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If the whole universe has no meaning, we should never have found out that it has no

meaning: just as, if there were no light in the universe and therefore no creatures

with eyes, we should never know it was dark. Dark would be without meaning.
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ABSTRACT

In the first half of my dissertation, I study the effects of type Ia supernova (SNIa)

systematic errors on dark energy using current data from the Supernova Legacy Sur-

vey. I consider how these systematics affect constraints from combined cosmological

probes that include SNIa, baryon acoustic oscillations, and the cosmic microwave

background. The temporal evolution of dark energy is described in terms of principal

components of the equation of state, though simpler models are examined as well.

The SNIa systematics are found to degrade the generalized figure of merit, which

characterizes constraints in the multidimensional dark energy parameter space, by a

factor of three to four. Nevertheless, overall constraints obtained on more than five

principal components are very good with current data, even with the inclusion of

known systematics.

In the second half, I perform tests of the consistency of the standard wCDM

model in the framework of General Relativity by separating out the information be-

tween geometry and growth of structure. Each late-universe dark energy parameter

is replaced with two parameters: one describing geometrical information, and the

other controlling the growth of structure. I use data from all principal cosmological

probes to constrain both geometry and growth; of these, SNIa, baryon acoustic os-

cillations, and the cosmic microwave background primarily measure geometry, while

cluster counts, weak gravitational lensing shear, and redshift space distortions con-

strain both geometry and growth. Both geometry and growth separately favor the

ΛCDM cosmology with the matter density relative to critical ΩM ' 0.3. Allowing

ix



the split equations of state to vary separately results in good agreement with the

ΛCDM value (w ' −1), with the major exception of redshift space distortions which

favor less growth than in ΛCDM at 3− σ confidence, favoring instead wgrow ' −0.8.

This preference by redshift space distortions for less growth has been noted previously

and may be due to systematics, or be explained by the sum of the neutrino masses

higher than that expected from the simplest mass hierarchies, mν = 0.45 eV. Even

in the new, larger parameter space the constraints are tight due to the impressive

complementarity of different cosmological probes.
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CHAPTER 1

An Introduction to Dark Energy

1.1 The Accelerated Expansion of the Universe

The discovery of the accelerated expansion of the universe in 1998 [62, 65] was a

major and unexpectd paradigm shift in cosmology. Since then, there have been many

people working on this mystery, trying to understand what is causing it, and to learn

its properties.

The acceleration is generally attributed to dark energy (DE), a mysterious repul-

sive force that acts on the largest scales in the universe, driving all things apart. The

nature of DE is, however, a complete mystery. The most widely accepted model is

that of the cosmological constant, denoted ΛCDM (where Λ refers to the cosmolog-

ical constant and CDM refers to cold dark matter, another necessary ingredient for

this model). In this model a constant term in Einstein’s equations gives rise to this

acceleration, most often attributed to the vacuum energy of space itself.

There are many other models that try to expand on the idea of the cosmological

constant: quintessence models, for example, introduce a uniform scalar field that

permeates the universe. This scalar field is what causes the expansion, leading to

similar effects predicted by ΛCDM. However, unlike the cosmological constant, the

scalar field is dynamical, and has an equation of state w = p/ρ (where p is the pressure

associated with dark energy and ρ its energy density) different than that of Λ. The
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scalar field dynamics dictates how the energy density of the field varies as a function

of scale factor. Within the ΛCDM model, the equation of state has a value of w = −1,

leading to exponential growth. With a scalar field this quantity can take on a variety

of values, and even itself change as a function of time. Determining these properties

of the DE has been the goal of many researchers, as knowing them can give us insight

to the nature of DE.

However, there are alternate theories that also attempt to explain the accelera-

tion of the expansion without the introduction of a new mysterious force. Many of

these theories achieve this by altering the equations that govern the gravitational

interactions between massive bodies. In these theories, the force of gravity is scale-

dependent, that is, the strength and nature of gravity can change from solar-system

and galaxy scales to scales the size of the universe. The exact methods in which this

is accomplished differ between specific models (for an excellent review of models of

modified gravity, see Reference [46]), but they all lead to the same effect: a repulsive

force that is responsible for the expansion of the universe on the largest scales while

that same force is screened in some manner at cluster-sized scales and below.

Because the acceleration of the universe started relatively recently, any explana-

tions have to be able to explain the cause of the acceleration as a function of time. DE

provides this explanation with ease: because the energy density of other constituents

of the universe (such as matter and radiation) decreases as the universe expands, the

constant (or nearly constant, in the case of non-Λ DE) energy density of DE implies

that its fraction of the total energy density of the universe increases as a function

of time. This in turn means that for the late universe, the effects of DE become

more prominent, whereas in the early universe, they are virtually nonexistent. These

two different eras of time (the early universe which is mostly radiation and matter

dominated, and the DE-dominated late universe) provide us with the ability to test

different aspects of DE, whether it be finding out how different systematics can affect
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the constraints on the various cosmological parameters or figuring out if the various

effects attributed to dark energy give consistent results to these parameter values.

1.2 Cosmological Distance and Growth

Dark energy influences two main aspects of the universe; as mentioned before, it is

thought to be directly responsible for the acceleration of the expansion of the universe,

and thus the distances involved between objects in the universe. DE is also understood

to influence the rate of structure formation in the universe, since the expansion also

affects how quickly matter can clump together and form the large structures in the

universe, such as galaxies and clusters of galaxies. In the following subsections, I

will give a brief overview of the equations that form a basis for the probes described

in Chapter 2. These equations can be broadly split into two categories: those that

determine cosmological distances and the geometry of the universe, and those that

describe the growth of structure, a distinction that will be useful in Chapter 4.

1.2.1 The Hubble Parameter and the Comoving Distance

Measuring cosmological distances is a tricky task; as the universe expands, the coordi-

nates that we use to measure distances expand along with it. Fortunately, there ways

to take the expansion into account. If we assume that the universe is homogeneous

and isotropic, we can use the Friedmann-Robertson-Walker (FRW) metric

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dΩ

)
, (1.1)

where k is the curvature of the universe, assumed to be k = 0 (flat universe) through-

out this work. The FRW metric also introduces the scale factor a(t). The scale factor

measures the amount the universe has grown after a certain amount of time t, and is

defined to be a(t = t0) = a0 = 1 today.
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A useful relation is how the scale factor is related to redshift z

a =
1

1 + z
. (1.2)

This relation allows us to measure the redshift of a distant object and determine how

large the universe would have been at the time. This in turn provides us with the

age of the object when it emitted the light used to measure the redshift. Because of

this relation, these two parameters (a and z) will be used interchangeably throughout

this work.

Because we have assumed homogeneity and isotropy, the universe will expand

uniformly. A uniformly expanding universe is described by the Hubble Law

v = Hd, (1.3)

where H(a) ≡ ȧ

a
is the Hubble parameter, which determines the rate of expansion

and is defined in terms of the scale factor and it’s time derivative, v is the velocity of

an object’s recession and d it’s distance. Combining this equation with the Friedmann

equation, which determines the rate of expansion based on the energy density of the

constituents of the universe, gives

H2(a)

H2
0

= ΩMa
−3 + ΩRa

−4 +
ρDE(a)

ρcrit

, (1.4)

Here H0 = H(a = 1) is the Hubble Parameter today, ΩM is the ratio of energy density

of matter (dark matter and baryonic matter) today relative to the critical density of

the universe ρcrit, ΩR the energy density of radiation today relative to the critical

density, and ρDE(a) is the energy density of DE as a function of scale factor, the form

of which varies on the specific parameterization used for the equation of state w(a). In

the case where w = constant, the DE term simplifies to ρDE(a)/ρcrit = ΩDEa
−3(1+w),
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where ΩDE is the fraction of the energy density of DE today to the critical density.

Since the sum of the energy density fractions must equal 1 in a flat universe, we are

able to substitute ΩDE = 1− ΩM − ΩR, simplifying our analysis.

There are a few things one can take from Eq. 1.4. First, the relative energy density

of radiation scales as a−4 meaning that as the universe grows, it decreases rapidly,

to the point where in late times, radiation has a negligible effect on the expansion

of the universe. This allows us to drop the radiation term whenever we calculate

late-universe effects (0 . z . 2). In addition, since the energy density of radiation is

very small compared to the matter energy density, ΩR can be safely dropped from the

ΩDE substitution, leaving ΩDE = 1−ΩM , further simplifying the analysis. However,

for the early universe, radiation plays a critical role in determining the rate of the

expansion, and a radiation term must be present for a correct calculation. The energy

density of matter also decreases as the universe expands, but at a slower rate than

radiation, resulting in matter always having a non-negligible effect on the expansion

of the universe and thus should never be dropped.

The most interesting term, however, is the dark energy term. If we assume for

this discussion that w = −1, then the energy density of DE remains a constant

throughout the entire history of the universe. As radiation and matter densities

continue to decrease while the universe expands, dark energy slowly plays a much

more dominant role in the expansion, to the point where it is the dominant contributor

in determining the future of the universe. In the far future, the effects of matter and

radiation become negligible and DE dominates, resulting in exponential growth of the

universe. However, in the early universe the DE contributions are negligible, meaning

that any constraints on DE parameters are best done with late-universe effects.

The inverse of the Hubble parameter can be combined with the speed of light to

give a distance, the Hubble distance cH(z)−1. Integrating this distance over redshift

(and setting c = 1) gives the total distance that light has traveled over that period.
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This is the comoving distance

r(z) =

∫ z

0

dz′

H(z′)
, (1.5)

where the initial redshift z = 0 corresponds to today. The comoving distance is the

basic measure of distance in cosmology, with all the other types of distances being

directly proportional to it. It is also the basis, along with the Hubble distance, for

the basic unit of volume, the comoving volume.

1.2.2 The Growth Parameter and the Matter Power Spectrum

As mentioned earlier, dark energy also influences the formation of structure in the

universe. There are several ways to quantify this; one way is by using the growth

parameter D(a) ≡ δ(a)/δ(0), where

δ =
ρ− ρ̄
ρ̄

(1.6)

is the perturbation away from the average energy density ρ̄. This parameter provides

us a measure of the amount of structure formation in the Universe; the larger the

perturbations away from the mean are, the larger δ(a) (and thus D(a)) become,

meaning more matter has collapsed into gravitationally bound objects resulting in

more structure. The growth of structure, assuming general relativity, is governed by

the differential equation

δ̈ + 2Hδ̇ − 4πGρMδ = 0, (1.7)

where once again the dots are derivatives with respect to time, H is the Hubble

parameter, ρM is the energy density of matter, and G is Newton’s constant. A quick

overview of this equation tells us a few things. First, the amount of structure in

universe depends on the amount of matter as well as the strength of gravity. Second,
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the expansion of the universe (seen here as the Hubble parameter) acts as a drag force

against the rate of the growth of structure. The faster the rate of expansion, the less

structure is formed, while a slower expansion rate necessarily allows for more growth

of structure.

We can rewrite Eq. (1.7) as derivatives with respect to a (or, in this case, ln(a), the

characteristic scale of e-folding). It is also useful to divide out the solution to a pure

matter universe (δ ∼ a) by rewriting it in terms of the growth factor g(a) = D(a)/a

[53]. Making these changes, the differential equation becomes

g′′ +

[
5

2
− 3

2
w(a)ΩDE(a)

]
g′ +

3

2
[1− w(a)] ΩDE(a)g = 0, (1.8)

where the primes denote derivatives with respect to ln(a), w(a) is once again the

equation of state of DE and (under the assumption that w(a) = w is constant)

ΩDE(a) =
(1− ΩM)a−3(1+w)

ΩMa−3 + (1− ΩM)a−3(1+w) + ΩRa−4
. (1.9)

Another way to measure the amount of structure in the universe is by use of the

linear matter power spectrum P (k), which is the Fourier transform of the correlation

of density perturbations ξ(r12) = 〈δ~r1δ~r2〉. This quantity measures the amount of

power as a function of scale; in other words, it measures the typical size of separation

of structures in the universe and the size of those structures. A larger value of P (k)

for a wavenumber k (which is a measure of scale) means there’s more power for that

scale, and thus there is a higher chance of seeing large clumps of matter separated by

that length scale. The power spectrum has the form

P (k, z) = P (k)D2(z) = A
4

25

1

Ω2
M

(
k

kpivot

)ns−1(
kc

H0

)4

T 2(k)D2(z), (1.10)

where A and ns are the amplitude (or normalization) of the power spectrum and the
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spectral index respectively, kpivot is the wavenumber at which ns is computed, D(z) is

the growth parameter, and T (k) is the matter transfer function. The transfer function

quantifies the difference in growth for perturbations at different scales; perturbations

that enter the horizon in the radiation dominated era do not grow until the universe

beomes matter dominated. As a consequence, the power spectrum is initially con-

stant, but then scales as P (k) ∝ kns−4 for wavenumbers greater than kequality, the

wavenumber of the mode that enters the horizon when radiation and matter densities

are equal. This work makes use of the the Eisenstein and Hu matter transfer function

for cold dark matter and neutrinos [24] which is faster to calculate compared to a

more exact form calculated by codes such as CAMB. The differences in the results found

in this work were compared and found to be very small between both codes.

1.3 Summary

In this chapter, I presented the observation of the acceleration of the expansion of

the universe, and listed a few prominent explanations for this acceleration, the most

widely accepted of these being dark energy. I discussed some of the effects the ex-

pansion has on properties of the universe, namely distances and growth of structure,

and detailed some of the basic quantities used in cosmology to parameterize distances

and the growth of structure.

The dark energy explanation to the expansion of the universe has many points

to its favor, mainly in that it explains the expansion very well, though at the cost

of a new form of energy that is not well understood. The simplest model, that

of the cosmological constant (ΛCDM), describes DE as the vacuum energy of the

universe. Even so, there are a variety of tests that can be done to better understand

the properties of DE. The remainder of this work will focus on two of these tests:

understanding how systematics affect the constraints on dark energy parameters and

performing a consistency test of dark energy from its effects on geometry and growth.
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CHAPTER 2

Probes of Dark Energy

2.1 Probing the Effects of Dark Energy

Ever since the discovery of the acceleration of the universe, there has been much

work put into how we can measure the effects of that expansion, and in turn, of

dark energy. Over the years since this discovery, many probes of dark energy have

been proposed. Each of these probes measures various physical processes or effects

in the universe that are theorized to be affected by dark energy [26, 84]. Because

these different probes all measure different things, the various probes have different

strengths and weaknesses. For example, Type Ia Supernovae are excellent probes

of cosmological distance, but are rather poor at measuring the amount of structure

formation in the universe. On the other hand, clusters of galaxies can be used to very

effectively measure the growth of structure in the universe, though their sensitivity

to cosmic distances is relatively minor. The combination of various probes allows

us to place very powerful constraints on many cosmological parameters much more

effectively than a single probe ever could. These tight constraints in turn can help us

better understand the true nature of dark energy.

