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ABSTRACT

Radiation Generation from Ultra Intense Laser Plasma Interactions with Solid
Density Plasmas for Active Interrogation of Nuclear Materials

by

Calvin Andrew Zulick

Chair: Karl Krushelnick

The development of short pulse high power lasers has led to interest in laser based

particle accelerators. Laser produced plasmas have been shown to support quasi-

static TeV/m acceleration gradients which are more than four orders of magnitude

stronger than conventional accelerators. These high gradients have the potential to

allow compact particle accelerators for active interrogation of nuclear material. In

order to better understand this application, several experiments have been conducted

at the HERCULES and λ3 lasers as the Center for Ultrafast Optical Science at the

University of Michigan.

Electron acceleration and bremsstrahlung generation were studied on the λ3 laser.

The scaling of the intensity, angular, and material dependence of bremsstrahlung

radiation from an intense (I>1018 W/cm2) laser-solid interaction has been charac-

terized at energies between 100 keV and 1 MeV. These were the first high resolution

(λ/∆λ>100) measurements of bremsstrahlung photons from a relativistic laser plasma

interaction. The electron populations and bremsstrahlung temperatures were mod-

eled in the particle-in-cell code OSIRIS and the Monte Carlo code MCNPX and were

xx



in good agreement with the experimental results.

Proton acceleration was studied on the HERCULES laser. The effect of three

dimensional perturbations of electron sheaths on proton acceleration was investigated

through the use of foil, grid, and wire targets. Hot electron density, as measured with

an imaging Cu Kα crystal, increased as the target surface area was reduced and was

correlated to an increase in the temperature of the accelerated proton beam.

Additionally, experiments at the HERCULES laser facility have produced direc-

tional neutron beams with energies up to 16.8(±0.3) MeV using 2
1d(d,n)3

2He, 7
3Li(p,n)7

4Be,

and 7
3Li(d,n)8

4Be reactions. Efficient 7
3Li(d,n)8

4Be reactions required the selective accel-

eration of deuterons through the introduction of a deuterated plastic or cryogenically

frozen D2O layer on the surface of a thin film target. The measured neutron yield was

up to 1.0 (±0.5)×107 neutrons/sr with a flux 6.2(±3.7) times higher in the forward

direction than at 90o. This demonstrated that femtosecond lasers are capable of pro-

viding a time averaged neutron flux equivalent to commercial 2
1d(d,n)3

2He generators

with the advantage of a directional beam with picosecond bunch duration.

xxi



CHAPTER I

Introduction

1.1 Homeland Security

The discovery of subatomic particles in the early 20th century began a chain

reaction of scientific breakthroughs leading to the creation of the research fields of

nuclear and atomic physics. In the 1940’s the Manhattan Project led to the first

detonation of a nuclear weapon in the 1945 Trinity test [1]. Nine years later the

first civilian nuclear power plant began operation in Obninsk, Russia. In the sixty

years that have passed, nuclear proliferation has led to stockpiles of nuclear fuel and

weapons across the world, as shown in Table 1.1[2]. Ensuring the security of this

stockpile, spread through multiple countries in varying states of political stability,

has proven to be a challenging task. In the unfortunate event that Special Nuclear

Materials (SNM) is obtained for nefarious purposes, a limited number of pathways

exist for transportation of the material into the United States. Every year more

than six million cargo containers enter U.S. ports [3], and 15 million trucks cross the

Canada-U.S. and Mexico-U.S. borders. Monitoring this traffic has been identified as

a critical requirement for homeland security.

The detection of illicit nuclear material presents a difficult challenge. Shielded

SNM, in particular 235U which primarily emits a weak 185.6 keV gamma, can be

difficult or impossible to detect with passive methods due to the ease of shielding
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Table 1.1: Global SNM stockpile in metric tons as of the end of 2003. Declared Excess
stockpiles have been designated for down blending into low-enriched uranium.

Category Plutonium Highly Enriched Uranium Total
Civil Stocks 1,700 175 1,875

Reactor Programs 1595 50
Declared Excess 105 125

Military Stocks 155 1,725 1,880
Weapons 155 1,250

Naval and Other 175
Declared Excess 300

Total 1,855 1,900 3,755

the radiation. Active interrogation can increase the detection likelihood of shielded

materials through induced nuclear reactions. These reactions can exploit delayed

radiation decays and characteristic photon energies to increase the signal to noise

ratio through time and energy gating, respectively. Complementary techniques such

as radiography also exist which take advantage of the energetic photon and neutron

beams necessary for active interrogation to map the high density and high-Z areas of

containers to identify possible shielded areas. In addition to nuclear material cargo

inspection, active interrogation techniques have applications in nuclear safeguards [4],

and explosives detection [5]-[6].

In active interrogation schemes, high energy (> MeV) neutrons and photons are

used to activate the materials. Generation of energetic photons and neutrons has

traditionally been accomplished by accelerating electrons and ions using a Linear

Accelerator (LINAC) and generating photons through bremsstrahlung [7] or neu-

trons through (p,n) reactions [8]. The decay of naturally radioactive material also

generates photons and neutrons which can be used for active interrogation, how-

ever the use of such a source entails additional security concerns. As the interest

in active interrogation has grown over the past 10 years, the need for advanced ac-

celerators has become apparent. Specifically, improved radiation sources are needed

which will satisfy speed, detection, and exposure limitations, potentially leading to
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the widespread application of active interrogation techniques. Additionally, novel

accelerators are needed to enable advanced interrogation methods, such as Nuclear

Resonance Fluorescence (NRF), which requires tunable, high flux, narrow bandwidth

photon beams.

1.2 Active Interrogation Techniques

Active interrogation schemes utilize high energy (> MeV) neutrons and photons

to activate materials due to their increased ability to penetrate air and shielding

materials. The resulting nuclear reactions produce photons and neutrons which must

escape the container and shielding in order to be detected. Neutrons and photons

are intrinsically complementary interrogation methods due to the different ways they

scatter and are absorbed in materials. Neutrons primarily interact with atomic nuclei

through multiple elastic scattering events, of which the energy lost to the recoil nucleus

for each scattering event is:

ER =
2A

(1 + A)2
(1− cos(θ))En (1.1)

where A is the mass of the target nucleus, θ is the scattering angle of the neutron

in the center-of-mass coordinate system, and En is the initial neutron energy [9]. As

the atomic mass of the scattering nucleus increases, the maximum energy lost per

collision decreases and neutrons are able to penetrate further into the material.

Alternatively, photons interact with an atom’s electron cloud through photoelec-

tric absorption, Compton scattering, and pair production. The photoelectric absorp-

tion cross section is described by the Bragg-Pierce law and is approximately propor-

tional to Zn

E3.5
γ

where n varies between 4 and 5. Pair production scales with Z2 for the

conversion of gammas to pairs [10]-[11]. Thus, as the atomic number of the material
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Table 1.2: A list of nuclear reactions that have been proposed for active interrogation
methods. The resulting radiation, along with the time scale of the radiation indicates
the necessary detection methods.

Reaction Product Time Scale
Photofission (γ,f) γ and n Prompt and delayed

Neutron induced fission (n,f) γ and n Prompt and delayed
Nuclear resonance fluorescence (γ, γ’) γ Prompt

Photoneutron emission (γ,n) n Prompt
X-ray fluorescence (γ,γ’) x-ray Prompt

Inelastic neutron scattering (n,n’) γ Prompt
Capture neutrons (n,γ) γ Prompt and delayed

increases, the photon attenuation increases, in contrast to neutrons.

A large assortment of nuclear reactions can be induced in active interrogation

techniques, as seen in Table 1.2. The fission of nuclear material produces fission

fragments which decay and emit prompt and delayed gammas and neutrons. The

presence of delayed gammas with energies greater than 3 MeV has been identified

as a unique characteristic of nuclear materials which can be used to discriminate

against background signal resulting from the activation of shielding materials [12].

Delayed gammas also have an order of magnitude larger intensity than delayed neu-

trons making them easier to detect. Additionally, while the same fission products

can be produced by different isotopes, it has been found that the average mass of

the lower mass fission fragment scales almost linearly with the material mass, allow-

ing identification of the parent material by examining the ratio of various daughter

products [13].

In an active interrogation scheme, fission can be induced by photons (γ,f) or neu-

trons (n,f). Nuclear materials, specifically fissile and fissionable materials, have lower

(n,f) reaction thresholds than normal materials. This difference can be exploited

to use neutrons to activate only materials of interest. Thermal neutrons, and fast

neutrons that thermalize in the cargo container, can be used to activate fissile mate-

rials, which are defined as materials that fission with thermal neutrons. Fissionable
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materials, such as 238U which has an (n,f) threshold of 1.5 MeV, can also be selec-

tively activated. In active interrogation schemes that utilize low energy neutrons, the

presence of fast fission neutrons can then be used as an indicator of special nuclear

material [14]. The threshold for photoneutron reactions in 235U, 5.3 MeV, and 239Pu,

5.65 MeV, is also lower than most benign materials [15]. This allows selective acti-

vation of nuclear materials, provided the accelerator source generates photons of the

correct energy, or is tunable.

An alternative to induced fission is NRF. NRF is a technique that uniquely iden-

tifies isotopes based on their nuclear energy levels through the capture and reemission

of a photon in a nuclear energy level [16] [17]. Nuclear resonances in actinides at room

temperature have spectral widths on the order of eV’s [18] which enables unique iden-

tification of specific isotopes with high resolution gamma detectors. NRF techniques

can incorporate transmitted photon measurements to directly observe absorption in

the target material or indirectly observe absorption through florescence measurements

of a reference material [19]. In the second case, a decrease in the NRF signal from

the reference material, in combination with a knowledge of the total transmitted

photon flux, gives a direct measurement of the amount of reference material in the

interrogated container since they have the same resonances [20]. A major drawback

of present photon accelerators is the broadband nature of bremsstrahlung photon

sources, six orders of magnitude higher than NRF linewidths, which prevents effi-

cient coupling of photon energy into nuclear resonances, increases the amount of dose

delivered to the target for the same amount of induced signal, and creates a high

background environment that can mask the NRF photons.

X-ray florescence works in a similar manner to NRF, however the highest energy

levels that can be excited in the electron shell of a heavy ion are approximately 100

keV, limiting the transmission of the X-ray through container materials. In addition

to the other nuclear reactions listed in Table 1.2, radiation sources can be used to
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identify materials through other processes such as neutron transmission spectroscopy.

Neutron transmission spectroscopy can be used to identify materials by observing the

effects of scattering, both elastic and inelastic, on a known neutron spectrum. This

technique requires short duration broadband neutron pulses which are suitable for

neutron time-of-flight spectroscopy.

1.3 Conventional Accelerators

1.3.1 Photon Sources

Photons can be generated from energetic electrons which are accelerated electro-

magnetically. One of the most common methods of accelerating electrons is a Radio

Frequency (RF) LINAC. A LINAC can operate at 100 kHz repetition rates, creating

high power beams. The electron beams are used to produce bremsstrahlung photons

by propagating them into a high-Z conversion target. Bremsstrahlung, or braking

radiation, photons are produced as the electrons decelerate in the presence of an

atomic potential and convert kinetic energy into photons. Bremsstrahlung spectra

are continuous and exhibit shapes [21] that can be very roughly approximated as

exponentially decreasing with higher energies. The maximum photon energy is the

electron energy, and thus is tunable by adjusting the electron energy. Commercially

available 9 MeV bremsstrahlung LINAC sources are utilized in some current cargo

inspection systems [7].

Nuclear decay gamma sources, utilizing reactions such as 19F(p,αγ)16O, have also

been used as a source of energetic photons to induce nuclear reactions [22]. These

sources provide monochromatic photon sources which can be very intense, however

they lack energy tunability or directionality. While the narrow linewidth could be

exploited for NRF, finding a source that overlaps nuclear resonance levels in multiple

types of SNM has proven difficult.

6



1.3.2 Neutron Sources

The most common conventional neutron accelerators are D-D and D-T generators

which take advantage of the reactions:

2
1D +2

1 D →3
2 He+ n (1.2)

2
1D +3

1 T →4
2 He+ n (1.3)

to generate energetic neutrons from low energy (few 100 keV) deuterons. Neutron

energies can be tuned by accelerating the incident deuterons to higher energies as

well as by sampling the beam at different angles.

Photon sources can also be used to create photoneutrons through (γ,n) reactions

in materials such as heavy water (D2O) or Be [23]. Consequently, high energy photon

beams can produce directional neutron beams [24]. This is also an effective means

of producing broadband neutrons. As an added benefit, photoneutron sources can

perform interrogation with both neutrons and photons.

1.3.3 Current Research

New operational modes for existing accelerators are being investigated to improve

their applicability to homeland security applications. Specifically, portability, dose

reduction, large standoff distances, and efficient coupling into nuclear processes are

desired qualities for active interrogation applications. Many of these qualities overlap.

For instance, efficient coupling reduces the required interrogation power which reduces

dose. Reduced dose then increases the portability of an accelerator as it reduces the
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Table 1.3: A comparison of various accelerator sources. Each method generates either
neutrons or gammas.

Method Neutron Rate (n/s) Photon Rate (γ/s)
T-T[25] 1× 1011 n/a
D-T[25] 1× 1013 n/a
D-D[25] 1× 109 n/a

D-D (Mini)[26] 1× 105 n/a
Compton Scattering[27] n/a 5× 1010/ev/sr

19F(p,αγ)16O[28] n/a 6× 107/µC/sr
13C(p,γ)14N[29] n/a 5× 108

11B(p,γ)12C[25] n/a 1× 105 − 1× 106

amount of required shielding which has to be located with the accelerator. Recent

results are summarized in Table. 1.3

Improved nuclear gamma sources have been developed that are suitable for active

interrogation applications [28]. These sources take advantage of the 19F(p,αγ)16O

reaction and produce gammas with energies of 6.129, 6.917, and 7.117 MeV. These

gammas have sufficient energy to activate many materials of interest without ac-

tivating the majority of common cargo materials. Two notable exceptions to this

are deuterium, which is present in natural water, and 13C which have photoneutron

thresholds of 2.22 MeV and 4.95 MeV, respectively. However these isotopes have not

been shown to be a significant obstacle in current homeland security applications. An

alternative source utilizes a 11B(p,γ)12C reaction to produce gammas with energies

of 11.7 MeV [25]. This type of source has been estimated to be capable of providing

greater than 105 γ/s.

Compact cyclotrons also offer an alternative to linear accelerators for the accel-

eration of protons. Cyclotrons capable of accelerating negative H ions to 1.8 MeV

energies with 2.5 mA currents and a 0.7 m radius have been used to generate photons

through 13C(p,γ)14N reactions[29]. This type of device has an inherent energy spread

of ∆E/E = 8% which can be further reduced to 0.1% through the use of a delimi-

nating diaphragm, at the cost of significant loss of beam power. This energy spread
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reduces the Doppler shift of the γ-rays which maintains their naturally narrow line

width. The loss of beam power can be compensated through the use of a storage ring

to integrate charge.

In the area of neutron interrogation, high power axial D-D and D-T generators

are being investigated which increase neutron production rates, eliminate exposed

high voltage elements and utilize RF induction discharge to generate high plasma

density deuterium and tritium sources [26]. Heating of the titanium (deuterium

containing) target in a D-D generator leads to desorption of the deuterium, resulting

in a decreased neutron flux. Cooling the beam target has been shown to reduce this

effect and allow a neutron rate of 109 neutrons/s which is an increase in the yield by

a factor of 10[25]. Additionally, a D-T generator has been developed with a very high

neutron generation rate of 1013 neutrons/s. Miniature D-D and D-T generators with

a millimeter radius, but reduced yields of 105 neutrons/s, have also been reported

[26].

Alternatives to D-D and D-T generators are also being investigated. A broadband

neutron source can be generated by 3T(T,2n)4He reactions which generate neutrons

between 0 and 9 MeV with a neutron generation rate of 1011 neutrons/s. This type of

neutron source could be used for radiography and absorption measurements, as well

as neutron induced fission activation. In order to be able to use time-of-flight energy

measurements, the source pulse duration has to be on the order of nanoseconds, which

can be accomplished by sweeping the tritium beam across a collimator, achieving

neutron pulse duration less than 4 ns [25].

Furthermore, low energy neutron beams are being investigated as a low dose

source of interrogation for fissile materials [30]. Specifically, 60 keV neutrons can be

produced by the negative Q value reaction:

9



1
1P +7

3 Li→7
4 Be+1

0 n (1.4)

which has the desirable property of producing neutron beams that are directed

in a forward cone for proton energies near the 1.88 MeV reaction threshold, produc-

ing 20o half-angle cones with incident proton energies of 1.89 MeV. A benefit of this

approach is that prompt neutrons with energies greater than 60 keV can be used as

an indicator of fissile material during the interrogating neutron pulse, provided pulse

shape discrimination can be used to discriminate the gamma background [31]. The

modest proton energy required for this neutron source is possible with a portable 1

meter RF quadrupole accelerator. The low neutron energy leads to significantly re-

duced penetration depths in hydrogenous materials, but maintains comparable depths

in high Z materials.

1.4 Laser Plasma Accelerators

Research is also being performed to study the potential to use laser plasma accel-

erators as a source for active interrogation techniques. The development of Chirped

Pulse Amplification (CPA) in 1985[32] has led to the development of lasers that

produce electric fields of >100 TeV/m at their focus. While these fields are not suit-

able for directly accelerating particles, as their orientation is perpendicular to the

k-vector, or direction of travel, of the pulse, they rapidly ionize matter and form a

plasma. Coupling of the laser into this plasma can generate a quasi-static TeV/m

electric field which is capable of accelerating particles with gradients three to four

orders of magnitude higher than conventional accelerators. Additionally, since the

extreme fields generated by CPA lasers are a result of compressing the laser pulse to

10’s of femtoseconds, very short time duration bursts of radiation can be generated
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with a high instantaneous flux. The potential also exists for beam properties, such as

monoenergetic Compton photons, which are not currently available from conventional

accelerators. These qualities offer an exciting alternative technology to conventional

accelerators.

1.4.1 Photon Experiments

The interaction of an ultra-intense (Iλ2> 1.387 × 1018 W/cm2/µm) laser with a

gas, as first proposed by Tajima and Dawson [33], can accelerate electrons through

wakefield acceleration. In wakefield acceleration the ponderomotive potential of the

laser accelerates the light electrons away from the laser pulse, leaving the heavier

positive ions behind which create a strong electrical potential inside a plasma “bub-

ble”. As the electrons are accelerated back toward the positive space charge a trailing

plasma wave is formed behind the laser pulse. For sufficient densities and laser pa-

rameters, non-linear growth of this plasma wave leads to wave breaking and injection

of electrons into the bubble where they can ride the potential behind the laser pulse

and be accelerated to MeV-GeV energies in centimeters[34]. In addition to the short

acceleration distance, wakefield generated electron beams have the desirable quality

of milliradian beam divergence [35].

While this type of beam could serve as a replacement for a LINAC, the demon-

stration of quasi-monoenergetic electron beams [36] [37] [38] has generated interest

in all optical table top accelerators for Compton gamma sources. The desired beam

characteristics for NRF are high spectral intensity ( γ′s
sr∗eV ∗t), a tunable energy range,

narrow bandwidth, and linear polarization [17]. When a laser pulse collides with a

relativistic electron bunch the photons are upshifted by a factor of 4γ2 with an emis-

sion cone angle of 1/γ, where γ is the Lorentz factor of the electrons [27]. If the

laser and electron bunch have narrow bandwidths the generated photon beam is also

narrow bandwidth. Stable wakefield electron beams with energies ranging between
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100 and 800 MeV, 5% energy spreads, and mrad divergences have been demonstrated

[39]. For the photon source, Nd:YAG lasers are a mature laser technology capable

of providing narrow linewidths (<nm) and joule energies in relatively short duration

10 ps pulses. Simulations have predicted very high gamma spectral fluxes of 1011

photons/(eV*s*sr) in all optical Compton sources [27]. Additionally, the polariza-

tion of the laser beam and resulting photons can be controlled through the use of

waveplates. Efforts to demonstrate all optical Compton scattering are underway at

several laboratories [40]. In one early result, a modified scheme using a plasma mir-

ror to reflect the electron generating laser pulse back into the driven electron beam

has demonstrated broadband photons with energies of up to hundreds of keV [41].

While the use of Compton sources has been shown using large facility scale conven-

tional electron accelerators[42], an all optical laser Compton scattering source is a

potentially enabling technology for active interrogation due to its reduced size.

