ~3.50 

Corrected turbine swallowing 

capacity        [        
           ]  

3.922 4.246 

Designed shaft speed [RPM] 1.500e5 1.436e5 

Effective shaft inertia   [     ] 1.0e-3 1.2e-3 

HEX      value      [K]  ~60 ~120 

Integrated 

System 

Net power range (SS-line) [kW] 78.9 - 187.9 103.8 - 171.2 

Net power efficiency (SS-line) [-] 55.5% - 56.1% 46.8% - 50.2% 
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4.4 Steady-State Operation Envelope and Performance 

In Section 4.4.2, we identify the “safe operation regime” by applying constraints 

pertinent to different operational safety issues and investigate the system performance 

within the valid operating regimes for the S-SOFC/GT system. In Section 4.4.3, the effect 

of the maximum permissible CB temperature will be investigated. The “actual” operation 

envelope that is determined by taking into account the additional constraints of keeping 

constant SOFC power and constant SOFC temperature will be studied in Section 4.4.4. In 

order to provide a baseline for comparison purposes, the corresponding results for the R-

SOFC/GT system (see Table 4.2) are summarized in APPENDIX B. 

4.4.1 System Operational and Safety Issues 

In the SOFC/GT system, improper choices of operational variables might cause 

degradation, reduced life time and even system breakdown. In this section, we investigate 

some critical safety issues, e.g., SOFC cracking, component overheating, thermal fatigue 

and compressor surge, and discuss their causes and consequences. The safety factors will 

be used to determine the feasible operation envelope of the S-SOFC/GT system.  

4.4.1.1 SOFC (cell cracking, overheating, and thermal fatigue)  

Due to the differences in thermal expansion coefficients of different layers (see 

Figure 2.1), mechanical stresses will be developed when the cell temperature is different 

from the zero stress temperature [14], i.e., the temperature at which different layers are 

adjoined. When exposed to high stresses, the brittle ceramic materials used for the SOFC 

are likely to crack, thereby degrading the cell performance by creating contact resistances 

and leakage current. Note that the zero stress temperature (e.g., 1400K) is usually higher 

than the SOFC operation temperature. This implies that the thermally induced stress and 

probability of cell cracking will increase for low temperatures. Another cause for the cell 

cracking is the temperature gradient. Hence, the minimum local cell temperature and the 

maximum temperature gradient are monitored for issues related to cell cracking. 

Note that the cell temperature changing rate will also affect the thermal stresses, 

which might lead to material fatigue fractures and thus degrade the SOFC. The mean cell 

temperature is the major indicator and will be used to evaluate cell performance related to 
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thermal fatigue [14]. In the S-SOFC/GT system, fairly constant cell temperature helps to 

minimize the thermal fatigue, thereby leading to long life-time operation. In addition, the 

maximum local cell temperature should be kept within a safe range because overheating 

of the SOFC may cause irreversible changes in the electrode structure. It should be noted 

that air starvation and hydrogen depletion should be avoided since they may also damage 

or degrade the SOFC. For example, the hydrogen molar fraction is kept above 1% during 

operation in [4] to avoid fuel starvation. 

4.4.1.2 GT (compressor surge, turbine overheating, and speed constraints) 

The compressor surge will occur if the pressure ratio the compressor has to work 

against is too high for its current speed. During surging, a noisy and violent flow process 

can occur causing periods of backflow through the compressor, which might damage the 

system. A safe distance from the operating point to the surge line should be maintained to 

avoid compressor surge. Another safety issue is the turbine overheating because too high 

temperature will lead to material failure which will eventually cause system breakdown 

[14]. Hence, the turbine inlet temperature should be maintained in a safe range. For safety 

and efficiency considerations, the GT speed should be constrained within an appropriate 

range, outside which the GT‟s efficiency will decrease significantly. The maximum GT 

speed is bounded by constraints such as the bearing/sealing system limitations [25]. 

4.4.1.3 Burner (temperature constraints) 

Practical problems related the CB operations are discussed in Section 2.4. For the 

S-SOFC/GT system, the multi-stage high-temperature CB system with metallic substrates 

(see Figure 2.12) should be used, as will be explained in Section 4.4.3. The burner should 

not be operated at too high temperature to avoid CB over-heating. Note that the metallic 

substrates should be operated above the catalyst light-off temperature (e.g., ~600  ) to 

enable catalytic combustion [40]. Therefore, both the minimum and the maximum burner 

temperatures will be monitored in this chapter. 

4.4.1.4 HEX (overheating, thermal shock) 

Overheating and thermal shock can attack the HEX, causing reduced life time or 

even system breakdown. The metallic HEX, which has good performance in the thermal 

gradient/shock aspects, should be operated below 950  to avoid material failure. Similar 
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to the SOFC and ceramic CB, the ceramic HEX can be operated at higher temperatures, 

but thermal shock issues have not been resolved. Hence, in this chapter, metallic HEX is 

selected for both SOFC/GT systems due to its advantages in thermal gradient and shock 

performance and costs. The inlet temperature of the HEX‟s hot channel (see Figure 2.11), 

which equals the turbine outlet temperature, will be monitored for safety considerations. 

 

Table 4.3 Key safety parameters related to the feasible operation regimes 
Constraint  Parameters Operational and safety issues 

#C1 Mean value of cell temperature       SOFC thermal fatigue, system efficiency 

#C1a Max local cell temperature      
    SOFC overheating 

#C1b Min local cell temperature      
    SOFC thermal stress and cell cracking  

#C1c Max cell temperature gradient      
     SOFC thermal stress and cell cracking 

#C2 SOFC cell voltage       Very low efficiency for             

#C3 Gas turbine shaft speed   
GT efficiency, mechanical (e.g., bearing 

and sealing systems) limitations 

#C4 
Turbine outlet temperature     (note: 

    equals                ) 
HEX overheating, especially for metallic 

materials 

#C5 
Burner temperature     (note:     

equals turbine inlet temperature    ) 

High     leads to CB/turbine overheating;  

Low     reduces catalyst activity 

  

Table 4.4 Constraint values for the SOFC/GT systems 
Constraint  Parameters R-SOFC/GT S-SOFC/GT 

#C1 
Cell temperature UB      

  [K] 1400 1400 

Cell temperature LB      
   [K] 800 800 

#C2 Cell voltage LB      
   [V] 0.45 0.50 

#C3 
Shaft speed UB    [RPM] 1.567e5 1.500e5 

Shaft speed LB     [RPM] 0.600e5 0.600e5 

#C4 HEX temperature UB     
   [K] 1223 (950 ) 1223 (950 ) 

#C5 
CB temperature UB    

   [K] 1500 or 1223  1500 or others 

CB temperature LB    
   [K] 900 900 

 Note: UB and LB denote upper bound and lower bound, respectively. 

  

Table 4.3 summarizes the operational safety parameters that are used to determine 

the feasible operation regimes for the SOFC/GT systems. Table 4.4 shows the constraint 

values that are used to identify the “safe operation regimes” for the R-SOFC/GT system 

and the S-SOFC/GT system, whose specifications are summarized in Table 4.2. Note that 

the superscripts UB and LB refer to upper bound and lower bound, respectively. 
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4.4.2 Operational Region Determined by Safety Issues 

 

 

Figure 4.6: The operation regime determined by safety issues for the S-SOFC/GT system. 

Figure (a) also shows the boundaries corresponding to different safety constraints. 

 

Analogous to the R-SOFC/GT system (refer to APPENDIX B), the “safe” feasible 

operating regime for the S-SOFC/GT system is identified by considering the constraints 

pertinent to safety issues listed in Table 4.3. As shown in Figure 4.6, various constraints 

(refer to Table 4.4 for their values) are applied to identify the “safe operation regime” for 
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different      values. To keep constant       over the entire load range,      should vary 

in a limited range, e.g.,      [         ]       for the sprinter system designed in 

Section 4.3 . Figure 4.6 (b) presents the 3D “safe operation regime” together with the low 

and high airflow (    ) boundaries and different fixed-     slices. Note that the feasible 

operating region slightly shifts to the high airflow region as      decreases. The reason is 

that more fuel is reacted in the burner to increase the GT power, thereby feeding more air 

to the SOFC stack, as shown in Figure 4.6 (b). 

Figure 4.6 (a) shows the 2D “safe operation regime” (              ) with 

following issues occurring at certain regimes: 

 Overheating appears for low air flow. As shown in Figure 4.6 (a), for the operation 

regime at the low airflow side of the       constraint line, simulations reveal that the 

cell temperature is steadily ramping beyond the valid region and causing compressor 

surge. This is similar to the result for the R-SOFC/GT system in APPENDIX B and 

the result in [14]. Note that the upper-bound constraint values for the burner, turbine 

and HEX temperatures, i.e.,    
   and     

  , determine the low airflow boundaries for 

regimes with large fuel flow inputs, as shown in Figure 4.6 (a). 

 For the case of low fuel flow and high air flow, the SOFC is cooled down strongly, 

thereby leading to low cell voltage, low system efficiency, and increased risk of cell 

cracking due to low SOFC temperature. In this chapter, the region with a cell voltage 

less than 0.50V is considered invalid for the S-SOFC/GT system. This determines the 

high airflow boundary of the “safe operation regime”. 

 GT over-speed is likely to occur for very high air flow regions as in Figure 4.6 (a). In 

order to ensure proper functioning of the GT-generator while maintaining satisfactory 

efficiencies, the operation regime where the shaft speed lies outside the permissible 

range [   ,    ] (see Table 4.4 for their values) is blinded out. 

 

Three groups of metrics are used to evaluate the SOFC/GT system performance: 

(1) temperature related variables (see Figure 4.7) including the mean value of      , the 

maximum/minimum local      , the maximum local temperature gradient      , and the 

turbine inlet/outlet temperatures (TIT/TOT); (2) power related variables (see Figure 4.8) 
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such as the SOFC power      , compressor power      , turbine power      , generator 

power     , net power     , and net efficiency     ; and (3) other variables (Figure 4.9) 

such as cell voltage      , current density      for the R-SOFC/GT system or SOFC    

ratio for the S-SOFC/GT system, air excessive ratio   , shaft speed  , CB pressure     

(    equals the turbine inlet pressure    ), and power split ratio         ⁄ . 

As shown in Figure 4.7, SOFC temperatures and turbine inlet/outlet temperatures 

all increase with respect to    because more fuel is burned in the CB to raise     and the 

SOFC inlet air temperature     . All these temperatures decrease with respect to      due 

to the cooling effect. Moreover, unlike the conventional R-SOFC/GT system, as shown in 

Figure APX.3 (d) of APPENDIX B, the maximum temperature gradient       decreases 

with respect to the absolute values of    and     , as presented in Figure 4.7 (d). This is 

because the increased fuel and air flows help to smooth the temperature distributions over 

the SOFC while the thermal energy released from the electro-chemical reaction remains 

fairly constant because the amount of fuel reacted in the SOFC remains constant. 

 

 

Figure 4.7: Temperature related variables for fixed current density (    =1950      ). 

The same colormaps are used for fiugre (a), (b), (c) and (f) to compare the temperatures.  
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Figure 4.8: Power related variables for fixed current density (    =1950      ). Figure 

(a), (b) and (d) use the same colormaps. Figure (c) and (e) use another set of colormaps. 

 

 

Figure 4.9: Other operational variables for fixed current density (    =1950      ) in 

the S-SOFC/GT system. Figure (a) to (c) are related to the SOFC while figure (d) to (f) 

are related to the GT-generator. 
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Figure 4.10: The “global” picture of the S-SOFC/GT system performance: (a) SOFC 

power; (b) generator power; (c) system efficiency; (d) power split ratio; (e) turbine inlet 

temperature; and (f) the maximum local cell temperature gradient. 

 

1500K 
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Power related variables and other operating variables are presented in Figure 4.8 

and Figure 4.9, respectively. Note that cell voltage       in Figure 4.9 (a) increases with 

respect to    due to the increasing open circuit voltage. The voltage       decreases with 

respect to      due to the reduced       (see Figure 4.7 (a)) caused by the cooling effect. 

The SOFC power       as in Figure 4.8 (a) has the same distributions as       for fixed 

     input because       is proportional to            [39].  As shown in Figure 4.9 (b), 

the fuel utilization coefficient    is only a function of    since they are coupled by the 

fixed      input. Similarly, the SOFC‟s air excessive ratio    in Figure 4.9 (c) is only a 

function of      as they are coupled by the fixed      input [24] as well. 

Next, we study the GT-generator performance. As    increases, more unused fuel 

is burned in the CB to raise the turbine inlet temperature, thereby producing more turbine 

power       and generator power     , as shown in Figure 4.8 (c) and (d), respectively. 

