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ABSTRACT 

The combinatorial binding of transcription factors to enhancers controls 

unique patterns of gene expression to establish cell fates and body plans. 

Enhancers regulated by the Hedgehog (Hh) signaling morphogen integrate inputs 

from the bifunctional transcription factor Ci to activate or repress the expression 

of target genes in response to Hh signaling. Despite the essential role played by 

this pathway during organogenesis, it is not clear how Hh/Ci-regulated enhancers 

control different transcriptional outputs in different developmental contexts. Here, 

I examined the role of Ci binding sites in four Hh-regulated enhancers of dpp, 

patched (ptc), stripe and wingless. Counterintuitively, high-affinity enhancers with 

consensus Ci binding motifs respond in more restricted domains, whereas low-

affinity enhancers with Ci site variants respond more broadly to Hh signaling. To 

further study the relationship between Ci binding sites and enhancer function, I 

characterized the role of predicted binding motifs in newly identified enhancers in 

the ptc locus. This analysis doubled the number of known Hh/Ci-regulated 

enhancers in Drosophila, and revealed that the vast majority of these enhancers 

require sites that deviate from the optimal Ci site to respond to Hh in different 

contexts. To better understand how the Ci binding site composition of these 

enhancers produce specific transcriptional outputs in vivo, I measured the 

transcriptional output of isolated Ci site variants. Using synthetic Hh-regulated 

enhancers with defined inputs, I found that certain Ci binding motifs are regulated 

in a Hh/Ci-independent manner. These findings may explain previous 



 xi 

unexpected results, and suggest that some Ci sites may be under complex 

selective pressures to balance inputs from activator Ci, repressor Ci, and other 

transcription factors with overlapping binding preferences. Competition for shared 

or partially overlapping binding sites might provide tissue-specificity to Hh 

signaling. 
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CHAPTER 1 

 

Introduction 

How do complex organisms arise from single-celled embryos? How are 

different cell-types specified during development? These fundamental questions 

are not fully answered yet, although much progress has been made to improve 

our understanding of the molecular mechanisms that control basic developmental 

processes. This dissertation aims to better understand how distinct sequences of 

DNA encode the critical information that facilitates proper development. 

1.1 Enhancer history 

The genome contains all the information to create functional organisms. 

The detailed instructions that are required to produce optimal amounts of proteins 

at the right time and place are arranged into units or modules known as cis-

regulatory elements (Wittkopp and Kalay, 2012). Enhancers and core promoters 

are among these regulatory non-coding sequences (Levine et al., 2014). For 

many years, a gene-centric (coding sequence) view of transcription 

predominated, and non-coding sequences were neglected to a secondary role. In 

the last ten years, the availability of many sequenced genomes and the 

development of ground-breaking high-throughput sequencing technologies have 

increased the general awareness that non-coding regions of the genome play 

critical roles in transcription, disease and morphological diversity (Levine, 2010; 
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Levo and Segal, 2014; Ong and Corces, 2011; Plank and Dean, 2014; Shlyueva 

et al., 2014; Smith and Shilatifard, 2014; Wittkopp and Kalay, 2012). Yet, the 

importance of non-coding sequences, in gene transcription— particularly the 

function of enhancer elements— has been known for almost 35 years (Banerji et 

al., 1981).  

1.2 Enhancer structure and function 

Enhancers integrate inputs from different cellular and developmental 

contexts to produce tissue-specific responses critical during tissue differentiation, 

proliferation and maintenance (Lagha et al., 2012). Enhancers work as platforms 

for combinatorial binding of transcription factors (TFs) that recognize short motifs 

in these sequences (Spitz and Furlong, 2012). Unique combinations of TF inputs 

provide enhancers the ability to precisely control when, where and how much of a 

gene is transcribed. Binding of TFs to enhancer sequences activates or 

represses transcription by recruiting or evicting the transcriptional machinery from 

the core-promoter (Levo and Segal, 2014).  

Enhancers vary in size from several hundred base pairs to thousands of 

base pairs (Evans et al., 2012). Enhancers are sometimes described as “minimal 

enhancers” when describing shorter fragments or as “super-enhancers” when 

describing long segments of regulatory sequence (Hnisz et al., 2013; Lovén et 

al., 2013; Whyte et al., 2013). Originally, enhancers were defined as DNA 

fragments that augmented transcription independently of their orientation with 

respect of the promoter (Banerji et al., 1981).  

Enhancers can be located within the vicinity of the gene they regulate, 

either upstream of the transcription start site (TSS) or in downstream intronic 

regions. Enhancers can also regulate transcription from far away (Krivega and 
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Dean, 2012). For example, the dpp gene contains enhancers that are located at 

least 20 kilobase pairs downstream of the promoter (Blackman et al., 1991). In 

other cases enhancers that regulate a particular gene are located in other loci 

(Lettice et al., 2003; Shlyueva et al., 2014).  

Multiple enhancers can regulate the same gene. The even-skipped (eve) 

locus is a great example of a gene that contains multiple enhancers that are 

active in separate domains that combined produce the final endogenous eve 

pattern (Fujioka et al., 1999; Small et al., 1996). In other examples, separate 

enhancers have been shown to drive redundant expression patterns (Barolo, 

2011; Hong et al., 2008). These “shadow” enhancers have been shown, in some 

cases, to be functional by conferring robustness during stress (Frankel et al., 

2010; Perry et al., 2010).  

Enhancers have been commonly identified by evolutionary conservation 

and/or clustering of predicted TF binding motifs (Berman et al., 2004; Goode et 

al., 2005; Pennacchio et al., 2006; Rebeiz, 2002). Testing the sufficiency to drive 

gene expression in reporter assays functionally validates these sequences 

(Wittkopp and Kalay, 2012). Although these methods have been successful in 

the past, they are by no means infallible because not all functional enhancers 

show evolutionary sequence conservation and not all highly conserved 

sequences display regulatory activity (Blow et al., 2010; Swanson et al., 2011; 

Vavouri and Lehner, 2009; Wittkopp et al., 2008).  

More recently, enhancers have been identified genome-wide by TF or co-

activator binding through ChIP-seq and related techniques (Arnold et al., 2013; 

Junion et al., 2012; Visel et al., 2009; Vokes et al., 2007; Yu et al., 2013; 

Zeitlinger et al., 2007). These methods have had success in identifying regulatory 

sequences, although many TF-bound regions do not appear to function as 

enhancers (Biggin, 2011; Li et al., 2011; Maston et al., 2012).  
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Other studies use biochemical signatures, including histone tail 

modifications, co-activator binding, and DNase accessibility to identify putative 

enhancers (Ong and Corces, 2011; Stamatoyannopoulos, 2012). Because of the 

large numbers of predicted enhancers, most of these sequences have yet to be 

functionally validated (Göke et al., 2011; Ng et al., 2013; Shen et al., 2012; Yu et 

al., 2013).  

1.3 Signaling-regulated enhancers 

A surprisingly small number of signaling pathways mediate cell-to-cell 

communication to establish unique patterns of gene expression throughout 

metazoan development (Barolo and Posakony, 2002; Perrimon et al., 2012; 

Pires-daSilva and Sommer, 2003). Despite the major differences between these 

signaling pathways, they follow similar signaling logics to transmit patterning 

information. Secreted signals (in most cases) bind cognate receptors to trigger 

signaling cascades that modify the function of dedicated TFs, which directly 

control the expression of target genes. 

Signaling-regulated enhancers have unique architectures that include 

binding sites for the dedicated TFs and binding sites for additional signal-

independent, tissue-specific or broadly expressed TFs (Spitz and Furlong, 2012). 

Many signal-regulated genes are turned on upon pathway activation, and actively 

turned off in the absence of signaling. This switch-like regulation of target genes 

is known as a transcriptional switch, and many signaling pathways use common 

regulatory strategies to tightly control gene expression (Barolo and Posakony, 

2002; Ptashne, 2011).  

The first common strategy is known as activator insufficiency (Barolo and 

Posakony, 2002). This occurs when signaling-regulated enhancers are unable to 
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activate transcription in cells with active signaling. Activator insufficiency is 

commonly seen in instances where minimal enhancers containing multimerized 

binding sites for dedicated TFs are insufficient to drive transcription in tissues 

where the cognate pathway is functional (Barolo, 2006; Ramos and Barolo, 

2013). This transcriptional strategy prevents spurious target gene expression and 

provides tissue-specificity (Ramos and Barolo, 2013).  

The second strategy also provides spatiotemporal specificity to gene 

expression. Signaling-regulated enhancers generally require extra inputs from 

selector genes or local activators, in addition to dedicated TFs inputs, to promote 

transcription (Mann and Carroll, 2002). This combinatorial regulation at the 

enhancer level is known as cooperative activation (Barolo and Posakony, 2002). 

Cooperativity among TFs at enhancers is an elegant and widely used strategy to 

tightly control gene transcription (Ptashne and Gann, 2002). The spatiotemporal 

overlap of distinct combinations of TFs are required to form complex patterns of 

gene expression.  

Lastly, many signaling-regulated enhancers actively repress target gene 

transcription in the absence of signaling by using dedicated transcriptional 

repressors. This is known as default repression (Barolo and Posakony, 2002), 

This strategy prevents ectopic activation of target genes by local activator inputs.  

Many signaling pathways used these conserved transcriptional strategies 

to tightly control the expression of key target genes during development. 

However, the precise molecular mechanisms that mediate these responses are 

not fully understood. 
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1.4 Hedgehog signaling directly regulates enhancers that contain Ci/Gli 
binding sites 

Hedgehog (Hh) signaling is among the pathways that utilizes the 

transcriptional strategies that were previously discussed (Barolo and Posakony, 

2002). Hh is a secreted morphogen that provides positional information primarily 

by forming a signaling gradient to differentially regulate gene expression at 

different signal intensities, which are interpreted by enhancers that contain 

binding sites for the TF Cubitus interruptus (Ci). In Drosophila, Hh-receiving cells 

modify Ci, a member of the Gli family of TFs that activates or represses 

transcription of key target genes (Hui and Angers, 2011). In the presence of the 

Hh signal, the activator isoform of Ci (CiAct) stimulates transcription of Hh target 

genes; but in the absence of signaling, a repressor isoform of the same protein 

(CiRep) inhibits transcription of those genes (Figure 1.1). Ci recognizes enhancers 

that contain the same optimal consensus sequence as mammalian Gli factors, 

GACCACCCA—but, like many other TFs, it also binds sequences that deviate from 

this consensus site (Figure 1.2) (Hallikas et al., 2006; Müller and Basler, 2000; 

Ohlen and Hooper, 1997; Ohlen et al., 1997; Parker et al., 2011; Piepenburg et 

al., 2000). These deviant Ci binding sites are also known as non-consensus 

sites.  

The DNA binding preference of Ci was obtained mainly from experiments 

studying the human Gli transcription factors, and since these factors are highly 

conserved through evolution, the results are readily applicable to fly Ci. The first 

seminal paper identified the consensus motif by isolating human DNA sequences 

that were bound by Gli (Kinzler and Vogelstein, 1990). Then, several years later, 

the crystal structure of a Gli-DNA complex was characterized (Pavletich and 

Pabo, 1993). These results provided the first evidence that the Gli family of 

transcription factors recognize distinct sequences in the genome, mostly 
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comprising a conserved 9-mer core. Later on, enhancers that contain these 

sequences were identified, and the direct regulation by Hh signaling was tested 

(Agren et al., 2004; Alexandre et al., 1996; Sasaki et al., 1997).  More recently, a 

high-throughput approach was used to measure in vitro the binding preferences 

of Ci and the other human Gli factors (Hallikas et al., 2006). These results show 

that Ci and Glis recognize the consensus sequence more strongly, but these 

factors also bind to other degenerate sequences, although these interactions are 

weaker and potentially more transient (Figure 1.2) (Hallikas et al., 2006).   

1.5 Known Hedgehog target enhancers 

Most of the functionally characterized Hh/Ci-regulated enhancers in 

Drosophila respond to Hh signaling through non-consensus Ci binding sites 

(Ramos and Barolo, 2013; Winklmayr et al., 2010). The only known enhancer 

that contains consensus Ci sites is ptc, which encodes the Hh receptor (Chen 

and Struhl, 1996; Ingham et al., 1991). This enhancer contains a cluster of three 

highly conserved consensus Ci binding sites of optimal binding affinity (Alexandre 

et al., 1996; Parker et al., 2011).   

Another example of a Hedgehog-regulated enhancer is dppD, which is 

both activated and repressed by Ci in imaginal discs (Alexandre et al., 1996; 

Müller and Basler, 2000; Parker et al., 2011). The dppD enhancer is regulated by 

a cluster of Ci binding sites that are required for proper spatial patterning by 

Hh/Ci in the developing wing (Freeman, 2000; Müller and Basler, 2000; Parker et 

al., 2011). This enhancer drives expression of the long-range morphogen 

decapentaplegic (dpp), which encodes a BMP family member that controls wing 

growth and patterning (Wartlick et al., 2011). The dppD enhancer is not the only 

known element that controls the expression of dpp in imaginal discs. The dppHO 
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enhancer also drives expression in these tissues, but only during early larval 

stages (Hepker et al., 1999). Not surprisingly, this enhancer also requires non-

consensus Ci sites to respond to Hh signaling. 

The knot (kn) enhancer is also expressed in imaginal tissues in a pattern 

similar to the ptc enhancer (Alexandre et al., 1996; Hersh and Carroll, 2005). This 

gene, also known as collier, coordinates the activity of several signaling 

pathways including Hh, Dpp and EGF signaling to pattern the Drosophila wing 

(Crozatier et al., 2002). The kn enhancer relies on non-consensus binding sites 

to respond to Hh signaling (Hersh and Carroll, 2005). Other examples of Hh-

regulated enhancers that drive gene expression in imaginal discs include two 

enhancers for the target gene blistered, which plays a role in cell differentiation 

(Nussbaumer et al., 2000). 

Two Hh-regulated enhancers that drive expression during embryogenesis 

have been identified. These enhancers are wg1.0 and sr1.9, which also employ 

non-consensus Ci binding sites to drive precise expression patterns in the 

embryonic ectoderm. The wg1.0 enhancer responds to Hh via four non-

consensus binding sites (Ohlen and Hooper, 1997; White et al., 2012) to control 

the expression of the wingless (wg) gene, which encodes a Wnt-family 

morphogen (Swarup and Verheyen, 2012). The sr1.9 enhancer relies on two 

non-consensus Ci binding sites to regulate the expression of stripe (sr), a gene 

required for muscle-pattern formation during embryogenesis (Frommer et al., 

1996).  

1.6 Developing Drosophila wing: a model to study enhancer function  

Hh signaling patterns multiple tissues during development including the 

larval wing, which gives rise to the adult body wall appendage that is specialized 
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for flying. The developing larval wing is also known as the wing imaginal disc. In 

general, imaginal discs are sac-like structures that give rise to distinct adult 

cuticular structures (Morata, 2001).   

The wing imaginal disc contains two separate cell lineages, which form the 

anterior and posterior compartments as a result of the activity of the Engrailed 

homeobox protein (Morata, 2001). The expression of Engrailed in the posterior 

compartment activates the expression of Hh, which triggers the Hh signaling 

cascade to pattern the developing wing. The posteriorly-produced Hh protein can 

move across the anterior/posterior (A/P) border to the anterior compartment to 

activate the expression of several Hh target genes like dpp, knot and ptc (Neto-

Silva et al., 2009).  

The wing imaginal disc has been widely used to study Hh signaling. In 

fact, much of our current knowledge about mammalian Hh signaling was directly 

influenced by findings in Drosophila (Hartl and Scott, 2014).  

 

1.7 Aims and main findings 

Despite the essential role that Hh signaling plays during development and 

adulthood, it is not clear how Hh/Ci-regulated enhancers control discrete 

transcriptional outputs at different developmental contexts. Therefore, in my 

thesis, I attempted to understand the transcriptional regulation of Hh target 

enhancers using the wing imaginal disc as model system. In Chapter 2, I studied 

previously known enhancers to better understand how distinct Ci binding sites 

integrate Hh inputs. In Chapter 3, I identified and characterized new Hh-

responsive enhancers. Finally, in Chapter 4, I analyzed the intrinsic nature of 

different Ci site variants using synthetic Hh-regulated enhancers as a model to 
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ask questions about the relationship between sequence variants and in vivo 

transcriptional outputs. Together, the findings presented in this dissertation 

highlight the pivotal role of non-consensus Ci sites in the interpretation of the Hh 

signaling gradient, and provide a new toolkit of multiple novel Hh target 

enhancers that are useful to further understand the regulation of these regulatory 

sequences during development.  
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Figure 1.1 – The Hedgehog signaling pathway. 
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Figure 1.2 – The DNA binding preference of the transcription factor Cubitus 
interruptus (Ci). 
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CHAPTER 2 

 

Low-affinity Transcription Factor Binding Sites Shape Morphogen 

Responses and Enhancer Evolution 

2.1 Abstract 

In the era of functional genomics, the role of transcription factor-DNA 

binding affinity is of increasing interest: for example, it has recently been 

proposed that low-affinity genomic binding events, though frequent, are 

functionally irrelevant.  Here, we investigate the role of binding site affinity in the 

transcriptional interpretation of Hedgehog morphogen gradients.  We noticed that 

enhancers of several Hedgehog-responsive Drosophila genes have low predicted 

affinity for Ci, the Gli-family transcription factor that transduces Hedgehog 

signaling in the fly.  Contrary to our initial hypothesis, improving the affinity of 

Ci/Gli sites in enhancers of dpp, wingless, and stripe, by transplanting optimal 

sites from the patched gene, did not result in ectopic responses to Hedgehog 

signaling.  However, we found that the enhancers require low-affinity binding 

sites for normal activation in regions of relatively low signaling.  When Ci/Gli sites 

in these enhancers were altered to improve their binding affinity, we 

observed patterning defects in the transcriptional response that are consistent 
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with a switch from Ci-mediated activation to Ci-mediated repression.  Synthetic 

transgenic reporters containing isolated Ci/Gli sites confirmed this finding in 

wings.  We propose that the requirement for gene activation by Ci in regions of 

low-to-moderate Hedgehog signaling results in evolutionary pressure favoring 

weak binding sites in enhancers of certain Hedgehog target genes.  

2.2 Introduction 

Enhancers, also known as cis-regulatory elements or modules, are 

genomic DNA elements in command of the timing, location and levels of gene 

transcription. These transcriptional regulatory sequences integrate signaling and 

tissue-specific inputs through binding sites for a myriad of transcription factors 

(TFs) to specify spatiotemporal patterns of gene expression (Levine, 2010). 

Traditionally, enhancers have been identified functionally, in most cases by 

directly testing the sufficiency of stretches of DNA to drive gene expression in 

reporter assays. Nowadays, putative enhancers can be mined on a genome-wide 

basis by biochemical signatures, including histone tail modifications, co-activator 

binding, and DNase accessibility (Ong and Corces, 2011; Stamatoyannopoulos, 

2012). Because hundreds or thousands of chromosomal sites cannot be easily 

tested for transcriptional activity, some genomic studies accept chromatin 

signatures associated with enhancer activity as self-validating evidence of 

enhancer function (e.g., (Göke et al., 2011; Ng et al., 2013; Shen et al., 2012; Yu 

et al., 2013)).  Another potential biochemical indicator of enhancers is TF or co-

activator binding, as assessed on a genome-wide level by ChIP-seq and related 
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techniques (e.g., (Arnold et al., 2013; Junion et al., 2012; Visel et al., 2009; 

Vokes et al., 2007; Yu et al., 2013; Zeitlinger et al., 2007)). These methods have 

had success in identifying regulatory sequences, although many TF-bound 

regions do not appear to function as enhancers (Biggin, 2011; Li et al., 2011; 

Maston et al., 2012). Other studies use DNA sequence signatures, mainly 

evolutionary conservation and/or clustering of predicted TF binding motifs, to 

screen genomes for enhancers (e.g., (Berman et al., 2004; Goode et al., 2005; 

Pennacchio et al., 2006; Rebeiz, 2002)). These methods have also been 

successful, although again, they are by no means foolproof: for example, not all 

functional enhancers show evidence of evolutionary sequence conservation—

even if their function is conserved—and conversely, not all highly conserved 

sequences display regulatory activity (e.g., (Blow et al., 2010; Swanson et al., 

2011; Vavouri and Lehner, 2009; Wittkopp et al., 2008)).  

Enhancers are increasingly prominent in evolutionary thinking, as they 

have been shown to be the main agents of morphological diversity during 

evolution (Haag and Lenski, 2011; Peter and Davidson, 2011; Wittkopp et al., 

2008). Changes that affect TF binding to enhancers have the potential to modify 

pleiotropic genes in a tissue-specific manner without compromising the survival 

of the organism. Sequence alterations such as deletions, insertions and 

nucleotide substitutions in enhancers have been shown to be responsible for 

morphological diversity (Wittkopp and Kalay, 2012). Because of the complex 

arrangement of TF binding motifs at enhancers, even tiny changes in regulatory 
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sequences can have significant effects in the transcriptional output by altering the 

TF input by modifying the binding affinity, binding site number, or changing the 

spacing between TFs, among many other possible scenarios (Levine, 2010).  

Enhancers integrate inputs from different cellular and developmental 

contexts to produce tissue-specific responses critical during tissue differentiation, 

proliferation and maintenance. A small number of signaling pathways provide 

instructive inputs that are used in multiple developmental contexts (Barolo and 

Posakony, 2002; Pires-daSilva and Sommer, 2003). The highly conserved 

Hedgehog (Hh) signaling pathway is one of the key regulatory networks 

mediating cell communication during the development of most animals (Ingham 

et al., 2011). The Hh morphogen provides instructive positional information by 

establishing a signaling gradient that promotes different cell fates at different 

signal intensities, which are interpreted by enhancers, that contain binding sites 

for the effector of the pathway, the transcription factor Cubitus interruptus (Ci). In 

Drosophila, Hedgehog-receiving cells post-translationally modify Ci, a member of 

the Gli family of TFs, which activates or represses transcription of key target 

genes (Hui and Angers, 2011). In the presence of the Hedgehog signal, the 

activator isoform of Ci (Ci-Act) stimulates transcription of Hh target genes, but in 

the absence of signaling, a repressor isoform of the same protein (Ci-Rep) 

inhibits transcription of those genes. Ci recognizes enhancers that contain the 

same optimal consensus sequence as mammalian Gli factors, GACCACCCA—

but, like many other TFs, it can also bind to sequences that deviate from this 
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consensus site (Hallikas et al., 2006; Ohlen et al., 1997). Thus, Ci activates or 

actively represses the transcription of Hh responsive genes depending on the 

state of signaling. 

The Hh signaling gradient has been extensively characterized in the 

context of the developing wing of Drosophila melanogaster (Figure 3.1). In the 

third-instar larval wing imaginal disc, which gives rise to the adult wing, cells in 

the posterior compartment secrete the Hh morphogen: this signal is received and 

interpreted by cells of the anterior compartment that express Ci. The short-range 

Hh signal generates opposing reciprocal gradients of Ci-Act and Ci-Rep (Figure 

3.1a) (Ashe and Briscoe, 2006; Parker et al., 2011). Anterior-compartment cells 

near the A/P compartment boundary receive maximal levels of Hh signaling and 

thus form Ci-Act exclusively, hence Hh/Ci regulated enhancers are active: these 

cells form what we will call the “activator zone.” Cells far from the source of Hh do 

not encounter the ligand and form Ci-Rep only, which represses target 

enhancers. These cells can be classified into the “repressor zone,” which 

comprises most of the anterior compartment of the wing. Between the activator 

and repressor zones there exists a region that receives moderate levels of Hh 

and produces both Ci-Act and Ci-Rep. We will refer to this region as the “mixed 

zone.” Here, the morphogen response becomes more complex, as Ci binding 

sites in Hh-responsive enhancers integrate competing inputs with opposing 

transcriptional functions. How cis-regulatory elements “decide” whether to be 

active or repressed by Ci in this zone is not well understood, but recent findings 
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(Parker et al., 2011; White et al., 2012), as well as the results presented here, 

show that the decision relies in part on the number and sequence of their Ci 

binding motifs. Bicoid and Dorsal, two morphogens that form signaling gradients 

during embryogenesis, also regulate key target genes in response to differences 

in binding site number and affinity (Driever et al., 1989; Jiang and Levine, 1993). 

However, because of the reciprocal gradients of Ci-Act and Ci-Rep, Hh/Ci-

regulated enhancers interpret these differences unconventionally, and drive gene 

expression in unexpected domains across the gradient (Parker et al., 2011; 

White et al., 2012). A classic response is displayed by the Dorsal target gene 

twist which has a proximal enhancer with two low-affinity binding sites that drive 

limited gene expression in cells with high levels of the morphogen (Jiang and 

Levine, 1993). Improving the affinity of those sites resulted in higher levels of 

gene expression in a broader domain of the Drosophila embryo (Jiang and 

Levine, 1993). In the case of several Hh/Ci-regulated enhancers, the 

transcriptional response to changes in affinity is opposite to what is expected 

from the morphogen gradient model (these observations will be described in 

more detail below) (Wolpert, 1969).   