Monoenergetic or broadband wakefield accelerated electrons can also be used

to generate photons through the more traditional approach of creating broadband

bremsstrahlung photons through a high Z conversion target. Proof-of-principle ex-

periments demonstrated (γ,3n) reactions in Pb and Cu indicating measurable activa-

tion with photons > 25 MeV [43]. Photofission of 238U has been demonstrated using

bremsstrahlung photons from wakefield generated 100-150 MeV electrons which gen-

erated 3× 107 electrons/s [44]. Similar results, but with a lower efficiency, have also

been obtained using bremsstrahlung photons produced during a solid target interac-

tion [45] [46]. An order of magnitude higher efficiency in the conversion of laser energy

to fission events has been demonstrated through the use of monoenergetic electron

beams when compared to broadband electron beams.

In addition to “replacement” applications where laser accelerated electrons sub-

stitute for electrons from more traditional accelerators, the potential exists for new

interrogation methods that are not practical with conventional accelerators. The
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production of photons from the betatron oscillations of electrons inside the plasma

wakefield bubble has been shown to generate broadband photon spectra in the keV

range [47]. This method utilizes the naturally occurring transverse focusing fields

of the plasma bubble to act as a wiggler, bypassing the requirement of an external

magnetic device. The generated photons are spatially coherent with an ultrashort

duration, raising the possibility of phase contrast imaging if higher energy photons

can be created, which could provide high resolution information about the contents

of an interrogated container.

Wakefield electron beams could also be used to generate exotic particles, with

rest masses of 100’s of MeV or greater, for the detection of SNM. Through the

use of preformed plasma contained in capillary waveguides, beam energies of 1 GeV

have been demonstrated in 3.3 cm [48]. Recently, electron energies of up to 4 GeV

have been demonstrated in experiments without the use of a capillary waveguide[49].

The acceleration of high energy electrons has also been demonstrated through staged

acceleration [50]. This approach is being investigated for the generation of 10 GeV

electron beams [51].

1.4.2 Neutron Experiments

The direct acceleration of neutrons from laser plasma interactions is not possible

due to the neutron’s lack of charge. Instead, laser neutron accelerator schemes usually

mimic traditional sources by accelerating light ions and initiating nuclear reactions

to generate neutrons from light ions. While the technique is similar, laser based

neutron sources can have higher instantaneous neutron production rates as they are

not limited to ion current densities below the converter target damage threshold.

Laser based acceleration of ions is typically accomplished through Target Normal

Sheath Acceleration (TNSA) [52], which will be discussed further in section 2.3.1.

In this mechanism energetic electrons are generated through the absorption of laser
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energy in the short scale length plasma that typically exists on the front side of a solid

target laser interaction. These electrons then propagate through the target, but are

unable to fully escape the electric potential resulting from the charge separation, and

establish a quasi-static electric sheath field at the interface between the solid target

and the vacuum. This sheath field provides a potential through which ions are often

accelerated up to energies of approximately 50 MeV[53]. TNSA produces exponential

ion spectra up to a maximum proton energy. Although, TNSA beams start with a

short pulse duration, they slightly spread out in time as a result of velocity differences.

However, typical ion pulse durations are still on the order of 100’s of ps which is

sufficient for time-of-flight spectroscopy techniques. Ions can also be accelerated from

the front side of the target, known as Front Side Acceleration (FSA)[54], as a result of

the electric potential generated by the acceleration of electrons out of the focal spot.

Two neutron generation schemes are possible using the two acceleration mechanisms.

In FSA the ions can undergo nuclear reactions inside the bulk of the target material,

allowing the target to act as a neutron converter. Alternatively, TNSA requires the

ions, which are accelerated from the back of the target, to collide with a second target

in a so called pitcher-catcher configuration.

Several experimental results are summarized in Table 1.4. The generation of 7×107

neutrons per shot has been demonstrated in bulk C8D8 through D-D reactions [59].

A pitcher-catcher configuration using a CH target with a LiF catcher demonstrated

the production of 3× 109 neutrons in a single shot with 69 J of laser energy [55]. A

similar experiment using Cu and LiF has inferred the production of 1.8×109 neutrons

in a single shot with 140 J of laser energy [57]. Neutrons with energies greater than

15 MeV have been reported using the 7Li(d,n)8Be reaction, which has the benefit of

a 15 MeV Q value [56] [65].

Neutron generation through nuclear reactions with ions other than protons are

typically limited to bulk target configurations. This is a result of proton rich surface
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Table 1.4: A comparison of various laser neutron sources. In results reported by
Lancaster et al. - Pretzler et al. the neutrons were generated through a two-step
process where ions were accelerated and then a nuclear reaction produced the neutron.
Alternatively, Fritzler et al., Taylor et al., and Ditmire et al. reported laser fusion
schemes. The lower laser energy and high repetition rate results represent progress
toward a practical accelerator for homeland security applications. All results were
demonstrated on single shot lasers except for Prezler et al. which was performed on
a 10 Hz laser. The calculation by Taylor et al. relies on the development of Inertial
Fusion Energy drivers over the next 20 to 30 years.

Publication Flux Laser Intensity Reaction Year
(n/sr/shot) Energy (J) (W/cm2)

Lancaster et al.[55] 4× 108 69 3× 1019 7Li(p,n)7Be 2004
Higginson et al.[56] 8× 108 360 2× 1019 7Li(d,n)8Be 2011
Higginson et al.[57] 1.4× 108 140 1× 1020 7Li(p,n)7Be 2010
Willingale et al.[58] 5× 104 6 (1− 3)× 1019 2d(d,n)3He 2011
Norreys et al.[59] 7× 107 20 1× 1019 2d(d,n)3He 1998

Roth et al.[60] 1× 1010 80 (1− 10)× 1020 9Be(d,n)10B 2013
Pretzler et al.[61] 3× 108 0.2 1× 1018 2d(d,n)3He 1998
Fritzler et al.[62] 1× 106 62 2× 1019 2d(d,n)3He 2002
Ditmire et al.[63] 5× 109 30× 103 n/a 2d(d,n)3He 1999
Taylor et al.[64] 1× 1019 2× 106 n/a 3t(d,n)4He n/a

contaminants that are present on all target materials, in the absence of specialized

cleaning techniques, which are preferentially accelerated due to their low mass and

act to neutralize the sheath field, limiting the acceleration of heavier ions. A com-

parison between pitcher-catcher and bulk acceleration schemes for the same laser

demonstrated a higher D-D reaction yield for bulk targets, attributed to the reduced

stopping power for the deuterons in the heated bulk target as well as the parasitic

effects on acceleration of the proton contaminant [58].

Alternative ion acceleration schemes have also been proposed and investigated.

Radiation pressure acceleration [66][67] holds the promise of monoenergetic beams,

although significant effort to observe this acceleration mechanism has proven unsuc-

cessful to date [68]. Recently, collisional shocks in gas jets have demonstrated proton

acceleration to up to 20 MeV with 1% energy resolution using a CO2 laser [69] [70].

While high power CO2 lasers, which operate at 10 µm wavelengths, are frequently
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used for industrial machining and cutting applications, commercially available lasers

are not capable of producing the short pulses needed for this acceleration mechanism.

Simulation scalings suggest that applying this mechanism to lasers that operate in

the visible or near-IR frequencies, and can achieve higher intensities, could raise the

proton energy to hundreds of MeV while maintaining the high beam quality.

1.4.3 High Repetition Rate Accelerators

One of the main obstacles facing the implementation of laser based active interro-

gation is that many current high intensity lasers operate in a single shot mode with

minutes to hours between shots, which is insufficient for active interrogation applica-

tions. In response to this, research has begun at the University of Michigan Center for

Ultrafast Optical Science (CUOS) to demonstrate the feasibility of operation at higher

repetition rates. The High Energy Repetitive CUos Laser System (HERCULES) and

λ3 lasers support 30 - 40’s fs compressed pulse durations and can achieve relativistic

intensities with millijoules to joules of energy, which leads to generation of less heat

in the laser crystals allowing higher repetition rates. Demonstration of photofission

of 238U has already been performed on HERCULES, as previously mentioned. The

λ3 laser has been used to generate narrow energy spread electron beams [71] and 0.5

MeV protons [72] from solid target interactions at 500 Hz . The generation of low en-

ergy neutrons has also been demonstrated through a D-D reaction with a 10 Hz laser

system [61]. Developing a better understanding of the generation of radiation with

laser based accelerators and demonstrating these techniques on the high repetition

rate HERCULES and λ3 lasers is the focus of this thesis.

1.5 Thesis Overview

This thesis describes work done to systematically study the generation of radiation

with CPA high intensity lasers for the purpose of homeland security. After an intro-
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duction to the theory of laser plasma interactions and the mechanisms for radiation

generation in Chapter II, a description of the laser facilities and experimental diagnos-

tics will be given in Chapter III. A study of electron acceleration and bremsstrahlung

generation on the λ3 laser will be presented in Chapter IV. An experiment investi-

gating the effect of mass limited targets will then be covered in Chapter V, which

yields insight into acceleration of the ions used to generate neutrons in Chapter VI.

A summary of the results and their implications for homeland security applications,

as well as an outlook for the future, will then be given in Chapter VII.
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CHAPTER II

Theoretical Background

The study of laser plasma accelerators begins with lasers capable of delivering

intensities high enough to rapidily ionize material and create a plasma. The plasma

responds to the extreme laser fields, coupling the laser energy into particle motion.

A wide variety of physical phenomenon are possible depending on the properties of

both the laser and plasma. In this thesis, the experiments investigate the interaction

of ultra intense >1018 W/cm2 lasers with solid targets.

2.1 Laser Physics

Ultra intense lasers were first developed in the 1990’s. Until that point, laser

intensity had been limited to approximately 1015 W/cm2 by the damage threshold

of optical materials and the practical limitation of beam sizes. The development of

CPA [32] allowed this limitation to be bypassed by temporally expanding a pulse,

lowering its power, and allowing further amplification. The combination of spatial

and temporal expansion and subsequent recompression has allowed lasers with focused

intensities of 1022 W/cm2 [73].
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2.1.1 Chirped Pulse Amplification

CPA takes advantage of the large bandwidth of some laser amplification materials,

such as Ti:Sapphire, to generate a high power, short duration pulses. The temporal

envelope of a perfectly compressed optical pulse can be decomposed into its spectral

components through a Fourier transform. This establishes a relationship between

the pulse duration, τ , and spectral bandwidth, ∆ω, which is described by the time-

bandwidth product

∆ω · τ ≥ 2πCB (2.1)

where CB is 0.441 for a Gaussian pulse. For a 30 fs pulse this requires a laser

bandwidth of 30 nm for a central wavelength of 800 nm, typical of Ti:Sapphire lasers.

In the more general case of a pulse that has a linear chirp, i.e., the frequency of the

pulse changes linearly with time, the pulse can be described by

E(t) = E0e
−at2ei(ω0+bt)t (2.2)

where 1
a

= τ2

2ln(2)
and b is the linear chirp. The time-bandwidth product becomes

∆ω · τ = 2πCB

√
1 +

(
b

a

)2

(2.3)

where for b = 0 Eqn. 2.1 is recovered, and for b 6= 0 the pulse duration increases

for a fixed bandwidth. Thus, introducing a chirp to an ultrashort pulse stretches

the pulse envelope in time, lowering its power. This allows a stretched laser pulse

to be amplified to energies that would otherwise destroy optical components. After
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the stretched pulse has been amplified, the chirp can be removed, recovering the

ultrashort pulse duration.

While it is possible to chirp a pulse by means of passage through material, the

most convenient method involves the use of parallel optical grating pairs. The group

delay dispersion of a Treacy compressor[74] is given by

d2φ

dω2
= −Gλ

πc2

(λ/d)2[
1−

(
sin(γ)− λ

d

)2
]3/2

(2.4)

where the variables are as indicated in Fig. 2.1. The group delay dispersion is

always negative, which compensates for normal dispersion in typical optical materials

at 800 nm. Alternative compressor schemes, such as the Martinez compressor [75],

allow both negative and positive dispersion, and can be used to initially stretch the

pulse. CPA is used on both the HERCULES and λ3 lasers.

2.1.2 Nonlinear Optics

As laser intensity increases, but before it begins to strip electrons from atoms,

the electric field of the laser pulse can modify the material it passes through. This

gives rise to a number of nonlinear optical effects. Some effects, such as self-focusing,

can have disastrous consequences causing damage in optical components through

unintended ionization of component materials. When controlled, however, nonlinear

optics produces a range of effects which can be used to rotate laser polarization,

control gain, and generate bandwidth, among other things. Several examples of

nonlinear optics will be found in Chapter III and the theoretical background will

be introduced below.

Maxwell’s equations serve as the basis for the study of electricity and magnetism.
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Figure 2.1: Schematic of 1 set of gratings in a parallel Treacy compressor, as used in
the HERCULES laser. G is the grating separation, d is the grating line spacing, and
the angles γ and θ are as indicated.
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In SI units in a material they take the form

∇ ·D = ρ (2.5a)

∇× E = −∂B

∂t
(2.5b)

∇ ·B = 0 (2.5c)

∇×H = J +
∂D

∂t
(2.5d)

with the electric displacement D = εE and B = µH. The wave equation is found

by taking the curl of Faraday’s law, Eqn. 2.5b, and combining it with Ampere’s law,

Eqn. 2.5d, in a nonmagnetic material, B = µ0H, with no free charge and no free

current:

−∇2E + µ0
∂2D

∂t2
= 0. (2.6)

The electric displacement can be recast as

D = (1 + χ)ε0E (2.7)

where χ is the electric susceptibility of the medium. Substituting Eqn. 2.7 into

Eqn 2.6 yields

−∇2E +
1

c2

∂2(1 + χ)E

∂t2
= 0. (2.8)

In free space χ = 0 and the wave equation for free space is obtained. In a linear

material, the refractive index, n2 = (1 + χ), can be pulled out of the time derivative
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and leads to a modification of the wave group velocity, vg = c/n. The more interesting

case occurs when the electric susceptibility of the medium is altered by the electric

field of the wave. In this case, the wave equation becomes nonlinear. The nonlinear

term can be expanded as a power series

χE = χ(1)E + χ(2)E2 + χ(3)E3 + ... (2.9)

where χ(1) is the linear susceptibility and χ(2) and χ(3) are the second- and third-

order nonlinear susceptibilities. Substituting Eqn. 2.9 into Eqn. 2.8 produces

−∇2E +
n2

c2

∂2E

∂t2
= − 1

c2

∂2
(
χ(2)E2 + χ(3)E3 + ...

)
∂t2

(2.10)

which has the linear wave equation on the left hand side and a nonlinear driving

term on the right hand side. This serves as the starting point for nonlinear optics.

One of the most straight forward examples of nonlinear optics is found in second

harmonic generation, which is a χ(2) effect. Keeping the χ(2) term in Eqn. 2.10

and examining the case of a slowly varying amplitude wave of the form En(z, t) =

En(z)e(i(knz−ωnt)), a driving wave E1 interacting with itself creates a second wave E2

such that

−∇2E2 +
n2

c2

∂2E2

∂t2
= −χ

(2)

c2

∂2||E1||2

∂t2
. (2.11)

Taking the second order time derivative on the right hand side and using the

product rule to expand the Laplacian, and assuming the second order derivative of

E2(z) can be ignored yields
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∂E2(z)

∂z
=
i2ω2χ(2)

k2
2c

2
||E1(z)||2e(i∆k) (2.12)

where ∆k = 2k1 − k2 is the phase matching term.

This example illustrates a few characteristics of nonlinear optics. Phase matching

between the driving wave, or waves, and the generated wave often constrains the

wave growth, and limits the number of materials capable of supporting nonlinear ef-

fects. Birefrigent materials, often crystals, can be used to phase match waves through

careful orientation of the waves with respect to the crystal axis. The growth of the

generated wave is proportional to the strength of the nonlinear susceptibility and the

magnitude of the driving wave or waves. Also, the magnitude of the generated wave

increases with interaction length. The interaction length is limited by the length of

the nonlinear material or the accumulation of phase mismatch, which ultimately leads

to deconstructive interference when the phase mismatch reaches 180o. In Chapter III

several applications of nonlinear optics will be discussed.

2.2 Laser Plasma Physics

As laser intensity further increases, electrons are ionized creating a plasma. For

conditions relavent to the upcoming discussions, the dominant ionization mechanism

is field ionization. In field ionization the electric field of the laser modifies the atomic

potential such that electrons can quantum mechanically tunnel through the potential

barrier and escape the atomic potential. Once the plasma has formed, the laser

couples into the plasma.
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2.2.1 Normalized Vector Potential

An extremely usefull quantity in high intensity laser physics is the normalized

vector potential

a0 =
eE

mecω
. (2.13)

This quantity relates the energy gained by an electron, eE · l over a distance

l = c/ω, to the rest mass of the electron, m0c
2. In practical units this equates to

a0 =

√
Iλ2

1.387× 1018
. (2.14)

with I expressed in W/cm2 and λ expressed in µm. For 800 nm light this means

intensities over 2.1× 1018 W/cm2 are considered relativistic.

2.2.2 Ponderomotive Force

As electrons oscilate in an intense laser pulse they can traverse the spatial extent

of the pulse and experience different field strengths. As a result, an electron that is

acclerated out of the peak of a pulse may experience a weaker restoring field during

the second half of the laser cycle. This leads to a net motion of electrons out of

the region of highest pulse intensity, as a result of the ponderomotive force. The

ponderomotive force on an electron can be derived with the convective Lorentz force

equation

F = m

(
∂v

∂t
+ v · ∇v

)
= q(E + v ×B) (2.15)
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and a generic oscillating electric field of the form E = E0sin(kz−ωt) where E0 is

the slowly varying envelope and ω is the laser frequency. Ignoring the magnetic field

and breaking the electron velocity into a fast oscillation and a slow drift, v = vf + vs

yields

∂vf + vs

∂t
+ (vf + vs) · ∇(vf + vs) =

qE0

m
sin(kz − ωt). (2.16)

This equation can be simplified by taking advantage of the fact that the fast

velocity component, due to the laser, has a much larger amplitude than the slow

component, vf>>vs, and also has a larger amplitude than the gradient, vf>>∇vf ,

since the fast electron oscillations have a small spatial gradient. Thus, evaluating

Eqn. 2.16 to lowest order yields

∂vf

∂t
=
qE0

m
sin(kz − ωt) (2.17)

which can be solved to find

vf =
−qE0

ωm
cos(kz − ωt). (2.18)

Subsituting Eqn. 2.17 into Eqn. 2.16 and keeping the next highest order term,

∇vf , yields

∂vs

∂t
+ (vf ) · ∇(vf ) = 0. (2.19)

The slow component of the electron velocity can then be found by averaging over
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a laser period, denoted by <>, and rewriting the second term using the chain rule

such that

∂vs

∂t
= −1

2
∇〈vf 〉2 . (2.20)

Substituting Eqn. 2.18 into Eqn. 2.20 and taking the time average yields the

ponderomotive force

m
∂vs

∂t
=
−q2

4mω2
∇||E0||2. (2.21)

The relativistically corrected ponderomotive force[76] can be expressed in terms

of the normalized vector potential as

Fp = −mec
2

〈γ〉
∇
〈
a2

2

〉
(2.22)

where, for a linearly polarized plane wave, γ = 1 + a2

2
, and 〈a〉 = a0

2
. The

ponderomotive energy is then found to be

U = mec
2 (γ − 1) (2.23)

which will be a useful quantity in the discussions to follow.

2.2.3 Laser Absorption Mechanisms

The response of a plasma to an electromagnetic wave is given by the dispersion

relation

27



ω2
0 = ω2

p + (k0c)
2. (2.24)

where ωp =
√

e2ne
ε0me

is the plasma frequency. The critical density is defined as the

plasma density required for the plasma frequency to equal the laser frequency. If the

plasma frequency exceeds the laser frequency then k becomes negative and the wave

becomes evanescent. If the laser pulse is normally incident upon a plasma with a

slowly increasing density, such as is often the case in laser plasma interactions, the

pulse propagates through the low density plasma until it reaches the critical density

and reflects off of the critical surface.

In plasmas with gentle density gradients, one of the possible laser absorption

mechanisms is resonance absorption [77]. Resonant absorption occurs when the laser

coherently drives a plasma wave at the critical surface. As the plasma wave grows

in amplitude the wave becomes nonlinear and breaks, accelerating electrons. For P

polarized light, i.e. light oriented with a component of the electric field vector along

the target normal direction, the resonantly driven wave accelerates electrons into the

target. For a pulse to be P polarized it must be obliquely incident on the target.

A laser pulse that is obliquely incident to the plasma gradient, at an angle θ, will

not reach the critical surface and instead become evanescent at the plasma density

ne = nccos
2(θ)[77]. However, resonance absorption can still occur, as the laser can

couple to the critical surface through the evanescent wave.