In this chapter, I will review various probes of dark energy, and explain the various

strengths and weaknesses of each. In addition, I will go over how to calculate the

theoretically expected values of these probes, which can then be compared to mea-
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surements of those same values to place constraints on the cosmological parameters

used to describe the models.

2.2 Type Ia Supernovae

The measurements of Type Ia supernovae (SNeIa) magnitudes have a long and storied

history with DE; it was this probe that first gave us concrete evidence for DE [62, 65].

Since then, there has been an explosion of SNeIa data. One of the main advantages of

SNeIa is that each individual supernova provides a distance measurement, as opposed

to some of the other probes which require large numbers of galaxy or galaxy clusters

to obtain a few data points. This, paired with the fact that supernova errors are small

compared to some of these other probes, allow SNeIa to be a very powerful probe of

DE. Their main downfall is that in order to get these small errors, the spectra of a

potential SNeIa must be taken, which is a long and expensive process. In addition,

SNeIa are subject to a large number of systematic uncertainties, and understanding

these uncertainties, many which are dependent on the particular survey, is often a

tedious process.

SNeIa are standardizable candles; their intrinsic magnitude varies predictably from

one to another, allowing these variations to be easily corrected. Measuring a SNeIa’s

magnitude determines its distance. Along with its redshift measurement, this allows

us to measure cosmological distances as a function of redshift.

A SN’s theoretically expected magnitude is given by

mth = 5 log10(H0DL(z)) +M, (2.1)

where H0 is the Hubble parameter today, M is a nuisance parameter that com-

bines the absolute magnitude and the Hubble parameter[62] and is marginalized
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analytically[18, 74] 1, and the luminosity distance is

DL(z) = (1 + z)r(z), (2.2)

where r(z) is the comoving distance. Because they only measure a cosmological

distance, SNeIa are purely a geometric probe.

As previously mentioned, there are slight variations between SNeIa that can affect

their intrinsic magnitude. Some SN take longer to reach peak brightness and fade.

This broadening of a supernova’s light curve is parameterized by a quantity known

as the supernova’s stretch s. Supernovae with broader light curves, and thus a higher

stretch, tend to be brighter that those with a lower stretch. Likewise, the color C

that the supernova exhibits also affects its intrinsic magnitude; bluer supernovae are

brighter than their redder counterparts. To correct for these effects, the corrected

magnitude is written as [29, 18, 68]

mcorr = mB + αs(s− 1)− βCC (2.3)

where mB is the measured magnitude of the supernova, and where two new parame-

ters, αs and βC, the stretch and color nuisance parameters respectively, are introduced.

These parameters allow variations in the amount of correction from these two effects,

and must be marginalized for the final constraints of the cosmological parameters.

Because these distances all measured during the late universe epoch once DE

becomes dominant, the effects of the radiation density on the magnitude are negligible.

Thus, SNeIa only constrain two cosmological parameters, ΩM and w, in addition to

the nuisance parameters.

1There are actually two different values of M used in this work. A mass cut of the host-galaxy
determines which M value applies for a specific supernova (here a mass cutoff value of 1010M� is
used). This is meant to correct for properties of the host galaxy and is empirical in nature. These
M’s are both marginalized over analytically when the likelihood is computed. For more details see
the end of section 3.3.1. Mention of the second M parameter is suppressed for simplicity.
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2.3 Cosmic Microwave Background

The hot and cold spots of the cosmic microwave background (CMB) anisotropies

provide an excellent standard ruler: their angular separation, combined with the

sound horizon distance that is independently well-determined, provide a single yet

accurate measurement of the angular diameter distance

DA(z∗) =
1

1 + z∗
r(z∗), (2.4)

where z∗ is the redshift of recombination. In addition to being very high-redshift,

this measurement of DA(z∗) is different from the low-redshift measurements in that

the physical matter density ΩMh
2 is essentially fixed by the CMB peaks’ height.

This is why the CMB peaks location measurement curves in a very complementary

degeneracy direction in the ΩM–w plane to low-redshift measurements of distance[27].

For simplicity and clarity, only the geometrical measurement provided by the CMB

acoustic peaks’ locations is used for this work. The integrated Sachs-Wolfe (ISW)

effect of dark energy which imprints on the CMB angular power spectrum on very

large scales adds very little to the information due to large cosmic variance. The CMB

is also sensitive to the physics at the last-scattering surface [88], but the late universe

is what is mostly of interest, when dark energy becomes significant. Therefore, the

aforementioned angular diameter distance to last scattering with ΩMh
2 fixed is used,

referred to as the “shift parameter” R and defined as

R =
√

ΩmH2
0 (1 + z?)DA(z?). (2.5)

Since R is essentially the angular diameter distance to the last scattering surface with

ΩMh
2 fixed [27], it is only sensitive to two parameters: ΩM and w.
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2.4 Baryon Acoustic Oscillations

Baryon acoustic oscillations (BAO) are features that arise from the propagation of

sound waves in the early universe. The distance the sound wave can travel between

the Big Bang and the present – the sound horizon – imprints a characteristic scale

not only in the CMB fluctuations, but also in the clustering two-point correlation

function of galaxies. Roughly speaking, the two-point correlation function is enhanced

by ∼ 10% at distances of ∼10H−1
0 Mpc. This latter distance is, similar to the CMB

case, well-measured by early-universe parameters (ΩMh
2 and ΩBh

2 principally), but

its observation is dependent on the expansion history of the universe between the

time that light from the galaxies is emitted and today.

Specifically, for two galaxies at the same redshift separated by comoving distance

r and seen with separation θ, we have θ = r/DA(z) which enables measurement of

the angular diameter distance given a known separation between galaxies. Similarly,

two galaxies at the same angular location separated by redshift difference ∆z are

separated by comoving distance r, with the two quantities related via ∆z = rH(z).

The information from these transverse and radial sensitivities for a sample of galaxies

can be conveniently combined into a single quantity, a generalized distance DV (zeff)

[23] of the form

DV (z) =

(
(1 + z)2D2

A(z)cz

H(z)

)1/3

. (2.6)

This can then be compared to the size of the comoving sound horizon rs(zd) at the

redshift of the baryon drag epoch (the redshift at which baryons are released from

the Compton drag of photons after they’ve been decoupled)

rs(z) =
1√
3

∫ 1/(1+z)

0

da′

a′2H(a′)
√

1 + 3ρB/4ρR
. (2.7)

BAO surveys measure the ratio rs(zd)/DV (zeff) (or its inverse), effectively measuring
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how much the characteristic size of the separation of objects has changed over time.

It is important to note that a radiation term must be included in H(a) in Eq.

(2.7). A useful relation for this is ΩR = ΩMaeq, where aeq = 1/(1 + zeq) is the scale

factor at matter-radiation equality and

zeq ≈ 25000 ΩMh
2

(
TCMB

2.7K

)−4

. (2.8)

The ratio of the baryonic density to the radiation density can be approximated as

3ρb
4ργ
≈ 31500 ΩBh

2

(
TCMB

2.7K

)−4

a. (2.9)

A value of TCMB = 2.7255K is used in this work.

The redshift of the drag epoch can be approximated by the fitting function[24]

zd =
1291(ΩMh

2)0.251

1 + 0.659(ΩMh2)0.828

[
1 + b1(ΩBh

2)b2
]
, (2.10)

where

b1 = 0.313(ΩMh
2)−0.419

[
1 + 0.607(ΩMh

2)0.674
]

(2.11)

b2 = 0.238(ΩMh
2)0.223. (2.12)

Some surveys provide a different measured quantity, the acoustic parameter A(z),

defined as

A(z) =

√
ΩMH2

0DV (z)

z
. (2.13)

This quantity provides similar information as DV (z), but is usually not combined with

the sound horizon, and allows for tests involving a geometric-only quantity, without

having to depend on early universe physics.
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2.5 Cluster Counts and Mean Masses

The number of galaxies in a galaxy cluster, or cluster count, provides an excelent

measurement of both growth of stucture and expansion history [4]. The number

density of galaxies within the cluster is a proxy to the mass of the cluster, providing

a measure of the growth of structure of the universe. Cluster counts also provide a

measure of the geometric properties of the universe, since the number of galaxies in a

cluster also depends on the volume of space they take up, a geometric property. The

product of the number density and the volume gives the number of galaxy clusters in a

mass and redshift range, which we can use to compare to cluster count measurements.

Deriving the number of galaxy clusters within a mass and redshift range is fairly

straightforward: we begin with the aforementioned product

N = nV, (2.14)

where n is the number density and V the volume. We can expand both of these terms

to include a range of masses and redshifts

N =

∫
dM dz

dn

dM

dV

dz
ψ(M) φ(z), (2.15)

where dV/dz is the comoving volume per redshift, dn/dM is the halo mass function,

and ψ(M) and φ(z) are top-hat binning functions that determine the mass and red-

shift range of a particular bin, respectively. In other words, ψ(M) = 1 if M is in a

defined redshift bin and 0 otherwise; likewise for φ(z).

A cluster’s mass and redshift are not directly observable; instead, we rely on the

cluster mass-richness relation and the photometric redshift of the member galaxies.

With this in mind, we can define P (N200|M) to be the probability that a cluster of

mass M has a richness N200. Here richness refers to the number of galaxies within a
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galaxy cluster, and the boundary of the cluster is defined to be a sphere of a radius

such that the average matter density within the sphere is 200 times that of the mean

density of matter (i.e. for an overdensity ∆ = 200). Likewise, we define P (zphoto|z) to

be the probability that a cluster at a true redshift z is measured to have a photometric

redshift of zphoto. Redefining ψ = ψ(N200) and φ = φ(zphoto), the expected number of

clusters becomes

〈N〉 =

∫
dM dz

dn

dM

dV

dz
〈ψ|M〉 〈φ|z〉, (2.16)

which introduces the probability weighting functions

〈ψ|M〉 =

∫
dN200 P (N200|M)ψ(N200), (2.17)

〈φ|z〉 =

∫
dzphoto P (zphoto|z)φ(zphoto). (2.18)

Here P (zphoto|z) is modeled as a Gaussian distribution as discussed in Reference

[66]. Meanwhile, P (N200|M) is modeled as log-normal distribution, primarily because

lnN200 is expected to vary as a function of logM , so that lnN200 rather than N200 is

treated as the main parameter. The variation of lnN200 with logM is assumed in this

work to be linear, resulting in two free parameters. The variance of the distribution

is also unknown, and is also thus treated as free parameter. These parameters are

marginalized over in the analysis. More details about these functions will be provided

later.

In a similar fashion, we can define the expected total cluster mass for a given

richness and photometric redshift bin as

〈NM̄〉 = β

∫
dM dz M

dn

dM

dV

dz
〈ψ|M〉 〈φ|z〉, (2.19)

where the nuisance parameter β is introduced to take into account the uncertainty in

the calibration of mass.
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The comoving volume is simply

dV

dz
= Ωsky

c (1 + z)2D2
A(z)

H(z)
(2.20)

where there are two powers of the angular distance for the angular distances and one

power of the Hubble distance cH−1(z) for the radial distance. Ωsky is the solid angle

covered by the survey making the measurements.

For this work, the halo mass function used is the Tinker Mass Function [80]

dn

dM
= f(σ, z)

ρ̄M
M

d lnσ−1

dM
(2.21)

where ρ̄M = ΩM ρ̄crit is the energy density of matter, and f(σ, z) is a fitting function

f(σ, z) = A(z)

[(
σ

b(z)

)−a(z)

+ 1

]
e−c0/σ

2

. (2.22)

The redshift-dependent functions are defined as

A(z) = A0(1 + z)−0.14 (2.23)

a(z) = a0(1 + z)−0.06 (2.24)

b(z) = b0(1 + z)−α(∆) (2.25)

log10 α(∆) = −
(

0.75

log10(∆/75)

)1.2

(2.26)

and the coefficients {A0, a0, b0, c0} = {0.186, 1.47, 2.57, 1.19} for an overdensity ∆ =

200 [80].

The amplitude of matter fluctuations σ is defined as

σ2(R, z) =

∫
P (k, z)Ŵ 2(kR)d ln k (2.27)
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where Ŵ is a the Fourier transform of the real-space top hat window function

Ŵ (x) = 3 sin(x)− x cos(x)

x3
(2.28)

and P (k, z) is the linear matter power spectrum as defined in Eq. 1.10. The radius

R in Eq. 2.27 is a function of mass

R(M) =

(
3M

4πρ̄M

)1/3

(2.29)

Eq. 2.27 also allows for the definition of the parameter σ8 = σ(R = 8h−1Mpc, z = 0),

which for this work is considered a derived parameter.

As stated earlier, P (zphoto|z) is modeled as a Gaussian distribution [66]. In any

survey, an object located at a true redshift z is expected to be measured at a photo-

metric redshift equal to the true redshift, or 〈zphoto|z〉 = z. Thus, the functional form

for this distribution is

P (zphoto|z) =
1√

2πσ2
z

e
−(zphoto − z)2

2σ2
z . (2.30)

The value of the variance σ2
z depends on the specific survey used (Reference [66] uses

σz = 0.08).

In contrast, the probability of a certain richness given a mass P (N200|M) is a

log-normal distribution

P (N200|M) =
1

N200

√
2πσ2

NM

e
−(lnN200 − 〈lnN200|M〉)2

2σ2
NM . (2.31)

The expected value for the richness of a cluster given a mass is assumed to vary

18



linearly with log10M

〈lnN200|M〉 =

(
〈lnN200|M2〉 − 〈lnN200|M1〉

log10M2 − log10M1

)
log10M (2.32)

+
log10M2〈lnN200|M1〉 − log10M1〈lnN200|M2〉

log10M2 − log10M1

,

which simplifies to

〈lnN200|M〉 =
log10(M/M1)〈lnN200|M2〉 − log10(M/M2)〈lnN200|M1〉

log10(M2/M1)
(2.33)

Here M1 and M2 are masses defined during the analysis, which for this work are set

to M1 = 1.3 × 1014M� and M2 = 1.3 × 1015M�. 〈lnN200|M1〉 and 〈lnN200|M2〉 are

considered nuisance parameters, and are marginalized over during the analysis of the

cluster data. The parameter σ2
NM = Var(lnN200|M) in Eq. 2.31 is also considered a

nuisance parameter and marginalized during analysis.

2.6 Weak Lensing

Weak gravitational lensing, or weak lensing (WL), by the large-scale structure is an-

other powerful probe of the growth of structure in the universe. WL surveys measure

the shear of galaxies, that is, the amount a galaxy image is “stretched” due to the

lensing mass in front. The amount of shear also depends on the position of both the

object being lensed and the object doing the lensing. As such, WL is also sensitive to

geometric properties of the universe along the line of sight. Thus, WL is a great way

to measure both the geometric and growth effects of dark energy. By calculating the

two-point correlation function of these shears across the sky, we can extract useful

information about the both the large-scale structure and the expansion history of the

universe2.