The increased shaft power elevates the shaft speed   (Figure 4.9 (d)) and the compressor 

outlet pressure, which is close to the CB pressure     in Figure 4.9 (e). Consequently, the 

compressor power       in Figure 4.8 (b) has a similar distribution to the shaft speed. As 

shown in Figure 4.8 (e) and (f), both the net power      and efficiency      decrease with 

respect to      due to the cooling effect. Moreover, the most efficient operation point lies 

at the low airflow boundary of the feasible operation region, as shown in Figure 4.9 (f). 

This phenomenon is the same as that observed in the R-SOFC/GT system [14]. 

In the following, we examine the influence of varying      inputs and explore the 

“global” behavior over the 3D “safe operation regime”. Figure 4.10 presents the contour-

slice plots for the S-SOFC/GT system. The same conclusions as those drawn in the above 

analysis can be made for every fixed-     slice. As shown in Figure 4.10 (e), the burner 

temperature constraint    
   (   

  =1500K) becomes active over the low      and high    

regions, i.e., the upper-left regions in Figure 4.10, for all fixed-     slices. Moreover, the 

feasible region slightly shifts to high airflow region as      decreases, thereby reducing 

      because of the cooling effect, as shown in Figure 4.6 (b). The fuel cell power       

decreases significantly as      decreases, as shown in Figure 4.10 (a). This is due to the 

reduced      input and      . As shown in Figure 4.10 (b),      slightly increases as      

decreases, since more fuel is burned in the burner to drive the turbine to produce more 
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GT power. Consequently, the power split ratio         ⁄  increases as      decreases, as 

shown in Figure 4.10 (d). The system efficiency      shown in Figure 4.10 (c) decreases 

with respect to      mainly due to the reduced      . The maximum local       (i.e., the 

spatial cell temperature gradient) shown in Figure 4.10 (f) decreases with respect to      

due to the reduced degree of electro-chemical reactions in the SOFC and the increased 

airflow that helps to smooth the cell temperature distributions.  

4.4.3 Influence of the Burner Temperature Constraint 

 

Figure 4.11: Effects of the CB temperature constraint values on the feasible region and 

net power range. In this figure, the regimes above the     lines are considered infeasible 

because they will cause burner/turbine overheating and even system breakdown. 

 

Table 4.5 Effects of the    
   value on the net power range and system efficiency 

   
   [ ] 1223 1362 1500 

    
    [  ] 88.3 88.3 88.3 

    
    [  ] 121.9 161.4 179.7 

    
    [%] 39.9% 47.9% 52.7% 

  

The maximum permissible CB temperature, i.e., the upper bound value    
  , has a 

significant effect on the feasible region, since it determines the low airflow boundary for 

high fuel flow (  ) inputs. As shown in Figure 4.11, the feasible operating region shrinks 
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as    
   decreases, reducing the system net power range, as summarized in Table 4.5. For 

example,    
   decreases from 1500K to 1223K if the high-temperature CB in Figure 2.12 

is replaced with a single-stage metallic burner. Then, the maximum net power     
    will 

decrease from 179.7kW to 121.9kW. Therefore, in order to meet the power demand and 

specific operation requirements for the target system, the multi-stage, high-temperature 

CB concept discussed in Section 2.4 should be used for the S-SOFC/GT system because 

(1) it can be operated at high temperatures; and (2) the metal-type substrates used in the 

CB has good performance with respect to thermal gradient/shock, thereby allowing rapid 

change of burner temperature for fast load following operations.  

4.4.4 The “Actual” Operation Envelope and System Performance 

 

Figure 4.12: The “actual” feasible operation surface generated by applying the additional 

constraints of keeping constant       and constant       over the whole net power range. 

Note that      increases with respect to    over the “actual” operation surface. 

 

The additional constraints of keeping constant       and       over the entire load 

range, which is one of the most important requirements for the S-SOFC/GT system, is not 

considered when determining the “safe operation regime” in the last section. The “actual” 

operation regime with the constant       and       constraints incorporated is a subset of 

Pnet increases! 
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the 3D “safe operation regime” in Figure 4.6. For example, as shown in Figure 4.12, the 

“actual” operation region corresponding to the additional constraints of {           

                 } is a surface located inside the “safe operation regime”. Note 

that the irregular boundary of this operational surface is because of numerical calculation 

errors. Moreover, as shown in Figure 4.12 and Figure 4.13, we can get an operation line 

by fitting the point cloud data over the “actual” operating surface into a single curve. This 

will give the same results as the strategy in Section 4.2 to keep fairly constant       and 

     . In particular, as shown in Figure 4.13 (d), less than 1% and 0.1% percentage errors 

for       and       have been achieved over the fitted operation line. 

 

 

Figure 4.13: The “actual” operating surface and fitted operation line to keep fairly 

constant SOFC power/temperature. (a) air flow     ; (b) current density     ; (c) SOFC 

inlet air temperature     ; and (d)       and       errors along the fitted operation line. 

 

However, the “actual” operation surface shown in Figure 4.12, which corresponds 

to particular values of       and      , only covers a very limited portion of the 3D “safe 

operation regime”. We would like to explore the “global” picture of the sprinter system 

Pnet increases! 
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and investigate the influence of       and       setting-values (i.e., the desired constant 

values to be maintained during system operation). To this end, we will study the “actual” 

operational envelope for the S-SOFC/GT system by investigating the “actual” operational 

surfaces for different setting-values of       and      , as shown in Figure 4.14 (a). The 

specific requirement of keeping fairly constant       and       in the S-SOFC/GT system 

can be satisfied over each of the operational surfaces in Figure 4.14 (a). 

Let      and      denote the setting-values for       and      , respectively.      

is expected to be an increasing function of     . Although different combinations of      

and      setting-values can be used, intensive simulations indicate that we can reduce the 

number of free variables by applying the           relation presented in Figure 4.14 (b), 

without sacrificing the system performance. This will simplify our study on the “actual” 

operation envelope and sensitivity analysis. Figure 4.14 (a) shows a series of operational 

surfaces with {           }  {                  } for different      values. Note 

that the surfaces are color-coded with respect to      in Figure 4.14 (a). 

It is not easy to perform direct analysis over the operational surfaces presented in 

Figure 4.14 (a) because we have two degrees of freedom over each      surface. In order 

to further simplify the subsequent analysis, we reduce the dimensionality of the problem 

as follows. First, for each      surface in Figure 4.14 (a), we find a fitted operation line 

by applying the curve-fitting technique in Figure 4.12 and Figure 4.13. Second, as shown 

in Figure 4.15, we create a surface by combining these fitted operation lines. This surface 

is referred to as the “fitted operation surface” in this dissertation. The operational lines in 

Figure 4.15 are color-coded with respect to     . For the “fitted operation surface”, there 

are two free variables, i.e.,      and   , as shown in Figure 4.16.  

In order to gain “global” knowledge of the sprinter system, we will investigate the 

system performance, as described in Figure 4.16 to Figure 4.19, over the “fitted operation 

surface”. We will also study the influence of      over the “fitted operation surface”. The 

high    and low      region, i.e., the upper-left blank region in Figure 4.16, is infeasible 

because the GT speed constraint    
   is violated. On the other hand, the low    and high 

     region, i.e., the lower-right blank region in Figure 4.16, is bounded by the low      

boundary of the 3D “feasible operation regime” in Figure 4.15. 
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Figure 4.14: The “actual” operation surfaces plotted over the 3D “safe operation regime” 

in figure (a) for different setting-values presented in figure (b). The SOFC power       

equals            and the cell temperature       equals      ± 2K. For each      

surface presented in figure (a), there are two degrees of freedom and the net power      

increases with respect to the    input. 

 

960 980 1000 1020 1040 1060 1080

70

75

80

85

90

95

SOFC Temperature T
sofc

 [K]

S
O

F
C

 P
o
w

e
r 

P
s
o
fc

 [
k
W

]

Setting Values of SOFC Power and Temperature

 

 

P
SET

 & T
SET

Smoothed Data

P
sofc

=(12%)P
SET

(vertical errorbar)

T
sofc

=T
SET

2K

(horizontal errorbar)

P
SET

~T
SET

 relation

(a) 

(b) 



  

81 

 

 

Figure 4.15: The “fitted operation surface” consisting of different operation lines that are 

generated by applying curve-fitting technique over each      surface in Figure 4.14 (a). 

For each fitted      operation line, the net power      increases with respect to   . 

 

 

Figure 4.16: Fairly constant       and       are achieved for each      vertical line over 

the “fitted operation surface”, as shown in figure (a) and (b), respectively. Figure (c) and 

(d) show the variations of       and       with respect to their respective setting-values. 
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Figure 4.17: Temperature related variables over the “fitted operation surface”. 

 

 

Figure 4.18: Power related variables over the “fitted operation surface”. Figure (a) and (c) 

use the same colormaps while figure (b) and (d) use another set of colormaps. 
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Figure 4.19: Other performance variables over the “fitted operation surface”. 

 

First, we check if the constraints of keeping fairly constant       and       can be 

satisfied for each      line over the “fitted operation surface”. As shown in Figure 4.16, 

fairly constant       and       have been achieved for each      vertical line. Let        

and        denote the differences of the actual values of       and       with respect to 

their setting values. As shown in Figure 4.16 (c) and (d), very small differences between 

the actual and the setting values, e.g., |      |    , |      |     , are achieved over 

the “fitted operation surface”. Hence, in order to keep       and       at their respective 

setting-values, we can allocate the S-SOFC/GT system inputs according to those for the 

constant      lines over the “fitted operation surface”. 

Next, we investigate the system performance over the “fitted operation surface”. 

The temperature, power and other operation related variables are shown in Figure 4.17, 

Figure 4.18 and Figure 4.19, respectively. In particular, we study the system performance 

over each constant      line and investigate the influence of varying      values through 

sensitivity analysis. Conclusions and highlights acquired from these studies will facilitate 

the S-SOFC/GT system design and operation in the future. 
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4.4.4.1 System performance over each constant      line 

As shown in Figure 4.18 (d), for each constant      line, the fuel flow input    is 

an increasing function of     . The voltage       in Figure 4.19 (f) increases with respect 

to    because      increases with respect to the fuel and air concentrations, according to 

the Nernst equation shown in Eqn. (2.2). To keep constant      ,      should be reduced 

when increasing   , according to the operational strategy in Section 4.2. Consequently, 

more fuel will be burned in the CB, thereby elevating the CB and turbine temperatures, as 

shown in Figure 4.17 (a) and (b). Meanwhile, the SOFC    ratio, which varies in a wide 

range, reduces with respect to   , as shown in Figure 4.19 (d). Moreover,      shown in 

Figure 4.17 (c) increases with respect to    since more energy from the turbine exhaust 

can be recuperated by the HEX. This helps to counteract the cooling effect caused by the 

increased     , as shown in Figure 4.19 (c), thereby keeping constant      . In addition, 

as shown in Figure 4.17 (d), the maximum       reduces with respect to    because the 

increased airflow helps to smooth the temperature distributions over the SOFC. This is a 

benefit compared with the R-SOFC/GT system, in which       increases with respect to 

the air and fuel flows, as shown in Figure APX.3 (d).  

Next, we study the power performance, which is shown in Figure 4.18. Over each 

constant      line, the turbine power       in Figure 4.18 (b) increases with respect to    

(which is nearly proportional to     ) due to the increased turbine temperature. This helps 

to accelerate the shaft speed   and increase the CB pressure    , as shown in Figure 4.19 

(a) and (b), respectively.       increases as more air is delivered, as shown in Figure 4.18 

(a). Moreover,      is only a function of    and the constant      contourlines are nearly 

horizontal, as shown in Figure 4.18 (c). This is not surprising since      is expected to be 

proportional to the thermal energy released from the SOFC fuel exhaust, whose flow rate 

equals         . This part of thermal energy will be used to drive the GT-generator to 

produce     . Moreover, for each      line, the power split ratio         ⁄ , as shown in 

Figure 4.18 (f), increases with respect to    because      increases with    while       

remains fairly constant. In addition, as more power is produced by the GT-generator, the 

system efficiency     , as shown in Figure 4.18 (e), decreases because the GT-generator 

has a much lower fuel-to-electrical efficiency than the SOFC [21]. 
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4.4.4.2 Influence of the SOFC temperature setting-values 

The SOFC temperature setting-value,     , has a significant effect on the system 

performance. As shown in Figure 4.17, all the temperature related variables increase with 

respect to     . However, the       value, as shown in Figure 4.17 (d), is insensitive to 

    . Moreover, for each    input,       in Figure 4.16 (b) increases with respect to      

while      in Figure 4.18 (c) remains fairly constant when varying the      value. Hence, 

both      and      increase with respect to      while the ratio         ⁄  decreases with 

respect to     , as shown in Figure 4.18 (d) to (e). Hence, in order to achieve high system 

efficiency, the SOFC stack should be operated at high temperature.  