A limited number of direct Hh/Ci target enhancers have been identified in 

Drosophila over the past two decades (Table 2.1). More recently, new elements 

have been characterized in vertebrates (Agren et al., 2004; Eichberger et al., 

2008; Kasper et al., 2006; Oosterveen et al., 2012; Peterson et al., 2012; Sasaki 

et al., 1997). The highest standard for identification of a direct Ci/Gli target 
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enhancer consists of the following pieces of evidence: (a) the enhancer and 

parent gene are activated in a pattern consistent with Hh/Gli regulation; (b) the 

enhancer contains sites that are biochemically demonstrated to be bound by Gli 

proteins in vitro or in vivo; and (c) destruction of Gli sites diminishes the response 

of the enhancer and/or gene to Hh/Gli in vivo. Most, but not all, of the targets 

cited above meet that standard of evidence and can be regarded as confirmed 

direct Hh/Gli targets. Regardless of the species of origin, these enhancers 

respond to Hh signaling through variations on the same optimal Ci/Gli binding 

consensus (Hallikas et al., 2006; Hersh and Carroll, 2005; Müller and Basler, 

2000; Ohlen and Hooper, 1997; Oosterveen et al., 2012; Peterson et al., 2012; 

Piepenburg et al., 2000; Sasaki et al., 1997). 

Enhancers of the Drosophila genes patched (ptc) and decapentaplegic 

(dpp) were two of the earliest-identified direct Hh target sequences (Alexandre et 

al., 1996; Müller and Basler, 2000). The ptc enhancer is directly activated by 

Hh/Ci in larval imaginal discs via high-affinity Ci sites which perfectly match the 

optimal Gli binding consensus (Figure 3.1b-c and (Table 2.1) (Alexandre et al., 

1996; Parker et al., 2011). By contrast, dpp is activated in the same tissues by an 

enhancer (designated here as dppD) containing Ci sites of significantly lower 

affinity, with multiple mismatches to the optimal consensus (Figure 3.1b-c and 

Table 2.1) (Müller and Basler, 2000; Parker et al., 2011). In the wing imaginal 

disc, ptc is expressed in a narrow stripe of cells in the activator zone receiving 

maximal levels of Hh signaling, while dpp is expressed in a broader stripe in the 
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mixed zone, farther from the source of morphogen (Figure 3.1a) (Capdevila et al., 

1994). These observations present a puzzle: why is a low-affinity Ci target gene 

like dpp activated more broadly across the Hh morphogen gradient than a high-

affinity target gene like ptc? These results contrast with previous observations of 

the responsiveness of Bicoid and Dorsal target enhancers with low- and high-

affinity sites (Driever et al., 1989; Jiang and Levine, 1993). Wolpert’s French Flag 

model of positional information, which has been invoked (in modernized forms) to 

explain transcriptional responses to Hedgehog signaling (Ashe and Briscoe, 

2006; Dessaud et al., 2008; Wolpert, 1969; 2011), would seem to predict that 

high-affinity targets should be more sensitive to signaling and as a result be 

expressed in a relatively broad domain across the gradient; by comparison, low-

affinity target genes might be expected to have a higher response threshold and 

thus a more restricted expression domain. A model has been recently proposed 

to explain transcriptional responses to Hh/Gli in the vertebrate neural tube 

(Peterson et al., 2012). Yet the expression patterns of ptc and dpp in the wing 

suggest that different mechanisms may be at work.  Furthermore, the effects of 

opposing activator/repressor transcription factor gradients, acting through the 

same cis-regulatory sites, have not been satisfactorily explained in any system.  

We set out to explore how Ci binding site affinity affects the interpretation 

of Hh gradients in the developing Drosophila wing and embryonic ectoderm. 

Here, we present new data that corroborate recent findings (Parker et al., 2011; 

White et al., 2012) that some Hh-responsive enhancers require low-affinity 
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binding sites for normal activation in regions of relatively low signaling. Not only 

are these sites important, but their low affinity is equally important: when these 

non-consensus sites were upgraded to optimal Ci binding motifs, the result is 

gene expression patterning defects that are consistent with a switch from Ci-

mediated activation to Ci-mediated repression (Parker et al., 2011). We present 

evidence consistent with a model in which selective pressure maintains non-

consensus, low-affinity Ci binding sites in Hh-responsive enhancers, and propose 

that this is an evolutionary mechanism for maximizing Hh/Ci-mediated 

transcriptional activation in regions of Hh morphogen gradients where Ci-Act and 

Ci-Rep compete for enhancer binding.  

2.3 Results 

2.3.1 Many enhancers are regulated by non-consensus Ci binding sites 

Most of the functionally characterized Hh/Ci-regulated enhancers in 

Drosophila respond to Hh signaling through non-consensus Ci binding sites 

(Table 2.1), some of which have been shown to exhibit relatively poor Ci binding 

affinity in vitro (Parker et al., 2011; White et al., 2012). The only known exception 

is ptc, which encodes the Hh receptor (Chen and Struhl, 1996; Ingham et al., 

1991).  ptc is unique among the known direct Hh/Ci target genes in two ways. 

First, ptc is regulated by a cluster of highly conserved consensus Ci binding sites 

of optimal binding affinity (Figure 3.1b-c and Figure 2.6a) (Alexandre et al., 1996; 

Parker et al., 2011). Second, unlike all other known Hh targets in the fly, which 
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respond to Hh in a tissue-restricted pattern, ptc is transcriptionally activated by 

Hh signaling universally (i.e., in all tissues where Hh signaling occurs), as part of 

a negative feedback mechanism that regulates the range of signaling (Freeman, 

2000).   

Among the enhancers listed in is dppD, which is both activated and 

repressed by Ci in imaginal discs (Alexandre et al., 1996; Müller and Basler, 

2000; Parker et al., 2011). The dppD enhancer is regulated by a cluster of Ci 

binding sites which, though they deviate considerably from the optimal 

consensus and have low Ci binding affinity in vitro, are required for proper spatial 

patterning by Hh/Ci in the developing wing (Figure 3.1b-c and Figure 2.6b) 

(Freeman, 2000; Müller and Basler, 2000; Parker et al., 2011). This enhancer 

drives wing and leg expression of the long-range morphogen decapentaplegic 

(dpp), which encodes a BMP family member that controls wing growth and 

patterning (Wartlick et al., 2011). Two other Hh-regulated enhancers, wg1.0 and 

sr1.9, employ non-consensus Ci binding sites to drive precise expression 

patterns in the embryonic ectoderm (Table 2.1 and Figure 2.2). The wg1.0 

enhancer responds to Hh via four non-consensus, low-affinity Ci binding sites 

(Figure 2.2b-c and Figure 2.6c) (Ohlen and Hooper, 1997; White et al., 2012) to 

control the expression of the wingless (wg) gene, which encodes a Wnt-family 

morphogen (Swarup and Verheyen, 2012). The sr1.9 enhancer relies on two 

non-consensus Ci binding sites (Table 2.1 and Figure 3.1b-c) to regulate the 



30 

expression of stripe (sr), a gene required for muscle-pattern formation during 

embryogenesis (Frommer et al., 1996).  

Many of these functionally significant non-consensus Ci binding sites are 

strongly conserved throughout the evolution of the genus Drosophila (Figure 3.1b 

and Figure 2.6). This suggests the possibility of evolutionary pressures 

maintaining functional low-affinity Ci interactions with enhancers that interpret 

developmental Hh signaling gradients.   

2.3.2 Improving the binding affinity of Ci in the dppD enhancer restricts 
expression to the activator zone 

We noticed that the ptc and dppD enhancers, which are regulated by Ci 

binding sites of very different affinity, drive gene expression in distinct Hh 

signaling zones of the developing wing (Figure 3.1a and Figure 2.7) (Capdevila et 

al., 1994). The ptc enhancer, which contains optimal sites, responds to Hh only in 

the activator zone, while dppD, with its non-consensus, low-affinity sites, 

responds to Hh in the mixed zone, farther from the source of morphogen (Figure 

2.7) (Gallet et al., 2008) . To determine whether the low affinity of the Ci binding 

motifs in dppD (which is evolutionarily conserved: see Figure 2.3 and Figure 

2.6b) is important for responding Hh/Ci in the mixed zone, we converted the three 

low-affinity sites into high-affinity sites taken from the ptc enhancer (Parker et al., 

2011). We observed that this “upgraded” enhancer, dppD[Ci-ptc], which differs 

from the wild-type enhancer by only seven nucleotide positions, drives maximal 

gene expression in the activator zone instead of the mixed zone, similarly to ptc 
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(Figure 3.1d). To more precisely determine the transcriptional effect of changes 

in Ci binding affinity, we used a quantitative reporter gene assay (Parker et al., 

2011) to measure GFP fluorescence across the dorsal portion of the wing pouch 

and normalized it to a dppD[Ci-ptc]-DsRed reference transgene as an internal 

control for potential variations in age, fixation, and wing shape. We compared 

normalized GFP transgene expression levels driven by three versions of dppD: 

wild type (wt); Ci-KO, in which the Ci sites were destroyed; and Ci-ptc, in which 

the binding affinity of the sites was improved by targeted base substitutions 

(Parker et al., 2011).  

In accordance with previous work (Müller and Basler, 2000), we found that 

dppD[Ci-KO] drove a broad expression pattern in the wing that differs from that of 

the wild-type enhancer in two respects: de-repression in anterior cells, and partial 

loss of activation in the mixed zone (Figure 3.1e) (Parker et al., 2011) . We used 

the expression of dppD[Ci-KO] as a baseline, and measured the difference in 

fluorescence intensity between it and dppD[wt] or dppD[Ci-ptc] to determine the 

direct effect mediated by those three Ci binding sites at each position along the 

A/P axis of the wing disc (Figure 3.1f) (Parker et al., 2011). Although the 

dppD[Ci-KO] expression pattern clearly shows reduced sensitivity to Ci activation 

and repression, its expression still suggests some regulation by Hh signaling: this 

is likely due to indirect regulation via a non-Ci input that is itself regulated by 

Hh/Ci (Müller and Basler, 2000), but it could also reflect input from 

uncharacterized Ci binding sites (Figure 2.3 and Figure 2.6b). Increased Ci 
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binding affinity provided stronger activation in the activator zone, as well as 

stronger repression in the repression zone, as expected—but unexpectedly, it 

also caused a switch from activation to repression in the mixed zone, where dpp 

(but not ptc) is normally activated (Figure 3.1f) (Parker et al., 2011).  

2.3.3 Low-affinity Ci binding sites diversify the Hh response 

As we proposed previously, the ectopic repression of dppD[Ci-ptc] in the 

activator zone may be explained by two biophysical mechanisms (Parker et al., 

2011).  First, it is possible that Ci-Act and Ci-Rep have different binding 

preferences for distinct Ci motifs, such that Ci-Act prefers certain non-consensus 

sites while Ci-Rep prefers consensus sites. This scenario may seem unlikely 

because Ci-Act and Ci-Rep share the same DNA-binding domain (Orenic et al., 

1990; Pavletich and Pabo, 1993), but it has not been directly ruled out. An 

alternative possibility is that strong cooperative interactions occur between Ci-

Rep (but not Ci-Act) that result in lower-threshold levels for Ci-Rep (schematics 

of these models can be found elsewhere (Parker et al., 2011; Whitington et al., 

2011)). Cooperative interactions are pervasive in gene regulation (Ptashne and 

Gann, 2002) and have been shown to lower threshold responses to other 

morphogens (Burz et al., 1998; Jiang and Levine, 1993). Fortuitously, these two 

models predict dramatically different transcriptional outputs for a modified dppD 

enhancer with a single high-affinity site (dppD[Ci1-ptc]) (Figure 3.1d). If the 

sequence motif itself dictates binding of Ci-Rep vs. Ci-Act, then the 

transcriptional profile of dppD[Ci1-ptc] will be similar to dppD[Ci-ptc], as both 
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enhancers contain only optimal consensus sites of identical sequence. On the 

other hand, if cooperative interactions between Ci-Rep are responsible for the 

restricted expression pattern of dppD[Ci-ptc], then dppD[Ci1-ptc] will behave 

more like dppD[wt], because a single Ci site cannot mediate homomeric 

cooperative interactions.  

We found that dppD[Ci1-ptc] generates a broad stripe that is active in both 

the activator zone and the mixed zone (Figure 3.1f), which is consistent with the 

repressor-cooperativity model and inconsistent with the binding-preferences 

model (Parker et al., 2011). These results, and the deep evolutionary 

conservation of some of the low-affinity Ci sites in dppD[wt], suggest the 

presence of selective evolutionary pressure maintaining low Ci occupancy at the 

dppD enhancer. We speculate that dpp requires low-affinity Ci sites, which allow 

for activation by Hh/Ci but avoid invoking strong cooperative Ci repression in the 

mixed zone, in order to establish an organizing center in the middle of the wing 

for symmetric growth (Wartlick et al., 2011). 

2.3.4 wg and sr require low-affinity Ci binding sites to respond optimally 
to Hh/Ci 

To determine whether our observations regarding the effects of Ci binding 

site affinity are unique to dppD or to the developing wing, we examined two other 

Hh/Ci-regulated enhancers, both of which respond to Hh signaling in the 

embryonic ectoderm but not the wing.  We first tested a 1.0 kb enhancer of the 

wingless (wg) gene which drives Hh-responsive embryonic stripes anterior to 
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segmental stripes of Hh expression (Figure 2.2a,d) (Ohlen and Hooper, 1997; 

White et al., 2012). Four Ci binding sites in the wg1.0 enhancer (Table 2.1) have 

been reported to contribute to activation in Hh-responsive cells [43].  We 

improved the affinity of the three best-conserved Ci sites (wg1.0[3xCi-opt]) 

(Figure 2.2b-c and Figure 2.6c) (White et al., 2012). We observed that, rather 

than enhancing the transcriptional response to Hh, wg1.0[3xCi-opt] drives 

reduced expression levels in the embryonic ectoderm (Figure 2.2d) (White et al., 

2012).  

We also examined the sr1.9 enhancer, which is expressed in Hh-

responsive embryonic stripes to the posterior of Hh-positive cells. This element 

has three non-consensus Ci binding motifs showing significant sequence 

conservation (Figure 2.2b-c), two of which had been previously identified (Table 

2.1) (Piepenburg et al., 2000) . Destroying two of the predicted Ci sites has been 

reported to abolish the activity of this element (Piepenburg et al., 2000), but we 

found that improving the affinity of these sites, rather than augmenting gene 

expression, greatly reduced it (Figure 2.2e).   

Taken together, these observations are consistent with the idea that wg 

and sr, like dpp, have Hh-responsive enhancers whose Ci occupancy is tuned at 

sub-maximal levels for optimal transcriptional activation in the proper zone of 

expression. We propose that this regulatory strategy stems from the dual nature 

of Ci as both an activator and a repressor, and the fact that these opposing 

activities are exerted through shared binding sites. 
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2.3.5 Increasing the binding affinity of Ci does not induce significant 
ectopic expression  

We hypothesized that the relatively low binding affinity of these Ci-

regulated enhancers might be important, not just for shaping responses to Hh 

morphogen gradients, but also for maintaining tissue-specificity of the Hh 

response. If this were the case, improving Ci binding affinity in these enhancers 

might be expected to sensitize them to Hh signaling, and thus might induce 

ectopic transcriptional responses to Hh/Ci outside of each gene's normal 

expression pattern. To address this point, we examined our high-affinity versions 

of the dppD, wg1.0 and sr1.9 enhancers in tissues and at developmental stages 

where active Hh signaling occurs, but where the gene and enhancer do not 

normally respond to that signal.  

The dppD enhancer normally responds to Hh/Ci in the wing, leg, and 

antennal discs, but not in the embryonic ectoderm (where other genes such as 

wg, sr, and ptc respond to Hh signaling), and not in the morphogenetic furrow of 

the developing retina (where dpp expression is induced by Hh/Ci, but not through 

the dppD enhancer) (Figure 2.8a) (Heberlein et al., 1995; 1993). We did not 

observe significant ectopic activity of dppD[Ci-ptc] in Hh-responding cells of the 

embryonic ectoderm, nor in the morphogenetic furrow of the eye (Figure 2.8a). 

The only ectopic expression we observed was in part of the dorsal margin of the 

retina (Figure 2.8a), which might receive signaling from nearby Hh-positive 

photoreceptors (Lee et al., 1992), although this is not part of the normal dpp 

expression pattern (Blackman et al., 1991).   
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We next examined the expression of wg1.0[3xCi-opt] and sr1.9[2xCi-opt] 

in wing imaginal discs, where wg and sr do not normally respond to Hh/Ci, and 

found that improving Ci affinity did not activate ectopic transcriptional responses 

to Hh (Figure 2.8b,c). Consistently with these results, it was previously shown 

that adding consensus Ci sites to the wing-specific enhancer of vestigial (not a 

Hh/Ci target gene) fails to induce ectopic Hh responses (Halder et al., 1998; Kim 

et al., 1996). Our results demonstrate that the tissue-specific Hh responses of 

enhancers of dpp, wg, and sr cannot be explained by low binding affinity for Ci.  

2.3.6 Functionally significant non-consensus Ci sites display conservation 
of motif quality, even in the absence of strict sequence conservation 

Evolutionary sequence alignments of functional non-consensus Ci sites 

reveal multiple possible mechanisms by which the strength of Ci regulatory input 

into Hh-regulated enhancers may be maintained over evolutionary time, despite 

significant sequence turnover.  Ci site 1 in the dppD enhancer is perfectly 

preserved across 12 Drosophila species, but this is an exception: most non-

consensus Ci motifs, even those for which regulatory function has been 

demonstrated, are not so strongly conserved, and many have undergone rapid 

and extensive sequence changes (Figure 2.3).  For example, the sequence that 

comprises Ci site 2 in dppD is conserved and aligned only in the three species 

most closely related to D. melanogaster; yet examination of nearby sequences 

reveals that the same motif (CGGGCGGTC) is found nearby in six additional 

Drosophila species, though it is not aligned with the D. melanogaster motif 
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(Figure 2.3a).  In most cases, these motifs share no recognizable flanking 

sequence with the D. melanogaster site, so it cannot be determined whether this 

motif is an island of high conservation amid rapidly changing and 

expanding/contracting flanking sequence, or (probably less likely) the same motif 

has been independently acquired multiple times during Drosophila evolution. 

Ci site 2 in the wg1.0 enhancer has a different evolutionary history: a 

predicted Ci site is present in all Drosophila species at this position, but the 

sequence itself is not highly conserved.  Three different motifs, with similar 

predicted affinities, occur at this site (Figure 2.3b), suggesting that although the 

sequence of the site is evolving rapidly, the quality, or predicted affinity, of the 

site is constrained.  A similar case of apparent quality constraint coupled with 

sequence flux occurs at Ci site 2 of the sr1.9 enhancer, where, for example, 

sequence changes in the D. pseudoobscura lineage diminish the quality of the 

site, while at the same time creating a new overlapping motif of very similar 

quality to the D. melanogaster motif (Figure 2.3c).  

Ci site 1 in the wg1.0 enhancer seems to have undergone a triplet repeat 

expansion/contraction in the middle of the site, along with other changes (Figure 

2.3b), with the result that some species, such as D. melanogaster, have a single 

moderate-affinity site, while other species have a weaker motif at that position but 

have gained additional nearby sites.  These may be examples of compensatory 

changes that maintain levels of local Ci occupancy within a region of the 

enhancer.  Another possible case of compensation occurs in the vicinity of Ci site 
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1 of sr1.9, which is poorly conserved—eight distinct sequence variants occur at 

this position across 12 species—yet in most cases, overall site quality appears to 

be well preserved, especially if a neighboring motif and its variations are taken 

into account. For example, D. pseudoobscura and D. persimilis have a motif in 

the position of site 1 that is considerably farther removed from the consensus 

than that in D. melanogaster (scoring 52.5 compared to 71.8), but have 

simultaneously acquired changes in a neighboring sequence that significantly 

improves its quality as a Ci motif (scoring 83.6 compared to 61.0 in D. 

melanogaster). 

These are anecdotal cases, and the functional significance of these motifs 

in species other than D. melanogaster has not yet been tested.  Nevertheless, 

careful sequence analysis appears to provide support for our speculation that the 

poor overall sequence conservation of many low-to-moderate-affinity Ci binding 

motifs may be deceptive: these local genomic regions may be under selective 

pressure to maintain Ci occupancies within a certain range, while at the same 

time allowing a great deal of change at the level of DNA sequence. 

2.3.7 Ci is insufficient to activate gene expression in vivo 

To determine whether Ci binding sites, isolated from normal enhancer 

contexts, are capable of producing a transcriptional response to normal Hh 

signaling in vivo, we created a transgenic synthetic reporter in which three 

optimal Ci binding sites lie upstream of a minimal promoter driving GFP 

expression. This cluster of high-affinity sites (designated HHH) was not sufficient 
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to activate expression in regions of active Hh signaling in imaginal wing discs or 

in embryos (Figure 1.1). A similar construct bearing four high-affinity sites was 

previously shown to fail to respond to Hh in leg discs (Hepker et al., 1999). Our 

results exemplify a conserved transcriptional strategy known as "activator 

insufficiency," which is shared by multiple signaling pathways and is thought to 

be an evolutionary mechanism for preventing ectopic responses to highly 

pleiotropic signals such as Hh (Barolo and Posakony, 2002).  

2.3.8 Synthetic enhancers recapitulate endogenous expression patterns 
in the wing 

In order to study the functional properties of Ci binding sites outside the 

context of a complex enhancer sequence, we needed to circumvent the 

insufficiency of Ci sites alone (Figure 1.1a) to activate gene transcription in vivo. 

We borrowed a clever strategy (Jennings et al., 1999) that combines binding 

sites for the broadly expressed transcriptional activator Grainyhead (Grh) (Uv et 

al., 1997; 1994) with binding sites for Ci. Grh binding sites have been shown to 

be sufficient to activate gene transcription in the wing (Furriols and Bray, 2001). 

Using this approach, we were able to create a baseline level of transcription that 

allowed us to detect activating and repressive inputs from Ci sites, which can 

then be measured as changes in gene expression in Grh+Ci reporters, relative to 

a Grh-alone reporter. We generated four versions of synthetic enhancers with 

three Grh binding sites (GGG) upstream of three high-affinity sites (HHH), three 

low-affinity sites (LLL), one high-affinity site (H), and three mutant Ci sites (KO) to 
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preserve the spacing between the promoter and Grh (GGG) (Figure 1.1a).  All of 

these transgenic constructs drove Hh/Ci-regulated stripes of different width and 

strength, with the exception of the 3xGrh-only construct (GGG), which, as 

expected, drove basal levels of expression throughout the wing disc (Figure 1.1a) 

(Uv et al., 1997). We quantitated, normalized, and compared GFP fluorescence 

data from these synthetic reporters as described for Figure 3.1, and observed 

that GGGHHH is expressed at high levels in the activator zone, GGGLLL is 

weakly expressed in the mixed zone, and GGGH is expressed at moderate levels 

in the activator and mixed zones (Figure 1.1b).  

Next, we subtracted the Grh-only (GGG) expression levels from that of the 

Grh+Ci reporters to measure Ci-mediated activation and repression across the 

Hh gradient (Jennings et al., 1999; Parker et al., 2011). We found that GGGHHH, 

the synthetic counterpart of dppD[Ci-ptc], is strongly activated by Ci in the 

activator zone but is repressed by Ci in the mixed zone, whereas the activity of 

GGGLLL peaks in the mixed zone and is weaker in the activator zone (Figure 

1.1c). GGGH (analogous to dppD[Ci1-ptc]) is activated by Ci in both the activator 

and mixed zones (Figure 1.1c) (Parker et al., 2011). The fact that these synthetic 

results are strikingly consistent with our observations with dppD (compare Figure 

1.1c and Figure 3.1e) indicates that the observed effects of Ci affinity on Hh 

responses in the wing are not dependent on a particular enhancer context, and 

demonstrates the utility of synthetic reporters for the quantitative analysis of Ci-

regulated transcription in a simple and well-controlled sequence context.  
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The weak response of GGGLLL in the activator zone, compared to its 

expression in the mixed zone, is noteworthy (Figure 1.1c). In the case of the 

native dppD enhancer, diminished expression in the activator zone has been 

attributed to repression by the homeodomain transcription factor Engrailed (En), 

which is expressed in a narrow stripe of anterior cells abutting the A/P boundary 

during late larval stages (Blair, 1992; Raftery et al., 1991). We analyzed the 

sequences of the synthetics to determine whether we had unknowingly 

introduced En binding sites (Figure 2.9e-h), and found a single predicted En site 

that overlaps with the first Ci site in GGGLLL and GGG (the site is destroyed in 

GGGHHH and GGGH). This En motif might be responsible for repressing 

GGGLLL in the activator zone. However, since we did not observe repression of 

GGG, which has the same En motif, in En-positive cells of the activator zone and 

the posterior compartment, and since GGGLLL was not repressed in the En-

positive posterior compartment (Figure 1.1b), we conclude that these reporters 

are not directly repressed by En. The restricted activity of the low-affinity Ci 

binding sites in the mixed zone therefore seems to be encoded in the sequence 

of the Ci sites themselves. If true, this implies an as-yet-unknown mechanism for 

interpretation of the Hh gradient in the wing via Ci binding sites, but further 

research is required.   