2Many thanks to Dragan Huterer for writing the code used to analyze the two-point shear cor-
relation function for WL.
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The two-point correlation function of galaxy shear is given by [31]

χij± =
1

2π

∫ ∞
0

dl l P ij
κ (l) J±(lθ) (2.34)

where l is the multipole, J+(x) ≡ J0(x) and J−(x) ≡ J4(x) are the zeroth and fourth

order Bessel functions of the first kind, respectively, and i and j refer to the ith and jth

tomographic bin, respectively. In the Limber approximation, which only takes into

account modes perpendicular to the line of sight and is an excellent approximation

at scales of interest, the weak lensing convergence power spectrum at angular wave

number l is defined as

P ij
κ (l) =

∫
dz
r2(z)

H(z)
Wi(z)Wj(z)P

(
k =

l

r(z)

)
, (2.35)

where r(z) and H(z) are the comoving distance and Hubble parameter, respectively,

P (k) is the power spectrum, and the weight function Wi(z) is

Wi(z) =
3

2
ΩMH

2
0 qi(z)(1 + z). (2.36)

Here, the function qi(z) is the lensing efficiency, given by

qi(z) = r(z)

∫ ∞
z

dz′

H(z′)
ni(z

′)
r(z′)− r(z)

r(z′)
, (2.37)

where ni(z) is the distribution of the lensed galaxies in each redshift bin, normalized

to
∫
ni(z

′)dz′ = 1, and is provided by the survey taking measurements.

Special attention is required when modeling the power spectrum due to the small

angles that WL surveys probe, where we see strongly non-linear scale clustering [40].

To correctly take these effects into account, the updated halofit [78] prescription

for non-linear clustering is used.
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2.7 Redshift Space Distortions

Redshift space distortions (RSD) refer to the effect of how massive dark matter halos

affect the velocity distribution of galaxies within them and nearby. The galaxies’

radial velocities contribute to their measured redshift in a survey. Since galaxies

behind a halo tend to be moving towards the observer, their apparent redshift is

lowered by their peculiar velocity, resulting in an overall lower measured redshift.

A similar but opposite effect occurs for galaxies in front of the halo as they move

away from the observer. This change in redshift leads to an apparent compression of

clustering in the radial direction compared to the transverse directions, which does

not experience this effect. On smaller scales, the random directions of the galaxies’

peculiar velocities leads to a measurement of the so-called “Fingers of God” effect

[44], boosting the radial signal. Measuring this effect at different redshifts allows us

to place constraints on the growth of structure across cosmic history.

RSD measurements are particularly sensitive to the cosmological parameter com-

bination f(a)σ8(a), commonly written as fσ8. σ8(a) is the amplitude of matter

fluctuations at 8h−1Mpc, as defined earlier (though now at an arbitrary value of the

scale factor), and

f(a) =
d lnD

d ln a
, (2.38)

where D(a) is once again the growth paramter.

RSD measurements are also affected by the Alcock-Paczynski effect. When cal-

culating the correlation function which eventually lead to values of fσ8, a fiducial

cosmology is typically assumed to calculate the separation between galaxies in the

radial and transverse directions. Any differences in the assumed cosmology and the

cosmology of a test model results in a difference in the clustering of galaxies along

the line of sight compared to the transverse directions, or anisotropic clustering. To

account for this effect, the measurements the Hubble parameter H(z) for the radial
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direction and the angular distance DA(z) for the transverse direction are included in

the analysis either by the Alcock-Paczynski effect parameter

F (z) = (1 + z)H(z)DA(z)/c, (2.39)

or by including H(z) and DA(z) directly. Since these are distance measurements, the

Alcock-Paczynski effect allows RSD to probe geometry as well as growth.

2.8 Summary

In this chapter, I gave a brief overview of the probes used in subsequent chapters: type

Ia Supernovae, the cosmic microwave background shift parameter, baryon acoustic

oscillations, galaxy cluster counts, weak lensing shear two-point correlations, and

redshift space distortions. In addition, I explained whether the probes are sensitive

to the geometric properties of the universe, the growth of structure formation, or

both. I also presented the methods used to calculate the theoretically expectated

values and other quantities when given a set of cosmological parameters.

By measuring different effects, each of these probes provides a unique insight into

the workings of DE. As we will se in the subsequent chapters, by themselves, each

probe produces fairly weak constraints, given that certain probes are subject to var-

ious degeneracies in cosmological parameters. However, when combined, the various

probes break degeneracies and complement each other very well. For this reason,

much effort has gone into using various probes to provide different measurements, as

well as coming up with new probes that can break degeneracies and provide tighter

constraints. By combining these various constraints our knowledge of DE becomes

much stronger and brings us closer to understanding its properties and nature.
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CHAPTER 3

The Effects of SNe Systematics on DE Principal

Components

3.1 Introduction to Supernova Systematics

In this chapter, I study the effects of Type Ia Supernovae systematics on dark en-

ergy parameter constraints by including the covariance between SNeIa measurements.

This covariance, which primarily consists of systematic effects, have been quantified

in detail by Reference [18], and its inclusion weakens the constraints on dark en-

ergy parameters for simple parameterizations on the dark energy equation of state.

I study the effects of the systematics on a general model of DE described by the

principal components of the equation of state, though I first review the effects on

simpler models. The supernova data is combined with BAO and CMB data to break

degeneracies.

Many papers have studied the effects of systematics [86, 32, 47, 18], but they

typically limit their analysis to a constant equation of state w, or at the very least

have included the additional parameter wa to describe a simple scale-variation of the

equation of state. My goal here is to test the effects on as general a model of DE as

possible, using a description of ten or so parameters. The work here is complementary

to work done by References [59, 57] (see also [38, 83, 94, 92, 34, 43, 75, 72, 90]), which

studied constraints on general descriptions of DE using current data, but without
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studying the effects of systematics. Work done in this Chapter first appeared in

Reference [68].

3.2 Generalizing the Dark Energy Equation of State

The assumption that the dark energy equation of state w is constant throughout

time is a reasonable one for most purposes. Indeed, the most commonly accepted

model, ΛCDM, is described by a constant equation of state w = −1. However, it is

important to test even the most basic assumptions, and a very straightforward way

to do this is by allowing the equation of state to vary as a function of scale factor,

i.e. w = w(a). In fact, several dark energy theories predict a variation in the value

of w due to, for example, scalar field properties such as those found in quintessence

models. Thus, allowing a scale-varying equation of state provides an avenue that

allows us to potentially rule out ΛCDM in favor of competing theories.

More general models allow of more flexibility in the properties of DE we can test.

However, due to a larger number of parameters needed to fully define the model,

the ability to constrain it given a particular set of data is lower than a comparable

simpler model. Finding a useful parameterization for w(a) has been the subject of

many papers, and there have been some formulations that stand above the rest. In

the following subsections, I will detail some of the generalized parameterizations that

have been proposed for testing DE properties.

3.2.1 w0 and wa Parameterization of the Equation of State

Parameterizing the equation of state with only one parameter prevents us from know-

ing if its value has varied throughout the history of the universe. We can generalize
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Figure 3.1: Plot showing several functions of w(z) for various values of w0 and wa. The
functions are: (w0, wa) = (−1, 0) (Black), = (−1.2, 1) (Blue), = (−0.9,−0.5) (Red), =
(−0.6,−2) (Green). All of these model are found within the 68.3% contour after constraints
have been obtained (see Fig. 3.7). Note that all of the functions intersect around z =
0.2−0.3. This area is where most of the information from the data is found and so provides
the best constraining power for the value of w(z), a detail which is also apparent with the
principal component parameterization.

the equation of state slightly by introducing a scale dependence of the form [52, 15]

w(a) = w0 + wa(1− a) (3.1)

= w0 + wa

(
z

1 + z

)

where a is the scale factor and z is the redshift as described in Chapter 1, and w0 and

wa are cosmological parameters which describe the evolution of the equation of state

and will be constrained using cosmological data from surveys. In the ΛCDM model,

w0 = −1 and wa = 0. Several other functions using this parameterization are shown

in Fig. 3.1. The dark energy term from Eq. 1.4 takes on the form

ρDE(z)

ρcrit

= ΩDE(1 + z)3(1+w0+wa)e−3waz/(1+z) (3.2)
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There are several advantages to using this parameterization for the equation of

state. First, it allows us to test the scale-dependence (and thus time-dependence) of

the equation of state. It also reduces to the regular constant w for low redshifts, but is

still well behaved at high redshifts. Additionally, it is fairly accurate in reconstructing

many of the scalar field predictions for the equation of state, allowing for the testing

of quintessence models. And of course, it is still simple enough to be manageable.

3.2.2 Principal Components of the Equation of State

Principal components (PC) are a statistical tool that can be utilized to parameterize

the equation of state more generally. This allows for a detailed study of the variation

of the equation of state as a function of scale factor. The PCs form a complete set of

orthonormal basis vectors which combine linearly and give a very general parameter-

ization for w(z). Additionally, these PCs are ordered by increasing variance, so that

the first PCs would be constrained the most by the observational data. As such, only

the first few PCs from a total set are needed when placing constraints.

The PCs are precomputed using a Fisher matrix centered around a ΛCDM model

with ΩM = 0.25 [59], and the first 10 PCs are shown in Fig. 3.2; for more details on

the PC calculation, see Appendix A. The PCs combine linearly to form w(a), which

has the form [58]

w(a) = −1 +
N−1∑
i=0

αiei(a). (3.3)

Here ei(a) are the PCs, N is the total number of PCs used in a particular analysis,

and αi are the PC amplitudes whose values are constrained using data from surveys.

For the ΛCDM model, all αi = 0; these adopted as the fiducial values. The PCs

are then analyzed, along with the rest of the cosmological parameters and nuisance

parameters, to place constraints. In this work, only the first 10 PC amplitudes are

constrained; most of the data are not powerful enough or of high enough redshift to
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Figure 3.2: Plot of the first ten PCs in order (from bottom to top) of increasing variance.
The PCs were obtained using ΛCDM values, but with errors from real data; see Appendix
A for details. The PCs show us that most of the constraining power of the data is found
around z = 0.2− 0.3, similar to what was determined in the w0 − wa plot in Fig. 3.1.

constrain the rest of the amplitudes very well. These are kept at the fiducial values

during the analysis.

3.3 Data Sources

The main goal of this analysis is to test the effects of Type Ia supernova systematics

on constraints of the equation of state. This requires mainly testing the geometrical

properties of dark energy; thus, only cosmological probes that primarily test geomet-

ric properties of DE are included for this analysis. The data sources included are

the SNeIa magnitude measurements from the Supernova Legacy Survey (SNLS), a

combination of BAO data from a variety of surveys, and a measurement of the CMB
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shift parameter from the 7-year data release of the Wilkinson Microwave Anisotropy

Probe (WMAP7).

3.3.1 Supernova Legacy Survey

The Supernova Legacy Survey (SNLS) [18] has compiled a sample of 472 supernova

magnitude and redshift measurements from a variety of surveys, which include the

Sloan Digital Sky Survey (SDSS), several high-redshift SNeIa observed by the Hubble

Space Telescope (HST), low-redshift SNeIa data points from various ground-based

telescopes (Low-z), and SNLS itself. These data points are illustrated in a Hubble

diagram in Fig. 3.3 and summarized in Table 3.1.
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Figure 3.3: Plot showing a Hubble diagram of the 472 supernovae used in this work. The
error bars are from diagonal-only statistical errors. The black line shows a well-fitting
ΛCDM model.

Included within the SNLS dataset are the statistical errors for each supernova.

These errors form a diagonal covariance matrix of the form [18, 68]

Dstat
ii = σ2

m,i + α2
sσ

2
s,i + β2

Cσ
2
C,i + σ2

int +

(
5(1 + zi)

zi(1 + zi/2) ln 10

)2

σ2
z,i

+ σ2
lensing + σ2

host correction +DmsC
ii (αs, βC). (3.4)
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Source NSN Redshift range σint

Low-z 123 0.01− 0.1 0.1133
SDSS 93 0.06− 0.4 0.0989
SNLS 242 0.08− 1.05 0.0675
HST 14 0.7− 1.4 0.0815

Table 3.1: Summary of SN Ia observations included in the SDSS catalog, showing the num-
ber of SNe included from each survey and the approximate redshift ranges. Also included
are the intrinsic scatters of each survey, denoted σint.

Here, σm,i, σs,i, σC,i, and σz,i are the statistical uncertainties for the measured mag-

nitude, stretch, color, and redshift, respectively, of the ith supernova. The z term

translates the error in redshift into an error in magnitude. To correctly account for

the intrinsic scatter of SNeIa within each survey, the term σint is included, with a dif-

ferent value associated with each of the four surveys (see Table 3.1 for these values).

Also included are terms for the uncertainty due to gravitational lensing and galaxy

host mass corrections.

The term DmsC
ii represents a combination of the covariance terms for magnitude,

stretch, and color for the ith supernova

DmsC
ii (αs, βC) = 2αsD

ms
ii − 2βCD

mC
ii − 2αsβCD

sC
ii . (3.5)

It is important to note that the statistical portion of the total covariance matrix

is a function of the stretch and color nuisance parameters αs and βC, and must be

calculated each time the value of these parameters change.

The SNLS team has also provided a 472×472 systematic error covariance matrix,

which takes into account systematics from various sources, including Malmquist Bias,

systematic effects due to Milky Way dust, and calibration errors in the survey instru-

ments, among others. A full list of these systematic errors can be found in Reference

[18]. A similar equation to Eq. (3.4) can be used for these off-diagonal systematic

portions of the total uncertainty, where different values must be combined with the
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Figure 3.4: Left panel: correlation matrix obtained from the complete covariance matrix
Cfull, sorted first by survey and then by redshift within each survey. Right panel: the
same as the left, but using only the systematic covariance matrix Csys. Both cases assume
αs = 1.43 and βc = 3.26, the best-fit values for the flat w = const model.

αs and βC parameters. The elements of systematic covariance matrix (see Reference

[18] for details) are calculated using

Csys
ij =

K∑
k=1

(
∂mcorr,i

∂Sk

)(
∂mcorr,j

∂Sk

)
(∆Sk)

2, (3.6)

where the sum is over k systematics Sk, ∆Sk is the size of the systematic, and mcorr =

mcorr(p) is the theoretical prediction for the magnitude from the set of cosmological

parameters p defined in Eq. (2.3). The full covariance is then given by

Cfull = Dstat + Csys. (3.7)

A plot of the covariance matrix (at the best-fit values αs = 1.43 and βC = 3.26) is

shown in Fig. 3.4.

The full covariance matrix, along with the magnitude data from SNLS, allows

us to construct the χ2 statistic. Due to the use of two values of M, the analytic
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marginalization of these values results in

χ2
SNe = a+ ln

e

2π
+ ln

g

2πe
− b2f

g
− c2e

g
+ 2

bcd

g
, (3.8)

where

a = ∆mTC−1
full∆m

b = ∆mTC−1
fullK1

c = ∆mTC−1
fullK2

d = KT
1 C−1

fullK2

e = KT
1 C−1

fullK1

f = KT
2 C−1

fullK2

g = ef − d2.