While solid target laser plasma interactions typically have a plasma gradient,

which is generated by the presence of light ionizing the target before the arrival of

the main pulse, ultrafast lasers with high laser contrast, discussed further in Section

3.3, can interact with solid targets that have high density gradients. If the density

gradient is high enough that an electron oscillating in the laser field travels far past
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the critical surface then the electron will not be decelerated by the electric field of

the laser during the second half of the wave cycle. As a result, electrons from the

target surface are accelerated into the target with every laser cycle, resulting in an

acceleration mechanism known as Brunel[78], or vacuum heating. As with resonance

absorption, Brunel heating requires obliquely incident light with P polarization. The

optimum angle of incidence is given by the maximum of the absorption fraction[79]

ηa =
f 2

π

sin2(θ)

cos(θ)
(2.25)

where f = 1 +
√

1− ηa, which is found near 700.

At normal incidence, the electric field oscillates parallel to the plane of the target

surface, preventing electrons from being accelerated into the target in the preceding

mechanisms. However, for ultra intense laser pulses, the magnetic field is strong

enough to rotate the electron velocity vector. This absorption mechanism can be

seen by examining the Lorentz force equation, specified earlier in Eqn. 2.15. The

electric field of the laser accelerates an electron along the electric field direction.

This velocity is perpendicular to the magnetic field vector, and the curl of these

two vectors lies in the direction of propagation of the light pulse, i.e. the forward

direction. In an analogous situation to Brunel heating, if an electron is accelerated

in the forward direction through a high plasma density gradient, the second half of

the optical cycle does not decelerate the electron, resulting in the J × B heating

absorption mechanism [79]. The energy of electrons accelerated by this mechanism is

given by the ponderomotive potential of the laser.
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2.2.4 Scaling Laws

As laser intensity increases, electrons are accelerated to higher energies by the

stronger fields. The relative scaling between electron energy and laser intensity is a

subject of much interest in the field of laser plasmas. Many theoretical and experi-

mental scaling laws have been developed, but two of the simplest, and most common

are ponderomotive, or Wilks, scaling [80]

TWilks = 511(
√

1 + a2
0 − 1) (keV) (2.26)

and the empirical Beg scaling [81]

TBeg = 215(a0)2/3 (keV). (2.27)

Ponderomotive scaling was first observed in Particle-In-Cell (PIC) simulations and

is approximately the ponderomotive energy, as found in Eqn. 2.23. For large a0

the scaling becomes m0c
2a0, which is the “un-normalized” vector potential. The

simplicity of this model suggests it is unlikely to adequately describe experimental

results, but it has proven to be a useful scaling. In practice it often overestimates the

electron energy, as it incorporates no energy loss mechanisms.

Alternatively, Beg scaling is an empirical scaling based on results from a variety

of picosecond pulse duration experimental results, across a variety of laser systems.

Beg scaling differs from ponderomotive scaling primarily in that it scales more slowly

with a0. An analytical model has been developed [82] which matches Beg scaling and

includes the effects of plasma shielding and backscattered light. While this scaling

law has been successful at describing picosecond pulse duration interactions, different
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scalings have been observed with shorter pulses.

An empirical scaling was developed for the λ3 laser [83]

Tλ3 = 118(a0)1.28 (keV) (2.28)

which scales much faster than Beg scaling. Around normalized vector poten-

tials of 1, where the measurements were made, the λ cubed scaling is slower than

ponderomotive scaling, due to the effects of the constants in Eqn. 2.26, but would

exceed ponderomotive scaling for large a0. This scaling is studied in Chapter IV and

extended to higher intensities.

2.3 Ion Acceleration

In the preceding discussion, the normalized vector potential was used to quantify

the strength of the laser intensity, and the resulting electron acceleration. If a similar

quantity were used to measure the response of protons to the laser field the much larger

proton mass would increase the relativistic threshold to over 1024 W/cm2, which is

not achievable with current laser technologies. Despite this fact, the acceleration

of ions with laser plasma accelerators can be accomplished by using electrons as

an intermediary between the laser and the protons. Several acceleration mechanisms

exist, and even more have been proposed, but the predominant acceleration technique

in laser plasma interactions is TNSA [52].

2.3.1 Target Normal Sheath Acceleration

In TNSA electrons accelerated from the front side of the target propagate through

the target and exit the rear surface establishing a quasi-static electric field due to

the charge separation. This field has a thickness of approximately a Debye length
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λd =
√

ε0kBTe
nee2c

, where Te = Th is the fast electron temperature, and a maximum

electric field strength of E0 = Th
eλd

at the rear surface[84]. This field acts to ionize

and accelerate ions from the rear surface in a direction normal to the surface plane.

As ions are accelerated from the surface of the target they neutralize the field. Light

ions, typically hydrogen, are accelerated to higher velocities, screening the heavier

ions from the full field potential. Efficient acceleration of heavy ions can only be

achieved by removing light ions from the target surface, and one such method will be

discussed in Chapter VI.

The maximum proton energy at a time t is given by[84]

εmax = 2E0

[
ln

(
2ωpt√
2exp1

)]2

(2.29)

where, for the final energy, t is of the order of the pulse duration. This illustrates

the importance of understanding electron scaling laws, as Te is proportional to the

maximum ion energy.

2.4 Photon Generation

The generation of photons with laser plasma accelerators can be accomplished

through many different mechanisms. The production of harmonics of the fundamen-

tal laser frequency has been shown to generate photons with 10’s of eV [85]. The

ionization of electrons also leads to photon generation through K-shell radiation and

bremsstrahlung, which will be discussed below. Bremsstrahlung, and to a lesser ex-

tent Kα radiation, can result in photons with energies of 10’s of keV to MeV which

are appropriate for homeland security applications. Because they are generated by

the energetic electrons accelerated during an ultra intense laser interaction, they also

provide information about the energy, position, and direction of the electrons. In

32



Chapter V Kα radiation is used as a diagnostic of the electron propagation through

targets with complex shapes, and in Chapter IV bremsstrahlung is characterized as

potential radiation source, as well as a diagnostic for the electron behavior.

2.4.1 K-shell Radiation

Energetic electron beams can induce atomic electron transitions from the n=1

quantum level, or the K-shell, through collisional excitation and ionization. As elec-

trons from higher levels replace the vacated inner shell electrons they radiate photons

with energies up to hundreds of keV. Electrons that de-excite from the n = 2 quantum

level to the n = 1 are known as Kα transitions, while electrons originating in the n =

3 quantum levels are referred to as Kβ transitions, as shown in Fig. 2.2. Observation

of Kα radiation in solid target laser-plasma interactions is particularly useful because

it can penetrate solid density materials allowing measurements in the densest regions

of plasmas. A material’s K-edge is a sharp increase in photon absorption that occurs

at the electron binding energy. This corresponds to the energy required to fully ionize

a K-shell electron, and is always above the Kα energy. As a result, materials are rel-

atively transmissive to their own K-shell radiation, allowing K-shell photons to serve

as a diagnostic of the interior of materials. Additionally, K-shell radiation from the

target material is easily discriminated from background sources since the Kα energy

is specific to the material Z.

2.4.2 Bremsstrahlung Radiation

Bremsstrahlung radiation occurs when energetic electrons interact with the Coulomb

field of an ion. As the electron is accelerated in the field, photons are produced with

energies up to the initial electron energy. These photons beams can also have strong

directionality, which is highly desirable for homeland security applications.

Understanding bremsstrahlung generation also provides insight into the electron
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Figure 2.2: Energy level diagram of Cu showing the Cu Kα, CuKβ and binding energy.

behavior. The quantity of interest for the experiments described in Section IV is the

doubly differential cross section

d2χ

dωdΩ
=
dχ

dω
· dχ
dΩ

. (2.30)

The radiation cross section per unit frequency, taken from Jackson [86], of an

electron of charge e, and initial velocity cβ in the Coulomb field of a massive, fixed,

ion of charge Ze, is

dχ

dω
=
Z2e2

c

(
e2

moc2

)2

· 1

β2

Qmax∫
Qmin

dQ

Q
(2.31)
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or

dχ

dω
=
Z2e2

c

(
e2

moc2

)2

· 1

β2
ln

(
Qmax

Qmin

)
(2.32)

where eZ is the charge of a fixed point charge and

Q = |p′ − p− k| (2.33)

is the magnitude of the momentum transfer between the electron and ion for an

electron of initial momentum p, final momentum p′, and a photon with momentum

k. The range of the integral in Eqn 2.31 is defined by the minimum and maximum

possible momentum transfer. In the nonrelativistic electron case Eqn. 2.33 can be

simplified to

Q2 = (p′ − p)2 (2.34)

by ignoring the photon momentum. The limits are then simply Qmax = p+p′ and

Qmin = p− p′, such that

Qmax

Qmin

=
(p′ + p)

(p′ − p)
=

(√
E +
√
E − ~ω

)2

~ω
(2.35)

by taking advantage of the conservation of energy which sets E = E ′ + ~ω. Plug-

ging Eqn. 2.35 into Eqn. 2.32 yields the nonrelativistic bremsstrahlung cross section

dχNR
dω

=
Z2e2

c

(
e2

moc2

)2

· 1

β2
ln


(√

E +
√
E − ~ω

)2

~ω

 . (2.36)
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Figure 2.3: Plot of the nonrelativistic bremsstrahlung cross sections as a function of
the ratio between the photon and electron energy. The analytic cross section peaks
at low photon energies drops to zero for a photon energy equal to the electron energy.
The semi-empirical cross section captures the overall behavior.

Eqn. 2.36 can be cast in terms of the ratio of the photon energy to the incident

electron energy, ~ω
E

which has been plotted in Fig. 2.3.

For relativistic bremsstrahlung the minimum and maximum Q values change be-

cause the photon momentum can no longer be ignored. The resulting limits are

Qmax = 2Mc and Qmin = p − p′ − k which yield a relativistic bremsstrahlung cross

section of

dχR
dω

=
Z2e2

c

(
e2

moc2

)2

· 1

β2
ln

[
EtotalE

′
total

m0c2~ω

]
(2.37)

where Etotal is the total energy, i.e. E2 = (pc)2 + (m0c
2)2. This equation retains

a factor of order ~ω
E

in the logarithm, although it can no longer be rewritten simply
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in terms of this ratio. Eqn. 2.37 along with the angular term

dχR
dΩ

=

[
γ2 1 + γ4θ4

(1 + γ2ω2)4

]
(2.38)

gives the complete doubly differential radiation cross section. This equation is only

valid in the limit that the electron energy before and after the collision is relativistic.

For the situation of interest in Chapter IV, the electron energy ranges between

relativistic and nonrelativistic, as does the photon energy which was measured be-

tween 100 keV and 1 MeV. As an alternative approach, a semi-empirical description of

bremsstrahlung radiation at the relevant energies has been developed by Findlay[87]

with radiation cross sections described by

dχ

dω
∼= Z2

(
1

~ω
− 0.83

E

)
(2.39)

and

dχ

dΩ
∼=

1

πθ2
e(x)

exp

(
−θ

2

θ2
b

)
. (2.40)

where θb = mec
2/(E + mec

2) is the width of the Gaussian describing the photon

emission cone. These equations are plotted along with the analytic derivations in Fig.

2.3 and Fig. 2.4.

Many interesting qualities of bremsstrahlung emerge from the preceding equations.

The total cross section scales with the material atomic number Z2. As a result,

efficient bremsstrahlung conversion occurs in high Z materials. The photon energy

scales with the energy of the incident electron. Also, the direction of the emitted
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Figure 2.4: Plot of the analytic and semi-empirical formulations of the angularly
resolved bremsstrahlung cross sections. The shape of the two curves deviate for large
angles.
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photons becomes more tightly constrained to the forward direction, as Eqn. 2.38

reduces to 1
γ2ω4 for large γ. This allows bremsstrahlung to be used as a diagnostic

of electrons, since the highest energy bremsstrahlung photons will be aligned to the

direction of the highest energy electrons. This relationship was exploited in Chapter

IV, as will be discussed.
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CHAPTER III

Methods

The experiments discussed in this dissertation were conducted at the laser facilities

of the University of Michigan CUOS. The majority of work was performed on the

ultra-high intensity HERCULES laser, while one experiment required the 500 Hz

repetition rate λ3 laser. Accordingly, most of diagnostics that will be discussed were

employed in the HERCULES solid target experimental area. In many cases, the

same diagnostics were used at both facilities, as will be noted. In addition to physical

experiments, the use of simulations was critical to understand both the laser plasma

interactions and meaning of the diagnostic signal.

3.1 Experimental Facilities

3.1.1 HERCULES Laser System

The HERCULES laser was a CPA Ti:Sapphire laser with 300 TW peak power

[73]. The laser consisted of multiple amplification stages, each pumped by frequency

doubled neodymium doped lasers, as shown in Fig. 3.1. The seed pulse was gen-

erated in a Kerr-lens modelocked oscillator which took advantage of self-focusing,

as discussed in Section 2.1.2, as a result of the change in index of refraction of the

Ti:Sapphire crystal. Light that did not undergo self-focusing was dumped from the

laser cavity, while higher intensity short pulses were focused along the correct optical
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HERCULES Laser Block Diagram

Nd:YVO4
4.5 W 

Ti:S Oscillator

4 nJ, 12 fs, 75 MHz

Nd:YAG
15 mJ

Ti:S Pre-amp
2 pass

1 μJ, 25 fs, 10 Hz

Stretcher
125 nJ, 500 ps, 10 Hz

Dazzler / 
Pulse Picker

2 nJ, 20 fs, 10 Hz

BaF2 XPW

250 nJ, 25 fs, 10 Hz

Nd:YAG
300 mJ

Ti:S Regen
30 pass

30 mJ, 500 ps, 10 Hz

Nd:YAG
3 J

Ti:S 10 TW Stage
4 pass

1 J, 500 ps, 1 Hz

Nd:glass
9 J

Ti:S 30 TW Stage
2 pass

3 J, 500 ps, 0.1 Hz

Nd:glass
60 J

Ti:S 0.3 PW Stage
2 pass

17 J, 500 ps, 0.1 Hz

Compressor
9 J, 30 fs, 0.1 Hz

Front End

Regen 10 TW 30 TW Petawatt

Figure 3.1: Block diagram of the HERCULES laser system. Red blocks represent
800 nm laser amplification stages, while green blocks represent 532 nm pump lasers.
Each stage is identified by its colloquial name. The post-compressor pulse is directed
to the target chamber.

path and experienced gain. The high amplification bandwidth of Ti:Sapphire (typi-

cally 50− 60 nm) allowed the generation of bandwidth-limited pulse durations of 12

fs at the oscillator.

Pulses from the 75 MHz oscillator were selected opto-electronically by a combina-

tion of polarizers and rotation of the pulse polarization through electrically induced

birefringence, in Pockels cells, to reduce the pulse rate to 10 Hz The pulse was then

amplified in the pre-amp stage to 1 µJ to achieve sufficient intensity for the Cross-

Polarized Wave Generation (XPW) pulse cleaner. The XPW functioned similarly

to a Pockels cell, except that an intensity dependent rotation of the pulse polariza-

tion was achieved through χ3 four-wave mixing [88]. The pulse cleaning technique

reduced Amplified Spontaneous Emission (ASE) by focusing the laser such that only

the main pulse had sufficient intensity to rotate, while the pre-pulse was attenuated

by the polarizer. In the HERCULES XPW two BaF2 crystals were used to optimize

the conversion efficiency. This was advantageous because the optimum conversion ef-
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ficiency occurred when the angle between the laser and crystal polarization was 22.5

degrees. In the two crystal scheme the second crystal was then rotated to compensate

for the polarization rotation from the first crystal.

The cleaned pulse was then stretched to 500 ps to allow further amplification

without damaging laser optics, in the CPA scheme. The chirped pulse was then am-

plified of the order 106 times in energy during 10’s of passes through the Regenerative

Amplifier (Regen). Due to the large gain in the Regen, amplification of ASE from the

first few passes of Regen was the dominant contribution to the laser pre-pulse. An

additional benefit of the XPW technique was that use of the pre-amp stage reduced

the required gain in Regen, and thus reduced the amplification of ASE in Regen. The

nanosecond contrast, expressed as a ratio of the laser intensity nanoseconds before the

main pulse to the main pulse, was 10−8 without XPW and 10−11 with XPW[89]. The

laser contrast, and additional pulse cleaning techniques will be discussed in Section

3.3.

The laser pulse then entered three multi-pass Ti:Sapphire amplification stages

known as 10 TW, 30 TW, and Petawatt, which were capable of amplifying the pulse

to energies of 1 J, 3 J, and 17 J, respectively. Each amplification stage was protected

from back reflections by a combination of spatial filters, Faraday isolators, and Pockels

cells. The amplified chirped pulse was then recompressed in a Treacy compressor to

a Full Width at Half Maximum (FWHM) pulse duration of 40 fs. The laser was

delivered to the target chamber in a 10 cm beam polarized in the horizontal plane.

The recompressed pulse was not as short as the initial oscillator pulse, 12 fs, due

to gain narrowing and high order pulse dispersion. While the system was originally

designed to compensate for dispersion up to the fifth order, several changes have

been made to system over its lifetime. However, this was only a minor contributor

the pulse duration, as the main limitation was gain narrowing. Gain narrowing, or re-

duction of the pulse bandwidth, in the amplification stages occurred due to inefficient
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pump power extraction at the low intensity leading and trailing edges of the pulse

and pump depletion. Pump depletion affected the chirped pulse bandwidth as the

longer wavelength light arrived at the gain crystal first, and experienced maximum

gain, while the shorter frequencies were amplified less after the pump energy had been

reduced. This effect led to red-shifting of the central frequency and reduction of the

overall bandwidth. Additionally, because the temporal profile of the pulse mimics

the Gaussian frequency profile, the highest power portion of the chirped pulse was

around the central wavelength and the higher power led to more efficient amplifica-

tion of central wavelengths, leading to bandwidth narrowing. The post-compressor

bandwidth was typically 25 nm, as discussed in Section 3.2, which corresponded to a

bandwidth limited pulse duration of 37 fs, although, as discussed in Section 3.2.2 the

optimum pulse duration was measured to be 40 fs as a result of high order dispersion.

3.1.2 λ3 Laser System

The λ3 laser system was also a Ti:Sapphire CPA laser and shared many similar-

ities with HERCULES. The primary difference between the two lasers was that λ3

provided a smaller pulse energy, 12 mJ, at a much higher repetition rate, 500 Hz.

This was accomplished by excluding additional amplification stages after the Regen,

which limited the repetition rate of HERCULES due to the build-up of heat in the

laser crystals.

Pulses were generated in the oscillator and selected by the pulse picker, shown in

Fig. 3.2, in the same manner as the HERCULES pulses, but with a 500 Hz repetition

rate. The pulse was then sent through a ”Dazzler” and stretched to 250 ps before

being sent into the regenerative amplifier with a pulse energy of 1 nJ. In the Regen

the pulse was amplified to 5 mJ in 6 passes before it was cleaned using a Pockels

cell pulse cleaner to remove ASE on the nanosecond time scale. Then, the pulse was

then sent through a final 3 pass amplification stage to achieve a final amplification
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λ3 Laser Block Diagram 

Nd:YDO4 
5 W  

Ti:S Oscillator 
 

5 nJ, 12 fs, 75 MHz 

Stretcher 
1 nJ, 250 ps, 500 Hz 

Dazzler 
3 nJ, 25 fs, 500 Hz  

Nd:YLF 
10 mJ 

Ti:S Regen 
6 pass 

5 mJ, 250 ps, 500 Hz 

10 ns Pulse Cleaner 
2 mJ, 250 ps, 500 Hz 

Compressor 
12 mJ, 30 fs, 500 Hz 

Front End 

Regen 

Pulse Picker 
2 nJ, 25 fs, 500 Hz  

Nd:YLF 
40 mJ 

Ti:S Amp 
3 pass 

24 mJ, 500 ps, 500 Hz 

Amplifier 

Figure 3.2: Block Diagram of the λ3 laser system. Red blocks represent 800 nm laser
amplification stages, while green blocks represent 532 nm pump lasers. Each stage
is identified by its colloquial name. The post-compressor pulse was directed to the
target chamber.

energy of 24 mJ. Recompression of the pulse produced a 12 mJ, 30 fs pulse. The 30

fs pulse duration was possible without the bandwidth gain narrowing that occurred

in HERCULES.

3.2 Laser Diagnostics

Several laser diagnostics were employed in the solid target experimental area of

HERCULES to monitor the beam quality throughout the course of an experimental

run. A 1% leak-through mirror was used to allow a portion of the beam to be diverted

to a diagnostic area located outside of the experimental chamber. The beam near-

field profile was recorded with a CCD to measure the beam profile. The far-field was

also measured to monitor the shot-to-shot and longer term drift of the beam pointing,
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which could alter the focal quality if not corrected. The total beam energy, as well

as the backscattered energy, was also measured using fast diodes. The backscatter

measurement was primarily a precautionary diagnostic intended to prevent damage to

the laser from amplification of light backscattered into the crystals of the amplification

stages, but in some cases also served as a diagnostic of the reflectivity of the target.