2.3.9 Synthetic enhancers drive ptc-like expression in embryos 

To investigate whether the ability of these synthetic enhancers to respond 

to Hh/Ci is limited to imaginal tissues, we examined embryos at stages when Hh 
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signaling occurs (Figure 1.1d). The Grh, activator is expressed in the epidermis 

of mid- to late-stage embryos (Bray and Kafatos, 1991). At stage 11, our GGG 

synthetic construct, containing three Grh binding sites, reported low levels of Grh 

input in the dorsal ectoderm (Figure 1.1d). At that same stage, our synthetic 

Grh+Ci reporters (but not GGG) were activated in stripes to the anterior and 

posterior of each stripe of Hh-expressing cells (Figure 1.1d).  This pattern differs 

from those of the natural Hh/Ci-activated enhancers of wg and sr, whose 

response is restricted to one side (the anterior and posterior, respectively) of 

each Hh-positive stripe (Ohlen and Hooper, 1997; Piepenburg et al., 2000); 

instead, it more closely resembles that of the ptc gene, which responds 

symmetrically to stripes of Hh signaling in embryos (Hooper and Scott, 1989; 

Nakano et al., 1989). GGGHHH drove high levels of expression in stripes that 

span both the dorsal and ventral sides of the embryo, while GGGLLL drove 

moderate levels of expression in dorsal stripes in cells that have the strongest 

Grh input (Figure 1.1d). GGGH drove activity in a similar pattern to that of 

GGGHHH, but at lower levels (Figure 1.1d). Contrary to what we observed by 

improving the affinity of wg1.0 and sr1.9, the high-affinity reporter GGGHHH was 

not more restricted in its expression than the low-affinity reporter GGGLLL, but 

instead was more strongly activated (Figure 2.2c,d compared to Figure 1.1d). 

Therefore, the strongly negative effect of high-affinity Ci sites on expression of 

the wg and sr enhancers may depend on the sequence context of those 

regulatory elements.  
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2.3.10 Deep evolutionary conservation of putative homeodomain binding 
sites in dppD  

The dppD enhancer integrates inputs from other unknown factors besides 

Ci: this is demonstrated by the dppD[Ci-KO] construct, which is active throughout 

the anterior compartment of the wing (Figure 3.1a) (Müller and Basler, 2000; 

Parker et al., 2011). To investigate the other inputs controlling dppD, we 

examined the sequence conservation of this element across twelve Drosophila 

species (Figure 2.6b). Conserved TF binding motifs are considered likely to be 

functionally significant (Kheradpour et al., 2007; Meireles-Filho and Stark, 2009), 

although there are significant exceptions (Swanson et al., 2011; 2010; Wittkopp 

et al., 2008).  The dppD enhancer contains seven core homeodomain (HD) 

binding motifs (TAAT), of which six are perfectly conserved throughout the genus 

(Figure 2.6b). Overrepresentation of conserved HD binding sites has been also 

shown in some Hh-regulated enhancers in vertebrates (Oosterveen et al., 2012). 

All of the largest blocks of sequence conservation in dppD include at least one 

HD core motif (e.g., Figure 2.3a). Among these conserved potential HD binding 

sites is a previously identified site (designated as HE in Figure 2.6b) which was 

shown to repress dppD in posterior cells and has been proposed to mediate 

repression by En (Müller and Basler, 2000).  

2.3.11 dppD integrates inputs from conserved putative HD binding sites 

To determine whether these potential HD binding sites contribute to the 

regulation of dppD, we first tested the contribution of the previously identified En 
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binding site with a targeted mutation (dppD[En-KO]). Consistent with prior 

findings (Müller and Basler, 2000), this mutation resulted in mild de-repression in 

the posterior compartment, where En is expressed (Figure 2.5a).  We next 

mutated all seven core HD motifs in dppD (7xHD-KO). This mutant enhancer 

drove a weak, incomplete wing stripe (Figure 2.5a). We quantitated the GFP 

fluorescence activated by these constructs across the wing to determine the 

regulatory contribution of putative HD binding sites. By comparing our 

measurements with wild type dppD (Figure 2.5b), we found that the predicted En 

site, in addition to its known role in repression of dppD in posterior cells (Müller 

and Basler, 2000), also contributed to dppD activation in the anterior 

compartment, in cells lacking En (Figure 2.5b).  We also found that at least one 

of the HD motifs is responsible for activating dppD[En-KO] in posterior cells, as 

dppD[7xHD-KO] was not active in that compartment.  In anterior-compartment 

cells where dpp is normally expressed, we observed that the loss in activity in 

dppD[7xHD-KO] was more severe than that caused by mutating three Ci binding 

sites (dppD[Ci-KO]) (Figure 2.5b). The role of HD protein in activating dppD 

contrasts with the repressive role of some HD binding proteins in Hh-regulated 

enhancers in the mouse neural tube (Oosterveen et al., 2012). However, we 

noticed that dppD[7xHD-KO] was de-repressed in the eye retina (data not shown) 

where Hh signaling is active but dppD[wt] is normally not expressed (Figure 

2.8a). 
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Although the identities of the additional dppD inputs remain a mystery, we 

speculate that the HD transcription factors Aristaless and Distal-less might be 

among these factors, based on their expression patterns in the wing and their 

known genetic relationship with dpp (Campbell and Tomlinson, 1998; Campbell 

et al., 1993). Our results are consistent with a model in which complex regulatory 

inputs from HD binding proteins (Han et al., 1989) act through highly conserved 

sites in the dppD enhancer. They also highlight the critical role of low-affinity Ci 

binding sites, which cooperate with these positive and negative inputs to specify 

dpp expression in the proper segment of the Hh morphogen gradient (Figure 

2.5c). Such a view contrasts sharply with characterizations of low-affinity TF-DNA 

interactions as functionally inconsequential (Fisher et al., 2012); to the contrary, 

certain types of regulatory circuits—especially those regulated by signaling 

pathways that use activator/repressor switch mechanisms, like Hh, Wnt, Notch, 

and others—may acquire and maintain low-affinity interactions to extract the 

maximum amount of information from developmental signaling events (Barolo 

and Posakony, 2002; Swanson et al., 2011; Tanay, 2006). 

2.4 Discussion 

In this study, we have presented in vivo evidence corroborating previous 

findings (Parker et al., 2011; White et al., 2012) that multiple tissue-specific 

enhancers require low-affinity Ci binding sites for optimal activation by Hh/Ci. 

Most of the Hh target enhancers identified up to this point in Drosophila and 

mouse are regulated by degenerate Ci/Gli binding sites of predicted lower affinity 
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(Table 2.1) (Hallikas et al., 2006). The prevalence of these non-consensus sites 

in Hh target enhancers across species demonstrates their importance in 

regulating the Hh response. The transcriptional relevance of low-affinity TF 

binding is not limited to Hh/Ci regulated enhancers. For instance, two 

phylogenetically conserved low-affinity binding sites in the mouse Pax6 lens 

enhancer have been shown to be critical to promote gene expression at the right 

stage of development (Rowan et al., 2010).  

We also provide a mechanistic explanation as to why these Hh/Ci-

regulated elements require low-affinity sites to activate transcription in cells with 

moderate signaling levels. We showed that clusters of high-affinity sites mediate 

a restricted response in cells with high levels of Hh signaling, most likely as a 

result of cooperative interactions among Ci-Rep molecules in highly occupied Ci 

binding sites, while clusters of low-affinity sites mediate a broader response by 

having lower occupancy by Ci (Parker et al., 2011; White et al., 2012). Using 

synthetic enhancer reporters with high- or low-affinity Ci binding Ci sites, we 

confirmed this effect in the wing, but not in embryos. This tissue-specific 

discrepancy may imply a context-dependent function for some non-consensus Ci 

binding sites. As in the Pax6 lens enhancer (Rowan et al., 2010), it is possible 

that some low-affinity binding sites are required specifically during earlier stages 

of development to interpret overall lower levels of Hh signaling (Balaskas et al., 

2012; Nahmad and Lander, 2011).  
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Finally, we provided clues as to additional regulatory inputs into dppD by 

showing a requirement for conserved consensus homeodomain binding sites. 

Cooperation between Glis and HD proteins has been recently shown in the 

mouse neural tube (Oosterveen et al., 2012). In this case, HD proteins are critical 

to repress Hh-regulated neural tube enhancers, while in dppD they are critical to 

activate gene expression.  

The limited number of known, experimentally confirmed, direct Hh/Gli 

target enhancers may reflect the widespread, practical tendency to search for 

consensus or near-consensus motifs, and to focus on the highest peaks of TF-

DNA binding, when hunting for cis-regulatory sequences. From a biochemical 

standpoint—for example, when mining ChIP-seq data—low-affinity DNA-binding 

interactions are troublesome because they are much more common, by 

definition, than the top 1% of peaks. It is important to note that we do not mean to 

strictly equate ChIP peak height with TF binding affinity, nor to equate in vitro 

binding or in silico "motif quality" with in vivo TF occupancy, though these 

properties may often be roughly correlated. Separating the weak but functional 

binding events from weak and non-functional binding events is extremely 

challenging, and some have proposed that low-affinity genome-binding 

interactions can be categorically ignored (Fisher et al., 2012; 

Stamatoyannopoulos, 2012).  This certainly simplifies the problem from a 

computational perspective, but the findings discussed here and elsewhere 

(Jaeger et al., 2010; Rowan et al., 2010) suggest a risk of discarding functional 
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sequences. Similar challenges confront in silico genomic screens to identify 

clusters of predicted TF binding sites: these necessarily filter out binding events 

of low predicted affinity, because there are many more predicted low-affinity 

binding motifs than consensus high-affinity motifs in any given sequence 

(Michelson, 2002). Binding site predictions have been supported by taking 

evolutionary sequence conservation into account (Hallikas et al., 2006; Vokes et 

al., 2007), but this risks filtering out true positives: as shown in our Ci motif 

alignments, lower-affinity binding sites seem to be less constrained with respect 

to sequence variation, even in cases when the presence of the site itself is highly 

conserved. This is presumably because, for each non-consensus binding motif, 

there are multiple alternative sequences with similar affinity and thus equivalent 

functionality. Importantly, this type of degenerate motif conservation is easily 

missed: for example, some of the well-conserved Ci motifs described here are 

not properly aligned in the UCSC Genome Browser, because they do not 

constitute contiguous blocks of perfect sequence identity. To avoid these pitfalls, 

it is important to use phylofootprinting approaches that account for these 

alignment flaws, such as the one described in (Kheradpour et al., 2007). In 

contrast to most of the low-affinity binding sites discussed here, optimal-affinity Ci 

motifs in the ptc enhancer have been preserved throughout the evolution of the 

genus Drosophila, and perhaps much farther: GACCACCCA motifs occur in 

promoter-proximal regions of multiple vertebrate orthologs of ptc (Agren et al., 

2004; Vokes et al., 2007) (additional data not shown).  
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Evolutionary enhancer sequence alignments, along with limited 

experimental data, also suggest that, although many predicted low-affinity sites 

are poorly conserved, overall TF occupancy on an enhancer may be maintained 

despite significant sequence turnover. This may occur either through the rapid 

gain and loss of individual sites, or through the maintenance of relatively weak 

binding affinity at a site that is unstable at the level of DNA sequence (Swanson 

et al., 2011; Tuch et al., 2008). While this last idea requires further direct testing, 

it is consistent with the fact that Gli sites of moderate predicted affinity have many 

sequence variants of similar quality, while the highest-affinity motifs have far 

fewer alternatives of similar quality. In other words, there are many more ways to 

be a weak binding site than a strong site. For example, among all possible 9-mer 

sequences, there are 654 motifs with Ci matrix similarity scores between 70 and 

75 (inclusive), but only 12 motifs with scores between 90 and 95, and one motif 

with a score above 95. Therefore, weaker binding sites, and the enhancers 

containing them, have a far greater volume of sequence space in which to roam 

without strongly impacting transcriptional output [22]. A thermodynamics-based 

simulation of enhancer evolution has shown that there is a greater number of fit 

solutions using weak TF sites than using high-affinity sites for a given gene 

expression problem (He et al., 2012). 

Equally consistent with our view of TF binding site evolution is the fact that 

it is much easier (that is, more likely) to create a low-affinity, non-consensus 

binding motif with a single mutation than a high-affinity consensus motif.  An 
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enhancer-sized DNA sequence can acquire a weak Gli motif with single 

nucleotide substitutions at any of a large number of positions, as demonstrated 

by our simulations (Figure 2.10). These arguments may help to explain why 

sequence conservation is not a foolproof test of the functional relevance of non-

consensus TF binding sites. 

While we cannot offer a simple answer to the technical challenges facing 

those who hunt enhancers, the findings described in this report lead us to 

conclude that low-affinity TF-DNA interactions, mediated by non-consensus and 

often poorly conserved sequence motifs, play important and widespread roles in 

developmental patterning and cis-regulatory evolution, and therefore cannot be 

safely ignored.  

2.5 Materials and methods 

Ci binding site prediction, scoring, and ranking 

A mono-nucleotide distribution matrix for Ci binding sites, derived from 

competitive DNA binding assays (Hallikas et al., 2006) was downloaded from the 

Genomatix Software Suite (www.genomatix.de; Genomatix, Germany).  Matrix 

similarity scores (Quandt et al., 1995) were calculated using data from the first 

nine nucleotide positions of the Ci matrix, which contain the majority of the 

information content.  The matrix similarity score plots in Figure 3.1c and Figure 

2.2c were generated with Apple Numbers and modified with Adobe Illustrator.  Ci 

site rankings are determined by sorting all possible 9-mers in order of matrix 
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similarity score, such that the optimal motif (GACCACCCA), with a score of 100, 

has a rank of 1.  9-mers with a lower matrix score than their reverse-complement 

sequences, such as TGGGTGGTC, are removed from the ranking so that each 

high-scoring site is included only once. 

DNA cloning and mutagenesis 

Wild type ptc, dppD, sr1.9 and wg1.0 enhancers were amplified by 

standard PCR from w1118 genomic DNA. Enhancer constructs were sub-cloned 

into the pENTR/D-TOPO plasmid (Invitrogen) by TOPO cloning. Enhancers were 

subsequently cloned into the pHPdesteGFP transgenesis vector (Boy et al., 

2010) by LR Cloning (Invitrogen), or into the pEAB transgenesis vector (N.C. 

Evans and S.B., unpublished work) by traditional cloning methods. Targeted 

binding site mutations were created by overlap extension PCR (Swanson et al., 

2010). Synthetic Hh-responsive enhancers were generated by assembly PCR 

(Swanson et al., 2010). See Figure 2.9 for full sequences of wild type and 

mutated enhancers investigated in this study. 

Drosophila transgenesis 

Site-directed transformation by embryo injection was performed as 

previously described (Bischof et al., 2007). Reporter transgenes were integrated 

into a phiC31 landing site at genomic position 86FB.  
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Immunohistochemistry and microscopy 

Embryos were fixed and stained using standard methods as previously 

described (White et al., 2012).  Third-instar wing imaginal discs were dissected 

and fixed as described (Parker et al., 2011). Confocal images were captured on 

an Olympus FluoView 500 Laser Scanning Confocal Microscope mounted on an 

Olympus IX-71 inverted microscope. Samples to be directly compared were 

fixed, prepared, and imaged under identical confocal microscopy conditions and 

settings. The primary antibodies used included rabbit anti-EGFP (Invitrogen), 

diluted 1:100, and mouse anti-En (Developmental Studies Hybridoma Bank), 

diluted 1:50. Embryos were staged as described (Campos-Ortega and 

Hartenstein, 1985). 

 Quantitation of transgenic reporter expression data 

Wing confocal images were collected and quantified as previously 

described (Parker et al., 2011). The Matlab program Icarus (E. Ortiz-Soto, A.I.R., 

and S.B., manuscript in preparation) was used to process and plot wing imaginal 

disc fluorescence data. 

Evolutionary sequence alignments 

Alignments of enhancer-orthologous sequences from 12 sequenced 

Drosophila genomes were obtained from the UCSC Genome Browser 

(genome.ucsc.edu), except for the dppD enhancer, for which the UCSC 

alignment was incomplete; this alignment was performed with Clustal Omega 
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(www.ebi.ac.uk/Tools/msa/clustalo), using sequences identified with the 

EvoPrinter HD online tool (Yavatkar et al., 2008). Predicted binding motifs were 

identified with the GenePalette program (Rebeiz and Posakony, 2004); alignment 

graphics were then modified with Adobe Illustrator. 
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Figure 2.1 – The dppD enhancer requires conserved low-affinity Ci/Gli sites to 
respond optimally to Hh and Ci in the developing wing.  

(a) Diagram of the Drosophila third-instar wing imaginal disc, showing the 
distribution of the Hedgehog signaling gradient across the anterior 
compartment.The dashed line indicates the anterior-posterior (A/P) boundary 
separating posterior cells, which secrete Hh, from anterior cells, which express 
the Ci transcription factor. Magnification of a segment of the wing pouch across 
the compartment boundary shows distinct zones (repressor, mixed and activator) 
based on their distance from the source of Hh morphogen. The Hh target genes 
dpp and ptc respond differently to the gradient; dpp is expressed maximally in the 
mixed zone, while ptc expression is restricted to the activator zone. (b) Ci binding 
motifs in the dppD and ptc enhancers. (c) Estimated Ci binding affinity and 
evolutionary conservation across the dppD and ptc enhancers of D. 
melanogaster. Ci matrix similarity score (see Methods) was plotted for every 9-
mer. Known or proposed Ci sites (see Table 2.1) are shown as larger dots. For 
each 9-mer with a score ≥70, numerals indicate the number of Drosophila 
species (out of 12) in which that sequence is present at or near the orthologous 
position. (d) Top, diagrams of dppD enhancer constructs, with defined Ci binding 
sites as vertical bars (broken bars indicate mutated sites). Middle and bottom, 
confocal images of third-instar larval wing imaginal discs, showing GFP 
expression driven by dppD-GFP or ptc-GFP reporter transgenes. Red 
fluorescence is driven by a dppD[Ci-ptc]-DsRed transgene used for GFP 
fluorescence normalization and positional reference. In dppD[Ci-KO]-GFP, three 
Ci sites were destroyed by targeted mutation; in dppD[Ci-ptc]-GFP, three Ci sites 
were converted to optimal motifs taken from ptc; in dppD[Ci1-ptc]-GFP, the 5’ Ci 
site was optimized while site 2 and 3 were destroyed. The white dashed 
rectangle indicates the section of the dorsal wing pouch that is measured in the 
following panels. (e) Normalized GFP fluorescence data collected from the dorsal 
section of the wing pouch. Error bars indicate one standard deviation. (f) Net 
effect of wild type or high-affinity Ci sites on dppD expression (calculated as the 
normalized transgene expression of dppD[wt] or dppD[Ci-ptc] minus normalized 
dppD[Ci-KO] expression). Circles indicate the positions on the A/P axis at which 
Ci input switches from net activation to net repression for each enhancer. 
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Figure 2.2 – Optimizing the Ci binding affinity in the wingless and stripe 
embryonic enhancers results in reduced levels of gene expression.   

(a) Diagram of a stage 14 Drosophila embryo. A closer view of parasegments 5 
and 6 shows bidirectional Hh signaling gradients which modulate the 
transcriptional activity of Ci. Known Hh/Ci target genes respond symmetrically 
(patched (Hooper and Scott, 1989; Nakano et al., 1989)) or asymmetrically (e.g., 
wingless (wg) (Baker, 1988) and stripe (sr) (Piepenburg et al., 2000)) to the Hh 
signal. (b) Diagrams of the wg1.0[wt] and sr1.9[wt] enhancers showing Ci binding 
motifs as vertical lines. (c) Estimated Ci binding affinity across the wg1.0 and 
sr1.9 enhancers of D. melanogaster. Ci matrix similarity scores and conservation 
data are indicated as in Figure 1c.  In (d) and (e), diagrams on the left show 
wg1.0 and sr1.9D enhancer constructs; images of transgenic embryos show GFP 
alone (middle) and merged GFP, En (which marks Hh-producing cells), and DAPI 
nuclear stain (right). (d) Confocal images of stage 14 transgenic embryos 
carrying wg1.0[wt] and wg1.0[3xCi-opt], in which three Ci sites have been 
converted to optimal Ci binding motifs, driving GFP. (e) Confocal images of stage 
14 transgenic embryos carrying sr1.9[wt] and sr1.9[2xCi-opt], in which two Ci 
sites have been converted to optimal Ci binding motifs, driving GFP. A, anterior; 
P, posterior. 
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Figure 2.3 – Evolutionary conservation of predicted binding affinity, but not of 
sequence identity, at many low-to-moderate-affinity Ci binding sites.  

Twelve-species Drosophila sequence alignments are shown for selected regions 
of the dppD, wg1.0, and sr1.9 enhancers.  Selected 9-mers are shaded, and Ci 
matrix similarity scores for those motifs are shown to the right. Sequences are 
from the following Drosophila species, from top to bottom: D. melanogaster, D. 
simulans, D. sechellia, D. yakuba, D. erecta, D. ananassae, D. pseudoobscura, 
D. persimilis, D. willistoni, D. virilis, D. mojavensis, and D. grimshawi. Dashes 
indicate gaps; double-dashes (=) indicate a lack of alignable sequence. 
Bracketed numbers indicate the number of bases deleted at that position to 
conserve space. Conserved homeodomain binding motifs are in gray boxes. 
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Figure 2.4 – Hedgehog gradient responses of synthetic enhancers in the wing 
and embryo.  
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(a) Diagrams of synthetic transgenic reporters, with Grainyhead (Grh) sites and 
low-affinity, high-affinity, and mutant Ci sites indicated. Confocal images of the 
pouch regions of wing imaginal discs from transgenic third-instar larvae are 
shown. GFP fluorescence data is internally normalized to a dppD[Ci-ptc]-DsRed 
reference transgene (not shown). (b) Normalized GFP fluorescence wing data 
across the dorsal wing pouch. Error bars indicate one standard deviation. (c) Net 
effect of Ci sites on synthetic transgene expression (normalized GFP expression 
minus normalized GGG-GFP expression). Circles indicate the positions at which 
Ci input switches from net activation to net repression. (d) Confocal images of 
stage 11 transgenic embryos carrying the same synthetic GFP reporters. Top, 
GFP expression; middle, Engrailed (En) antibody, which marks Hh-producing 
cells; bottom, merge. 
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Figure 2.5 – Conserved homeodomain binding motifs integrate regulatory inputs 
into dppD.  

(a) Top, diagrams of dppD enhancer constructs, with defined Ci and 
homeodomain (HD) binding sites as vertical bars (wide bars, wild type low-affinity 
Ci binding sites; narrow bars, HD motifs; broken bars, mutated sites). Middle and 
bottom, confocal images of wing imaginal discs from transgenic third-instar 
larvae are shown. Middle, GFP alone; bottom, GFP merged with dppD[Ci-ptc]-
DsRed reference transgene and DAPI nuclear stain. (b) Normalized GFP 
fluorescence data from transgenic dorsal wing pouches. Error bars indicate one 
standard deviation. Dashed line shows A/P compartment boundary. (c) Proposed 
model of the dppD regulatory network across the wing A/P axis. A, anterior; P, 
posterior. 
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Figure 2.6 – Evolutionary sequence alignments of Hh/Ci-regulated enhancers 
across 12 sequenced Drosophila species genomes.  

Red asterisks highlight previously described Ci binding sites (Alexandre et al., 
1996; Müller and Basler, 2000; Ohlen and Hooper, 1997) (See Table 2.1). At 
the top of each alignment, black bars show ranking of Ci binding motifs based 
on predicted binding affinity; rank #1 is the optimal Gli binding motif. White 
bars show motif sequence conservation, calculated as the number of 
Drosophila species in which a similar motif (6/9 match or better) appears in a 
similar relative position. Grey rectangles show sequence blocks of 9 bp or 
greater that are shared among all 12 species, identified by the GenePalette 
program (Rebeiz and Posakony, 2004). Asterisks indicate functionally tested 
Ci sites (Müller and Basler, 2000; Parker et al., 2011). (bottom) Comparison of 
dppD enhancer sequence similarity among 12 sequenced Drosophila species 
genomes. Species abbreviations: mel, melanogaster; sim, simulans; sec, 
sechellia; yak, yakuba; ere, erecta; ana, ananassae; pse, pseudoobscura; per, 
persimilis; wil, willistoni; vir, virilis; moj, mojavensis; gri, grimshawi.  H, 
conserved HD binding motif (TAAT); HE, previously identified En site (Müller 
and Basler, 2000).  Smaller H symbols denote non-conserved TAAT motifs. 
H* indicates a TAATCA motif found in our enhancer sequence which is given 
as TTATCA in official genome sequence. Asterisks next to species 
designations indicate that EvoPrinter was unable to find the mel-orthologous 
enhancer sequence in that genome; in those cases, species-specific BLAST 
was used to identify the orthologous sequence. 
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Figure 2.7 – Quantitative comparison of wing disc expression patterns driven 
by the dppD and ptc enhancers. 

The dppD and ptc enhancers drive maximal expression in distinct signaling 
zones and at different levels. GFP fluorescence data were collected from 
third-instar imaginal wing discs and normalized to expression of a DsRed 
reporter transgene driven by dppD[Ci-ptc].  Error bars indicate 1 standard 
deviation. A, anterior; P, posterior. 
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Figure 2.8 – Enhancers of dpp, wg, and sr respond to Hedgehog/Ci in a 
tissue-specific manner.  