Here, ∆m = mcorr−mth(z)+M, where mcorr is the corrected observed magnitude as

defined in Eq. 2.3. The two vectors K1 and K2 describe whether a certain supernova’s

host galaxy’s mass is below or above the cutoff of M = 1010M�, which determines

which value of M is assigned to the supernova’s magnitude. If a supernova’s host

galaxy is in the first set, its corresponding location in K1 is 1; otherwise it is 0. The

same but opposite thing occurs for K2. Note here that ∆m is independent of M.

3.3.2 BAO Surveys and WMAP7

For this work, a collection of measurements of the acoustic parameter A(z) from

various surveys is used, mainly due to its dependence on the geometrical effects of

DE rather than its growth effects, which are not of interest for this analysis. The

measurements include data from the Six-degree Field Galaxy Survey (6dFGS) [8],

the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) [61], the WiggleZ survey
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Sample zeff A(zeff)
6dFGS 0.106 0.526± 0.028

SDSS DR7 0.20 0.488± 0.016
SDSS DR7 0.35 0.484± 0.016

WiggleZ 0.44 0.474± 0.034
BOSS 0.57 0.444± 0.014

WiggleZ 0.60 0.442± 0.020
WiggleZ 0.73 0.424± 0.021

Table 3.2: Summary of measurements of BAO acoustic parameter A(z). The table lists
the survey from which the measurement comes, the effective redshift of the survey (or its
subsample), and the measured value A(z).
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Figure 3.5: Plot showing the measurements of the BAO Acoustic parameter A(z) along
with their associated diagonal errors. The various data points are color coded according to
the survey they come from. The black line shows the same ΛCDM model as seen in Fig.
3.3.

[12, 13], and the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) [70, 5] and is

summarized in Table 3.2 and plotted in Fig. 3.5. It is important to note that the SDSS

points are correlated with a correlation coefficient of 0.337, while the WiggleZ points

are correlated with the coefficient 0.369 for the pair z = (0.44, 0.6) and coefficient

0.438 for z = (0.6, 0.73). Though there is a potentially small correlation between

SDSS DR7 and the BOSS point, this small correlation is assumed to be negligible.

All other correlations are expected to be zero. The χ2
BAO value is computed in the

usual manner.
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The CMB shift parameter value used is from WMAP7, R = 1.725 ± 0.0184 at

a redshift of z∗ = 1091.3 [48]. χ2
CMB is computed in the usual manner. The total

likelihood is then

Ltot ∝ e−χ
2
tot/2, (3.9)

where χ2
tot = χ2

SNe + χ2
BAO + χ2

CMB.

3.4 Analysis Techniques

In the case of a constant w and the w0−wa parameterizations, a brute-force method

is used, where the likelihood of each parameter combination is calculated along a

multi-dimensional grid along parameter space 1.

In the case of the principal component parameterization of w(a), a Markov Chain

Monte Carlo (MCMC; e.g. see [16, 21]) algorithm is used to place constraints on

the cosmological parameters, using a code developed specifically for this purpose.

The MCMC code is based on the Metropolis-Hastings algorithm [56, 30], which esti-

mates the posterior distribution of the parameters with the datasets provided to the

algorithm. For a detailed overview of the MCMC algorithm, see Appendix B.

Given the likelihood L(x|p) of the dataset x for a set of cosmological parameters

p, the posterior is obtained using Bayes’ Theorem

P(p|x) =
L(x|p)P(p)∫
dpL(x|p)P(p)

(3.10)

where P(p) is the prior probability density. The MCMC algorithm samples the pos-

terior distribution at random points on its surface and allows for the estimation of

many of its properties, such as parameter means, covariances, and confidence in-

tervals. The initial 10% of the generated chains are discarded as burn-in, and the

resulting chains are analyzed for convergence using a Gelman-Rubin convergence cri-

1Credit here is given to Daniel Shafer for this calculation.
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terion [28] of R̂ < 1.03 across four chains. Finally, the chains are smoothed with a

Gaussian filter and binned for plotting. As a test, results from the two codes are

compared for several simple relevant cases and found to be in excellent agreement.

3.5 Results

In this section, I will review the constraints obtained for the various parameterizations

of w(a). The three cases considered in the analysis are

1. A constant equation of state, w = constant,

2. The equation of state parameterized as w(a) = w0 + wa(1− a) [52],

3. The equation of state described with a finite number of PCs [39].

3.5.1 Contant w Parameterization
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Figure 3.6: Left panel: Constraints in the ΩM -w plane. Right panel: Constraints in the
αs-βC plane. Both show the 68.3%, 95.4%, and 99.7% likelihood contours. In both cases,
the blue filled contours represent the diagonal-only SN covariance constraints, while the
red lines correspond to the full off-diagonal covariance, which includes both the statistical
and systematic uncertainties. Only the SN data is used for these constraints, which are
marginalized over αs and βC for the left panel and ΩM and w for the right panel.
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For this analysis, the relevant parameter space is {ΩM , w, αs, βC}2. The results for

the SN-only constraints in the ΩM − w plane are shown in the left panel of Fig. 3.6,

where the nuisance parameters αs and βC have been marginalized over. In this figure,

the effects of the systematics are shown by overlaying the constraints obtained with

the full covariance Cfull (red contours) on top of the constraints from the diagonal

statistical-only uncertainties Dstat (blue filled contours). The systematics broaden

the constraints slightly, though the constraints for each parameter do not change

appreciably. The marginalized uncertainty for w is σw = 0.17 for the statistical errors

only and σw = 0.20 with the systematics included, increasing the uncertainty in w by

only about 20%, even though the total area increase in the ΩM − w place is roughly

doubled.

Also of interest is the effects of the systematics on the stretch and color nuisance

parameters αs and βc, since an understanding of these parameters allows for a better

understanding into what make SNeIa useful standard candles, and the systematics

could potentially affect the constraints on these parameters. The right panel of Figure

3.6 shows the effects in the αs − βC plane after marginalizing over ΩM and w. One

noteworthy observation is the shift in the color coefficient βC, which is shifted to higher

values slightly by the systematics, while errors in both parameters are increased by a

modest amount.

3.5.2 w0 and wa Parameterization

The parameter space is now expanded to include two equation of state parameters:

w0 and wa. The constraints on these parameters, after marginalizing over ΩM and the

nuisance parameters, are shown in Fig. 3.7. Once again, the constraints from the full

systematic covariance Cfull is overlaid over the constraints from the statistical-only

diagonal uncertainties Dstat. The panel on the left shows the constraints from SN

2Recall that the nuisance parameter M is marginalized over analytically, and as such, is not
considered a parameter for this analysis.
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Figure 3.7: Left panel: Constraints in the w0-wa plane using only SN data. Right panel:
Constraints in the same plane using the combined SN + BAO + CMB datasets. Both show
the 68.3%, 95.4%, and 99.7% likelihood contours. In both cases, the blue filled contours
represent the diagonal-only SNe covariance constraints, while the red lines correspond to the
full off-diagonal covariance, which includes both the statistical and systematic uncertainties.
The constraints are marginalized over ΩM , αs and βC in both cases. The dashed lines
correspond to the ΛCDM values of w0 (vertial) and wa (horizontal).

only, while the right includes the information from BAO and CMB as well.

A useful tool to better understand these effects is the figure of merit (FoM), first

defined by the Dark Energy Task Force (DETF) [2, 41] as being proportional to the

inverse of the area of the 95.4% confidence region A95 in the w0 − wa plane. Here

instead I use the definition as found in Reference [57].

FoM(w0,wa) ≡ (det C)−1/2 ≈ 6.17π

A95

, (3.11)

which becomes exact for a Gaussian posterior distribution, in which this definition

agrees with the DETF definition. Table 3.3 shows the FoM for various cases in the

w0 − wa plane. Overall, the inclusion of systematic uncertainties reduces the FoM

by a factor of 2 to 3. These results show explicitly that work needs to be done in

reducing the systematic effects, particularly calibration errors, which Reference [18]

shows is the biggest source of uncertainty for systematics.
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FoM(w0 wa) Dstat Cfull

SN 2.28 1.16
SN+BAO+CMB 32.9 11.8

Table 3.3: Values of the FoM (defined in Eq. (3.11)) for SN alone (middle row) and
SN+BAO+CMB (bottom row). The middle column shows the FoMs for the statistical
covariance matrix Dstat only, while the right column shows the FoMs for the full covariance
matrix Cfull. Including the systematics reduces the FoM by a factor of 2 to 3.

3.5.3 Principal Component Parameterization

Before presenting the results on the constraints on the PCs, it is important to go over

the priors imposed on the PC amplitudes. Top-hat priors are placed on each αi [58]

such that the equation of state is limited to the range −2 ≤ w(z) ≤ 0. This leads to

top-hat priors of width [57]

∆αi =
2

NPC

Nz−1∑
j=0

|ei(zj)| (3.12)

centered around w(z) = −1, or αi = 0. Here, Nz is the number of redshift bins for each

PC3. Later I show that many of these priors are much wider than the ranges allowed

on the PC amplitudes by the data, which means that the principal components are

mostly unaffected by these priors. This was verified explicitly by constraining the

PCs without the priors.

The constraints on all combinations of the 13 parameters (ΩM , the PC amplitudes

αi, and the nuisance parameters αs and βC) are shown in Fig. 3.8. The black contours

represent the constraints using the diagonal statistical SNe uncertainties only, while

the red contours represent the constraints using the full SNe covariance. Overall, the

systematic uncertainties broaden and shift the contours slightly, as expected.

Fig. 3.9 shows the marginalized constraints on the 10 PC amplitudes only. With

3This number is the same as the total number of PCs (36), due to the way they were obtained
(see Appendix A for details). However, because only the first 10 PCs are used for the analysis, this
distinction is made explicit here.
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Figure 3.8: The 68.3%, 95.4%, and 99.7% likelihood constraints on all combinations of the
13 cosmological parameters using the combined set of SNe, BAO, and CMB data. The black
contours show the constraints in the case of diagonal statistical errors Dstat only, while the
red contours show constraints also include the systematic covariance matrix Csys. Priors
on the PC amplitudes are shown as dashed vertical lines in the one-dimensional plots. The
parameters are ordered: ΩM , the PC amplitudes α0 − α9, and the nuisance parameters αs
and βC .
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Figure 3.9: The marginalized one-dimensional PC likelihood curves using the combined
set of SN, BAO, and CMB data. The black curve shows the likelihood with the diagonal
statistical errors only Dstat, while the inclusion the systematic covariance matrix Csys is
shown in red. The black and red number in each panel shows the ratio of the PC uncertainty
to the rms of the top hat prior for the statistical covariance and full covariance cases,
respectivly. The priors are shown as dashed vertical lines.

the diagonal statistical uncertainties only, the first three PCs have a ratio of error to

the rms value of the top-hat prior (∆αi/
√

12) of less than 1/3, and six have a ratio

of less than 1/2. In the case of the full SNe covariance, two PCs have a ratio of less

than 1/3 and five have a ratio of less than 1/2. This shows that the constraints on

the PCs are very good with the current data, a result also obtained by Reference [59].

From Fig. 3.9 it’s clear that the systematics only slightly broaden the constraints.

However, the cumulative effect is not so subtle. Following Reference [57], I define the

generalized Figure of Merit

FoMPC
n =

(
det Cn

det C(prior)
n

)−1/2

(3.13)
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Figure 3.10: Top panel: The Figure of Merit as a function of the number of PCs included,
where the black shows the values in the case for the diagonal-only covariance, while the
red shows the case for the full covariance. Bottom panel: the ratio of these two Figures
of Merit. BAO and CMB data are included in both cases. The FoM ratio levels off after
about five PCs have been added.

where Cn is an n× n covariance of the first n PCs and

det C(prior)
n =

n∏
i=0

(
∆αi√

12

)2

. (3.14)

Here, ∆αi/
√

12 is again the rms amplitude of the top-hat prior for the ith PC am-

plitude.

The FoM results are shown in Fig. 3.10, where the FoM is plotted as a function of

the number of included PCs. The top panel shows the FoM when constraining with

the diagonal statistical-only SN uncertainties (black) and the full covariance including

SN systematics (red). The bottom panel shows the ratio of the two cases (blue). The
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ratio degrades by a factor of 3 to 4 times as more PCs are included, though it levels

off around the fifth PC. This is fortunate, as it is those later PC amplitudes that

are harder to constrain, and the systematics seem to only affect the lower PCs. Of

course, future surveys may have systematics that behave differently, and may affect

more PCs. Once again, these results show that much work is needed in the reduction

of systematic uncertainties of future surveys.

3.6 Summary

In this chapter, I have reviewed various alternate parameterizations of the dark energy

equation of state w(z). I also went over various systematics obtained by the Supernova

Legacy Survey team [18], and gave a brief description of the systematic covariance

matrix (see Fig. 3.4). I presented constraints on three different parameterizations

of w(a): constant w (Fig. 3.6), w0 − wa (Fig. 3.7), and principal components (Fig.

3.8). These constraints were obtained using the SNeIa data along with data from 4

different BAO surveys (see Fig. 3.5), as well from the WMAP7 shift parameter.

I showed the differences in the constraints on the various parameterizations by

the SN systematics, and quantified these differences as a reduction of the Figure of

Merit. The systematics typically worsened the w0−wa FoM by a factor of 2− 3 (see

Table 3.3) and a factor of 3−4 in the case of the PC parameterization (see Fig. 3.10),

though individual parameters in both cases were affected only marginally.

Finally, I showed how the PCs’ generalized Figure of Merit changes as a function of

the number of PCs included in the calculation, and showed that the ratio of the FoM

for the full systematic case over that of the diagonal statistical-only case worsened

as more PCs were included, but leveled off after the first few PCs. This indicates

that systematics mostly affect the first few PCs, while the later ones remain largely

unaffected. Future surveys, with a better understanding of systematics, still remain

the key for improvements in constraining dark energy parameters.
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CHAPTER 4

A Consistency Test of Dark Energy

4.1 Geometry and Growth as a Test of Dark Energy

As mentioned in Chapter 1, dark energy is just one way to explain the acceleration

of the expansion of the universe. A completely different class of explanations are

classified under the name modified gravity. In these theories, it is a correction or

modification to the equations of general relativity at the largest scales that explains

the acceleration. However, these corrections must be suppressed at smaller scales,

such as solar-system sized or galactic-sized scales, due to tight constraints on the

physics at these scales.

Because gravity is truly modified in these theories, Eq. 1.7 does not describe

the growth of structure in the universe. In addition, growth is not necessarily scale-

independent. Therefore, for a given an expansion rate H(t), any cosmological dis-

tance, or other geometric property, the growth of structure in the universe is predicted

to be different for dark energy and modified gravity models.