However, too high SOFC temperature will affect the system net power range and 

the power turn-down ratio, which is defined as the ratio of     
    with respect to     

   . As 

shown in Figure 4.18 (d), a smaller power variation range and a smaller power turndown 

ratio are achieved for the case of           , compared to the case of           , 

even though a higher efficiency is achieved in the former case. Thus, a trade-off between 

the efficiency and the power turndown ratio should be made when choosing     . For the 

S-SOFC/GT system in this chapter,      should be around 1050K for efficient operations 

while meeting the desired power range requirement for dynamic load following. 

4.5 Steady-State System Optimization 

The S-SOFC/GT system involves multiple actuators and inputs which will dictate 

the overall system efficiency. In particular, for a given    input, there are infinitely many 

combinations of      and      that generate different net powers. In this section, we will 

formulate constrained optimization problems to determine the steady-state operation line 

[14], i.e., the static feed-forward map in [15], for the proposed S-SOFC/GT system. We 

will also investigate the system performance over the optimal steady-state operation line. 

4.5.1 Optimization Problem Formulation 

In order to determine the maximum steady-state      output for a given    input 

while satisfying the safety and SOFC power/temperature constraints for the S-SOFC/GT 

system, a constrained optimization problem is formulated as: 
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         {

   {            }                        

          [                     ] 

          [                     ] 

 (4.4) 

  

where                 is the feasible set corresponding to the 3D “safe operation regime” 

(see Figure 4.6 for example) determined by considering the constraints pertinent to safety 

issues discussed in Section 4.4.1;              and              are the constant 

setting-values and permissible errors for the SOFC power and temperature.  

Let             denote the “actual” feasible set. Then, we have: 

  

            {(            )                 |     

 [                     ]      

 [                     ]}  

(4.5) 

  

We can visualize the “actual” feasible set             for the sprinter system. For 

example,             for the case of           ,            ,         , and 

          is shown in Figure 4.12. The operating surfaces in Figure 4.14 (a) denote 

the “actual” feasible sets for different      and      values shown in Figure 4.14 (b). 

Plug Eqn. (4.5) into Eqn. (4.4), the optimization problem is re-formulated as: 

  

   
         

                      

         {            }              
 (4.6) 

  

The optimization problems in Eqn. (4.4) and Eqn. (4.6) can be solved by using the 

Simulink model and numerical optimization algorithms. By repeating the optimization 

for different fuel flows, we can get the optimal steady-state operation line within the valid 

operation regime for the S-SOFC/GT system. 

For the S-SOFC/GT system, the SOFC should be operated at high temperatures to 

achieve high system efficiency. However, too high SOFC temperature will affect the net 
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power range and power turndown ratio, as discussed in Section 4.4.4. In this chapter, in 

order to achieve efficient operation while maintaining a satisfactory net power range for 

dynamic load following,      and      are taken at 1048K and 89.6kW, respectively. In 

addition,          and           are selected for the optimization problems. The 

corresponding “actual” feasible set             and the “optimal” steady-state operation 

line identified by Eqn. (4.6) are shown in Figure 4.20.  

 

 

Figure 4.20: The “optimal” steady-state operation line and the “actual” feasible set. The 

safety margin between the “optimal” operation line and the safety regime boundary 

allows for less stringent operation requirements as compared to the R-SOFC/GT system. 

 

4.5.2 Performance of the Steady-State Operation Line 

Figure 4.21 shows the system performance over the optimal operation line for the 

S-SOFC/GT system. Compared with its recuperating counterpart in APPENDIX B (     

varies from 78.8kW to 187.9kW), the S-SOFC/GT system has a smaller net power range 

from 103.8 kW to 171.2 kW. In particular, the upper bound value of      is limited by the 

shaft speed constraint while the lower bound value of      is constrained by the low      

boundary (a lower      value is infeasible because it will cause compressor surging [14]) 

of the “feasible operation regime”, as discussed in Section 4.4.4.  

Safety 

Margin 
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Figure 4.21: The S-SOFC/GT system performance along the optimal operation line. 

 

The three system inputs (i.e.,   ,      and     ) that produce the optimal system 

efficiency are shown in Figure 4.21 (a). Note that    and      are increasing functions of 

    , as expected. However,      slightly decreases with      to limit the       and       

variations according to the operational strategy delineated in Section 4.2. This is different 

from the R-SOFC/GT system, in which      is an increasing function of     , as shown 

in Figure APX.12 (a) in APPENDIX B.  

Fairly constant       and       have been achieved over the whole load range, as 

shown in Figure 4.21 (b) and (d). However, this is achieved by sacrificing the efficiency. 

Compared with its recuperating counterpart (          ), the S-SOFC/GT system has 

a poor efficiency, which varies from 46.8% to 50.2%, as shown in Figure 4.21 (e). In the 
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low      region,      increases with respect to      due to the reduced      , as shown in 

Figure 4.21 (h). The reason is that uniform cell temperature distributions will lead to high 

efficiency operations [14]. In the medium to high      region,      decreases with respect 

to      because (1) more power is produced through the less-efficient GT-generator; and 

(2) the compressor efficiency       decreases with respect to the net power.  

As the net power      increases, the GT shaft speed   shown in Figure 4.21 (g) is 

increased to deliver more airflow, as shown in Figure 4.21 (c), to the SOFC while more 

unused fuel is reacted in the burner to drive the GT-generator to produce a considerable 

amount of electric power     . The turbine gas flow   , turbine inlet temperature     and 

inlet pressure     are elevated to produce more      as      increases, as shown in Figure 

4.21 (c), (d) and (g), respectively. Compared with the conventional R-SOFC/GT system, 

in which         ⁄  varies around 20% [3], substantial variation of the power split ratio 

        ⁄  is achieved in the S-SOFC/GT system. As shown in Figure 4.21 (i), the power 

split ratio         ⁄  varies from 14.9% to 47.3% over the entire load range. 

Compared with the R-SOFC/GT system, in which the SOFC    ratio varies in a 

limited range, substantial variation of the SOFC    ratio is observed. As shown in Figure 

4.21 (f), the SOFC    ratio decreases from 90% to less than 50% as      increases. In 

addition, unlike the R-SOFC/GT system, in which    decreases with respect to     , as 

shown in Figure APX.12 (f) in APPENDIX B, the    ratio is an increasing function of 

     in the S-SOFC/GT system, as shown in Figure 4.21 (f). This leads to a more uniform 

SOFC temperature distribution, e.g., the maximum       decreases with respect to     , 

as shown in Figure 4.21 (h). This is a benefit of the proposed S-SOFC/GT system, which 

helps to reduce the risk of cell cracking for long life-cycle operation. 

Table 4.6 summarizes the steady-state performance of the proposed S-SOFC/GT 

system and that of the conventional R-SOFC/GT system. Note that the “optimal” steady-

state operation line is located at the feasible region boundary in the R-SOFC/GT system, 

as shown in Figure APX.11 (d) of APPENDIX B. In comparison, in the sprinter system, 

the “optimal” operation line is a subset of the “actual” feasible set            , as shown 

in Figure 4.20. Note that there is some safety margin left between the “optimal” operation 
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line and the boundary of the safe operation region. Compared to the R-SOFC/GT system, 

the safety margin allows for less stringent requirements for the S-SOFC/GT system. 

 

Table 4.6 Steady-state performance of the SOFC/GT systems 
Performance R-SOFC/GT system S-SOFC/GT system 

System inputs 
-   ,      and      are all 

increasing functions of       

-    and      increase with      

-      slightly decreases with      

Temperature 

related 

variables 

- SOFC, CB and turbine 

temperatures increase with 

respect to      

- Substantial variation of       

- The temperature gradient       

increases with respect to      

- CB and turbine temperatures 

increase with respect to      

- Fairly constant       

- The temperature gradient       

decreases with respect to      

- Higher CB/turbine temperatures 

than the R-SOFC/GT system 

Power related 

variables  

- SOFC, GT, and generator powers 

all increase with respect to      

- Substantially varying       

- Limited GT-generator power 

-         ⁄     , relatively 

constant power split ratio 

- GT and generator powers 

increase with respect to      

- Fairly constant       

- Significantly enhanced      

-         ⁄  varies in a large range, 

e.g., from 10% to 50% 

SOFC    and 

   ratio  

- The SOFC    ratio varies in a 

small range, e.g.,        

- The    ratio decreases with      

- The SOFC    ratio varies in a 

large range, e.g.,   =50% - 90% 

- The    ratio increases with      

Steady-state 

operation line  

-      varies in [78.9, 187.9] kW 

-      varies in [55.5%, 56.1%]  

- Located at the boundary of the 

safe feasible operation regime 

-      varies in [103.8, 171.2] kW 

-      varies in [46.8%, 50.2%] 

- Located inside the safe feasible 

operation regime with certain 

safety margin 
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CHAPTER 5 

Control Analysis and Design of Sprinter SOFC/GT systems 

The feasibility of the S-SOFC/GT concept is established in CHAPTER 4, where it 

is shown that the system can indeed achieve constant SOFC power and temperature while 

supporting the load in the wide spectrum of net power range. In this chapter, the transient 

capabilities of the S-SOFC/GT system will be addressed. In particular, control analysis 

and feedback design will be presented. In Section 5.1, the BIBO stability of the steady-

state operating points is investigated through numerical simulations and linearized system 

analysis of a simplified model that captures the dominating dynamics of the S-SOFC/GT 

system. Meanwhile, a PI-type shaft speed feedback controller is proposed to stabilize the 

system at the desired operating point. In order to gain fundamental insights on transient 

characteristics and operation challenges of the system, open-loop and RGA (relative gain 

array) analyses are performed in Section 5.2 and the control implications of these analysis 

results are discussed. Feedback control design is presented in Section 5.3. Both load step-

up and step-down transients are investigated. Compared to the conventional R-SOFC/GT 

system, the S-SOFC/GT system achieves far superior transient performance. 

5.1 Stability Analysis of Steady-State Operation Points 

The hybrid SOFC/GT system has three inputs: fuel flow   , current density     , 

and generator load     . As discussed in [14], the R-SOFC/GT system is claimed to be 

unstable with a constant      input in some regions of the feasible operation regime. The 

reason is that a step up or step down in      will accelerate or decelerate the shaft with no 

new equilibrium can be found within the valid bounds of the shaft speed [14]. Variable 

shaft speed control is often used to solve this problem [4], [14]. In Section 5.1.1, we will 

demonstrate the stability problem through numerical examples and develop appropriate 
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control strategy for the sprinter system. Theoretical analysis for the BIBO (bounded input 

bounded output [70]) stability of the steady-state operations is given in Section 5.1.2. 

5.1.1 Numerical Case Study 

Without loss of generality, the optimal set-point for      = 118.7kW is used in the 

following case studies. The point (A) in Figure 5.1 corresponds to the selected set-point. 

For the initial condition, the system is assumed to be working at set-point (A) at steady-

state. Figure 5.2 presents simulation results of the following case studies while Figure 5.1 

shows the corresponding trajectories plotted in the compressor map.  

Case-C1: a small (20-Watt) step decrease of      is applied to the system. As 

shown in Figure 5.2 (a) and (d), an abrupt increase of shaft speed can be observed due to 

the rapid increase of net shaft power   , which is defined in Eqn. (5.1). Consequently, a 

significant amount of airflow is delivered to cool the SOFC rapidly, thereby leading to 

extremely low SOFC power generation, as shown in Figure 5.2 (e) and (f). Note that the 

hybrid system will eventually settle at the point (B), which is located at the high airflow 

region in Figure 5.1. However, both       and       are far away from their respective 

desired setting values, as shown in Figure 5.2 (case-C1).  

  

                          (5.1) 

  

Case-C2: a small (20-Watt) step increase of      is applied to the system. The 

shaft decelerates rapidly because there is not enough shaft power to meet the desired      

demand, as shown in Figure 5.2 (a) and (d). Further drop of net shaft power    due to the 

reduced GT shaft speed will lead to an irreversible process, which will cause the eventual 

system shutdown [15], as shown in Figure 5.2. Therefore, the S-SOFC/GT system tends 

to be unstable with a fixed      input at operation point (A).  

Case-C3: shaft speed control is used to stabilize the system. Feedback control 

of the airflow or shaft speed is often used to stabilize the SOFC/GT systems [4], [14]. In 

this section, a PI-type shaft speed controller, as expressed in Eqn. (5.2), is implemented 

to stabilize the S-SOFC/GT system: 
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Figure 5.1: The optimal operation line and simulated trajectories in the compressor map. 

A small step decrease/increase of      is applied for Case-C1/Case-C2, respectively. 

