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ABSTRACT

A Collection of Essays on Electric Grid Operations: Optimizing Energy Storage and
Enhancing the Effect of Social Comparisons

by

Santhosh Suresh

Co-Chairs: Assistant Professor Owen Wu and Professor Roman Kapuscinski

Every year, a significant portion of the energy the U.S. electric grid consumes is wasted

through transmission, heat losses, and inefficient technology, translating into significant costs

to individual consumers and businesses. Improving the efficiency of the electric grid is one of

the easiest and most cost effective ways to combat climate change, clean the air we breathe,

improve the competitiveness of our businesses and reduce energy costs for consumers. Gov-

ernments across the world are focusing on ways to achieve it. This dissertation explores

various ways of improving the grid operations related to energy storage. Storage allows for

smoothing production and hence avoiding the costly peaking plants. However, scalable en-

ergy storage technology, such as Lead Acid Batteries or Pumped Storage units are expensive

and have significant conversion losses in both the storing and withdrawing processes. The

first two essays in the dissertation consider energy storage.

The first essay considers the problem of locating storage facilities in an electric grid. Due

to transmission losses, congestion and reliability issues, the location of storage technology on

the grid affects its economic value. We consider a trade-off between locating storage closer

to the generation unit, increasing flexibility of the storage unit, or closer to the demand

hub, reducing transmission losses and study how changes in system parameters will affect

this trade-off. We derive a structure for the optimal operating policy and conclude that

xi



current system parameters greatly favour locating of Energy Storage investments closer to

the demand hub, due to lesser transmission losses, and minimal benefit of pooling.

The second essay considers the choice of storage technology. There exist a number of

storage technologies differing in investment costs per unit capacity and conversion efficiencies.

One of the critical trade-offs is between investing in technology with greater conversion

efficiency, incurring greater fixed costs or investing in technology with low efficiency, incurring

lower fixed cost but greater variable costs. We study the system parameters under which

different types of technology are most suitable. We also show that under some situations

investing in a portfolio of technologies may perform better than choosing a single technology.

However, we observe that the benefit of divesting in multiple technologies is decreasing in

the number of technologies used.

The third essay deals with behavioural energy efficiency. Opower, a technology company

has recently shown that comparing energy consumptions of households to their peers can

motivate consumers to significantly reduce their energy usage through peer pressure. Their

Home Energy Reports (HER) program has been documented to reduce up to 3% in energy

consumption of consumers across the spectrum and this has resulted in a growing field of

energy conservation known as behavioural energy efficiency. We model the effects of these

social incentives against more standard investment incentives. We observe that, including

both types of incentives dramatically reduces demand consumption when compared to the

sum of the reduction by applying each of the incentives separately, in some situations.

xii



CHAPTER I

Introduction

Operating the North American electric grid is a complex business involving tens of thou-

sands of nodes spread across the entire continent. Each instant, operators have to make

thousands of trade-offs deciding the location, quantity and quality of power that is being

generated, transmitted and consumed, subject to several physical and economic constraints.

The annual revenue of the electric grid runs in billions of dollars, making efficient operation

of the grid, of paramount economic importance. In this dissertation, we discuss some ways

to improve the operation of the electric grid, both at the supply and consumption end of the

grid.

At the supply side of the grid, use of Energy storage technologies can substantially reduce

the cost of power generation. This is due to the convexity of the energy generation costs, i.e.,

during high demand periods, the marginal cost of energy is higher, owing to the use of more

expensive but flexible peaking units. Hence, energy storage allows for smoothing of power

generation, storing energy during inexpensive low demand periods for later use. Chapters

II and III discuss the problems related to Energy Storage Investment and Operation. In

chapter II, we discuss the problem of locating Energy Storage Technologies on the grid,

specifically, the trade-off between locating storage closer to the consumer end or closer to

the central generation end of the grid. In chapter III, we consider the issue of choosing the

right portfolio of storage technologies, given the many options available, such as Lead Acid

Batteries, Pumped Storage Units, Nickel Hydride batteries etc.

At the consumption end of the grid, Chapter IV explores the potential of motivating

consumers to consume less energy because of social comparisons and by incentivizing them

1



to invest in more energy efficient equipment. We compare the potential of both these types

of incentives. In particular, we consider whether the two treatments are complements or

substitutes, in terms of reducing energy consumption.

We conclude this dissertation in Chapter V by summarizing our contributions and dis-

cussing future research opportunities in this area.
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CHAPTER II

Operations and Investment of Energy Storage in the

Presence of Transmission Losses

2.1. Introduction

It is well known in OM practice and theory, that inventory provides a wide range of

benefits. It helps meet uncertain demand as well as smooth predictable cyclical patterns

in demand, allows for batching where economies of scale in procurement exist, allows to

take advantage of quantity discounts and protects against long lead times. Not unlike other

industries, in the omnipresent electricity industry, storage technology also has several ben-

efits, including enhancement of sustainability, reliability and utilization of generation and

transmission assets (Rastler and Kamath 2005). The value of electric storage has increased

due to significant technical improvements (de Morsella 2011, Rastler 2010) and the poten-

tial of energy storage has been established by several independent studies (Eyer and Corey

2010, Chu and Majumdar 2012, Greenberger 2011). Makansi (2004) argues that the benefit

of storage will likely increase because of increasing use of intermittent renewable sources of

energy.

Despite the high potential benefits of energy storage (Akhil et al. 2013), only about 3% of

the energy served in the US is cycled through energy storage, as opposed to 10-15% in Europe

and Japan (Gyuk 2003). To improve energy storage usage, the American Recovery and

Reinvestment Act allocated nearly $650 million to energy storage technologies and related

smart-grid technologies. These projects will naturally raise questions about the best use

of storage technologies and their locational benefits. Due to transmission losses (Energy
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Information Administration 2009) and congestion issues (due to limited capacities, see Rivier

and Perez-Arriaga 1993), the allocation of storage on the grid is a non-trivial problem.

Hoffman et al. (2010) point out the need for modeling tools to answer this question. Sbiliris

and Dedoussis (2013) and Gayme and Topcu (2013) use examples to show that intelligent

location of storage can significantly impact the value of storage. Nourai (2007) discuss and

numerically evaluate the investment projects of American Electric Power (AEP), where they

consider whether to localize storage investments for each community or centralize storage

investments at the grid level. We address exactly the same question, but their analysis is

computational, while we model this problem analytically.

While the problem of optimal location is fairly complicated, we consider the fundamental

trade-off between locating storage closer to the generating station (centrally) or closer to the

the usage point (locally). Pooling of storage capacity is beneficial when there is uncertainty

in the destination of stored energy, which arises from variability in demands across nodes

in the grid. Hence, pooling reduces transmission losses on average. Interestingly, centrally

located storage capacity must also “store” the transmission losses, which means that local

storage achieves greater efficacy of storage capacity. In a parsimonious model, we consider the

trade-off of pooling vs. localizing.1 Using stochastic dynamic programming, we identify the

structure of the optimal policy of operating the grid during each period. We then compare

investment strategies, given the optimal operating policy and identify the features of the

system that favor pooling versus localizing of storage capacity.

In a traditional operations sense, the greater the variability, the greater the benefits of

centralized storage capacity. In our study, however, we observe that increasing variability

increases the value of storage, which causes higher efficacy of the localized invested capacity

to smooth production. We investigate how the increasing penetration of the intermittent

renewable sources affects the storage location problem. The high wind generation during

low demand periods results in temporary surplus of energy, increasing the benefit of storage

capacity. Furthermore, the presence of local generation (due to distributed sources of energy,

such as wind farms) increases the benefit of localizing storage by enabling a cycle of locally

1Throughout the paper, the words pooling and centralizing of storage capacity are used interchangeably.
Similarly, the words localizing and decentralizing are used interchangeably.
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storing and using energy.

We discuss how the optimal pooling and localizing strategies are affected by system

parameters such as the cost of storage capacity, storage conversion efficiency, transmission

efficiency, and demand distribution parameters. We find that an increase in the cost of

storage increases the tendency towards localizing. Also, the benefits of localizing increase

when the average load increases. The impact of storage efficiency depends, however on where

the energy is generated. Under greater occurrence of local generation, increased storage

efficiency implies more localizing.

Contrary to the current practice, we find that, under current system parameters, it is

overwhelmingly more beneficial to localize storage capacity investments, mostly due to the

following two reasons. Firstly, the minimum of demand at a local node tends to be high

enough, so that local storage can primarily be used to satisfy local demand, decreasing

potential for remote transmission. Secondly, the greater efficacy of localizing is beneficial

due to the high price of storage capacity today ( $1000-2000/KWh).

2.2. Literature Review

Since the objective of this paper is to analyze the value of storage siting and sizing in

energy markets, a few streams of literature are relevant. We first discuss literature pertaining

to evaluation of energy storage without transmission constraints or losses, i.e., single-node

energy storage systems. Then, we discuss energy storage literature in the context of grid

operations, i.e., with transmission factors. We then discuss a related resource-allocation

problem: Distributed Generation (DG). Finally, we compare energy storage to the traditional

OM context of capacitated systems.

2.2.1 Single-Node Energy Storage Systems

Several papers provide insights on the evaluation of a single-storage facility, co-located

with renewable energy and/or directly serving customer demand. We wish to extend these

insights by considering an electric network with more nodes and transmission losses, and

focusing on storage location.

The evaluation of the economic value of energy storage is of extreme importance and

single-node is the natural step in this direction. See Mokrian and Stephen (2006) for a

5



comprehensive review of methodology related to evaluation of the economic benefit of energy

storage due to arbitrage, when operating in a market with exogenous prices. Several more

recent papers extend this stream of literature of revenue maximizing storage owner. Korpaas

et al. (2003), Castronuovo and Lopes (2004), Brunetto and Tina (2007), attempt this problem

as a deterministic optimization problem given a particular sample path over a finite horizon

and then averaging the results over the sample paths. Bitar et al. (2010), Bitar et al. (2011),

Kim and Powell (2011) consider a stochastic generalization of this problem. They derive

closed form expressions for the value of storage under certain special cases of the energy

price and wind distributions, to help evaluate storage investments.

Harsha and Dahleh (2011), Granado et al. (2012), Van De Ven et al. (2011) extend the

literature by considering the objective of players who are obligated to serve the consumer

demand, while maximizing revenue from a wind farm combined with storage. These papers

are different from the previous group in that, here, they are obligated to satisfy demand.

However, all of the above papers have an exogenous price process, while we endogenize

the price to the generation costs. Brown et al. (2008) consider a version of the storage

investment problem with additionally, a conventional generation unit, with deterministic

production cost in one-node setting. Our focus is different, we concentrate on the trade-off

between locating storage at central and local sites, which requires multi-node setting. We

borrow and generalize some assumptions from the single node literature.

2.2.2 Operation of Storage on the Electric Grid

In order to understand where to locate resources on the grid, it is necessary to first

understand how they would be optimally operated given locations are already chosen.

The traditional approach to solve grid operations is to apply Optimal Power Flow (OPF)

models, which include all the decisions to be made for each node of the grid, keeping in mind

the energy flow constraints, generation constraints, and transmission constraints (See Cain

et al. (2012) for a full summary on OPF). The presence of energy storage facilities on the

grid provides additional benefits for operations, but makes solving the problem more difficult,

since energy can be generated and stored to potentially serve future demand. Due to difficulty

of solving a system with storage units, Kraning et al. (2011) show that the optimization
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of a portfolio of storage technologies in order to minimize total system investment and

operating costs in the grid can be approximated to a convex optimization problem. Similar

convexifications of Power Flow problems can be seen in Low (2014), Sojoudi and Lavaei

(2013).

Our focus is understanding the trade-offs and generating insights. We therefore consider a

stylized model with three nodes (two demand hubs and one generation node), to demonstrate

the trade-offs between localizing and centralizing of storage capacity. Several papers model

operation of grids with energy storage on related specialized structures of grids: Single-

bus systems (Su and El Gamal 2011, Zhou et al. 2011, Chandy et al. 2010, Denholm and

Sioshansi 2009), are common. We add to this literature by proving structural properties

of the parameter-dependent grid operation policy in our stylized model with two demand

hubs. Other papers consider lossless 1-D and 2-D grids (Kanoria et al. 2011) and IEEE

benchmark network systems (Gayme and Topcu 2013) with deterministic demand to show

that storage flattens the generation profile. We use stochastic demands in our stylized

model with transmission losses and extend some of these patterns in the operating policy.

Our insights additionally extend to the investment problem.

2.2.3 Location of Storage on the Electric Grid

The problem of locating energy storage on the grid is complicated due to multiple lo-

cations, as well as losses and limited capacities along transmission lines. A general compu-

tational framework to optimize energy storage on the grid has been designed recently and

studied through simulations in Sjodin et al. (2012), Bose et al. (2012) using tools similar

to the Optimal Power Flow. Sjodin et al. (2012) use the approximate Direct Current OPF

(Purchala et al. 2005, Pandya and Joshi 2008), while Bose et al. (2012) use the relaxation of

the Alternating Current OPF (Bai et al. 2008, Bai and Wei 2009) on IEEE benchmark sys-

tems based on semi-definite programming (Boyd and Vandenberghe 2004, Wolcowicz et al.

2000). In contrast to these papers, our focus is on understanding the trade-offs in a stylized

network model to derive insights on the investment policy, rather than exact solutions.

Some papers consider the location of storage in single bus systems (Denholm and Sioshansi

2009, Zhou et al. 2011). Denholm and Sioshansi (2009) compare the benefits of deploying
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storage capacity at the wind farm or the load center connected via a transmission line. They

show that locating storage technology close to the wind farms is beneficial and results in

utilization of transmission capacities. Zhou et al. (2011) consider the problem of operating

a storage facility on a wind farm connected through a transmission line to a load center.

Both of these papers assume a single storage facility and an exogenous price process, which

is independent of the energy stored. In an independent but related work, Thrampoulidis et

al. (2013) consider a generic network model to derive insights on storage investment in a

network. They prove that it is never optimal to co-locate storage capacity with a generator

which is connected to the grid via a sole transmission line. These results are consistent with

our model, but our focus is on multiple demand nodes. Also, we model the impact of storage

on energy prices implicitly, through convex costs, instead of exogenous prices. Our model

shows that the intuition of locating storage closer to the point of “variability”, i.e., the wind

farm or demand hubs in the models in these papers, continues to hold in many settings.

Recent implementation of energy storage projects considered at American Electric Power

(AEP), Nourai (2007) have similar lessons. They concluded that localized storage (‘Com-

munity Energy Storage’) has greater benefits to the grid, then central storage. We confirm

their observations based on theoretical framework, that is different from other streams of

work. We formally compare localizing with pooling. Our model suggests that localizing of

storage increases the efficacy of storage assets by making better use of storage.

2.2.4 Location of Distributed Generation Resources on the Grid

A related field of resource allocation on the grid is that Distributed Grid (DG) location.

DG resource allocation problems present similar trade-offs as storage location in electrical

networks with transmission issues, as the objective is to invest in resources that reduce

generation costs, while still minimizing energy losses. In their seminal paper, Ackermann

et al. (2001) define Distributed Generation as electric power generation within distribution

networks or on the customer side of the network. Building on Ackermann et al. (2001),

El Khattam et al. (2004) investigate optimal investment in DG resources across the grid.

Madarshahian et al. (2009) consider the trade-off between customer interruption cost and

distributed generation cost and provide some heuristics for optimal DG investment. Ro-
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driguez et al. (2010) review the literature of DG optimization problems accounting for the

multiple objectives that DG systems often carry. This research is geared towards providing

computational methodologies for the industry, that can solve the distributed storage invest-

ment problem in the grid. Additionally, Wang and Nehrir (2004), Acharya et al. (2006) etc.

compare several analytical approaches to finding the optimal DG investment in simplified

bus networks. Additionally, Atwa et al. (2010) show that Mixed Integer Linear Programs

can be used to find an investment solution with huge performance improvement. While these

papers focus on comparing performance of methodologies, we focus on the insights of the

optimal investment policy, for the storage problem. We observe a unifying trend between the

investment of Distributed Generation capacities and decentralized Storage capacities: They

both tend to achieve greater value when invested away from the conventional generation

units.

2.2.5 Related work in Traditional Operations Management

Our model includes the elements of storage capacity and losses, as well as transmission

of energy, topics studied in traditional OM concepts of Inventory Control, Warehousing and

Transhipment.

The electric energy storage optimization problem is similar to a classical multi-period in-

ventory problem with stochastic demand. However, most of the inventory literature assumes

linear production costs, whereas in energy markets production costs are highly convex. A

treatment of the traditional inventory model with convex production costs can be found in

Karlin (1960). The paper however does not consider storage capacity or possibility of multiple

nodes. Several elements of energy storage models are different from OM models: produc-

tion cost is non-linear, all demand has to be satisfied and sequence of demand/production

tends to be different. Also, the nature of storage costs is significantly different, with con-

version losses. Our paper provides another inventory control model, with convex generation

costs and non-linear holding costs and provides a structure to the optimal operating policy,

contributing to the Inventory Control literature.

Our research is also related to the warehousing and the commodity trading literature.

Cahn (1948) introduces the problem that aims to identify optimal purchasing, storage and
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sales decisions of a stock given a warehouse with a fixed capacity. Bellman (1956) formulates

this as a dynamic program, and Dreyfus (1957) provides analytic solutions for deterministic

prices and shows that the optimal solutions at each stage are to either fill-up the warehouse,

or empty it, or do nothing. Charnes et al. (1966) show that for the case of positive stochastic

prices the optimal trading decisions remain the same. Rempala (1994) and Secomandi (2010)

extend this work to incorporate a limit to the injection and withdrawal and more recently,

Zhou et al. (2012) to the case of negative prices as well. Faghih et al. (2011) address this

problem in the energy storage context where storage is used for arbitrage. For independently

distributed prices in each period and a storage with a perfect round-trip efficiency, they derive

explicit formulae for the optimal thresholds (closed form or recursive). Our paper treats

prices as endogenous by modelling the convex production costs, and we observe that in this

system, the threshold structure of ‘fill up’ or ‘empty’ does not apply, as storing energy affects

the marginal cost of energy in each period. In a related context, Netessine (2006) considers

the problem of endogenously pricing inventory with limited storage capacity constraint.

While they provide insights on the pricing decision, prices are set by the production costs in

our model and we have multiple storage units, while they have just one.

Another related traditional OM concept is transhipment. A more traditional analysis

of inventory management under transshipment can be seen in Hu et al. (2008) where they

discuss the co-ordination transhipment prices of a two location production/inventory model.

In energy markets, the transmission losses impose a different cost structure, correspond-

ingly, operating policy is different. The impact of transmission constraints on energy prices

is analyzed in Lee et al. (2011), where congestion pricing plays an important role in modu-

lating demand. We complement this research by considering storage and transmission in a

centralized setting.
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2.3. Model

2.3.1 Storage and Transmission

We consider a storage investment problem on a simple tree network that consists of

one central generation facility (node G) and two demand centers (leaf nodes A and B).