Comparing the geometric quantities to the growth of structure is therefore an

excellent test of the consistency of the DE models, a fact which was pointed out

soon after the acceleration was discovered [42, 89, 58, 59, 81]. This is done by sepa-

rately measuring the redshift evolution of the geometric quantities, constraining the

parameters that describe these quantities, and comparing them to equivalent param-
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eters that describe the growth of structure. This is similar to other tests done on

parameterizing the gravitational potentials Φ and Ψ, which govern non-relativistic

(matter) and relativistic (light) motion, and testing whether or not they are the same

[91, 6, 93, 35, 19, 20, 77]. The two approaches are complementary to each other.

My goal in this chapter is to perform a major step forward in testing the con-

sistency of dark energy by separately constraining the geometry and growth in cos-

mological probes of DE. Work similar to this was first performed by References [82]

and [1], though the constraints were weak due to the data available at the time.

The benefit in this work is the abundance of new data sources and the increase in

our knowledge in understanding and modeling them, as well as the addition of new

probes not available in 2007. Work done in this Chapter first appeared in Reference

[67].

4.2 Geometry and Growth Parameter Split Methodology

The standard ΛCDM model, as well as the more general wCDM model, where the

equation of state w is allow to take on other constant values, have been in excellent

agreement with observational data since the discovery of the accelerating universe

(e.g. [49]), with only the occasional mild warning to the contrary ([71, 14, 87, 74]).

However, there has been a large effort to find and test alternative theories, such as

the theories of modified gravity, where modifications to the equations that govern

gravity can give rise to an accelerating universe.

I take a complementary approach and perform a study of the consistency of the

standard wCDM framework. The cosmological parameters that describe the late

universe are split into two sets

• Geometry parameters, which dictate the expansion rate H(z) and the comoving

distance r(z), as well as any associated values.
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• Growth of structure parameters,such as the growth and distribution of density

fluctuations (D(z) and P (k), respectively).

The GR framework assumes that the split parameters Xgeom
i and Xgrow

i , which

respectively govern geometry and growth, must be statistically consistent with each

other, regardless of the specific parameterization used. Any disagreement between

these parameters, outside of any unforeseen systematic errors, can be interpreted as

departure from the standard cosmological framework.

This split parameter approach provides a very powerful, but still general, test of

wCDM. It can be compared to more specific parameterizations of departures from

GR, e.g. the γ parameterization [53], or the comparison of the gravitational potentials

described earlier. The split parameter approach is complementary to these methods.

One potential worry is that the information used from the various cosmological

probes, usually involving large amounts of raw data, is often compressed into a small

number of metaparameters (e.g. the shift parameter R for CMB measurements),

and the calculation of these metaparameters sometimes requires the assumption of

a cosmological model (an exception to this are SNeIa, which use the raw magnitude

data of each supernova). Therefore, the question may arise of whether one should

use these metaparameters to constrain a wider class of models where geometry and

growth are decoupled. However, for the probes that are only sensitive to either geom-

etry or growth, the metaparameters are de facto correct by construction, since they

only measure geometry or growth effects. For the probes that are sensitive to both

geometry and growth, the metaparameters used are a general enough representation

of the raw data that the assumption that geometry and growth are consistent can be

relaxed without any loss of robustness and accuracy.
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4.3 Data Sources

Due to the nature of the analysis being performed, a variety of data sets that are

sensitive to both geometric effects and growth effects are required. The data sources

used can be split into two broad categories. The first includes the compilation of

Type Ia Supernova magnitude data done by the SNLS team, a variety of BAO data

sources from several survey groups, a single measurement of the Shift Parameter from

the Planck CMB survey, all of which measure primarily geometric effects. The second

group includes measurements of cluster count data from the SDSS MaxBCG Cluster

Catalog, weak lensing shear correlation function measurements by the Canada-France-

Hawaii Telescope Lensing Survey (CFHTLens), and a collection of RSD measurements

from a group of various surveys, all of which are sensitive to both geometric and

growth properties of dark energy. A summary of the probes, as well as the portions

in which they are sensitive to geometry and growth, can be found in Table 4.1.

Cosmological Probe Geometry Growth
SNe Ia DL(z) —–

BAO

(
D2
A(z)

H(z)

)1/3

/rs(zd) —–

CMB peak loc. R ∝
√

ΩMH2
0DA(z∗) —–

Cluster counts
dV

dz

dn

dM

WL 2 pt. corr.
r2(z)

H(z)
Wi(z)Wj(z) P

(
k =

`

r(z)

)
RSD F (z) ∝ DA(z)H(z) f(z)σ8(z)

Table 4.1: Summary of cosmological probes used for the consistency test and the aspects
of geometry and growth that they are sensitive to.

4.3.1 Supernova Legacy Survey

Similar to in Chapter 3, I use the SNLS data set of 472 SNeIa compiled by Reference

[18]. I allow αs and βC to vary as nuisance parameters, and recalculate full statistical
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+ systematic covariance matrix Cfull for each new set of values of αs and βC. For this

analysis, differences in constraints between statistical-only and statistical + system-

atic uncertainties are not tested. M is marginalized over analytically, as before. The

χ2 statistic is again calculated using Eq. 3.8.

4.3.2 BAO Surveys

Because I am interested in testing for both geometric and growth properties of dark

energy, I use measurements of DV (z)/rs(zd) (or its inverse) for this analysis, where

DV (z) is the generalized BAO distance measurement and rs(zd) is the distance of the

sound horizon at the redshift of the drag epoch zd, as explained in Section 2.4. Three

sources of BAO data are used for this analysis: the Six-degree-Field Galaxy Survey

(6dFGS) [8], the Sloan Digital Sky Survey Luminous Red Galaxies (SDSS LRG) [60],

and the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) [5], summarized in

Table 4.2

Survey zeff Parameter Measurement
6dFGS [8] 0.106 rs/DV 0.336± 0.015

SDSS LRG [60] 0.35 DV /rs 8.88± 0.17
BOSS CMASS [5] 0.57 DV /rs 13.67± 0.22

Table 4.2: BAO data measurements used here, together with the effective redshift for the
corresponding galaxy sample.

Assuming there is no correlation between the different measurements, the χ2 is

simply

χ2
BAO =

∑
i

[
dobs
i − d̄i(p)

]2
σ2
i

, (4.1)

where dobs
i is the ith data point, d̄i(p) the ith expectation value given a set of cosmo-

logical parameters p, and σi the uncertainty in the ith data point.
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4.3.3 Planck CMB Survey

To obtain a value of the shift parameter R, I use the Planck collaboration’s Planck

+ WP measurements of r∗ and θ∗ [63]; since θ∗ = r∗/DA(z∗), these measurements are

marginalized over to get a value for DA(z∗). Combining this with the Planck values

of ΩMh
2 and z∗, I obtain a value of the Shift Parameter R = 1.7502 ± 0.007331 at

a value of the redshift of last scattering at z∗ = 1090.48. χ2
CMB is then calculated in

the usual manner.

4.3.4 MaxBCG Galaxy Catalog

The MaxBCG Cluster Catalog [66], which was created using measurements done by

SDSS, is used for the consistency test. Due to the complexity of this probe, the

details of the dataset, including the vector of observables and how to calculate the

covariance between data points, can be found in Appendix C.

4.3.5 CFHT Lensing Survey

The Canada-France-Hawaii Telescope Lensing Survey (CFHTLens) [25, 31] provides

an excellent source of observational data for the purposes of this test. The survey

covers 154 square degrees of the sky and has a mean redshift of zmean ' 0.75, providing

an substantial volume extremely well suited for testing the geometric effects of weak

lensing. In addition, this volume includes within it many galaxies with which we

can measure the shear correlation function, which provides an excellent source of

data regarding the growth of structure of the universe. With measurements in five

bands (ugriz) and a resolved galaxy density of 17/arcmin2, the CFHTLens dataset

is perfectly suited for the task.

The blue sample dataset, found at the CFHTLens website1, is used, which was

1http://www.cfhtlens.org/astronomers/content-suitable-astronomers
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shown in Reference [31] to have a negligible intrinsic alignment signal, a common

source of error for weak lensing. The dataset contains values of the two-point cor-

relation function ξ± as defined in Eq. (2.34). Each correlation function is di-

vided into 6 tomographic redshift bins and presented at five angles. This results

in 2× [(6× 7)/2]× 5 = 210 total data points. In addition, the CFHTLens team com-

puted a 210× 210 covariance matrix CWL using numerical simulations, also available

on their website. The χ2 statistic for WL is

χ2
WL =

[
ξobs − ξ̄(p)

]T
C−1

WL

[
ξobs − ξ̄(p)

]
, (4.2)

where ξobs is the data vector of WL data and ξ̄(p) is the vector of expectation values

for the correlation function for a set of cosmological parameters p.

4.3.6 RSD Surveys

z Parameter Measurement (diag) Survey
0.067 fσ8 0.42± 0.06 6dFGS [9]
0.32 H(z) 78.1± 7.1 BOSS LOWZ [17]
0.32 DA(z) 950± 61 BOSS LOWZ [17]
0.32 fσ8 0.38± 0.10 BOSS LOWZ [17]
0.44 F (z) 0.48± 0.05 WiggleZ [12]
0.44 fσ8 0.41± 0.08 WiggleZ [12]
0.57 H(z) 97.1± 5.5 BOSS CMASS [17]
0.57 DA(z) 1351± 60 BOSS CMASS [17]
0.57 fσ8 0.38± 0.04 BOSS CMASS [17]
0.60 F (z) 0.65± 0.05 WiggleZ [12]
0.60 fσ8 0.39± 0.06 WiggleZ [12]
0.73 F (z) 0.87± 0.07 WiggleZ [12]
0.73 fσ8 0.44± 0.07 WiggleZ [12]

Table 4.3: RSD measurements from the three surveys used in this analysis. Each line shows
the effective redshift of the data point, the parameter measured, the value of that parameter
and its associated diagonal error, and the survey the data point comes from. Measurements
from the same survey are correlated; for the correlation matrices see Tables 4.4 and 4.5.

Redshift space distortions are also perfectly suited for the task of testing for con-
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Figure 4.1: RSD data used in the analysis, along with the 1 − σ error contours, shown in
the fσ8–F plane; more details can be found in Table 4.3. The black line shows the best
fit ΛCDM model with the mean parameter values given in the second column of Table 4.8.
The 6dFGS measurement does not have an associated value for F (z), so only its horizontal
error bar is shown. The BOSS constraints on F (z) are obtained from the covariance of
H(z) and DA(z). The point with the dashed error ellipse corresponds to an alternative
RSD measurement at z = 0.57 from Reference [69]; for details, see Section 4.6.

sistency of DE, since they measure both geometric and growth properties. An as-

sortment of RSD data points from three surveys are used (6dFGS [9], BOSS [17],

and WiggleZ [12]), which provide values for fσ8 and either F (z) or H(z) and DA(z).

The data are shown in Table 4.3 and plotted in Figure 4.1. Data points from the

same survey are also correlated; the correlation matrices for these are shown in Tables

4.4 and 4.5. The χ2 statistic is calculated in the usual manner, similar to the other

probes.
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z = 0.32 H(z) DA(z) fσ8

H(z) 1.00 −0.32 0.35
DA(z) — 1.00 0.51
fσ8 — — 1.00

z = 0.57 H(z) DA(z) fσ8

H(z) 1.00 −0.67 0.05
DA(z) — 1.00 0.40
fσ8 — — 1.00

Table 4.4: Correlation matrices for the BOSS LOWZ (left) and CMASS (right) samples of
the RSD dataset. The values of the diagonal entries of the covariance can be found in Table
4.3.

F (0.44) F (0.60) F (0.73) fσ8(0.44) fσ8(0.60) fσ8(0.73)
F (z = 0.44) 1.00 0.52 0.00 0.73 0.35 0.00
F (z = 0.60) — 1.00 0.50 0.38 0.74 0.43
F (z = 0.73) — — 1.00 0.00 0.43 0.85
fσ8(z = 0.44) — — — 1.00 0.51 0.00
fσ8(z = 0.60) — — — — 1.00 0.56
fσ8(z = 0.73) — — — — — 1.00

Table 4.5: Correlation matrix for the WiggleZ sample of the RSD dataset. The values of
the diagonal entries of the covariance can be found in Table 4.3.

4.4 Parameters and Analysis

4.4.1 Parameter Space and Priors

Based on the probes involved, the set of fundamental cosmological used for this anal-

ysis is

~pfund = {ΩM ,ΩMh
2,ΩBh

2, w, 109A, ns}. (4.3)

In addition, the set of nuisance parameters is

~pnuis = {αs, βC, 〈lnN |M1〉, 〈lnN |M2〉, σNM , β}. (4.4)

Recall that αs and βC are the supernova stretch and color nuisance parameters, while

the remaining four are the cluster nuisance parameters. Also included in the analysis

are the derived parameters

~pderiv = {σ8, h;σMN}, (4.5)
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where the parameters are divided into cosmological (first two) and nuisance (last)

parameters. Here, σMN is the scatter of the richness of galaxy clusters for a given

mass, as opposed to σNM , which is the scatter of galaxy cluster masses for a given

richness, and is calculated using the equation

σMN =
σNM log10(M2/M1)

〈lnN |M2〉 − 〈lnN |M1〉
, (4.6)

which is derived using the propagation of uncertainty relations on Eq. 2.32

The analysis assumes a constant equation of state and a flat universe. In addition,

the sum of neutrino masses (which appears in the calculation of the transfer function)

is set tomν = 0.06 eV, which is consistent with atmospheric and solar data on neutrino

flavor oscillations and a normal hierarchy between the individual mass eigenstates [7].

Note that the mass sum is allowed to vary in the extended tests in Sec. 4.6. The

number of neutrino species is held fixed at Nν = 3.046 throughout the analysis, as

predicted by the Standard Model.

Priors on ΩM , σNM , β, and σMN are adopted from Reference [66]. In addition,

weak, flat priors are imposed on w, ns, and h. Finally, a multidimensional Gaussian

prior on ΩMh
2, ΩBh

2, 109A, and ns is imposed, which is referred to as the “Early

Universe” (EU) prior. Details for all priors can be found in Tables 4.6 and 4.7.