 

 

Figure 5.2: Simulation results for steady-state operations of the S-SOFC/GT system. A 

small (<0.1%) step decrease of      and a small (<0.1%) step increase of      are applied 

to the system in Case-C1 and Case-C2, respectively. For Case-C3, a PI-type shaft speed 

control stabilizes the system when shaft power perturbation is applied. 
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               ⁄  (            )  (5.2) 

  

where      is the desired shaft speed corresponding to the selected steady-state set-point 

for net power demand     
   . The relation between      and     

    can be determined from 

the feed-forward map in Figure 4.21. In Case-C3, a step-up perturbation and a step-down 

perturbation are applied to the GT-generator shaft to emulate varying resistance torque at 

100-sec and 1000-sec, respectively. The amplitudes of the shaft perturbation power are 

less than 0.1% of     . The feedback controller (  =
   

   
,   =

   

   
) in Eqn. (5.2) is able to 

stabilize the system at desired operation point, as shown in Case-C3 of Figure 5.2, 

Similar analysis has been performed for other operation points along the optimal 

steady-state operation line in Figure 4.21. Simulation results indicate that the steady-state 

operation points tend to be unstable with a fixed      input, especially for those located at 

the low/medium airflow regions. Detailed stability analysis for steady-state operations of 

the S-SOFC/GT system will be performed in the next section. 

5.1.2 Theoretical Analysis 

In this section, a simplified “2-state” model will be developed to depict the main 

dynamics of the S-SOFC/GT system. The BIBO stability for steady-state operations will 

be investigated through linearized analysis of this nonlinear “2-state” model. 

Section 5.1.1 reveals that the power/energy balance on the shaft is critical to the 

system stability. Recall that the shaft rotational dynamics is governed by: 

  

  

  
 

            

     
 

        

     
  (5.3) 

  

where the shaft‟s acceleration     ⁄  is a function of the GT shaft power     minus the 

generator load      over the speed   and the shaft inertia  . A step-up of      from an 

equilibrium will cause the shaft speed to drop because     ⁄   , as demonstrated in 

Case-C2 of Figure 5.2. 
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Figure 5.3: Schematic of the simplified “2-state” model for the SOFC/GT system. 

 

  

Figure 5.4: Validation of the simplified “2-state” model. 

 

Given that the use of full-order model for analytic investigation of the stability is 

prohibitive due to its complexity, we attempt to develop a simplified equivalent model to 

capture the effects of      on the shaft rotational dynamics. The equivalent schematic of 

the SOFC/GT system is given in Figure 5.3, where the shaft dynamics is separated from 

the SOFC and GT models. To capture the effects of      input, we ignore the effects of 

   and      for the moment and approximate the dynamics from   to     with first-order 

dynamics        ⁄ . At steady state, as shown in Figure 5.5, the relation between   and 

    can be approximated by the following second-order polynomial [15]: 

  

   
       

             (5.4) 
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Plugging the first-order dynamics for     into Eqn. (5.4), the dynamic relationship 

between   and     can be expressed as: 

  

      

   
     

 
 

    
      

̇  
              

 
  (5.5) 

  

where   is the time constant for the first-order dynamics. 

Integrating Eqn. (5.3) and Eqn. (5.5), the equivalent second-order system, i.e., the 

“2-state” model (state variables:     and  ), can be expressed as: 

  

[
   
̇

 ̇
]  *

               ⁄

               ⁄
+  (5.6) 

  

As shown in Figure 5.4, the simplified “2-state” model is able to capture the main 

dynamics of the full-order SOFC/GT system. In the following, the local BIBO stability 

around the equilibrium point [   
      ] will be investigated through linearized analysis 

[71] of the nonlinear second-order system (i.e., the “2-state” model) shown in Eqn. (5.6). 

The Jacobian matrix corresponding to point [   
      ] is computed as: 
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where    
       

   is used, assuming steady state equilibrium. 

The characteristic polynomial of the linearized system is given as: 

  

             
 

 
  

       

      
  (5.8) 

  

and the system is stable if and only if          . 
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Figure 5.5: Steady-state generator power     
   expressed as a function of shaft speed  . 

The       
   curve is calculated by using results of the original full-order model. The 

positive/negative slope leads to unstable/stable system operation, respectively. 

 

Note that (     
    ⁄ )|

           , the stability depends on the slope of the 

      
   curve, as shown in Figure 5.5. Therefore, we can conclude that: 

  

                                   (
     

  

  
)
   

            (5.9) 

  

It should be noted that the slope-based stability criterion expressed in Eqn. (5.9) 

provides an approach to characterize the stable/unstable operating regions of the sprinter 

system. This has been verified through intensive numerical simulations in our study. For 

example, the stable and unstable steady-state operation regions for the case of     =2050 

      are presented in Figure 5.6. The S-SOFC/GT system is open-loop stable at high 

air (which is equivalent to high shaft speed) and high fuel flow region. Similar conclusion 

can be drawn for other values of     . For the same    input, the low airflow region has 

higher efficiency due to reduced cooling effect. However, this will reduce the stability 

margin, as shown in Figure 5.6. In order to achieve efficient and safe operation, feedback 

control, e.g., the shaft speed control expressed in Eqn. (5.2), should be used. 
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Figure 5.6: Characterization of the stable/unstable steady-state operation regions. 

5.2 Transient Operation Analysis 

5.2.1 Transient Operation Requirements 

From the steady-state analysis in CHAPTER 4, it is known that the S-SOFC/GT 

system can operate the full range of net power within the system operating requirements. 

With the “optimal” operation line determined for steady-state, it is essential to develop an 

operating strategy to control the integrated system during transients in a way it returns to 

the operation line after load changes for fast and safe load following. The control strategy 

determines the way the system proceeds from one operating point to another.  

A suitable control strategy for the normal operation of the proposed S-SOFC/GT 

system must meet the following requirements: 

 Safe operation of the system: incidents that may cause damage or degradation to 

the SOFC or other components (see Section 4.4) must be avoided or mitigated. It 

should be noted that the safety margin between the optimal operation line and the 

safety region boundary (see Figure 4.20) indicates that safety issues are less likely 

to occur in the S-SOFC/GT system as compared with the R-SOFC/GT system. 

 Maintaining fairly constant SOFC operation condition: fast changes in SOFC 

operation are often prohibited because a sudden large change can seriously impact 
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the cell and its service life due to thermal stresses [60]. It is also preferred to keep 

constant cell temperature to limit thermal fatigue and degradation [14]. In order to 

meet these special requirements for safe SOFC operation in the sprinter system, 

we limit the variation range and variation rate of      ,       and     . 

 Fast load following: the operating strategy should be able to follow a load profile 

quickly and accurately. The load profiles depend on the type of application [14]. 

In this chapter, step-wise load profiles will be used to evaluate the control strategy 

and quantify the transient capabilities of the S-SOFC/GT system. 

 High efficiency: efficient operation should be ensured by the control strategy. In 

this chapter, this is achieved by the “optimal” feed-forward map through keeping 

the operation conditions in favorable regions.  

5.2.2 Actuator Authority Evaluation 

In order to gain insights on the system‟s operation and understand the interactions 

between actuators and various system parameters, we proceed in analyzing time-domain 

responses of various variables to actuator signal variations. In the following, the actuator 

authority is evaluated with respect to its effect on SOFC temperature      , SOFC power 

     , net power     , CB temperature    , airflow rate     , and shaft speed  . The first 

three variables are selected because they are performance indicators for the SOFC and the 

entire system. The last three variables are also important because they dominate the load 

following performance and thermal safety management, as will be shown later.  

Table 5.1shows the initial conditions used in the following open-loop simulations. 

This particular set-point, which is located at the high airflow region, is selected because it 

is open-loop stable. Note that we cannot performance open-loop analysis for the unstable 

set-points located at the low/medium airflow region and any attempt to apply step change 

would result in system shutdown, as demonstrated in Section 5.1. In addition, it should be 

noted that many operating points have been investigated in our study and similar results 

have been observed for the open-loop responses. Therefore, conclusions drawn from this 

particular example is expected to hold for general cases.  
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Table 5.1 Initial conditions for the open-loop simulations 
Parameters              

Values 50.0 [       ] 1850 [     ] 73.146 [kW] 

Parameters              

Values 1.5000e5 [RPM] 1004.0 [K] 155.760 [kW] 

  

 

Given the nonlinear nature of the hybrid system, step responses from the actuators 

to aforementioned variables are investigated for both step-up and step-down directions, as 

shown in Figure 5.7 to Figure 5.9. The characteristics of the responses are summarized in 

Table 5.2. This table indicates whether the response of a variable exhibits overshoot (O) 

or undershoot (U) during a 0.5% step-up/step-down change in the corresponding actuator, 

whether the DC gain is positive or negative, and finally, whether the transfer function has 

a non-minimum phase (NMP) behavior. Those characteristic are explained below and the 

main conclusions are presented.  

 

 

Figure 5.7: Time responses for 0.5% step-changes in fuel flow rate   . 
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Figure 5.8: Time responses for 0.5% step-changes in current density     . 

 

 

Figure 5.9: Time responses for 0.5% step-changes in generator power     . 
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Table 5.2 Actuator authority table (open-loop responses of load step-up transients) 
                  

 O/U DC NMP O/U DC NMP O/U DC NMP 

   U   no U   yes U   yes 

     U   no O   no O   no 

     U   no U   yes U   no 

            

 O/U DC NMP O/U DC NMP O/U DC NMP 

   U   yes O   no O   no 

     U   yes U   no U   no 

     O   no U   no U   no 

O/U: overshoot/undershoot.    ⁄ : positive or negative DC gain.  NMP: non-minimum phase 

  

Effects of the    Actuator  

As shown in Figure 5.7, with fixed      and      inputs, a step increase in    

will feed more fuel into the SOFC and more un-reacted fuel into the CB, which cause 

initially an increase in      ,     , and    . The increased CB temperature produces 

more turbine power and accelerates the shaft speed. In turn, higher speed allows for 

more air to cool down the SOFC. Consequently,       and      both decrease due to 

the cooling effect.     also decreases as the cooling effect of the increased air supply 

exceeds the thermal energy released by the increased    input. Hence, the DC gain of 

    with respect to    is slightly negative, as shown in Figure 5.7 (d). 

The simulation results in Figure 5.7 reveal an important fact: the airflow     , 

which is strictly coupled with the shaft speed, dominates the system performance. In 

particular, without any feedback in place,       and      both decrease with respect to 

  . This is unexpected because      should, at least, be an increasing function of   . 

Therefore, proper airflow management, which can be achieved by shaft speed control 

through manipulating      [14], is required for the S-SOFC/GT system. 

Effects of the      Actuator  

As shown in Figure 5.8, with fixed    and      inputs, a step increase in      

will cause initially a decrease in     since less unused fuel will be burned in the CB. 

Hence, the shaft speed decelerates since less turbine power is produced. In turn, lower 
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speed allows for less air to be delivered into the SOFC stack, thereby increasing       

slightly. For the step-down case,       decreases due to (1) the increased airflow and 

cooling effect and (2) less thermal energy released by the reactions in the SOFC. 

Note that       has a strong control authority on      , as shown in Figure 5.8 

(b). For example, substantial decrease of       with respect to      is observed in the 

step-down case. The reason comes in two-folds. First, less fuel is reacted in the SOFC 

due to the reduced      input. Second,       decreases due to increased airflow and 

cooling effect. Because of the high sensitivity of       to     , the use of      will be 

dictated by the need to maintain constant       for the S-SOFC/GT operation. 

On the other hand, as shown in Figure 5.8 (d),      has a very limited control 

authority on    . This is because the small change of      (note that very limited      

variations are allowed in the S-SOFC/GT system) does not affect the amount of fuel 

reacted in the CB, which dominates     and the turbine power. In addition,      also 

has limited control authorities on      and  , as shown in Figure 5.8 (e) and (f). This 

is because both      and   are dictated by the turbine power. 

Effects of the      Actuator  

The generator power      has strong effects on all the investigated variables 

because      dominates the shaft speed and air supply. For example, a step increase 

in      reduces the shaft power and decelerates the shaft speed. This decreases the air 

delivered to the SOFC, thereby causing less cooling effect. Consequently, the SOFC 

temperature      , burner temperature    , SOFC power      , and net power      all 

increase, as shown in Figure 5.9. These simulation results emphasize the importance 

of airflow management for the S-SOFC/GT operation. 

 

Conclusions and Control Implications 

From the above analysis, main conclusions and control implications can be drawn 

for the proposed S-SOFC/GT system as follows. It should be noted that more insights on 

system operation and control implications will be derived in subsequent sections. 
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First, the shaft speed   and airflow      are strictly coupled and they dominate 

the S-SOFC/GT system performance, as shown in Figure 5.7 to Figure 5.9. In particular, 

as shown in Table 5.2,      and   have the same DC gains, which are directly opposite 

to the those for      ,    ,       and     . In addition, for the unstable set-points, changes 

in actuator inputs will cause system shutdown when there is no feedback control in place. 

Therefore, active shaft speed control and air-flow management are crucial for successful 

functioning of the proposed S-SOFC/GT system. 