Improving Ci binding sites in the dppD, wg and sr1.9 enhancers does not 
induce significant ectopic expression in wing discs or embryos. (a) Stage 11 
embryos (top) and third-instar imaginal eye-antenna discs (bottom) from 
transgenic flies carrying dppD[wt]-GFP and dppD[Ci-ptc]-GFP.  White 
arrowheads indicate antennal expression patterns; yellow arrowheads indicate 
the location of the morphogenetic furrow where dpp is normally expressed 
(Blackman et al., 1991), but the dppD enhancer does not respond; pink 
arrowhead shows ectopic activity of dppD[Ci-ptc] in the posterior margin of the 
eye disc. (b) wg[wt]-GFP and wg[3xCi-opt]-GFP do not respond to Hh/Ci in 
transgenic wing imaginal discs. (c) sr1.9[wt]-GFP and sr1.9[2xCi-opt]-GFP do 
not respond to Hh/Ci in transgenic wing imaginal discs. 

(a)

(b)

(c)

dppD[wt]-GFP
GFP
En
DAPI

GFP
DAPI

dppD[Ci-ptc]-GFP

wg[wt]-GFP wg[3xCi-opt]-GFP

sr1.9[wt]-GFP sr1.9[2xCi-opt]-GFP

GFP
DAPI

GFP
DAPI
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(a) ptc enhancer (827 bp) 2R: 4,536,264-4,537,090 
atgcatgcgcAGCCTGCCACGCACGCGCTtCCCCcAAACAaATaCACaCACACacactgagacgAAAGCT

CCAttgggcagcgctGCCGACGCTGAAGGCCGACatcggcagagctgaacgtttgggtagGGGACCACCCACAtCG
CTTGGCGGTTTCAGTTTAATGAAGGCAGaAACAaATTTATTTTTGGGTGGTCCaCACTGCAgCGAAAATAAACtAC
aGtgGcAAcAAcAAACcAGCAGccaAgGCacTTTGGGTGGTCCatgCaaaAAaaaaacaaattacggcatgcgaat
AACAATaGAAATTAGCGctCTcgtggcggagctatttgggtatattagagctacatattttatttgtttataaaaa
gtataaatgtaaacaatgagttccaagcattaagtccgtatgctcaacaattacattatcattattattatcactt
aaatatttacaaaggatatttaaacagtaatagatatatattttatttcttaatttctgttaacatatgtatttac
attggtagttattctttattttgcaacaagcattcataaattttatataacaaacttggtattttctcggaaaaac
tcctgaAtCacCCCTCGGTATTTTgtgcgttgagctatcgttaaagcagCCCTCGCAGAGAGCGTtCTCAAACCAA
AATGGCCGCACACGAaACAAGAGAGCGAGtGagagtagggagaGCGTcTgtgttgtgtgttgagtGTCgcCCAcGC
ACACAGGCGCAaAACaGtgCACACAGACgcccgctgggcaagagagagtgagagagagaaacagcggcgcgcg 

(b.1) dppD enhancer (724 bp) 2L: 2,481,154-2,481,870 

aatattttgttcaattttGTAACaGtaGAGAGAGAGCAAaatgggttccactcacCTTGTCAGCCAGTCAGTCGCA
CATCCAGTTCCTTgGcCAtgtgcccctttcccctttgcgcttctcctccgtgttgccgattccgccccacacggag
ttagttttgtcgtacactgaaaaaaatgaacggaaatcatgaatttatgttttagtctgaaagggagagttaaagg
acacagcatattaatcaggaacataacttcccttaaacttctttcaacttctttcaGTGCAGCTGCAGGTGTGTGT
GTtTatGgaGGaCTGTGCGTCTCAAGTTTTCAACAACAAGATATAAGCCAATAAAGgAGGAACAcCgGCGAAAAGG
ATGAGCGGCCAGcccAGCAcacagggcACAAAAAGAAAGCGCAGGCAGGAGAATATACCTTAATTACGGTTAATGG
AGCGTTCGAAAAAACAAAAcCGATGGcttTATATGTGgcccaGTGTGTGTATCATATGTTGGATCTTCGGCCGAGT
GCCACGGCGAAATAACTTAATCACATTTCGAGAgGAGACGACCGCAAAAATCTGCGAGCCATGTTCGTAATTTTGT
ATATAAATGAGATGCGGCCACCTAATGAGCCTGATTAACCAaCCGggtcccgagatcttcggtTCCTCaCGGGCGG
TCtctacacccagcgccgctcccttgtacctcccccccat 

(b.2) dppD [Ci-KO] 

AATATTTTGTTCAATTTTGTAACAGTAGAGAGAGAGCAAAATGGGTTCCACTCACCTTGTCAGCCAGTCA
GTCGCACATCCAGTTCCTTGGCCATGTGCCCCTTTCCCCTTTGCGCTTCTCCTCCGTGTTGCCGATTCCGCCCCAC
ACGGAGTTAGTTTTGTCGTACACTGAAAAAAATGAACGGAAATCATGAATTTATGTTTTAGTCTGAAAGGGAGAGT
TAAAGGACACAGCATATTAATCAGGAACATAACTTCCCTTAAACTTCTTTCAACTTCTTTCAGTGCAGCTGCAGGT
GTGTGTGTTTATGGAGGACTGTGCGTCTCAAGTTTTCAACAACAAGATATAAGCCAATAAAGGAGGAACACCGGCG
AAAAGGATGAGCGGCCAGCCCAGCACACAGGGCACAAAAAGAAAGCGCAGGCAGGAGAATATACCTTAATTACGGT
TAATGGAGCGTTCGAAAAAACAAAACCGATGGCTTTATATGTGGCCCAGTGTGTGTATCATATGTTGGATCTTCGG
CCGAGTGCCACGGCGAAATAACTTAATCACATTTCGAGAGGAGACGACCGCAAAAATCTGCGAGCCATGTTCGTAA
TTTTGTATATAAATGAGATGCGGaaAaCTAATGAGCCTGATTAACCAACCGGGTCCCGAGATCTTCGGTTCCTCAC
GGtCttTCTCTACACCCAGCGCCGCTCCCTTGTAaaTaCCCCCCAT 

(b.3) dppD [Ci-ptc] 

AATATTTTGTTCAATTTTGTAACAGTAGAGAGAGAGCAAAATGGGTTCCACTCACCTTGTCAGCCAGTCA
GTCGCACATCCAGTTCCTTGGCCATGTGCCCCTTTCCCCTTTGCGCTTCTCCTCCGTGTTGCCGATTCCGCCCCAC
ACGGAGTTAGTTTTGTCGTACACTGAAAAAAATGAACGGAAATCATGAATTTATGTTTTAGTCTGAAAGGGAGAGT
TAAAGGACACAGCATATTAATCAGGAACATAACTTCCCTTAAACTTCTTTCAACTTCTTTCAGTGCAGCTGCAGGT
GTGTGTGTTTATGGAGGACTGTGCGTCTCAAGTTTTCAACAACAAGATATAAGCCAATAAAGGAGGAACACCGGCG
AAAAGGATGAGCGGCCAGCCCAGCACACAGGGCACAAAAAGAAAGCGCAGGCAGGAGAATATACCTTAATTACGGT
TAATGGAGCGTTCGAAAAAACAAAACCGATGGCTTTATATGTGGCCCAGTGTGTGTATCATATGTTGGATCTTCGG
CCGAGTGCCACGGCGAAATAACTTAATCACATTTCGAGAGGAGACGACCGCAAAAATCTGCGAGCCATGTTCGTAA
TTTTGTATATAAATGAGATGCGaCCACCcAATGAGCCTGATTAACCAACCGGGTCCCGAGATCTTCGGTTCCTCAt
GGGtGGTCTCTACACCCAGCGCCGCTCCCTTGgACCaCCCaCCCAT 

(b.4) dppD [Ci1-ptc] 

AATATTTTGTTCAATTTTGTAACAGTAGAGAGAGAGCAAAATGGGTTCCACTCACCTTGTCAGCCAGTCA
GTCGCACATCCAGTTCCTTGGCCATGTGCCCCTTTCCCCTTTGCGCTTCTCCTCCGTGTTGCCGATTCCGCCCCAC
ACGGAGTTAGTTTTGTCGTACACTGAAAAAAATGAACGGAAATCATGAATTTATGTTTTAGTCTGAAAGGGAGAGT
TAAAGGACACAGCATATTAATCAGGAACATAACTTCCCTTAAACTTCTTTCAACTTCTTTCAGTGCAGCTGCAGGT
GTGTGTGTTTATGGAGGACTGTGCGTCTCAAGTTTTCAACAACAAGATATAAGCCAATAAAGGAGGAACACCGGCG
AAAAGGATGAGCGGCCAGCCCAGCACACAGGGCACAAAAAGAAAGCGCAGGCAGGAGAATATACCTTAATTACGGT
TAATGGAGCGTTCGAAAAAACAAAACCGATGGCTTTATATGTGGCCCAGTGTGTGTATCATATGTTGGATCTTCGG
CCGAGTGCCACGGCGAAATAACTTAATCACATTTCGAGAGGAGACGACCGCAAAAATCTGCGAGCCATGTTCGTAA
TTTTGTATATAAATGAGATGCGaCCACCcAATGAGCCTGATTAACCAACCGGGTCCCGAGATCTTCGGTTCCTCAC
GGtCttTCTCTACACCCAGCGCCGCTCCCTTGTAaaTaCCCCCCAT 
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(b.5) dppD [En-KO] 

AATATTTTGTTCAATTTTGTAACAGTAGAGAGAGAGCAAAATGGGTTCCACTCACCTTGTCAGCCAGTCA
GTCGCACATCCAGTTCCTTGGCCATGTGCCCCTTTCCCCTTTGCGCTTCTCCTCCGTGTTGCCGATTCCGCCCCAC
ACGGAGTTAGTTTTGTCGTACACTGAAAAAAATGAACGGAAATCATGAATTTATGTTTTAGTCTGAAAGGGAGAGT
TAAAGGACACAGCATATTAATCAGGAACATAACTTCCCTTAAACTTCTTTCAACTTCTTTCAGTGCAGCTGCAGGT
GTGTGTGTTTATGGAGGACTGTGCGTCTCAAGTTTTCAACAACAAGATATAAGCCAATAAAGGAGGAACACCGGCG
AAAAGGATGAGCGGCCAGCCCAGCACACAGGGCACAAAAAGAAAGCGCAGGCAGGAGAATATACCTTAATTACGGT
TAATGGAGCGTTCGAAAAAACAAAACCGATGGCTTTATATGTGGCCCAGTGTGTGTATCATATGTTGGATCTTCGG
CCGAGTGCCACGGCGAAATAACTactagtCATTTCGAGAGGAGACGACCGCAAAAATCTGCGAGCCATGTTCGTAA
TTTTGTATATAAATGAGATGCGGCCACCTAATGAGCCTGATTAACCAACCGGGTCCCGAGATCTTCGGTTCCTCAC
GGGCGGTCTCTACACCCAGCGCCGCTCCCTTGTACCTCCCCCCCAT 

(b.6) dppD [HD-KO] 

AATATTTTGTTCAATTTTGTAACAGTAGAGAGAGAGCAAAATGGGTTCCACTCACCTTGTCAGCCAGTCA
GTCGCACATCCAGTTCCTTGGCCATGTGCCCCTTTCCCCTTTGCGCTTCTCCTCCGTGTTGCCGATTCCGCCCCAC
ACGGAGTTAGTTTTGTCGTACACTGAAAAAAATGAACGGAAATCATGAATTTATGTTTTAGTCTGAAAGGGAGAGT
TAAAGGACACAGCATATTAcaCAGGAACATAACTTCCCTTAAACTTCTTTCAACTTCTTTCAGTGCAGCTGCAGGT
GTGTGTGTTTATGGAGGACTGTGCGTCTCAAGTTTTCAACAACAAGATATAAGCCAATAAAGGAGGAACACCGGCG
AAAAGGATGAGCGGCCAGCCCAGCACACAGGGCACAAAAAGAAAGCGCAGGCAGGAGAATATACCTTAcaTACGGT
TAcaGGAGCGTTCGAAAAAACAAAACCGATGGCTTTATATGTGGCCCAGTGTGTGTATCATATGTTGGATCTTCGG
CCGAGTGCCACGGCGAAATAACTTAcaCACATTTCGAGAGGAGACGACCGCAAAAATCTGCGAGCCATGTTCGTAc
aTTTGTATATAAATGAGATGCGGCCACCTAcaGAGCCTGcaTAACCAACCGGGTCCCGAGATCTTCGGTTCCTCAC
GGGCGGTCTCTACACCCAGCGCCGCTCCCTTGTACCTCCCCCCCAT 

(c.1) wg embryonic ectoderm enhancer (1026 bp) 2L: 7,302,331-7,303,356 
gatatctgattaatatcattttttcattgaaacacattaccaagtaatatcgacccctttccttccattt

gcctgatatttaccatttcggtgccatttcccagtgaacCCATTAtgGATCTTGTTACCAtAATGTCAGCACTAAA
ATGGCTTCCTCcgctgccgagaagagatcgCCACCACCAcTCtactcTTTTGCACATGccaccaCCAccaccacca
cACGCTCCgGTGGTTCCCCtTTCGCCCCGCCATgTTTCCTCGATGGCTGCTCGtCGGATCGCACTTCCGGAGTTcg
cgGACCGCCaGCGTGGAcGATGATAATGCATTATGCATTCCgCCGcCTGggTTTTAATTGTTATTAACTCGcGATA
AGgAGAACTTTAACACCTATaGTTAGGcCGGgCCaGAAAATGTAGCCgAGCATGctaagaTATAATTTcaACATTT
TATAAGCACTTAACAaccCAAAAAccgctggtaatgcaccgAAAAAAAgtagttagaAgTAAtgtgagtaataata
gaatattagtttttaaatagtatagaaaaaaaacattaaatgacaagaaagttcaaagaaaacgtttacaaatgca
tttttatccaattacaaaatatcttcctgatattgagcgatttaaatgtagttgcattcttttccctctgtgcata
aatttttcggtaacaaaaactggctgcctTTTCCTTtCGCTGGCGGGGGAACGGGAAATATAAATTGTCGGACCCC
GAAATTCTACACTGTCATCAAAGCGTAACTAAACGCCCATTTTTCTCAACTTTTTGGAGTcTCTTTCGGaCCGGAC
AaCCATTTTCGGTAGTTATTAGTGGCATATTTTGGCCTAAAGTGCGTGAACCATGTCGAACAGccAGCgCAGGCAA
CAAAATTTATTGTTTAGTAGtGGAGTGAAGTTAACAACAAAATGGACCTCCCAGCGAAAGAGAAAGACACGCAACG
atccCAAcgcgGACcTGGCCAGaAAAAAaTATTAACGCCTCGAG 

(c.2) wg [3xCi-opt] 
GATATCTGATTAATATCATTTTTTCATTGAAACACATTACCAAGTAATATCGACCCCTTTCCTTCCATTT

GCCTGATATTTACCATTTCGGTGCCATTTCCCAGTGAACCCATTATGGATCTTGTTACCATAATGTCAGCACTAAA
ATGGCTTCCTCCGCTGCCGAGAAGAGATCGCCACCACCACTCTACTCTTTTGCACATGCCACCACCACCACCACCA
CACGCTCCGGTGGTTCCCCTTTCGCCCCGCCATGTTTCCTCGATGGgTGgTCGTCGGATCGCACTTCCGGAGTTCG
CGGACCGCCAGCGTGGACGATGATAATGCATTATGCATTCCGCCGCCTGGGTTTTAATTGTTATTAACTCGCGATA
AGGAGAACTTTAACACCTATAGTTAGGCCGGGCCAGAAAATGTAGCCGAGCATGCTAAGATATAATTTCAACATTT
TATAAGCACTTAACAACCCAAAAACCGCTGGTAATGCACCGAAAAAAAGTAGTTAGAAGTAATGTGAGTAATAATA
GAATATTAGTTTTTAAATAGTATAGAAAAAAAACATTAAATGACAAGAAAGTTCAAAGAAAACGTTTACAAATGCA
TTTTTATCCAATTACAAAATATCTTCCTGATATTGAGCGATTTAAATGTAGTTGCATTCTTTTCCCTCTGTGCATA
AATTTTTCGGTAACAAAAACTGGCTGCCTTTTCCTTTCGCTGGCGGGGGAACGGGAAATATAAATTGTCGGACCCC
GAAATTCTACACTGTCATCAAAGCGTAACTAAACGCCCATTTTTCTCAACTTTTTGGAGTCTCTTTCGGACCGGAC
AACCATTTTCGGTAGTTATTAGTGGCATATTTTGGCCTAAAGTGgGTGgtCCATGTCGAACAGCCAGCGCAGGCAA
CAAAATTTATTGTTTAGTAGTGGAGTGAAGTTAACAACAAAATGGACCaCCCAGCGAAAGAGAAAGACACGCAACG
ATCCCAACGCGGACCTGGCCAGAAAAAAATATTAACGCCTCGAG 
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(d.1) sr 1.9 enhancer (1889 bp) 3R: 13,913,053-13,914,941 
TGACATAGTTcactagtgaaTGCAggCaTGATttaaAGGGCGTTGCACTAATTGAAATTGCAAATtTttg

gttgccatgtAAAATTGATAGgAaTTTTATtccgCTTCGttgcaGTGTGAAACtcttcttgtgcCTGCCAcatttt
caGATTTATGAtacaggCAaGGCAGTGTCAtaTTTATTAATTGAAGAATTATAAGCTgtTAAtccAAGATCCCTCa
GTTATGATTATTATGAGAGATGTTCaacaatcGaAGAtcgaaGATATAcgttcggaaaccctagacaatcaacaTG
TGTGGCcagcctAgTAAAACAATAtAAATtGgGAAAATGCtCAATAAAtatgaacagcaacAAAAGgAAAATATcT
tTaATAAATTTTCAACCAAtGcAATTTGCATAtAgTGAATGgAACGCGTTATCGTAAATCAccAATAAAgtAAGCA
AAACCGACCGAAATAAAAGTGTCACCTttATAtgtccacttatTAgATGcgccaGTaTCTAGacCCAAtagagtTT
GaCtATATtGATGATgATGAAAACgAATGCCGCAgcGcCACACACAGACCGCAGtCCAATTGAAATGTTTTTCgaA
AATTTACGACttGAAAAggAAAATTTTCTAGGCTATTAAATTATCgAAaTCaAATCAgCaGACCACCAGCATGATT
TtGGAAattGATACcacgaatggaaggttgtctttctacacaaggttcctaatgaattaaggtatataattaaatg
ttgatatatttcttatatagattccttgattttagttttaatttttgatgcaatgcgtacacatttgtcatgacaa
aaatgtataaaaacctaaatagctaaaaaaaaaagcataaatgagcatttttctcttgaagaatgcacgtgggcgt
ttataactaattttcaacgcaattcaattaaaagacgtacactttgttggAGCCAaCTAAATAtaagTgAAAAAtC
CAGTCAAAGGAGTTGTCCAtAGTAACCaTCAagtAAGCaACGACAACAACATcagttgGCAGTCATGCTAATGAAT
GGAACGCGttttTttTGTAAATTGTCTGCCAAgCGActgaatgaATGaATGAATGAgTAtGTGACTgAATGAGTGA
CTGACAGCCAAATGGCAGAGGAGTTGtCgtTTAATGAGCAACCCCTTcttagcCAACCaGtcgaCAACAGAAgCCa
CaaacgATGTCGatgtcgacgtagccctagggtattcatttaatccgtcagtttgcaGACTTaAGaGTCTCTCATT
AATTCATTAAAaGGTGTTAAAAACGGAAGCCAtCGTCAGTTGtTGTgAAggaccTAAcATGGTCAATcAagCGccA
AaatGaTTGgAaTTgcaaacgtTTtCAaTaAtATaATtatcaaattaaggtgatggaaagttgttagctggatttt
aattactaatatttcatcattttcaaacagaatgcagttcaaaacgtacgagcacttcacgtattattattcatag
attattcatagttgtagtttgtcggaatacaacgtggtgtatcttgtatcttagattttgtatcttaatattgggt
ttttgggccatactattgtctctagtgccatttctcaaatttattttcctaacaaagtataagcCTtataaggtgg
cGAGCTaAttgtgctggcctttgttattacTATTGCaTGTGTCACATTCTGAATGAGCAATTACAGTTAATAAGAG
TACAAATGTCAAATGtccGaTGTGGGCGATtCGGCTAAGTATAATTAATTTGACTtGgGaCTTggGTTTCGCTCAG
TGTAAGaCACTTGAACTAATTGACAAGTTTCCATATaTAAGCATTTTGTGAATGAAtgaattcgagttttc 

 

(d.2) sr 1.9 [2xCi-opt] 

TGACATAGTTCACTAGTGAATGCAGGCATGATTTAAAGGGCGTTGCACTAATTGAAATTGCAAATTTTTG
GTTGCCATGTAAAATTGATAGGAATTTTATTCCGCTTCGTTGCAGTGTGAAACTCTTCTTGTGCCTGCCACATTTT
CAGATTTATGATACAGGCAAGGCAGTGTCATATTTATTAATTGAAGAATTATAAGCTGTTAATCCAAGATCCCTCA
GTTATGATTATTATGAGAGATGTTCAACAATCGAAGATCGAAGATATACGTTCGGAAACCCTAGACAATCAACATG
TGTGGCCAGCCTAGTAAAACAATATAAATTGGGAAAATGCTCAATAAATATGAACAGCAACAAAAGGAAAATATCT
TTAATAAATTTTCAACCAATGCAATTTGCATATAGTGAATGGAACGCGTTATCGTAAATCACCAATAAAGTAAGCA
AAACCGACCGAAATAAAAGTGTCACCTTTATATGTCCACTTATTAGATGCGCCAGTATCTAGACCCAATAGAGTTT
GACTATATTGATGATGATGAAAACGAATGCCGCAGCGGACCACCCAGACCGCAGTCCAATTGAAATGTTTTTCGAA
AATTTACGACTTGAAAAGGAAAATTTTCTAGGCTATTAAATTATCGAAATCAAATCAGCAGACCACCCACATGATT
TTGGAAATTGATACCACGAATGGAAGGTTGTCTTTCTACACAAGGTTCCTAATGAATTAAGGTATATAATTAAATG
TTGATATATTTCTTATATAGATTCCTTGATTTTAGTTTTAATTTTTGATGCAATGCGTACACATTTGTCATGACAA
AAATGTATAAAAACCTAAATAGCTAAAAAAAAAAGCATAAATGAGCATTTTTCTCTTGAAGAATGCACGTGGGCGT
TTATAACTAATTTTCAACGCAATTCAATTAAAAGACGTACACTTTGTTGGAGCCAACTAAATATAAGTGAAAAATC
CAGTCAAAGGAGTTGTCCATAGTAACCATCAAGTAAGCAACGACAACAACATCAGTTGGCAGTCATGCTAATGAAT
GGAACGCGTTTTTTTTGTAAATTGTCTGCCAAGCGACTGAATGAATGAATGAATGAGTATGTGACTGAATGAGTGA
CTGACAGCCAAATGGCAGAGGAGTTGTCGTTTAATGAGCAACCCCTTCTTAGCCAACCAGTCGACAACAGAAGCCA
CAAACGATGTCGATGTCGACGTAGCCCTAGGGTATTCATTTAATCCGTCAGTTTGCAGACTTAAGAGTCTCTCATT
AATTCATTAAAAGGTGTTAAAAACGGAAGCCATCGTCAGTTGTTGTGAAGGACCTAACATGGTCAATCAAGCGCCA
AAATGATTGGAATTGCAAACGTTTTCAATAATATAATTATCAAATTAAGGTGATGGAAAGTTGTTAGCTGGATTTT
AATTACTAATATTTCATCATTTTCAAACAGAATGCAGTTCAAAACGTACGAGCACTTCACGTATTATTATTCATAG
ATTATTCATAGTTGTAGTTTGTCGGAATACAACGTGGTGTATCTTGTATCTTAGATTTTGTATCTTAATATTGGGT
TTTTGGGCCATACTATTGTCTCTAGTGCCATTTCTCAAATTTATTTTCCTAACAAAGTATAAGCCTTATAAGGTGG
CGAGCTAATTGTGCTGGCCTTTGTTATTACTATTGCATGTGTCACATTCTGAATGAGCAATTACAGTTAATAAGAG
TACAAATGTCAAATGTCCGATGTGGGCGATTCGGCTAAGTATAATTAATTTGACTTGGGACTTGGGTTTCGCTCAG
TGTAAGACACTTGAACTAATTGACAAGTTTCCATATATAAGCATTTTGTGAATGAATGAATTCGAGTTTTC 
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(e) GGGLLL: Synthetic 3xGrh, 3xCi-low (174 bp) 
GCTAGCAGATCTAAACCGGTTATGCGAGTCTAGACTTGGAAACCGGTTATGCGAGTCTAGACTTGGAAAC

CGGTTATGCGGCCTGGCGCGCCACTCGATGCGGCCACCTAATGAGCCGCGGCCTCACGGGCGGTCTCTACGTCGAC
CCTTGTACCTCCCCCCCATCATGACGTC 

(f) GGGHHH: Synthetic 3xGrh, 3xCi-high (174 bp) 
GCTAGCAGATCTAAACCGGTTATGCGAGTCTAGACTTGGAAACCGGTTATGCGAGTCTAGACTTGGAAAC

CGGTTATGCGGCCTGGCGCGCCACTCGATGCGACCACCCAATGAGCCGCGGCCTCATGGGTGGTCTCTACGTCGAC
CCTTGTGGGTGGTCCCCATCATGACGTC 

(g) GGGH: Synthetic 3xGrh, 1XCi-high (174 bp) 
GCTAGCAGATCTAAACCGGTTATGCGAGTCTAGACTTGGAAACCGGTTATGCGAGTCTAGACTTGGAAAC

CGGTTATGCGGCCTGGCGCGCCACTCGATGCGACCACCCAATGAGCCGCGGCCTCACGGGCTGTCTCTACGTCGAC
CCTTGTACATCCCCCCCATCATGACGTC 

(h) GGG: Synthetic 3xGrh, 3xCi-KO (174 bp) 
GCTAGCAGATCTAAACCGGTTATGCGAGTCTAGACTTGGAAACCGGTTATGCGAGTCTAGACTTGGAAAC

CGGTTATGCGGCCTGGCGCGCCACTCGATGCGGCAACCTAATGAGCCGCGGCCTCACGGGCTGTCTCTACGTCGAC
CCTTGTACATCCCCCCCATCATGACGTC 

(i) HHH: Synthetic 3xCi-high (90 bp) 
GGCGCGCCACTCGATGCGACCACCCAATGAGCCGCGGCCTCATGGGTGGTCTCTACGTCGACCCTTGTGG

GTGGTCCCCATCATGACGTC 

Figure 2.9 – Annotated sequences of enhancers and synthetic constructs.  
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Enhancer sequence conservation in (a), (b.1), (c.1), and (d.1) was determined 
with the online sequence analysis tool EvoPrinterHD (Yavatkar et al., 2008).  
Blocks of sequence that are strongly conserved across the genus Drosophila 
are in bold caps; slightly less well conserved sequences are in non-bold caps.  
Ci binding sites are highlighted in yellow; consensus HD binding sites are 
highlighted in magenta. Targeted base substitutions in predicted binding sites 
are shown in lower case. (a) The ptc enhancer fragment as shown in Figure 
1b (Alexandre et al., 1996). (b.1) The dppD enhancer used in this study is a 
truncated version of the 800bp “fragment 10” enhancer (Figure 1b) (Muller and 
Basler, 2000).  (b.2) Mutated version of dppD (Parker et al., 2011). (b.3) dppD 
with improved Ci binding affinity (Parker et al., 2011). (b.4) dppD with a single 
high-affinity Ci binding site and 2 mutant sites. (b.5) dppD with known 
Engrailed site mutated (Muller and Basler, 2000). (b.6) dppD with all predicted 
HD sites mutated. (c.1) wg 1.0 kb embryonic enhancer (Ohlen and Hooper, 
1997).  (c.2) High-affinity version of the wg enhancer (White et al., 2012).  
(d.1) sr1.9 embryonic enhancer (Piepenburg et al., 2000). (d.2) High-affinity 
version of sr1.9. (e-i) Synthetic Ci reporter constructs. Ci sites are highlighted 
in yellow; Grh binding sites are highlighted in red. (e) Synthetic enhancer with 
3Grh sites and 3 low-affinity Ci sites.  (f) Synthetic enhancer with 3Grh sites 
and 3 high-affinity Ci sites.  (g) Synthetic enhancer with 3Grh sites and one 
high-affinity site (Parker et al., 2011). (h) Synthetic enhancer with 3 Grh sites 
and 3 mutant Ci sites to maintain binding site spacing relative to the previous 
constructs. (i) Synthetic enhancer with 3 high-affinity Ci sites. 
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Figure 2.10 – Rates of occurrence of Ci motifs of various predicted affinities in 
genomic sequence.  