4.4.2 A Note on Possible Correlations Between Probes

The total likelihood of the combined probes is the product of the individual likelihoods

L = e−χ
2/2

L = LSNLBAOLCMBLclustersLWLLRSD. (4.7)

The assumption that the individual likelihoods are uncorrelated may come into ques-

tion, but it is well justified given the nature of the datasets used. The CMB shift

parameter is decoupled from all other probes due to the high redshift of the mea-
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Parameter Priors Geometry Growth
ΩM [0.05, 0.95] X X

ΩMh
2 0.1423± 0.0029 X

ΩBh
2 0.02207± 0.00033 X

w [-2, 0] X X
109A 2.215± 0.16 X
ns [0.9, 1.1], 0.9616± 0.0094 X
σ8 — X
h [0.5, 1.0] X

Table 4.6: Cosmological parameters used in the analysis. The first seven parameters are the
fundamental parameters varied in the MCMC, while the next two parameters are derived
from those fundamental parameters. In the ‘Priors’ column, [a, b] indicates a flat prior
between the end points a and b, while c ± d refers to a Gaussian prior with mean c and
standard deviation d. The Gaussian priors on ΩMh

2, ΩBh
2, 109A, and ns are the diagonal

quantities of the early-universe prior, more information of which can be found in Table 4.7.
Whether the parameter is included in the geometry and growth components of equations is
indicated by the last two columns; if a parameter is found in both, it is considered a split
parameter. In addition to the parameters shown here, there are a number of probe-specfic
nuisance parameters: see text for details.

surement. Similarly, cluster counts, which can be thought of as a 1-point correlation

function, are only coupled to the two-point function via very small second order ef-

fects. Weak lensing and SN are thought to be correlated, since supernovae are lensed,

but the effect is very small for the current set of data.

Of biggest concern is the correlation between BAO and RSD, as these are measured

in similar redshift ranges, and, in the case of both WiggleZ and BOSS, use the same

galaxies. This correlation is due to the RSD’s sensitivity to the Alcock- Paczynski

parameter combination F (z) ∝ DA(z)H(z). These in turn may be slightly degenerate

with BAO measurements. However, measurements by these teams show that the

correlation between these measurements are small at only the 10% level [17, 12].

Thus, multiplying the individual likelihoods is justified.
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ΩMh
2 ΩBh

2 109A ns
ΩMh

2 1.00 −0.62 −0.51 −0.84
ΩBh

2 — 1.00 0.56 0.70
109A — — 1.00 0.65
ns — — — 1.00

Table 4.7: Correlation matrix corresponding to the early-universe prior (labeled as “EU”
in plots). The correlation matrix is calculated from Planck ΛCDM (+ lowl) MCMC chains
[63]. The square roots of the diagonal entries of the full covariance matrix prior are shown
in Table 4.6. The full prior covariance is applied to RSD, WL and clusters, and the overall
combined constraint. In the case of BAO, only the information from the 2 × 2 subset
containing ΩMh

2 and ΩBh
2 is applied, corresponding to the sound horizon (“SH” in plots).

Neither prior is applied for SN and CMB constraints.

4.4.3 Analysis Technique

Similar to the analysis in Chapter 3, an MCMC algorithm is used to place constraints

on the cosmological parameters (see Appendix B for more information on the MCMC

algorithm), with a code developed specifically for this purpose, based on the code used

for the PC constraints. A parameter covariance matrix is calculated by performing a

few shorter runs to optimize the MCMC step size and direction and minimize overall

runtime. The initial 10% of the chains are thrown out, and the chains are analyzed

for convergence using a Gelman-Rubin convergence criterion [28] of R̂ < 1.03 across

a minimum of six chains. The resulting chains are binned and smoothed with a

Gaussian filter for plotting.

4.5 Results

4.5.1 Unsplit Case

Before any parameter splits are made, the fiducial unsplit constraints are shown to

make sure they are in agreement with similar recent constraints. The left panel of

Fig. 4.2 shows the marginalized constraints in the ΩM −σ8 plane for the ΛCDM case
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Parameter Unsplit, w = −1 Unsplit, w varied Split, w = −1 Split, w varied

ΩM

{
Ωgeom
M

Ωgrow
M

0.303± 0.008 0.299± 0.010
0.302± 0.008
0.321± 0.017

0.283± 0.011
0.311± 0.017

ΩMh
2 0.140± 0.001 0.141± 0.002 0.140± 0.001 0.142± 0.002

ΩBh
2 0.0221± 0.0002 0.0220± 0.0003 0.0221± 0.0002 0.0221± 0.0003

w

{
wgeom

wgrow —– −1.03± 0.05
—–
—–

−1.13± 0.06
−0.77± 0.08

109A 1.95± 0.09 1.91± 0.10 1.96± 0.09 2.17± 0.13
ns 0.961± 0.005 0.959± 0.006 0.962± 0.005 0.961± 0.006

σ8 0.786± 0.015 0.788± 0.016 0.782± 0.016 0.771± 0.017
h 0.680± 0.006 0.687± 0.012 0.661± 0.017 0.677± 0.018

αs 1.44± 0.11 1.44± 0.11 1.44± 0.11 1.44± 0.11
βc 3.26± 0.11 3.26± 0.11 3.26± 0.11 3.27± 0.11

ln(N |M1) 2.36± 0.06 2.37± 0.06 2.29± 0.08 2.33± 0.08
ln(N |M2) 4.15± 0.09 4.16± 0.09 4.09± 0.11 4.15± 0.11
σNM 0.359± 0.057 0.357± 0.057 0.378± 0.059 0.367± 0.060
β 1.041± 0.050 1.045± 0.051 1.018± 0.054 1.036± 0.055

σMN 0.462± 0.081 0.459± 0.082 0.486± 0.085 0.464± 0.084

Table 4.8: Constraints on the cosmological parameters from the combined probes. The
second column shows constraints in the unsplit ΛCDM (w = −1) model, while the third
column also shows the standard unsplit case but allows w to vary. The fourth and fifth
columns are main results, and show the split-parameter cases where ΩM is split and wgeom =
wgrow = −1 is fixed (fourth column), and finally where both ΩM and w are split and allowed
to vary (fifth column). In cases of parameters that can be split, the constraints are given
either on the unsplit parameter (vertically centered number) or separate constraints on the
geometry and growth split parameters (vertically offset pair of numbers).

(w = −1), while the right panel shows the constraints in the ΩM −w plane. Already,

the complementarity of the probes is evident: SN, BAO, and CMB are particularly

sensitive to geometry, so they constrain ΩM and w rather well; the same cannot be

said about their constraints on σ8, which they can’t measure at all. Clusters, WL,

and RSD, however, are excellent probes of growth, and (in the ΛCDM case) constrain

the characteristic combinations

(ΩM/0.3)0.28σ8 = 0.799± 0.018 (WL),

(ΩM/0.3)0.04σ8 = 0.809± 0.022 (RSD),

(ΩM/0.3)0.27σ8 = 0.837± 0.021 (clusters).

(4.8)
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Figure 4.2: Constraints from cosmological probes before the geometry-growth parameter
split. Shown are the 68% and 95% confidence constraints in the ΩM–σ8 plane assuming
w = −1 held constant (left panel) and in the ΩM -w plane (right panel). For the labels,
“EU” refers to the early universe prior, while “SH” refers to the sound horizon prior; see
Table 4.7 for details.

To obtain these best-constrained combinations of ΩM and σ8, the power α was varied

until the error of the quantity (ΩM/0.3)ασ8 was minimized.

An interesting observation are the constraints from the RSD in the ΩM −w plane

in Fig. 4.2, which tend to slightly prefer higher values of w than the ΛCDM value,

corresponding to less growth in the late universe than expected in ΛCDM. This

preference for RSD is also apparent in the data, as shown in Fig. 4.1, where the

RSD points prefer lower values of fσ8 compared to the ΛCDM case. This preference

will have impacts later when the dark energy parameters are split.

Another thing to note is that WL constraints favor a somewhat lower value of ΩM

and a higher value of σ8 than those favored by the other datasets. This has been noted

by Reference [55], where possible reasons for this parameter tension are discussed.

Since weak lensing is currently less mature than many of the other cosmological

probes, and the fact that it only weakly contributes to our principal constraints

discussed below, this point is not discussed further.
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The final combined constraints on ΩM and w are

ΩM = 0.299± 0.010

w = −1.03± 0.05

(unsplit case) (4.9)

Constraints on the other parameters can be found in the third column2 of Table 4.8.

4.5.2 Split ΩM only

For this case, ΩM is split into two parameters: Ωgeom
M and Ωgrow

M . w is held con-

stant at the ΛCDM value (w = −1). The rest of the cosmological parameters

({ΩMh
2,ΩBh

2, 109A, ns}) are also allowed to vary, as well as the nuisance param-

eters. The constraints are shown in Fig. 4.3 and the fourth column of Table 4.8.

Certain things here are expected: CMB and BAO only probe geometry, both

preferring Ωgeom
M ' 0.3. Recall that the BAO constraints also include the SH prior,

otherwise, it would be much weaker. SN also only constrain geometry, and though

they prefer slightly lower value, the errors are still large enough to encompass the

Ωgeom
M = 0.3 value at 2− σ.

It is somewhat surprising that clusters constrain growth much more than geometry,

even though they are sensitive to both (see Table 4.1). This is good news, since

constraints on growth are usually weaker than on geometry. Overall, the cluster

constraint on Ωgrow
M is roughly consistent with the values 0.25− 0.30. Likewise, RSD

are more sensitive to growth over geometry, with similar constraints on Ωgrow
M . The

constraints from WL are not as tight as its counterparts, but nonetheless constrain

geometry fairly well, though constraints on growth are somewhat poor.

The combined constraints show how the probes greatly complement each other.

If anything, this shows the remarkable progress in the field since similar constraints

2For completeness, the constraints on the unsplit case with w = −1 held fixed are shown in the
second column of the same Table.
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Figure 4.3: 68% and 95% confidence constraints in the split ΩM plane with the equation of
state held constant at the ΛCDM value (wgeom = wgrow = −1). Just like in Fig. 4.2, “EU”
refers to the early universe prior, while “SH” refers to the sound horizon prior.

were done by Reference [82]. The marginalized combined constraints on the split

ΩM ’s are

Ωgeom
M = 0.302± 0.008

Ωgrow
M = 0.321± 0.017

(ΩM split, w = −1) (4.10)

In this case, the geometry and growth constraints are clearly consistent with each

other, though the geometry constraint is stronger, as is expected.
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4.5.3 Split ΩM and w
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Figure 4.4: 68% and 95% confidence constraints in the split w plane. As before, “EU” refers
to the early universe prior, while “SH” refers to the sound horizon prior. Due to the poor
constraints from the CMB, they are not shown in this figure.

A much more difficult task involves constraining the geometry and growth com-

ponents of both the matter energy density and the equation of state, since this now

involves a total of four split parameters, {Ωgeom
M ,Ωgrow

M , wgeom, wgrow}. Due to the de-

generacies involved, every probe used in an invaluable asset, given that they break

degeneracies in the 15-dimensional parameter space, which leads to excellent com-

bined constraints.

Fig. 4.4 shows the constraints in the split-w plane, marginalized over the cos-
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mological parameters {Ωgeom
M ,Ωgrow

M ,ΩMh
2,ΩBh

2, 109A, ns}, as well as the nuisance

parameters. As before, the constraints are largely in the directions expected, though

the constraints are expectedly weaker due to marginalizing over Ωgeom
M and Ωgrow

M .

BAO and SN still constrain geometry reasonably well, though the CMB do rather

poorly in this space, mainly since it is only a single point of data, and thus subject

to degeneracies between Ωgeom
M and wgeom (due to this, the constraints from the CMB

are not shown in Fig. 4.4). Similarly, WL and clusters constrain both geometry and

growth weakly, though the constraints on growth from clusters are much stronger

than its constraints on geometry, as before.

The one outlier are the RSD. Alone, they are able to constrain growth very pre-

cisely, but do so at a value

wgrow,RSD = −0.760± 0.085, (4.11)

which is far from the ΛCDM value of -1. As mentioned previously, this higher value

of w from the RSD correspond to a supression of the growth of structure in late times

compared to the ΛCDM prediction. It is clear from Fig. 4.4 that the RSD are pulling

the combined constraint toward this higher growth value. This leads marginalized

combined constraints

Ωgeom
M = 0.283± 0.011

Ωgrow
M = 0.311± 0.017

wgeom = −1.13± 0.06

wgrow = −0.77± 0.08

(ΩM and w both split) (4.12)

with the rest of the constraints on parameters can be found on Table. 4.8. The good-

ness of fit with and without RSD is also satisfactory: with RSD χ2/dof = 728/699 =

1.04, and when the RSD are removed, χ2/dof = 719/686 = 1.05.
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The significance of the pull away from the wgeom = wgrow can be quantified using

a p-value, calculated using the equation

p =

∫
wgeom>wgrow dw

geomdwgrowL(wgeom, wgrow)∫
dwgeomdwgrowL(wgeom, wgrow)

, (4.13)

which is the fraction for the likelihood in which wgeom > wgrow. The p-value is 0.0010

for the combined constraints, corresponding to an inconsistency with the ΛCDM value

at 3.3σ3.

4.6 Discussion

The result of wgrow > −1 from RSD data is not necessarily a new one: many analyses

of RSD data have shown that they are in some tension with ΛCDM at a > 2 − σ

level. For example, Reference [11] finds discrepant measurements of the growth index

γ = 0.772+0.124
−0.097, significatly different from the ΛCDM value of γ = 0.55. Similarly,

References [69] and [64] found using RSD measurements that growth seems to be less

than expected. Finally, Reference [10] finds evidence for a non-zero neutrino mass

using RSD, once again evidence for physics beyond the standard model.

The first scenario investigated is how the results depend on the choice of RSD

analyses. Even within BOSS, different analyses make different assumptions and give

somewhat different results; this is best shown for the z = 0.57 measurements shown in

Fig. 4.1. To avoid the a posteriori bias of hand-picking analyses that give results that

are closer, or further away, from the concordance ΛCDM model, the original choice

of the RSD data from Fig. 4.1 and Table 4.3 is kept as fiducial. As an alternative,

the measurement at z = 0.57, which clearly is most responsible for the discrepancy

with the standard cosmological model, is replaced by the alternative analysis of the

3The p-value is assumed to represent one tail of a two-sided Gaussian distribution for the calcu-
lation of the number of “sigmas”; it would have been equally as surprising to obtain the opposite
result, namely wgrow > wgeom, and so this more conservative number of σ’s seems appropriate.
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Figure 4.5: Dependence of the results on the RSD data and their analyses. Left panel:
Combined constraints for the case where the z = 0.57 RSD measurement from [17] is
replaced with the alternative BOSS measurement that uses the same raw data but a different
analysis [69]; see Fig. 4.1. The combined constraints are now only slightly less discrepant
with the wgeom = wgrow line; see text for details. Right panel: Combined constraints, but
with the RSD data fully excluded. The combined contour is now larger in the growth
direction; however it is still somewhat discrepant with the w geom = w grow line, though
less so than with the RSD data included.

same data [69] that gives the measurements of (F, fσ8) at z = 0.57 that are less

discrepant with the ΛCDM model (see Fig. 4.1), and the resulting combined analysis

is investigated.