Transmission lines G-A and G-B connect the generation facility and the demand centers. Let

T def
= {1, 2, . . . , T} denote an operating horizon. In a period preceding the operating horizon

(labeled as period 0), storage investment is decided at each node and storage facilities are

built. Once built, the storage size is fixed throughout the operating horizon T . An operating

period t ∈ T represents a few hours, while period 0 is much longer.

Assumption II.1 (Storage). (i) Each storage facility can be filled up or emptied within one

operating period. (ii) Energy loss during storage operation is linear in the amount of energy

stored or released.

Part (i) is not restrictive, as many storage technologies allow fully charging or discharging

within a few hours (Denholm et al. 2010, KEMA 2012). Part (ii) approximates the reality well

(Ibrahim et al. 2008) and is a standard assumption in most engineering and OM literature

(Denholm and Sioshansi 2009, Zhou et al. 2012). Most storage losses occur during energy

conversion processes (storing or releasing); keeping energy in the storage for one period has

negligible losses.

We denote storage size by S = (SA, SB, SG), where Si ≥ 0 is the storage size at node i.

Denote by st = (sAt , s
B
t , s

G
t ) the storage level (also referred to as inventory level) at the

beginning of period t, where st ∈ A def
= {s : 0 ≤ s ≤ S}, t ∈ T .

Let α ∈ (0, 1] denote the one-way efficiency of the storage; the round-trip efficiency is

α2. That is, reducing sit by one unit releases α units of energy, and raising sit by one unit

requires α−1 units of energy. Thus, the energy flow associated with an inventory change of

∆sit = sit+1 − sit is

ψα(∆s
i
t)

def
=

 α−1∆sit, if ∆sit ≥ 0,

α∆sit, if ∆sit < 0,
(2.1)
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where ψα(∆s
i
t) > 0 is the energy inflow into storage, and ψα(∆s

i
t) < 0 is the energy outflow.

The assumption of the same efficiency in both ways brings notational and analytical

convenience, but does not cause any loss of generality, because if the storing efficiency α1

differs from the releasing efficiency α2, we can use α =
√
α1α2 and scale the storage size

and storage levels accordingly. We do not consider constraints on the speed of charging and

discharging energy storage in this paper. See Wu et al. (2012) for a recent discussion on the

impact of charging and discharging rates on the value of energy storage.

Our analysis focuses on storage operations in the presence of transmission losses. To

clearly analyze the tradeoffs, we assume that transmission capacity is not constrained. Lin-

ear transmission loss is a good approximation for most transmission lines with moderate

utilization, under destressed conditions (Gomez-Exposito et al. 2000).

Assumption II.2 (Transmission). (i) The transmission lines have sufficient capacity, i.e.,

capacity constraints are non-binding in all periods. (ii) Energy loss during transmission is

linear in the amount of energy transmitted.

Let β ∈ (0, 1] denote the efficiency of the transmission lines G-A and G-B in either

direction, i.e., transmitting one unit of energy leads to 1− β units of transmission loss. Let

uit denote the transmitted energy measured at leaf node i ∈ {A,B} in period t. To indicate

the direction of transmission, we use uit > 0 for the energy transmitted from G to leaf node

i and uit < 0 for the reverse flow (from leaf node i to G). The corresponding transmission

flow measured at G can be written as

ψβ(u
i
t)

def
=

 β−1uit, if uit ≥ 0,

βuit, if uit < 0.
(2.2)

2.3.2 Balancing Demand and Supply

Let dt = (dAt , d
B
t ) ≥ 0 denote the demand for electricity in period t, where dit is the

demand at leaf node i. We assume the demand process {dt : t ∈ T } is Markovian. We

assume dt is realized at the beginning of period t and must be satisfied in period t.

We refer to the tree network with generation and storage facilities as an electricity sys-

tem. A system operator makes production and inventory decisions in every period. At the
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beginning of period t, the system operator observes the period-starting storage level st and

demand dt, and decides the period-ending storage level st+1, which is the next period’s start-

ing storage level. The inventory change and demand determine the transmission flows and

central generation, as detailed below and illustrated in Figure 2.1.

At the leaf nodes, the flow balance constraint is

uit = dit + ψα(∆s
i
t), i = A,B. (2.3)

Then, (2.2) and (2.3) imply together that the transmitted energy measured atG is
∑

i=A,B

ψβ(u
i
t) =∑

i=A,B

ψβ

(
dit+ψα(∆s

i
t)
)
. Flow balance at G implies that the central facility’s production quan-

tity, denoted as qt, is a function of dt and inventory change ∆st = st+1 − st:

qt = q(∆st,dt)
def
= ψα(∆s

G
t ) +

∑
i=A,B

ψβ

(
dit + ψα(∆s

i
t)
)
. (2.4)

Because ψα(·) and ψβ(·) are convex and increasing functions, q(∆st,dt) is convex and in-

creasing in ∆st. As the central facility produces q(∆st,dt) to balance the energy flows at

node G, the system operator must choose storage level st+1 such that q(∆st,dt) ≥ 0.

Let c(qt) denote the cost of producing qt in period t at the central facility at G. The

production satisfies the following assumption.

Assumption II.3 (Production). (i) c(qt) is convex and increasing in qt for qt ≥ 0, and

c(0) = 0; (ii) In every period t, central production qt can be adjusted to any non-negative

level at negligible adjustment cost.

2.3.3 Problem Formulation

We aim to decide the storage investment strategy and the corresponding operating policy

that satisfies the demand at the minimum cost. To evaluate a storage investment decision S,

let Vt(st,dt;S), t ≥ 1, denote the minimum expected discounted operating cost from period

t onward when the state is (st,dt), and let γ ∈ (0, 1] be the discount factor. The opti-

mal operating policy for given storage S is determined by the following stochastic dynamic
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Figure 2.1: Network Model and Key Variables
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Vt(st,dt;S) = min
st+1

{
c
(
q(st+1 − st,dt)

)
+ γEt

[
Vt+1(st+1,dt+1;S)

]}
, t ∈ T , (2.5)

s.t. st+1 ∈ A, q(st+1 − st,dt) ≥ 0, (2.6)

where Et denotes the expectation with respect to future demand dt+1, conditioned on dt.

The terminal condition is VT+1(sT+1, .;S) = 0.

The storage facilities are installed in period 0; no additional investment or divestment can

be made during the operating horizon. The storage investment decision trades off between

the upfront investment cost and the ongoing operating cost. The investment of |S| def
=

SA + SB + SG units of storage capacity incurs an upfront investment cost of p |S|, charged

at the end of period 0, where p is the investment cost per unit of storage capacity (we

consider a single storage technology in this paper). We assume storage facilities are full

after installation: s1 = S. Thus, at the end of period 0, the investment and operating cost

combined is p |S|+ V1(S,d1;S). Because the investment decision S is made at the beginning
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of period 0, we define V (S)
def
= E0V1(S,d1;S) and B(S)

def
= V (0)−V (S)−p |S|, which is the

net benefit of S, i.e., the operating cost reduction brought by the storage net the investment

cost. Then, the optimal investment is determined by

max
S≥0

B(S). (2.7)

This problem is to make the storage siting and sizing decisions on a simple tree network,

taking into account the storage and transmission losses and the convex production cost. Our

model can be extended to include a fixed cost or other general cost structures, but we believe

that focusing on the linear investment cost helps us understand the basic tradeoffs in storage

investment decisions.

2.4. Optimal Operating Policy for Given Storage Investment

This section derives the structural properties of the optimal operating policy under given

storage size S ≥ 0. Because S is fixed for t ∈ T , we write Vt(st,dt;S) as Vt(st,dt) and write

the optimal decision for (2.5)-(2.6) as s∗t+1(st,dt) in this section.

2.4.1 Basic Properties and Problem Decomposition

We first derive some properties of the operating cost function Vt(st,dt). Intuitively,

stored energy has an operating-cost reduction effect. Lemma II.4 confirms this intuition and

further shows that this effect declines when the storage level increases. (Throughout this

paper, monotone and convex properties are not in strict sense, unless otherwise noted.)

Lemma II.4. Vt(st,dt) is decreasing and convex in st for any dt and t ∈ T .

Note that constraint (2.6) defines a non-convex feasible region for st+1, and thus, the

proof of Lemma II.4 is not obvious. All proofs are included in the online supplement.

The next lemma shows that energy from any storage facility would not be withdrawn

only to store it in another location. Intuitively, because transmission capacity is non-binding

(Assumption II.2), there is no benefit from moving stored energy only to incur transmission

and storage losses.
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Lemma II.5. (i) Let st, s̃t ∈ A, and st − s̃t = (−δ, β2δ, 0) or (β2δ, −δ, 0) for some δ > 0.

Then, Vt(s̃t,dt) ≤ Vt(st,dt) for any dt and t ∈ T .

(ii) Let st, s̃t ∈ A, and st − s̃t = (−δ, 0, βδ) or (0, −δ, βδ) or (βδ, 0, −δ) or (0, βδ, −δ) for

some δ > 0. Then, Vt(s̃t,dt) ≤ Vt(st,dt) for any dt and t ∈ T .

To analyze the structures of the optimal policy, we decompose the problem in (2.5)-(2.6)

into a master problem and a subproblem.

• The master problem decides the production level qt,

Vt(st,dt) = min
qt

{
c(qt) + γWt(qt, st,dt) : qt ∈ Q(st,dt)

}
. (2.8)

• While the subproblem finds the optimal use of qt by deciding the inventory levels:

Wt(qt, st,dt) = min
st+1

{
Et

[
Vt+1(st+1,dt+1)

]
: st+1 ∈ A(qt)

}
, qt ∈ Q(st,dt), (2.9)

where st+1 is chosen from an iso-production surface A(qt), defined as

A(qt)
def
=

{
st+1 ∈ A : q(st+1 − st,dt) = qt

}
, (2.10)

and qt is chosen fromQ(st,dt)
def
=

[
qt, qt

]
, where qt = q(S−st,dt) is the maximum production

in period t, which satisfies the demand and fills up the storage at all three nodes, and

qt =
(
q(−st,dt)

)+
is the minimum production, which satisfies the remaining demand after

inventory from all three nodes is used to meet as much demand as possible. (Throughout

the paper, x+ = max{x, 0}.) For brevity of notations, we do not explicitly express the

dependence of A(qt), qt, and qt on (st,dt).

Let s∗t+1(qt, st,dt) denote an optimal solution to the subproblem (2.9). Solving (2.9) leads

to the minimum expected cost-to-go function Wt(qt, st,dt) that is well-behaved.

Lemma II.6. Wt(qt, st,dt) is convex and decreasing in qt for any given (st,dt) and t ∈ T .

The master problem (2.8) decides the optimal production, trading off between the pro-

duction cost c(qt) and the minimum expected cost-to-go function Wt(qt, st,dt). Because
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Wt(qt, st,dt) and c(qt) are convex in qt (Lemma II.6 and Assumption II.3), the master prob-

lem (2.8) is a one-dimensional convex optimization problem. Therefore, the rest of the

analysis in this section is devoted to describing the structures of s∗t+1(qt, st,dt), the solution

to the subproblem (2.9).

2.4.2 Structures of the Optimal Inventory Policy

The key construct for describing the optimal solution s∗t+1(qt, st,dt) is a balance curve,

denoted as
{
b(z; sG, dt) : z ∈ [0, SA+SB]

}
. A balance curve assumes the inventory in node

G is fixed at sG ∈ [0, SG]. For each total leaf inventory level z ∈ [0, SA+SB], b(z; sG, dt)

prescribes an allocation of z among the leaf nodes A and B so that the future expected

operating cost is minimized:

b(z; sG, dt) ∈ argmin
st+1∈A

{
Et

[
Vt+1(st+1,dt+1)

]
: sAt+1+s

B
t+1=z, s

G
t+1=s

G
}
. (2.11)

We characterize the structural properties of the optimal solution s∗t+1(qt, st,dt) using

the balance curve, with explicit formulae when possible. We will show that for α ≤ β,

s∗t+1(qt, st,dt) lies on the balance curve if (loosely speaking) the production level qt allows

s∗t+1(qt, st,dt) to reach the balance curve; otherwise, s∗t+1(qt, st,dt) will be as close to the

balance curve as possible. These structural properties bring computational benefits and also

reveal insights on storage management. To clearly illustrate these structures, we first present

a special case with symmetric demand across the leaf nodes and SG= 0 (Theorem II.8). We

then relax the constraint SG= 0. In Theorem II.9 we further relax the symmetry and show

that the policy structure remains the same. In Theorem II.11 we consider the case with

β < α.

For a given leaf node, we refer to the storage at this leaf node as local (L) storage, and

the storage at the other leaf node as remote (R) storage. The storage at node G is referred

to as central storage.
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2.4.2.1 Special Case with Symmetric Leaf Nodes and α ≤ β

The leaf nodes are said to be symmetric in period t if they have the same storage size,

SA = SB, and the demand distributions for future periods satisfy

P{dAτ ≤ x, dBτ ≤ y | dt} = P{dAτ ≤ y, dBτ ≤ x | dt}, ∀ τ = t+1, . . . , T, ∀ x, ∀ y. (2.12)

When the leaf nodes are symmetric in period t, allocating inventory evenly across the

leaf nodes minimizes the future expected operating cost in (2.11). Lemma II.7 confirms this

intuition.

Lemma II.7. If SA = SB and (2.12) holds in period t, then the balance curve is b(z; sG, dt) =(
z/2, z/2, sG

)
for all z ∈ [0, SA + SB].

Next, we characterize the optimal decision s∗t+1(qt, st,dt). A component of the optimal

decision is represented by a curve B(x,y, z), where x,y ∈ A, xA ≤ yA, xB ≤ yB, and

xG = yG. The curve B(x,y, z) connects x and y within the rectangle formed by x and y,

staying as close to the balance curve b(z; xG, dt) as possible. Figure 2.2 illustrates the curve

B(x,y, z). The curve’s parameter z ∈ [xA+ xB, yA+ yB] is the total leaf storage level.

Figure 2.2: Examples of B(x,y, z) under symmetric leaf nodes

Balance curve

45° 45° 45°

Line with 

Formally, for the case of symmetric leaf nodes, B(x,y, z) is defined as follows:
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B(x,y, z)
def
=


1{xA≤xB}

(
z − xB, xB, xG

)
+ 1{xA>xB}

(
xA, z − xA, xG

)
, if z ∈ [xA+xB, z1),(

z/2, z/2, xG
)
, if z ∈ [z1, z2],

1{yA≥yB}
(
z − yB, yB, xG

)
+ 1{yA<yB}(y

A, z − yA, xG
)
, if z ∈ (z2, y

A+yB],

(2.13)

where 1{·} is the indicator function and z1 = (xA∨xB)∧yA+(xA∨xB)∧yB and z2 = (yA∧yB)∨xA

+(yA∧yB)∨xB, where a∨b = min{a, b} and a∧b = max{a, b}.

We focus on the case of α ≤ β for now, i.e., storing energy incurs more energy loss than

transmitting energy from the central to the leaf nodes. Thus, intuitively, it is preferred to

use the central generation qt to meet as much demand as possible. If qt is insufficient to

cover the entire demand, stored energy is then released; if qt is more than enough to meet

the demand, the excess energy is stored. The following analysis formalizes this intuition and

prescribes the optimal inventory policy.

Theorem II.8 below focuses on the case of SG = 0. We first give a graphical representation

of the theorem in Figure 2.3. As qt increases from qt to qt, the optimal period-ending inventory

s∗t+1(qt, st,dt) moves from st to S along the bold curve. The following structures are true for

s∗t+1(qt, st,dt) for any qt, and thus also true for s∗t+1(st,dt), the solution for (2.5)-(2.6):

• Either store energy in both leaf nodes and end up (weakly) above the period-starting

inventory st, or withdraw energy from both leaf nodes and end up (weakly) below st.

• When storing energy, keep the inventory levels as close to the balance curve as possible,

i.e., the segment of the curve between st and S can be described by B(x,y, z).

• When withdrawing energy to meet the demand, withdraw from local storage first and

stay as close to the balance curve as possible (i.e., part of the curve below st can also be

described by B(x,y, z)), and then withdraw energy from the remote storage if necessary.

To precisely describe the above structure, we define some critical production and inven-

tory levels. Let qot = (dAt + dBt )/β denote the production that meets the demand in period

t without changing inventory levels. For a given state (st,dt), (d
i
t − sitα)

+ is the remaining

demand at leaf node i after being served by local storage, and thus, the production needed to

serve this remaining demand is qt =
∑

i=A,B

(dit−sitα)+/β, where the single under-bar represents
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Figure 2.3: Optimal inventory s∗t+1(qt, st,dt): Case of α ≤ β, symmetric leaf nodes (SA = SB

and (2.12) holds), and SG = 0

The graph illustrates the situation when dAt < αsAt and dBt >
αsBt .

that only local storage is used to satisfy demand. The corresponding remaining storage level

is st =
(
(sAt − dAt /α)

+, (sBt − dBt /α)
+, sGt

)
.

We denote by st the inventory level after the demand is served by the stored energy, in

the sequence of local, central, and remote location (hence the triple under-bars). For the case

of SG = 0, we have st =
((
sAt −

dAt
α
−
(dBt

α
− sBt

)+
/β2

)+
,
(
sBt −

dBt
α
−
(dAt

α
− sAt

)+
/β2

)+
, 0

)
; the

expression for the general case will be given later. After the demand is served by the stored

energy, the remaining demand is served by production qt, which is exactly the minimum

production defined after (2.10).

Theorem II.8. When α ≤ β, SG = 0, and leaf nodes are symmetric (SA = SB and (2.12)

holds), for given state (st,dt) and feasible production quantity qt ∈ Q(st,dt), an optimal
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inventory decision s∗t+1 is as follows:

s∗t+1(qt, st,dt) =



[withdraw L fully, R partially]:

st − (st − st)(qt − qt)/(qt − qt), if qt ≤ qt ≤ qt,

[withdraw partially from L]:

B
(
st, st, s

A
t + sBt − (qot − qt)β/α

)
, if qt < qt ≤ qot ,

[store at both leaf nodes]:

B
(
st,St, s

A
t + sBt + (qt − qot )βα

)
, if qot < qt ≤ qt.

(2.14a)

(2.14b)

(2.14c)

Theorem II.8 prescribes that when qt < qot , it is optimal to use qt to serve as much

as demand as possible and serve the remaining demand by withdrawing stored energy. In

(2.14a), “withdraw fully from L” refers to withdrawing down to st, i.e., using local storage

to serve as much demand as possible. “Withdraw partially from L” in (2.14b) refers to

withdrawing to a level higher than st. When qt > qot , it is optimal to use qt to meet the

demand entirely and store the excess energy according to (2.14c). In all cases, we try to use

the current supply, qt, to satisfy the demand, and resolve the supply-demand mismatch by

using storage.