Additional diagnostics were necessary to characterize the pulse contrast and in-

tensity. These diagnostics were typically not employed during full power shots either

due to their size and complexity, or inability to be run concurrently with experimental

shots. However, measurements were performed at least once at full power to validate

the low power measurements.

3.2.1 Diffraction Limited Focusing

Tight focusing of the laser was critical to achieving high laser intensity, as I = EL/τ
a

where EL was the energy of the laser pulse, τ was the pulse duration, and a was the

area of the focal spot. The diameter of the first null for a diffraction limited Airy disk

was given by d = 2 ∗ 1.22 ∗ λ ∗D/F where D/F was the focusing optic diameter over

the focal length. A short focal length, f/# = 1 or 3, Off-Axis Parabolic Mirror (OAP)

was used to minimize the potential spot size and maximize the laser intensity. The

use of an f/1 OAP required a 90o off-axis angle to produce a focus sufficiently far

away from the incoming beam to allow the positioning and manipulation of a target.

The f/1 parabolas had peak-to-valley wavefront aberrations of approximately 0.5λ

due to their large curvatures and the fabrication process, which utilized diamond

turning and left grooves on the optical surface. High quality glass parabolas with

high damage threshold dielectric coatings could have been utilized to reduce optical

aberrations, however the close proximity of the parabola to the target interaction led

to damage of the parabola surface, necessitating replacement of the parabola after

several hundred shots. The high cost of dielectric parabolas prevented this from being
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a realistic possibility.

In the presence of wavefront aberration, which primarily originated in the final

focusing optic, but was also a result of other optics up-stream, a diffraction limited

spot could not be achieved. In order to correct the aberration an adaptive optic

Deformable Mirror (DM), manufactured by Xinetics, was employed in the solid tar-

get chamber. The DM was a thin dielectric mirror with 177 piezoelectric actuators

which bent the mirror when a voltage was applied. The displacement of the surface

of the mirror allowed the optical path length to be adjusted to correct for wavefront

aberration. The DM was paired with a Shack-Hartmann HASO wavefront sensor

manufactured by Imagine Optics, which was used to measure the wavefront aberra-

tion at the surface of the DM. While the DM was upstream of the final focusing OAP,

the aberration of the OAP was also measured as it was a component of the imaging

system. The HASO software calculated a response matrix by altering each actuator

by +/− 5 V and recording the change in the wavefront. A Zernike polynomial de-

composition of the wavefront was then used to calculate a voltage correction for the

DM which was iteratively applied over 5 − 10 steps. It was typically only necessary

to repeat a wavefront correction when an optical element in the experimental area

or laser system was changed. The intensity of the focal spot was typically increased

by at least an order of magnitude, as shown in Fig. 3.3 for an f/3 parabola. This

allowed focal spots with very nearly diffraction limited profiles, as shown in Fig. 3.4,

with a 1.18 µm FWHM from a DM corrected f/1 parabola.

A DM was also used in λ3 to achieve nearly diffraction limited focal spots with an

f/1 parabola. A genetic algorithm routine was used to optimize the λ3 DM [90] by

optimizing second harmonic light generation at the focal spot, which increased with

higher laser intensity. The optimization routine was performed before every shot run.
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Pre-correction

Post-correction

a) b)

c) d)

Figure 3.3: Screen captures of the HASO diagnostic showing the (a) pre-correction
wavefront aberration, (b) pre-correction calculated focal spot, (c) post-correction
wavefront aberration, and (d) post-correction focal spot. The wave front aberra-
tion is a spatially resolved measurement of the aberration in the incoming laser pulse
measured at the DM surface. The color bar shows the magnitude of the wavefront
aberration while the peak-to-valley and root-mean-squared values are shown on the
bottom right. The focal spot image is a calculated optimum distribution of the light
at focus given the wavefront measured at the surface of the DM.
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Figure 3.4: Focal spot from an F/1 parabola after DM correction with a 1.18 µm
FWHM. The OD4 (blue) and OD5 (green) profiles show the spot with two filter
configurations, increasing the dynamic range of the measurement. The OD5 plot has
been scaled by an order of magnitude, compensating for the increase filter attenuation,
to match the OD4 plot. (Inset) False color image of the focal spot with OD4 filtering
showing the structure around the beam while the central portion is saturated.
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3.2.2 Pulse Duration Measurements

Short pulse duration was also critically important to achieving high intensity.

Measuring the pulse duration of a compressed Ti:Sapphire pulse was non-trivial due to

the femtosecond pulse duration. Electronic measurements, i.e., a fast diode or streak

camera, could not resolve the temporal evolution of the compressed pulse. Instead,

a second order autocorrelator[91] was used to measure the compressed HERCULES

pulse duration. A block diagram of the autocorrelator setup is shown in Fig. 3.5.

The second order autocorrelator performed an autocorrelation of the pulse with itself

by splitting the pulse and recombining it in a χ2 crystal, which generated a second-

harmonic as described in Section 2.1.2. The second harmonic light was then imaged

to a CCD, as shown in Fig. 3.6. The delay stage was used to ensure temporal overlap

of the recombined beams. The pulses were recombined with a slight angle between

the two portions of the beam which introduced a temporal-spatial dependence on the

beam overlap. The temporal-spatial calibration was performed by placing a glass slide

of known thickness in one half of the incoming beam, providing a known temporal

delay, and then measuring the spatial shift of the second harmonic light.

The pulse duration was measured as a function of the grating position, as shown

in Fig. 3.7. The measured pulse duration had a minimum of 39 fs. This measurement

includes a factor of
√

2 to account for the discrepancy between the autocorrelation

intensity measurement and the desired Gaussian pulse FWHM measurement. Group

delay dispersion for a parallel grating pair is always negative and compresses the pulse

by compensating for the positive chirp introduced by normally dispersive material.

The negative optimum grating position was a result of the need for correction of

less total positive chirp in the laser system when it operated with XPW . The non-

symmetric shape of the compression plot indicates high order dispersion, likely third,

was present in the pulse.

Ideally, the Ti:Sapphire laser had enough bandwidth to achieve a compressed
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Figure 3.5: Schematic for a single shot second order autocorrelator. The beam was
split and then recombined and focused into a BBO crystal. The second harmonic
light was imaged to a CCD while the first harmonic was removed with a BG-39 filter.
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Figure 3.6: False color image of the autocorrelation light produced in the second
harmonic crystal. A rotation of 2o was performed to measure the pulse duration to
account for the tilt of the pulse, which was a result of the imaging system.
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Figure 3.7: Pulse duration measurement of the HERCULES compressed pulse from
second order autocorrelation showing a minimum pulse duration of 39 fs. The mea-
surement was performed with XPW under vacuum. The grating position was relative
to the approximate best compression position for the non-XPW pulse. Negative
grating positions correspond to less negative chirp when compared to the reference
position of zero.
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Figure 3.8: Pre-compressor optical spectrum of the HERCULES pulse showing a
FWHM of 25.5 nm. The spectrum was recorded for every shot by collecting leak-
through light from a 7 inch high reflectivity dielectric mirror located in the pre-
compressor periscope. The light was focused into an optical fiber, through a diffuser,
and delivered to a CCD Spectrometer.

pulse duration of 30 fs. The bandwidth of full energy shots was measured with a

CCS175 Thorlabs Compact CCD Spectrometer by taking a leak-through from one

of the precompressor mirrors. The FWHM bandwidth was typically measured to be

around 25 nm, as shown in Fig. 3.8, however variations of up to 50% were observed

on some shots. The 39 fs pulse duration measured by the autocorrelator was close to

the bandwidth limited pulse duration of 37 fs from τ∆ω ≥ 2πcB where cB = 0.441

for a Gaussian pulse shape. The difference was attributed to higher order dispersion,

as previously mentioned.
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3.3 Laser Contrast

For solid target interactions the presence of ASE or pre-pulse dramatically altered

the scale length of the plasma and, correspondingly, the laser interaction. As dis-

cussed in Section 2.2.3, the scale length of the plasma could shift the laser interaction

between different absorption mechanisms. This change could result in differences in

the fraction of laser energy absorbed by the target, the electron temperature, and

even the energy spectrum of accelerated ions [92]. In extreme cases, especially for

sub-micron thickness targets, the entire focal area of the target could expand be-

low critical density before the arrival of the main pulse resulting in transmission of

the pulse. It was necessary to characterize the laser ASE and prepulse in order to

understand and control the target scale length.

The amount of light that arrived before the main pulse was characterized by the

laser contrast, quantified as the ratio of the energy or intensity of the light arriving

before the main pulse, to the energy or intensity of the main pulse itself. As even a

perfect theoretical Gaussian pulse had a ramp from zero up to the peak, the contrast

changed as a function of time and lower contrast was expected closer to the peak. In

actual lasers, the ramp tends to have a flat pedestal that starts nanoseconds before

the main pulse which is the result of ASE and pre-pulses which occur picoseconds

before the main pulse, as seen in the black trace in Fig. 3.9. As a result of these

two different physical processes, laser contrast was often quantified as nanosecond

or picosecond contrast to differentiate the source of the light. As discussed in Sec-

tion 3.1.1, HERCULES had several Pockels cells which optoelectrically filtered ASE

nanoseconds before the main pulse. Additionally, XPW provided a three order of

magnitude improvement in nanosecond laser contrast, as shown in the red trace in

Fig. 3.9 [89].

However, additional contrast improvement was needed to allow experiments to

be performed with sub-micron foil targets, and to provide better control of the pre-
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Figure 3.9: (Reproduced from V. Chvykov et al. [87]). Third-order autocorrelation
with XPW (red) and without (black). The peaks of the red curve at the 10−10−10−11

level are due to single photoelectrons.
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plasma scale length. This was accomplished by using two Plasma Mirrors (PMs)[93].

The PMs were anti-reflection coated optically flat glass slabs which reflected light

after the pulse intensity reached the threshold for plasma formation. Prior to the for-

mation of the plasma the anti-reflection coating reflected less than 1% of the incoming

light into the correct optical path, while the rest was transmitted through the glass.

Once the plasma was formed, s-polarized light was reflected with up to 70 % effi-

ciency, measured experimentally. This was consistent with previous characterization

of plasma mirrors [94], as seen in Fig. 3.10. While this plot shows that reflectivity

increased with increasing fluence, a trade off existed between the reflectivity of the

mirror and the contrast improvement of the mirror. Tighter focusing on the surface

of the PMs resulted in earlier plasma formation, transmitting more of the early por-

tion of the pulse. Additionally, formation of plasma on the surface of the PMs had

to be restricted to several picoseconds prior to the main pulse arrival to ensure that

plasma did not have enough time to hydrodynamically expanded, which would have

introduced beam aberration by altering the optical path length.

Extensive details of the HERCULES PMs are available in the thesis of F. Dollar[95],

including reflectivity characterization, measurements of the contrast improvements,

and hydrodynamic modeling of the plasma formation. The contrast improvement re-

sult is reproduced[96] in Fig. 3.11. The nanosecond intensity contrast was improved

about 4 orders of magnitude, as expected by the double pass ≤ 0.15% anti-reflection

coating, as shown in Fig. 3.11 (a). The dynamic range of the diagnostic limited the

measurement of intensities below 10−8. The laser energy flux ramp, which could have

caused preplasma formation at the J/cm2 level, is shown in Fig. 3.11 (b). The use

of dual plasma mirrors (DPM) limited the preplasma formation to a few picoseconds

before the main pulse.
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Figure 3.10: (Reproduced from Doumy, G. et. al. [91]). Reflectivity of bulk quartz as
a function of incident fluence for three pulse durations. The fit shows good agreement
with the developed theoretical model for the 4 ps pulse.
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Figure 3.11: (Reproduced from Dollar, F. et. al. [93]). (a) The normalized laser
energy as a function of time as measured by a fast diode. The XPW only (red)
and post-DPM (green) traces were taken simultaneously. (b) 30 TW laser power
flux measurements (red) as measured by a third order autocorrelator. Inferred DPM
contrast is shown (blue) along with the preplasma formation threshold fluence. Lines
are shown for visual aid only.

3.4 Radiation Diagnostics

One of the simplest, but most important experimental diagnostics was a combi-

nation of x-ray diodes and a NaI scintilator which were used to measure the strength

of the laser-plasma interaction. These detectors measured bremsstrahlung photons

produced by electrons accelerated from the interaction and were employed on both

HERCULES and λ3. These detectors were used to find the optimal focal position

of the target by scanning the target through a variety of positions and observing

the maximum signal. Additionally, they provided shot-to-shot confirmation of the

stability of the interaction and laser.

The primary goal of each experiment was the production of energetic radiation, as

discussed in Chapter I. The radiated quanta varied from neutrons to photons to light

ions. In all cases measuring the energy spectrum and flux of the generated radiation

was critical to the success of the experiment. To accomplish this task with, with both

neutral and charged particles, as well as photons, several types of detectors were used.
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Figure 3.12: Microscope image of CR-39 exposed to a proton beam. Pits with two
distinct sizes are visible.

3.4.1 CR-39

Allyl Diglycol Carbonate or Columbia Resin 39 (CR-39) was used as a nuclear

track detector which provided absolute proton flux. The CR-39 was a thermoset

plastic which was very sensitive to heavy-ion damage, amorphous, optically transpar-

ent, and insoluble [97]. Ions deposited their energy in their Bragg peak which broke

chemical bonds and led to a localized chemical change in the plastic. The etchant,

typically NaOH, degraded the weakened polymer instead of dissolving the material,

leading to the etching of a circular track, or pit, in the surface of the CR-39 as shown

in Fig 3.12.

Under well controlled temperature and chemical etching conditions the pit size

could be used to determine ion energy, for a known ion. However, ion energy could

also be determined through the use of filter stacks which set a low energy threshold for

ions that could reach the CR-39. This was the preferred method for ion measurement

as it was a more robust system. Filter stacks were typically encased in 12.5 µm of
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Al foil which stopped protons with energies less than 1 MeV. Additional filtering was

accomplished with layers of Mylar foil, stacked to provide energy bins up to 5 or

more MeV. The stopping range of ions through combinations of Al and Mylar was

calculated with SRIM [98].

Counting of the ion pits was performed by capturing images of regions of interest

with an optical microscope and applying a particle counting algorithm using ImageJ

(imagej.nih.gov/ij/). The image was converted to a 16-bit greyscale image and a

threshold value was selected to convert to a binary image, as shown in Fig. 3.13.

A built-in ImageJ function was used to identify continuous regions and filter them

based on area and circularity which eliminated contributions from single hit noise

and large pits that were the result of heavy ions. The 70 identified pits identified in

Fig. 3.13 are shown in Fig. 3.14. One of the main advantages of using this technique

over manual counting was the ability to apply the algorithm to different portions of

a given image to verify the accuracy of the measurement through statistical checks

such as pit density.

While CR-39 was an invaluable ion diagnostic, the need to etch and count pits

prevented timely analysis of the data, while the single exposure nature of the diag-

nostic typically limited the number of shots that could be measured during a single

experimental run on HERCULES. CR-39 was still employed in many experiments as

it was a small, versatile diagnostic that could be placed anywhere inside the exper-

imental chamber. Additionally, large pieces of CR-39 could be used to measure the

divergence of ion beams.

3.4.2 Thomson Parabola Ion Spectrometer

A Thomson Parabola Ion Spectrometer (TP) [99] was the preferred ion diagnostic

for real time measurements of ion energy and flux. The TP used parallel electric

and magnetic fields, as pictured in Fig. 3.15, to disperse ions horizontally by energy,
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Figure 3.13: Image of the CR-39 after a binary conversion has been performed using
a threshold value to highlight the dark centers of the pits. The two pit sizes are still
distinguishable through size variation.

Figure 3.14: Result of applying the Image-J particle counting algorithm to the binary
image which shows 70 identified pits. Only circles with areas between 10 and 70 pixels
were counted. This rejected false positives from single pixel noise and the larger heavy
ion pits.
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Figure 3.15: Diagram depicting the geometry of the Thomson Parabola. The electric
field (orange) separates ions by q/m with lower ratios dispersed further from the
axis. The magnetic field (green) disperses in the orthogonal axis with higher energy
particles closer to the straight-through.
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and separate different Charge to Mass Ratio (q/m) ratios vertically. The horizontal

displacement at the detector plane was given by

xe(v) =
ZeELe
Av2mp

(
Le
2

+ le) (3.2)

where Le was the length of the electric field, le was the distance from the end

of the electric field to the detector, and Z
A

was q/m[100]. The magnetic deflection

dispersion relation was similar and given by

xb(v) =
ZeBLb
Avmp

(
Lb
2

+ lb) (3.3)

where Lb was the length of the magnetic field, and lb was the distance from the

end of the magnetic field to the detector. These two equations were combined to give

the parabola of a given ion species by solving for v which yielded

xe =
AmpELe
ZeB2L2

b

(
Le
2

+ le)(
Lb
2

+ lb)
−2x2

b . (3.4)

The parabolas defined by this equation, along with experimental data, are shown

in Fig. 3.16 for each charge species of Al (magenta), C (yellow), and H (green). This

diagnostic provided a full energy spectrum and flux measurement for each charge

species as long as ions with the same q/m did not overlap. The detector was a micro-

channel plate paired with a phosphor screen. The phosphor light was imaged to the

face of a CCD. This detector allowed data to be acquired after every shot which

provided shot-to-shot feedback and allowed optimization of the proton signal during

an experimental run.
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Figure 3.16: Thomson data from 1.8 µm Al overlaid with parabolas for different
charge states. The three species are shown in different colors with the lowest charge
ratios to the bottom left. The parabola for each charge species of H (green), Al
(yellow), and C (magenta), is plotted according to Eqn. 3.4. The presence of Al13+

indicates a laser intensity of >= 7× 1020 W/cm2.
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Figure 3.17: Schematic depicting the placement of CR-39 to measure the proton flux
allowing a calibration of the TP. The “finger” cut-outs allow simultaneous single-shot
measurement of the proton trace on the MCP and CR-39.

It was necessary to perform a calibration of the detector to obtain quantitative

information from the CCD measurement. This was accomplished by measuring the

ion flux of a single shot with both the TP diagnostic and CR-39 as depicted in

Fig. 3.17. The ion parabola was partially intercepted by CR-39 which provided an

absolute measurement of proton flux and provided a cross-calibration point with the

CCD measurement, under the assumption the spectrum was smooth.

This measurement was repeated for two to three shots, for both protons and

deuterons, and the collection of data points were used to determine a response curve

of the TP diagnostic. A scaling factor between Microchannel Plate (MCP) counts

and ions was determined using a best fit of the form[101]
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Figure 3.18: Calibrated TP spectrum showing MCP signal (line) and CR-39 (crosses)
data points demonstrating consistency between the two methods. The target was 6
µm Al shot with the F/1 parabola and 150 TW laser power.

= A× E2 +B (3.5)

where A was 5×10−4 for protons and 1×10−4 for deuterons, and B was 8.3×10−3

for protons and 1.3×10−2 for deuterons. A calibrated Thomson trace using this result

is shown in Fig 3.18 along with two CR-39 data points, depicted as red crosses.

The TP was located behind the target and used to measure ion spectra from

normal incidence targets. The MCP required a vacuum pressure of lower than 1×10−4

mTorr. This was accomplished by differentially pumping the TP chamber with its

own turbo-pump. This requirement, along with the overall size of the diagnostic,

constrained the TP to one of two ports on the solid target chamber. Therefore,

measurements of charged particles in other directions had to be performed by CR-39.
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3.4.3 Neutron Time-of-Flight

Measuring the energy of energetic neutrons required different types of diagnostics

from those used for ions. While protons and light ions deposited their energy in a

Bragg peak and could be stopped in a few microns of material, uncharged neutrons

could pass through centimeters of material without depositing their energy. One

potential method for detecting neutrons was initiating nuclear reactions and detecting

the resulting charged particles. This could be done with 3He(n, p)3H, 10B(n, α)7Li,

or 6Li(n, α)3H. However, the cross section of these reactions peaked at thermal

neutron energies making it inefficient for energetic neutron detection. Alternatively,

elastic collisions between neutrons and light ions produced energetic ions which could

be easily detected due to their charge. An elastic collision with an ion of atomic mass

A at rest produced a maximum recoil energy of

ERmax =
4A

(1 + A)2
En (3.6)

where En was the initial energy of the neutron. The energy transfer was maximized

for hydrogen (A = 1) which minimized the number of collisions required to fully

deposit the energy of the neutron. To take advantage of this, organic scintillators were

used as the primary neutron detectors for experiments in HERCULES, as pictured

in Fig. 3.19. Organic scintillators were available in large sizes and scintillators of

up to 35.5 cm diameter were used to improve detection efficiency. When energy

was deposited in the scintillator molecular energy levels were excited which decayed

with a time constant τd and emitted light. The light was collected and directed to

the photocathode of a photo-multiplier tube where photoelectrons were created and

then multiplied. The collected electron signal provided a measurement of energy

deposited in the scintillator. While this potentially could have been used to measure
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Figure 3.19: Schematic of the 35.5 cm nToF detector showing the Pb blocks used to
shield the detector from photons. The detector was positioned on top of a pedestal
to keep it in the interaction plane.

the energy of a single neutron, experiments in HERCULES produced neutrons with

high instantaneous flux such that multiple neutrons arrived at the detector before

any measurements could be performed.