The results are shown in the left panel of Fig. 4.5. The combined constraints (RSD

+ everything else) are now slightly closer to the geometry=growth line, but the p-

value is still small (0.0020), indicating a 3.1-σ discrepancy with the geometry=growth

prediction. The constraints on cosmological parameters with this alternate RSD

z = 0.57 measurement from BOSS are

Ωgeom = 0.279± 0.011

Ωgrow = 0.319± 0.021

wgeom = −1.14± 0.06

wgrow = −0.81± 0.08

(alternate RSD). (4.14)
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Figure 4.6: Left panel: The effects on the combined constraints when the sum of the neutrino
masses mν is allowed to vary, compared to the fiducial assumption of holding it fixed at 0.06
eV. The constraints are now fully consistent with the wgeom = wgrow line. Right panel: The
posterior likelihood on mν for when ΩM and w are split (wider curve) and when geometry
= growth is enforced (narrower curve). For both cases, the preferred value is mν ' 0.45
eV; see text for details.

Once again, the RSD pull the combined constraints towards less growth in the late

universe. The goodness-of-fit for this case is also satisfactory, χ2/dof = 724/699 =

1.04.

The effects of removing the RSD from the split-w constraints is also considered,

and is shown in the right panel of Fig. 4.5. In this case, the discrepancy with the

wgeom = wgrow expectation is somewhat lower, though the p-value is still somewhat

small at 0.0204, corresponding to a discrepancy of 2.3σ. Even with the full removal

of the RSD from the analysis, the combined probes still stlightly prefer less growth

of structure than expected from ΛCDM, possibly hinting at some underlying effects

that may cause the discrepancy.

Of particular interest is the effect of the neutrino mass sum on constraints. Tra-

ditionally, cosmology has provided only upper limits to the sum of neutrino masses,

roughly mν . 0.3 eV [e.g. 73]. Recently several papers have claimed evidence for a
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positive neutrino mass in order to alleviate the discrepancy between the RSD data

and the ΛCDM model [10], or the tensions between the local measurements of Hubble

constant and Planck data [36, 22].

To test the effect of neutrino mass sum on the combined constraints (including

RSD), it is allowed to vary within the range mν ∈ [0, 1] eV. The combined results

are compared to the fiducial case (i.e. mν = 0.06 eV); the results are shown in the

left panel of Fig. 4.6. Allowing the combined masses of neutrinos to vary results in

a significant increase in the range of values allowed by the combined data, and the

constraints are fully consistent with the growth=geometry expectation:

Ωgeom
M = 0.289± 0.012

Ωgrow
M = 0.319± 0.018

wgeom = −1.11± 0.06

wgrow = −1.10± 0.28

(mν marginalized over). (4.15)

The higher neutrino mass thus relieves the tension between geometry and growth.

It is then of interest to show the value of mν favored by the data. The posterior

probability on mν is shown in the right panel of Fig. 4.6. In the case where both ΩM

and w are split, mν = 0.45±0.21 eV, higher than the fiducial value of mν = 0.06 eV by

∼ 2-σ. As a further test, constraints are placed onmν in the case of unsplit parameters

(i.e. enforcing Ωgeom
M = Ωgrow

M and wgeom = wgrow), obtaining mν = 0.45 ± 0.12 eV.

This result is in good agreement with Reference [10], who find a similar mass at

mν = 0.36 ± 0.10 eV using a combined BAO+RSD+Planck dataset. This higher

value for the sum of neutrino masses would explain the preference of the growth

probes for less growth of structure than predicted; higher-mass neutrinos act as warm

dark matter, decreasing the overall formation of structure by dampening the amount

of power in the matter power spectrum.

63



Fig. 4.4 and Eq. (4.12) show that the geometric equation of state is also some-

what incompatible with the ΛCDM value; the combined data mildly prefer a value

wgeom = −1.13 ± 0.06. Most of the pull toward such negative values is found to be

provided by the BAO. This fact, along with wgrow > −1, exacerbates the disagree-

ment between geometry and growth, leading to the 3.3σ incompatibility previously

mentioned; growth however clearly exhibits the more pronounced tension with the

standard value.

Finally, the Planck early-universe prior’s effect on the combined constraints are

investigated to see if it pushes the combined constraints away from the standard

assumption that geometry=growth. To that effect, the Planck prior in Table 4.7 is

replaced with the equivalent based on WMAP nine-year data [33]. While using this

alternate EU prior, the data indicate that wgeom = −1.13±0.06, wgrow = −0.78±0.08,

with wgrow > wgeom now favored at 3.1σ (p-value=0.0017). These constraints are very

similar to those obtained with the Planck EU prior, showing that the choice of prior

does not affect the results appreciably.

4.7 Summary

In this chapter, I have performed a general test of the consistency of the wCDM cos-

mological model using current data from Type Ia Supernovae, CMB peak location,

baryon acoustic oscillations, cluster counts, weak lensing shear two-point correlations,

and redshift space distortions. The late universe DE parameters were split into those

that describe the geometry of the universe and those that govern the growth of struc-

ture. Under the assumption of a ΛCDM universe, the parameters Ωgeom
M and Ωgrow

M

were constrained (Fig. 4.3). Then, the more general model with the split equation of

state parameters wgeom and wgrow was also considered, with constraints also placed on

those parameters (Fig. 4.4). Several early universe parameters have been marginal-

ized over for these results, as well as a number of nuisance parameters specific to
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individual probes. The fiducial unsplit cases have also been constrained as a sanity

check, with results shown in Fig. 4.2. The complementarity of the various probes

is impressive, as seen in the constraints. The overall goodness-of-fit to the ΛCDM

model is satisfactory, and the constraints on the split parameters are very tight (see

Eqs. 4.10 and 4.12 and Table 4.8).

One surprise is the constraints from RSD, which are in ' 3 − σ conflict with

wCDM. The RSD prefer less growth at late times than is predicted by the standard

cosmological model, as is apparent in Fig. 4.4; this can also be seen in the RSD data

in Fig. 4.1. As pointed out in Section 4.6, this tension has already been noticed in

the literature. In the Discussion section, I demonstrate that the discrepancy remains

at the still-significant 3.1σ once the most discrepant RSD measurement is replaced

by one from an alternative analysis. The discrepancy may be resolved with a higher

value of the neutrino mass sum than the minimum value predicted by current neu-

trino oscillation data under the assumptions of the normal hierarchy between the

mass eigenstates, mν = 0.45 ± 0.12 eV; see Fig. 4.6. This higher value of the sum

of neutrino masses would account for the suppressed growth favored by the RSD.

However, systematics may also play a role in resolving the discrepancy; more work in

this area is needed to determine which of these effects is responsible.
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CHAPTER 5

Summary and Conclusions

As an explanation to the acceleration of the expansion of the universe, the dark energy

paradigm with a cosmological constant, ΛCDM, has been tremendously successful.

Time and time again, ΛCDM has withstood falsification from new data and become

the leading candidate to explain this great mystery. Even though there have been

many attempts at disproving ΛCDM, or replacing it with an alternate theory, it has

survived, and even thrived, so far.

However, even with all of the information we have gathered using cosmological

observations, the true nature of dark energy has remained a great mystery. And while

the leading contender is that of the cosmological constant, many alternate models

have been proposed which are still able to explain the acceleration of the universe’s

expansion, and many of these models have not yet been ruled out. Due to the open

nature of dark energy, it is currently a very exciting time in dark energy cosmology.

In the previous chapters, we have seen the impressive constraining power of the

current surveys. The maturing of new types of probes (several of which were described

in Chapter 2), some which didn’t exist a decade ago, and new more powerful surveys,

have led many to call the current era a golden age of cosmology. The things learned

over the past decade and a half have provided an abundance of new information and

greatly increased the mapping of the expansion rate of the univere and the growth

of cosmic structures, though perhaps not the understanding of the nature of dark
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energy.

In Chapter 3 I illustrated explicitly the effects of SN systematics on the constraints

of DE parameters. Future surveys will need to better control for these systematics,

primarily calibration errors of the various instruments. The work by the SNLS team

in quantifying the systematics is very important in this regard, and the hope is that

future surveys will be able to reduce these sources of error significantly. Space-based

telescopes, for example, will help in the reduction of calibration errors, primarily due

to the lack of atmospheric effects which can affect the calibration.

Future surveys will also provide much better constraints on the growth of struc-

ture, which I showed in Chapter 4 were not as good as the constraints on geometry.

The upcoming Dark Energy Spectroscopic Instrument (DESI) [51] will provide de-

tailed spectra of a large number of objects (∼30 million), and will therefore be par-

ticularly useful for the measuring the RSD and BAO. DESI will also provide detailed

measurements of the Lyman-alpha forest, a recently-developed probe which will also

provide details of the growth of structure, as well as information regarding the sum

of neutrino masses.

Other surveys, such as the space-based Euclid [50] and Wide-Field Infrared Sur-

vey Telescope (WFIRST) [79] satellites, will provide deep measurements of the uni-

verse with their near-infrared sensors and high resolution imaging. Both Euclid and

WFIRST will have the capability to measure the spectra of distant galaxies, which

will provide detailed measurements of RSD and galaxy clustering. These surveys will

cover large volumes of the sky (15,000 deg2 for Euclid and 2400 deg2 out to a redshift

of almost z = 3 for WFIRST) and will reduce systematic uncertainties such as those

due to atmospheric effects, which will be useful for differentiating between the various

possible explanations for the lower-than-expected growth seen in the RSD by current

surveys. The large survey volumes will also detect a large number of galaxies (Euclid,

for example, is expected to observe around 10 billion galaxies), potential resulting in
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tens of thousands of galaxy clusters and further placing much-needed constraints on

the growth of structure.

The probe that offers the largest potential for improvement in the future, weak

gravitational lensing, will greatly benefit from the upcoming Large Synoptic Survey

Telescope (LSST) [54]. This ground-based telescope will cover about half of the sky

(20,000 deg2) and will go very deep by revisiting each patch of the sky about 1000

times over a period of ten years. Its very high resolution camera (3200 megapixels)

will take very fast detailed images of the universe with a 9.6 deg2 field of view us-

ing 6 bands, which should lead to good-quality photometric redshifts. This makes

it perfectly suited for measurements of the weak lensing shear two-point correlation

function and cluster counts. The LSST team also expects to measure tens of thou-

sands of new type Ia supernovae, allowing for a big improvement in the constraints

on dark energy parameters.

Along with the new surveys, further insights into the modelling of these growth

probes needs to be done, particularly RSD. With a better understanding of the RSD,

we can determine if there are new sources of systematic uncertainties, and better

understand how neutrino masses affect the growth of structure. Reference [85], for

example, tests various analytic models used for analyzing RSD data, and identifies

challenges in modeling small-scale velocities. Finding models that better describe

RSD is crucial to understanding possible sources of systematics in this cosmological

probe, which in turn will allow for the better understanding of the role of neutrinos

in the universe.

The current direction of research into dark energy is extremely exciting, with

many recent advances in the field. Time will tell whether those advances eventually

lead to the discovery of the true nature of dark energy, the realization of a new theory

of gravity, or an option that has yet to be considered.
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APPENDIX A

Calculating the Equation of State Principal

Components

A.1 Setting Up the Binned w(z)

Before calculating the Principal Components, w(z) needs to be set up appropriately.

Following the procedure by the Figure of Merit Science Working Group (FoMSWG),

w(z) is modeled as a piecewise constant function in bins of ∆a = 0.025 for the

range 0.1 ≤ a ≤ 1.0, resulting in 36 bins [3]. The ith bin will contain the value

wi = w(zi), i = 0, 1, . . . , 35 for the interval between ai = 1 − 0.025i and ai+1 =

1−0.025(i+1), or equivalently between zi = 0.025i/(1−0.025i) and zi+1 = 0.025(i+

1)/(1− 0.025(i+ 1)).

In this form, the DE term in Eq. (1.4) takes on the form [39]

ρDE(z)

ρcrit

= (1− ΩM)

(
1 + z

1 + zi −∆zi/2

)3(1+wi)

×
i−1∏
j=1

(
1 + zj + ∆zj/2

1 + zj −∆zj/2

)3(1+wj)

(A.1)

for z within the ith bin, zi ≤ z ≤ zi+1.

70



A.2 Calculating the Fisher Matrix

The Fisher Matrix formalism is used to create a covariance matrix for the parameters

{pi} = {ΩM ,M, {wi}} 1 For a given likelihood, the sharpness of that likelihood gives

us information on how sensitive our model is to shifts in the parameter space, i.e.

for a sharply peaked likelihood, a small change in any parameter greatly reduces

the likelihood of the model defined by that new value, while for a broad likelihood,

any small shift has small effects on the value of the likelihood of the relevant model.

Thus, the amount a likelihood peaks, which is measured by its curvature, provides a

measure of how useful a set of data will be in distinguishing different models. This

brings us to the Fisher information matrix, or simply the Fisher matrix, defined as

Fij =

〈
−∂

2 lnL
∂pi∂pj

〉
, (A.2)

where L is the likelihood. The Fisher matrix provides a quantitative measure of the

effectiveness of a set of data’s ability to constrain a set of cosmological parameters.

The angle brackets (〈〉) mean that an expectated value is calculated over realizations

of the data, allowing us to find an analytic form for the expression. By assuming the

likelihood L is a multivariate Gaussian

L =
1

(2π)n/2| detC|1/2
exp

[
−1

2
(d− d̄)Ti C

−1
ij (d− d̄)j

]
(A.3)

where di are the data, d̄i the expected value for that data point, and Cij is the

covariance of the data points, Eq. (A.2) can be simplified (after some algebra) to

Fij =
1

2
Tr

[
C−1dC

dpi
C−1 dC

dpj

]
+

(∑
m,n

∂〈dm〉
∂pi

C−1
mn

∂〈dn〉
∂pj

)
(A.4)

1For the purposes of creating the Fisher Matrix, only one value ofM is used (as proposed in the
FoMSWG parameterization [3]), though for the actual constraints, two are used.
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where 〈dm〉 is the expectation value for the mth data point, Cmn is the covariance

between the mth and nth data points. All derivatives are evaluated at the fiducial

values, which for this calculation are ΩM = 0.25, M = 25, and wi = −1. The

vector of expectation values 〈d〉 includes data from the 472 expected SNe magnitudes

for the redshifts measured in the SNLS data compilation [18], the 7 expected values

of the acoustic parameter for the redshifts measured by the various BAO surveys

[8, 61, 12, 13, 70, 5], and the single CMB expectation value from WMAP7 [48].