We now extend the structures of the optimal policy to the case of SG > 0, as illustrated

in Figure 2.4. Same as the case of SG = 0, the optimal period-ending inventory s∗t+1(qt, st,dt)

is either (weakly) above or below the period-starting inventory st. The sequence in which

energy is stored or withdrawn now involves the central storage:

• When storing energy, first store at the central storage until full (moving from st to st =

(sAt , s
B
t , S

G) in Figure 2.4), and then store in the leaf nodes, keeping inventory as close

to the balance curve as possible (following B(st,S, z), the curve connecting st and S in

Figure 2.4). The production quantities corresponding to st and S are qt = qot +(SG−sGt )/α

and qt, respectively.

• When withdrawing energy, withdraw first from local storage (following B(st, st, z)), then

from central storage (moving from st to st), and finally from remote node (moving from
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st to st), where the critical inventory levels are expressed below:

st =
((
sAt − dAt

α

)+
,
(
sBt − dBt

α

)+
, sGt

)
,

st =
((
sAt − dAt

α

)+
,
(
sBt − dBt

α

)+
,
[
sGt −

(dAt
α
− sAt

)+
/β −

(dBt
α
− sBt

)+
/β

]+)
,

st =



(
0, 0,

[
sGt −

(dAt
α
− sAt +

dBt
α
− sBt

)
/β

]+)
, if sAt ≤ dAt

α
, sBt ≤ dBt

α
,(

0,
[
sBt −

dBt
α
−
(dAt

α
− sAt − sGt β

)+
/β2

]+
,
[
sGt −

(dAt
α
− sAt

)
/β

]+)
, if sAt ≤ dAt

α
, sBt >

dBt
α
,([

sAt −
dAt
α
−
(dBt

α
− sBt − sGt β

)+
/β2

]+
, 0,

[
sGt −

(dBt
α
− sBt

)
/β

]+)
, if sAt >

dAt
α
, sBt ≤ dBt

α
,(

sAt − dAt
α
, sBt − dBt

α
, sG

)
, if sAt >

dAt
α
, sBt >

dBt
α
.

The corresponding production quantities are qt, qt =
(
qt − sGt α

)+
, and qt, respectively.

Figure 2.4: Example of s∗t+1(qt; st,dt): Case of α ≤ β, symmetric leaf nodes, and SG > 0

The structures illustrated in Figure 2.4 for symmetric leaf nodes turn out to be optimal

in general as long as α ≤ β. This generalization is detailed next and the structures will be

formally stated in Theorem II.9. The above critical inventory levels, st, st, and st, remain

the same in the general case.
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2.4.2.2 Case with General Demand Distribution and α ≤ β

For general demand distribution, the balance curve b(z; sGt+1,dt) defined in (2.11) may

be non-linear. Same as before, for x,y ∈ A with xA≤ yA, xB≤ yB, and xG= yG, the curve

B(x,y, z) connects x and y within the rectangle formed by x and y, staying as close to the

balance curve b(z; xG, dt) as possible. Formally,

B(x,y, z)
def
= b(z;xG,dt) + (1,−1, 0) l(z), z ∈ [xA+ xB, yA+ yB], (2.15)

where l(z) = argmin
ℓ

{ | ℓ | : x ≤ b(z;xG,dt) + (ℓ,−ℓ, 0) ≤ y}. In particular, if x ≤

b(z; xG,dt) ≤ y, then l(z) = 0. If b(z; sG,dt) =
(
z/2, z/2, sG

)
, then (2.15) becomes (2.13).

Figure 2.5 illustrates b(z; sGt+1,dt) and B(x,y, z).

Figure 2.5: Examples of b(z; sG,dt) and B(x,y, z)

Balance curve Line with 

The next theorem extends the structures illustrated in Figure 2.4 to the general case,

using the general definition of B(x,y, z) in (2.15).

Theorem II.9. When α ≤ β, given state (st,dt) and feasible production quantity qt ∈

Q(st,dt), an optimal inventory decision s∗t+1 can be expressed as follows:
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s∗t+1(qt, st,dt) =



[withdraw L,G fully, R partially]:

st − (st − st)(qt − qt)/(qt − qt), if qt ≤ qt ≤ qt,

[withdraw L fully, G partially]:(
(sAt − dAt /α)

+, (sBt − dBt /α)
+, sGt − (qt − qt)/α

)
, if qt < qt ≤ qt,

[withdraw partially from L]:

B
(
st, st, s

A
t + sBt − (qot − qt)β/α

)
, if qt < qt ≤ qot ,

[store partially at G]:(
sAt , s

B
t , s

G
t + α(q − qot )

)
, if qot < qt < qt,

[store to full at G, partially at leaves]:

B
(
st,S, s

A
t + sBt + (qt − qt)βα

)
, if qt ≤ qt ≤ qt.

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)

Theorem II.9 characterizes the optimal policy as follows:

1) Use current generation qt to serve the demand.

2) If qt > qot , store the excess energy first at the central storage (expressed in (2.16d)),

and then store in the leaf storage, following the balance curve b(z;SG,dt) as closely as

possible (expressed in (2.16e)).

3) If qt < qot , use the stored energy to serve the remaining demand: First withdraw energy

stored locally, following the balance curve b(z; sG,dt) as closely as possible (expressed

in (2.16c)), then (if needed) withdraw from the central storage (expressed in (2.16b)),

and finally, (if needed) use the remote storage (expressed in (2.16a)).

Intuitively, demand in a period can be met by two types of energy: Stored energy gen-

erated in previous periods and current-period generation qt. Because α ≤ β (i.e., storage is

less efficient than transmission), using the current supply qt to meet demand is preferred to

using the stored energy. The mismatch between current supply and demand is resolved by

storing or withdrawing energy.

When storing energy, it is optimal to fill up the central storage before storing at the

leaf nodes. Intuitively, central inventory provides more operational flexibility with the same

storage efficiency. When withdrawing energy to serve the remaining demand, using the closer

storage first minimizes the transmission losses and thus is more economical.
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2.4.2.3 Case with α > β

When storage is more efficient than transmission (α > β), it may not always be beneficial

to use current-period generation qt to satisfy as much demand as possible. As the following

example demonstrates, even if qt can meet the current demand, it may be superior to use

some stored energy.

Example II.10. Consider a system with α = 1, β = 2/3, and sufficiently high storage

space. Suppose we are at the beginning of period T − 1 and observe demand dT−1 = (2, 0)

and storage level sT−1 = (2, 0, 0). The final-period demand dT is expected to be either (0, 2)

or (2, 0) with equal probabilities. We fix qT−1 = qoT−1 = 3 in this example.

Theorem II.9 suggests using qT−1 to meet as much demand as possible. Because qT−1β =

2 = dAT−1, qT−1 exactly meets the demand, and inventory is unchanged: sT = sT−1 = (2, 0, 0).

Then, in the final period, if dT = (0, 2), we must produce a positive amount (qT = 5/3) to

meet part of the demand at node B; the remaining demand is met from energy transmitted

from remote node A.

Consider an alternative decision in period T − 1: Store qT−1 = 3 at the central node

G and use the local storage sAT−1 = 2 to meet the local demand dAT−1 = 2. Consequently,

sT = (0, 0, 3). Then, the stored energy sGT can serve 2 units of demand in the final period

regardless whether demand is (0, 2) or (2, 0). Hence, production cost is zero in period T ,

which implies that this alternative decision is optimal for period T − 1 under the given qT−1.

The above example demonstrates that the policy in Theorem II.9 may not be optimal

when α > β; the optimal policy may involve serving demand by local storage and simultane-

ously storing energy at the central node. Such operations are formalized in Theorem II.11 and

the formalization requires another critical inventory level: qt
def
= qt+(SG−sGt )/α. Recall qt is

the production required to satisfy the demand after the local storage is used to meet as much

local demand as possible. If we produce more than qt to fill up the central storage, then the

total production is qt. The resulting inventory level is st =
(
(sAt −dAt /α)+, (sBt −dBt /α)+, SG

)
.

Theorem II.11. When α > β, given state (st,dt) and feasible production quantity qt ∈

Q(st,dt), an optimal inventory decision s∗t+1 can be expressed as follows.
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(i) If storage operations are perfectly efficient, β < α = 1,

s∗t+1(qt, st,dt) =



[same as (2.16a) and (2.16b)] if qt ≤ qt ≤ qt,

[withdraw fully from L, store partially at G]:(
(sAt − dAt )

+, (sBt − dBt )
+, sGt + qt − qt

)
, if qt < qt ≤ qt,

[store to full at G, store or withdraw at leaves]:

B
(
st, S, s

A
t + sBt + (qt − qt)β

)
, if qt < qt ≤ qt.

(2.17a)

(2.17b)

(2.17c)

(ii) If storage operations are more efficient than transmission, but not perfectly efficient,

β < α < 1,

s∗t+1(qt, st,dt) =



[same as (2.16a) and (2.16b)] if qt ≤ qt ≤ qt,

[withdraw partially from L, store partially at G]:

s∗t+1 ∈ Ft, if qt < qt ≤ qt,

[withdraw or store at L, store at G]:

s∗t+1 ∈ Ft ∪ Et, if qt < qt ≤ qt,

[store to full at G, store or withdraw at leaves]:

s∗t+1 ∈ Et, if qt < qt ≤ qt.

(2.18a)

(2.18b)

(2.18c)

(2.18d)

where the face Ft and edges Et are defined as

Ft
def
=

{
st+1 ∈ A(qt) : s

G
t+1 ≥ sGt , s

i
t+1∈

[
(sit − dit/α)

+, sit
]
, i = A,B

}
,

Et
def
=

{
st+1 ∈ A(qt) : s

G
t+1 = SG, sit+1∈

[
(sit − dit/α)

+, Si
]
, i = A,B

}
.

As illustrated in Example II.10 and proved in Theorem II.11, when α > β the current-

period demand is not always satisfied from current-period generation to the extent possible,

which is in contrast with Theorem II.9. This distinction between the cases of α ≤ β and

α > β is illustrated in Figure 2.6.

For qt ∈ (qt, qt), when α = 1, (2.17b) in Theorem II.11 shows that it is optimal to use

local inventory to serve as much local demand as possible and transmit only qt to serve the

remaining demand. The excess production qt − qt is stored at G. This inventory decision

is shown as s∗t+1(α = 1) in Figure 2.6(a). Compared to s∗t+1 in Theorem II.9 (marked as
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Figure 2.6: Optimal Policy Structure Examples

(a) qt < qt < min{qot , qt}
Equations (2.16c), (2.17b), (2.18b)

(b) max{qot , qt} < qt < qt

Equations (2.16d), (2.17c), (2.18c)

F
t

F
t

E
t

The piecewise linear surface represents the set of feasible st+1 for given qt, i.e., the iso-production
surface A(qt) defined in (2.10). Each edge of the surface is in one of the following planes:
sit+1= sit, s

i
t+1= sit − dit/α, i = A,B, and sGt+1= sGt . In panel (a), st is above A(qt) as qt < qot

(production falls short of meeting all demands). In panel (b), st is below A(qt) as qt > qot (there
is excess energy after meeting the demand).

s∗t+1(α ≤ β) in Figure 2.6(a)), this strategy effectively reduces local inventory and raises the

central inventory, providing more operational flexibility for future periods. When β < α < 1,

storage losses become part of the tradeoffs and (2.18b) in Theorem II.11 states that s∗t+1

belongs to Ft, a triangular face shown in Figure 2.6(a). The precise value of s∗t+1 depends

on the demand distribution.

For qt > qt, when α = 1, (2.17c) shows that the central storage is filled up and the

remaining energy is sent to the leaf nodes. The remaining energy can be split with some

flexibility, bringing inventory level to the balance curve.2 When β < α < 1, storage losses

need to be taken into account and s∗t+1 is in Ft ∪ Et shown in Figure 2.6(b), with location

depending on the demand distribution. Note that one vertex of the face Ft is exactly the

optimal decision in Theorem II.9, shown as s∗t+1(α ≤ β) in Figure 2.6(b).

2Depending on the future demand distribution, the optimal decision may involve sending no energy to
a leaf node, or sending some energy to partially serve the demand, or sending more than the demand and
storing the excess energy at a leaf node.
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When qt > qt, Ft no longer exists and thus s∗t+1 ∈ Et. When qt further increases such

that qt ≥ qt
def
= qt +max{SA − sAt , S

B − sBt }/(αβ), Et will reduce to only one line segment,

which includes only the action of storing energy at both leaf nodes. In such case, the optimal

decision falls on the balance curve and coincides with (2.16e) in Theorem II.9.

We summarize the optimal policy structures from Theorems II.9 and II.11 in Table 2.1.

Table 2.1: Optimal Policy Structures Under Given Central Production q

Note: qt ≥ qot and qt < qot are possible.

Efficiency: Storage ≤≤≤≤ Transmission (αααα ≤≤≤≤ ββββ ) Efficiency: Storage >>>> Transmission (αααα >>>> ββββ )

Use q to satisfy 

demand entirely

Store rest of q in central storage (G) until 

full, and then store in leaf storage

Same as α ≤ β

Use part of q to fill up central storage (G); 

use rest of q to serve demand and to 

store in leaf storage
Satisfy remaining

demand using 

local storage (L)

Store rest of q in central storage (G) Use part of q to serve demand; store rest 

of q in central storage (G) first, and then 

in leaf storage

Use q to serve 

as much demand 

as possible

Satisfy remaining demand using local 

storage (L) Use part of q to serve demand; store rest 

of q in central storage (G)

Satisfy remaining demand using local 

storage (L), and then central storage (G)as possible storage (L), and then central storage (G)

Same as α ≤ βSatisfy remaining demand using local 

storage (L), then central storage (G), and 

then remote storage (R)

In Appendix 2.8, we extend the insights of Theorem II.11 to the case with Distributed

Generation. Here, when Distributed Intermittent Generaion exceeds demands at leaf nodes,

the net surplus of energy at the local leaf node may be transmitted to the remote leaf node

to satisfy demand before withdrawing from any storage, when α ≤ β2, else, the ordering of

the use of sources of energy and locations for storage of energy would depend on the demand

distributions. However, the basic intuition of withdrawing from the closest storage source

and storing first at the central storage remains in this extension.

2.5. Optimal Investment Decisions

In this section, we consider the storage investment problem in (2.7): max
S≥0

B(S) ≡ V (0)−

V (S)−p |S|, where V (S) = E0V1(S,d1;S), p > 0 is the cost per unit of storage capacity, and
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|S| = SA + SB + SG. Our objective is to understand how various factors affect investment

decisions, in particular the trade-off between localizing and pooling of storage investment.

We analyze the effects of both demand factors (Section 2.5.1) and storage parameters (Section

2.5.2) on investment decisions.

We first present the basic properties of V (S).

Lemma II.12. V (S) is decreasing and convex in S; B(S) is concave in S.

Lemma II.13. (i) Let S = (SA, SB, SG) and Sg =
(
0, 0, SG+β−1(SA+SB)

)
. If dAt , d

B
t ≥ 0,

∀ t ∈ T , then V (Sg) ≤ V (S).

(ii) Let S = (SA, SB, SG) and Sl = (SA + βSG, SB + βSG, 0). Then, V (Sl) ≤ V (S).

To compare the benefits of storage investment at different locations, we define a pooled

investment as investment at node G only, and localized or distributed investment as invest-

ment at the leaf node(s) only. Lemma II.13 shows that, for any investment decision S, there

exist a pooled investment decision Sg and a localized investment decision Sl that yield a

lower expected operating cost but a higher investment cost. (To see why investment cost is

higher, note that |S| ≤ |Sg| because β ∈ (0, 1), and that |S| ≤ |Sl| if β ≥ 1/2, which is true

for most systems.)

We define the optimal pooled and localized investment decisions as follows:

S∗
g ∈ argmax

{
B(S) : SA = SB = 0, SG ≥ 0

}
, (2.19)

S∗
l ∈ argmax

{
B(S) : SA ≥ 0, SB ≥ 0, SG = 0

}
. (2.20)

The optimal investment S∗ ∈ argmax
{
B(S) : S ≥ 0

}
may coincide with S∗

g or S∗
l , or

may involve investing at both node G and leaf nodes, which we refer to as mixed investment.

2.5.1 Impact of Demand Factors

We first identify demand characteristics for which localized investment is advantageous

over pooled investment. These characteristics include positively correlated demand across

leaf nodes, high minimum demand, and distributed generation that exceeds local demand.

Before going into depth, we introduce a useful way of thinking the economic value of

storage in our context. If storage is located right at the demand node, one unit of energy
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released from the storage can serve one unit of demand, whereas if energy needs to be

transmitted to serve the demand, one unit of energy released from the storage can serve β

units of demand for central-to-leaf transmission or only β2 units of demand for leaf-to-leaf

transmission. When part of the energy released from the storage is lost during transmission,

the economic value of storage is reduced.

Spacial Correlation of Demands

The effect of demand correlation is best visible when demands are perfectly correlated.

Under this condition, localized investment decision is optimal.

Theorem II.14. If dAt = k dBt for some constant k > 0 and for all t ∈ T , then the optimal

localized investment S∗
l is an optimal investment for problem (2.7).

Note that electricity systems are different from other logistic systems in that energy

production and transmission have zero lead-time. Thus, the result in Theorem II.14 is not

driven by lead-time related reasons, as in the classic inventory theory. The driving force is

the transmission losses, as explained below.

Multiple leaf nodes with perfectly correlated demands can be treated as a single demand

node. Obviously, for a system with node G and only one demand node, investing at node G

is never optimal, because a smaller investment, βSG, at the demand node provides the same

operational benefit as investing SG as node G. If investing in storage at node G, (1 − β)

fraction of the energy released from G is lost during transmission to the leaf nodes.

Minimum Demand

When demands are not perfectly correlated, localized investment may still be optimal as

long as storing energy locally does not reduce the economic value of the storage.

Localizing storage may reduce its economic value when leaf-to-leaf transmission is part of

the optimal operating policy (see Theorems II.9 and II.11), resulting in transmission losses

of 1− β2 fraction of energy. A sufficient condition for leaf-to-leaf transmission not to occur

is that the minimum demand is sufficiently high. Specifically, if dimin > αSi∗
l , for i = A,B,

where dimin is the minimum demand at node i and Si∗
l is given by (2.20), then locally stored

energy can always serve the local demand instead of the remote demand. (Under S∗
l and
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dimin > αSi∗
l , it can be verified that qt = qt = qt. Thus, the case of using remote storage in

Table 2.1 does not arise.)

The result is formalized in Theorem II.16, whose proof relies on Lemma II.15.

Lemma II.15. (i) If S̃ = S+ (βδ, 0, −δ) for some δ > 0, and S̃A < α−1dAmin, then V (S) =

V (S̃).

(ii) If S̃ = S+ (δ, −δ, 0) for some δ > 0, and S̃A < α−1dAmin, then V (S̃) ≤ V (S).

Theorem II.16. If the optimal localized investment S∗
l satisfies Si∗

l < α−1dimin for i = A,B,

then it is an optimal investment for the problem (2.7), and any other investment with SG > 0

is suboptimal.

According to Theorem II.16, we may first identify the optimal localized investment, S∗
l ,

and confirm its global optimality if it satisfies the condition in Theorem II.16.