Second, the current density input      has limited effect on   and     , as shown 

in Figure 5.8. However, it has a very strong control authority on       by regulating the 

amount of fuel reacted in the SOFC. In addition,      should be changed slowly in the S-

SOFC/GT system for safe operation of the fuel cell, as discussed in CHAPTER 4. Hence, 

     is mainly used to regulate the SOFC power in the following control design. 

Third, the fuel flow    and generator power      have strong control authorities 

on   and     . This is because that the shaft rotational dynamics is governed by the GT 

power and the generator load, as shown in Eqn. (5.3). The GT power is dictated by the 

amount of fuel burned in CB, which depends critically on the    input.  

Therefore, the control task for the S-SOFC/GT system is essentially to coordinate 

the system inputs, especially    and      (note that small/slow     variations are used to 

control      ), in an appropriate way to achieve fast and safe load following.  

5.2.3 System Analysis and Operation Challenges 

The S-SOFC/GT system investigated herein is a so-called multiple input multiple 

output (MIMO) system. We check if the system can be decoupled and perform Relative 

Gain Array (RGA) analysis [81], [83] to understand the dependencies between different 

variables. Next, we identify the input and output variables for the RGA analysis.  

Input and Output Variables 

The input variables to the hybrid system are fuel flow   , SOFC current density 

    , and the generator power     . Note that other variable sets can also be used, such as 

the SOFC power       instead of     . To perform RGA analysis, the system should be 

stable under all input-output pairings, which is not the case if      is used as an input, as 
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demonstrated in Section 5.1. In the following,      is used to substitute      as an input 

for the RGA analysis because      is strictly coupled with      [14]. 

Outputs are system variables to be varied in a certain desired manner. The system 

has only one output variable relevant for the user, i.e., the net power      [14]. However, 

fairly constant SOFC power and cell temperature need to be maintained during transients. 

Therefore,       and       are regarded as system outputs. Note that other variables such 

as the CB temperature     and shaft speed   can also be regarded as outputs. 

The input and output variables used in the following analysis are: 

  

  [          ]   (5.10) 

  [              ]   (5.11) 

  

RGA Analysis and Input/Output Dependencies 

In general, the MIMO system requires multiple control loops and the system can 

be complicated through loop interactions that result in variables with unexpected effects. 

Decoupling the variables will simplify the control design and improve the performance. 

RGA is a useful tool for the control design and analysis of MIMO systems that could be 

decoupled [83]. In particular, it provides a quantitative way to analyze the input-output 

interactions and pairings. For system that cannot be decoupled, MPC and neural networks 

[82] are better choices than RGA [83]. 

We determine if the system can be decoupled and perform RGA analysis based on 

the steady-state gain matrix [83], which is defined as follows: 

  

  [

       

   
       

]           
   

   
  (5.12) 

  

where     is the steady-state partial derivative of system output    with respect to input   . 

Beware that a RGA has to have the same number of controlled variables and manipulated 

variables. Therefore, the gain matrix   in Eqn. (5.12) should be a square matrix.  
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Given the steady-state gain matrix  , we can determine whether the system can be 

decoupled as follows. We perform singular value decomposition (SVD) on   and find the 

condition number (  ), which is defined to be the ratio of the maximum to the minimum 

eigenvalues of the SVD. The rule of thumb is that the system is too hard to decouple if 

the condition number    is greater than 50, as discussed in [83]. 

Given the gain matrix  , the RGA can be computed as follows: 

  

    [   ]   
            (5.13) 

  

where element-wise multiplication instead of normal matrix multiplication is used. 

 

Table 5.3 Singular value decomposition results for different load cases 

Load [kW] Steady-state gain matrix 
SVD 

eigenvalues 

Condition 

number 

Can be 

decoupled? 

118.7 

(low load) 
[
                     
                  
                     

] 
3.7003 

0.3778 

0.0695 

53.2652 No 

146.5 

(medium 

load) 

[
                     
                  
                    

] 
2.1217 

0.5679 

0.3541 

6.0000 Yes 

167.1 

(high load) 
[
                     
                  
                    

] 
1.7985 

0.6207 

0.2231 

8.0610 Yes 

  

Based on the steady-state simulation results in CHAPTER 4, we can calculate the 

steady-state gain matrix, the condition number    and the RGA. The results for different 

load cases are shown in Table 5.3 to Table 5.5. Note that the system is hard to decouple 

at low load case because    is too large. One explanation is that the S-SOFC/GT system 

is operated at recuperation mode at low load conditions. In this case, it can be regarded as 

an R-SOFC/GT system, in which the SOFC is the primary power source and the system 

depends on the closed mechanical/thermal couplings to achieve high efficiency [7]. Thus, 

RGA analysis is only performed for medium and high load cases in this section and the 

results are presented in Table 5.4 and Table 5.5, where each row of the RGA represents 

one of the outputs and each column represents a manipulated variable [83]. 
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Table 5.4 RGA analysis at medium load 

    =146.5 kW              

      0.9531 0.8261 -0.7791 

      -0.5852 -0.1640 1.7491 

     0.6321 0.3379 0.0300 

  

Table 5.5 RGA analysis at high load 

    =167.1 kW              

      1.6221     0.5240    -1.1461 

      -0.9253    -0.1957     2.1211 

     0.3032     0.6718     0.0250 

  

Table 5.6 General guideline for the RGA analysis [83] 

    Interpretation Possible pairing 

      Input    has no effect on output    Avoid       pair 

         affects    w/o any interaction from other loops Pair    with    

      System will be unstable whenever    is paired with    Avoid       pair 

            Effects from other loops are greater than the       pair Avoid       pair 

            The       pair has greater influence than other loops Pair    with    

      
The       pair dominates the system, but other loops 

are still affecting the control pair in the opposite direction 
Pair    with    

  

 

Table 5.6 presents the guidelines in understanding and analyzing the RGA. The 

soliciting input/output pairings are marked bold in Table 5.4 and Table 5.5. In the sequel, 

we list the remarks and control implications that can be derived from the RGA analysis. 

Note that some of those implications are similar to those in Section 5.2.2. 

 The airflow      should be used to control the SOFC temperature      . Note that the 

RGA value       at high load, which indicates that the control pair is dominant in 

the system while other loops are still affecting the pair in the opposite direction.  

 The fuel flow input    should be used to control     . Note that                in 

the medium load case.      has a dominant effect on       because it dictates      . 

Hence, we have         in Table 5.4, i.e.,      has greater effect on      than    

in the medium load case. However, this is achieved by changing       and      , both 

of which should be kept constant in the sprinter system. Hence, we use    to control 
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     because    determines the amount of fuel burned in the CB, which dictates the 

GT-generator power and net power      in the S-SOFC/GT system. 

 The current density      should be used to control the SOFC power       because it 

determines the amount of fuel reacted through electro-chemical reaction in the SOFC. 

It should be noted that      has very little effect on      since      .  

 There are strong interactions between the control loops for the SOFC temperature and 

net power. For example,      that is used to control       has a strong effect on      

because the change of      will affect     and thus the GT-generator power and net 

power significantly due to the strong cooling effect of the air. In addition,    that is 

used to control      will also affect      , especially for the high load case, as shown 

in Table 5.5. These interactions are inevitable because they are caused by the closed 

mechanical/thermal couplings of the SOFC/GT system, as shown in Figure 1.2.  

Special Transient Operation Challenges for the S-SOFC/GT System 

In the conventional R-SOFC/GT system, load following is mainly achieved by the 

SOFC while the GT-generator has very limited effect since      only contributes to about 

20% of system net power. In fact,      is primarily used to regulate the airflow for SOFC 

thermal safety management rather than load following purposes [14]. Hence, fast change 

of      is prohibited in the R-SOFC/GT system for thermal safety considerations. Hence, 

the most commonly used control strategy for the R-SOFC/GT system is to achieve rapid 

load following by the SOFC stack and use      to regulate the airflow for thermal safety 

management, as demonstrated in [14], [45] - [47], [49] - [52], [62]. 

However, the aforementioned operating strategies developed for the R-SOFC/GT 

system do not apply to the S-SOFC/GT system. The reason is that both the load following 

and thermal management are dominated by the GT-generator in the S-SOFC/GT system 

while the SOFC stack that is operated at constant temperature only provides the baseline 

power. Hence, fast load following requires rapid change of GT-generator power, which 

will in turn affect the SOFC air supply and cell temperature due to the closed couplings in 

the hybrid SOFC/GT system. Hence, it is very challenging to achieve fast load following 

while keeping constant cell temperature in the proposed S-SOFC/GT system.  
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5.3 Feedback Control Design 

In this section, transient operation strategy and control algorithms that can achieve 

fast and safe load following will be developed for the proposed S-SOFC/GT system. Both 

load step-up and load step-down transients will be investigated. We will also quantify the 

transient capabilities of the S-SOFC/GT system and compare it against the conventional 

R-SOFC/GT system.  

5.3.1 System Control Layout 

Due to the complexity and nonlinear behavior of the integrated SOFC/GT system 

[14], full state feedback controllers [81], [82] that require state observers will not be used 

here. Instead, based on our analysis in Section 5.2, a cascade feedforward-feedback (FF-

FB) type control strategy is designed for the S-SOFC/GT system.  

The schematic of the system control layout is shown in Figure 5.10. The proposed 

control strategy consists of three sub-controllers, namely, shaft speed controller, fuel flow 

controller, and current density controller. Schematics of these controllers are presented in 

Figure 5.11 to Figure 5.14. There are three feedback signals used in the proposed control, 

namely, shaft speed  , CB temperature    , and net power     . These feedback signals 

can either be measured or calculated based on other measured signals, as summarized in 

Table 5.7. For example, the SOFC power       can be calculated from the measured cell 

voltage       and the      input. Therefore, observer design is not required. 

 

Table 5.7 Measured and calculated signals for feedback control 
Feedback signal Note (measurement or calculation) 

Shaft speed   Measured by the speed sensor installed on the GT-generator 

CB temperature     Measured by a thermocouple installed on the CB 

Cell voltage       Measured by a voltage sensor 

SOFC power                        where   is constant coef. for the SOFC stack 

Net power                       

  

Before we proceed further, we can create some look-up table (LUT) functions to 

represent the static feedforward map shown in Figure 4.21. In particular, we can use the 

LUT function to express the one-to-one relation between any two variables in the vector 
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                         . For example, the function   
         denote the fuel flow 

corresponding to     while            represents the shaft speed corresponding to     . 

The proposed control strategy uses many LUTs, as shown in Figure 5.11 to Figure 5.14.  

 

 

Figure 5.10: Schematic of the control layout for the S-SOFC/GT system. The shaft speed 

controller is designed to regulate the SOFC airflow for thermal management. The fuel 

flow controller is used to regulate the fuel supply to control the CB temperature which 

dominates the GT-generator power and net power for fast load following. The feed-

forward current density controller is used to regulate      for safe SOFC operations. The 

intermediate variable     is used to coordinate the air and fuel flows to achieve fast load 

following while enforcing SOFC thermal safety management. 

 

In the following, we present design considerations for each sub-controller and the 

techniques used to handle the interactions between different control loops. In particular, 

as shown in Section 5.2, a critical challenge for the S-SOFC/GT system control design is 

to handle the strong interactions between load following (    ) and SOFC thermal (     ) 

management, which are caused by the strong thermal/mechanical couplings of the system. 

This problem is addressed as follows. As shown in Figure 5.10, based on the feedforward 

map (Figure 4.21), we coordinate the shaft speed controller (which dictates the air supply) 
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with the fuel flow controller through the intermediate feedback variable    . The burner 

temperature     is chosen because it dominates the net power. Meanwhile, it also has a 

significant effect on       because     affects the SOFC inlet air temperature through the 

HEX. Further analysis on this subject will be given in the following once we elucidate the 

objectives, feedback signals and design considerations of those sub-controllers.  

5.3.1.1 Shaft Speed Controller 

 

Figure 5.11: Schematic of the shaft speed controller. 

 

The shaft speed controller can be used to stabilize the system at the desired shaft 

speed      by controlling      for steady-state operations, as shown in Section 5.1. In the 

transient operations, the shaft speed controller is mainly used to regulate the airflow      

for thermal management. As shown in Figure 5.11, the shaft speed controller is:   

  

        (     
    

 
)                 (5.14) 

  

where      and      are the proportional and integral controller gains, respectively;      

is the desired shaft speed which can be determined based on     as follows: 

  

         (    
   )       (       

   (    
   ))  (5.15) 
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where       is a constant coefficient whose value (see Table 5.9) can be calculated as the 

slope of   over     in the feedforward map.  