A.3 Calculating the Principal Components

The Fisher matrix provides a way to estimate errors given a set of data, that is,

to create forecasts. The goal of this excesise, however, is to obtain a basis for the

equation of state that would allow us to order a set of uncorrelated coefficients in a

way that gives us the most possible information. This set of basis vectors is called

the principal components of the equation of state w(z). To obtain them, we must

first marginalize over any additional parameters (in this case, ΩM and M) to obtain

a reduced Fisher matrix with only the information on the binned w(z). Marginalizing

involves inverting the original Fisher matrix, selecting the sub-matrix associated with

the 36 values of wi, and reinverting the resulting matrix. Once we have the w(z)

Fisher matrix, we can obtain the set of uncorrelated parameters by diagonalizing the

resulting 36× 36 matrix

F = ETΛE. (A.5)

where Λ is a diagonal matrix and E is an orthogonal matrix. The vector of uncorre-

lated parameters A is related to the binned equation of state vector by the expression

A = E(w + 1) (A.6)
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The rows of the orthogonal matrix E are the principal components ei(z), and form

an orthonormal basis. Taking advantage of the orthogonality of E, we can rewrite

the above equation to the commonly used form [58]

w(zi) = −1 +
35∑
j=0

αjej(zi), (A.7)

where αj are the elements of the vector A. By having uncorrelated parameters, the

coefficients can be ordered from best-measured to worst-measured. The associated

eigenvalues λi (the elements of the diagonal matrix Λ) determine how well the co-

efficients αi can be measured, i.e. σ(αi) = λ
−1/2
i . The PCs are ordered such that

σ(α0) ≤ σ(α1) ≤ . . . ≤ σ(α35) [39]. Because the coefficients of the last PCs are

measured especially poorly, only the first 10 PCs are used for the analysis [68].

Eq. (A.6) can also be rewritten in another familiar form [39]

αi =
36∑
j=0

(1 + w(zj))ei(zj). (A.8)

It is trivial to calculate the values of αi for the ΛCDM model (w(z) = −1); αi = 0.

these values are adopted as the fiducial values for αi. Any of the αi coefficients held

fixed during the analysis are assigned this value (i.e. the final 26),
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APPENDIX B

The Markov Chain Monte Carlo Algorithm

B.1 MCMC Methodology

In many instances, when placing constraints from cosmological data, one has to deal

with a large number of parameters. The conventional approach is to calculate the

likelihood of all parameter combinations, and use these likelihoods to place the con-

straint contours, commonly referred to as the “brute force” or “grid search” method.

In this method, the addition of a new parameter increases the number of calculations

required to fully explore the parameter space geometrically, that is, the total calcula-

tion time scales as n2 for n parameters. For a small number of parameters (∼ 2− 4),

this is usually not a problem. However, for any greater number of parameters, a

typical scenario in cosmology, the calculation time quickly becomes unwieldy, poten-

tially on the order of years, decades, or even centuries for larger n! Thus, a different

algorithm is required to quickly and accurately place constraints without requiring

extreme amounts of computation time.

The Markov Chain Monte Carlo (MCMC) method is a powerful tool that over-

comes these problems. It has the advantage that the computation time scales linearly

with the number of parameters (rather than geometrically), resulting in much faster

calculation times. The simplest form of this algorithm, the Metropolis-Hastings al-

gorithm [56, 30], goes as follows:
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1. Calculate L(xi), the likelihood of a point xi in the parameter space, and add

this point to your chain.

2. Calculate L(t), the likelihood of a test point t = xi + ∆x, where ∆x is a small

step from the original point.

3. If L(t) > L(xi), then move to the test point; t → xi+1. Repeat with this new

point (go to step 1.)

4. If L(t) < L(xi), generate a random number a ∈ [0, 1]. If a > L(t)/L(xi), move

to the test point; t → xi+1. Otherwise, stay at the current point; xi → xi+1.

Repeat with this new point (go to step 1.)

After running the MCMC, the resulting chain is binned in parameter space, with

the value within the bin being the number of times the parameter combination within

that bin appears in the chain. This multidimensional grid of “counts” is treated

as an estimate of the underlying posterior distribution, i.e. the “true” posterior

distribution; bins with higher counts are interpreted as areas of parameter space with

a higher likelihood.

B.2 Optimizing MCMCs

Due to the random nature of the MCMC algorithm, the resulting distribution is only

an estimate of the underlying posterior, and thus less accurate than the brute force

method of obtaining constraints, resulting in parameter constraints that are slightly

off from their “true” values. However, this effect can be reduced by running the

MCMC for a long enough period of time; one of the properties of MCMC methods

is that the sample better estimates the underlying posterior as the number of steps

in the chain increases. Obviously, running an MCMC for extremely long amounts of

time, which would result a almost-perfectly accurate posterior estimation, somewhat
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defeats the purpose of the algorithm. In order to know when the estimation is “good

enough”, a quantity known as the convergence criterion is calculated. To do this,

multiple MCMC chains are run simultaneously, and certain properties of these chains

are compared. In this work, the Gelman-Rubin convergence criterion [28]

R̂ =
N−1
N
W +B

(
1 + 1

M

)
W

(B.1)

is used, where the variance within the overall distribution is

W =
1

M(N − 1)

∑
ij

(yji − ȳj)2, (B.2)

and the variance between chains is

B =
1

M − 1

M∑
j=1

(ȳj − ȳ)2. (B.3)

Here, N is the average length of the chains, M the number of chains, yji is the ith

element in the jth chain, and the quantities

ȳj =
1

N

∑
i

yji (B.4)

ȳ =
1

NM

∑
ij

yji (B.5)

are the mean of chain j and the mean of the entire distribution, respectively. Notice

that as the length of the chain tends towards infinity, (which would result in the

true posterior), the variance between chains would disappear (since they would all be

the same); as such, the convergence criterion tends towards R̂ = 1 for longer chains.

Thus, convergence criterions near R̂ = 1 are generally considered “good enough”;

conservative values are typically those less than about R̂ ≤ 1.03, while more stringent

cases might prefer convergence criterions of R̂ ≤ 1.001.
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A good MCMC code will not only calculate the convergence of the chains, but

will also be efficient: ideally, it will move from one point to the next with about a 1/3

chance, allowing for fast runs overall. The main way to do this is to know the general

directions to step in, which can be specified with the eigenvectors of the covariance

of the parameters, and the general step size in those directions, obtained from a

Gaussian distribution where the standard deviation is determined by the eigenvalues

of the covariance. These quantities can be obtained by running a few short MCMCs

to “test” the underlying posterior and get some general properties. A Fisher matrix

can also work well in this instance.

Finally, when beginning an MCMC, the initial point should be chosen at random.

If this point is in an area of low likelihood, it is possible the MCMC will stay near the

initial point during the beginning of the run, falsely indicating that the region has a

higher likelihood value than in truth, leading to a “burn in” period. Therefore, it is

prudent to discard the initial steps of the MCMC (say, the first 10%).

A great advantage of an MCMC is that once the chains have been computed, any

postprocessing is relatively easy. This includes things like calculating the covariance

of the parameters in the chain, binning the chain for plotting purposes, or any other

type of analysis. In addition, marginalizing over any parameters is extremely simple:

just ignore the columns associated with those parameters, no integrating required.
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APPENDIX C

Details on the MaxBCG Dataset and Likelihood

Calculation

C.1 Cluster Count and Mean Mass Data

The MaxBCG Cluster Catalog contains measurements of the number of galaxies

within a galaxy cluster, referred to as a cluster’s richness N∆, where ∆ is the over-

density at which the radius of the cluster is determined (Reference [66] utilizes an

overdensity of ∆ = 200 for their data points). The number of clusters within a given

richness range has then been binned, the details of which can be seen in Table C.1

and in the top panel of Fig. C.1.

Richness bin No. of Clusters
11-14 5167
14-18 2387
19-23 1504
24-29 765
30-38 533
39-48 230
49-61 134
62-78 59
79-120 31

Table C.1: The number of clusters with a richness within a given bin.

In addition to the binned richness data, there are five clusters with a richness
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Richness bin No. of Clusters 〈M200b〉[1014M�]
12-17 5651 1.298± 0.183
18-25 2269 1.983± 0.260
26-40 1021 3.846± 0.536
41-70 353 5.475± 0.766
71+ 55 13.03± 2.01

Table C.2: Mean mass (and their number) of clusters with a richness within the given
bin.The errors in the mass are added to the total covariance; see text for details.

N200 = 126, 139, 156, 164, 188. Clusters of richness N200 > 120 are rare, thus, these

clusters are not analyzed using a Gaussian likelihood, but instead are added to the

analysis on an individual basis using a Bernoulli (binary) distribution

P (N |N200) =

 1− p if N = 0

p if N = 1,
(C.1)

which is adequate as long as the probability that two clusters have the same richness

is negligible. Here p is the probability that a cluster with a given richness will be

found, or more explicitly p = 〈N |N200〉. With this distribution, the likelihood of these

five clusters is

lnLtail =
∑

N200>120

〈N |N200〉 −
∑

N200=1

(〈N |N200〉+ ln〈N |N200〉) . (C.2)

The MaxBCG catalog also contains data of the mean masses of clusters within

a given richness bin: these are summarized in Table C.2 and in the bottom panel

of Fig. C.1. The mass of the clusters has been calibrated using weak gravitational

lensing measurements from Reference [45]. These cluster masses have been measured

under the assumption of a ΛCDM universe with ΩM = 0.27. Since variations on

the cosmology are planned during analysis, the overdensity, which depends on the

particular cosmology, would change to ∆ = 200 (0.27/ΩM). As such, the cluster
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Figure C.1: Top: Number of galaxy clusters within a given richness bin in the MaxBCG
dataset. Errors shown are the diagonal parts of the covariance matrix. The step function
shown uses the parameter values from the best fit ΛCDM model (Column 2 of Table 4.8).
The data are summarized in Table C.1. Bottom: Mean mass of galaxy clusters within the
given richness bin in the MaxBCG dataset. The step function uses the same parameter
values as the top figure. The data are summarized in Table C.2.

masses need to be rescaled back to an overdensity ∆ = 200. This can be achieved

using the Hu and Kravstov equation for mass rescaling [37]

Mh

Mv

=
∆h

∆v

1

c3

(
rh
rs

)3

(C.3)

where Mh is the mass of the halo, Mv is the virial mass, rh is the radius of the halo

given an overdensity, rs the scale radius for an NFW profile, c is the concentration
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factor, ∆h is the overdensity used to define Mh, and ∆v is the virial overdensity

∆v ≈
18π2 + 82 [ΩM(z)− 1]− 39 [ΩM(z)− 1]2

ΩM(z)
. (C.4)

The ratio of radii is given by

rs
rh

= x

(
fh =

∆v

∆h

f

(
1

c

))
(C.5)

where

f(x) = x3
[
ln(1 + x−1)− (1 + x)−1

]
(C.6)

and its inverse is approximated as

x(f) =

[
a1f

2p +

(
3

4

)2
]−1/2

+ 2f. (C.7)

Here p = a2 + a3 ln f + a4(ln f)2, and ai = {0.5116,−0.4283,−3.13 × 10−3,−3.52 ×

10−5}. Finally, the concentration can be expressed in terms of the virial mass as

c(Mv) = 9(1 + z)−1(Mv/M∗)
−0.13 (C.8)

where M∗ is the critical mass and is calculated at the present day (z = 0).

C.2 Cluster Covariance Matrix

The covariance of the data is composed of five parts [66]. The first is the uncertainty

due to shot noise, which take the form of Poisson fluctuations

(Ca,a′)P = δa,a′〈N〉. (C.9)
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These uncertainties are equal to the expectation values for each bin (see Section 2.5)

and form a diagonal along the covariance. There are similar terms for the mean mass

data points.

The second contribution to the covariance is the uncertainty due to sample vari-

ance: the smaller the sample of clusters, the more likely it is for that sample to not

be fully representative of the total population. This uncertainty takes the form

(Ca,a′)S = 〈bNa〉〈bNa′〉σ2(V ), (C.10)

where V is the survey volume, σ(V ) is the amplitude of matter fluctuations for that

volume, and

〈bNa〉 = V

[
dMb(M)

dn

dM
〈ψa|M〉

]
. (C.11)

Here, 〈ψa|M〉 is the probability weighting function defined in Eq. (2.17) for bin a,

dn/dM is the Tinker Halo Mass Function [80] as defined in Eq. 2.21, and b(M) is

the halo bias. Similar to Reference [66], the the Sheth-Torman halo bias is used [76]

b(M) = 1 +
(aν − 1)

δc
+

2p/δc
1 + (aν)p

, (C.12)

where δc = 1.686 is the critical overdensity, ν = δ2
c/σ

2, and a = 0.707 and p = 0.3 are

fitting parameters. As before, there are similar terms for the mean mass data points,

as well as the cross terms between number counts and mean masses.

The third contribution to the covariance matrix is errors due to the stochasticity

of the mass-richness relation. This error leads to uncertainties in the precise mass

binning of the cluster sample and takes the form

(Ca,a′)B =

∫
dMdz

dn

dM

dV

dz
〈φ|z〉 [δa,a′〈ψa|M〉 − 〈ψa|M〉〈ψa′ |M〉] , (C.13)

with similar terms for the mean masses.
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The fourth contribution to the covariance is measurement errors of the weak lens-

ing mass ∆〈M200b〉, which are shown in Table C.2 along with the mean mass values

for each bin. These errors are multiplied by the number of clusters within the mean

mass richness bins, and then added in quadrature to the diagonal elements of the five

mass data points (but not to the nine number data points). Thus, this contribution

has the form

(Ca,a′)M =

 0 if a is a number count bin

δa,a′(Na∆〈M200b〉a)2 if a is a mean mass bin.
(C.14)

The final contribution to the covariance is the uncertainty in the purity and com-

pleteness of the MaxBCG sample. If we defineNtrue as the number of clusters expected

in the absence of systematics, the observed number of clusters Nobs is

Nobs = λ Ntrue, (C.15)

where λ is a parameter that characterizes both the purity and completeness. It follows

that

Var(Nobs) = Var(λ) 〈Ntrue〉2 + 〈λ〉2 Var(Ntrue). (C.16)

A similar analysis can be done for the average mass within a richness bin

(NM̄)obs = λ̃ (NM̄)true (C.17)

where λ̃ is a different correction factor that takes into account the mass contribution

to the purity and completeness. A difficulty arises in that we cannot know a priori

what this correction factor is, however, Reference [66] argues that λ = λ̃ = 1± 0.05;

thus Var(λ) = Var(λ̃) = 0.052. Var(Ntrue) is simply the terms in the covariance

matrix discussed previously, so the final term for this part of the covariance matrix
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is just

(Ca,a′)λ = δa,a′Var(λ)〈N〉2a, (C.18)

with similar terms for the mass expectations. Combining all of these contributions,

we get the total covariance is

(Ca,a′)tot = (Ca,a′)P + (Ca,a′)S + (Ca,a′)B + (Ca,a′)M + (Ca,a′)λ (C.19)

C.3 Calculating the Cluster χ2 Statistic

With the vector of observables and covariance matrix, we can construct the χ2 statistic

for clusters

χ2
clusters =

(
∆xT (Ctot)

−1∆x
)
− 2 lnLtail, (C.20)

where ∆x = x− 〈x|p〉, x is the vector of observables

x = {N1, . . . , N9, (NM̄)1, . . . , (NM̄)5}, (C.21)

and 〈x|p〉 is the corresponding expectation value given a set of parameters p.
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