Distributed Generation

When the amount of local generation exceeds the local demand (i.e., net demand of a

leaf node is negative), localized storage investment allows the local generation to be stored

and consumed without any transmission. In contrast, with pooled storage, storing local

generation at node G and withdrawing energy from node G would incur transmission losses

in both ways.

Example II.17 (Effects of minimum demand and distributed generation). Suppose demand

has three levels: l (low), m (medium), and h (high), with l ≤ m ≤ h. Suppose d2k−1 = (m,h)

or (h,m) with equal probabilities and d2k = (l, l), for k = 1, 2, . . . . We consider an infinite

operating horizon with discount factor γ = 0.99, and assume a quadratic production cost

c(q) = q2 and β ∈ (0.5, 1).

Because B(S) is concave in S and demands are symmetric across leaf nodes, we can

restrict our attention to symmetric investment decisions: SA = SB. We derive the optimal

policy and investment decisions explicitly in Appendix 2.9.

To facilitate comparing the pooled and localized investment decisions, we define the benefit

ratios: ηg
def
= B(S∗

g)/B(S∗) and ηl
def
= B(S∗

l )/B(S∗). Clearly, ηg, ηl ∈ [0, 1]. If ηg = 1, pooled
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Figure 2.7: Impact of minimum demand and distributed generation: α = β = 0.9,m = l+10,
h = l + 60, p = 400.
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investment is optimal. If ηl = 1, localized investment is optimal. If ηg < 1 and ηl < 1, then

a mixed investment is optimal.

In Figure 2.7, we vary the minimum demand l ∈ [−15, 15] and keep m = l + 10 and

h = l + 60, i.e., we shift all three demand levels in parallel.

When the minimum demand l is positive and not too low, ηl = 1, i.e., the localized

investment is optimal. When l decreases to around zero and slightly negative, localization

increasingly deviates away from the optimal investment, and the pooled investment may out-

perform the localized investment. When l becomes more negative, i.e., distributed generation

increases, localized investment returns to be preferred to pooled investment.

This example illustrates the insight that localized investment is a favorable choice under

high minimum demand or significant distributed generation.

The discussions thus far suggest that if the optimal investment involves investing at node

G, then demands must not be highly correlated across nodes, minimum demand should

be small enough, and distributed generation should not result in frequent, large negative

demand.

Next, we discuss the benefits of investing in storage at node G. First, storage at node G

reduces the need for leaf-to-leaf transmission. Energy stored at node G can serve demand at

either leaf node without incurring leaf-to-leaf transmission losses. Second, storage at node

G may avoid investing in storage capacity dedicated to each leaf node. Both are illustrated
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in the following example.

Example II.18 (Benefits of pooled investment). We analyze the same setting as in Exam-

ple II.17 with different parameter values: l = m = 0 and h = 10, i.e., demand alternates

between (0, 0) and (0, 10) or (10, 0).

As shown in Figure 2.8(a), for the entire range of p values considered in this example,

the pooled investment is optimal (ηg = 1), but the reason for the optimality is different at

different values of p, revealed in Figure 2.8(b).

Figure 2.8: Benefits of pooled investment: α = β = 0.8, l = m = 0, h = 10.
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Figure 2.8(b) shows the total capacity invested under the pooled and localized decisions.

At high p, under the localized investment S∗
l , the optimal operating policy is to fill the storage

when demand is (0, 0), and empty the storage to meet the demand (0, 10) or (10, 0), incurring

leaf-to-leaf transmission losses, which significantly reduces the economic value of storage. The

pooled investment increases the operational flexibility by transmitting energy from G to only

the node with high demand and avoiding leaf-to-leaf transmission.

At low p, the optimal localized investment is to invest storage capacity dedicated to each

leaf node: The optimal operating policy is to fill the storage when demand is (0, 0), but only

withdraw locally stored energy to serve the demand. Dedicated storage investment for each

leaf node results in excessive amount of storage capacity, seen in Figure 2.8(b) for the range

when p < 178. Although leaf-to-leaf transmission is avoided, the storage capacity is under-

utilized. A pooled storage doubles the storage capacity utilization in this case, and is the

optimal investment.
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In the above example, pooled investment is optimal, but in general when the minimum

demand is positive, the next theorem asserts that investment at node G alone cannot be

optimal, i.e., mixed investment is optimal.

Theorem II.19. Let S∗ be an optimal solution to (2.7). If SG∗ > 0, then we have SA∗ ≥

α−1dAmin and SB∗ ≥ α−1dBmin.

Proof. For given S∗ with SG∗ > 0, suppose SA∗ < α−1dAmin. Let S̃ = S∗+(βδ, 0, −δ), where

δ = min{SG∗, (α−1dAmin − SA∗)/2}. Note that S̃A < α−1dAmin. Then, by Lemma II.15(i),

we have V (S∗) = V (S̃). Because |S∗| > |S̃|, we have B(S∗) < B(S̃), contradicting to the

optimality of S∗.

2.5.2 Impact of Storage Parameters

Storage technologies evolve with improvement in efficiency and reduced cost. In this

section, we analyze the effects storage cost and efficiency on the optimal investment.

Impact of the per-unit cost of storage capacity p

In this subsection, we emphasize the dependence on p by writing the optimal investment

as S∗(p). We first observe some basic properties of S∗(p).

Lemma II.20. (i) The optimal net benefit B(S∗(p)) decreases in p; (ii) The optimal total

investment |S∗(p)| decreases in p.

Lemma II.20 indicates that as the cost of storage declines, more storage capacity is

desirable for the system. The analysis in §2.5.1 suggests that localized investment S∗
l (p) is

optimal in many demand situations. In such case, reduced storage cost will in favor of more

investment at the demand nodes.

Even if localized investment is not optimal, Theorem II.21 below reveals that the localized

investment S∗
l (p) is asymptotically optimal as p→ 0. This asymptotic optimality also holds

for the pooled investment S∗
g(p) if demand is non-negative at each node.

Theorem II.21. (i) lim
p→0

[
B(S∗(p))−B(S∗

l (p))
]
= 0,

(ii) If dAt , d
B
t ≥ 0, t ∈ T , then lim

p→0

[
B(S∗(p))−B(S∗

g(p))
]
= 0.
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Intuitively, at very low p, we could invest in dedicated local storage capacity that is large

enough to eliminate the need for leaf-to-leaf transmission.

When pooling is part of the optimal investment, reduced storage cost also stimulates

pooled investment, as illustrated in the following example.

Example II.22. We set the minimum demand l = 0 in Example 2 and vary p in a wide

range. The results are shown in Figure 2.9. At high storage cost, it is costly to use part

of the storage capacity to store the energy that will eventually be lost during transmission.

Hence, localized investment is optimal, and the localized investment increases as storage cost

p declines, shown in Figure 2.9(b) for large p.

As storage cost decreases, the benefits of pooling as explained in §2.5.1 rise and the

localized investment is no longer optimal (seen from ηl < 1 in Figure 2.9(a)). The optimal

investment is mixed, as shown in Figure 2.9(b). Note that as the p decreases, ηg increases

and SG∗ also increases in the optimal investment. Finally, as p → 0, both localized and

pooled investments converge to be optimal (ηl → 1 and ηg → 1), consistent with Theorem

II.21.

Figure 2.9: Impact of cost of storage p: α = β = 0.9, l = 0, m = 10, h = 60
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We first discuss some monotonicities in the optimal decisions and values with respect to

these parameters. We observe that as α increases, B(S) is increasing, for given S and as β

increases, the cost of the system is decreasing.
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Theorem II.23. (i) B(S) is increasing in α, for given S. (ii) V (S) is monotonically de-

creasing in β, for given S. (iii) Given p > 0, if β < 1/2, and S∗ is an optimal solution to

(2.7), then SG∗ = 0.

Next, we consider the effect of α on storage investment. As storage becomes more ef-

ficient, on the one hand, the same amount of capacity provides a higher economic value,

hence stimulating more investment. On the other hand, with more efficient storage provide

better production smoothing, the marginal cost of production at the peak-demand period

may reduce significantly, which in turn reduces the need for storage to smooth production.

Our numerical experiments find that both of these effects exist and the optimal optimal

investment may increase or decrease in storage efficiency.

Furthermore, as storage becomes more efficient, less storage capacity is used to store

the energy that eventually becomes lost during transmission. Hence, the benefit of pooled

investment increases. This effect is demonstrated in the following example.

Example II.24. We set the minimum demand l = 0 in Example 2 and vary α ∈ [0.6, 1].

Figure 4.9 reveals that as storage becomes more efficient, the optimal investment changes

from localized investment to mixed investment, and within the mixture, SG∗ increases while

local investment decreases as α increases. The total storage investment increases.

Figure 2.10: Impact of storage efficiency α: β = 0.9, l = 0, m = 10, h = 60, p = 400
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In short, we find that declining storage cost definitely encourages storage investment, but

improved storage efficiency does not necessarily stimulate storage investment. Storage cost
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reduction and efficiency improvement also tend to increase the benefit of pooled investment,

although in most demand situations localization is still the optimal investment.

2.6. Numerical Analysis

The goal of this section is to investigate the nature of the optimal investment decision

under a moderately realistic demand setting, for a three node model. Theorem II.11 part (i)

provides an explicit solution for s∗t+1 given qt, and part (ii) reduces the search space for s∗t+1.

These allow for efficient computational study.

2.6.1 Model Parameters and Simulation Details

The round-trip storage efficiency ranges in practice between 80% and 96% (ES-Select

2012). The transmission losses range from about 1% to 15% of energy produced (Energy

Information Administration 2009). This implies ranges of α2 = 0.80− 0.96, and β = 0.85−

0.99.

Aggregate production cost of the grid is often approximated as quadratic in the total

energy produced in a given period (Bessembinder and Lemmon 2006). We assume the cost

function as follows, satisfying Assumption II.3:

c(q) = 0.2 q2 + 20q (2.21)

The evolutions of load and wind power exhibit predictable patterns and random fluctu-

ations. Let Lt =
[
LA
t , L

B
t

]
and lt =

[
lAt , l

B
t

]
be the predictable and random components of

the load at time t at leaf nodes A and B. Let Wt =
[
WA

t , W
B
t

]
and wt =

[
wA

t , w
B
t

]
denote

the predictable and random components of wind power. The net demand equals the load

net the wind power:

[
dAt , d

B
t

]
= (Lt + lt)− (Wt +wt).

The predictable components {Lt} and {Wt} are deterministic processes whose values are

known prior to time zero. The stochastic processes {lt} and {wt} represent the deviations

from the deterministic levels and evolve according to preset probability distributions.
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We consider a cycle of T = 8 periods. For given investment in storage capacities, denoted

by S, we employ an infinite-horizon average-cost model assuming every cycle faces the same

distribution of demands. In the second stage of the optimization, we search for optimal

investment capacity S that minimizes the total investment and operating costs.

We consider a stylized model for demand, to illustrate a realistic pattern of demands.

The objective of this model is to demonstrate the pattern of optimal investments under

realistic settings. Consider 8 periods per day (of 3 hrs each), with each period representing

3 hours. Predictable components of load and wind are cyclic over these 8 periods.

Table 2.2: Predictable Components of Load and Wind

Time (hour of the day) 0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24 Average

Net Load LA
t −WA

t (= LB
t −WB

t ) (MWh) 12 14 25 36 40 36 25 14 25

Demand is deterministic, while wind is stochastic wt = ξw0
t , where w0

t is given by,

wt =



(−12,−12), p = 0.01,

(−12,+12), p = 0.15,

(+12,−12), p = 0.15,

(+12,+12), p = 0.69,

(2.22)

and ξ is a proxy for the penetration of wind energy into the grid. We vary ξ from 0.5-

0.85, corresponding to a penetration of 0-28%. Thus, without using storage, the maximum

possible production in a period is 104 MWh, with marginal cost of $61.6 per Mwh (3.14).

The average net demand per period is 50 MWh (excluding wt), with a marginal cost of $40

per MWh.

We use the same output metrics, ηl, ηg as in Section 2.5.

2.6.2 Computational results

For the system with described parameters, we observe that ηl = 1 (i.e., localizing is

optimal) across the entire range of values of α, β, p considered (Figure 2.11). The primary

reason is the high minimum demand during periods of storage withdrawal. However, increas-

ing wind penetration (which acts as a proxy for wind variability) increases ηg, because of
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increasing variability. We observe this for the wt per (2.22) and for wt with same individual

node demand distribution, but varying correlation. In other words, the effect is the same for

the impact of variability independent of correlation between the variabilities of the two leaf

nodes. Similar to other OM literature (Eppen 1979), we observe that increasing correlation

reduces the benefits of pooling.
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Figure 2.11: Impact of wind penetration on the investment policies, with p =
1033$/KWh, β = 0.85, α = 0.84.

2.7. Conclusions and Extensions

In this paper, we have derived the structure of the optimal operating policy for an electric

grid system with convex generation costs, stochastic demand, finite energy storage capacity,

storage and transmission losses. The goal of this paper was to understand the trade-offs

between localizing or centralizing storage capacity investments.

Our overarching conclusion is that under current system parameters, localizing of stor-

age investments is preferable primarily because of high minimum demand during withdrawal

periods (Theorem II.16), which allows to take full advantage of the greater efficacy of localiz-

ing. Nourai (2007) showed that, in AEP’s storage experiment, localized storage investments,

referred to as Community Energy Storage, created greater value to the grid than centralized

storage for a number of reasons. These reasons included reliability, fire risks and easing

of congestion in transmission lines. Our model provides a theoretical justification of their
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observations from their energy storage experiment, in terms of investment costs, storage

efficiency and transmission losses.

To further understand the trade-off of localizing vs. centralizing, we studied the impact

of changes in various system parameters on the storage location decision. We observe that

minimum demand close to zero, or negative correlation of demands can cause pooling. We

also note that expensive storage capacity, increased penetration of wind energy increase

preference for localizing. The impact of storage efficiency on storage location trade-offs

seems to depend on the demand distribution.

While our analysis shows that localizing is often optimal in our 3-node model, we question

the scenario when there may be more than 2 leaf nodes in the system, as is often the case

in the real grid. Our preliminary analysis suggests that the benefit of pooling does not

increase significantly with n unless the minimum demand is low. In future work, we believe

the impact of pooling may be considered in larger grid systems.

Finally, we discuss some of the challenges involved in implementing community energy

storage investments across the grid. Firstly, there are challenges involved in building the

infrastructure to control multiple storage investments across the grid, in real time, reflecting

the latest information. Secondly, implementing community storage will influence revenue

streams of storage owners and other market players. New market settlement schemes would

be required to make sure no market participant prefers to invest storage differently from the

co-ordinated investment strategy that improves overall system efficiency.
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2.8. Appendix: Extension to Distributed Intermittent Generation

In this section, we extend the analysis to include distributed intermittent generation, such

as wind and solar power, at the leaf nodes. Unlike the generation at node G, intermittent

generation does not use any fuel and, thus, incurs negligible operating cost. Its output,

depends on factors such as wind speed or solar radiation. If the maximum output is always

below the demand at the corresponding leaf node, the analysis in the previous section can

be directly applied, with dit representing the net demand (demand minus the intermittent

generation). In this section, we consider a more general case, where intermittent generation

may exceed the demand, resulting in a negative net demand dit < 0.

2.8.1 Problem Formulation and Optimal Curtailment Decision

Because intermittent generation has negligible operating cost, it is desirable to store the

excess generation for future use. However, if total remaining storage space (in local, central

and remote nodes) is insufficient to store the excess generation, some intermittent generation

must be curtailed (e.g., rotating solar panels or pitching the blades of a wind power generator

to reduce its output). Despite negative demand and non-zero probability of curtailment, our

formulation remains unchanged, except for the following modifications.

We allow dt, to include the distributed intermittent generation, i.e., the net demand dit

may be negative at a given node i. Definition (3.2) is unchanged: q(∆st,dt) =
∑

i=A,B

ψβ

(
dit +

ψα(∆s
i
t)
)
+ ψα(∆s

G
t ), but note that when dit < 0, then q(S − st,dt) < 0 is possible, which

means storage is filled up but excess energy still exists. We, therefore, extend the definition

of the cost function:

c(q)
def
= 0, for q < 0. (2.23)

q < 0 corresponds to curtailment, and q > 0 is the generation.

Theorem II.25. Vt(st,dt) satisfies the following recursive equation:

Vt(st,dt) = min
st+1∈A

{
c(q(st+1− st,dt)) + γEt

[
Vt+1(st+1,dt+1)

]}
, t = 1, 2, . . . , T. (2.24)
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There exists an optimal solution s∗t+1 to (2.24) and the corresponding production, inventory,

and curtailment decisions satisfy the following properties:

(i) If q(S − st,dt) ≥ 0, then q(s∗t+1− st,dt) ≥ 0, and it is optimal not to curtail distributed

generation.

(ii) If q(S − st,dt) < 0, then s∗t+1 = S, and it is optimal not to produce at node G, curtail

distributed generation by β−1
∣∣q(S− st,dt)

∣∣.
Theorem II.25 establishes a dynamic program for the problem with curtailment and

formalizes the intuition that storing distributed generation is preferred to curtailing it.

2.8.2 Optimal Storage and Transmission Operations

The dynamic program in (2.24) is almost identical to (2.5), except that c(q) is extended

per (2.23) and q(st+1− st,dt) can take negative values. With the absence of non-negativity

constraint (2.6), we can verify that Lemmas II.4, II.5, and II.6 continue to hold. Furthermore,

Theorems II.9 and II.11 continue to apply whenever dit ≥ 0, i = A,B. Theorem II.25 provides

the optimal decision if curtailment is necessary (i.e., net local generation exceeds available

storage space, or q(S−st,dt) < 0 ). Below we analyze the remaining case, when intermittent

generation exceeds the demand at one or both leaf nodes, but no curtailment takes place.

When distributed generation exceeds demand at both leaf nodes, intuitively, it is desirable

to store the excess generation at the nearest location. We formalize this after Theorem

II.26. The interesting case is when the intermittent generation exceeds demand at one leaf

node. Without loss of generality, let dAt ≥ 0 and dBt < 0. |dBt | can be stored at B or

transmitted to node A to meet dAt . In contrast to Theorem II.9, which suggests that leaf-to-

leaf transmission is the least desirable option when net demand at both nodes is positive, it

may be cost-effective to use |dBt | to serve dAt even before using local inventory sAt .

As an example, consider the case when the storage efficiency is below the leaf-to-leaf

transmission efficiency, i.e., α ≤ β2. Then using |dBt | to serve dAt is more cost-effective than

withdrawing from local storage sAt . If α > β2, dAt may be satisfied by a combination of

remote generation |dBt |, and local inventory sAt , and central production, depending on future

demand distribution.3 We divide our example into two cases: when α ≤ β and α > β, if

3For example, if future demand at B is expected to be high, storing |dBt | at node B may be desirable;
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α ≤ β, storage efficiency is below leaf to central transmission efficiency, and hence, |dBt | is

used before withdrawing from sGt . Else, the priority between |dBt | and sGt would depend on

the demand distribution.