50 randomly selected 1-kb segments of noncoding D. melanogaster genome 
sequence were analyzed for the presence of 9-bp Ci binding motifs with matrix 
similarity scores of 100, ≥90, ≥80, or ≥70, and for the presence of sequences 
with one mismatch (8/9 match) to those motifs.  The average 1-kb sequence 
contains 9.5 sites, which with one nucleotide substitution, would be converted 
into Ci motifs with a matrix score of 80 or greater, and 43 sites that, with one 
substitution, would produce motifs with a score of 70 or greater.  These 
estimates do not include other types of sequence evolution, such as indels, 
which present many more opportunities for acquiring Ci motifs.  Non-
consensus Ci motifs were detected with the GenePalette program (Rebeiz 
and Posakony, 2004). 
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Table 2.1 – Functionally characterized Hh/Ci-regulated enhancers in the 
Drosophila genome 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CiBS: Ci binding site(s). Bases deviating from the Ci/Gli consensus motif GACCACCCA 
(Hallikas et al., 2006; Kinzler and Vogelstein, 1990) are in bold and lower case. CiBS rank: 
rank of each 9-mer in order of predicted binding affinity for Ci (Hallikas et al., 2006). 
* Relative in vitro binding affinity was experimentally measured (Parker et al., 2011; White et 
al., 2012). 
1 Potential binding site, not functionally and biochemically validated. 
2This sequence, proposed as a possible Ci binding site by Müller et al. but not tested (Müller 
and Basler, 2000), overlaps another 9-mer with a better (but still poor) Ci site ranking (426).  
Neither site showed detectable binding to Ci in vitro (Parker et al., 2011) and neither is well-
conserved evolutionarily. 
3This sequence, proposed as a Ci binding site by Von Ohlen et al. (Ohlen et al., 1997), 
overlaps another 9-mer with a better (but still poor) Ci site ranking (992).  A probe containing 
both overlapping sequences showed very weak binding to Ci in vitro (White et al., 2012), and 
the motif identified by Von Ohlen et al. (Ohlen and Hooper, 1997) is not evolutionarily well 
conserved (see Figure 3b and Supplementary figure S1c). 
4This sequence, proposed as a Ci binding site by Piepenberg et al. (Piepenburg et al., 2000), 
overlaps another 9-mer with a better (but still poor) Ci site ranking of 681 (see Figure 3c). 
5This site was reported as TGCCACCCA, a worse-ranking motif (rank 93), by Hersh et al. 
(Hersh and Carroll, 2005), but reference genomic sequence (BDGP R5/dm3) gives it as 
GCCCACCCA, and strong evolutionary sequence conservation supports the latter sequence. 
6These two predicted sites were reported to be functionally irrelevant in vivo by Hersh et al. 
(Hersh and Carroll, 2005)—but see the previous footnote. 

Enhancer Target gene Sequence of 
CiBS 

CiBS 
rank Expression Refs 

ptc patched GACCACCCA* 

GACCACCCA* 
GACCACCCA* 

1 
1 
1 

wing disc [33,49] 
this study 

dppD decapentaplegic GgCCACCtA* 
GACCgCCCg* 
tACCtCCCc*1 

37 
172 

 15122 

wing, leg 
and 

antennal 
disc 

[33,45] 
this study 

dppHO decapentaplegic GACCACCag 
cgCCACCCA 

240 
103 

wing and 
haltere disc 

[78] 

wg1.0 wingless GAgCAgCCA* 
GtCCACgCt* 
GttCACgCA* 
GACCtCCCA* 

410 
11443 
835 

4 

embryonic 
ectoderm 

[31,35,48] 
this study 

sr1.9 stripe ccaCACaCA 
GACCACCag 

43034 
240 

embryonic 
ectoderm 

[47] 
this study 

knot knot GcCCACCCA 
GaCCACCgc 
GgCCACaCA 

35,6 
2486 
43 

wing disc [46] 

D-h hairy GACCtCCCA 
GACCACCat 

4 
235 

leg disc [102] 

oc7 orthodenticle GcCCtCCCA 21 vertex 
primordium 

[103] 

pCB1.8 blistered GcCCACCac1 
agCCACCCA1 
GACCACagc1 

816 
101 

1259 

wing disc [104] 

SRF-A blistered GgCCAtCtA1 735 wing disc [76] 
!
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CHAPTER 3 

 

Cis-regulatory Logic of Hedgehog/Gli Responses 

3.1 Abstract 

Hedgehog (Hh) signaling regulates tissue patterning and growth during 

development by precisely controlling the transcriptional output of key target 

genes using the Gli family of transcription factors. Despite the essential role of 

this pathway during organogenesis, it is not clear how Hh directs the transcription 

of different target genes at different developmental contexts. This gap in our 

understanding of Hh signaling events at the DNA level remains, in part, because 

of the limited number of known Hh-regulated enhancers. For instance, many 

target genes have been identified genetically, but the enhancers that mediate 

direct Hh/Gli-regulation are mostly unknown. Four enhancers have been 

identified for the target gene patched (ptc), which encodes a Hh receptor, one in 

flies and three in mammals. This gene is unique because, contrary to other 

targets, it is expressed in every tissue where Hh signaling occurs. When we 

examined the expression of the fly ptc enhancer in different Hh-regulated tissues 

we noticed that this enhancer drives tissue-specific expression, instead of 

general activation. Hence, we searched for additional regulatory elements in the 

ptc locus to better understand how this target gene responds to Hh/Gli in different 

contexts. Here we have identified and characterized a repertoire of Hh/Gli-

regulated enhancers across the ptc locus in Drosophila. We also examined 
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enhancer-promoter communication, and found that the ptc promoter regulates 

the levels and spatial output of the enhancers to provide additional tissue-

specificity to the Hh response. Based on previously identified ptc enhancers in 

mammals and our results, we propose that the cis-regulatory logic of ptc is 

conserved across species.  

3.2 Introduction 

The Hedgehog (Hh) signaling pathway patterns developing tissues across 

many species through a signaling cascade that ultimately controls gene 

transcription via the Gli family of transcription factors (Briscoe and Thérond, 

2013). In the presence of the Hh ligand, target genes are transcribed, but in the 

absence of Hh, these genes are repressed. The patched (ptc) gene encodes one 

of the receptors of the pathway and it is a direct target in Hh-responsive tissues 

(Chen and Struhl, 1996; Marigo and Tabin, 1996). For this reason ptc expression 

is widely used as a functional readout of the pathway (Chen et al., 1999), and yet 

other Hh target genes have tissue-specific responses. For example, 

decapentaplegic, a Drosophila TGF-β growth factor, responds to Hh signaling in 

the developing wing but not in the embryonic ectoderm, even though both tissues 

rely on Hh signaling for patterning (Hursh et al., 1993; Müller and Basler, 2000). 

Because of the special transcriptional response of ptc to Hh signaling and the 

critical role that the Ptc receptor plays in transducing and controlling the range of 

the Hh morphogen gradient, a better understanding of the cis-regulation of this 

critical target gene is necessary.  

Enhancers and the core promoter are among the most prevalent and 

commonly studied cis-regulatory elements in the genome (Levine et al., 2014). 

These non-coding sequences control the timing, levels and location of gene 
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transcription by containing clusters of binding sites for transcription factors 

(Yáñez-Cuna et al., 2013). Several fly and mammalian ptc enhancers have been 

identified. In mice, a limb enhancer (Lopez-Rios et al., 2014) and a neural tube 

enhancer (Vokes et al., 2007)  that respond to Hh signaling and contain Gli 

binding sites (GBSs) were identified. In human cell lines, a promoter-proximal 

enhancer containing GBSs was also identified (Agren et al., 2004). In Drosophila, 

the previously identified ptcprox enhancer (Figure 3.1A) contains a conserved 

cluster of three optimal, high-affinity Gli binding sites (GBSs) that respond to Hh 

signaling in the developing wing (Figure 3.1C) (Alexandre et al., 1996; Parker et 

al., 2011). In this tissue, Hedgehog is secreted by posterior cells, and received by 

anterior cells that express Gli/Ci and can transduce the signal. This directional 

gradient controls ptc expression along the A/P boundary as shown by the ptc 

enhancer trap (Figure 3.1B). A smaller version of this enhancer, designed around 

its three consensus GBSs is commonly used in luciferase assays carried out in 

mammalian and fly cells to measure Hh signaling activity (Chen et al., 1999). 

Mutation of the GBSs in the ptcprox enhancer abolished expression in the wing 

which shows that this enhancer relies heavily on the high-affinity sites for 

activation (Figure 3.1D) (Alexandre et al., 1996). Since ptc is expressed in every 

Hh-responsive tissue, and the ptcprox enhancer contains the best looking cluster 

of GBSs in the fly genome, we examined the expression of this enhancer in the 

embryonic ectoderm. In this tissue, Hh signaling establishes multiple signaling 

centers that are essential for early development (Nüsslein-Volhard and 

Wieschaus, 1980).  ptc responds anteriorly and posteriorly of the Hh secreting 

cells (Figure 3.1E) (Hooper and Scott, 1989; Nakano et al., 1989). To our 

surprise, despite having extremely conserved high-affinity GBSs, this enhancer 

was not sufficient to respond in this context (Figure 3.1F). These data suggest 
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that ptc requires additional enhancers, possibly with different regulatory inputs, to 

respond in the embryonic ectoderm.  

We screened about 27 kb of non-coding sequence in the ptc locus for 

additional tissue-specific enhancers, and found that most of this region contains 

regulatory information that fully or partially recapitulates the endogenous 

expression pattern of ptc in different developmental contexts (Figure 3.2). We 

also found that most of these enhancers respond to Hedgehog signaling via non-

consensus GBSs for maximum levels of activation. Our cis-regulatory analysis 

went a step further from most studies, since we also characterized the core 

promoter. We found that the ptc promoter refines the output of each enhancer in 

a tissue-specific manner. The identification of these novel cis-regulatory elements 

highlight that although ptc transcription occurs in all Hh-responsive tissues, there 

is no general Hh-regulated ptc enhancer, and this seemingly simple response is 

most likely maintained by multiple cis-regulatory elements with diverse Hh/Gli-

input.   

3.3 Results 

3.3.1 Multiple ptc enhancers drive expression in Hh responsive tissues 

To identify novel enhancers in the ptc locus, we designed a mapping 

strategy consisting of 35 overlapping fragments that were tested in vivo for 

transcriptional activity (Figure 3.2A). We made GFP reporter transgenes 

containing these sequences upstream of the endogenous ptc promoter (fragment 

BA). This strategy was used to avoid disrupting specific enhancer-promoter 

interactions (Kadonaga, 2012). All these constructs were stably integrated into 

the fly genome, and GFP expression was scored in many Hh-responsive tissues. 
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We found that every tested fragment was active in at least one Hh-responsive 

tissue (representative results in Figure 3.2B-H).  

In the larval wing and leg imaginal discs, secreted Hh controls ptc 

transcription in competent anterior cells in a stripe-like pattern along the 

anterior/posterior (A/P) boundary of these tissues (Briscoe and Thérond, 2013; 

Estella et al., 2012; Gradilla and Guerrero, 2013). We found multiple enhancers 

that drive ptc-like expression patterns in these tissues, including ZY and WU 

shown in Figure 3.2B and C, respectively.  

Another site of Hh signaling is the larval intestine, where Hh is expressed 

in the rectum and small intestine (Chen and Struhl, 1996; Takashima and 

Murakami, 2001). ptc responds to this signal in the large intestine, or hindgut as 

shown by the enhancer trap (Figure 3.2D). We found that RP was active largely 

in this Ptc-positive domain (Figure 3.2D).  

Hh signaling is also active in the eye-antennal imaginal disc. In the eye, 

Hh is secreted from differentiating photoreceptor cells and the posterior disc 

margin (Domínguez and Hafen, 1997). Fragment NM responds weakly in these 

cells, but drives a stripe-like pattern in the antennal disc, which is patterned as 

the wing and the leg discs (Figure 3.2E). 

In addition to patterning larval tissues, Hh signaling is important to 

maintain stem cells during adulthood. For example, both the male and female 

reproductive organs require Hh signaling to maintain stem cell niches (Michel et 

al., 2012; Sahai-Hernandez and Nystul, 2013). In the testis, Hh is secreted from 

hub cells and received by nearby somatic cyst cells, where ptc is active (Michel 

et al., 2012). Interestingly, both the ptc enhancer trap and the Ptc antibody stain 

detect ptc expression in the hub as well (Michel et al., 2012).  Our analysis 

confirmed that GC is active in these somatic cells and the hub itself (Figure 3.2F). 

This expression is unique from other Hh responsive tissues like the wing or 
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embryonic ectoderm because normally ptc is most active in cells responding to 

the ligand, not in cells secreting it. Interestingly, autocrine Hh signaling has been 

reported to occur in many types of cancer (Liu et al., 2014; Tzelepi et al., 2011).  

The adult ovary contains two stem cell niches: germ and follicle stem cells 

(FSCs). Hh signaling occurs in each of these cell types, and it is required for the 

proliferation of ovarian somatic cells, the follicle stem cells (FSCs) (Sahai-

Hernandez and Nystul, 2013; Zhang and Kalderon, 2001). 1AC is most strongly 

activated in this region (Figure 3.2G). In addition, 1EH is also active in the adult 

ovary, but this expression occurs in the escort cells, a different cell type where 

ptc is also expressed (Figure 3.2H).  

These non-overlapping, context specific enhancers represent an important 

theme of ptc regulation: multiple, separable regulatory inputs can pattern different 

tissues and are cell-type specific, even within a developmental context. 

Importantly, there was no single element that responded in all developmental 

contexts, strongly suggesting that there is tight control of context specific ptc 

transcription at the cis-regulatory level.  

3.3.2 Several enhancers contribute to ptc expression in the embryo  

Previous work has shown that a large fragment containing 12.5 kb of 

regulatory sequence upstream of the ptc TSS is sufficient to recapitulate ptc 

expression in the embryonic ectoderm from gastrulation on (Forbes et al., 1993). 

Here we show that fragments outside of this previously tested region are also 

able to pattern the embryo. We identified four non-overlapping DNA fragments 

that were active in cells known to respond to Hh (Figure 3.2J-M). For this 

analysis, we used the native ptc promoter, fragment BA, in order to maintain 

enhancer-promoter specificity (Butler and Kadanoga, 2001). As a control, we 
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tested the expression of the promoter fragment BA alone and found that it drives 

ubiquitous basal levels of expression (Figure 3.3I and I’).  

We found that fragments VR, PN, LJ, and 1EH are all expressed in cells 

flanking Hh positive cells, as marked by Engrailed (Figure 3.2J-M’). Two of these 

enhancers, LJ and PN, are located in the previously identified 12.5 kb transgene 

that is sufficient to respond in a ptc-like pattern (Forbes et al., 1993). Enhancer 

LJ is most reminiscent of endogenous ptc expression, although it does not 

perfectly replicate the ptc response, as the stripes are incomplete (Figure 3.1E 

compared to Figure 3.2K and K’) (Hidalgo and Ingham, 1990). These data 

demonstrate that the previously identified 12.5 kb region contains two separable 

enhancers that are sufficient to activate expression in cells responding to Hh. 

We found two additional enhancers outside of the proximal 12.5 kb region. 

VR and 1EH drove expression in Hh responsive cells in the embryonic ectoderm 

(Figure 3.2J-J’ and M-M’). Enhancer VR was the least active enhancer in vivo, 

but still yielded a typical Hh response (Figure 3.2J-J’). Enhancer 1EH drives 

expression more broadly than any of the other embryo enhancers (Figure 3.2M-

M’). In all cases, the enhancers were active in Hh-responsive cells and all 

recapitulated parts of the known ptc response to Hh signaling during germ band 

extension and retraction (Hooper and Scott, 1989). Based on the expression 

patterns, these enhancers are most likely regulated by Hh signaling through Gli.  

3.3.3 Embryonic ptc enhancers require low-affinity GBSs  

We identified putative GBSs in the embryo enhancers (Figure 3.2J-M). We 

found that all of the predicted GBSs deviated from the consensus sequence, 

except for one site. This is not surprising as it has been shown that non-

consensus sites are the rule rather than the exception in most validated Hh-target 
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enhancers (Ramos and Barolo, 2013). We annotated and ranked all predicted 

GBSs in these enhancers using a positional weight matrix generated by Hallikas 

and colleagues (Hallikas et al., 2006).  In this scale, the consensus GBS, 

GACCACCCA, is ranked 1 with an affinity matrix score of 100, representing that 

this 9mer has maximum affinity for Gli-binding in vitro. Each time a mismatch is 

introduced into the 9mer, in vitro affinity is weakened, so the matrix score 

decreases, as does the overall GBS rank (Figure 3.3B, bottom).  

Using minimal versions of the newly identified embryo enhancers that 

were re-designed to contain evolutionarily conserved non-consensus GBSs, we 

generated additional GFP reporter constructs that used a minimal hsp70 

promoter (hspmin) instead of the ptc promoter (Figure 3.3A). We switched 

promoters to determine the intrinsic activity of the enhancer without confounding 

effects from the endogenous promoter. These transgenes were integrated in the 

same genomic location to avoid changes in expression due to positional effects.  

Enhancer LK, a subset of LJ, drives expression in cells posterior to the Hh 

positive cells, and it contains only non-consensus GBSs with lower predicted 

affinity (Figure 3B, top). When 6 of the 7 GBSs were mutated, leaving only the 

best predicted low-affinity site (Ci-16), we found that this enhancer loses most of 

its ability to respond to Hh, presumably because Gli can no longer recognize the 

mutated sites in vivo (Figure 3.3B, bottom). Furthermore, we increased levels of 

Hh by using a temperature sensitive promoter driving Hh cDNA (Ingham, 1993) 

and the expression domain of GFP activation was greatly expanded as compared 

to normal levels (data not shown). Together, these data establish LK as another 

example of a Hh responsive enhancer that functions via low-affinity Gli binding.  

We next characterized 1EH, which contains 6 GBSs, 5 of which are non-

consensus (Figure 3.3C, top). First we mutated the lone consensus GBS which 

resulted in minimal loss of activation. This result indicates that much of the 
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activity of 1EH comes from the remaining five non-consensus GBSs (Figure 3C, 

middle). We then mutated each of these low-affinity sites, and found that 1EH 

requires its low-affinity sites to respond to Hh (Figure 3.3C, middle). Furthermore, 

when the 3’ low affinity sites (Ci82, Ci22) are optimized to match the consensus 

sequence, the level of activation was reduced (Figure 3.3C, top versus bottom 

panels). These results show that low-affinity GBSs are required for maximum 

levels of activation. These data offer further evidence that Gli occupancy at Hh-

regulated embryo enhancers is likely being maintained at sub-maximum levels to 

coordinate gene expression in the embryo (Ramos and Barolo, 2013; White et 

al., 2012). 

Finally, we examined fragment VT, a subset of VR that contains 8 non-

consensus GBSs, ranging in affinity rank from Ci-5 to Ci-203 (Figure 3.3D, top). 

To determine if VT is a direct target of Hh, we mutated all of the predicted sites 

and found that the response is greatly reduced (Figure 3.3D, middle). As with 

1EH, when the sequence of two low-affinity sites is altered to look like the optimal 

motif, the expression levels go down (Figure 3.3D, top versus bottom panels). 

These data suggest that embryonic ectoderm enhancers require low-affinity 

GBSs for maximum levels of activation. Interestingly, however, this response 

seems to be specific to that particular developmental context because when 

examined in the wing imaginal disc, we see a different response. The wild-type 

VT enhancer drives expression in the wing, and when the predicted GBSs were 

mutated the expression was lost (Figure 3.3D, top versus middle pannels). 

Upgrading the affinity of the enhancer results in increased expression (Figure 

3.3D, bottom). These data suggest that while VT is able to respond in both the 

embryonic ectoderm and wing imaginal disc, it does so with different 

requirements for Gli occupancy.  
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We then tried to answer the question of how GBS affinity contributes to 

these Hh responsive enhancers in a heterologous luciferase assay in NIH/3T3 

cells (Figure 3.4K). These cells contain all of the relevant Hh pathway 

components which allowed us to artificially stimulate the pathway using GLI1, the 

main transcriptional activator in mammals, to turn on Hh signaling in these cells. 

Our constructs were transfected in the presence or absence of GLI1 (Figure 

3.3E). 1EH does not responsive to GLI1 in this assay, even though it clearly 

responded in the embryo (Figure 3.3C). Importantly, even after the affinity 

upgrade (1EH-GBS-opt), it is unable to respond to GLI1 induction (Figure 3.3E, 

right). Perhaps these binding sites are not accessible to GLI1 in this assay, or 

additional TFs that bind these sequences in the fly embryo are absent from these 

murine NIH/3T3 cells. Had we screened 1EH using this cell culture based 

method, as is frequently done in large enhancer screens, we would have called 

this an unresponsive enhancer and moved on, missing its strong response in the 

embryo. 

Enhancer VT, on the other hand, is able to respond to induction with GLI1. 

Mutation of each low-affinity GBS resulted in reduced expression levels, as 

expected from in vivo wing and embryo data (Figure 3.3D). When the same low-

affinity GBSs that were improved in the in vivo experiments were tested in this 

luciferase assay, we saw a better response as expected from this assay – better 

GBSs should give higher levels of activation.  

3.3.4 Characterization of novel ptc wing enhancers  

Since we identified many new Hh-regulated embryo enhancers in the ptc 

locus, we examined the expression patterns of multiple fragments in the wing 

imaginal disc (Figure 3.4A). We identified several enhancers that were sufficient 
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to generate ptc-like expression patterns in the wing (Figure 3.4A). In addition to 

DB (ptcprox), we found that HF, VT, YU and ZY drove expression along the A/P 

boundary (Figure 3.4B). 