The reason of using     feedback to determine      in Eqn. (5.15) is explained as 

follows. As shown in Figure 5.12, during load step-up and step-down transients, the CB 

temperature     usually exhibits responses similar to that of a first-order system. In order 

to enforce SOFC thermal safety management, the shaft speed that dominates the airflow 

should be controlled to match the CB temperature, which will in turn affect       though 

the HEX thermal feedback. Otherwise,       will increase/decrease if the shaft speed and 

the airflow supply are larger/smaller than their desired values. Therefore, by using the     

feedback expressed in Eqn. (5.15), which is further explained in Figure 5.12, coordinated 

load following and thermal management of the S-SOFC/GT can be achieved. 

 

 

Figure 5.12: Determine the desired shaft speed based on the     feedback signal. This 

helps to coordinate the air and fuel flows for fast load following and thermal safety. 
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If the feedback term in Eqn. (5.15) is not used, rapid increase/decrease of the shaft 

speed will lead to undesired results. For example, fast decrease of      or even motoring 

mode operation is required to quickly accelerate the shaft speed for load step-up transient, 

thereby resulting in a considerable power tracking error. This will also affect the thermal 

safety because of the rapid increase of air supply. For the load step-down case, a rapid 

decrease of shaft speed will cause dangerous compressor surge [84] or backflow of gas 

from the CB to the SOFC anode channel and reversal of electro-chemical reactions [14]. 

These incidents must not occur in any operation circumstance. Therefore, a rate limiter is 

applied on      in order to achieve safe operations, as shown in Figure 5.11. Note that a 

rate limiter is also applied on the generator to avoid over-ambitious change of     . 

Once the integrated system approaches steady-state, i.e., the absolute value of the 

    feedback term in Eqn. (5.15) is below a predefined threshold    
  , it is desirable to fix 

the shaft speed and the air supply because any change of   or      will in turn affect    . 

To this end, a dead-zone block is used in the shaft speed controller shown in Figure 5.11. 

This helps to improve the system responses. 

5.3.1.2 Fuel Flow Controller 

The schematic of the fuel flow controller is shown in Figure 5.13. There are three 

inputs to the controller: the desired net power     
   , the feedback signals of      and    . 

The fuel flow controller is used to control the fuel supply to the system in order to reach 

the desired CB temperature    
    quickly for fast load following because     dominates 

the GT-generator power and system net power. The fuel flow controller is realized in two 

steps, as shown in Figure 5.13.  

First, we determine the desired CB temperature    
    according to the net power 

demand     
    and the actual power output     . In particular,    

    is expressed as: 

  

   
       

   (    
   )  

    
        

    
      

   (    
   )

 
     

        

    
      

   (    
   )  

(5.16) 
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Figure 5.13: Schematic of the fuel flow controller. 

 

Therefore, the    
    formula expressed in Eqn. (5.16) helps to facilitate the system 

power response by using the      feedback signal. It should be noted that    
    should be 

controlled to keep a limited distance away from the feedforward value    
   (    

   ). This 

is because over-adjustment of     will affect the SOFC temperature. Therefore, as shown 

in Figure 5.13, a dynamic range block is used to limit the    
    output of Eqn. (5.16). In 

addition, a saturation block is applied to keep    
    within the safety range.  

Second, we determine the required fuel flow (  ) according to    
    identified by 

Eqn. (5.16) in the first step. To this end, a FF-FB type controller is developed, as shown 

in Figure 5.13. The controller can be expressed as follows: 
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   (   

   )  (      
     

 
) (   

       )  (5.17) 

  

where      ,       are the proportional and integral controller gains, respectively. 

As shown in Figure 5.13, a rate limiter is used for    to account for the fact that 

infinite rate of change in fuel flow is not possible. In addition, a dynamic range block is 

applied to keep the    command within a valid region.    is bounded from above by the 

maximum allowable fuel flow   
   . In order to avoid hydrogen starvation, the lower 

bound for    is calculated based on the net power demand     
    as follows: 

  

  
    

   

    
     

   
   

    
     

   (    
   )  (5.18) 

  

where     is a constant coefficient of the SOFC stack;      is the maximum allowable 

SOFC    ratio to avoid fuel (hydrogen) starvation [14]. 

5.3.1.3 Current Density Controller 

 

Figure 5.14: Schematic of the current denstiy controller. 

 

The schematic of the current density controller is presented in Figure 5.14. Recall 

that only small and slow      variations are allowed in the proposed S-SOFC/GT system. 

Therefore,      is determined by the feed-forward command as follows: 

  

         
   (    

   )  (5.19) 
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Table 5.8 Limiters used in the proposed control strategy 

Parameter Value Note 

System net power (user demand) 

Pnet_rate_ub 150 [        ] Rate limiter (UB) for      user-demand 

Pnet_rate_lb -150 [        ] Rate limiter (LB) for      user-demand  

Shaft speed controller (Figure 5.11) 

N_rate_ub 1.25e4 [         ] Rate limiter (UB) for      

N_rate_lb -6.25e3 [         ] To avoid gas backflow or comp. surge 

Pgen_rate_ub 400 [        ] Generator power rate limiter (UB) 

Pgen_rate_lb -400 [        ] Generator power rate limiter (LB) 

Fuel flow controller (Figure 5.13) 

k_Tcb_ub 1.005 [-] Dynamic range limiter (UB) for    
    

k_Tcb_lb 0.995 [-] Dynamic range limiter (LB) for    
    

Tcb_des_ub 1480 [ ] Safety bound (UB) for    
    

Tcb_des_lb 1000 [ ] Safety bound (LB) for    
    

Wf_rate_ub 300 [       ] Fuel flow rate limiter (UB) 

Wf_rate_lb -300 [       ] Fuel flow rate limiter (LB) 

Wf_max 85.0 [       ] Maximum fuel flow rate 

Current density controller (Figure 5.14) 

Icom_rate_ub 200 [          ]      rate limiter (UB) for safe operation 

Icom_rate_lb -200 [          ]      rate limiter (LB) for safe operation 

  

 

Table 5.9 Designed controller constants 

Parameter Value Note 

Shaft speed controller (Figure 5.11) 

      188.13 [       ] Constant coefficient to calculate      

   
   2.5 [ ] Dead-zone threshold for     feedback 

     2e-2 [        ] Shaft speed controller proportional gain 

     4e-2 [        ] Shaft speed controller integral gain 

Fuel flow controller (Figure 5.13) 

    1.31e-2 [           ] Coef. for   
    to avoid    starvation 

     0.92 [-] The maximum allowable FU ratio  

      0.15 [          ] Fuel flow controller proportional gain 

      2e-3 [          ] Fuel flow controller integral gain 

  

 

Table 5.8 summarizes the range and rate limiters used in our control strategy. The 

limiter applied on the requested net power is because that a large step change of the net 

power demand is impractical and will cause numerical issues in our Simulink model. A 
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lower rate limiter is applied on the shaft speed to avoid backflow of gas from the CB to 

the SOFC and the dangerous compressor surge during load step-down operation. Limiters 

for the fuel flow controller are explained in Section 5.3.1.2. In addition, a rate limiter is 

applied on      (see Figure 5.14) to limit      variation for safe SOFC operations.  

The designed controller constants are summarized in Table 5.9. It should be noted 

that the proposed cascade FF-FB control strategy relies on the feedforward map (i.e., the 

LUTs in Figure 5.11 to Figure 5.14) to achieve high system efficiency.  

5.3.2 Simulated Transient Responses 

In this section, the proposed cascade controller is investigated through numerical 

simulations for both load step-up and load step-down transients. In order to evaluate the 

effectiveness of the control strategy over the entire load range, the load step-up transient 

from       to       and the load step-down transient from       to       are investigated 

in this section. Load transients for other power levels are evaluated in Section 5.3.4. 

5.3.2.1 Load Step-Up Transient Responses 

The simulation results for load step-up operation from       to       are given in 

Figure 5.15 to Figure 5.18. In particular, system inputs and the SOFC FU ratio are given 

in Figure 5.15 while the SOFC thermal transients are shown in Figure 5.16. The power 

responses are shown in Figure 5.17 while other variables are shown in Figure 5.18. 

During the load step-up transient, a significant amount of fuel    is supplied into 

the system, which helps to increase the CB temperature     and the turbine power       

rapidly for fast load following, as shown in Figure 5.15 and Figure 5.17. Consequently, 

more generator power      and net power      can be produced very quickly to meet the 

desired net power demand, as shown in Figure 5.17. We see that the power settling time 

is about 5 seconds for a load step-up operation from       to      . 

As shown in Figure 5.18 (c), a considerable amount of turbine power is used to 

accelerate the shaft speed. This part of energy will be stored in the form of kinetic energy 

in the shaft. Therefore, some obvious shortages of net power output are resulted during 

the short period of power transient. In practice, this deficit power can be provided by a 
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battery or capacitor pack. Let       and      
     denote the actual and normalized power 

tracking error, respectively. They can be computed as follows: 

  

               
         

               
   ⁄   (5.20) 

  

As shown in Figure 5.18 (d), the maximum absolute values for       and      
     

during the power transient are 66.9KW and 39.1%, respectively.  

The current density      varies slowly in a limited range in order to achieve safe 

SOFC operation. Note that the SOFC power       increases by about 10kW in the short 

period of power transient, as shown in Figure 5.17. This is due to the quick burst of fuel 

supply shown in Figure 5.15, which elevates the voltage       because of the increased 

species concentrations, as shown in the Nernst equation in Eqn. (2.2).  

Meanwhile, the proposed controller also accelerates the shaft speed and delivers 

more airflow      to match the increased     to limit the SOFC temperature variations. 

As shown in Figure 5.18, the proposed controller achieves very good performance in 

SOFC thermal management. In particular, the difference between the actual       and the 

setting-value      is limited in     while the       changing rate (the absolute value) is 

less than 5        , as shown in Figure 5.16 (a) and (b), respectively.       takes about 

380 seconds to settle, this is much faster than the R-SOFC/GT system (see Figure 5.23). 

Table 5.10 summarizes the performance of the proposed controller during a load 

step-up transient from the baseline power to the peak power in the S-SOFC/GT system.  

 

Table 5.10 Summary of the load step-up operation 
Performance metric parameters Units Value 

The 2% net power settling time          [   ] 5.3 

The maximum (absolute value) of       [  ] 66.9 

The maximum (absolute) value of      
      [%] 39.1 

SOFC temperature settling time           [   ] ~380 

Maximum (absolute value)       rate  [       ] ~4.1 
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Figure 5.15: System inputs and SOFC FU ratio during load step-up operation. 

 

 

Figure 5.16: SOFC thermal transients during load step-up operation. 
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Figure 5.17: Power responses during load step-up operation. 

 

 

Figure 5.18: Load step-up transient responses. 
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5.3.2.2 Load Step-Down Transient Responses 

The simulation results for load step-down operation from       to       are given 

in Figure 5.19 to Figure 5.22. In particular, SOFC performance variables are presented in 

Figure 5.19 while the thermal transients are shown in Figure 5.20. Figure 5.21 shows the 

power responses during the short period of power transient.  

During the load step-down transient, the current density      is mainly controlled 

according to the feedforward map. Hence, it varies slowly in a limited range, as shown in 

Figure 5.19. Recall that the CB temperature     dominates the GT-generator power and 

net power. Thus, fast load reduction operation requires less fuel to be burned into the CB. 

Hence, the system fuel supply    decreases extremely fast to the minimum allowable    

input, which is determined by the      command through Eqn. (5.18) in order to avoid 

hydrogen starvation. As shown in Figure 5.19, the SOFC FU ratio reaches      rapidly. 

Both     and the turbine power       decrease as less fuel is fed into the system, 

as shown in Figure 5.22 and Figure 5.21, respectively. Thus, less      can be drawn from 

the generator, which reduces the net power      for fast load following. The settling time 

for      response is around 7 seconds, as shown Figure 5.21. This is a bit longer than the 

load step-up case because a smaller (absolute value) shaft speed rate limiter is used. 

It should be noted that some of the kinetic energy stored in the GT-generator shaft 

will be released when decelerating the GT shaft. This will deteriorate the load following 

performance. As shown in Figure 5.22 (d), the maximum absolute values for       and 

     
     during power transient are 64.0KW and 61.7%, respectively. The over-produced 

power can be stored in a battery or ultra-capacitor pack in practice.  

The SOFC power       is maintained in a relatively constant level because of the 

     controller. It should be noted that       decreases by about 10kW during the short 

period of power transient, as shown in Figure 5.21. This is due to the quick reduction in 

the fuel supply (see Figure 5.19), which reduces the SOFC voltage       because of the 

reduced species concentrations, as shown in Eqn. (2.2). 

The proposed controller also achieves very good performance in keeping constant 

cell temperature, as shown in Figure 5.20. In particular, the difference between       and 

     is limited in     while the       changing rate is less than 4        . 
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Figure 5.19: System inputs and SOFC FU ratio during load step-down operation. 

 

 

Figure 5.20: SOFC thermal transients during load step-up operation. 
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Figure 5.21: Power responses during load step-down operation. 