Theorem II.26 captures the intuition from the above example: while withdrawing energy,

if α ≤ β2, to satisfy demand at A, it is optimal to use the DG at B, local stored energy at

A, G, B in that order. If storing energy, DG in B is first stored at B, then excess energy is

filled up in G and the leaf nodes, similar to Theorem II.9. If β2 < α ≤ β, the only difference

is that DG at B and locally stored energy at A may be both used simultaneously to satisfy

demand at A, but DG at B is still used before stored energy at G. Finally, if β < α, the

preference between DG at B and stored energy at G would also depend on the demand

distribution.

We now specify some notation relevant for this case: Let oBt = β(|dBt | − (SB − sBt )/α)
+

represent the overage or ‘spill over’ available at G after filling up the storage at B using local

generation . We let rAt = β(oBt − (SG − sGt )/α)
+ denote the remaining energy after node B’s

spill over is used to fill up G, measured at node A. Hence, (rAt −dAt )+ is the energy available at

node A from excess spill over of remote generation, netting local demand. Thus, the storage

levels at B, G, and A, achieved by storing the spill overs, constrained by capacity are,

s̈Bt = min{sBt + α|dBt |, SB}, s̈Gt = min{sGt + αoBt , S
G}, and s̈At = min{sAt + α(rAt − dAt )

+, SA}

respectively. Note that demand at node A is essentially reduced by rAt , i.e., d̈
A
t = (dAt − rAt )

+

is the perceived demand, while d̈Bt = 0. Let s̈t = (s̈At , s̈
B
t , s̈

G
t ) and d̈t = (d̈At , d̈

B
t ) be the

equivalent state achieved.

Further, we redefine the critical production quantities defined in Section 2.4.2 to refer to

the state (s̈t, d̈t), after storing spill overs,

qt
def
=

∑
i=A,B

d̈it/β + (SG− s̈Gt )/α, qt
def
= qt +max{SA− s̈At , S

B− s̈Bt }/(αβ). (2.25)

We further reinterpret some of the critical production quantities defined earlier and in-

otherwise, using |dBt | to meet dAt may be cost-effective. In either case, central production qt is used before
|dBt | is used.
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troduce two more critical quantities:

q̃t
def
= (dAt /β − |dBt |β)+, qt

def
=

(
q̃t − sAt α/β

)+
, qt

def
=

(
qt − sGt α

)+
, (2.26)

qot
def
=

(
dAt /β − oBt

)+
, q̈t

def
= (d̈At − sAt α)

+/β, qt
def
= q̈t + (SG − sGt )/α. (2.27)

q̃t is the minimum production quantity to meet demand without using any storage. qt

is the energy required to satisfy demand at A after using distributed generation at B and

local storage at A. qt is the minimum production quantity required to meet demand at

A without using remote storage. qot is the energy needed to satisfy demand at A along

with spill over from B. q̈t is the energy needed to satisfy demand at A after using local

storage and remaining spill over rAt . Note that qt ≤ qt ≤ q̈t, q̃t ≤ qot , qt ≤ qt ≤ qt as

−dBt ≥ oBt ≥ rBt . With the same interpretation as before, the critical states are st =([
sAt − (dAt + dBt β

2)+/α
]+
,
[
sBt −

(dAt +dBt β2

α
− sAt − sGt β

)+
/β2

]+
,
[
sGt −

(dAt +dBt β2

α
− sAt

)
/β

]+)
,

st =
([
sAt − (dAt + dBt β

2)+/α
]+
, sBt ,

[
sGt −

(dAt +dBt β2

α
− sAt

)
/β

]+)
, st = (s̈At , s̈

B
t , S

G).

Theorem II.26. Consider state (st,dt) such that dAt > 0 and dBt < 0. For given feasible

production quantity qt, the optimal inventory decision s∗t+1 are as follows:4

(i) If storage operations are not more efficient than transmission, α ≤ β:

4For this theorem, we replace L,R with A,B respectively as the demand is only at node A. The notations
are reversed when demand is at node B.
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[withdraw fully from A, DG at B,G, partially from R]:

s∗t+1 =
(
0, sBt − (qt − qt)/αβ

2, 0
)
, if qt ≤ qt ≤ qt,

[withdraw fully from A and DG at B, partially from G ]:

s∗t+1 =
(
0, sBt , s

G
t − (qt − qt)/αβ

)
, if qt < qt ≤ qt,

If α ≤ β2,

[use DG from B first, then withdraw from A]:

s∗t+1 =
(
sAt − (q̃t − qt)β/α, s

B
t , s

G
t

)
, if qt ≤ qt ≤ q̃t,

s∗t+1 =
(
sAt , s

B
t + (qt − q̃t)β/α, s

G
t

)
, if q̃t < qt ≤ qot ,

Else if, β2 < α ≤ β2,

[use DG from B partially, withdraw partially from A]:

s∗t+1 ∈ LAB(qt), if qt ≤ qt ≤ qot ,

[store DG at B, store partially at G]:

s∗t+1 =
(
s̈At , s̈

B
t , S

G − α(qt − qt)
)
, if qot < qt ≤ qt,

[store to full at G, partially at leaf nodes]:

B
(
st,St, s

A
t + sBt + (qt − qt)βα

)
, if qt < qt ≤ qt.

(2.28a)

(2.28b)

(2.28c)

(2.28d)

(2.28e)

(2.28f)

(2.28g)

where

LAB(qt)
def
=

{
s ∈ A(q) : sG = sGt , s

A ∈ [(sAt − dAt /α)
+, sAt ], s

B ∈ [sBt , s̈
B
t ]
}
.

(ii) If storage operations are more efficient than transmission, β < α ≤ 1:
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

[same as (2.28a)] if qt < qt ≤ qt,

[withdraw fully from A, partially from G and DG at B:]

s∗t+1 ∈ LBG(qt), if qt ≤ qt ≤ qt,

[withdraw partially from A, G and DG at B:]

s∗t+1 ∈ LBG(qt) ∪ LAB(qt), if qt < qt ≤ q̈t,

[store DG at B, store at G:]

s∗t+1 ∈ LAB(qt) ∪ LAG(qt) ∪ LAB(qt), if q̈t < qt ≤ qt,

[store to full at G, store DG:]

s∗t+1 ∈ Ë0 if qt < qt ≤ qt.

(2.29a)

(2.29b)

(2.29c)

(2.29d)

(2.29e)

where

LBG(qt)
def
=

{
s ∈ A(qt) : s

A = 0, sB ∈ [sBt , s̈
B
t ], s

G ∈ [0, sGt ]
}
,

LAG(qt)
def
=

{
s ∈ A(qt) : s

B = s̈Bt , s
A ∈ [(sAt − dAt /α)

+, sAt ], s
G ∈ [sGt , S

G]
}
,

LAB(qt)
def
=

{
s ∈ A(qt) : s

G = SG, sA ∈ [(sAt − dAt /α)
+, sAt ], s

B ∈ [s̈Bt , S
B]
}
,

Ë0
def
=

{
st+1 ∈ A(qt) : s

G
t+1 = SG, sit+1∈

[
(s̈it − d̈it/α)

+, Si
]
, i = A,B

}
.

When α = 1, there is no difference between current period generation and stored energy

in terms of costs. Hence, the optimal policy is given directly by Theorem II.11 for the

equivalent state (s̈t, d̈t).

When dit ≤ 0, i = A,B, note that qot = qt = max{0, q(−st,dt)} = 0 is the energy needed

to satisfy ‘demand’ without depleting storage. Recall the intuition that the optimal policy is

to store each location’s intermittent generation and central production at the closest possible

node respectively, moving to the next closest location when storage is full, regardless of the

relative values of α and β. Any excess generation is curtailed and no storage releases energy,

i.e., s̈t is the optimal policy for q = qot . For any production q ∈ (qot , qt], the optimal policy is

per Theorem II.9 for the equivalent state (s̈t, d̈t) where the critical production quantities are

defined per (2.25). To include for spill overs from both nodes, we generalize the notation,
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s̈it = min{sit + α(−dit + rit)
+, Si}, s̈Gt = min{sGt + α

∑
i=A,B

oit, S
G}, d̈it = (dit − rit)

+ for nodes

i = A,B where rBt , o
A
t are defined similarly.

In summary, Theorem II.26 describes the structure of the optimal policy for a system with

intermittent generation when there’s negative demand at one node. Using similar notation,

we extend the discussion to the case with negative demand at both nodes. While many of

the insights from the previous theorems are retained, we also observe that it may sometimes

be optimal to transmit negative demand to the remote node to satisfy demand.
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2.9. Appendix: Discussion of Example II.17

Because B(S) is concave in S and demands are symmetric across leaf nodes, we can

restrict our attention to symmetric investment decisions: S = (SL, SL, SG), where SL is the

storage capacity at each leaf node. Under the optimal investment S∗, the corresponding

operating policy has the following properties. First, when dt = (l, l), the entire storage

capacity S∗ is filled up. Second, when dt = (m,h) or (h,m) and β > 0.5, the entire storage

S∗ is emptied to serve the demand. Obviously, if inventory remains in node G or in both

leaf nodes, then some storage capacity is never used and the investment cannot be optimal.

Furthermore, if the optimal policy empties storage at G and the high-demand node but leaves

sL > 0 at the medium-demand node, then an alternative investment S̃ with S̃G = SG+sL/β

and S̃L = SL − sL has a lower investment cost (|S| − |S̃| = sL(2− 1/β) > 0 as β > 0.5) and

the same operating cost when storage is emptied to serve demand (m,h) or (h,m).5

Hence, we restriction our attention to the policies under which in a high-demand pe-

riod, the entire stored energy is used to serve demand and the system produces q1 =(
D − α(SL + βSG + β2SL)

)
/β, and in a low-demand period, the system produces q2 =

2SL/(αβ) + SG/α to fill up all storage. Since the system produces q1 and q2 alternately,

the long-run discounted production cost is V (SL, SG)
def
=

c(q1) + γ c(q2)

1− γ2
. The investment

problem in (2.7) is equivalent to min
SL≥0, SG≥0

p(SG + 2SL) + V (SL, SG).

This convex optimization can be solved using the Karush-Kuhn-Tucker conditions. The

solution is characterized by three critical prices: p1 > p2 > p3 > 0, where

p1 =
Dα(1 + β2)

β2(1− γ2)
, p2 =

4Dγα(1 + β)

β(1− γ2) (α4(1− β)(1 + β2) + 4γ)
, p3 =

2Dγα(1 + β)

β(1− γ2) (α4(1− β) + 2γ)
.

5When demand is (m,h) or (h,m), under the alternative investment S̃, when demand is (m,h) or (h,m),

we empty all storage and the production is q = −S̃Gα + (h − S̃Lα)/β + ψβ(m − S̃Lα) = −SGα + (h −
SLα)/β + ψβ(m − (SL − sL)α), which is exactly the production under the original policy. Hence, energy
generation under the alternative investment remains the same.
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The optimal investment decision is

S∗ =



0, if p ≥ p1,

(A1(p1 − p), A1(p1 − p), 0) = S∗
l , if p2 ≤ p < p1,

(A2(p− p3), A2(p− p3), A3(p2 − p)), if p3 < p < p2,(
0, 0, (p3 − p)A4 + A5

)
= S∗

g, if 0 < p ≤ p3,

(2.30)

where, A1 =
α2β2(1−γ2)

α4(1+β2)2+4γ
, A2 =

β(1−γ2)(α4(1−β)+2γ)
2α2(1−β)(1+β)2γ

, A3 =
(1−γ2)(α4(1−β)(1+β2)+4γ)

2α2(1−β)(1+β)2γ
, A4 =

α2(1−γ2)
2(α4+γ)

, A5 =

Dα3(1−β)
β(α4(1−β)+2γ)

2.10. Appendix: Proofs and Derivations

Proof of Lemma II.4: The statement of the lemma holds for period T because VT (·, ·) = 0.

Suppose Vt+1(st+1,dt+1) is decreasing and convex in st+1 for any dt+1.

For any dt, the objective function in (2.5) is defined on a non-convex set {(st, st+1) ∈

A × A : q(st+1 − st,dt) ≥ 0}. We introduce the following auxiliary function, which is an

extension of the objective function in (2.5) to a larger convex set:

ft(st+1, st,dt)
def
= c

(
[q(st+1 − st,dt)]

+
)
+ γEt

[
Vt+1(st+1,dt+1)

]
, for (st+1, st) ∈ A×A.

For state (st,dt), let s∗t+1 be an optimal decision found by (2.5)-(2.6). Consider any

s̃t ≥ st. If s
∗
t+1 is feasible for state (s̃t,dt), i.e., q(s

∗
t+1− s̃t,dt) ≥ 0, then

Vt(s̃t,dt) ≤ ft(s
∗
t+1, s̃t,dt) ≤ ft(s

∗
t+1, st,dt) = Vt(st,dt).

If q(s∗t+1− s̃t,dt) < 0 (infeasible), then using q(S− s̃t,dt) ≥ 0 and applying the intermediate

value theorem, we can find a feasible decision s̃t+1 with s∗t+1 ≤ s̃t+1 ≤ S and q(s̃t+1− s̃t,dt) =

0. Thus,

Vt(s̃t,dt) ≤ γEt

[
Vt+1(s̃t+1,dt+1)

]
≤ γEt

[
Vt+1(s

∗
t+1,dt+1)

]
≤ ft(s

∗
t+1, st,dt) = Vt(st,dt),

where the second inequality follows from the induction hypothesis and s̃t+1 ≥ s∗t+1. Using
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the intermediate value theorem, we can also show that min
st+1∈A

ft(st+1, st,dt) = Vt(st,dt).

Note that c
(
[q(∆s,dt)]

+
)
is a composition of convex increasing functions, and thus it is

convex in ∆s. From the induction hypothesis, Et

[
Vt+1(st+1,dt+1)

]
is convex in st+1. There-

fore, ft(st+1, st,dt) is jointly convex in (st+1, st) on closed convex set A × A. Then, using

the theorem on convexity preservation under minimization from Heyman and Sobel (1984,

p. 525), we conclude that Vt(st,dt) = min
st+1∈A

ft(st+1, st,dt) is convex in st.

Proof of Lemma II.5: (i) Suppose the statement in part (i) holds for period t + 1 (it

clearly holds for T since VT (·, ·) = 0). In this proof, we omit subscript t when no confusion

arises.

For period t, we consider states (s,d) and (s̃,d), with s = s̃+(−δ, β2δ, 0) for some δ > 0.

Let s∗t+1 be the optimal decision for state (s,d), and denote ∆s = s∗t+1−s and q∗ = q(∆s,d).

We now construct a feasible decision for state (s̃,d). Consider three cases:

Case 1: s̃+∆s ∈ A. In this case, a feasible decision for (s̃,d) is to produce q∗ and change

inventory to s̃t+1 = s̃ +∆s. Then, s̃t+1 = s∗t+1 − (−δ, β2δ, 0), and the induction hypothesis

leads to:

Vt(s̃,d) ≤ c(q∗) + γEt

[
Vt+1(s̃t+1,dt+1)

]
≤ c(q∗) + γEt

[
Vt+1(s

∗
t+1,dt+1)

]
= Vt(s,d).

Case 2: s̃+∆s ̸∈ A. This condition means s̃+∆s = s̃+s∗t+1−s = s∗t+1−(−δ, β2δ, 0) ̸∈ A,

which can be written as sA∗
t+1 + δ > SA or sB∗

t+1 − β2δ < 0 or both inequalities hold.

To identify a feasible inventory decision for (s̃,d), we consider s̃t+1 = s∗t+1− (−δ̃, β2δ̃, 0),

where δ̃ = min
{
SA − sA∗

t+1, s
B∗
t+1/β

2
}
. Define ∆s̃ = s̃t+1 − s̃ and q̃ = q(∆s̃,d). There are two

subcases: q̃ < 0 and q̃ ≥ 0. If q̃ < 0, then applying the intermediate value theorem, we can

find a feasible decision s̃′t+1 with s̃t+1 ≤ s̃′t+1 ≤ S and q(s̃′t+1 − s̃,d) = 0. Then,

Vt(s̃,d) ≤ γEt

[
Vt+1(s̃

′
t+1,dt+1)

]
≤ γEt

[
Vt+1(s̃t+1,dt+1)

]
≤ γEt

[
Vt+1(s

∗
t+1,dt+1)

]
≤ Vt(s,d),

where the second inequality uses Lemma II.4 and the third inequality is due to the induction

hypothesis.

If q̃ ≥ 0, then the feasible decision is s̃t+1 = s∗t+1 − (−δ̃, β2δ̃, 0) with δ̃ defined above.
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If we can show q̃ ≤ q∗, then the feasibility of s̃t+1 and the induction hypothesis lead to the

intended result:

Vt(s̃,d) ≤ c(q̃) + γEt

[
Vt+1(s̃t+1,dt+1)

]
≤ c(q∗) + γEt

[
Vt+1(s

∗
t+1,dt+1)

]
= Vt(s,d). (2.31)

The rest of the proof shows q̃ ≤ q∗. The choice of δ̃ gives s̃At+1 = SA or s̃Bt+1 = 0, which

leads to

∆s̃A = s̃At+1 − s̃A ≥ 0 or ∆s̃B = s̃Bt+1 − s̃B ≤ 0. (2.32)

Furthermore, δ̃ < δ. Let ε = δ − δ̃. Then, by definitions, we have

∆s−∆s̃ = s∗t+1 − s̃t+1 − s+ s̃ = (−δ̃, β2δ̃, 0)− (−δ, β2δ, 0) = (ε, −β2ε, 0). (2.33)

That is, ∆sA = ∆s̃A + ε, ∆sB = ∆s̃B − β2ε, and ∆sG = ∆s̃G. Using the definition in (3.2),

we have

q∗ − q̃ = ψβ

(
dA + ψα(∆s

A)
)
− ψβ

(
dA + ψα(∆s̃

A)
)
−

[
ψβ

(
dB + ψα(∆s̃

B)
)
− ψβ

(
dB + ψα(∆s

B)
)]

≥ β
[
ψα(∆s̃

A + ε)− ψα(∆s̃
A)
]
− β−1

[
ψα(∆s̃

B)− ψα(∆s̃
B − β2ε)

]
≡ Γ, (2.34)

where the inequality is because ψβ(u) increases in u with a slope of either β or β−1. Now

consider the cases under the two conditions derived in (3.28):

• If ∆s̃A ≥ 0, then Γ = βα−1ε−β−1
[
ψα(∆s̃

B)−ψα(∆s̃
B−β2ε)

]
≥ βα−1ε−β−1α−1β2ε =

0.

• If ∆s̃B ≤ 0, then Γ = β
[
ψα(∆s̃

A + ε)− ψα(∆s̃
A)
]
− β−1αβ2ε ≥ βαε− βαε = 0.

Hence, q∗ ≥ q̃ and the result in (3.27) holds.