To better understand the Hh/Gli input into these enhancers, GBSs were 

identified, as in the embryonic enhancers, most of the predicted motifs deviated 

from the consensus sequence (Figure 3.4D). DB contains the aforementioned 

cluster of three consensus sites in addition to a previously omitted non-

consensus GBS. ZY contains one consensus site plus three non-consensus low-

affinity sites. The rest of the fragments, HF, VT and YU, exclusively contain non-

consensus sites.  
Next we tested if the predicted GBSs in these enhancers were required to 

respond to Hh signaling by destroying these sites with targeted mutations. We 

found that the predicted GBSs are functionally required because the knockout 

constructs were unable to drive expression in the wing (Figure 3.5B). YU[GBS-

KO]-GFP was the outlier as mutation of all the predicted GBSs still resulted in a 

stripe which was wider and weaker that the wild-type counterpart (Figure 3.4B 

and C). These data suggest that YU integrates additional positive inputs in the 

wing, and for this reason, the transcriptional logic of this enhancer is reminiscent 

of that of the Hh-regulated dppD wing enhancer which also contains low-affinity 

GBSs (Muller and Basler, 2000; Parker et al., 2011). 

In order to obtain a quantitative readout of the transcriptional output of 

these enhancers, and knowing the predicted Hh/Gli input into these sequences, 

we measured the GFP intensity levels at every position along the anterior-

posterior axis of the wing (Figure 3.4C). Furthermore, we extracted the peak 
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intensity values for each construct to sort their responses more easily (Figure 

3.4E, left). Surprisingly, DB was one of the least responsive wing enhancers in 

vivo, and opposite to what we expected, HF and YU, which contain only non-

consensus GBS, produced the strongest wing stripes. ZY drives a stripe in the 

same cells as DB, but at much higher levels that are comparable to the 

expression of HF. VT produces the weakest stripe even though it is the sequence 

with the most predicted GBS. These data show that it is very hard to anticipate 

the transcriptional output of these enhancers from the predicted GBS input, and 

point to the contribution of other unknown tissue-specific inputs into these 

regulatory elements. Interestingly, regardless of the GBS composition, all the 

tested enhancers produced stripes that were abutting the A/P boundary, which is 

where ptc is normally expressed (Capdevila et al., 1994).  

Next to determine if these enhancers were direct targets of Hedgehog 

signaling while simultaneously measuring the transcriptional output of these 

sequences in a different context, we carried out luciferase assays in NIH/3T3 

cells that were treated with or without GLI1. All the wild-type enhancers are 

directly regulated by GLI1 because luciferase activity decreases when the 

predicted GBSs are mutated (Figure 3.4F). In cell culture, the transcriptional 

output of the enhancers is a better match to the predicted GBS input than it is in 

the wing. (Figure 3.4E versus F). For instance in this assay, high-affinity 

enhancers DB and ZY drive stronger outputs than the lower-affinity enhancers 

VT and YU, which have the weakest outputs. The exception in this context is HF, 
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which produces the strongest response although it has the fewest number of 

non-consensus GBSs.  

3.3.5 The ptc proximal enhancer region is highly cooperative 

To further understand how Hh/Gli-regulated enhancers integrate signaling 

inputs, we tested different fragments from the upstream proximal region of ptc 

(Alexandre et al., 1996; Forbes et al., 1993) (Figure 3.5A and B). All the 

fragments drove ptc-like stripes in the wing (Figure 3.5B). The position of these 

stripes was the same in all the constructs, but the patterns and levels of gene 

expression varied greatly. HF, GE, GB, HB, and JB produced full wing stripes, 

while DB, H and JI were mostly active in the wing pouch (Figure 3.5B).  

We tested four non-overlapping fragments, DB, GE, H and JI, to determine 

the transcriptional output of these sequences in response to Hh/Gli. All of these 

fragments were sufficient to drive expression in the wing, which shows that this 

region contains four separate enhancers that, when combined (JB) produce the 

strongest and fullest wing stripe, and the contribution of these enhancers to the 

final pattern seen in JB is not additive (Figure 3.5B and E). These data show that 

the upstream cis-regulatory region of ptc is highly cooperative.   

Since the relative order of these sequences to each other was altered, we 

compared the expression of DB, GB, HB and JB to determine the transcriptional 

output of these fragments when part the sequence context and spacing from the 

promoter is maintained. H and JI drive weak wing stripes, but when added to GB 

and HB respectively, they have a significant contribution in the final pattern of the 

stripe that is more that the individual outputs (Figure 3.5B and D-E). This analysis 

shows that the context of these enhancers has a dramatic effect on how these 

sequences interpret Hh signals, and that fragments that are appear to be 
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irrelevant, play important roles in refining the final pattern when placed in more 

endogenous contexts. 

3.3.6 Definition of the ptc core promoter  

In addition to the cis-regulatory information provided by the enhancers 

already described, we also found that the ptc promoter contains information that 

contributes to enhancer activity. For example, ptcBA contributes to broad 

activation in the embryonic ectoderm (Figure 3.2I and Figure 3.6A).  This result 

potentially explains the low-level, Hh-independent activation of ptc that is 

required to keep the pathway off.  

To identify which part of the promoter is responsible for this broad activity, 

we looked for promoter-specific binding sites in the region to identify a core 

promoter element. We found three highly conserved promoter elements in the 5’ 

end of the BA fragment: initiator element (INR), downstream promoter element 

(DPE) and a motif ten element (MTE), all required for attracting the core promoter 

machinery associated with RNA Polymerase II (Butler and Kadonaga, 2002; Lim 

et al., 2004). We used these criteria to define region A, the ptc core promoter 

(Figure 3.6B). Upstream of A, we found several well conserved GAGA factor 

sites (GAF), known to open chromatin to allow transcription to occur (Wang et al., 

2005). In fact ChIP-chip results demonstrate that GAGA factor is significantly 

associated with the ptc locus (Lee et al., 2008). We also identified a highly 

conserved PHO/YY1 binding site suggesting that this chromatin modifier, known 

to both activate and repress target gene transcription maybe also acting at the 

ptc locus (Thomas and Seto, 1999; Yant et al., 1995).  

This sequence analysis suggested that ptcBA might be two elements with 

separable functions. We tested this hypothesis by placing ptcB upstream of the 
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hspmin promoter, which contains a TATA box, but no INR or DPE. When these 

constructs were examined in the absence of enhancers, ptcBA was the only 

element capable of driving broad levels of activation (Figure 3.6A, top row). 

These results suggest that ptcA and B work together to activate expression, but 

are not sufficient alone to activate transcription.  

3.3.7 The ptc promoter controls levels and spatial transcriptional outputs 

We tested different enhancers with the two promoters to determine 

whether enhancer-promoter communication was important to integrate Hh 

signaling at the ptc locus. We found that enhancer PN responds to Hh signaling 

when examined with ptcBA, but is mostly inactive with hspmin (Figure 3.6A). We 

next examined PN on the different promoter combinations. Neither 

PN+B+hspmin nor PN+A drives a pattern that is comparable to PN+BA in either 

GFP intensity or spatial patterning. These data suggest that both B and A are 

required to achieve maximum levels of activation and proper spatial patterning 

signals. 

In addition, two more enhancers, LJ and 1EH, had major differences in 

expression patterns when examined on different promoters. LJ+hspmin responds 

posteriorly to the Hh signal but LJ+ptcBA responds both anteriorly and posteriorly 

– two different responses from the same enhancer (Figure 6A). We found that not 

only does the ptc promoter contribute to spatial patterning, it also affects 

expression levels, as demonstrated by 1EH. This enhancer responds to Hh both 

anteriorly and posteriorly, but it is much stronger with the hspmin promoter than 

with the ptcBA promoter (Figure 3.6A).  

We examined the activity of GC, HF, YU and ZY with the two different 

promoters to determine if the enhancer-promoter specificity that we see in the 
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embryo also occurs in the wing. As in the embryo, we found that ptcBA alone 

drives ubiquitous expression whereas hspmin alone does not (Figure 3.6C and 

D). GC and HF produce similar expression patterns with either promoter in 

anterior cells, but drive low levels of GFP expression in posterior cells (Figure 

3.6C and E). YU+hspmin drives the highest peak intensity levels of all the wing 

enhancers that we tested (Figure 3.4E), however with the ptcBA promoter the 

activity of this enhancer is dampened to levels similar to GC and HF (Figure 

3.6E). The activity of ZY+ptcBA is also lower compared to ZY+hspmin. Overall in 

the wing, ptc enhancer+ptcBA constructs result in dampening of expression, 

which suggests that in this context ptcBA maintains transcription below a certain 

level. This regulatory function is probably critical to avoid the overexpression of 

ptc in the wing, which is known to alter the Hh gradient by reducing the range of 

signaling (Johnson et al., 1995). 

3.4 Discussion 

Our detailed mapping and characterization of the cis-regulatory sequences 

of ptc is the most in depth analysis of a Hh target gene to date. Since ptc 

encodes a receptor of the pathway and must be expressed in all tissues where 

Hh signaling occurs to transduce and attenuate the signaling gradient, this was 

the perfect case study to search for Hh-regulated enhancers locus-wide. Recent 

studies have identified ptc enhancers in mammals using different genome-wide 

techniques like Chip-seq and 4C analysis (Lopez-Rios et al., 2014; Vokes et al., 

2007). However, these powerful techniques are limited to capture snapshots of 

protein-DNA complexes at a given time point in a specific cell-type. For that 

reason, they potentially miss critical regulatory regions that may contribute to 

expression in different cell-types or stages. Our strategy was completely 
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unbiased as we examined the expression patterns of numerous fragments of the 

ptc locus regardless of chromatin marks or predicted GBSs. It would have been 

interesting to compare Gli/Ci Chip data with our in vivo findings, but there is no 

reliable antibody to perform the experiments in Drosophila. Previous attempts 

have been made to investigate genome-wide binding of Gli/Ci using DamID, but 

the results were ambiguous, although the authors reported extensive binding at 

the ptc locus (Biehs et al., 2010).  

Here, we have shown that the unique Hh-wide response of ptc is achieved 

through separate tissue-specific enhancers with distinct configurations of GBSs. 

These enhancers direct expression throughout development and are active in 

adult stem cell populations. We also characterized the endogenous ptc promoter 

which provides additional tissue-specificity to the intricate regulatory logic of the 

locus. Our analysis also included the first Hh-regulated sequence to be shown 

under direct control of the pathway via a cluster of consensus GBSs (ptcprox or 

fragment DB) (Alexandre et al., 1996).  

It was this discovery combined with the in vitro identification of the 

consensus Gli motif that shaped the way we think about how Hh target genes 

interpret the gradient (Alexandre et al., 1996; Kinzler and Vogelstein, 1990). Our 

data and the work of others changes this paradigm because now it is clear that 

most Hh-regulated enhancers contain functional GBSs that deviate from the 

optimal sequence (Oosterveen et al., 2012; Parker et al., 2011; Ramos and 

Barolo, 2013; Winklmayr et al., 2010). In most of these cases, however, the 

functional role of these enhancers remains to be determined. The validation of 

these sequences in their native context will be easier in the near future with 

groundbreaking genome engineering tools like the CRISPR/Cas9 system (Cong 

et al., 2013; Sebo et al., 2014). By using these techniques we will test if the newly 

identified enhancers are functionally redundant or if they are required for the final 
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pattern of ptc expression at multiple stages of development. The latter scenario 

makes sense from an evolutionary standpoint, because breaking down the 

transcriptional response to Hh signaling into separable units may provide a more 

robust network to avoid pleiotropic effects due to minimal changes to specific 

enhancer sequences (Barolo, 2011).  

We propose that the cis-regulatory logic used to regulate ptc in 

Drosophila, is likely conserved in mammals. The recent finding of separable 

tissue-specific enhancers in the ptch1, the mammalian version of ptc, locus is 

analogous to what we have seen at the ptc locus in Drosophila. Since we found 

that most of the locus contains regulatory information, it will be interesting to take 

a closer look at the ptch1 locus to determine if there are additional enhancers 

that drive tissue-specific expression. Another parallel between the fly and the 

mammalian ptc regulatory logic, is that all the known mammalian enhancers 

contain mostly non-consensus GBSs (Agren et al., 2004; Lopez-Rios et al., 2014; 

Vokes et al., 2007). Interestingly the relative location of some of these enhancers 

in the locus is also conserved. For example, the human, the limb and the 

Drosophila ptcprox enhancers are located directly upstream of the TSS (Agren et 

al., 2004; Alexandre et al., 1996; Vokes et al., 2007).  

Many examples of malfunctioning enhancers or enhanceropathies have 

been described in the literature, but none for ptch1 (Herz et al., 2014; Smith and 

Shilatifard, 2014). All of the previous ptch1 mutations are found in the coding 

sequence, but this is probably a result of mainly ignoring the non-coding 

sequences flanking the locus (Guo et al., 2013). In the future, it will be interesting 

if new molecular causes of ptch1-related diseases are associated to tissue-

specific enhancers.  
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3.5 Materials and methods 

GBS prediction and ranking 

Matrix similarity scores were calculated as described (Quandt et al., 1995) 

with in vitro Gli binding data generated by Hallikas and colleagues (Hallikas et al., 

2006). GBSs were identified in silico by screening the ptc locus for defined motifs 

using Genepalette (Rebeiz and Posakony, 2004).  

DNA sequence alignments 

Sequences and multi-species alignments were obtained from the UCSC 

Genome Browser. 

DNA cloning and mutagenesis 

Wild-type ptc enhancers were amplified by standard PCR (Roche Expand 

High Fidelity PCR System) from genomic DNA. Primers are listed on Table 1. 

Enhancer constructs were sub-cloned into the pENTR/D-TOPO plasmid (Life 

Technologies) by TOPO cloning. Enhancers tested with the hspmin promoter 

were subsequently cloned into the pHPdesteGFP transgenesis vector (Boy et al., 

2010) by LR Cloning (Life Technologies). Enhancers tested with the endogenous 

ptc promoter were cloned by traditional methods into the pStinger transgenesis 

vector (Barolo et al., 2000). Targeted GBS mutations were created by overlap 

extension PCR (Swanson et al., 2010). 

Drosophila transgenesis 

P-element transformation was performed as described 

(http://sitemaker.umich.edu/barolo/protocols) in the w1118 strain. Site-directed 



102 

transformation by embryo injection was performed as previously described 

(Bischof et al., 2007). Reporter transgenes were integrated into a phiC31 landing 

site at genomic position 86FB.  

Immunohistochemistry and confocal microscopy 

Embryos and third-instar imaginal discs were fixed and stained using 

standard methods as previously described (Parker et al., 2011; White et al., 

2012). Embryos were staged as described (Campos-Ortega and Hartenstein, 

1985). Ovaries and testes were dissected between 0-2 days after eclosure and 

fixed in 4% PFA for 25 minutes at room temperature, washed 3 times in PBS with 

TritonX (0.1%) and subjected to antibody staining. Third-instar larval gut was 

dissected and fixed like the testes and ovaries. The primary antibodies used 

included rabbit anti-EGFP (Invitrogen) diluted 1:100, mouse 40-1a anti-beta-

galactosidase (Developmental Studies Hybridoma Bank) diluted 1:200, mouse 

anti-En (Developmental Studies Hybridoma Bank) diluted 1:50. AlexaFluor488, 

AlexaFluor555, and AlexaFluo568 conjugates with secondary antibodies from 

Invitrogen were used at 1:2000 dilutions. Tissues were mounted in Prolong Gold 

antifade reagent with DAPI (Life technologies). Confocal images were captured 

on an Olympus FluoView 500 Laser Scanning Confocal Microscope mounted on 

an Olympus IX-71 inverted microscope, and on a Nikon A1 Confocal. Samples to 

be directly compared were fixed, prepared, and imaged under identical confocal 

microscopy conditions and settings. 

Luciferase assays  

NIH/3T3 cells were cultured at 37°C, 5% CO2, 95% humidity in Dulbecco’s 

modified eagle medium (DMEM; Gibco, Cat. #11965-092) containing 10% bovine 
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calf serum (ATCC; Cat. #30-2030) and penicillin/streptomycin/glutamine (Gibco, 

Cat. #10378-016). Luciferase assays were performed by plating 2.5 x 104 

cells/well in 24 well plates. The next day, cells were co-transfected using 

Lipofectamine 2000 with the DNA constructs indicated in each experiment in 

addition to Ptc∆136-GL3 (Chen et al., 1999; Nybakken et al., 2005) and pSV-

Beta-galactosidase (Promega) constructs to report HH pathway activation and 

normalize transfections, respectively. Cells were changed to low-serum media 

(DMEM supplemented with 0.5% bovine calf serum and 

penicillin/streptomycin/glutamine) 48 hours after transfection and cultured at 37°C 

in 5%C02 for an additional 48 hours.  GLI1 DNA was added immediately after 

low-serum change where relevant to activate the HH pathway. Cells were 

harvested and luciferase and beta-galactosidase activities were measured using 

Luciferase Assay System (Promega Cat. # E1501) and BetaFluor β-gal assay kit 

(Novagen, Cat. #70979-3). Multiple assays were performed and each sample 

was assayed in triplicate.  

Quantitation of transgenic reporter expression data 

Fluorescence data from wing confocal images were collected and 

quantified as previously described using the Matlab program Icarus (Parker et al., 

2011; Ramos and Barolo, 2013). Each experiment was performed at least two 

times, and fluorescence was measured from at least two wings per construct. 
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Figure 3.1 – The canonical ptcprox enhancer is unable to respond to Hh signaling 
in the embryo despite its cluster of highly conserved optimal GBSs.  

(A) Genomic location of the ptcprox enhancer which has three GBSs shown as 
vertical red bars. The conservation of these sequences across 12 Drosophila 
species is shown below. (B) Third-instar wing imaginal disc showing the 
expression pattern of the ptc enhancer trap (ptc-lacZ). (C-D) Third-instar wing 
imaginal disc showing GFP expression driven by ptcprox-GFP or ptcprox[GBS-KO]-
GFP reporter transgenes. (E) Stage 12 ptc-lacZ embryo. (F) Stage 12 transgenic 
embryo showing GFP expression driven by ptcprox-GFP. 
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Figure 3.2 – The ptc locus is replete with enhancers that drive expression in 
multiple Hh-responsive tissues.  

(A) The ptc locus showing the location of embryo enhancers displayed as colored 
cigars. The ptc coding region is shown as black rectangles. Evolutionary 
conservation across 12 Drosophila species is shown below the locus. (B-H) 
Selected enhancers that are active in Hh-responsive tissues (I-M) Enhancers that 
are active in the embryonic ectoderm (I’-M’) magnification of selected regions in 
panels I-M. 
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Figure 3.3 – Embryonic ptc enhancers require low-affinity GBSs to respond to Hh 
signaling.  
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(A) The ptc locus showing the location of embryo enhancers displayed as colored 
cigars. (B-C) Diagrams of the LK[wt] and LK[6xGBS-KO] enhancers showing 
GBSs as vertical lines; broken lines indicate mutated sites. On the right, dorsal 
sections from confocal images of embryos containing LK and LK[6xGBS-KO] 
visualized with GFP and En (which marks Hh-producing cells). Below is the color-
scale used to visualize the predicted GBS based on Gli motif rank which was 
determined from an affinity matrix score (Hallikas et al., 2006). (D-G) Diagrams of 
the 1EH[wt], 1EH[1xGBS-KO], 1EH[7xGBS-KO], and 1EH[GBS-opt] enhancers 
showing GBSs as vertical lines; broken lines indicate mutated sites. On the right, 
dorsal sections from confocal images of embryos containing 1EH[wt], 
1EH[1xGBS-KO], 1EH[7xGBS-KO], and 1EH[GBS-opt] visualized with GFP and 
En. (H-J) Diagrams of the VT [wt], VT [8xGBS-KO], and VT[GBS-opt] enhancers 
showing GBSs as vertical lines; broken lines indicate mutated sites. On the right, 
dorsal sections from confocal images of embryos containing VT [wt], VT [8xGBS-
KO], and VT[GBS-opt] visualized with GFP and En. (H’-J’) Confocal images of 
third-instar larval wing imaginal discs, showing GFP expression driven by VT [wt], 
VT [8xGBS-KO], and VT[GBS-opt] (K) Diagram of the experimental conditions 
used in the luciferase assay. (L) Luciferase assays using LK, 1EH, and VT in the 
presence of GLI1 and upon mutation or affinity upgrade of the GBSs.  
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Figure 3.4 – Promiscuous wing stripes: multiple wing enhancers in the ptc locus. 

(A) The ptc locus showing the location of wing enhancers displayed as colored 
cigars. (B) On the left, cartoon of a wing imaginal disc highlighting the dorsal 
pouch region used for GFP quantification. On the right, con  focal images of dorsal 
wing pouch segments of wing discs   showing GFP expression in black. (C) 
Normalized GFP fluorescence data   collected from wing discs. Error bars indicate 
1 s.d. (D) Diagrams of the DB, HF, VT, YU and ZY enhancers showing GBSs as 
vertical lines. (E) Peak wing intensity values for each wild-type and GBS mutant 
enhancer. (F) Luciferase assays using each enhancer in the presence of GLI1 
and upon mutation of the GBSs. A, anterior; P, posterior, D, dorsal; V, ventral.  

0 0 5 10 15 200.20.40.60.8

0 100% disc width

WT

GBS-KO

WT
GBS-KO

WT

GBS-KO

WT

GBS-KO

WT

GBS-KO

A

B
0.7

40 45 50 55 60 65 700

0.1

0.2

0.3

0.4

0.5

0.6

% disc width

No
rm

ali
ze

d 
GF

P 
In

te
ns

ity

 

 

DB

YU

ZY

HF
VT

A P

YU [GBS-KO]

C

D

D

A P
V

GFP

ex1

ptcHF DB

TSS-1 kb +1 kb-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17 kb

CG8635

VTZY
YU ptc prox

ZY

VT

DB

DB

DB WT

normalized GLI1 response
(luciferase, NIH/3T3)

peak wing intensity
(GFP, in vivo)

GBS-KO

HF WT
GBS-KO

VT WT
GBS-KO

YU WT
GBS-KO

ZY WT
GBS-KO

HF

YU

ZY

VT

HF

YU

*

*

*
*

**

**
**

**
*

*
E F



110 

 
Figure 3.5 – Detailed analysis of the ptc proximal regulatory sequence. 

(A) The ptc locus showing the location of wing enhancers displayed as colored 
cigars with predicted GBSs shown as vertical bars. (B) Representative confocal 
images of third-instar wing imaginal discs carrying the enhancer constructs 
shown in A driving GFP. Arrowheads indicate regions of the wing where 
expression is highly variable among the enhancers. (C) Peak wing intensity 
values. (D-E) Normalized GFP fluorescence data   collected from wing discs. 
Error bars indicate 1 s.d. N, notum; dwp, dorsal wing pouch; dh, dorsal hinge; 
v, ventral hinge. 
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Figure 3.6 – Enhancer-promoter specificity in the ptc locus.  
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(A) Transgenic stage 11-12 embryos containing different promoters (y-axis, top) 
with PN, 1EH, LJ or no enhancer driving GFP, gray is GFP. (B) Diagram of the 
ptc promoter region. (C) Confocal images of third-instar wing imaginal discs 
containing the hspmin promoter (left column) or the ptcBA promoter (right 
column) with GC, HF, YU, ZY or no enhancer driving GFP. (D) Normalized GFP 
fluorescence data   collected from wing discs containing the ptcBA or the hspmin 
promoters alone. Error bars indicate 1 s.d. (E) Normalized GFP fluorescence 
data   collected from wing discs. Error bars indicate 1 s.d. 

 

 

 

 

  



113 

Table 3.1 – PCR primers used to amplify the ptc enhancers. 