 

 

Figure 5.22: Load step-down transient responses. Note that the negative value in figure 

(c) indicates that kinetic energy stored in the shaft is released to the system. 
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Table 5.11 shows the summary of the proposed controller performance for the 

load step-down operation from       to       in the S-SOFC/GT system.  

 

Table 5.11 Summary of the load step-down operation 
Performance metric parameters Units Value 

The 2% net power settling time          [   ] 6.9 

The maximum (absolute value)      error     
    [  ] 64.0 

The maximum (absolute) value of      
     [%] 61.7 

SOFC temperature settling time           [   ] ~180.0 

Maximum       rate (absolute value) [       ] ~3.8 

  

 

5.3.3 Comparison with the Conventional R-SOFC/GT System 

Figure 5.23 and Figure 5.24 present the response of a “state-of-the-art” controller 

for a conventional R-SOFC/GT system with a nominal power of 220 kW [14]. Table 5.12 

summarizes the system performance. As shown in the figures, we see that the net power 

response takes around 60 seconds and 80 seconds to settle for load step-up and load step-

down operations. The SOFC thermal transient takes even longer, i.e., more than several 

hours to settle. This is because the slow SOFC thermal dynamics is excited very strongly 

by noticing that the SOFC temperature       varies by about 100K and 80K for the load 

step-up and load step-down transients, respectively. 

 

Table 5.12 R-SOFC/GT system versus S-SOFC/GT systems 
Transients  Parameters  R-SOFC/GT S-SOFC/GT 

Load Step-

up 

Power settling time ~ 60 seconds 5.3 seconds 

      settling time ~2.8 hours ~6.0 minutes 

SOFC temperature ~100K variations |      |     

Load Step-

down 

Power settling time ~ 80 seconds 6.9 seconds 

      settling time >10 hours ~3.0 minutes 

SOFC temperature ~80K variations |      |     
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Figure 5.23: R-SOFC/GT system response to load increase (22% to 100%) [14]. 

 

 

Figure 5.24: R-SOFC/GT system response to load decrease (100% to 22%) [14]. 
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Compared to the R-SOFC/GT system, the transient capabilities of the proposed S-

SOFC/GT system have been improved significantly, as shown in Table 5.12. In particular, 

the power response for the S-SOFC/GT system is about 10 times faster than that of the R-

SOFC/GT system. The reason is that dynamic load following is mainly accomplished by 

taking full advantage of the fast GT-generator. In addition, large excitation of the slow 

SOFC thermal dynamics can be avoided by keeping fairly constant cell temperature. 

5.3.4 Evaluation of the Proposed Control Strategy 

The proposed control strategy is further evaluated by using a typical load profile 

consisting of multiple load step-up and step-down transients over multiple power levels. 

The simulation results for power responses and SOFC thermal transients are presented in 

Figure 5.25 and Figure 5.26, respectively. Table 5.13 summarizes the results. 

 

Table 5.13 Summary of the load following performance 
Performance metric parameters Units Value 

The maximum (absolute value)      error     
    [  ] 61.59 

The maximum normalized      error      
     [%] 56.80 

Variation range of        [ ] [-1.0, 1.0] 

Maximum       rate (absolute value) [       ] 3.64 

System efficiency      over the load profile [%] 49.25 

  

As shown in Figure 5.25, good agreement between the desired net power     
    

and the actual net power output      has been achieved. In particular, the load following 

is mainly accomplished by the generator power      while the SOFC power       varies 

in a very limited range (|      |      ). The maximum absolute values for       and 

     
     are 61.6KW and 56.8%, respectively. A battery or capacitor pack can be used to 

compensate the net power error. The overall system efficiency over the entire load profile 

is about 49.25%, which is close the steady-state value. The controller also achieves very 

good performance in SOFC thermal management. The difference between       and the 

setting-value      is limited in     while the       changing rate (the absolute value) is 

less than 4        , as shown in Figure 5.26. Hence, the S-SOFC/GT system achieves 

far superior load following performance than the conventional R-SOFC/GT system and 

can be used as a primary propulsion system for mobile applications. 
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Figure 5.25: Power responses during dynamic load following. 

 

 

Figure 5.26: SOFC thermal transients during dynamic load following. 
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CHAPTER 6 

Conclusions and Future Work 

6.1 Conclusions 

In this dissertation, we mainly focus on developing control and system integration 

solutions to achieve fast and safe load following operation of the SOFC/GT system for 

mobile applications. Two types of systems, i.e., the conventional recuperating-SOFC/GT 

system and the proposed sprinter-SOFC/GT system, have been studied through model-

based methodologies. The main work and results are summarized as follows: 

 A detailed dynamic model of the SOFC/GT system is developed. This model includes 

a tubular SOFC stack, a GT-generator assembly consisting of a compressor, a turbine 

and a generator, a catalytic burner and a counter-flow heat exchanger. The modeling 

principles and governing equations for the components are presented and the system 

model is derived by integrating models of these individual components. In the SOFC 

sub-model, the detailed spatial distribution of parameters in the SOFC is considered 

using the finite volume approach. Electro-chemical reactions and mass and energy 

balances are incorporated, and five temperature layers are assumed in the SOFC. The 

catalytic burner sub-model is developed by using mass and energy conservation and 

the ideal gas law. The heat exchanger model is based on the approach commonly used 

in thermodynamics. The turbomachinery model incorporates the shaft dynamics, the 

compressor and turbine model. Moreover, the SOFC model and the turbomachinery 

model are validated against experimental data. The dynamic SOFC/GT system model 

lays foundation for subsequent design and control studies. 

 The generator/motor (G/M) dual mode operation is analyzed for improved transient 

performance of the conventional R-SOFC/GT system. The G/M dual mode operation 

and its control and design implications are investigated through load step-up and load 
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step-down case studies of a 5kW-class APU system. Active shaft load control is used 

to manage the load transients by: (a) pre-conditioning of G/M power for load step-up 

transients; and (b) absorbing the excessive power through motoring operation for load 

step-down transients. Feedback control and optimization algorithms are proposed for 

the G/M dual mode operation. Numerical simulations are carried out to demonstrate 

their effectiveness and computational efficiency. By taking full advantage of the G/M 

dual mode operation, better trade-offs between power tracking and thermal safety can 

be achieved, power and energy requirements for the energy storage (battery) can be 

reduced, and overall system performance can be enhanced. 

 For the proposed sprinter-SOFC/GT system, operation strategy, design procedure and 

steady-state performance are investigated. In particular, through model-based analysis, 

an operational strategy is derived to coordinate the system inputs to maintain constant 

SOFC power and temperature over the entire load range. Based on this strategy, a 

system design procedure, which helps to determine component sizes and the reference 

steady-state operation line from the given power requirements, is developed. Feasible 

operating regimes and steady-state performance are studied for the sprinter system as 

well. The “actual” operating envelope is determined by integrating the constant SOFC 

power and temperature constraints with those pertinent to different safety factors. A 

constrained optimization problem is formulated to determine the static feed-forward 

map, which is used to schedule the actuators to achieve maximum fuel efficiency for 

different power demands. Finally, the S-SOFC/GT system is compared with the R-

SOFC/GT system in terms of operation envelope and steady-state performance. 

 Stability analysis and feedback control design are performed for the new S-SOFC/GT 

system. The BIBO stability with respect to the generator load is investigated through 

numerical simulations and linearized system analysis of a simplified “2-state” model, 

which captures the dominating dynamics of the full-order model. Shaft speed control 

is proposed to stabilize the system at desired operating points. Meanwhile, open-loop 

analysis and relative gain array (RGA) analysis are used to gain insights on system 

transients, loop interactions and operation challenges. Based on these analysis and the 

characteristics of the S-SOFC/GT system, a cascade feedforward-feedback control 

strategy is developed. It is shown, through numerical simulations, that by taking full 
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advantage of the GT-generator‟s fast dynamic capabilities, the proposed S-SOFC/GT 

system could achieve far superior load following performance, when compared with 

the “state-of-the-art” results for the conventional R-SOFC/GT system. 

6.2 Future Work 

The work presented in this dissertation can be extended in several directions: 

 Model Validation  

The integrated dynamic model needs to be validated in a system level so that the 

approaches and solutions developed in this dissertation can be implemented for practical 

applications. Although key sub-models such as the SOFC and turbomachinery have been 

validated against experiment data available in the literature, the integrated system model 

has not been verified in a system level due to the lack of experiment data. Therefore, one 

important future work is to acquire system level experiment data from either a test facility 

or a hardware-in-the-loop (HIL) simulation facility [20]. In doing so, we can validate the 

model and calibrate the parameters using both steady-state and transient experiment data. 

System identification techniques can be used to calibrate these parameters. Note that it is 

important to validate the air/gas flow pressure and temperature distributions and the inter-

connections between different components.  

 

 Development of a Control-Oriented Model 

Currently, the integrated SOFC/GT system model comprises 49 coupled nonlinear 

ordinary differential equations as well as many nonlinear functions. This limits options 

for system design and control analysis. Dynamic models that capture the key dynamic 

characteristics of the hybrid SOFC/GT system but have reduced complexity are preferred 

to facilitate model-based design and analysis. There are several approaches focusing this 

subject in the open literature. For example, model reduction has been achieved by using 

the linear parameter varying (LPV) structure of the SOFC in [75]. Other authors also 

developed reduced-order models by assuming uniform pressure/temperature distributions 

inside the SOFC, as explained in [47]. However, these over-simplified models produced 
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considerable errors [47]. A promising approach for model reduction is to use descriptive 

functions [76], [77] for the temperature and current distributions in the SOFC. 

 

 Model Expansion and Augmented System Configuration  

 Additional balance-of-plant components such as the on-board fuel processing and 

supply system might pose even more challenges with respect to the system operation and 

performance. Integrating these components into the SOFC/GT system and examining the 

performance of the augmented system could be a significant extension to this work. For 

example, the S-SOFC/GT system can be augmented by using bypass valves and/or the 

additional CB fuel supply system. In this case, the model needs to be expanded to reflect 

the augmented system configuration. Moreover, operational strategy (to maintain fairly 

constant SOFC power/temperature), design procedure, and operation envelope associated 

with the augmented system need to be developed. In addition, control analysis and design 

should be investigated for the augmented system.  

 

 Further Control Analysis  

Fast load following and thermal management for the hybrid SOFC/GT system are 

investigated in this work. However, there might be some physical constraints such as the 

generator power/torque constraints that may dictate the dynamic operation of the hybrid 

SOFC/GT systems for practical applications. In this case, model predictive control [74] 

could be used to solve these problems. Moreover, other control issues might arise if the 

system is integrated with balance-of-plant components. Understanding and mitigating the 

control issues are important for future studies. 

 

 

 



  

132 

 

APPENDICES 

 

 



  

133 

 

APPENDIX A  

Specifications of the 5kW SOFC/GT-based APU System 

Key parameters of the 5kW class SOFC/GT-based APU system is summarized in 

Table APX.1. The SOFC stack consisting of 60 tubular cells (see Section 2.1) generates 

5.60kW electric power at a temperature of 1020K. Figure APX.1 presents the normalized 

GT map, which is acquired from the GasTurb software [73]. The similarity principle [25] 

is used to scale the original 100kW-class GT map [14], [73] for this specific APU system. 

In addition, constant isentropic efficiencies, i.e.,        and       , are assumed 

for the compressor and turbine for simplifications. The HEX is sized to keep the SOFC 

inlet air temperature at around 900K at full load condition.  

The SOFC/GT-based APU system achieves around 45% efficiency over a power 

range from 3.50kW to 6.10kW. The power split ratio         ⁄  is about 10%. This value 

is less than that of large size systems [4]. For example, the 220kW SOFC/GT system in 

[14] has a         ⁄  ratio of around 20%. 

 

Table APX.1 Key parameters of the SOFC/GT-based APU system. 
Components Parameters SOFC/GT-based APU 

SOFC Stack 

Cell number       [-] 60 

SOFC temperature       [K] 950 - 1020 

SOFC power       [kW] 3.20 - 5.60 

Current density      [     ] 1200 - 2100 

Fuel utilization    [-] ~85% 

GT-Generator 

(@ design point) 

Compressor pressure ratio    [-] ~2.70 

Compressor flow    [       ] 20.0 

Turbine inlet temperature [K] 873K (600 ) 

Turbine expansion ratio    [-] ~2.60 

Corrected turbine swallowing capacity 

       [                ]  
0.35 

Designed shaft speed [RPM] 3.80e5 

Effective shaft inertia   [     ] 1e-4 

HEX HEX efficiency  68.7% 

Integrated 

System 

Net power range (SS-line) [kW] 3.50 - 6.10 

Net power efficiency (SS-line) [-] ~45.0% 
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Figure APX.1: Normalized compressor and turbine maps for the 5kW-class SOFC/GT-

based APU system. The GT maps are acquired from [14]. 
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APPENDIX B  

Steady State Performance of the Recuperating-SOFC/GT 

System 

First, we identify the feasible operation envelope of the R-SOFC/GT system (see 

Table 4.2 for its specifications) with boundaries determined by considering safety factors 

in Section 4.4.1. Next, we investigate the off-design performance and part-load operation 

within the valid operation regime. Influence of varying fuel utilization (  ) coefficients 

and the maximum permissible CB temperature will also be studied. 