(ii) For the case s − s̃ = (−δ, 0, βδ), the proof follows the same lines as in part (i), except

that the inventory increases at node G instead of node B. The other cases can be proved

similarly.

Proof of Lemma II.6: Because q(st+1 − st,dt) increases in st+1 and Vt+1(st+1,dt+1) de-

creases in st+1 (Lemma II.4), the subproblem in (2.9) is equivalent to the following problem
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with an inequality constraint:

Wt(qt, st,dt) = min
st+1∈A

{
Et

[
Vt+1(st+1,dt+1)

]
: q(st+1 − st,dt) ≤ qt

}
. (2.35)

Because the feasible set in (2.35) expands as qt increases, Wt(qt, st,dt) decreases in qt.

To prove convexity, note that the set Y def
= {(qt, st+1) : qt ∈ Q(st,dt), st+1 ∈ A, q(st+1 −

st,dt) ≤ qt} is a closed convex set. From Lemma II.4, the objective Et

[
Vt+1(st+1,dt+1)

]
in (2.35) is convex in st+1, and thus, it is also convex on the set Y . Using the theorem

on convexity preservation under minimization from Heyman and Sobel (1984, p. 525), we

conclude Wt(qt, st,dt) is convex in qt.

Proof of Lemma II.7: Under (2.12) and SA = SB, the expected cost-to-go function

is symmetric with respect to sAt+1 and sBt+1. That is, Et

[
Vt+1

(
(sAt+1, s

B
t+1, s

G
t+1),dt+1

)]
=

Et

[
Vt+1

(
(sBt+1, s

A
t+1, s

G
t+1),dt+1

)]
.

For any sA, sB ∈ [0, SA] satisfying sA + sB = z, we have

Et

[
Vt+1

(
(sA, sB, sG),dt+1

)]
=

1

2

(
Et

[
Vt+1

(
(sA, sB, sG),dt+1

)]
+ Et

[
Vt+1

(
(sB, sA, sG),dt+1

)])
≥ Et

[
Vt+1

(
(z/2, z/2, sG),dt+1

)]
,

where the inequality is due to the convexity of Vt+1(st+1,dt+1) with respect to st+1 (Lemma II.4).

Hence,
(
z/2, z/2, sG

)
is a minimizer to the problem: min

st+1∈A

{
Et

[
Vt+1(st+1,dt+1)

]
: sAt+1+s

B
t+1=

z, sGt+1=s
G
}
. Therefore, b(z; sG, dt) =

(
z/2, z/2, sG

)
.

Proof of Theorem II.8: As SG = 0 and SA = SB, the feasible inventory set A is the square

region shown in Figure 2.12. Also shown in the figure is the piecewise-linear iso-production

curve A(qt):

A(qt) =
{
st+1 ∈ A :

∑
i=A,B

ψβ

(
dit + ψα(s

i
t+1 − sit)

)
= qt

}
. (2.36)

In (2.35), for any given qt, we minimize a convex function over a convex set. Thus, to

prove the solution prescribed in Theorem II.8 is optimal for (2.35) and hence for (2.9), we

only need to show that it achieves a local minimum on the set A(qt). Below, we show that

52



the objective value increases when st+1 deviates from the prescribed s∗t+1; the deviation is

along A(qt).

Figure 2.12: Optimal s∗t+1(qt, st,dt) and the deviation from it along A(qt), for various qt
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Figure 2.12 shows four possible directions to move along A(qt). Moving along e0 increases

the objective value by the definition of the balance curve (2.11). It follows directly from

Lemma II.5(i) that the objective increases along e3 = (−1, β2). The objective increases

along e1 because

Vt+1(st+1,dt+1) ≤ Vt+1(st+1 + (−δ, β2δ, 0),dt+1) ≤ Vt+1(st+1 + (−δ, α2δ, 0),dt+1), (2.37)

where the first inequality is due to Lemma II.5(i) and the second inequality follows from

α ≤ β and the monotonicity in Lemma II.4. The proof for e2 is similar.

Although the above proof is for one case of the optimal decision s∗t+1(qt, st,dt), the proofs

for other cases are similar. A general proof for the general case with SG > 0 and asymmetric

leaf nodes will be presented in the proof for Theorem II.9.

Proofs of Theorems II.9 and II.11: Overview and Preliminaries

These two theorems provide structural properties for the optimal solution to (2.9), which is
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equivalent to (2.35), where we minimize a convex function over a convex set. Thus, to prove

a solution is optimal for (2.35) and hence for (2.9), we only need to show that it achieves a

local minimum in (2.9).

Using the definition from (3.2), the set of feasible actions for (2.9) is

A(qt) =
{
st+1 ∈ A :

∑
i=A,B

ψβ

(
dit + ψα(s

i
t+1 − sit)

)
+ ψα(s

G
t+1 − sGt ) = q

}
, (2.38)

where ψα(s
G
t+1 − sGt ) is piecewise linear in sGt+1 with slopes α and α−1 (slope changes at

sGt+1 = sGt ), and ψβ

(
dit + ψα(s

i
t+1 − sit)

)
is piecewise linear in sit+1 with slopes αβ, αβ−1, and

α−1β−1 (slope changes at sit+1 = sit − dit/α and sit+1 = sit), for i = A,B. If sit − dit/α ≤ 0, the

segment with slope αβ does not exist. The iso-production surface A(qt) is thus a piecewise

linear surface in A.

To prove local minimum, we show that the objective value Et

[
Vt+1(st+1,dt+1)

]
in (2.9)

increases as st+1 deviates from the prescribed s∗t+1 (or the set containing s∗t+1). We prove

this using two steps:

Step 1. Find all faces of A(qt) that intersect the prescribed s∗t+1 (or the set containing

s∗t+1), and identify the edges formed by these faces.

Step 2. Prove that the objective value Et

[
Vt+1(st+1,dt+1)

]
increases when st+1 moves

away from s∗t+1 (or the set containing s∗t+1) in the direction parallel to any of the edges

identified in Step 1. (We in fact prove a stronger result that Vt+1(st+1,dt+1) increases for

any realization of dt+1.)

Steps 1 and 2 lead to the optimality of the prescribed s∗t+1, because from s∗t+1 (or the set

containing s∗t+1) we can reach any st+1 in any face identified in Step 1 by taking at most two

moves parallel to the edges of the face; both moves increase the objective value, as shown in

Step 2.

Instead of repeating Step 1 for every case, we first identify all possible faces and edges of

A(qt). We use k to index the faces of A(qt). Face k satisfies (2.38), which can be expressed

as

ak· st+1 ≡ aAk s
A
t+1 + aBk s

B
t+1 + aGk s

G
t+1 = bk, for st+1 ∈ face k,
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where aAk and aBk have three possible values (αβ, αβ−1, and α−1β−1) and aGk is either α or

α−1. These values are exactly the slopes discussed after (2.38).

For the part of A(qt) with s
G
t+1 > sGt (storing energy at G), we have aGk = α−1, while aAk

and aBk have 9 combinations, as shown in Figure 2.13(a). Thus, this part of A(qt) can have

up to 9 faces, which are labeled in clockwise order, with a center face 0. Figure 2.13(a) also

illustrates the contours of A(qt) when it contains all nine faces (each contour line represents

a fixed sGt+1 level, with lower-left being the highest sGt+1). In general, A(qt) contains only a

subset of these faces.

The other part of A(qt) with sGt+1 < sGt consists of faces with aGk = α. These faces are

shown in Figure 2.13(b) and labeled in the same order. Note that the lower-left area cannot

be part of A(qt) because sGt+1 < sGt implies that
∑

i=A,B

ψβ

(
dit + ψα(s

i
t+1 − sit)

)
> 0 due to

(2.38).

The boundary between the above two parts of A(qt) has s
G
t+1 = sGt (meaning no storage

operations at G), which can be formally written as

H(qt)
def
=

{
(sAt+1, s

B
t+1, s

G
t ) ∈ A(qt) :

∑
i=A,B

ψβ

(
dit + ψα(s

i
t+1 − sit)

)
= qt

}
. (2.39)

When H(qt) is non-empty, each segment of H(qt) is an edge formed by faces k and k′, for

some k. The projection of H(qt) onto (sAt+1, s
B
t+1) plane is exactly a contour line.

Let eij denote a direction parallel to the edge formed by faces i and j, shown as arrows

in Figure 2.13. For any two adjacent faces i and j, their coefficient vectors ai and aj differ

in only one element, which gives a simple method to derive eij. Use e45 as an example.

Comparing a4 and a5, we see aB4 = aB5 = αβ and aG4 = aG5 = α−1. Thus, within faces 4 and

5, if we hold sAt+1 constant and reduce sBt+1 by α−1, then sGt+1 must increase by αβ. Thus,

e45 = (0, −α−1, αβ) or scaled to (0, −1, α2β). We scale eij such that it contains −1 as an

element, which facilitates physical interpretation for the direction.

Having identified all possible faces and edges of A(qt), we next prove a lemma on how

the value function change along these directions. (Each direction is parallel to an edge; see

Figure 2.13.)

Lemma II.27. For any dt+1, we have
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(i) Vt+1(st+1,dt+1) increases as st+1 moves along e55′ , e77′.

(ii) Vt+1(st+1,dt+1) increases as st+1 moves along e12, e18, e23, e34, e0′3′ , e0′7′ , e0′1′ , e0′5′ , e4′5′ , e7′8′.

(iii) Vt+1(st+1,dt+1) increases as st+1 moves along e45, e56, e67, e78, e1′2′ , e1′8′ , e2′3′ , e3′4′ , e44′ , e88′.

(iv) If α ≤ β, then Vt+1(st+1,dt+1) increases as st+1 moves along e01, e03, e05, e07, e11′ , e33′.

Proof of Lemma II.27: Parts (i) and (ii) follow directly from Lemma II.5(i) and (ii),

respectively. The proofs for parts (iii) and (iv) are similar to (2.37) in the proof for Theo-

rem II.8; the proofs rely on Lemmas II.4 and II.5, and use α ≤ 1 for proving part (iii) and

α ≤ β for proving part (iv).

Each case of Theorems II.9 and II.11 involves a subset of the faces and edges from

Figure 2.13. We next prove the theorems based on Lemma II.27.

Proof of Theorem II.9: For qt ∈ [qt, qt), the theorem states that the remote storage is

used. If using sBt to serve dAt , we must have sBt >
dBt
α

and sAt + sGt β <
dAt
α
. In this case, the

theorem implies that sG∗
t+1 = sA∗

t+1 = 0 and sB∗
t+1 < sBt − dBt /α. The solution s∗t+1 is on face 5′

as illustrated in Figure 2.14(a). Because Vt+1(st+1,dt+1) increases along directions e55′ and

e4′5′ (Lemma II.27(i), (ii)), s∗t+1 is locally optimal. The proof for the case of using sAt to

serve dBt is similar. Additionally, for qt = qt, although remote storage is not used, we have

s∗t+1 = st and the proof is essentially the same.

There are a few degenerative cases to consider: If sGt = 0, then s∗t+1 is on face 5 instead

of 5′, but it is still locally optimal as Vt+1(st+1,dt+1) increases along e45 (Lemma II.27(iii)).

If dAt = 0, then s∗t+1 is on face 4′, but still locally optimal as Vt+1(st+1,dt+1) increases along

e44′ (Lemma II.27(iii)). If qt = qt, A(qt) shrinks to a point st, which is the only choice for

s∗t+1.

In proving the remaining portion of the theorem, all degenerative cases (i.e., when some

faces don’t exist) can be similarly proven, but due to the length of the proof we omit the

details.

For qt ∈ (qt, qt), per theorem, sG∗
t+1 < sGt and either (sA∗

t+1, s
B∗
t+1) = (0, sBt − dBt /α) or

(sA∗
t+1, s

B∗
t+1) = (sAt −dAt /α, 0). For case of (sA∗

t+1, s
B∗
t+1) = (0, sBt −dBt /α), s∗t+1 is on the intersec-

tion of faces 0′ and 5′, shown in Figure 2.14(b). It is locally optimal because Vt+1(st+1,dt+1)

increases as st+1 moves along e0′5′ , e4′5′ , and e0′7′ . The proof is parallel for the case of
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(sA∗
t+1, s

B∗
t+1) = (sAt − dAt /α, 0).

For qt ∈ (qt, q
o
t ), per theorem, s∗t+1 is on B(st, st, z), implying sG∗

t+1 = sGt and si∗t+1 ∈

[(sit − dit/α)
+, sit]. Hence, s∗t+1 lies on the edge formed by faces 0 and 0′, shown in Figure

2.14(c)-(d) as the dashed line segment. By the definition of B(st, st, z), s∗t+1 minimizes

Et[Vt+1(st+1,dt+1)] within this line segment. To show that s∗t+1 is a local minimizer for

Et[Vt+1(st+1,dt+1)] within A(qt) we only need to show that Vt+1(st+1,dt+1) increases as st+1

moves along the directions shown in Figure 2.14(c)-(d), but this follows immediately from

Lemma II.27. Additionally, for q = qt, the line segment in Figure 2.14(c) shrinks to the

point intersecting face 6, and along the additional directions e56 and e67, Vt+1(st+1,dt+1)

still increases. Similarly, for q = qot , the line segment in Figure 2.14(d) shrinks to the point

intersecting face 2′, and along the additional directions e1′2′ and e2′3′ , Vt+1(st+1,dt+1) still

increases.

For qt ∈ (qot , qt), per theorem, s∗t+1 =
(
sAt , s

B
t , s

G
t + α(q − qot )

)
, which is exactly the

intersection of faces 0, 1 , 2, and 3. Lemma II.27 asserts that Vt+1(st,dt) increases along

directions e01, e12, e23, and e03, which ensures the local optimality of s∗t+1.

For qt ∈ (qt, qt), per theorem, s∗t+1 is on B(st,S, z), implying sG∗
t+1 = SG and si∗t+1 ≥ sit,

i = A,B. Hence, s∗t+1 is on the top edge (the edge with sGt+1 = SG) of face 2. The proof for

this case as well the case of qt = qt is similar to the proof for qt ∈ (qt, q
o
t ).

Proof of Theorem II.11: Regardless of the relation of α and β, the surface A(qt) has

the structures shown in Figure 2.13. Thus, we use the same graphs to illustrate the optimal

decisions. Further, the proof for the case of qt ∈ [qt, qt] remains same as Theorem II.9 because

Vt+1(st,dt) increases along all directions when qt ∈ [qt, qt] irrespective of the relative value

of α and β.

In Theorem II.9, the condition α ≤ β (thus α2/β ≤ β) is crucial for Vt+1(st+1,dt+1) to

increase along e01 = e05 = (−1, 0, α2/β) or e03 = e07 = (0, −1, α2/β); see Figure 2.13.

When α > β, however, this result may not hold. In fact, if α = 1, these directions become

(scaled by β):

e01 = e05 = (−β, 0, 1) and e03 = e07 = (0, −β, 1), if α = 1. (2.40)
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Lemma II.5 confirms that Vt+1(st+1,dt+1) decreases when st+1 moves in the directions in

(2.40).

When β < α < 1, the objective value may increase or decrease as st+1 moves along the

directions in (2.40). Thus, we need to search more extensively than the cases of α ≤ β and

β < α = 1.

Equations (2.17b) and (2.18b): Case of qt < qt ≤ qt, illustrated in Figure 2.15(a).

In Figure 2.15(a), the dashed line contains s∗t+1 when α ≤ β (see Figure 2.6(a)). However,

when β < α = 1, moving along e05 and e07 further reduces Vt+1(st+1,dt+1). Thus, s∗t+1 is

the intersection of faces 0, 5, 6, and 7. That is, s∗t+1 =
(
(sAt − dAt )

+, (sBt − dBt )
+, sGt + qt − qt

)
.

When β < α < 1, the solution s∗t+1 is in face 0, defined as Ft in the theorem. The exact

location depends on the demand distribution.

Equations (2.17c) and (2.18c): Case of qt < qt < qt, illustrated in Figure 2.15(b)

and (c).

As qt increases, the entire surface A(qt) rises. As qt > qt, face 6 no longer exists (cf.

Figure 2.15(a)) and we have the situation in Figure 2.15(b). The dashed line contains s∗t+1

if α ≤ β. When β < α = 1, moving along e01 and e03 reduces the objective value, and thus

s∗t+1 is on the top edge of face 0 (i.e., the edge with sGt+1 = SG). If β < α < 1, then s∗t+1 is

in face 0.

As qt increases even further, faces 5 and 7 no longer exist and the situation is illustrated

in Figure 2.15(c). We need to consider not only the top edge of face 0, but also the top edges

of faces 1 and 3, because moving along e11′ or e33′ may reduce the objective value. These

three edges form the set Et defined in the theorem. We do not need to consider the entire

faces 1 and 3 because the objective value increases as st+1 moves into faces 1 or 3 along

directions e12 or e23.

Therefore, when β < α < 1, the solution s∗t+1 belongs to Ft ∪ Et. When β < α = 1,

s∗t+1 belongs to Et, which becomes a straight line segment because e11′ = (−1, 1, 0) and

e33′ = (1,−1, 0). Minimizing Et[Vt+1(st+1,dt+1)] within this line segment gives B(x,y, z)

per (2.15), which is the result in (2.17c) in Theorem II.11.

Equations (2.17c) and (2.18d): Case of qt ≤ qt < qt, illustrated in Figure 2.15(d).

When qt ≥ qt, the surface A(qt) rises such that face 0 does not exist, illustrated in Fig-
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ure 2.15(d). Thus, s∗t+1 is on the top edges of faces 1, 2, and 3, which is the set Et in the

theorem. Further, when α = 1, Et is a straight line segment and thus s∗t+1 can be expressed

using B(x,y, z).
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Proof of Theorem II.26:

The proof of Theorem II.26 follows exactly along the lines of Theorems II.9 and II.11.

We first identify all faces of A(qt) and edges, as in Figure 2.16 (cf. Figure 2.13). Here, aAk

and aBk have three possible values (αβ, α−1β, and α−1β−1), and aGk is either α or α−1. For

the part of A(qt) with s
G
t+1 > sGt (storing in G), we have aGk = α−1, while aAk and aBk have 9

combinations, as shown in Figure 2.16(a). The other part of A(qt) with s
G
t+1 < sGt consists of

faces with aGk = α. Note that the lower-left area cannot be part of A(qt) because s
G
t+1 < sGt

and sAt+1 < (sAt − dAt /α) implies that sBt+1 ≥ sBt + |dBt |α due to (2.38).

Next, we identify that directions in which Vt+1(st+1,dt+1) is increasing and show local

optimality for each case of the Theorem.

Applying similar logic as Lemma II.27, we make the following observations to the di-

rections referenced in Figure 2.16: For given state (st,dt), consider any st+1 ∈ A(qt), we

have:

(i) Vt+1(st+1,dt+1) increases along the edges e55′ , e44′ , e88′ , e33′ from Lemma II.5(i) and

Lemma II.4.

(ii) Vt+1(st+1,dt+1) increases along the edges, e12, e18, e23, e34, e0′1′ , e0′5′ , e4′5′ , e7′8′ from

Lemma II.5(ii).