 

 
  

Table S1. PCR primers 
 
Primer Sequence 
BA_F CACCCCGCGGAACAAACTTGGTATTTTC 

BA_R GTAGGATCCGTTCTGTGATATCTATCTTGT 

GC_F CACCGGCGCGCCCTATGGGCCAATGACAAATG 

GC_R GTACCGCGGGGGTGATTCAGGAGTTTTTCC 

HF_F CACCGGCGCGCCTCCCACTTCATAACCCTC 

HF_R GTACCGCGGCGCTCTCTCTTTCGGGGAGAA 

JH_F CACCGGCGCGCCTACGTACTCTTATTACTCCACTC 

JH_R GTACCGCGGGCTATTGCATTTGTCATTGGC 

LJ_F CACCGGCGCGCCCTACTTGGTTTGATAAAT 

LK_R GTACCGCGGACGGTGTGTGTGAACCCAACTAATTG 

LJ_R GTACCGCGGATAAGTACAGTGCTGGTCATA 

ML_F CACCGGCGCGCCCGAGGCGAGATGGCTTCG 

ML_R GTACCGCGGGCAGCGACTGCTGAGCCAGTC 

NM_F CACCGGCGCGCCTACAATATCTATTATCTA 

NM_R GTACCGCGGAGTTCCCATTCAGCTTTGACA 

PN_F CACCGGCGCGCCCGCCAAAATGAAAATTATTACAAAG 

PN_R GTACCGCGGCGTCCCTCTGTCGTCGCTGGG 

RP_F CACCGGCGCGCCAGCATTAACAGCCGAAGC 

RP_R GTACCGCGGACCGAGCCGTACAAATATAAC 

VR_F CACCGGCGCGCCACAGACGGGGCTACACTGAG 

VR_R GTACCGCGGATTCGGAGACATTCGCAGAC 

YU_F CACCGGCGCGCCGCCCTGTCGTCTTTGTCTTC 

YU5'_R GTACCGCGGGTATTAATAGTGGGAGCTCTG 

YUb_R GTACCGCGGAAATTTGCATAATAATAAGTC 

YUb_F CACCGGCGCGCCTACAATTTTGGAAAAGG 

YU3'_F CACCGGCGCGCCTCGCTGCGTGTTGCTGTG 

YU_R GTACCGCGGAACCATCAAACCCACGAAAC 

ZY_F CACCGGCGCGCCCCGGATCGACCTAGGTAAGG 

ZY_R GTACCGCGGTTCTTCTGGGTGTGTGCTTG 

DL2_F CACCGGCGCGCCCCGCATACCCTATGATATGACTC 

DL2_R GTACCGCGGGACAGACCCCGAAGACTGAG 

DB_F CACCGGCGCGCCATGCATGCGCAGCCTGCCAC 

DB_R GTACCGCGGCGCGCGCCGCTGTTTCTC 

1AC_F CACCGGCGCGCCGGTGAGTGCCCAACTACAG 

1AC_R GTACCGCGGGTTGGGCGCCATATGTTTAC 

DL3_F CACCGGCGCGCCTCCGTCCAGCAGTCGAAAG 

DL3_R GTACCGCGGCCCATTCGATATACCCTCAAG 

1CE_F CACCGGCGCGCCTCGGTTGTAACGTGCTTTTG 

1CE_R GTACCGCGGTGCAGATGGCAGATCAAGTC 

1GH_F CACCGGCGCGCCGAAGTGCTTAACAAGTTAAC 

1EH_R GTACCGCGGCACGACAACCAATGAGATCG 

DL5_F CACCGGCGCGCCGGTAATAAATGCGGCAGACG 

1HI_F CACCGGCGCGCCGATTGATTGATGCGTGATGC 

1HI_R GTACCGCGGCTGAAAAATGCAACAAAATA 
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CHAPTER 4 

 

Multivalent Gli Motifs Integrate Hedgehog and Non-Hedgehog 

Transcriptional Inputs Via Shared Binding Sites 

4.1 Abstract 

Hedgehog (Hh) signaling gradients control transcription of key target 

genes during development. The transcription factor Cubitus interruptus (Ci) binds 

to enhancers of Hh target genes, activating transcription in response to Hh 

signaling, and repressing gene expression in the absence of the signal. The goal 

of this study was to characterize the transcriptional output of different Ci binding 

site (CiBS) variants in order to better understand how Hh-regulated enhancers 

integrate signaling inputs in vivo. Taking a minimalistic approach using synthetic 

Hh-regulated enhancers with defined inputs, we have uncovered the 

promiscuous nature of some CiBSs in vivo. We observed, to our surprise, that 

consensus CiBSs strongly repressed transcription in cells where Ci is not 

expressed. These Ci-independent inputs also repressed transcription of 

endogenous Hh-regulated enhancers that contain specific Ci site variants. We 

identified several transcription factors (TFs) that could potentially bind Ci sites in 

vivo, but further experiments are needed to test if these are the culprits of the Ci-

independent repression that we have observed. Multivalent Ci sites may have 

evolved to prevent the ectopic expression of specific Hh target genes. On the 

other hand, it is possible that other Ci site variants might be under selective 
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pressure to avoid usurper binding. Together, these hypotheses may account for 

the widespread use of CiBS variants in Hh-regulated enhancers across species.  

4.2 Introduction 

The combinatorial binding of transcription factors (TFs) to regulatory 

sequences in the genome controls unique patterns of gene expression to 

establish cell fates and body plans (Levine, 2010). These regulatory elements, 

also known as enhancers, integrate TF inputs to activate or repress the 

transcription of target genes (Spitz and Furlong, 2012). TFs are sometimes under 

the control of major signaling pathways like Hedgehog (Hh) (Barolo and 

Posakony, 2002). The TF Cubitus interruptus (Ci), which is a member of the Gli 

family of TFs, is modified by Hh signaling (Briscoe and Thérond, 2013). In the 

absence of the Hh signal, the activation domain of Ci is protealytically cleaved, 

and Ci becomes a transcriptional repressor that binds short DNA motifs to 

repress transcription. Upon signaling activation, full-length activator Ci binds the 

same sequences to promote transcription (Ingham et al., 2011). It is not fully 

understood how enhancers integrate these competing Hh-regulated Ci inputs to 

produce discrete transcriptional outputs. However, in some instances, the affinity 

and number of Ci binding sites (CiBSs) at a given enhancer have been shown to 

be key to determine whether or not transcription proceeds (Oosterveen et al., 

2012; Parker et al., 2011).  

Previous findings from our lab, have shown that the dppD enhancer which 

is regulated by Hh in the developing wing requires three low-affinity non-
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consensus CiBSs to respond to Hh signaling in a broader domain (Müller and 

Basler, 2000; Parker et al., 2011; Ramos and Barolo, 2013). When the affinity of 

those sites was improved by changing the sequence of the CiBSs to look like the 

optimal Ci motif, the expression of the upgraded enhancer was more restricted. 

From these data, we proposed that high Ci-occupancy combined with a 

supposedly more cooperative form of Ci repressor (CiRep) were responsible for 

restricting the transcriptional outputs of the high-affinity enhancer to the wrong 

wing domain (these data are discussed in more detail in Chapter 2) (Parker et al., 

2011; Ramos and Barolo, 2013). In other words, consensus high-affinity sites 

seem to be better at repression, than the non-consensus sites in dppD.  

The characterization of Hh/Ci-regulated enhancers like dppD has been 

extremely important in understanding how these sequences integrate the Hh 

signal. Recently, a lot of effort has been focused in decoding the rules behind 

specific transcriptional responses to Hh signaling (Oosterveen et al., 2012; 2013; 

Parker et al., 2011; Peterson et al., 2012; Ramos and Barolo, 2013; Winklmayr et 

al., 2010). Learning these rules might be useful to predict expression patterns 

from Hh/Ci-regulated enhancers and to identify new target genes from genomic 

sequences. However, endogenous enhancers integrate many unknown Hh-

independent inputs, and this complicates the analysis of the contribution of 

individual CiBSs.  

Here, we used synthetic enhancers to examine distinct CiBS variants 

while controlling, as much as possible, the unknown inputs that bind to these 
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minimal regulatory sequences. Using this approach we uncovered that some 

predicted CiBSs, including the consensus sequence, are hijacked by unknown 

TFs in vivo, and we identified several candidates that bind selectively to these 

sites in vitro. These and other yet-to-be identified TFs may refine the expression 

of Hh target genes. In addition, these findings provide an alternative explanation 

to our previous studies of the dppD (Chaper 2) (Parker et al., 2011). It is possible 

that consensus sites are better at repression because they integrate additional 

repressive Ci-independent inputs, which are unable to bind the non-consensus 

sites in dppD. This contrasts with our original model that binding cooperativity 

between CiRep was the cause of more restricted expression patterns with higher-

affinity Ci sites (Parker et al., 2011; Ramos and Barolo, 2013).  

4.3 Results 

4.3.1 CiBSs integrate repressive inputs in Ci-negative cells 

Synthetic enhancers containing six TF binding sites, three Grainyhead 

(Grh) sites and three CiBSs, were generated to study how specific CiBS variants 

interpret the Hh gradient (Figure 4.1A). As shown in Chapter 2, we have used 

this approach in the past to test transcriptional outputs of isolated CiBSs from 

known Hh-target enhancers (Parker et al., 2011; Ramos and Barolo, 2013). 

Isolated CiBSs alone are insufficient to activate transcription; hence, we added 

Grh binding sites to our constructs as additional activator inputs. Grh sites are 

sufficient to activate gene transcription in the wing in the absence of other inputs 
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(Furriols and Bray, 2001; Ramos and Barolo, 2013). Grh expression was used as 

a baseline to detect activating and repressive inputs from Ci sites, which can then 

be measured as changes in gene expression in Grh+Ci reporters, relative to a 

Grh-alone reporter (Ramos and Barolo, 2013).  

We generated three versions of synthetic enhancers with three Grh 

binding sites upstream of three high-affinity CiBSs (Ci #1), three low-affinity 

CiBSs (Ci #37, #172, #1512), and three mutant Ci sites (KO) (Figure 4.1B-D).  All 

of these transgenic constructs drive Hh/Ci-regulated stripes of different width and 

strength, with the exception of the 3xGrh-only construct which drives basal levels 

of expression throughout the wing disc (Figure 4.1B). We quantified the 

normalized GFP fluorescence data from these synthetic reporters as described in 

Chapter 2 (Ramos and Barolo, 2013). Surprisingly, we observed that the 3xGrh-

3xCi#1-GFP construct is unable to drive expression in posterior cells where 

3xGrh-3xCiKO-GFP is weakly active in response to Grh inputs (Figure 4.1E). 

This region of the wing imaginal disc goes from about 60-100% disc width. On 

the other hand, the synthetic enhancer containing the lower-affinity sites was as 

active as the Grh-only control construct. These results show that 3xGrh-3xCi#1-

GFP is repressing transcription in posterior cells, whereas 3xGrh-

Ci#37,#172,#1512-GFP is not. This result is surprising because Ci is not 

expressed in posterior cells. Our observations suggest that other factors hijack 

CiBSs to repress transcription in the absence of Ci. 
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4.3.2 Selective binding of Ci-independent inputs to CiBSs 

We originally developed these synthetic Hh-regulated enhancers to better 

understand how the ptc and dppD enhancers integrated the Hh gradient, and for 

that reason we kept the flanking sequence of the 9-mers the same as the flanking 

sequence in those enhancers (Alexandre et al., 1996; Müller and Basler, 2000). 

To have a cleaner system with less sequence variables, we re-designed the 

synthetic constructs so that all the 9-mers contain identical flanking sequence. 

We chose the flanking sequence from the first CiBS in the ptc enhancer because 

this site has the best in vitro binding affinity (Parker et al., 2011).  

The new synthetic versions (Figure 4.1G-I) contained the same 

configuration of sites as the enhancers in Figure 4.1B-D. These enhancers 

produce similar transcriptional outputs as the original versions. 3xGrh-3xCiKO-

GFP drives expression ubiquitously, while 3xGrh-3xCi#1-GFP and 3xGrh-

3xCi#37 drive stripes of expression along the anterior/posterior (A/P) boundary 

(Figure 4.1G-I). Interestingly, CiBS #37 drives expression at similar levels as 

CiBS #1, although expression occurs in more anteriorly located cells. More 

importantly, 3xGrh-3xCi#1-GFP drives posterior repression, whereas 3xGrh-

3xCi#37-GFPdoes not (Figure 4.1J-K). Together, these data pointed for the first 

time to the integration of repressive inputs other than Ci via consensus high-

affinity CiBSs in vivo. 
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4.3.3 Real enhancers integrate repressive inputs through CiBSs 

To determine if the posterior repression observed in the synthetic 

enhancers was real, and not an artifact of our minimal system, we tested the 

ability of isolated CiBSs from the ptc and dppD enhancers to repress a bona fide 

wing enhancer. We chose the vestigial quadrant enhancer (vgQE) as a baseline 

because it drives strong expression in both anterior and posterior cells in the 

wing pouch, and it is not directly regulated by Hh signaling (Kim et al., 1996). We 

placed three CiBSs (as in the synthetic enhancers) downstream of vgQE (Figure 

4.2A) to make three versions of this enhancer.  

First, to keep the distance between vgQE and the promoter, and to test 

that the flanking sequence of the CiBSs did not affect the endogenous pattern of 

vgQE, we tested a version of vgQE with three mutated CiBSs (Figure 4.2B). 

vgQE-CiKO-GFP drives expression in a pattern that is indistinguishable form 

wild-type vgQE (data not shown). vgQE-3xCi#1-GFP drives transcription along 

the A/P boundary and repression in anterior cells (Figure 4.2C). This response is 

characteristic of Hh/Ci-regulated enhancers. Strikingly, vgQE-3xCi#1-GFP also 

represses expression in posterior cells that lack Ci (Figure 4.2C, white arrow). 

Lastly, we tested the effect of low-affinity sites (Ci#37, 172,1512). These non-

consensus sites drive expected expression patterns in anterior cells and no 

posterior repression (Figure 4.2D). These data show that consensus CiBSs 

integrate repressive inputs in posterior cells, and these inputs are sufficient to 

repress the activity of a bona fide wing enhancer.  

4.3.4 Ubiquitous Ci-independent inputs bind CiBSs in the wing 

To determine if the repression seen in posterior cells was Ci-mediated, we 

knocked down the expression of Ci in the dorsal part of the wing imaginal disc 
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using the ap-Gal4 driver combined with a UAS-Ci RNAi responder. The 

expression of the vgQE reporters was examined, and we used the ventral part, 

which had wild-type levels of Ci, as an internal control to detect changes in gene 

expression (Figure 4.2E-G). vgQE-CiKO-GFP drives a different expression 

pattern when Ci is knocked down (Figure 4.2E). vgQE has been shown to be 

directly activated by dpp signaling in the wing (Certel et al., 2000), and since dpp 

is a target of Hh signaling in this tissue, the loss of vgQE-3xCiKO-GFP activation 

is most likely an indirect effect of the Ci knockdown.  

If Ci mediates posterior repression, then knocking down Ci expression 

should result in de-activation in cells at the A/P boundary and de-repression in 

both anterior and posterior cells. vgQE-3xCi#1-GFP drives almost no expression 

across the wing when Ci is knocked down (Figure 4.2F). This result suggests that 

in the absence of Ci, other TFs bind consensus CiBSs and repress transcription 

throughout the wing disc. vgQE-Ci#37,#172, #1512-GFP drives expected 

expression patterns in cells with lower levels of Ci which is characterized by de-

repression in more anterior cells, de-activation in cells abutting the A/P boundary, 

and no change in gene transcription posterior cells (Figure 4.2G). Together, our 

data opens up the possibility that TFs other than Ci occupy consensus CiBSs to 

repress and maybe sharpen the expression patterns of target genes. 

4.3.5 Real Hh-regulated enhancers contain CiBSs that integrate Ci-
independent inputs to avoid ectopic expression  

Up to this point, we have shown that synthetic enhancers and endogenous 

non-Hh-regulated enhancers integrate Ci-independent inputs when isolated 

binding sites are added, but can real Hh/Ci-regulated enhancers integrate these 

inputs as well? We found that two newly identified enhancers in the ptc locus, YU 

and ZY, are de-repressed in posterior cells when all the predicted CiBSs are 
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mutated. YU is de-repressed in anterior and posterior cells of the wing disc when 

all the predicted sites were destroyed (Chapter 3) and ZY was de-repressed in 

the distal region of the leg imaginal disc (Figure 4.3B-C). Interestingly, YU only 

contains non-consensus sites, whereas ZY has three non-consensus (Ci #2, 

#107, #43) and one consensus CiBS. A unique feature of these enhancers is that 

they contain binding sites for tissue-specific activators that bind to sequences 

outside of the predicted CiBSs. Together, these results show that predicted 

CiBSs in real Hh-regulated enhancers are hijacked by other factors in vivo 

through both consensus and non-consensus sites. This activity may happen to 

prevent the ectopic expression of these enhancers. 

To better understand these “usurper” inputs, we made additional 

mutations to ZY and examined the expression of these constructs in the leg 

imaginal disc, where Hh signaling establishes a gradient similar to the one found 

in the wing (Figure 4.3D-G). We mutated the first pair of predicted evolutionarily 

conserved CiBSs which contains a Ci site #2 and a #1 site in close proximity 

(Figure 4.3H, sites highlighted in yellow and red), and then we mutated the 

second pair of sites which contains a poorly conserved Ci site #107 and a #43 

(Figure 4.3H, sites highlighted in blue and green). To test the contribution of the 

last two CiBSs in ZY, we mutated the two sites with better-predicted affinity. ZY-

[#2,#1CiKO]-GFP drives very strong repression and decent activation in anterior 

cells, but weaker repression in posterior cells (Figure 4.3D). The final expression 

pattern of this construct hardly resembles a stripe. On the other hand, ZY-

[#107,#43CiKO]-GFP is sufficient to make a stripe-like pattern by integrating 

repressive inputs in anterior and posterior cells (Figure 4.3E). Together, these 

results show that ZY requires all the predicted CiBSs to make the final wing stripe 

both proximally and distally, and that other inputs beside Ci regulate the 

expression of this enhancer in the leg via CiBSs to refine the Hh response.  
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To determine which of the two best CiBSs in ZY is responsible for 

posterior repression, we made versions of ZY that contained only Ci site #2 or 

the optimal site #1 (Figure 4.3F-G). Site # 2 (ZY-[#1,#107,#43CiKO]-GFP) 

represses expression in posterior distal cells, but surprisingly does not 

completely repress in anterior cells (Figure 4.3F). Site #1 (ZY-

[#2,#107,#43CiKO]-GFP) represses expression in both leg compartments (Figure 

4.3G). However, site #2 drives better posterior repression than site #1, yet 

complete repression is achieved when both sites are present (Figure 4.3E). 

Together, these results show that predicted CiBSs other than the consensus 

motif integrate inputs from other TFs to produce sharp expression patterns in 

response to Hh signaling in. 

4.3.6 Potential CiBS usurpers  

To find TF candidates that might recognize predicted CiBSs, we used the 

TOMTOM motif analysis tool (Bailey et al., 2009; Zhu et al., 2011). We identified 

several zinc finger DNA binding proteins that belong to the Gli/Zic, EGR and 

KLF/SP families (Enuameh et al., 2013). These factors are Lameduck (Lmd), 

Sugarbabe (Sug), Odd paired (Opa), Klumpfuss (Klu), Stripe (Sr), Buttonhead 

(Btd) and Drosophila Sp1 (DSp1) (Figure 4.4A). Out of the seven candidates, 

Opa, Klu, Sr, Btd and DSp1 are known to be expressed in larval tissues (Ghazi et 

al., 2003; Klein and Campos-Ortega, 1997; Lee et al., 2007; Mann and Carroll, 

2002). Lmd and Sug are expressed in the embryonic mesoderm, but their 

expression in larval tissues is unknown (Duan et al., 2001; Zinke et al., 2002). 

We found the predicted binding motifs of these candidates in Fly Factor Survey 

(Zhu et al., 2011), a database that contains the DNA binding specificities of many 

Drosophila TFs, and we aligned these logos to the binding motif of Ci (Figure 
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4.4A). This alignment highlights position 5 of the Ci 9-mer, because most of the 

candidates prefer to bind a C instead of an A (Figure 4.4A). Interestingly, this 

position is not contacted by Ci/Gli directly (Pavletich and Pabo, 1993). Although 

we found several promising candidates, we cannot rule out the possibility that 

other yet to be characterized TFs may recognize CiBSs.  

To determine the sequence similarity of the zinc finger domains (ZFDs) of 

these factors, we aligned these residues using ClustalW (Figure 4.4B) (Larkin et 

al., 2007). As shown by the crystal structure of a Gli-DNA complex, fingers 4 and 

5 make extensive base contacts within the 9-mer (Figure 4.4A, shown as 

arrowheads), while fingers 2 and 3 mainly contact the phosphate backbone 

(Figure 4.4A, indicated as black circles). Finger 1 mainly establishes protein–

protein contacts with finger 2 (Pavletich and Pabo, 1993). Finger 5 contacts 

bases 1-4 in the 9-mer, while finger 4 contacts bases 6-9 and the first base in the 

downstream flanking sequence (Pavletich and Pabo, 1993). Fingers 2, 3 and 4 

are alignable in all the proteins, but only TFs belonging to the Gli/Zic families 

have alignable fingers 1 and 5. This observation is in agreement with the logo 

alignment in Figure 4.4A because most of the binding motifs align with bases 4-9 

of the Ci 9-mer. These observations show that partial overlap of the binding 

motifs of the candidates may account for usurper binding, and also suggest that 

the 3’ end of the Ci motif provides specificity.  

4.3.7 Usurper candidates selectively bind CiBSs in vitro 

The zinc finger regions of Lmd, Sug, Opa, Klu and Ci were expressed in 

vitro and the products were tested for binding using six different oligonucleotides 

(Table 4.1) that included different Ci sites (Figure 4.4C-H). We were not able to 

make the ZFDs of Sr, Btd and DSp1. First, in addition to Ci, Lmd, Opa and Klu 
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bind to an oligonucleotide containing the consensus CiBS (lanes 1). Sug is the 

only candidate that does not bind to the consensus sequence (Figure 4.4E, lane 

1).  Because of our observation that most of the candidates prefer a C instead of 

an A at position 5 (Figure 4.4A), we tested Ci site #5 (lanes 2). All the ZFDs bind 

to that oligonucleotide except for Opa. In lanes 3 and 4, oligonucleotides with a G 

or a T instead of an A were tested. Only Ci, Opa and Klu recognize a Ci site with 

a G at position 5 (lanes 3), and Ci, Lmd, Opa and Klu bind to a site with a T at 

that position (lanes 4). Next we tested Ci #37, which does not mediate repression 

independently of Ci in vivo (Figure 4.2G). None of the candidates bind to this 

oligonucleotide, only Ci does (lanes 5). This result was encouraging as we were 

looking for TFs that did not bind to site #37. Finally we tested an oligonucleotide 

that contains the consensus site for Opa and Sug, which happens to be a Ci 

#146, and has a C at position 5 and a G at position 9. All of the ZFDs bind this 

site except for Klu (lanes 6). In summary, all of the candidates except for Sug 

bind to consensus Ci sites, but not to site #37 in vitro (see Table 4.2 for a 

summary of these data). These results show that most of the usurper candidates 

bind selectively to Ci sites, and implicate their potential competition with Ci for 

binding to these CiBSs in vivo.  

4.3.8 CiBS #5 drives more expression than the consensus motif in vivo 

We characterized the relationship between motif variant #5 (GACCcCCCA) 

and gene expression using the previously described synthetic enhancer 

approach. We tested Ci site #5 because it was bound by many of the usurper 

candidates in vitro, and because this position varied in the logo alignment in 

Figure 4A. This site should have lower affinity for Ci than the optimal motif 

(Hallikas et al., 2006). The transcriptional output driven by CiBS #5 was 
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compared to the output of the consensus site and KO (Figure 4.5A). As seen 

previously 3xGrh-3xCiKO-GFP drives ubiquitous expression in the wing, and 

3xGrh-3xCi#1-GFP drives a stripe across the tissue (Figure 4.5B-C). Strikingly, 

3xGrh-3xCi#5-GFP drives stronger expression than the synthetic enhancer 

carrying the optimal motifs. The difference between these constructs is only three 

base pairs. The stripe in Ci #5 is about 1.5 fold more active than Ci #1, but both 

CiBSs repress transcription at the same position in anterior cells (~46% disc 

width) (Figure 4.5E). In the posterior compartment, only Ci #1 drives repression, 

while Ci #5 behaves as Ci #37 and shows no repression (Figure 4.1F and K). 

These interesting results show for the first time that sub-optimal sites beat 

consensus high-affinity CiBSs in making a wing stripe. These results also show 

that the unidentified repressor does not bind site #5 (nor #37 as shown before). 

Another possibility is that an unknown activator binds site #5, and based on the 

in vitro data, this is a very likely possibility. Our results highlight the relevance of 

position 5 of the 9-mer, even if it is not directly contacted by the zinc fingers 

(Pavletich and Pabo, 1993). 

We looked at the expression of these enhancers in the embryonic 

ectoderm to determine if the counterintuitive output of these sites in the wing was 

tissue-specific. The expression pattern of 3xCiKO-GFP in the embryonic 

epidermis recapitulates the expression pattern of Grh at this developmental stage 

(Figure 4.5G) (Hammonds et al., 2013). 3xGrh-3xCi#1-GFP drives expression on 

either side of the Hh/En-positive cells (Figure 4.5H), and interestingly, this pattern 

recapitulates the endogenous pattern of ptc (Chapter 3). As in the wing, 3xGrh-

3xCi#5-GFP drives more expression than 3xGrh-3xCi#1-GFP (Figure 4.5I). 

However, the pattern driven by Ci #5 includes expression in Hh-positive cells 

where Hh target genes are not normally expressed. Taken together, these results 

show that sites with worse predicted affinity activate expression in Hh/Ci-
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regulated patterns more strongly than consensus Ci sites, and these #5 sites do 

not bind repressive usurper inputs in the wing. 

4.3.9 Rogue CiBSs: when the best is not good enough 

We created a logo with the top ten Ci sites with the highest predicted 

affinity (Hallikas et al., 2006). This logo shows that positions 1, 3, 4, 6 and 9 are 

the most important because they remain constant in all the sites (Figure 4.6A). 

Then we created another logo with the ten most frequent Ci motifs in 

experimentally validated enhancers (including the newly identified ptc enhancers 

described in Chapter 2). This logo shows that positions 1, 3, 4, 5 and 6 are 

constant (Figure 4.6B). By comparing these logos we noticed that the 5’ end of 

the 9-mer shows the same binding specificity in both sets of Ci sites, while the 3’ 

shows dramatic variation (Figure 4.6A versus B). These findings are interesting 

because bases at the 3’ end of the Ci motif are contacted by zinc finger 4, and 

we showed that this domain is present among all the usurper candidates (Figure 

4.4B). On the other hand, bases at the 5’ end of the motif are contacted by zinc 

finger 5, which is present only in the Gli and Zic factors, are identical in both 

logos (Figure 4.6A versus B). Interestingly, we found that the most frequent CiBS 

in Drosophila enhancers is not the optimal motif instead it is Ci #9, GACCACaCA 

(124 times versus 78). Ci site #5 is found only 4 times in our dataset. Together, 

these data suggest that CiBSs that deviate at the 3’ end of the motif like Ci #9 

may be under selective pressure to avoid binding of other TFs even if these sites 

have lower Ci affinity. This strategy potentially explains the prevalence of specific 

non-consensus CiBSs in Hh-regulated enhancers across species (Ramos and 

Barolo, 2013; Winklmayr et al., 2010). During evolution, it is probably easier to 

select for CiBSs variants that produce a more accurate Hh response, than to 
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adapt Ci to bind a slightly different sequence, although in this case a combination 

of both modifications is attractive. 