Alternatively, the production of many neutrons in a short temporal burst, <1

ns, allowed measurement of neutron energy by determining the neutron speed in a

Neutron Time of Flight (nToF) detector. The speed was measured by determining

the time required for the particle to arrive at the detector, given the known time of

creation, and distance. The energy was then given by

Ek = (γ − 1)m0c
2 (3.7)
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where γ = 1/
√

(1− v2
n/c

2). The energy range for neutrons measured in the

reported experiments (a few MeV) was between the fully classical regime and the

relativistic regime. Eqn. 3.7 recovers the classical kinetic energy equation, Eqn. 3.8,

under the condition v << c such that the binomial expansion can be used to expand

γ, but the relativistic version was used for accuracy in data analysis.

Ek = ((1 +
v2
n

2c2
)− 1)m0c

2 =
m0v

2
n

2
(3.8)

The neutron velocity, vn, was found by using the known distance to the detector,

D, which was 5− 10 m in the reported experiments, and the time delay between the

gamma arrival and the neutron arrival, Tδ, such that

vn =
D

D/c+ Tδ
(3.9)

which accounts for the travel time of the gammas to establish the total travel

time of the neutrons. This is pictured in Fig. 3.20 with experimental data. A region

without any signal between the gamma burst and neutron peak was necessary to

differentiate the signals. This was possible due to the short decay constant of the

EJ-200 organic scintilator, τd = 2.1ns.

Typically, several neutrons contributed to the neutron peak. A calibration was

performed to determine pulse area of a single neutron in order to extract quantitative

information about the neutron spectrum. The neutron detectors were calibrated at

the Neutron Science Laboratory at the University of Michigan. A D-D generator

(Thermo Scientific MP320-DD) provided a source of high duty cycle pulsed 2.45

MeV neutrons. The calibration used the same Pb shielding configuration as the

experiments to replicate energy loss in the Pb bricks. The neutron generator produced
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Figure 3.20: Sample oscilloscope trace from the plastic scintillator for a laser inter-
action creating photons and neutrons together. The gammas travel from the laser
interaction at the speed of light and arrive at the detector first. The neutrons travel
slower and arrive later yielding a measurement of their energy through the measured
speed. A region of no signal between the gamma spike and the neutron arrival, as pic-
tured in this trace, is very important for a quantitative measurement of the neutron
flux.
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Figure 3.21: Sample oscilloscope trace from the plastic scintillator for a single D-D
neutron hit.

2× 106 neutrons per second with a 20 kHz shot rate. The large detector was placed

26 cm from the neutron source with 10 cm of Pb shielding placed 1 cm from the

scintillator. The detector efficiency was measured at 20 percent behind 10 cm of Pb.

This was consistent with previous measurements of detector efficiencies of 60 percent

and 30 percent behind 1 cm and 6 cm of Pb, respectively. Single neutrons were

measured using the nToF detectors and the signal was recorded on an oscilloscope as

shown in Fig. 3.21.

The neutron events were interspersed between cosmic ray events which varied in

pulse amplitude due to the random nature of the cosmic radiation. The neutrons

were signaled out by identifying peaks with consistent areas and pulse heights, as

shown in Fig. 3.22. A threshold voltage of 0.02 V was chosen to include the largest

number of peaks without contaminating the data with noise, which was evident from

the large increase in counts below thresholds of 0.02 V. This calibration was used for
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Figure 3.22: Plot showing the number of counts as a function of the peak voltage
threshold. The average peak area is also shown as a function of the threshold voltage.
The optimum threshold voltage was found to be 0.02 V. At this threshold the average
area of a detected neutron peak was 1.5 V×ns.

all data analysis.

3.4.4 High Purity Germanium Detector

The detection of 100 keV photons, colloquially referred to as gamma-rays, could

have been accomplished by scintillators or solid state detectors. High Purity Germanium

(HPGe) detectors were used as they combined a small bandgap (0.7 eV) with the rel-

atively high-Z material Germanium (32) to achieve high resolution and collection

efficiency. Gamma rays interacted with the Ge in three ways. At low energies (100’s

of keV or less) the dominant interaction mechanism was photoelectric absorption.

During such an interaction an atomic electron was ionized when it overcame the

atomic Coulomb potential by absorbing the incident photon energy. The kinetic en-

ergy of the freed electron could be calculated from energy conservation considerations

as
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Eβ = ~ω − Ep (3.10)

where Ep was the ionization potential of the electron. For relevant photon energies

photoelectric absorption occurred primarily with K-shell electrons, which had the

highest ionization potential. The probability of photoelectric absorption scales with

Z4−5 and with photon energy as E−3.5
γ .

At higher energies (up to MeV’s) the predominant interaction mechanism was

Compton scattering. Compton scattering involved the scattering of a high energy

photon from an electron which resulted in the transfer of energy and momentum

to the electron. Conservation of momentum yielded a governing equation for the

scattered photon energy [9]

hν ′ =
hν

1 + hν
m0c2

(1− cosθ)
(3.11)

where θ was the angle the photon is scattered from its original direction. The

scattered photon energy ranged from the original photon energy (at θ = 0) to half of

the rest mass of an electron (at θ = π). The resulting scattered electron energy was

between zero and Eγ − moc
2/2. The fact that this energy range did not reach the

original photon energy meant it was possible for the photon to escape the detector

before depositing its full energy, resulting in a Compton gap below the photopeak.

The final gamma ray absorption mechanism was pair production. Gammas with

energies higher than 2m0c
2 could produce a β−/β+ pair when they interacted with the

Ge atomic nucleus. The produced positron annihilated with an electron producing

two 511 keV photons which could subsequently interact with the detector material,

through Compton scattering and photoelectric absorption, or escape the detector
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material. Pair production scaled strongly with material Z and photon energy. As

a result, the efficiency of capturing the full photon energy in all three absorption

mechanisms was improved with the use of HPGe.

The theoretical limit of the energy resolution of HPGe detector was determined

primarily by statistical considerations in the fluctuation of charge carriers. Since the

average energy required to form an electron-hole pair in Ge was ε = 2.96 eV, which

was the lowest value of common detector materials, it had the highest possible number

of signal carriers, and therefore the best theoretical energy resolution, as given by

FWHMlim = 2.35
√
FEε (3.12)

where F = 0.1 was the Fano factor, E was the photon energy[9].

Energy calibration of the HPGe detector was accomplished by using a least-square

fitting of a polynomial of the form

E(c) =
N∑
n=0

anC
n (3.13)

where N was the order of the polynomial and C was the discrete channel in which the

photon was recorded. The HPGe detector was exceptionally linear and was adequately

described by a second order polynomial.

The liquid nitrogen cooled Ortec model number GM45P4 HPGe detector was

calibrated with a 3220 V bias. One drawback of HPGe detector was that due to

the small bandgap it was necessary to cryogenically cool the detector with liquid

nitrogen to prevent thermal excitation of carriers which led to signal noise or detector

damage. A DSpec pro multi-channel analyzer was used to provide the bias voltage

and discretize the output signal of the detector into 16000 channels. The Maestro32

software package was used to control the instrument and record the experimental
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Source Activity (µC) Peak (keV) Relative Strength
133Ba 0.565 276.4 0.073
133Ba 0.565 302.8 0.19
133Ba 0.565 356 0.62
137Mn 0.767 661.6 0.85
60Cd 0.152 1173.3 1
60Ba 0.152 1332.5 1

Table 3.1: Table showing sources along with calibrated activities. All sources were
calibrated November 16th, 2000, and the decay of their activity has been taken into
account in the listed numbers.

data. The HPGe active detector volume was cylindrical with a 70 mm diameter.

Several calibrated radiation sources, listed in Table 3.1 were located 7.5 cm from

the face of the detector at the detector height. In this geometry the detector occupied

a 54 msr solid angle. A second calibration was done at a distance of 4.3 cm to verify

the calibration. The measurements were taken for ≈ 3 hours each.

The detectors intrinsic photopeak efficiency, i.e. the efficiency of measuring the

full energy of a photon that arrived at the detector active volume, was calculated by

comparing the expected number of counts from the nuclear sources, to the recorded

counts. The efficiency curve peaked at about 100 keV and fell off for lower and higher

energies as a result of the varying efficiencies of three types of gamma ray interactions.

For the region of experimental interest, 200 keV to 1 MeV, it was sufficient to

model the efficiency curve as a power function. The measured efficiency and the

power function fit are shown in Fig. 3.23. It should be noted that this calibration

was done with the detector inside of a lead shielding enclosure with >4 inches of

lead in every direction. While this reduced the natural background it effectively

increased the collection efficiency of the detector by introducing the potential for low

energy photons to be scattered from the shielding into the detector. Additionally, it

introduced K-shell peaks from lead with energies between 72.1 and 85.5 keV. These

two effects contaminated a 133Ba line at 81.0 keV which was measured to have an

efficiency of 2.5 or 250% and was therefore not included in the efficiency calibration.
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Figure 3.23: The HPGe detector’s intrinsic photopeak efficiency was measured using
6 peaks that spanned the energy range from 274 keV to 1.33 MeV. The efficiency fits
a power function over this range which is dominated by Compton scattering. Below
100 keV the efficiency drops as the dominant energy transfer mechanism becomes
photoelectric absorption.

3.5 Computational Modeling

The small spatial scales, fast temporal evolution, and high density of solid tar-

get laser plasmas limited direct experimental access to the conditions of the sys-

tem. Probing the plasma conditions of typical experiments required particles or

photons with keV to MeV scale energies, which under certain conditions could be

self-generated through the laser plasma interactions or generated with the use of a

second laser. A few examples of experimental techniques that probe plasma conditions

include proton[58] and electron[102] radiography, and optical polarization measure-

ments [103]. In addition to experimental measurements, numerical simulations were

an invaluable tool in understanding the complex transient behavior of laser produced

plasmas and resulting physical processes. Simulations offered insight into individual

particle trajectories and the fine spatial structure and evolution of electric and mag-

netic fields. Simulations could also be used to infer information about the interior

of a plasma through modeling of the escaping radiation. For example, the modeling
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of bremsstrahlung to infer the details of electron behavior inside a solid target will

be discussed in Section 2.4.2. Monte Carlo and PIC codes were used extensively to

model the experiments presented in this thesis.

3.5.1 Monte Carlo N Particle Transport Code

Monte Carlo simulations model a wide variety of stochastic processes through

repeated random sampling. In particular, Monte Carlo methods were employed to

model the behavior of particles in materials. Elastic and inelastic scattering, particle

slowing, and nuclear reactions were a few of the processes of interest that could be

modeled statistically. Several Monte Carlo codes were regularly employed in support

of laser plasma experiments including SRIM [98], used to calculate the stopping range

of protons in Mylar and Al for the CR-39 stacks described in Section 3.4.1, GEANT4

[104], and Monte Carlo N-Particle eXtended (MCNPX)[105].

MCNPX was originally developed to model nuclear reactions, including reactor

criticality, but now also models particle interactions such as bremsstrahlung. MC-

NPX modeled three dimensional space composed of continuous volumes. Each volume

had material properties allowing specification of material type, isotopic composition,

and density. This allowed complex experimental geometries and detector configura-

tions to be modeled. In Chapter VI, MCNPX was used to model the scattering of

neutrons during their flight from the laser plasma interaction to the nToF detectors,

including the effects of the vacuum chamber wall, detector shielding materials, room

walls, air, and additional material in the flight path of the neutrons. In Chapter

IV, the bremsstrahlung modeling of capabilities of MCNPX were used to simulate

the generation of bremsstrahlung photons by electrons accelerated into a bulk tar-

get. MCNPX calculated the behavior of one particle at a time. For electrons the

time step was chosen such that multiple collisions occurred during every step, which

ensured the validity of multiple-scattering models, but the total energy loss per per
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was still small. During each step the cross-sections for all modeled processes were

evaluated through random statistical sampling. The results from each step for each

particle were compiled and used to evaluate the behavior of the system. This statisti-

cal method intrinsically required a large number of particles to ensure the accuracy of

the result, and as such several accuracy checks were integrated into the output of the

code. The cross-sections were a compilation of experimentally measured data tables

and analytic models. The primary analytic model was based on the Bethe-Heitler

Born-approximation[106]. The model was well established and detailed reference pa-

pers were available that summarized the model[21] and discussed its implementation

[107] in MCNPX.

A similar approach was used to model the generation of neutrons in a LiF slab in

the results reported in Chapter VI. A Monte Carlo code developed by Davis et al [65]

was used, which utilized double-differential cross sections (energy and angle) [108] to

calculate angularly resolved neutron spectra from an input deuteron spectrum. The

input deuteron spectrum was calculated using a PIC code.

3.5.2 OSIRIS

Simulation of a laser produced plasma could be accomplished through several

computational approaches depending on the time scales and physics of interest. For

example, Magnetohydrodynamics (MHD) methods were typically used to model shock

dynamics over nanosecond time scales, Vlasov-Fokker-Planck (VFP) methods were

appropriate for modeling collective plasma processes in high density plasmas where

collisional processes and material resistivity influence plasma behavior, and PIC meth-

ods were possible for small systems and short time scales. Both MHD and VFP

formulations treated plasmas as fluids, which allowed macroscopic treatment of col-

lisional effects such as resistivity, but were based on assumptions which limit their

validity (i.e. MHD codes often did not treat or resolve electron dynamics). Alter-
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natively, PIC codes modeled plasmas as kinetically evolving individual particles, or

macro-particles which represent multiple particles, which did not require the same as-

sumptions as fluid methods. In PIC simulations fields were calculated on an artificial

grid by weighting each macro particle to the spatial grid points and calculating the

fields from Maxwell’s equations. The particle motion was then calculated using the

Lorentz equation. The spatial resolution, number of macro particles, and time step

had to satisfy both the Nyquist theorem, the sampling rate must be >2fmax, and the

Courant condition, 1
d2t
≤ 1

d2x
+ 1

d2y
to achieve numerical stability and capture the correct

physics. The high density of solid targets, 100’s of ncrit, and the corresponding high

plasma frequency, required spatial resolution on the order of nanometers. For a 10

µm × 10 µm simulation space this requires around 10 thousand spatial grid points

in each spatial direction. For typical PIC codes which require 10’s of macroparticles

per grid point, also known as Particles-Per-Cell (PPC), macroparticle numbers in the

billions were not uncommon. This sets requirements on computer memory, was it

required 1 GB of memory to store 6 dimensional information for tens of millions of

particles, and processing speed for the immense number of calculations, which scaled

as ≈ 10Nparticles. Fortunately, PIC methods were well suited for distributed comput-

ing methods, where the simulation space and particles were segmented and simulated

separately on individual nodes of a super computer. After each time step the bound-

ary information was shared between each node with minimal overhead, resulting in

close to linear scaling of simulation speed with processor number.

The OSIRIS PIC code was the main simulation tool used to model the experiments

discussed in the following chapters. OSIRIS was a fully relativistic, massively parallel

plasma simulation code developed by the OSIRIS consortium[109]. The code could be

run in one, two, or three spatial dimensions with three dimensional velocity space, but

due to the limitations previously described, was typically only run with two spatial

dimensions. Simulations were performed using the University of Michigan’s super-
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computing facilities at the Center for Advanced Computing, allowing simulations to

be run on up to 192 nodes.
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CHAPTER IV

Bremsstrahlung Generation

4.1 Introduction

Homeland security applications require photons with energies of 100’s of keV to

10’s of MeV, as discussed in Section 1.2. High intensity ultrafast lasers allow the

direct acceleration of electrons to MeV energies in laser-solid target interactions [80]

providing an MeV source of electrons and bremsstrahlung photons. In addition to

homeland security applications [110], bremsstrahlung sources have been investigated

for applications in medicine [111] and nuclear physics [45, 46, 112]. Very high resolu-

tion gamma ray measurements are needed for nuclear physics experiments, including

very short half-life isotope and isomer identification. A detailed understanding of the

qualities of the generated electrons and photons is critical to evaluate their potential

use for applications.

Previous efforts to characterize laser driven bremsstrahlung sources over 100 keV

have generally relied on experimental measurements using low resolution absorption

filters [113] and nuclear activation stacks [114], as well as simulations [115]. In a few

cases, high-resolution measurements have been performed using crystal spectrome-

ters at energies of 100’s of keV [116], but in a relatively narrow spectral range. As an

alternative, this chapter presents the first high-resolution bremsstrahlung measure-

ments using an HPGe detector, which was capable of measuring photons from 30 keV
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to 3 MeV with a resolution of E/∆E>200, with a 500 Hz repetition rate, high power

laser system [117]. The bremsstrahlung spectra was acquired by operating the HPGe

detector in a single-hit regime and integrating up to 1.9 million shots. This novel

application of an HPGe detector had not been practical previously due to the low

repetition rates of typical high intensity lasers.

The measurements were performed at multiple positions around the target to de-

termine the directionality of the generated radiation. Previous work to characterize

the hot electrons generated by laser-solid interactions on λ3 found that a beam of

energetic electrons escaped from the front, or laser side, of a bulk target near the

direction of the specular light reflection [83]. This beam was also observed during

the present work and was observed to have a 7 degree FWHM. It was postulated

in reference [83] that a significant fraction of the electrons were also accelerated into

the target, however the target thickness made a direct measurement of the forward

accelerated electrons impossible. In this work, the accumulated high resolution pho-

ton spectra provided a measurement of the bremsstrahlung as well as insight into the

behavior of the electrons, both inside and outside of the target, through modeling of

the bremsstrahlung process.

This was possible because the spectral and angular emission characteristics of

bremsstrahlung are tied to the electron kinematics. The angular component of the

differential bremsstrahlung cross section for an electron in a solid can be modeled as

a Gaussian [87]

dσ

dΩ
=

1

π(b̄θb)2
exp(− θ2

(b̄θb)2
), (4.1)

with a FWHM angle given by
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θb =
mec

2

Ee +mec2
(4.2)

where Ee is the electron energy, b̄ is a fitting constant ≈ 1, and the angle θ is

the angle between the electron and bremsstrahlung photon. The angularly integrated

cross section can be described with [87]

dσ

dE
=
aZ2

E
(1− bE/Ee) (4.3)

where E is the energy, a ≈ 11 mb, b is a fitting constant ≈ 0.83 based on the

results of Seltzer and Berger [118], and Ee is still the electron energy. As a result,

the most energetic electrons produce the highest energy bremsstrahlung photons with

a well-defined directionality. This enables an indirect measurement of the electron

energy distribution and direction through the correlation between the direction of

the high energy electrons and high energy photons. For distributions of electrons the

bremsstrahlung spectra is a summation of the bremsstrahlung spectra from electrons

of each energy which has no compact analytical form. In this work, bremsstrahlung

modeling of the full three-dimensional experiment was accomplished using the Monte

Carlo code MCNPX, and will be discussed in the simulation section.

4.2 Experimental Setup

The experiment was performed using the λ3 laser facility at CUOS. As discussed in

Section 3.1.2, λ3 is a 0.5 kHz Ti:sapphire system (λ ' 800 nm) producing laser pulses

with τ = 30 fs FWHM pulse duration and an amplified spontaneous emission-to-peak

intensity contrast of 10−8. The laser was focused to a 1.3 µm FWHM focal spot by
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Figure 4.1: Experimental setup of the target chamber. The bremsstrahlung observa-
tion angles are shown.

an f/1.2 off-axis parabolic mirror in conjunction with a deformable mirror (Xinetics

Inc.) optimized by a genetic algorithm [90]. Each laser pulse contained between 2

and 10 mJ producing focused intensities of 2.5 × 1018 W/cm2 to 1.2 × 1019 W/cm2.