(iii) Vt+1(st+1,dt+1) increases along the edges e45, e56, e67, e78, e1′2′ , e1′8′ , e2′3′ , e3′4′ from

Lemma II.5(ii) and Lemma II.4.

(iv) If α ≤ β, then Vt+1(st+1,dt+1) increases along the edges e01, e05, e11′ , e0′3′ from Lemma

II.5 and Lemma II.4. Further, if α ≤ β2, then Vt+1(st+1,dt+1) increases along the edge

e00′ .

(v) If st+1 = b(sAt+1 + sBt+1; s
G
t+1,dt+1), then Vt+1(st+1,dt+1) increases along the edges,

e22′ , −e22′ .

Part (i): Case when α ≤ β.

The proof for qt ∈ [qt, qt] remains same as Theorem II.9 as all the equivalent directions

in Figure 2.16 (cf. Figure 2.13) discussed are increasing for the case with dBt < 0.

For qt ∈ (qt, qt), per theorem, sG∗
t+1 < sGt and sB∗

t+1 = sBt+1, s
A∗
t+1 = 0 implying s∗t+1 is on the

intersection of faces 0′, 5′. s∗t+1 is locally optimal because, Vt+1(st+1,dt+1) is increasing along,
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e55′ , e4′5′ , e0′3′ . For q = qt, we note that Vt+1(st+1,dt+1) is additionally increasing along

e56. Notice that although the equivalent edges between Figures 2.13 and 2.16 are not always

equal, the same arguments apply. It can be confirmed that similar arguments as Theorem

II.9 apply for qt ∈ (qot , qt].

It remains to show the case when qt ∈ (qt, q
o
t ]. Here, s

G∗
t+1 = sGt and the set LAB(qt) follows

the dashed line in Figure 2.14(c) and (d). Note that Vt+1(st+1,dt+1) is increasing along the

directions: e03, e07, e01, e05, e0′7′ , e0′3′ , e0′1′ , e0′5′ , e56, e78, e11′ , e33′ , e44′ , e55′ , e77′ , e88′ .

Further, when α < β2, we observe that Vt+1(st+1,dt+1) is increasing along, e00′ . Hence, when

α ≤ β2, for qt ∈ (qt, q̃t], s
∗
t+1 is at the intersection of faces 0, 0′, 5, 5′ and for qt ∈ (q̃t, q

o
t ], s

∗
t+1

is at the intersection of faces 0, 0′, 3, 3′. However, for β2 < α ≤ β, the solution can be on any

point on the set LAB(qt).

Part (ii): Case when β < α ≤ 1.

The proof for qt ∈ [qt, qt] remains same as Theorem II.11 as the equivalent directions

discussed are still increasing.

For qt ∈ (qt, qt), per Theorem, sA∗
t+1 = 0 , sG∗

t+1 ≤ sGt+1, s
B∗
t+1 ∈ [sBt , s̈

B
t ]. Hence, s∗t+1 is on

the edge of face 0′ and Vt+1(st+1,dt+1) is increasing along edges e0′5′ , e4′5′ , e0′1′ , and e1′2′ (or

e1′8′). Hence, deviating to any point on face 0′ or 1′ increases Vt+1(st+1,dt+1). Further, for

qt = qt, we note that Vt+1(st+1,dt+1) is additionally increasing along e55′ , as the prescribed

s∗t+1 is at the intersection of faces 0, 5, 5′.

For qt ∈ (qt, q̈t], we additionally consider the directions e05, e03 as the prescribed s∗t+1

may be on the edge intersecting faces 0, 0′ (LAB(qt)) (See Figure 2.17(a)).

For qt ∈ (q̈t, qt), s
∗
t+1 may be on a set of up to three contiguous line segments directions

on A(qt). Figure 2.17(b),(c) confirm that Vt+1(st+1,dt+1) is increasing along the feasible

directions to all other points on faces 0, 0′, 1, 1′, 3, 3′, 8. Further, if qt = qot , we note that

Vt+1(st+1,dt+1) is increasing additionally along, e1′2′ , e2′3′ , as prescribed s∗t+1 intersects with

face 2.

For qt ∈ (qt, qt), s
∗
t+1 may be on the set Ë0, as shown in Figure 2.17(d). We note that

Vt+1(st+1,dt+1) is increasing along directions e12, e23, e33′ .

Proof of Lemma II.12: For given S, we use s∗t+1 as short for the optimal decision rule
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s∗t+1(st,dt;S), and let {s∗t : t ∈ T } be the optimal policy. For any S̃ ≥ S, we can construct a

feasible policy: {s̃∗t = s∗t + S̃−S : t ∈ T }. The two policies yield the same inventory changes,

∆s̃∗t = ∆s∗t , and thus the same expected operating cost. Therefore, V (S̃) ≤ V (S).

Using similar inductive arguments as Lemma II.4, we can show that Vt(st,dt;S) is convex

in (st,S) for any t ∈ T . In particular, V1(s1,d1;S) is convex in (s1,S). Hence, V (S) =

E0V1(S,d1;S) is convex in S. The concavity of B(S) follows immediately.

Proof of Lemma II.13: (i) Under investment S, let {s∗t : t ∈ T } be the optimal inventory

policy, and ui∗t = dit+ψα(∆s
i∗
t ), i = A,B, be the corresponding transmission flows according

to (2.3).

Under investment Sg =
(
0, 0, SG + β−1(SA + SB)

)
, we construct an operating policy

{s̃t : t ∈ T }:

s̃At = s̃Bt = 0, s̃Gt = sG∗
t + gt, ∀ t ∈ T . (2.41)

g1 = β−1(SA + SB), (2.42)

gt+1 = min
{
β−1(SA + SB), gt + β−1(∆sA∗

t +∆sB∗
t ) +

β − β−1

α
min{uA∗

t , uB∗
t , 0}

}
. (2.43)

Since s∗1 = S, we have s̃1 = Sg. The definition in (2.43) implies gt ∈
[
β−1(sA∗

t +sB∗
t ), β−1(SA+

SB)
]
for all t ∈ T .6 Hence, 0 ≤ s̃t ≤ Sg, thus the constructed policy {s̃t : t ∈ T } is feasible

under Sg. We do not require the non-negative production constraint as in (2.6), because for

any inventory decision that results in qt < 0, there exists another inventory decision that

results in qt ≥ 0 and the same objective value, which is shown in the proof of Lemma II.4.

We now prove that under Sg and {s̃t : t ∈ T }, the production q̃t = ψα(∆s̃
G
t )+β

−1(dAt +d
B
t )

does not exceed the optimal production under S: q∗t = ψα(∆s
G∗
t ) +

∑
i=A,B

ψβ(u
i∗
t ). Consider

three cases:

1) uA∗
t ≥ 0 and uB∗

t ≥ 0. In this case, (2.43) implies ∆gt = gt+1 − gt ≤ β−1(∆sA∗
t +∆sB∗

t ).

6We can inductively show gt ≥ β−1(sA∗
t +sB∗

t ). This is true for t = 1. Suppose gt ≥ β−1(sA∗
t +sB∗

t ). Then,

gt+β
−1(∆sA∗

t +∆sB∗
t )+ β−β−1

α min{uA∗
t , uB∗

t , 0} ≥ β−1(sA∗
t +sB∗

t )+β−1(∆sA∗
t +∆sB∗

t ) = β−1(sA∗
t+1+s

B∗
t+1).

This, together with β−1(SA + SB) ≥ β−1(sA∗
t+1 + sB∗

t+1), implies that gt+1 ≥ β−1(sA∗
t+1 + sB∗

t+1).
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Then,

q∗t = ψα(∆s
G∗
t ) +

∑
i=A,B

β−1(dit + ψα(∆s
i∗
t )) = ψα(∆s

G∗
t ) +

∑
i=A,B

β−1dit + ψα(β
−1∆si∗t )

≥ ψα(∆s
G∗
t + β−1∆sA∗

t + β−1∆sB∗
t ) + β−1(dAt + dBt )

≥ ψα(∆s
G∗
t +∆gt) + β−1(dAt + dBt ) = q̃t,

where the first inequality utilizes the subadditivity of ψα(·), i.e., ψα(x)+ψα(y) ≥ ψα(x+

y).

2) uA∗
t < 0 and uB∗

t ≥ 0, i.e., some energy is transmitted from A to B. The condition

uA∗
t < 0 implies ∆sA∗

t < 0, which in turn implies ∆sG∗
t ≤ 0 and ∆sB∗

t ≤ 0, because

Lemma II.5 suggests that energy should not be withdrawn from one node only to store

it in another node. These conditions, together with dAt ≥ 0, imply that ∆gt = β∆sA∗
t +

β−1∆sB∗
t +

β − β−1

α
dAt < 0.7 Then,

q̃t = α(∆sG∗
t +∆gt) + β−1(dAt + dBt ) = α∆sG∗

t + β(α∆sA∗
t + dAt ) + β−1(α∆sB∗

t + dBt ) = q∗t .

3) uA∗
t ≥ 0 and uB∗

t < 0. This case is parallel to case 2.

The case of uA∗
t < 0 and uB∗

t < 0 does not exist, because the corresponding inventory

changes are suboptimal by Lemma II.5. Therefore, in all cases, we have q̃t ≤ q∗t , implying

that the policy {s̃t : t ∈ T } achieves an operating cost no higher than V (S). Therefore,

V (Sg) ≤ V (S).

(ii) Let {s∗t : t ∈ T } be the optimal policy under S. Under Sl = (SA + βSG, SB + βSG, 0),

7To see this, note that the last two terms in (2.43) are β−1(∆sA∗
t +∆sB∗

t ) + β−β−1

α min{uA∗
t , uB∗

t , 0} =

β−1(∆sA∗
t +∆sB∗

t ) + β−β−1

α (dAt + α∆sA∗
t ) = β∆sA∗

t + β−1∆sB∗
t + β−β−1

α dAt < 0.
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we construct an operating policy {ŝt : t ∈ T } as follows:

ŝAt = sA∗
t + gAt , ŝBt = sB∗

t + gBt , ŝGt = 0, ∀ t ∈ T , (2.44)

gA1 = βSG, (2.45)

∆gAt = gAt+1 − gAt =

 max
{
β∆sG∗

t , −(uA∗
t )

+
/α

}
, if ∆sG∗

t < 0,

min
{
β∆sG∗

t , βSG − gAt
}
, if ∆sG∗

t ≥ 0,
t ∈ T , (2.46)

gBt = β(sG∗
t + SG)− gAt , t ∈ T . (2.47)

We first show the following properties for gAt and gBt : (P1) git ∈
[
βsG∗

t , βS
G
]
, i = A,B;

(P2) ∆gAt +∆gBt = β∆sG∗
t ; (P3) ∆gAt ∆g

B
t ≥ 0.

It can be shown by induction that gAt ∈
[
βsG∗

t , βS
G
]
and the details are omitted. This

range for gAt , together with (2.47), implies that gBt ∈ [βsG∗
t , βS

G] for all t ∈ T . This proves

(P1) and thus {ŝt : t ∈ T } is a feasible policy. Property (P2) follows directly from (2.47).

From (2.46), if ∆sG∗
t ≥ 0, then ∆gAt ∈ [0, β∆sG∗

t ]; if ∆sG∗
t < 0, then ∆gAt ∈ [−β∆sG∗

t , 0].

These ranges for ∆gAt , together with property (P2), imply that ∆gAt and ∆gBt have the same

sign, hence property (P3).

We now prove that under Sl and {ŝt : t ∈ T }, the production q̂t =
∑

i=A,B

ψβ(û
i
t) does not

exceed the optimal production under S: q∗t = ψα(∆s
G∗
t ) +

∑
i=A,B

ψβ(u
i∗
t ). The subadditivity

of ψα(·) leads to

ûit ≡ dit + ψα(∆s
i∗
t +∆git) ≤ dit + ψα(∆s

i∗
t ) + ψα(∆g

i
t) = ui∗t + ψα(∆g

i
t). (2.48)

If ∆sG∗
t ≥ 0, then ∆git ≥ 0 due to properties (P2) and (P3). Using (2.48), the subadditivity

of ψβ(·), and property (P2), we have

q̂t ≤
∑

i=A,B

ψβ(u
i∗
t + ψα(∆g

i
t)) ≤

∑
i=A,B

[
ψβ(u

i∗
t ) + ∆git/(αβ)

]
=

∑
i=A,B

ψβ(u
i∗
t ) + ∆sG∗

t /α = q∗t .

If ∆sG∗
t < 0, then ∆git ≤ 0, i = A,B, and we consider three cases:

1) uA∗
t ≥ 0 and uB∗

t ≥ 0. Because Lemma II.5 suggests that energy should not be withdrawn

from G only to store it in another node, we have ∆si∗t ≤ 0, i = A,B. Thus, ûAt =
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dAt + α(∆sA∗
t + ∆gAt ) = uA∗

t + α∆gAt ≥ 0, where the inequality is due to (2.46). It can

be shown that ûBt ≥ 0.8 Hence,

q̂t = β−1(ûAt + ûBt ) = β−1(uA∗
t + uB∗

t + α∆gAt + α∆gBt ) = β−1(uA∗
t + uB∗

t ) + α∆sG∗
t = q∗t .

2) uA∗
t < 0 and uB∗

t ≥ 0. Definition (2.46) suggests ∆gAt = 0. Hence, ûAt = uA∗
t < 0 and

∆gBt = β∆sG∗
t . We must have ûBt > 0 to balance the flows at node G. Thus, using

(2.48), we have

q̂t = βuA∗
t + β−1ûBt ≤ βuA∗

t + β−1uB∗
t + β−1α∆gBt = βuA∗

t + β−1uB∗
t + α∆sG∗

t = q∗t .

3) uB∗
t < 0 and uA∗

t ≥ 0. Since q∗t = α∆sG∗
t +β−1uA∗+βuB∗

t ≥ 0, we have β∆sG∗
t ≥ −uA∗/α.

Thus, using (2.46), we have ∆gAt = β∆sG∗
t , which in turn implies that ∆gBt = 0 due to

property (P2). Then, a similar logic as in case 2 gives q̂t ≤ q∗t .

The case of uA∗
t < 0 and uB∗

t < 0 does not exist. Hence, in all cases, we have q̂t ≤ q∗t ,

implying that the policy {ŝt : t ∈ T } achieves an operating cost no higher than V (S).

Therefore, V (Sl) ≤ V (S).

Proof of Theorem II.14: For any given S ≥ 0 and the associated optimal operating policy

{s∗t : t ∈ T }, we construct a two-node system with node G and a single demand node with

demand dLt = dAt +d
B
t . The demand node has storage capacity SL = SA+SB with operating

policy sLt = sA∗
t + sB∗

t . The storage capacity and operations at node G remain the same.

The subadditivity of ψα and ψβ implies

ψβ

(
dLt + ψα(∆s

L
t )
)
≤ ψβ

(
dLt + ψα(∆s

A∗
t ) + ψα(∆s

B∗
t )

)
≤

∑
i=A,B

ψβ

(
dit + ψα(∆s

i∗
t )

)
, t ∈ T ,

which in turn implies that the two-node system produces no more than the three-node

system. Thus,

B̃(SA+ SB, SG) ≥ B(SA, SB, SG), (2.49)

8If ûAt = 0, then the flow balance at node G requires ûBt ≥ 0. If ûAt = uA∗
t + α∆gAt > 0, then

∆gAt > −uA∗
t /α. Consequently, (2.46) gives ∆gAt = β∆sG∗

t . Thus, ∆gBt = 0. Hence, ûBt = uB∗
t ≥ 0.
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where B̃(SL, SG) is the net benefit of investment (SL, SG) for the two-node system.

Furthermore, (2.49) holds with equality if dAt = k dBt and SA = k SB. This can be shown

by using the optimal policy for the two-node system to construct a feasible operating policy

for the three-node system that yield the same operating cost. The construction maintains

the leaf storage at the constant ratio k; the details are omitted. Therefore, under dAt = k dBt ,

we have

B
(k SL∗

k + 1
,
SL∗

k + 1
, 0
)
= B̃(SL∗, 0) ≥ B̃(SA+ SB, SG) ≥ B(SA, SB, SG), (2.50)

where the first inequality claims that for the two-node system, localized investment is opti-

mal (SL∗ is the optimal localized investment), which follows from the discussion after Theo-

rem II.14. Noting that S is arbitrary, we conclude from (2.50) that the localized investment(
k SL∗

k+1
, S

L∗

k+1
, 0
)
is optimal.

The proof of Lemma II.15 requires some properties of the optimal operating policy and

the value function when dAmin > 0, as stated in the following lemma.

Lemma II.28. Suppose dAmin > 0. For given storage capacity S = (SA, SB, SG) with SA <

α−1dAmin, (i) There exists an optimal policy satisfying ∆sA∗
t ·∆sG∗

t ≥ 0 for all t ∈ T ;

(ii) If st, s̃t ∈ A and s̃t − st = (βδ, 0, −δ) for some δ > 0, then Vt(st,dt) = Vt(s̃t,dt) for any

dt.

Proof of Lemma II.28: The condition αSA < dAmin means that the demand at node A

cannot be met solely by storage A in a period. Thus, energy is transmitted from G to A in

every period.

Suppose part (ii) holds for period t+1 (it clearly holds for period T +1). In period t, we

consider any given state (s,d) and any decision st+1 with with inventory change ∆sA < 0

and ∆sG > 0. We now show that a strictly better decision is ŝt+1 = st+1+(βδ, 0, −δ), where

δ = min{−β−1∆sA, ∆sG}. This new decision satisfies ∆ŝA ·∆ŝG = 0, ∆ŝA = ∆sA+βδ ≤ 0,

and ∆ŝG = ∆sG − δ ≥ 0. To show the superiority of ŝt+1, note that Vt+1(st+1,dt+1) =

Vt+1(ŝt+1,dt+1) by the induction hypothesis and

q(∆ŝ,d)− q(∆s,d) = β−1(dA+ α∆ŝA) + α−1∆ŝG − β−1(dA+ α∆sA)− α−1∆sG = αδ − α−1δ < 0.
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Similarly, any decision st+1 with ∆sA > 0 and ∆sG < 0 can also be improved. Thus, part

(i) holds for period t. We next prove part (ii) for period t.

Consider states (s,d) and (s̃,d) in period t, with s̃ = s + (βδ, 0, −δ) for some δ > 0.

Lemma II.5 implies that Vt(s,d) ≤ Vt(s̃,d). Thus, we only need to show Vt(s̃,d) ≤ Vt(s,d).