4.4 Discussion 

The counterintuitive transcriptional behavior of Hh-regulated enhancers 

with different binding affinities for Ci, prompted the characterization and 

quantification of transcriptional outputs from CiBS variants to better understand 

how these enhancers integrate signaling inputs in vivo. The best approach to 

answer this question is to study CiBSs in isolation. Using synthetic Hh-regulated 

enhancers with defined inputs, we have uncovered the promiscuity of some 

CiBSs in vivo.  

Multivalent TF binding sites are not a unique feature of Ci. Many years ago 

Mike Levine and colleagues showed two examples of Drosophila enhancers that 

contain overlapping binding sites that are recognized by different TFs: one is the 

eve stripe 2 enhancer and the other is the rhomboid NEE enhancer (Ip et al., 

1992; Small et al., 1991). In both cases, competition for binding occurs between 

activators and repressors. This regulatory logic is probably easier to identify 

because the transcriptional outputs of the enhancers are very distinct in the 

absence of either TF. However, if both TFs have the same transcriptional 

function, then the identification of multivalent sites becomes more challenging. 

Examples of TFs that compete for multivalent sites in mammals include Myc and 

Mad which are transcriptional antagonists that recognize identical binding motifs 

(James and Eisenman, 2002). A similar situation occurs between the TFs 

Blimp1, IRF-1 and IRF-2 during B-cell differentiation (Kuo and Calame, 2004). In 

C. elegans, the TF Ces-1 competes with bHLH factors to bind identical motifs 

(Reece-Hoyes et al., 2009). Competition for shared or partially overlapping 
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binding sites seems to be a common strategy in many species to produce tissue-

specific responses. Competition between CiAct, CiRep and usurper factors might 

be used to add more complexity to the Hh response.  

In the past, we have grouped all non-consensus binding sites together 

when thinking about the transcriptional outputs of Hh-regulated enhancers. 

However, the findings presented in this chapter made us aware of the inherent 

complexity of each variant. Our data suggest that usurpers might not bind CiBSs 

that deviate at 3’ end of the motif, particularly at positions 7 and 8. Mutations to 

these positions disrupt the string of Cs at positions 6, 7, and 8, which are 

preferred by usurpers as shown by in vitro binding data (Enuameh et al., 2013). 

Avoidance of CiBSs with “too many” Cs might explain why Ci site #5 is not 

frequently found in enhancers, although it drives more expression than Ci site #1. 

It is possible that Ci #5 integrates usurper activators. These hypotheses will be 

tested in vivo and in vitro, using a combination of Drosophila genetics, synthetic 

reporter transgenes and competitive EMSAs. 

Finally, our results showing that Ci-independent inputs bind consensus 

CiBSs, but not sites from the dppD enhancer to repress transcription in posterior 

cells (Figure 4.4), challenges previous claims by the Basler Lab that two types of 

Hh target genes exist: those that respond to Ci activation and repression like dpp; 

and those that only respond to Ci activation like ptc and engrailed (Méthot and 

Basler, 1999).  These conclusions were posited after dpp was ectopically 

expressed in Ci mutant clones in posterior cells of the wing while ptc was not 

expressed (Méthot and Basler, 1999). Our observations suggest an alternative 

explanation where ptc is regulated by usurper factors that suppress its ectopic 

activation in posterior cells whereas dpp is not regulated by these factors.  
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We have shown that Ci-independent inputs regulate transcription through 

CiBSs. However, further sequence-function analyses are necessary to fully 

understand how these multivalent sites integrate these inputs in different 

contexts. 

4.5 Materials and methods 

DNA cloning  

Synthetic enhancers were generated by assembly PCR (Swanson et al., 

2010), and were sub-cloned into the pENTR/D-TOPO vector (Life Technologies). 

Using the Gateway system, the synthetic constructs were finally cloned into the 

pHPdest-eGFP vector (Boy et al., 2010). The ZY enhancer was amplified by 

standard PCR (Roche Expand High Fidelity PCR System) from genomic DNA, 

and cloned as the synthetic enhancers. Targeted GBS mutations were created by 

overlap extension PCR (Swanson et al., 2010). 

Drosophila transgenesis 

Site-directed transformation by embryo injection was performed as 

previously described (Bischof et al., 2007). Reporter transgenes were integrated 

into a phiC31 landing site at genomic position 86FB.  

Drosophila stocks 

The following stocks were used to knockdown the expression of Ci in the 

wing: ap-Gal4 [y1 w1118; P{GawB}apmd544/CyO] (kindly provided by Scott Pletcher) 

and UAS-Ci RNAi [y1 v1; P{TRiP.JF01715}attP2 ] (BDSC Stock # 28984). 
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Immunohistochemistry and microscopy 

Embryos were fixed and stained using standard methods as previously 

described (White et al., 2012).  Embryos were staged as described (Campos-

Ortega and Hartenstein, 1985). Third-instar wing imaginal discs were dissected 

and fixed as described (Parker et al., 2011). Confocal images were captured on 

an Olympus FluoView 500 Laser Scanning Confocal Microscope mounted on an 

Olympus IX-71 inverted microscope. Samples to be directly compared were 

fixed, prepared, and imaged under identical confocal microscopy conditions and 

settings. The primary antibodies used included rabbit anti-EGFP (Invitrogen), 

diluted 1:100, and mouse anti-En (Developmental Studies Hybridoma Bank), 

diluted 1:50. AlexaFluor488 and AlexaFluo568 conjugates with secondary 

antibodies from Invitrogen were used at 1:2000 dilutions.  

Quantitation of transgenic reporter expression data 

Wing confocal images were collected and quantified as previously 

described (Parker et al., 2011). The Matlab program Icarus (E. Ortiz-Soto, A.I.R., 

and S.B., manuscript in preparation) was used to process and plot wing imaginal 

disc fluorescence data.  Each experiment was performed at least two times, and 

fluorescence was measured from at least two wings per construct. 

Electromobility shift assays 

Electromobility shift assays were performed as described (Parker et al., 

2011). The zinc finger domains of Ci, Klu, Lmd, Sug, and Opa were made in vitro 
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using the TNT® SP6 High-Yield Wheat Germ Protein Expression System 

(Promega, Madison, WI.) according to the manufacturer’s instructions. As a 

template, we used a PCR amplified fragment of the proteins that contains the 

DNA binding motifs.  The primers used to generate the template introduce a SP6 

promoter and Kozak sequence upstream, and poly-T sequence downstream of 

the protein. Oligonucleotides corresponding to six Ci site variants (see Table 4.1 

for oligonucleotide sequences) were end-labeled with ATP, γ-32P using T4 

Polynucleotide Kinase, annealed, and used as probes in EMSA assays. 1.6nM 

radiolabeled probe were mixed and incubated on ice for 15 minutes with the 

ZFDs under the following conditions: 10mM Tris-HCl, pH7.5, 50mM NaCl, 10mM 

DTT, 1mM EDTA, 27.5 μg/ml salmon sperm DNA, 100 μg/ml 

poly(dIDC). Reactions were analyzed via electrophoresis on a 4% non-

denaturing polyacrylamide gel in 0.5x TBE buffer.        

Ci binding site prediction and ranking 

A mono-nucleotide distribution matrix for Ci binding sites, derived from 

competitive DNA binding assays (Hallikas et al., 2006) was downloaded from the 

Genomatix Software Suite (www.genomatix.de; Genomatix, Germany). Matrix 

similarity scores (Quandt et al., 1995) were calculated using data from the first 

nine nucleotide positions of the Ci matrix, which contain the majority of the 

information content. Ci site rankings are determined by sorting all possible 9-

mers in order of matrix similarity score, such that the optimal motif (GACCACCCA), 

with a score of 100, has a rank of 1. Nonamers with a lower matrix score than 

their reverse-complement sequences, such as TGGGTGGTC, are removed from 

the ranking so that each high-scoring site is included only once. Gli binding sites 
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were identified in silico by screening the ptc locus for defined motifs using 

Genepalette (Rebeiz and Posakony, 2004). 

TOMTOM motif discovery tool 

To identify other transcription factors that had similar DNA binding motifs 

as Ci, we entered the Ci consensus motif in the TOMTOM motif comparison tool 

and select the FlyFactorSurvey database (Bailey et al., 2009; Zhu et al., 2011). 

Amino acid sequence alignment  

Amino acid sequences were aligned using Clustal W (Larkin et al., 2007). 

Zinc finger amino acid sequences were obtained from previously published 

alignments and from Uniprot (Brown et al., 2005; Klein and Campos-Ortega, 

1997; Sen et al., 2010; Shimeld; UniProt Consortium, 2010; Wimmer et al., 

1996). 

Logo generation 

Logos (Schneider and Stephens, 1990) describing the binding preferences 

of different sets of CiBSs were generated with WebLogo (Crooks et al., 2004).  
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Figure 4.1 – Synthetic enhancers recapitulate endogenous patterns of gene 
expression in anterior cells, and reveal transcriptional repression in posterior 
cells via Ci sites.  

(A) Diagram of the composition and organization of the synthetic enhancers with 
Grainyhead (Grh) sites and Ci sites indicated. (B-D) Representative confocal 
images of the pouch regions of wing imaginal discs from transgenic third-instar 
larvae are shown. The Ci sites used in each construct are indicated by ranking 
number (KO, GACaAaaCA; #1, GACCACCCA; #37, GgCCACCtA; #172, 
GACCgCCCg; #1512, tACCtCCCc). (E) Normalized GFP fluorescence data 
collected from the dorsal section of the wing pouch. Error bars indicate 1 s.d. (F) 
Net effect of Ci sites (calculated as the normalized transgene expression of 
3xGrh-3xCi #1 or 3xGrh-3xCi #37,#172,#1512 minus normalized 3xGrh-3xCi KO 
expression). (G-I) Representative confocal images of the pouch regions of wing 
imaginal discs from transgenic third-instar larvae are shown. (E) Normalized GFP 
fluorescence data collected from the dorsal section of the wing pouch. Error bars 
indicate 1 s.d. (F) Net effect of Ci sites (calculated as the normalized transgene 
expression of 3xGrh-3xCi #1 or 3xGrh-3xCi #37 minus normalized 3xGrh-3xCi 
KO expression). Black circles indicate the positions on the A/P axis at which the 
synthetic reporter constructs switch from activation to repression. A, anterior; P, 
posterior. 
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Figure 4.2 – Ci-independent repression of gene expression via optimal Ci sites. 

(A) Diagram of the composition and organization of the synthetic enhancers 
containing the vestigial quadrant enhancer (vgQE) (Kim et al., 1996) with diverse 
Ci sites. (B-D) Representative confocal images of the pouch regions of wing 
imaginal discs from transgenic third-instar larvae are shown. The white arrow 
indicates posterior repression. The Ci sites used in each construct are indicated 
by ranking number (KO, GACaAaaCA; #1, GACCACCCA; #37, GgCCACCtA; #172, 
GACCgCCCg; #1512, tACCtCCCc). (E-G) Representative confocal images of wing 
imaginal discs where Ci expression was reduced in the dorsal region of the wing 
(indicated with white rectangles). The ventral region was used as a wild-type 
internal control to compare changes in reporter gene expression. 
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Figure 4.3 – Real Hh/Ci-regulated enhancers are posteriorly repressed via 
predicted Ci sites.  
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(A) Diagram of the ptc locus (as described in Chapter 3) showing the location of 
the ZY enhancer. (B-G) Representative confocal images of leg imaginal discs 
from transgenic third-instar larvae carrying modified versions of ZY are shown. 
The Ci sites modified in each construct are indicated by ranking number (KO, 
GACaAaaCA; #1, GACCACCCA; #2, GgCCACCCA; #107, GAtCgCCCA; #43, 
GgCCACaCA). (H)Twelve-species Drosophila sequence alignments are shown for 
selected regions of the ZY enhancer.  Selected 9-mers are shaded, and Ci matrix 
similarity scores for those motifs are shown to the right. Sequences are from the 
following Drosophila species, from top to bottom: D. melanogaster, D. simulans, 
D. sechellia, D. yakuba, D. erecta, D. ananassae, D. pseudoobscura, D. 
persimilis, D. willistoni, D. virilis, D. mojavensis, and D. grimshawi. Dashes 
indicate gaps. A, anterior; P, posterior. 
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Figure 4.4 – TFs other than Ci bind to predicted CiBSs in vitro. 

(A) Sequence logos comparing the binding preferences between Ci and the 
“usurper” candidates (Bailey et al., 2009; Zhu et al., 2011). (B) Amino acid 
sequence alignment of the zinc finger domains of the candidates and Ci. 
Residues that make DNA contacts are shown with arrowhead, and residues that 
make contacts phosphate contacts are shown with black circles (Pavletich and 
Pabo, 1993). (C-H) EMSAs using radioactively labeled probes (Table 4.1) 
incubated with the in vitro transcribed/translated zinc finger domains of Ci and 
several of the usurper candidates. Central boxes show specific ZFD-DNA 
complexes. NS, non-specific shift; FP, free probe. 
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Figure 4.5 – CiBS variant #5 is better than the optimal motif in vivo. 
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(A) Sequence of the Ci sites used in synthetic reporter transgenes, including 
upstream and downstream flanking sequences. Divergent nucleotides are 
highlighted in colored boxes. (B-D) Representative confocal images of the pouch 
regions of wing imaginal discs from transgenic third-instar larvae are shown. The 
Ci sites used in each construct are indicated on top of the images. (E) 
Normalized GFP fluorescence data collected from the dorsal section of the wing 
pouch. Error bars indicate 1 s.d. (F) Net effect of Ci sites (calculated as the 
normalized transgene expression of 3xGrh-3xCi #1 or 3xGrh-3xCi #5 minus 
normalized 3xGrh-3xCi KO expression). (G-I) Confocal images of stage 14 
transgenic embryos carrying 3xGrh-3xCi KO, 3xGrh-3xCi #1, and 3xGrh-3xCi #5 
driving GFP. The Ci sites used in each construct are indicated on top of the 
images. A, anterior; P, posterior. 
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Figure 4.6 – Sequence binding preferences vary between Ci sites with highest 
predicted affinity and the most frequent motifs found in Drosophila enhancers.  

(A) Logo showing the sequence binding preference of the top 10 highest-affinity 
Ci/Gli motifs (Hallikas et al., 2006). (B) Logo showing the sequence binding 
preference of the 10 most frequent sites in experimentally validated Drosophila 
enhancers. Positions in bold highlight the main differences between the logos. 
The zinc fingers that contact different parts of the 9-mer are shown. 
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Table 4.1 – Probes used to test binding preferences in vitro. 

 
 
 

 

Lane Oligonucleotides Comments 

1 GCGCCTAGGGGACCACCCACATCGGACGC Ci #1, used in synthetics 

2 GCGCCTAGGGGACCcCCCACATCGGACGC Ci #5, optimal Lmd motif 

3 GCGCCTAGGGGACCgCCCACATCGGACGC Ci #7 

4 GCGCCTAGGGGACCtCCCACATCGGACGC Ci #4 

5 GCGCCTAGGGGgCCACCtACATCGGACGC Ci #37, used in synthetics 

6 GCGCCTAGGGGACCcCCCgCATCGGACGC Ci #146, optimal Sug and 
Opa motif 
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Table 4.2 – Summary of in vitro binding preferences. 

+ This indicates binding was detected. 

- This indicates that no binding was detected. 

 

! ! Ci Lmd Sug Opa Klu 
Ci #1 GACCACCCA + + - + + 
Ci #5 GACCcCCCA + + + - + 
Ci #7 GACCgCCCA + - - + + 
Ci #4 GACCtCCCA + + - + + 
Ci #37 GgCCACCtA + - - - - 
Ci #146 GACCcCCgA + + + + - 
!
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CHAPTER 5 

 

Conclusions 

5.1 Summary of findings 

What are the mechanisms of enhancer regulation by Ci/Gli across the Hh 

gradient? The objective of this thesis was to answer this question. The findings 

discussed in Chapter 2 indicate that non-consensus Ci binding sites are essential 

to respond to Hh signaling in different contexts. In fact, most of the Hh target 

enhancers in Drosophila and mouse are regulated by degenerate Ci/Gli binding 

sites (Ramos and Barolo, 2013; Winklmayr et al., 2010). Mutational analysis of 

enhancers containing non-consensus Ci binding sites revealed that these 

regulatory elements require sites with predicted lower affinity to respond optimally 

to Hh in the larval wing and in the embryo. Affinity upgrades of these enhancers 

by swapping non-consensus sites with consensus sites were detrimental to 

enhancer function in various tissues. We found that in the wing, upgraded 

enhancers drove expression in more restricted patterns, and in the embryo the 

overall expression was diminished (Parker et al., 2011; Ramos and Barolo, 2013; 

White et al., 2012). We proposed that maybe the repressor form of Ci is more 

cooperative than its activator counterpart, hence the observed restricted 

expression patterns when the occupancy of these enhancers increases by 

improving the affinity for Ci (Parker et al., 2011; Ramos and Barolo, 2013; White 

et al., 2012). In addition, the evolutionary conservation of many of these non-
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consensus Ci binding sites suggests that many of these sequences require lower 

Ci/Gli inputs to respond optimally to Hh signaling.  

In Chapter 3, we identified many novel Hh-regulated tissue-specific 

enhancers in the ptc locus. This detailed cis-regulatory analysis revealed that the 

universal response of ptc to Hh signaling is achieved through multiple cell type-

specific enhancers that mostly contain non-consensus sites. These findings 

provide more examples of Hh target enhancers that require non-consensus sites 

for optimal expression in response to Hh signaling. Since we found that most of 

the ptc locus encodes regulatory information, this regions could be labeled as a 

“super-enhancer” or “stretch enhancer” (Hnisz et al., 2013; Parker et al., 2013). 

These newly and somewhat controversial types of enhancers are mostly based 

on chromatin signatures that span large genomic areas. However, our analysis is 

based on functional reporter data suggests that the complex regulatory 

information in the ptc locus is simply a collection of many individual enhancers. It 

will be interesting to compare different chromatin signatures across different cell-

types in the ptc locus to determine whether or not this locus looks like a “super-

enhancer”, but in reality it just may be many enhancers acting together to control 

and refine the expression pattern of ptc throughout development. Furthermore, 

our findings of separable tissue-specific enhancers in the fly ptc locus are similar 

to recent findings in the mammalian patched1 (ptch1) locus, where distinct 

tissue-specific enhancers containing functional non-consensus Gli sites were 

identified (Lopez-Rios et al., 2014; Vokes et al., 2007). Since these genomic 

regions seem to use similar regulatory strategies, it is tempting to speculate that 

the transcriptional regulation of ptc is conserved from flies to humans.  

The analysis of endogenous enhancers provided very useful in our quest 

to understand how Ci sites integrate signals from the Hh signaling pathway to 

regulate gene transcription; however, the additional inputs that regulate these 
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sequences are mostly unknown. In Chapter 4, to avoid confounding effects from 

these unidentified inputs, we studied isolated Ci sites in synthetic Hh-regulated 

enhancers with defined inputs. With this system, we discovered that some Ci 

binding sites are promiscuous in vivo. Initially, we found that in the developing 

wing the consensus sequence (Ci #1) integrates repressive inputs in addition to 

Ci, whereas a different site (Ci #37) is immune to these inputs. We found several 

examples of endogenous Hh-regulated enhancers that are regulated in a similar 

way. We used synthetic enhancers to simplify our in vivo analysis of Ci binding 

sites. Yet, our minimal approach revealed that these sites are far from being 

decoded. Even with our current limited data, our findings open up a pandora’s 

box of regulatory complexities for these Ci binding sites. Furthermore, we 

identified several TFs that can potentially recognize Ci sites in vivo. We tested 

the binding preferences of these candidates in vitro, and found that most of these 

factors bind the consensus Ci site, but not site #37. These results are 

encouraging, but additional experiments are required to really understand these 

usurper inputs, and to determine exactly which Ci variants behave as multivalent 

sites.   

5.2 Implications 

One of the contributions of my dissertation work is that some Ci binding 

sites seem to integrate additional transcriptional inputs, besides Ci, in Hh 

responsive tissues in vivo. Based on these findings, I propose that we should re-

evaluate previous conclusions about Hh target enhancers containing different Ci 

binding sites. Previously, as described in Chapter 2, we proposed that the affinity 

and number of Ci sites explained the expression patterns driven by the wild-type 

and upgraded dppD enhancer (Parker et al., 2011; Ramos and Barolo, 2013; 
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White et al., 2012). Now, in light of our recent findings, a simple competition 

model between activator Ci, repressor Ci, and a broadly expressed 

transcriptional repressor also explains our observations. For example, wild-type 

dppD drives expression more broadly because it only integrates inputs from Ci; 

whereas the upgraded enhancer drives expression only in cells with the highest 

levels of Hh because it integrates broad repressive inputs in addition to Ci (Figure 

5.1). In this model, the sequence of the Ci sites rather than the predicted affinity 

dictates the final expression pattern. 

Our results suggest that some Ci sites may be under complex selective 

pressures to balance inputs from activator Ci, repressor Ci, and other 

transcription factors with overlapping binding preferences. This binding site 

selection might explain why most Hh target enhancers contain non-consensus 

sites. Furthermore competition for shared or partially overlapping Ci binding sites 

might provide tissue-specificity to enhancers that are regulated by Hh signaling. 

5.3 Future directions 

What are the mechanisms of gene regulation by Ci/Gli? How are cell type‐

specific responses determined? This dissertation aimed to answer these 

questions, yet our findings suggest that we uncovered just the tip of the iceberg. 

First, we identified many novel Hh-regulated enhancers in the ptc locus 

that respond to Hh signaling via non-consensus sites. These findings in addition 

to nine, out of ten, previously identified Hh target enhancers in Drosophila 

suggest a key role for non-consensus Ci sites during development. However, we 

still lack any in vivo evidence to determine whether or not Ci recognizes these 

sequences differently in vivo. Since there is not a good Ci antibody to perform 

ChiP experiments, maybe a tagged Ci fusion protein could be overexpressed in 
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the wing or in embryos, and antibodies that recognize the tag can be used to 

perform ChIP experiments in order to measure in vivo binding of Ci to distinct 

sites.  

We also identified Hh/Ci-independent inputs into some Ci binding sites. In 

the near future, the unknown factors that bind to these sites could be identified 

using a yeast-one-hybrid approach or maybe using affinity immunoprecipitation 

from nuclear lysates. Once these TFs are identified, we can address whether or 

not they regulate Hh target genes across multiple tissues using genetic 

approaches. Ideally, in these experiments we will generate cells that are mutant 

for these factors and we will look at the expression levels of key target genes 

such as ptc or dpp. Alternatively, we could use RNAi to knockdown the 

expression of these factors in different tissues to determine if they affect Hh 

target gene expression.  

Up to this point we have only tested four Ci site variants (#1, #5, #37 and 

#2949), but we have to measure the expression of many more isolated Ci sites in 

vivo to determine which ones are multivalent. To do this, we can generate more 

synthetic enhancers to test isolated variants from endogenous enhancers (Figure 

5.2). We can also do a sequential analysis where we mutate each position in the 

9-mer to the least likely base as shown in Figure 5.3. This experiment may 

provide clues as to whether parts of the 9-mer are preferentially bound by 

usurpers. The expression of these synthetic enhancers can be scored across 

many tissues to further study how Ci regulates tissue-specific responses. 

These synthetic enhancer experiments must be complemented with 

analysis of endogenous Hh-regulated enhancers. For that, we have the largest 

set of Hh/Ci-regulated enhancers in Drosophila (as discussed in Chapter 3). To 

really understand the rules that control the transcription of target genes, we have 

to identify additional inputs into sequences other than the predicted Ci binding 
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sites. More importantly, from a locus-wide perspective, we have to determine 

whether these ptc enhancers are functionally relevant in vivo. To address this 

critical question, we can use the CRISPR/Cas system to delete or mutate these 

enhancers from the endogenous locus (Cong et al., 2013; Sebo et al., 2014) 
  



162 

 

 
Figure 5.1 – Revised working model that explains the expression patterns driven 
by the ptc and dppD enhancers. 
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Figure 5.2 – Diagram depicting the Ci site variants that will be tested in vivo to 
understand the role of individual sites in known Hh-regulated enhancers. 

Ci Sites #1, #5 and #37 were analyzed in Chapter 4. Ci #2 is present in a ptc 
enhancer (ZY); Ci #9 is present in several ptc enhancers; Ci #14 is present in the 
mammalian FoxA2 enhancer (Sasaki et al., 1997); Ci #93 is present in ptc 
enhancers; Ci #240 is present in ptc, dppHO (Hepker et al., 1999), Nkx6.9 
enhancers (Oosterveen et al., 2012). The zinc fingers that make direct DNA 
contacts are indicated below the cartoon. 
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Figure 5.3 – Diagram depicting the Ci site variants that will be tested in vivo to 
study the contribution of different positions in the 9-mer.  

The predicted affinity of the sites is indicated on the right, and the zinc fingers 
that make direct DNA contacts are indicated below the cartoon. Each position will 
be changed to the least probable base at that position as predicted by the PWM 
(Hallikas et al., 2006). 
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