This corresponded to a peak normalized vector potential a0 = eE
mecω0

of 1.1 to 2.4. P-

polarized light was incident at 450 after passing through a 2 µm thick nitrocellulose

pellicle used to protect the paraboloid from the target ablation debris. The pellicle

was necessary to prevent the ablated material from accumulating on the paraboloid

as a result of the large number of shots. The high repetition rate required the target

surface to be rapidly refreshed which was accomplished by rotating and translating the

target so that each shot interacted with a fresh area in an inward spiral pattern. Each

target was a 10 cm diameter bulk Eu2O3, SiO2, or Mo disk with a thickness of 1.2±0.2

cm. Special care was taken to align the target surface with a Mitutoyo 513 − 405T

dial gauge to maintain the surface peak to valley deviation over a full rotation of ±2

µm, significantly smaller than the Rayleigh range (2zr = 11µm). Target focus was
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optimized by maximizing the x-ray signal on a Si x-ray diode. The spot separation

of 120 µm allowed 5(±1.5)× 105 shots per target. The 7o FWHM half angle specular

electron beam was measured experimentally by imaging the electron distribution with

Fujifilm BAS-MS image plate. The electron distribution was observed to be much

lower in energy and more uniform at other angles in front of the target, and energetic

electrons were not observable through the target due to the thickness.

The HPGe detector was an Ortec GMX55P4 − 83 PopTop detector described

in Section 3.4.4. The detector was experimentally measured to have a resolution

of 1.7 keV at 661.33 keV, typical for HPGe detectors, which results in a resolution

E/∆E>200 over the entire range of the measurement. Most bremsstrahlung spectrum

were accumulated over 90 or 120 thousand shots with a count rate of 75 to 125

counts/s, or equivalently, a detection event probability of 15% to 25% of the shot

rate. The HPGe detector was located 7.7 m from the interaction and the detector

element was shielded with >5 cm of lead, except for a variable aperture limiting the

detector solid angle to 6× 10−5 to 9× 10−7 sr. The low detection probability and the

large detector distance were required to prevent photon pile-up. Photon pile-up is the

collection of multiple photons in the detection volume in a time period shorter than a

µs, which records the sum of the photon energies as a single, more energetic, photon.

The HPGe line of sight passed through the 3.5 mm stainless steel chamber wall which

blocked photons with energies lower than 30 keV and allowed 66% to 85% of the

photons in the energy range of interest to reach the detector, which was accounted

for in the measured spectra. The removal of the low energy photons was critical to

prevent pile-up from photons below the energy range of interest. At the experimental

detection probability 8% to 14% of the detected photons were due to pile-up. The

Appendix A contains the details of how this pile-up affects the measured photon

spectrum, and how the combined effects of detector efficiency and photon pile-up,

were accounted for.
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The bremsstrahlung spectrum was recorded at four angles relative to the target as

shown in figure 4.1. This was accomplished by rotating the target stage and steering

the beam inside the chamber so as to maintain the line of sight through, and outside

of, the chamber. No significant attenuation of the bremsstrahlung signal as a result

of the target stage was observed for the observation angles through the target.

4.3 Bremsstrahlung Spectrum

Bremsstrahlung spectra for all angles and materials demonstrated a consistent

shape as seen in figure 4.2. The high resolution of the measurement was evident in

figure 2 (a) which resolves Pb Kα,β lines as well as a 511 keV positron annihilation

line. This was the first measurement of positron production with a 10 mJ laser pulse.

The spectral shape was fit as a two effective temperature distribution with exponen-

tial effective temperatures of the form dN/dE = a× exp(−E/Tb) as demonstrated in

figure 2 (b). The lower effective temperature, Tb1 (blue), was fit using a least squares

approach between the energies of 120 and 500 keV, while the higher effective temper-

ature, Tb2 (red), was fit using the same approach between 500 keV and 1 MeV. The

highest effective temperatures were observed on an Eu2O3 target in the θ = −45o

specular direction with a normalized vector potential of ao = 2.3 yielding Tb1 = 300

(±30) keV and Tb2 = 550 (±60) keV.

Photon pile-up was one of the sources of error in this measurement. A Monte

Carlo code was used to model the effect of the detection of multiple photons at the

experimental detection rate, and it was shown that the two temperature spectral

shape was not a result of pile-up. The details of the effects of photon pile-up on

the measurement are provided in the appendix. The error bars were primarily a

result of the spectra noise and the effect of photon pile-up. The background signal

comprised less than 4% of the total counts in a typical spectrum, and was uniformly

distributed across the energy range of 120 keV to 1 MeV. The variation in the signal
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Figure 4.2: a) Eu2O3 spectrum accumulated over 1.9 million shots. The resolution is
sufficient to resolve nuclear peaks (511 keV) and Pb Kα,β peaks. b) Bremsstrahlung
spectrum showing the characteristic two effective temperature spectral shape for SiO2

along the specular direction. Tb1 = 286 (±9) keV (blue) and Tb2 = 480 (±31) keV
(red) are shown along with the 95% confidence fits (dashed lines). The data was
taken with a0 = 2.3 over 180k shots. Data is summed into 10 channel bins for clarity.

at high energies was a product of the decreasing signal and the decreasing collection

efficiency of the HPGe germanium crystal leading to low count numbers per channel.

The bremsstrahlung temperatures were observed to scale with laser intensity as

shown in figure 4.3 (a) with the two temperatures exhibiting similar scalings as a

function of the normalized laser vector potential. The temperature scalings exhibited

least squares power law fits of Tb1 = 101 × a1.16
0 keV and Tb2 = 149 × a1.31

0 keV.

The scalings were determined using a linear regression of the measured data in the

logarithmic domain. The error bars on each point indicate the standard deviation

of the measured temperatures of multiple experimental runs with the same laser

parameters, but in some cases different materials. Using a relationship found with

MCNPX simulations, Te = 0.73×T 1.09
b , the experimental electron temperature scaling

was calculated from the bremsstrahlung scaling, Te1 = 110 × a1.26
0 keV and Te2 =

168×a1.42
0 keV, and compared to existing electron temperature scaling laws as shown

in figure 4.3 (b). The slope of the electron scalings was closest to the Te = 145× a1.28
0

scaling observed previously on λ3 [83]. In comparison, Wilks’ ponderomotive scaling
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has a steeper growth rate in this region of intensity. Alternatively, Beg scaling [81],

which was experimentally derived from a variety of picosecond duration laser systems,

was also plotted and exhibited a growth rate that was lower than our femtosecond

results.
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Figure 4.3: a) The Tb1 (black) and Tb2 (green) experimental bremsstrahlung temper-
atures, observed from θ = 0o on Eu2O3, with the power law fits for Tb1 (blue) and
Tb2 (red). b) The calculated Te1 (blue) and Te2 (red) experimental electron temper-
atures from the bremsstrahlung temperatures in (a) with the Beg (black), λ3 (red)
and ponderomotive (green) theoretical scalings (dashed). The calculated scalings use
the relationship between Te and Tb determined from MCNPX.

The angular distribution of the bremsstrahlung temperature was observed to peak

in the specular direction, θ = −45o, and fall off to a minimum temperature behind

the target at θ = 90o, as shown in figure 4.4. This directionality indicates the specular

beam of electrons contained the most energetic electrons, as discussed previously with

equation 4.2. The bremsstrahlung and electron directionality was also observed in

particle-in-cell simulations and MCNPX modelling, as discussed in the simulation

section. This angular distribution is in contrast to previous results with picosecond

lasers which have shown highly directional bremsstrahlung signals between θ = 45o

and θ = 90o[114].

The experimental bremsstrahlung temperature was observed to be independent

of the target material as demonstrated in table 4.1. The measurements were made
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Figure 4.4: Experimental (data points) bremsstrahlung temperatures as a function
of observed angle compared to MCNPX predictions (dotted lines). Tb2 (red) and Tb1
(blue) are shown, along with the target geometry and laser direction for clarity. The
heavy dashed line (black) shows the average electron energy as a function of angle,
PIC < Ee > taken from a particle-in-cell simulation.

Material Tb1 (keV) Tb2 (keV) MCNPX (keV)
SiO2 200 (±30) 292 (±35) 101

Mo 236 (±30) 351 (±30) 121
Eu2O3 219 (±30) 321 (±30) 144

Table 4.1: Bremsstrahlung temperature along the θ = 0o direction compared to
MCNPX simulation results for Te = 200 keV. Note the Z dependence in the MCNPX
simulation is not observed experimentally.

along the surface (θ = 0o) direction with a0 = 1.6, and the temperatures from each

target material were similar, within the error bars. The temperatures did not exhibit

the weak linear scaling with target material observed in MCNPX simulations.

4.4 Simulations

To simulate the absorption of laser energy and generation of the hot electron

distribution, 2D particle-in-cell simulations were run using the osiris 2.0 framework

[109] under conditions similar to the experiment. The charge density profile was

89



constructed piecewise from a rectangle function with exponential ramps on the front

and rear surfaces. The peak electron density was n0 = 30nc, where nc = ω2
0meε0/e

2 is

the critical density for the laser of frequency ω0, the target thickness was L = 20c/ω0

and the scalelength of the plasma density was λpp = 6c/ω0. The target was at a 45

degree angle with respect to the simulation box. A gaussian laser pulse with a0 = 1

was initiated propagating in the x1 direction, linearly polarized in the x2 direction

with a waist of w0 = 8c/ω0 (1 µm) and a 5th order polynomial temporal shape with a

duration of ω0t0 = 65. Two particle species were used; species 1 with charge to mass

ratio q/m = −|e|/me initiated with a thermal velocity of vth = 0.01c and species 2

with q/m = +10|e|/28mp initiated at rest, where mp is the proton mass. 64 PPC

with cubic weighting were used for species 1 and 4 PPC with linear weighting were

used for species 2. The domain, of dimensions x1 × x2 = 30 × 15 µm2 was divided

into 5000× 2496 grid cells, yielding cell sizes ∆x1,∆x2 = 0.048c/ω0. The simulation

was run for ω0t = 1000 in steps of ω0∆t = 0.033. Compensated binomial smoothing

was applied to fields and currents on the grid.

Fig. 4.4 shows the electron average energy as a function of angle, (PIC < Ee >)

taken from the particle-in-cell simulation. For a 2D velocity distribution, the average

energy and temperature are equivalent for a Maxwell-Boltzmann velocity distribu-

tion. The mean energy was used to allow a quantitative comparison between the

simulation electron energies and the experimental bremsstrahlung temperature be-

cause the electron distribution was non-Maxwellian. The average energy was cal-

culated by taking the average of electron energies E for each angle above a cut

off energy Elower from the momentum phase space, i.e., the numerical equivalent

of
∫∞
Elower

∫ θ+∆θ/2

θ−∆θ/2
f(θ, E)EdθdE, where ∆θ is the bin width. The figure shows the av-

erage energy of electrons above a 100 keV cut-off. The simulated electron distribution

shows two populations of electrons, a near isotropic component of heated electrons

and a population with higher average energy that is accelerated in the near specular
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direction in a chaotic direct laser acceleration mechanism by the reflected/incident

waves interacting with the surface plasma, as previously observed at lower intensity

[83].

The Monte Carlo code MCNPX [119] was used to simulate the relationship be-

tween the electron and bremsstrahlung spectra. MCNPX uses tabulated bremsstrahlung

production tables based on the Bethe-Heitler Born-approximation [106] and applica-

ble models have been developed in the literature [21, 107]. While the model empha-

sizes the MeV region, subsequent improvements have been made for the keV region

[120]. The MCNPX simulations modeled the target, chamber wall, air and detector

locations with the appropriate geometry. A multiplication factor of 100 was used for

bremsstrahlung production in the electron physics model to reduce the simulation

run time by increasing the photon production per simulated electron. The accuracy

of this method was validated by a run without multiplication which showed no dis-

cernible difference in effective bremsstrahlung temperatures. Photons were recorded

with surface current tallies at the detector positions, which were located at the same

distance and angle as the experimental detectors. All runs used 1.4×108 electrons with

standard Maxwellian energy distributions which were directed in isotropic spheres,

7o half angle cones, or both. The cone source contained a uniform flux through all

angles encompassed by the 7o half angle. Half angle beams were modeled in the

specular (−45o), laser (45o) and target normal (90o) directions. MCNPX simulations

confirmed the correlation of the bremsstrahlung directionality with the electron di-

rection, as predicted by the analytical model. This reinforced the conclusion that the

highest energy electrons were contained in the specular beam.

The two electron populations observed in the PIC simulations were investigated

and compared to the experimental results. Fig. 4.5 shows the calculated bremsstrahlung

signal from separate sources of an isotropic sphere (Te = 200 keV) and a cone

(Te = 900 keV) from a Eu2O3 target. The combination of the two signals can accu-
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Figure 4.5: MCNPX results demonstrating the effect of two electron sources. The
combination of two sources with different temperatures reproduces the two tempera-
ture bremsstrahlung signal observed experimentally.

rately reproduce the experimentally observed two temperature spectra for Eu2O3 at

ao = 2.4 by providing different effective temperatures from the two electron popula-

tions. This demonstrates the importance of measuring the electrons accelerated in all

directions, both into and out of the target, in order to fully characterize the electron

behavior.

The angular characteristics of the bremsstrahlung radiation shown in figure 4.4

were reproduced in MNCPX using the PIC electron distribution. The electron source

was modeled as a combination of an isotropic source with a Maxwellian temperature

of 200 keV and a beamed source with a temperature of 700 keV directed in the −45o

direction. It was observed that the result was very sensitive to the beamed source

temperature, but only weakly dependent on the isotropic distribution. This can be

attributed to the larger number of measurable photons from the higher energy source,

whereas the photons from the isotropic source tended to be absorbed on the way to

the detector.

In order to compare the scalings of the bremsstrahlung and electron tempera-
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Figure 4.6: MCNPX results showing the relationship between Tb and Te for 3.5 mm
of stainless steel.

tures, the relationship between the Maxwellian electron temperature and the effective

bremsstrahlung temperature was determined for electron temperatures spanning the

range 200 keV to 5 MeV. The relationship was observed to scale as Tb = 1.34× T 0.92
e

keV , as shown in figure 4.6, for an electron beam directed into a 3.5 mm steel slab

and observed through the slab. MCNPX was also used model the effect of different

target materials on the bremsstrahlung temperature. A weak linear material scaling

of the temperature with target material atomic number was observed when electron

beams were propagated through a slab of material. This further reinforces the fact

that the experimental bremsstrahlung signal temperature was predominantly influ-

enced by the specular electron beam, which did not interact with the target material,

leading to no observation of temperature scaling with different target materials.

4.5 Activation

A 238U sample was placed in the specular beam direction in an attempt to measure

(γ, n) activation. The 3.8 g sample was irradiated for 60 thousand shots. The sample
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Figure 4.7: 238U spectra measured with the HPGe detector. The activated (green)
spectrum is nearly overlapped with the background (red) spectrum. The difference
between the two spectra (blue) shows a slight increase in Kα signal, mostly from Pb.

was then placed in front of the HPGe detector to measure the gamma spectrum over

a 3 hour time period. The spectrum, shown in Fig. 4.7, was nearly identical to

a reference background spectrum that had been measured prior to activation of the

sample. If measurable activation of the sample had occurred, the spectrum would have

contained new peaks that resulted from the decay of the fission fragments generated

by the laser activation of the sample. A small increase in Pb Kα and Kβ radiation,

from the shielding, was observed. No increase in the U Kα or Kβ radiation was

observed. This was attributed to the much larger mass of the shielding Pb (10’s of

kg), as compared to the small 238U sample.

4.6 Conclusion

The results of a systematic high resolution measurement of bremsstrahlung scal-

ing in ultrafast laser-solid interactions with thick targets have been presented. The

high resolution HPGe detector measurement was shown to be able to resolve nuclear

linewidths which may allow the detection technique to be used to measure short lived
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isomers and isotopes. The bremsstrahlung spectrum exhibited a characteristic two

temperature shape. The two temperatures, Tb1 and Tb2, were observed to scale with

the λ3 scaling. The effective bremsstrahlung temperature was not observed to depend

on the target material, which was corroborated with MCNPX simulations.

The MCNPX and PIC results confirm the overall population of electrons was well

characterized by an isotropic source with a high energy beam directed in the specular

direction. The importance of accounting for both the electrons that escape the target

and the electrons that propagate into the target, as well as the sensitivity of this mea-

surement technique to both populations, was shown through MCNPX simulations.

These results lead to the conclusion that the isotropic population produces the Tb1

temperature through the ponderomotive expulsion of electrons from the focal spot

of the laser, while the specularly beamed electrons experience chaotic acceleration,

as previously mentioned, and produce the Tb2 temperature. The scaling was also

observed to be slower than Wilks ponderomotive scaling, which is consistent with

theoretical works that postulate lower temperatures [83] [82] [121] [71].

The electron directionality, along with the higher observed intensity scaling than

Beg scaling, suggest a significant difference between the coupling of laser energy into

electron motion for picosecond and femtosecond duration interactions. This also sug-

gests that the discrepancy between femtosecond and picosecond electron directions

can be attributed, in part, to the specular acceleration mechanism, which can not

be supported during picosecond duration interactions due to the distortion of the

critical surface. Additionally, the presence of a higher temperature scaling, con-

sistent with previous femtosecond laser interactions, suggests further studies of the

bremsstrahlung scaling at higher intensities may yield higher temperatures than pi-

cosecond lasers.

This has several implications for homeland security applications. The specularly

directed beam suggests the optimal location of a interrogation target is along the
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specular direction. Additionally, since the electrons accelerated in this direction leave

the solid target it may be possible to optimize the bremsstrahlung conversion efficiency

by placing thin high Z targets in the path of the electrons. Activation of 238U, which

requires >4 MeV photons, was not observed. Increasing the number of higher energy

photons would require higher laser intensity, without reducing the repetition rate,

which should be possible with laser systems in the near future.
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CHAPTER V

Proton Acceleration from Structured Targets

5.1 Introduction

Understanding the propagation of energetic electrons from short-pulse laser matter

interactions with solid density targets is critical for particle accelerator applications.

The electron induced sheath field, as described in Section 2.3.1, has been observed

to extend millimeters from the interaction point in foil targets[122]. As the sheath

extends across the target surface the field strength decreases. Confinement of the

sheath to a target with a limited surface area has the potential to increase the field

strength, and therefore the proton energies. The effect of three dimensional target

perturbations on the electron sheath and proton acceleration was investigated through

the use of foil, grid, and wire targets using HERCULES.

Mass limited targets have previously been used increase proton energies by de-

creasing the volume of the target and thereby increasing the hot electron density

within the target. Refluxing, or recirculation, of electrons in thin foils has been

shown to increase electron [123] [124] and proton energies [125] [126]. Computational

studies have also predicted new acceleration mechanisms in spherical mass limited

targets leading to the generation of quasimonoenergetic proton beams [127] and elec-

tron beams [128]. While it is straightforward to simulate an isolated, limited mass

target, it is quite difficult to reproduce this situation experimentally. To date, ap-
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proaches have included suspending small targets on glass stalks [129] [130] or ultrathin

wires[131], and using micron scale droplets[132][133][134].

In short pulse interactions hot electrons primarily move along surfaces, as a result

of confining electric fields, and lose energy to the fields. Computational studies have

investigated the effect of mass limited targets on proton energies for pulse durations

long enough to allow transversal electron recirculation [135] leading to enhanced ion

acceleration from additional acceleration of electrons. Improved conversion efficiency

[131] and enhanced proton energies have been observed in experiments [136] with laser

pulse durations of 100’s of fs. For laser pulse durations of 10’s of fs enhanced proton

energies have been predicted as a result of the concentration of hot electrons [137].

However, this has not been observed experimentally [138], which has been attributed

to preplasma formation effects on small targets due to insufficient laser contrast [139].

While the benefits of mass limited target would be highly desirable, the use of

more traditional targets would be beneficial for applications. Here we consider the

effect of controlling the surface area of the targets, without limiting the target mass

through isolation, and observe the effects of the changing the ratio of the surface area

to the target volume.

5.2 Experimental Setup

The experiment was performed using the HERCULES laser facility at the Univer-

sity of Michigan. The chamber schematic is pictured in Fig. 5.1. The laser delivered

1.7 (±0.2) J to the target in a 2.7 µm FWHM focal spot via an f/3 off-axis parabolic

mirror. This resulted in an average on-target intensity of 7.6×1020 W/cm2 (a0 = 19).

A near diffraction limited spot size with a Strehl ratio of 0.6 - 0.8 was attained by

using a deformable mirror (Xinetics) and a Shack-Hartmann wave front sensor. The

HERCULES laser operates at a 0.1 Hz repetition rate, although the experiment was

conducted at 0.01 Hz.
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Figure 5.1: HERCULES solid target area chamber schematic. Plasma mirrors were
not used in this experiment.

In this experiment three target geometries were investigated. The effect of dif-

ferent target shapes was measured by varying the target geometry while maintaining

the approximate target thickness. The three targets were selected to approximately

maintain the target thickness. The foil target was 12.5 µm thick copper. The mesh

target was a square copper grid target purchased from SPI supplies (SPI# 2140C).