C. 1. Feasible Operation Regime 

The R-SOFC/GT system has three inputs: fuel flow     current density     , and 

generator load     . Note that other variable sets are also valid, such as the SOFC power 

      instead of the SOFC current     , or the generator torque instead of the generator 

power. With any combination of input variables, there are three degrees of freedom for 

part-load operation [14]: (1) variation of the airflow      through shaft speed control by 

manipulating     ; (2) variation of the fuel flow   ; and (3) variation of the SOFC fuel 

utilization (  ). Note that the fixed    constraint, e.g., constant    ratios of 80% and 

85% were used in [69] and [14], respectively, used by many references will be relaxed 

here to present a complete picture for the conventional R-SOFC/GT system. 

At certain operation regions (i.e., certain combinations of     ,   , and   ), the 

hybrid system might be damaged due to safety issues discussed in Section 4.4.1. A matrix 

of steady-state simulations with the designed R-SOFC/GT system has been performed to 

identify the feasible operation region with constraint values listed in Table 4.4. As shown 

in Figure APX.2, various constraints have been applied to identify the feasible operation 

region for different    coefficients in the range of [0.75, 0.90]. Figure APX.2 (b) shows 

the 3D feasible operation region with the low/high airflow boundaries and different fixed-

   slices. The feasible region shifts to high airflow region as    decreases. The reason is 

that more unused fuel is burned in the CB to increase the turbine power as    decreases, 

thereby delivering more air to the SOFC. Detailed discussions of the 2D operation region 
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for fixed    will be presented in the following section. 

 

 

 

Figure APX.2: Feasible operation region for the R-SOFC/GT system. 

 

C. 2. System Performance with Fixed Fuel Utilization 

Without loss of generality, we take a fixed FU ratio of 75% as an example and 

evaluate the system performance in this section. Figure APX.2 (a) presents the operation 
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envelope with following issues observed to occur at certain regimes: 

 Overheating appears for high fuel flow and low airflow. At this regime, simulations 

reveal that the temperature is steadily ramping beyond the valid region and causing 

compressor surge. This phenomenon determines the low airflow boundary. It should 

be pointed out that the CB temperature upper bound    
   also affects the low airflow 

boundary, as will be discussed in the next section. 

 For the case of low fuel flow and high airflow, the SOFC is cooled down strongly, 

thereby leading to low cell voltage and efficiency. It is not recommended to operate 

in this regime due to the risk of cell cracking caused by low SOFC temperature. For 

the R-SOFC/GT system here, the region with a voltage less than 0.45V is considered 

invalid. This determines the high airflow boundary of the feasible region. 

 The GT speed should be maintained in the desired range for safety considerations. 

However, GT over-speed is likely to occur for extremely high airflow regions, as 

shown in Figure APX.2. In order to ensure proper GT functioning, the regime where 

the shaft speed lies outside the permissible range [   ,    ] is blinded out. 

 

 

Figure APX.3: Temperature related variables for fixed    in the recuperating system. 
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Figure APX.3 shows the temperature related variables regarding component over-

heating, cell cracking and thermal fatigue. The SOFC temperatures (i.e., the mean value 

and the maximum/minimum local values) and the turbine inlet and outlet temperatures 

have similar distributions. All of them are decreasing functions of      due to the cooling 

effect and increasing functions of   . The reason is that more fuel is reacted in the CB to 

raise the burner/turbine temperatures and the SOFC inlet air temperature, thereby leading 

to increased cell temperatures. As shown in Figure APX.3 (d), as the absolute values of 

air and fuel flow increase, the SOFC temperature gradient increases due to the increased 

thermal energy produced by stronger electro-chemical reactions. 

Figure APX.4 shows the power related variables. As shown in Figure APX.4 (a), 

the SOFC power       is an increasing function of   , and a decreasing function of      

due to the reduced       caused by the cooling effect. The compressor power       (see 

Figure APX.4 (b)), which has a similar distribution to the shaft speed  , increases with 

the air and fuel flows. Note that   is closely related to the airflow; therefore, the contour-

lines in Figure APX.5 (d) are steep. Turbine power       (Figure APX.4 (c)) increases 

with the air and fuel flows due to the increased turbine inlet pressure     (    =    , see 

Figure APX.5 (e)). As shown in Figure APX.4 (d) and (e), the generator load      and 

the net power      have similar distributions, i.e., both of them are increasing functions 

of    and decreasing functions of     . As shown in Figure APX.5 (f), the power split 

ratio         ⁄  increases with respect to     . High efficiency      (Figure APX.4 (f)) is 

achieved at low airflow regions due to high SOFC and turbine temperatures. 

Figure APX.5 shows other operational variables. The current density      (Figure 

APX.5 (b)) is only a function of   , as they are coupled by the fixed    ratio. Similar to 

the result in [14], the cell voltage       (Figure APX.5 (a) and Figure APX.6) increases 

when going to part-load at high temperature. The reason is that the voltage loss       is 

closely related to the current     , which is proportional to the fuel flow    for fixed   . 

Meanwhile, the open circuit voltage      increases with    with a slope proportional to 

       , as shown in the Nernst equation in Eqn. (2.2). Hence,      has a smaller slope 

relative to    than      . Consequently, the voltage       decreases with   , as shown 

in the contour-plots in Figure APX.6. The air excessive ratio    increases when going to 



  

139 

 

part-load, due to the increased       ⁄  ratio [21], as shown in Figure APX.5 (c). 

 

 

Figure APX.4: Power related variables for fixed    in the recuperating system. 

 

 

Figure APX.5: Other operational variables for fixed    in the recuperating system. 
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Figure APX.6: High cell voltage achieved when going to part-load at high temperature 

for different fuel utilization cofficients. 

 

C. 3. Influence of Varying Fuel Utilization Coefficients 

The effect of varying    ratios on the system performance, which has not been 

systematically studied in the literature (e.g., [14], [21] and [69]), will be investigated in 

this section. We first study the “local” effect of varying    ratios by fixing the fuel flow 

(e.g.,          ⁄  in the case study) and explore the “global” behavior by examining 

the 3D contour-slice plots (see Figure APX.10) of different performance indices. 

Figure APX.7 shows the temperature related variables. As shown in the figure, 

the SOFC temperatures, including the mean values and minimum/maximum local values, 

have similar distributions, i.e., the constant temperature contour-lines are nearly parallel 

to the low/high      boundaries. Both the turbine inlet/outlet temperatures increase when 

reducing    since more fuel is burned in the CB, as shown in Figure APX.7 (e) and (f), 

respectively. The maximum local cell temperature gradient (Figure APX.7 (d)) decreases 

when reducing    due to (1) the reduced degree of electro-chemical reaction, i.e., less 

fuel is reacted in the SOFC stack; and (2) the increased air flow which helps to smooth 

the spatial temperature distributions along the SOFC. 

The power related variables and other variables are shown in Figure APX.8 and 

Figure APX.9, respectively. As    decreases, the SOFC power       (Figure APX.8 (a)) 

slightly decreases due to the reduced current      as in Figure APX.9 (b). Turbine power 
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      (Figure APX.8 (c)) increases significantly when reducing    since more unused 

fuel is burned in the CB to elevate the turbine inlet temperature as in Figure APX.7 (e). 

The compressor power       (Figure APX.8 (b)), which is dominated by the shaft speed 

  (Figure APX.9 (d)), increases when reducing    since more airflow is delivered due to 

the increased      . Hence, the generator power      (Figure APX.8 (d)) increases as    

decreases. Consequently, the net power      (Figure APX.8 (e)), the net efficiency      

(Figure APX.8 (f)), and the power split ratio         ⁄  (Figure APX.9 (f)) all increase as 

   decreases. As shown in Figure APX.9 (a), the cell voltage       increases if reducing 

   due to (1) increased open circuit voltage      due to less product concentrations in 

the SOFC cathode channel; and (2) reduced voltage loss       due to the reduced current 

density      as shown in Figure APX.9 (b). 

 

 

Figure APX.7: Temperature related variables for fixed    in the recuperating system. 

 

The “global” picture of the system performance over the 3D operation envelope is 

presented in the form of contour-slice plots in Figure APX.10. The same conclusions as 

those drawn in the previous section can be made for each fixed-   slice. 
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Figure APX.8: Power related variables for fixed    in the recuperating system. 

 

 

Figure APX.9: Other operational variables for fixed    in the recuperating system. 
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Figure APX.10: The global picture of the system performance over the 3D feasible 

operation region. 

 

The effects of varying   s on the “global” performance are similar to those for 

fixed    inputs, i.e., the “local” behavior shown in Figure APX.7 to Figure APX.9. The 

SOFC power       in Figure APX.10 (a) slightly increases as    increases due to the 

increased     . As    decreases, the turbine power       increases due to the increased 

turbine inlet temperature, as shown in Figure APX.10 (e). Consequently, the generator 

power      and the power split ratio         ⁄  increase significantly when reducing   , 

as shown in Figure APX.10 (b) and (d). As shown in Figure APX.10 (c), the efficiency 

     slightly increases as    decreases. Therefore, the optimal set-points are located at 

the low    regions, as shown in Figure APX.11 for the case of    
   equals 1500K. As 

shown in Figure APX.10 (f), the maximum local       decreases when reducing    due 

to the reduced current density which weakens the SOFC electro-chemical reactions and 

increased airflow which smoothes the cell temperature distributions. 
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C. 4. Influence of Constraint Values 

 

 

Figure APX.11: Effect of the burner temperature upper bound value on the feasible 

operation region and optimal set-point. 

 

Constraint values listed in Table 4.4 affect the feasible operation region of the R-

SOFC/GT system. Intensive simulations indicate that the burner temperature upper bound 

   
   has the most significant effect on the operation envelope among all these constraints.  

For example, the    
   value will decrease from 1500K to 1223K (i.e., 950 ) if the multi-

stage high-temperature CB (see Figure 2.12) is replaced with a conventional single-stage 

metallic CB [39]. Then, the 3D feasible operation region will shrink as in Figure APX.11 

(d) because the low airflow boundary for the low    and high    regions will be limited 

by the    
   constraint, as shown in Figure APX.11 (c).  
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The value    
   will also affect the location of the optimal set-points. For example, 

as the    
   constraint becomes active, the optimal set-point for          ⁄  is shifted 

from Figure APX.11 (a) to Figure APX.11  (b). The optimal steady-state operation line in 

Figure APX.11 (d) is also shifted. The maximum achievable net power is reduced from 

187.90kW to 180.90kW as    
   decreases from 1500K to 1223K. 

 

C. 5. Optimal Steady-State Performance of the Recuperating System 

 

 

Figure APX.12: The R-SOFC/GT system performance along the optimal operation line. 

 

Figure APX.12 presents the R-SOFC/GT system performance over the optimal 

steady-state operation line. Net power      varies from 78.8kW to 187.9kW. As shown in 

Figure APX.12 (a), all the system inputs, i.e.,   ,      and     , are very close to linear 
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increasing functions of     . This is the same as those listed in our previous studies [7]. 

All the powers, e.g.,      , and      , air flow rates, e.g.,      and   , and temperatures, 

e.g.,     ,      ,     and    , increase as the net power demand      increases, as shown 

in Figure APX.12 (b), (c) and (d), respectively. Both the SOFC power       (      varies 

from 57.5kW to 133.9kW) and the SOFC temperature       (      varies from 1051K to 

1140K) vary significantly over the entire load range. In addition, as      increases, both 

the compressor outlet pressure     and the turbine inlet pressure     (       ) increase 

due to the increased shaft speed  , as shown in Figure APX.12 (g). 

Fairly constant net efficiency     , i.e.,                , has been achieved 

over the entire load range, as shown in Figure APX.12 (e). This observation is the same 

as our previous finding in [7]. Meanwhile, relatively constant power split ratio         ⁄  

has been achieved over the entire load range, i.e., it slowly increases from 27.0% to 

28.7% as      increases, as shown in Figure APX.12 (i). As shown in Figure APX.12 (f), 

the most efficient operation points are located in the plane where        because 

more fuel is burned in the CB to elevate the temperatures and thus the power production. 

As shown in Figure APX.12 (f), the air excessive ratio   increases when going to part-

load operations. This is the same as the results reported in [14], [21]. The maximum local 

cell temperature gradient      , as shown in Figure APX.12 (h), increases with respect to 

     due to (1) increased degree of electro-chemical reactions; and (2) reduced    ratio 

(note that a large    ratio will help to smooth the SOFC temperature distributions). 
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