The mesh had a 62 µm pitch with 8 µm bar width and was measured to be 9 ±1

µm. The wire target was 15 µm diameter copper. Transverse alignment of the mesh

and wire targets required few micron precision to overlap the focal spot and the 8 µm

width mesh bars. This was accomplished by imaging the location of the focused low

energy regenerative amplifier laser seed pulse on the target.

The primary ion diagnostic was CR-39 located normal to the target on the rear

side. Mylar filter stacks were used to measure proton flux in multiple energy bins,

allowing the measurement of a proton energy spectrum. Each bin acted as a high

pass filter yielding a proton signal above the energy cut-off. CR-39 was placed at
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distances of 1 or 5 cm from the target to measure the proton beam profile or 45 cm

from the target to measure the energy and flux.

Cu Kα emission from the targets was imaged using a spherically bent Quartz[2131]

crystal with a 2d = 3.082Å lattice spacing. The crystal, which had a 400 mm bending

radius, was placed 242 mm from the target and produced an image at 1260 mm,

yielding a magnification of 5.2. An Andor iKon-M BR-DD was used to detect the

imaged photons. The CCD had 13 µm pixels and a quantum efficiency of 45% at

the Cu Kα energy. The imaging system was aberration limited to a resolution of 15

µm with a 25.4 mm aperture. The absolute photon yield was calculated using the

manufacturer specified CCD response and crystal’s integrated reflectivity.

5.3 Ion Acceleration and Electron Dynamics

The Cu Kα images measure the relative magnitude and location of hot electrons

within the target material as shown in Fig. 5.2 (a)(b)(c). The total Cu Kα flux

was remarkably consistent between targets, varying from 9.5 × 109 to 1.07 × 1010

photons in the three images in Fig. 5.2, which is consistent with laser shot-to-shot

fluctuations. The total conversion efficiency into Cu Kα was 1×10−5, consistent with

previous results [140] [141]. The observation that the spatial extent of the Cu Kα was

approximately equal for each target indicated the hot electrons lost their energy to

field, as opposed to collisions within the target.

Previous studies of the effects of reduced volume on Cu Kα yield have shown a re-

duction in Kα yield for lower volume targets [142] [143]. This was partially attributed

to broadening and shifting of the Kα emission as a result of heating. However, this

was observed for longer pulse durations (10 ps) and higher pulse energies (>75 J) than

in the present experiment, for the same volume targets, which would lead to more

target heating. A reduced Kα signal was not observed for the investigated targets,

indicating the target heating was insufficient to alter the Kα emission.
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The confinement of Kα signal in the mesh and wire targets led to a higher signal

density since approximately the same total Cu Kα signal was observed for the targets

with smaller surface areas. The vertically integrated profile (d) of the images shows

the wire and mesh are very similar since they have the same horizontal profile. The

mesh target has higher signal at the vertical segments and lower signal in between, but

yielded approximately the same overall signal. This was an important result because

it showed the conversion efficiency of electrons into each target was approximately

the same and that any difference in the proton signal was a result of how the electrons

were confined to the target and then influenced sheath fields.

The proton spectra, shown in Fig. 5.3, were well characterized by exponential fits.

The lines of best fit were Yfoil = 3× 108 × exp−0.496∗E, Ymesh = 6× 106 × exp−1.238∗E,

and Ywire = 3×109×exp−2.481∗E, where E was the energy of the protons. The effective

temperature of the spectra increased as the target volume was reduced from the foil

to the mesh to the wire. This result indicated that as the electrons were confined to

a smaller target the field strength increased, accelerating protons to higher energies.

While the effective temperature demonstrated a clear trend, the total proton flux

was lowest for the mesh target and approximately equivalent for the foil and wire

targets. As the surface area of the target decreased it was expected that, while the

sheath fields were stronger in magnitude, the overall area, and thus the number of

accelerated protons would decrease. While this partly explains the mesh data, a

reduced flux was not observed for the wire target. The expected reduction in flux

for the wire target was counteracted by an azimuthal magnetic field which created

a line focus in the proton spatial distribution, as shown in Fig. 5.4 (b). The line

focused protons were observed 1 cm and 5 cm from the target, with the same 7o

full-width-full-angle vertical divergence. This focused divergence was considerably

smaller than the full beam 54o full-width-full-angle divergence for the protons that

were not focused. It was also much smaller than the 40o full-width-full-angle proton
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Figure 5.2: Cu Kα images of (a) wire (b) mesh and (c) foil targets. The confinement of
electrons due to the target geometry leads to strong electron currents that illuminate
the target. Vertically integrated profiles of the images (d) show how the signal is
distributed. Dashed lines represent the scaled simulation results and show excellent
agreement.
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Figure 5.3: Ion spectra from (triangle) wire (square) mesh and (circle) foil targets.
The values represent the flux of protons above the threshold energy for the filter stack.
The slope of the lines of best fit decreases from the foil to mesh to wire target. The
dashed portions of the fits continue to fluxes higher than the saturation point of the
CR−39 detector.

beam observed from flat targets. The focused protons were sampled for the energy

spectra.

The target mesh pattern was observed in the proton flux on CR-39 placed 1 cm

behind the target, as shown in Fig. 5.4 (a). This image was interesting because it

confirmed that the electrons that produced Cu Kα on neighboring segments of mesh

around the focal spot were also accelerating protons. Additionally, it confirmed that

the extent of the Cu Kα signal was approximately the extent of the sheath field that

contributes to proton acceleration.
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Figure 5.4: Microscope image of CR−39 located 1 cm from a mesh target (a) showing
mesh pattern in the proton distribution. Scan of CR−39 from a wire target (b)
showing a line focusing feature in the proton distribution 1 cm behind the target.
The orientation of the focused line was perpendicular to the orientation of the wire
target. This feature was also observed 5 cm behind the target with the same angular
divergence.

5.4 Simulations

To help understand the experimental results simulations were performed for two

different target geometries using the hybrid Vlasov-Fokker-Planck code, Fido [121].

Excitation of K shell vacancies was calculated from collisions between the fast electron

population and the background fluid [144]. The simulation domain consisted of a box

of dimensions Ly = 100 µm by Lx = 200 µm in an (x, y) 2D slab geometry. The

copper targets were represented by piecewise hyperbolic tangent functions. The initial

temperature of the bulk target was kBTe = 400 eV. A cut-off was introduced such

that ln Λei = 2 if the calculated value would be less than 2. The boundary conditions

were reflecting and the last few grid points had an exponentially increasing step size.

An isotropic population of electrons were injected into a 5 µm region at the center

of the domain with a full width at half maximum temporal duration of 40 fs. The

electron beam momentum distribution was defined as in ref. [121] with p a shifted

Gaussian with center momentum p0 =
(√

1 + a2
0 − 1

)
2mec

2/3 [80]. a0 was chosen

to be representative of a laser with an intensity of 2× 1019 W cm−2, but with a larger

focal area in order to match the laser energy from the experiment, with the injected

electron beam number density being calculated using the effective laser energy with
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Figure 5.5: Data from Vlasov-Fokker-Planck simulation for representations of (a,c)
wire and (b,d) mesh targets. The (a,b) magnetic fields are shown at 500 fs and the
(c,d) electric fields are shown at 600 fs . Arrows indicate the direction of the electric
fields.

an assumed 0.3 absorption fraction.

An azimuthal magnetic field was observed around the wire target, as seen in Fig.

5.5 (a). The field switched orientations around the interaction point due to the change

in current directions. This field geometry was consistent with the observed proton

focusing. In the grid target azimuthal fields were also observed. However, the crossing

segments broke up the collective focusing structure.

The spatial extent of the fields was also observed to be consistent between the

wire and the mesh, as observed experimentally. The wire target electric field strength,

shown in Fig. 5.5 (c), peaked at 2.9 × 1011 V/m, while the mesh target maximum,
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shown in Fig. 5.5 (d), was only 2.2 × 1011 V/m. The higher wire field strength

was consistent with the experimentally observed wire proton temperature increase.

The laminar field structure around the wire target led to efficient acceleration of

protons. The low proton flux from the grid targets could be partially attributed to

the complex field structure, around the intersection points, which could accelerate

protons in a wider divergence angle than the other two targets.

5.5 Conclusions

In conclusion, proton acceleration has been studied using structured targets with

reduced surface areas. All targets were observed to produced nearly the same total

Kα photon yield over the approximately the same spatial extent, indicating the hot

electrons were slowed by the fields. Hot electron density increased as the target surface

area was reduced and was correlated to an increase in the temperature of the accel-

erated proton beam. The relative field strength observed in simulations confirmed

the higher proton energy from the wire target was a result of the increased electric

field strength. The profile of the grid target was observed in the accelerated proton

beam profile and confirmed that protons were accelerated from the same regions that

produced Kα photons.

The low proton flux observed with mesh targets was attributed to the complex

field structure around the intersection points, and the reduced target surface area.

Focusing of proton beams was observed from the wire target. Simulations suggest the

focusing was the result of azimuthal magnetic fields that resulted from the surface

current. In the grid target the field symmetry was broken by the crossing segments

and no focusing was observed.

These results have several potential implications for laser plasma accelerators.

The increased proton energies, without the use of complex mass limited targets,

could be used to enhance proton energies without the need for higher energy lasers.
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The focusing effect could lead to higher proton beam flux, which could lead to more

efficient proton accelerator applications. The use of targets with small surface areas

pairs well with femtosecond lasers which typically achieve high focal intensity through

sharp focal optics and few micron scale focal spots.
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CHAPTER VI

Neutron Generation

6.1 Introduction

Homeland security applications require neutrons with energies of a few MeV to

15 or 20 MeV due to the (n, f) cross sections for fissile, fissionable, and naturally

occurring materials, as shown in Fig. 6.1. Neutron beams with these energies also

have applications in neutron radiography [145], imaging [146], and fast neutron ther-

apy [147]. Many previous experiments have demonstrated the production of neutrons

from laser based acceleration mechanisms, but they have typically been conducted

at high laser energy, 10’s to 100’s of Joule, low repetition rate facilities, producing

very low time averaged fluxes. In this chapter, the production of neutrons with the

relatively high repetition rate HERCULES laser system at ultra-high intensities is

reported [148].

Previous work has investigated neutron generation using 2
1d(d,n)3

2He reactions (D-

D) [59],[149],[150], as well as 7
3Li(p,n)7

4Be reactions (P-Li)[55], [57], and, more recently,

7
3Li(d,n)8

4Be reactions (D-Li)[56]. The (D-Li) reaction has a large positive Q value (15

MeV) that upshifts the neutron spectra but requires the acceleration of deuterons into

Li instead of protons. This can be accomplished through acceleration of deuterons

from the bulk of a deuterated target[56], however surface contaminants, which do not

contain deuterons, tend to be preferentially accelerated over bulk ions. This effect
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Figure 6.1: The (n, f) cross sections for common fissile, 235U (blue) and 239Pu (black),
fissionable, 238U (green), and naturally occuring, 208Pb (red), materials. The opti-
mum neutron interrogation energy is above the fissionable material threshold energy,
MeV’s, and below the naturally occurring materials, 10’s of MeV.

can be harnessed through the introduction of additional surface contaminants which

contain deuterium[151]. In this chapter the results from two methods of introducing

deuterated surface contaminants are presented and show it is possible to efficiently

accelerate an ion beam in which deuterons comprise >99% of the accelerated light

ions and yield ≤ 3 (±1.4)×106 neutrons/sr with energies up 16.8(±0.3) MeV[152].

6.2 Experimental Setup

The experiment was performed using the HERCULES laser facility at the Univer-

sity of Michigan. The chamber schematic is pictured in Fig. 6.2. The laser delivered

1.1 (±0.4) J of P-polarized light to the target in a 1.3 µm FWHM focal spot via

an f/1 off-axis parabolic mirror. This resulted in an average on-target intensity of

2 × 1021 W/cm2 with a normalized vector potential of a0 = 30. A near diffraction

limited spot size with a Strehl ratio of 0.6-0.95 was attained by using a DM (Xinetics)

and a Shock-Hartmann wave front sensor. The HERCULES laser operates at a 0.1
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Figure 6.2: HERCULES solid target area chamber schematic. nToF plastic scintilator
location is not to scale.

Reaction Reaction Equation Target and Catcher Q Value
(D,D) 2

1d+2
1 d→3

2 He+1
0 n 1.5(±0.5) mm CD 3.27 MeV

(P,Li) 1
1p+7

3 Li→7
4 Be+1

0 n 100 nm (C2H4)n + LiF −1.64 MeV
(D,Li) 2

1d+7
3 Li→8

4 Be+1
0 n 3 µm Mylar with (C8D8)n Paint + LiF 15.03 MeV

(D,Li) 2
1d+7

3 Li→8
4 Be+1

0 n 800 nm Al with D2O Ice + LiF 15.03 MeV

Table 6.1: Nuclear reactions and target configurations investigated on HERCULES.
The (D,D) reaction used the thick target material for the deuteron source and con-
verter. The other reactions used thin target and a LiF catcher.

Hz repetition rate, although the actual experiment was conducted at 0.01 Hz due to

the need to record data between shots.

In this experiment three nuclear reactions for neutron production, D-D, P-Li,

and D-Li, were investigated using four different schemes. The reactions and target

configurations are summarized in Table 6.1. The D-D reaction was investigated using

bulk targets that were made from compressed Deuterated Polyethylene (CD), mainly

comprising carbon and deuterons, with a thickness of 1.5(±0.5) mm. The thick CD

target was simultaneously a source of accelerated deuterons and converter deuterons,

which simplified the target configuration. The dominant acceleration mechanism

was ponderomotive front-side acceleration [54], due to the target thickness, which
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was confirmed by the observation of neutrons which came from deuterons that were

accelerated into the target.

Higher ion energies and improved ion flux can be achieved on femtosecond lasers by

exploiting TNSA [153] with thin film targets, as discussed in Section 2.3.1. Parylene

100 nm thin film targets were used to produce TNSA protons for the P-Li reaction

in a pitcher-catcher configuration with an 0.85 cm thick LiF catcher. The negative

Q value of the P-Li reaction downshifted the neutron spectra which was obviously

undesirable. In contrast, the D-Li reaction had a positive Q value which upshifted the

neutron spectra but required the acceleration of deuterons into the catcher instead of

protons. This required the introduction of a deuteron rich contaminant layer on the

surface of the target which was accomplished through two methods. In one technique,

developed by Willingale et al.[58], denoted D-Li (Paint), 3 µm Mylar targets were

“painted” with a solution of deuterated polystyrene deposited on the rear surface

with a thickness <1 µm. Since this could not be done in situ this technique had

the disadvantage of allowing sufficient time for a proton rich contaminant layer to re-

form over the painted area, which inhibited deuteron acceleration [154]. Alternatively,

using an approach pioneered by Hou et. al. [151] and further developed by Morrison

et al. [155] and Maksimchuk et al [156], denoted D-Li (Ice), 800 nm Al targets were

cryogenically cooled to allow D2O water vapor to freeze to the target front and rear

surface, forming a deuteron rich contaminant “ice” layer which was proton free and

dramatically enhanced the number of accelerated deuterons. The accelerated ions

propagated into a 0.65 mm LiF catcher and the geometry of the pitcher-catcher

configuration is pictured in Fig. 6.3.

Aluminum targets were selected for their high thermal conductivity. The alu-

minum targets were held between two pieces of perforated aluminum metal sheets

with 0.8 mm thickness. The target holder was cooled to 120o − 180o K which is

significantly below the sublimation point of water, 200o K, at the pressure of the
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Figure 6.3: Sketch of the target and catcher configuration. The laser interacted with
the front side of the foil and accelerated ions from the rear surface, through TNSA,
into the catcher. The deuterated ice contaminant layer formed a distinct layer over
the hydrogenous contaminants for the D-Li (Ice) target, but was not as well defined
for D-Li (Paint).

target vacuum chamber 1× 10−4 Torr. The aluminum targets and target holder were

selected for their high thermal conductivity.

The primary neutron diagnostics were the nToF detectors discussed in Section

3.4.3. A combination of φ16 cm and φ35.5 cm scintillators, made from EJ-204 and

EJ-200 plastic, respectively, were used. The smaller detectors were placed at distances

of 2.75 and 3.28 meters from the target, while the larger detector was located at 9.45

meters. The nToF detectors were located in the forward direction within a 15o cone.

A large number of relativistic electrons were accelerated during the ultra-intense laser

interaction which generated a temporally short duration pulse of high energy photons.

It was necessary to shield the detectors with 10 and 5 cm of lead, respectively, in

order to prevent the prompt photon signal from obscuring the neutron signal. The

scintillator time constants, 1.8 and 2.1 ns, respectively, in combination with the long

stand off distances were optimized to allow the nToFs to measure neutrons with

energies from 0.5 to >20 MeV, depending on the strength of the photon flash. A
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Figure 6.4: Raw nToF data from the detector at 9.45 m with (black) and without
(grey) the LiF catcher. In the absence of the catcher the photon flash showed a
smooth decay without additional scattered photon signal or signal reflections. The
LiF catcher shot showed a neutron signal clearly separated from the photon flash.

sample nToF spectrum is shown in Fig. 6.4.

The neutron flux was also measured with BD-PND bubble detectors from Bubble

Technology Industries. The bubble detectors contained droplets of super heated liquid

which were suspended in an inert gel. Incident neutrons could deposit energy which

served as a nucleation trigger causing the liquid to vaporize and create a bubble. The

detectors were sensitive to neutrons with energies between 200 keV and 15 MeV with

an approximately flat response. Their small size allowed them to be placed around

the target chamber and enabled directionality measurements of the neutrons.

The ion diagnostic was a TP ion spectrometer [99] in the rear target normal

direction, as discussed in Section 3.4.2. A micro-channel plate was used as the primary

detector, but CR−39 was also used to differentiate between ion species with the same

charge to mass ratio by observing different pit sizes from the different ion species.
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(a) (b)

Figure 6.5: Simulated and experimental ion (a) and neutron (b) spectra along the tar-
get normal direction. (a) The P-Li spectrum from 100 nm Parylene shows the highest
energies and total flux. The D-Li (Ice) spectrum shows higher flux and energy than
D-Li (Paint). The simulated D-Li (Ice) spectrum was calculated with exponential
scale length Ls = 100nm and scaled to match the experimental flux. (b) Experimen-
tal spectra from the four reactions. Monte Carlo simulated neutron spectra are shown
for comparison.

6.3 Ion Optimization

The ion spectrum from each reaction was measured before the LiF catcher was

placed in the ion beam. The spectra are shown in Fig. 6.5 (a). The deuteron

spectrum for the bulk D-D reaction could not be measured because the deuterons

did not penetrate through the target and therefore could not be detected. The P-Li

Parylene target showed an exponentially decaying proton spectrum, consistent with

TNSA acceleration, that exhibited a maximum detectable proton energy of 11 MeV

on the TP. The deuteron spectra for the paint and ice covered D-Li targets were

measured along the ion q/m = 1/2 parabola, however the charge to mass ratio of

deuterons is the same as C6+ and O8+, which means the three traces can overlap.

The presence of accelerated deuterons from the D-Li (Paint) targets was confirmed

with CR-39.

For the D-Li (Ice) targets, the effect of the deposited heavy ice layer is shown in

Fig. 6.6 for two sequential shots. The clean spectra, without any heavy ice layer,
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demonstrates the acceleration of protons and a small amount of C6+, with the raw

TP trace shown in Fig. 6.6 (c). The deuteron traces from the D-Li (Ice) target

demonstrated nearly total suppression of the proton acceleration, with deuterons ac-

counting for 95% of the measured light ion flux, as shown in Fig. 6.6 (d), consistent

with previous results [155][156]. The deuteron signal in the D-Li (Ice) target was not

contaminated with the small C6+ signal as Fig 6.6 (d) demonstrates a complete sup-

pression of carbon ions and no oxygen charge states above O6+. This result indicates

the D2O ice forms a continuous layer over the normal hydrogenous contaminants since

TNSA preferentially accelerates the outermost ions [154].

The purity of the accelerated deuterons from D-Li (Ice) targets, quantified as

a ratio of the number or total energy of protons to deuterons above 0.5 MeV, was

measured for a variety of timing delays between the pulse of heavy water and the

arrival of the laser pulse at the target. As seen in Fig. 6.7, the deuteron beam purity

increased over 100 fold when the timing delay was decreased from 10 seconds to 0.35

seconds and the number ratio peaked at 250(±100). The error bars represent the

range of values measured from multiple shots with the same experimental conditions.

Shorter time delays could not be tested due to laser safety concerns related to reflected

light back into the amplifiers from the heavy water vapor in the target chamber. The

D2O sample was 99.8% pure yielding, in the absence of additional H2O contaminants,

a maximum ratio purity ratio of 500 which was only a factor of two higher than

observed in the experiment. The energy ratio showed the same trend, but peaked at

620(±250) which demonstrated that the proton impurities in the heavy water were

not preferentially accelerated by the TNSA field. The re-appearance of protons in the

ion signal for later times is believed to be due to sublimation of the heavy water ice

layer as well as re-deposition of hydrogenous contaminants on the surface of target.

Experiments conducted at target holder temperatures of 140o(±15) K appeared to

exhibit parasitic target acceleration effects from the accumulation of ice on the target,
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Figure 6.6: Ion spectra for q/m = 1 (a) and q/m = 1/2 (b) parabolas from sequential
laser shots on 1.8 µm Al foil. (a) Proton spectra for the clean and ice covered target
case showing suppression of the protons by the ice layer. (b) q/m = 1/2 trace showing
a small amount of C6+ contaminant for the clean case. The ice case shows no O7+

which precludes the presence of O8+ contamination in the trace, as well as no carbon
traces, yielding a pure deuteron signal. The corresponding Thomson parabola traces
for the clean (c) and ice (d) case demonstrate the dramatic increase in deuteron signal.
Additionally, the heavy ion traces change from carbon (c) to oxygen (d). The dashed
lines indicate the location of the proton and q/m = 1/2 parabolas.
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Figure 6.7: The purity, measured as the ratio of the number (black) or total energy
(grey) of deuterons to protons observed on the TP with energies above 0.5 MeV, for
different timing delays between the heavy water spray and laser pulse arrival on D-Li
(Ice) targets. The number ratio approaches the limit of 500, due to impurities in
the D2O, for short timing delays. At longer timing delays the deuterated ice layer
sublimates and is contaminated with hydrogenous materials.

however this issue was avoided by operating at target holder temperatures closer to

170o K. Deuteron acceleration was observed for temperatures as high as 190o K.

6.4 Neutron Measurements

The experimental single shot neutron spectra are shown in Fig. 6.5 (b). The

highest observed total neutron flux for each reaction is listed in Table 6.2. The

uncertainty in the neutron flux measurements was a result of uncertainty in the total

flux of the calibration source, allowing an accurate comparison between reactions.

The D-D spectra from bulk CD was sharply peaked around the characteristic 2.45

MeV peak energy indicating the deuteron energies were very low (<<2 MeV) and

produced no upshifted neutrons. This was consistent with the expected deuteron

energies from the bulk target. The P-Li spectra demonstrated the same exponential

shape that was observed in the proton spectra, albeit with energy downshifted by a
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Reaction Max Flux (n/sr) Max En

(D,D) 1.2 (±0.6)×105 2.6± 0.05 MeV
(P,Li) 1.0 (±0.5)×107 7.2± 0.8 MeV
(D,Li) 4.6 (±2.2)×105 12.6± 0.3 MeV
(D,Li) 3 (±1.4)×106 16.8± 0.3 MeV

Table 6.2: Nuclear reactions and target configurations investigated on HERCULES.
The highest measured flux was observed for the P-Li reaction, and the highest energy
was observed for the D-Li (ice) reaction.

few MeV, corresponding to the negative Q value of the reaction. The P-Li neutron

spectra also had the highest flux of 1(±0.5)×107 n/sr, which was consistent with the

high P-Li proton flux. The directionality of the neutrons, as measured by the bubble

detectors, showed that the P-Li reaction neutron flux in the forward direction was 6.2

(±3.7) times higher than the flux at 90o. The D-Li spectra exhibited a complex shape

and significant upshift from the deuteron spectra up to energies of 12.6(±0.3) and

16.8(±0.3) MeV for painted and ice targets, respectively. The conversion efficiency

of laser energy to ion energy was 1%, using a measured FWHM beam divergence of

20o, and the ions were converted into neutrons with an efficiency of 0.1% yielding

a total conversion efficiency of laser energy to neutron energy of 1(±0.5) × 10−5.

Numerical simulations were performed in order to better understand the shape of the

D-Li spectra.

6.5 Simulations

The D-Li (Ice) target spectrum was simulated using a 2D relativistic PIC code to

simulate the high-intensity laser-plasma interaction [157],[158]. The laser parameters

were selected to match the HERCULES laser conditions, as previously described. The

800 nm Al target was modeled as having a 5 nm CH contaminant layer on the rear

surface which was overlaid by a D2O layer with an exponential density profile of the

form ρ = A× exp(−z/Ls), where A was the solid target density and Ls was the scale
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length. This profile was used to account for the heavy water sublimation, which has

been shown to have an approximately exponential density profile [159]. Simulations

with 0.02<Ls<1 µm were performed in an attempt to match the experimentally

measured deuteron spectra. The best match was observed for a scale length Ls = 0.1

µm, shown in Fig. 6.5 (a), which was adopted for further simulations. The D-

Li (Paint) target spectrum used the experimentally measured deuteron spectrum to

calculate the neutron production.

The neutron production was simulated by modeling the passage of the deuteron

spectra through a semi-infinite LiF converter. A 3D Monte Carlo code [65], mentioned

in Section 3.5.1, was used to calculate the angularly resolved neutron spectra based

on the double-differential cross section d2σ/dΩdEn[108]. The simulation results are

shown in Fig. 6.5 (b) along with the experimental data. The experimental D-Li (Ice)

target spectrum showed reasonable agreement with the PIC simulation results with

Ls = 100 nm. The spectra from D-Li (Paint) target exhibited a dual peak shape that

resulted from two neutron production mechanisms.

Neutron reactions are broadly classified into compound or direct reactions[160].

In compound reactions the incident particle and target nucleus form an intermediary

compound nucleus which then decays into the reaction products. The interaction

occurs over time scales of as short as 10−20 seconds[161] and is elastic in the absence

of excited nuclear states. Alternatively, direct nuclear reactions occur when only one

or a few of the incident particle or nucleus nucleons are involved in the interaction.

One type of direct nuclear reaction is the deuteron stripping reaction [162]. In this

reaction the loosely bound deuteron passes by a target nucleus at a distance where one

of the deuteron nucleons interacts with the nucleus through the strong force, while the

other nucleon continues without the transfer of significant energy or momentum[163].

The time scale for this interaction is 10−22 seconds, which is considerably faster than

that of the compound reaction. Two important characteristics of this reaction are
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the anisotropic distribution of the stripped nucleon, which is tightly confined to the

forward direction, and the nucleon energy, which is centered around half the original

deuteron energy. The energy spread, Ed/2±∆E, and angular spread of the neutron

beam are

∆E = 1.5 (εdEd)
1/2 (6.1)

∆θ = 1.6

(
εd
Ed

)1/2

(6.2)

where εd = 2.18 MeV is the deuteron binding energy, and Ed is the deuteron

energy. The stripping reaction is not likely for deuteron energies below the binding

energy as the nucleons rotate faster than the interaction time scale, preventing a di-

rect reaction from occurring. In both types of reactions the initial and final products

are the same, however, in the stripping reaction, energy and momentum conserva-

tion require that the target nucleus contains the additional energy which would be

transferred to the neutron in a compound reaction. This energy can be stored in the

angular momentum and excited nuclear levels of the target nucleus.

In the experimental neutron spectrum, the low energy peak was a result of the

stripping reaction [163], producing neutrons with energies Ed/2, while the high energy

peak was the result of the high Q value producing neutrons with energies ≈ Ed +

Q. The spectrum from the D-Li (Ice) target demonstrated that as the deuteron

energy increased the stripping reaction dominated and the spectral shape became

exponential. The slope predicted by simulations was close to that observed in the

experiment. However, the location of the high-energy peak in the simulations was

about 5 MeV higher than the one measured by the nToF detectors.
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Figure 6.8: MCNPX simulated nToF energy spectrum for mono-energetic neutron
beams of 2.54, 10, and 15 MeV for the 9.45 m detector. The downshift is a result of
the LiF converter as well as the chamber and shielding materials between the detector
and neutron source.

In order to investigate this discrepancy, the effect of neutron scattering, as a

result of the vacuum chamber wall, Pb shielding, etc., on the nToF measurements

was evaluated using MCNPX[119]. The downshift in the apparent nToF energy, due

to the increased path length and lower energy of the scattered neutrons, resulted in

33% of the highest energy neutrons being downshifted less than 0.15 MeV, and >50%

less than 0.5 MeV below their original energy. The simulated nToF spectra are shown

in Fig. 6.8. The observed experimental neutron peak was close to what would be

expected from very low energy deuterons, as measured in the low energy exponential

peak of the deuteron spectra, producing neutrons that receive 13.4 MeV of the energy

from the nuclear reaction, as necessary for momentum conservation, and were then

downscattered by about twice the amount predicted by MCNPX. This discrepancy

could be explained by inaccuracies in the MCNPX Pb elastic neutron cross-sections

at higher energies and the double-differential D-Li neutron production cross section

in the Monte Carlo code, or by lower experimental deuteron energies than predicted

by the idealized uniform exponential scale length.
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Figure 6.9: 238U gamma spectrum measured with the HPGe detector. The fission
fragment 94Sr is typically used as an indicator of the fission of 238U. The location of
the 94Sr line at 1384 keV is indicated with an arrow, and was not observed in this
spectrum.

6.6 Activation

A 200 g 238U sample was placed 1 cm behind the LiF converter to irradiate the

sample with D-Li (Ice) neutrons. A maximum of 10 shots were allowed by the Uni-

versity of Michigan Occupational Safety and Environmental Health service due to

concerns about activating the Uranium. The activated 238U sample was measured

with the HPGe detector for a 12 hour period with spectra recorded every 10 min-

utes. The spectra were evaluated for the presence of decay peaks from 238U fission

fragments at time periods of 1 − 2 half-lives, where the fission fragment decay peak

would have the strongest signal-to-background. No activation peaks were observed,

as shown in Fig. 6.9.

6.7 Conclusions

In conclusion, the production of neutrons through charged particle acceleration

and nuclear reactions at an intensity of 2 × 1021 W/cm2 has been demonstrated on
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a femtosecond laser system with a 0.1 Hz repetition rate. The P-Li reaction demon-

strated the highest flux, 1(±0.5)×107 and directionality, 6.2(±3.7) times higher in the

forward direction than at 90o, due to the high initial proton energy achieved with the

Parylene 100 nm target. The D-Li (Ice) target produced 3 (±1.4)×106 neutrons/sr

with energies up 16.8(±0.3) MeV. The measured neutron flux from the HERCULES

laser system was comparable to the flux produced by commercially available D-D

generators but in a directional beam with a picosecond bunch duration and higher

energies. These results could also be scaled to higher repetition rates, as high intensity

lasers that could produce 100 times the time averaged neutron flux of HERCULES

are now becoming commercially available.

The D-Li (Ice) target improved both the energy and total number of deuterons

and neutrons, as compared to the D-Li painted target. This was attributed to the

uniform deposition of deuteron contaminants on the target surface. Deuterons were

shown to comprise >99% of the accelerated light ions for short timing delays between

the deposition of the ice layer and the arrival of the laser pulse. For longer time delays

the heavy ice layer sublimated and became contaminated with hydrogenous material,

which led to a decrease in the efficiency of the deuteron acceleration. Neutron spectra

were observed that were consistent with theoretical and simulated predictions, but

with a lower maximum neutron energy, attributed to discrepancies in the differential

cross section and overestimates of deuteron energies due to idealized target conditions.

An attempt to activate 238U was unsuccessful. The detection threshold for the

experiment was about 100 counts in a single fission fragment decay peak on the

HPGe detector. This would require about 1× 104 fissions in the sample, as the 238U

fission fragment spectrum spans multiple isomers with atomic mass numbers from 90

to 150. While this was potentially possible with 10 shots of 106 neutrons per shot,

experimental considerations, such as laser fluctuations, and the small uranium sample

size, led to no measureable activation of the sample. An increase in the number of
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allowed shots, neutron flux, or sample size may have led to measurable activation.

124



CHAPTER VII

Conclusions and Outlook

7.1 Summary and Discussion

The preceeding chapters have described a systematic investigation of the gener-

ation of radiation with laser plasma accelerators, with a particular emphasis on the

potential for applications in active interogation. The research was performed on the

CPA HERCULES and λ3 lasers at the University of Michigan CUOS. These lasers

represent a substantial step towards the high repetition rates needed for pratical

applications.

The high repetition rate of λ3 also allowed a novel high resolution measurement

of the generated bremsstrahlung radiation. This diagnostic was used to better un-

derstand the electron behavior, particularly inside of the target. A high energy

electron beam was observed in the specular direction, which produced high energy

bremsstrahlung photons in the same direction. The beam was observed to scale with

energy at a higher rate than Beg scaling. This highlights a significant difference be-

tween picosecond and femtosecond scale laser plasma interactions, both in terms of

directionality and energy scaling.

The acceleration of protons, using structured targets, was then reported. It was

observed that reducing the target surface area constrained the TNSA electron sheath

to a smaller area, increasing its strength, and leading to high temperature proton
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Table 7.1: A comparison of various laser neutron sources, highlighting the HER-
CULES results presented in this thesis. The other results are reproduced from Table
1.4

Publication Flux Laser Intensity Reaction Year
(n/sr/shot) Energy (J) (W/cm2)

Lancaster et al.[55] 4× 108 69 3× 1019 7Li(p,n)7Be 2004
Higginson et al.[56] 8× 108 360 2× 1019 7Li(d,n)8Be 2011
Higginson et al.[57] 1.4× 108 140 1× 1020 7Li(p,n)7Be 2010
Willingale et al.[58] 5× 104 6 (1− 3)× 1019 2d(d,n)3He 2011
Norreys et al.[59] 7× 107 20 1× 1019 2d(d,n)3He 1998

Roth et al.[60] 1× 1010 80 (1− 10)× 1020 9Be(d,n)10B 2013
Pretzler et al.[61] 3× 108 0.2 1× 1018 2d(d,n)3He 1998
Fritzler et al.[62] 1× 106 62 2× 1019 2d(d,n)3He 2002
Ditmire et al.[63] 5× 109 30× 103 n/a 2d(d,n)3He 1999
Taylor et al.[64] 1× 1019 2× 106 n/a 3t(d,n)4He n/a

beams. While this had been predicted for mass limited targets, structured targets

are easier to manufacture and position, and showed the same behavior. A magnetic

focusing effect was observed with wire targets, which led to a higher proton flux.

Laser plasma accelerator based neutron production was then reported, examining

the use of protons and deuterons to generate neutrons though fusion reactions. The

efficient acceleration of deuterons was shown using cryogencially cooled targets with

a layer of deuterated ice. The HERCULES neutron flux, per joule, as found in Table

7.1, compare favorably with previous neutron results, especially when considering the

higher repetition rate of the HERCULES laser. At a repetition rate of 0.1 Hz, the

HERCULES results are also comparable to traditional D-D neutron generators but

with higher energy neutrons in a directional beam.

7.2 Future Applications and Outlook

While attempts to demonstrate the activation of 238U were unsuccessful, there are

several avenues of research that can be investigated in the future. Increased electron

energy from λ3, which would be possible with increased laser intensity, would greatly
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increase the probability of detecting (γ, f) in 238U. The λ3 laser energy has recently

been increased from the 12 mJ used in the experiment described here, to 20 mJ.

Further increases in the laser energy, and futher pulse compression [164], could lead

to increased laser intensities and electron energies, while maintaining the 500 Hz

repetition rate.

The opportunity also exists to systematically study the conversion of electrons

in the specular beam into bremsstrahlung through the use of converter materials.

Due to the geometery of the electron beam, bremsstrahlung was mainly generated

in the chamber wall. It may be possible to more efficiently generate bremsstrahlung

by placing high Z materials of varying thickness in the beam path. The potential to

independantly optimize the electron acceleration and the bremsstrahlung conversion

would be extremely useful in applications.

The main obstacle to activation of 238U with neutrons was the limitations placed

on the experiment. The limited number of shots, as well as the material limitations,

decreased the probability of observing activation. Fissile material, which could be

activated by the substantial number of low energy neutrons, would be highly desiri-

ble for proof-of-principle experiments. This, of course, was not possible. The use

of 238U could still have been possible under optimum conditions, especially with an

increased number of shots. Alternatively, improvements to the laser plasma accel-

eration scheme, such as those observed with structured targets, could also improve

activation probability.

Independent of the above discussion, significant hurdles remain before laser plasma

based active interrogation could be implemented for homeland security. The use of

high repetition rates lasers requires targets that can be rapidly ”refreshed” between

laser shots in order to maintain a clean interaction surface. In the experiments de-

scribed in λ3 this was accomplished by rotating a disk shaped target. Other efforts

have investigated the use of tape drives [165]. Tape drives offer the advantages of thin
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targets, more typical of laser plasma accelerators than thick disks, and arbitrarily long

lengths, leading to an increased number of possible shots.

Improvements in laser technology will also lead to improvements in laser plasma

accelerators. Commercial lasers similar to HERCULES are now available with 10

Hz repetition rates. New approaches to generating high intensities are also being

investigated. The use of fiber lasers, which can support very high repetition rates

due to the efficient removal of heat through the large surface area of fiber amplifiers,

has been proposed as a path to high average power laser plasma accelerators [166].

This type of laser would require the combintation of multiple fiber lasers into a sin-

gle energetic pulse, which is typically difficult due to phase matching requirements.

However, some applications do not require coherent recombination of the pulses[167],

which may simplify the path towards implementation of such a laser.
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APPENDIX A

Photon Pile-Up

In the single-hit regime photon pile-up is governed by Poisson statistics which

predict the probability of the detector recording n events is

P (n) =
x̄ne−x̄

n!
(A.1)

where x̄ is the theoretical photon interaction probability. This probability, which

is the first moment of the distribution, or x̄ =
∑∞

n=0 nP (n), was higher than the

experimental detection probability x. The experimental detection probability, which

was defined previously as the percentage of laser shots that resulted in a detection

event on the HPGe detector, was described by x =
∑∞

n=1 P (n) due to photon pile-up.

The percentage of detection events observed by the detector that were the result of

piled-up photons was calculated by summing the probabilities of the detection of more

than one photon, or
∑∞

n=2 P (n). This predicted 8% to 13% of the detected photons

were due to pile-up for the detection event probabilities used during this experiment.

In order to evaluate the effect of the piled-up photons on the temperature measure-

ment, a Monte Carlo code was written to simulate the observed photon spectrum. A
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dual exponential spectrum was used to model a true bremsstrahlung spectrum, f(E),

of the form

f(E) = (1− e−E/Fe/A)× e−E/Eb (A.2)

where Eb was the bremsstrahlung temperature, Fe = 50 was selected to match

the e-folding of the steel transmission curve above 50 keV, and A = e−1 was chosen

to eliminate photons below 50 keV, such that the low energy (< 100 keV) photon

attenuation was accurately modelled. Using this distribution, a spectrum was nu-

merically compiled by modelling the probability of the photon producing a “hit” on

the detector using the probabilities P(n). Single photons hits, P(1), were simply

recorded in the correct detector channel. Pile-up hits, P(2,3), were combined with

one or two additional photons, repetitively, which were separately generated with the

same bremsstrahlung spectrum, and then recorded in the channel corresponding to

the sum of their energies. This effect alone caused the effective temperature to be

overestimated by ≤ 15%.

However, the HPGe detector has a detection efficiency that strongly depends on

the absorption process, which becomes dominated by the Compton effect over 200 keV

[9], and drops in efficiency. In the Compton range, the HPGe detector was measured

to have an intrinsic collection efficiency of 0.05 × E(MeV )−0.9. In order to recover

the true photon spectrum, the intrinsic efficiency of the detector was used to correct

the signal. Specifically, the measured spectra were divided by the intrinsic efficiency

of each channel, which increased the number of counts in the high energy channels

by up to 8 times more than the 100 keV channel. This efficiency correction, when

combined with the pile-up effect, amplifies the effect of the piled-up photons, as they

are collected by the detector with high efficiency, and then recorded in high energy
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channels which are corrected for low efficiency.

In order to correctly model this process, each detected photon was multiplied

by the detection efficiency. Specifically, each detection event incremented the corre-

sponding channel by

C(Eγ1 + ...+ Eγn) =

∑z=n
z=1 D(Eγz)

n
(A.3)

where Eγz is the energy of the photon γz, C(E) is the channel corresponding to

the summed energies of the detected photons and D(E) is the intrinsic detection

efficiency of the detector for a photon of energy E. After the spectrum was compiled

in this fashion, the intrinsic efficiency was used to correct the signal, so that it could

be compared to the experimental spectra. As a result of this numerical modelling it

was observed that the experimentally measured temperature overestimated the true

temperature by 35% to 70% over the true temperature range of 100 keV to 1 MeV.

This relationship was found to follow T = 1.1×T 0.92
exp where T was the true temperature

and Texp was the experimentally observed temperature. This relationship was used

to correct the observed temperatures used for the scaling and directionality analysis.
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