Let s∗t+1 be the optimal decision for (s,d) and denote ∆s∗ = s∗t+1 − s. For state (s̃,d), we

construct a decision s̃t+1 = s∗t+1 + (βδ̃, 0, −δ̃), where δ̃ = min
{
δ, sG∗

t+1, β
−1(SA − sA∗

t+1)
}
. We

next show that s̃t+1 for (s̃,d) gives the same operating cost as s∗t+1 for (s,d). First, by the

induction hypothesis, Vt+1(s
∗
t+1,dt+1) = Vt+1(s̃t+1,dt+1). Second, we show the production

quantities are the same. Let ∆s̃ = s̃t+1 − s̃ = ∆s∗ − (βε, 0, −ε), where ε = δ − δ̃. Consider

two cases:

• Case 1: ∆sA∗ ≥ 0 and ∆sG∗ ≥ 0. We have sG∗
t+1 ≥ sG = s̃G+δ ≥ δ. Thus, either δ̃ = δ or

δ̃ = β−1(SA − sA∗
t+1). In either case, we can verify that ∆s̃A ≥ 0. Also, ∆s̃G ≥ 0. Hence,

q(∆s̃,d)− q(∆s∗,d) = β−1(dA + α−1∆s̃A) + α−1∆s̃G − β−1(dA + α−1∆sA∗)− α−1∆sG∗

(2.51)

= −β−1α−1βε+ α−1ε = 0.

• Case 2: ∆sA∗ ≤ 0 and ∆sG∗ ≤ 0. Using similar logic, we can show ∆s̃A ≤ 0 and

∆s̃G ≤ 0, and q(∆s̃,d) = q(∆s∗,d).

These are the only cases we need to consider, as indicated by part (i). Equal production and

equal future expected cost together imply that Vt(s̃,d) ≤ Vt(s,d), completing the proof.

Proof of Lemma II.15: Under investment S, let {s∗t : t ∈ T } be an optimal policy

satisfying ∆sA∗
t · ∆sG∗

t ≥ 0, which follows from Lemma II.28(i). Under investment S̃, we

construct a policy s̃t = s∗t + (βδt, 0, −δt), where δt = min{δ, sG∗
t }, for all t ∈ T . The policy

{s̃t : t ∈ T } is feasible under S̃ because s̃At ≥ 0, s̃At ≤ sA∗
t + βδ ≤ S̃A, and s̃Gt = sG∗

t − δt =

max{sG∗
t − δ, 0} ∈ [0, S̃G].

We next show that the two policies yields the same production quantities. If ∆sA∗
t ≥ 0

and ∆sG∗
t ≥ 0, we have δt+1 − δt ∈ [0,∆sG∗

t ], which implies ∆s̃At = ∆sA∗
t + β(δt+1 − δt) ≥ 0

and ∆s̃Gt = ∆sG∗
t − (δt+1 − δt) ≥ 0. Then, following exactly the same logic in (2.51),

q(∆s̃t,dt) = q(∆s∗t ,dt). If ∆sA∗
t ≤ 0 and ∆sG∗

t ≤ 0, similar logic applies. Therefore,
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q(∆s̃t,dt) = q(∆s∗t ,dt) for all t ∈ T , and consequently the total operating costs are the

same for both policies, which implies V (S̃) ≤ V (S). The opposite inequality V (S̃) ≥ V (S)

can be proved similarly.

The proof of part (ii) follows similar logic, but note that V (S̃) ≥ V (S) may not be true

because the condition for dBmin is not given.

Proof of Theorem II.16: Because B(S) is concave in S (Lemma II.12), it suffices to

show that S∗
l achieves a local maximum. Consider deviating from S∗

l by (δA, δB, δG), where

δi ∈
(
−Si∗

l , (α
−1dimin − Si∗

l )/2
)
, for i = A,B, and δG ∈

[
0, (α−1dAmin − SA∗

l )/2
)
. We have

B(S∗
l )−B(SA∗

l + δA, SB∗
l + δB, δG) = V (SA∗

l + δA, SB∗
l + δB, δG)− V (S∗

l ) + p(δA + δB + δG)

≥ V (SA∗
l + δA + βδG, SB∗

l + δB, 0)− V (S∗
l ) + p(δA + δB + βδG)

= B(S∗
l )−B(SA∗

l + δA + βδG, SB∗
l + δB, 0) ≥ 0,

where the first inequality follows from Lemma II.15(i) and δG ≥ βδG, and the last inequality

follows from optimality of S∗
l for the constrained investment problem (2.20). This proves

the optimality of S∗
l . Furthermore, if δG > 0, then the first inequality holds strictly, which

implies that investing in SG > 0 is strictly dominated by investing S∗
l .

Proof of Lemma II.20: The proof for part (i) is straightforward and omitted. To

prove part (ii), consider any p1 and p2 with p1 < p2. The optimality of S∗(p1) suggests

p1 |S∗(p1)| + V (S∗(p1)) ≤ p1 |S∗(p2)| + V (S∗(p2)). Similarly, p2 |S∗(p2)| + V (S∗(p2)) ≤

p2 |S∗(p1)|+ V (S∗(p1)). Combining these two inequalities, we have

p1(|S∗(p1)| − |S∗(p2)|) ≤ V (S∗(p2))− V (S∗(p1)) ≤ p2(|S∗(p1)| − |S∗(p2)|),

which implies (p1−p2)(|S∗(p1)|−|S∗(p2)|) ≤ 0. Because p1 < p2, we have |S∗(p1)| ≥ |S∗(p2)|.

Lemma II.29. For n = 1, 2, . . . , suppose an ≥ 0, bn > 0, bn ≥ bn+1, lim
n→∞

bn = 0, and
∞∑
n=1

anbn <∞. Then, lim
n→∞

(
bn

n∑
i=1

ai

)
= 0.

Proof of Lemma II.29: First, anbn ≥ 0 and
∞∑
n=1

anbn < ∞ imply
∞∑
n=1

anbn exists. Let
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∞∑
n=1

anbn = M . For any ε > 0, there exists N1 such that
∞∑

n=N1

anbn <
ε

2
. Because bn > 0

decreases in n and converges to zero, there exists N2 > N1 such that
bN2

bN1

<
ε

2M
. Then, for

any N > N2, we have

bN
N∑

n=1

an = bN

[
N1∑
n=1

an +
N∑

n=N1+1

an

]
<

bN
bN1

N1∑
n=1

anbn +
N∑

n=N1+1

anbn <
ε

2M
M +

ε

2
= ε. (2.52)

Hence the limiting result holds.

Proof of Theorem II.21: To prove this theorem, we first show

lim
p→0

p |S∗(p)| = 0. (2.53)

Let {pn} be a sequence of positive prices such that pn decreases in n and converges to

zero. For simplicity, let Sn ≡ S∗(pn). Lemma II.20(ii) implies that |Sn| − |Sn−1| ≥ 0.

By optimality of Sn, we have pn|Sn|+ V (Sn) ≤ pn|Sn−1|+ V (Sn−1) or

pn(|Sn| − |Sn−1|) ≤ V (Sn−1)− V (Sn).

Summing over n, we have

∞∑
n=1

pn(|Sn| − |Sn−1|) ≤ V (S0)− lim
n→∞

V (Sn) <∞.

Applying Lemma II.29, we have lim
n→∞

pn(|Sn| − |S0|) = 0. Since lim
n→∞

pn|S0| = 0, we have

lim
n→∞

pn|Sn| = 0. Because {pn} is chosen arbitrarily, we have lim
p→0

p |S∗(p)| = 0.

(i) Given an optimal investment S∗ = (SA∗, SB∗, SG∗), consider a localized investment S̃ =

(SA∗ + βSG∗, SB∗ + βSG∗, 0). Lemma II.13(ii) suggests that V (S̃) ≤ V (S∗). In addition, as

the optimal localized investment is S∗
l , we have B(S̃) ≤ B(S∗

l ). Utilizing these inequalities,
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we have

0 ≤ B(S∗)−B(S∗
l ) ≤ B(S∗)−B(S̃) = V (S̃) + p|S̃| − V (S∗)− p|S∗|

≤ p|S̃| − p|S∗| = p(SA∗ + βSG∗ + SB∗ + βSG∗)− p(SA∗ + SB∗ + SG∗)

= (2β − 1)p SG∗.

Note that SG∗ is a function of p, and lim
p→0

p SG∗(p) = 0 due to (2.53). Hence,

lim
p→0

B(S∗(p))−B(S∗
l (p)) = 0.

(ii) Consider a pooled investment Ŝ =
(
0, 0, SG∗+β−1(SA∗+SB∗)

)
. Using similar logic and

the result in Lemma II.13(i) (which requires non-negative demand), we have

0 ≤ B(S∗)−B(S∗
g) ≤ B(S∗)−B(Ŝ) = V (Ŝ) + p|Ŝ| − V (S∗)− p|S∗|

≤ p|Ŝ| − p|S∗| = p(SG∗ + β−1(SA∗ + SB∗))− p(SA∗ + SB∗ + SG∗)

= (β−1 − 1)p (SA∗ + SB∗).

Because lim
p→0

p (SA∗(p) + SB∗(p)) = 0 due to (2.53), we have

lim
p→0

B(S∗(p))−B(S∗
g(p)) = 0.

Proof of Theorem II.23: For part (i), it suffices to prove, V (S) is decreasing with α.

Clearly, any policy feasible for α is feasible when the storage efficiency is α1 > α and has

lower production costs, hence, V (S) cannot increase for α1.

For part (ii), similar to part (i), suppose s∗t , t ∈ T is the optimal policy for system with

transmission efficiency β. Note that s∗t is feasible for system with transmission efficiency

β1 > β and the equivalent production quantity is lesser in each period. This and Theorem

II.25 together imply part (ii).

For part (iii), suppose S∗ is an optimal solution and SG∗ > 0. We consider an alternative

feasible policy with investment S′ = (SA∗ + βSG∗, SB∗ + βSG∗, 0). Lemma II.13(ii) implies

V (S′) ≤ V (S∗). Further, as β < 0.5, p|S′| < p|S∗|. These two inequalities together imply,
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B(S∗) < B(S′) which contradicts the optimality of S∗ for (2.7).

Proof of Theorem II.25: We prove the theorem jointly with the property that Vt(st,dt)

decreases in st. The property holds trivially for t = T , as VT (·, ·) = 0. Consider the function

minimized in (2.24):

U(st+1)
def
= c(q(st+1− st,dt)) + γEt

[
Vt+1(st+1,dt+1)

]
. (2.54)

(i) When q(S− st,dt) ≥ 0, if s′t+1 minimizes U(st+1) but q(s
′
t+1− st,dt) < 0, then using the

intermediate value theorem, there exists s′′t+1 such that s′t+1 ≤ s′′t+1 ≤ S, and q(s′′t+1−st,dt) =

0. Because U(s′′t+1) ≤ U(s′t+1) by the induction hypothesis, s′′t+1 must also minimize U(st+1).

Hence, there exists s∗t+1 satisfying q(s∗t+1− st,dt) ≥ 0 and minimizing (2.54), (i) holds and

equation (2.24) minimizes total cost.

(ii) If q(S− st,dt) < 0, then

U(S) = γEt

[
Vt+1(S,dt+1)

]
≤ γEt

[
Vt+1(st+1,dt+1)

]
≤ U(st+1), for all st+1 ∈ A.

Hence, s∗t+1 = S and produce nothing at G is optimal. These actions involve zero production

cost in period t and minimum expected cost from period t + 1 onward. Therefore, the

minimum of (2.54) is indeed Vt(st,dt), leading to equation (2.24).

Finally, we find the amount of curtailment. The maximum curtailment at leaf node

i is the excess energy that cannot be stored locally, i.e., (−dit − (Si−sit)/α)+. Let wi
t ∈[

0, (−dit − (Si−sit)/α)+
]
be the distributed generation curtailed at node i. If wi

t > 0, then

clearly, dit + wi
t + (Si−sit)/α ≤ 0. The curtailment wi

t must be such that the total flows at

G sum up to zero: (SG−sGt )/α+
∑

i=A,B

ψβ

(
dit + wi

t + (Si−sit)/α
)
= 0. Thus,

(SG−sGt )/α+
∑

i=A,B

[
ψβ

(
dit + (Si−sit)/α

)
+ βwi

t

]
= 0,

which is equivalent to wA
t + wB

t = −q(S− st,dt)/β, as stated in part (ii) of the theorem.

To complete the induction, we show Vt(st,dt) decreases in st for any dt. Let s∗t+1 be an
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optimal decision for state (st,dt). For any s̃t ≥ st, we have

Vt(s̃t,dt) ≤ c(q(s∗t+1 − s̃t,dt)) + γEt

[
Vt+1(s

∗
t+1,dt+1)

]
≤ c(q(s∗t+1 − st,dt)) + γEt

[
Vt+1(s

∗
t+1,dt+1)

]
= Vt(st,dt).
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Figure 2.13: Contours of A(qt), faces, and edges

(a) sGt+1 > sGt : store energy in G

(b) sGt+1 < sGt : release energy from G
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Figure 2.14: Iso-production surface A(qt) for Theorem II.9

(a) qt < qt < qt (b) qt < qt < qt
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Figure 2.15: Iso-production surface A(qt) for Theorem II.11

(a) qt < qt ≤ qt (b) qt < qt < qt, case 1
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Figure 2.16: Contours of A(qt), faces, and edges (under Theorem II.26 only)

(a) sGt+1 > sGt : store energy in G

(b) sGt+1 < sGt : release energy from G
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Figure 2.17: Iso-production surface A(qt) for Theorem II.26 (ii) and (iii).

(a) qt < qt ≤ q̈t (b) q̈t < qt ≤ qt, case 1
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CHAPTER III

Choice of Storage Technology for an Electrical System

3.1. Introduction

The previous chapter considers the operation and investment of storage units across the

grid. It assumes, however, the same storage technology at all locations on the grid. In reality,

there is a multitude of storage technologies available and energy companies are often deciding

on the technologies they choose to invest in. Each of these technologies have different cost

and operational parameters. Some of the parameters to compare storage technologies include

power output, energy storage capacity, cost per unit capacity, conversion efficiency, system

power ratings, lifetime charge-discharge cycles, weight energy density, volume energy density,

maintenance and operational costs. Depending on these parameters, different storage tech-

nologies are better suited for different grid services (San Martin et al. 2011). Interestingly,

in order to increase revenues, storage owners have begun to simultaneously provide multiple

services to the grid, such as frequency regulation and arbitrage (Hobby 2012). We observe,

interestingly, that there may be some synergies in using multiple technologies simultaneously

to provide the same service.

Through out this dissertation, we consider the storage service of production smoothing,

or ‘arbitrage’. Arbitrage (or load shifting) is one of the key roles of storage in the grid today,

(Sreedharan et al. 2012). Storage technology can prevent the usage of expensive natural gas

power plants, by shifting peak load during high demand periods, to low demand periods

when traditional coal power plants are under utilized. Providing this service, results in

arbitrage revenues to storage owners. In this chapter, we aim to understand how technology
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parameters of cost per unity capacity and conversion efficiency affect the technology choice

for this service. In particular, we question whether it is beneficial to use multiple technologies

to provide the same service in tandem. We consider this question from both a centralized

decision maker and a decentralized storage investor perspective.

The centralized decision maker perspective serves as a benchmark to provide investment

insights to policy makers on the types of technologies that are better suited for a grid with

given system parameters, while the decentralized perspective allows us to provide insights

to storage investors on the types of storage technologies to choose.

We classify technologies based on two significant operational metrics, the cost per unit

capacity and efficiency.1 While storage technology differ on several parameters, their con-

version efficiency and cost per unit capacities are major differentiating factors, deciding the

economic viability of these technologies (Divya and Østergaard 2009). Hence, we consider

the trade-off of choosing between expensive and efficient technology, like flywheels, as op-

posed to cheaper but inefficient technology like Pumped Storage. We address the questions

related to optimization of a portfolio of storage technologies, providing arbitrage service to

the grid. This is analogous to the investment in multiple technologies in manufacturing and

fleet optimization (Wang et al. 2013).

Our work provides several insights for both the centralized and decentralized perspectives:

Under the centralized perspective, we investigate situations where it may be beneficial

to invest in and operate multiple technologies (or ‘mix’ investment), as illustrated by the

example later in this section. However, while it is beneficial to invest in multiple technologies,

we show evidence that the marginal benefit of the flexibility of being able to invest in

and operate multiple technologies (or ‘mixing’ technologies) is decreasing in the number

of technologies, both numerically and analytically. As decision makers are often making

trade-offs on the purchase of storage technologies, and there are operational overheads of

purchasing, building expertise on and operating multiple technologies; our result offers some

insights for decision makers while choosing the portfolio of technologies to invest in. We show

various properties of the optimal storage portfolio of technologies, allowing us to improve the

1We assume the technology life cycles are long enough that they do not affect the costs in our horizon.
We do not consider other technology parameters in our model. This is a limitation of this model.
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algorithmic efficiency of choosing technologies. In particular, we identify the ‘convex hull’

property of the optimal set of technologies, which allows us to neglect any technology that is

in the convex hull formed by plotting the remaining technologies on a cost per unit capacity

vs. loss rate plot. Here, loss rate refers to the inverse of round trip efficiency.

Next, we also study the impact of various system parameters on the optimal technology

choice selection problem using a series of examples and numerical study. Specifically, we

observe that the cheaper technology is invested more when renewable penetration increases.

Interestingly, some counter intuitive messages also arise. We observe that, for instance, under

fixed investment budget scenarios, in some technology portfolios, if one technology gets better

(i.e., greater efficiency or cheaper cost/capacity due to research and development), we may

invest less in that technology.

Further, in order to understand the investment problem, we also attempt the operation

problem. We identify the structure of the optimal policy of operating multiple storage units

in tandem using a stochastic dynamic program framework, reduce the dimensionality of the

operational problem.

Under the decentralized scenario, we consider the reality of the industry today, and

observe that most companies choose to invest in not more than one technology for a given

service, and for load shifting applications in particular. We observe that while there may be

synergies of ‘mixing’ storage technologies from the central planner perspective, an individual

storage owner may not be persuaded because of their beliefs on the price path of energy

that is traded in the system. This is also the predominant modeling in most academic

literature today. We consider two of the most common assumptions in the literature: small

storage (inelastic prices) and large storage (myopic markets). We show that it is always

optimal to invest in a single technology under the ‘inelastic prices’ assumption (i.e., storage

owners actions don’t affect the price of energy) and the benefit of mixing is substantially

reduced under the ‘myopic markets assumption’ (i.e., the price of energy is the current period

marginal cost of energy production). This leads to one explanation why companies may

choose not to invest in a portfolio of storage technologies, even though it may be beneficial

to ‘mix’ from a central planner perspective.

The rest of this chapter is organized as follows: We end this section with a simple mo-
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tivating example demonstrating the synergies of simultaneously investing and operating in

multiple technologies. Section 4.2 comprises a survey of the relevant literature, Section 3.3

describes the model, Section 3.4 considers the analysis from the perspective of the central

decision maker, providing several insights on the benefits of operating a portfolio of storage

facilities. Section 3.5 describes the analysis under the small storage and large storage as-

sumptions. We conclude this chapter in Section 4.6 with a brief summary of our learnings

and some discussion on future research.

3.1.1 Motivating Example

Consider a simple 2-period system representing low-demand night and the high-demand

day scenario. We consider total cost function of producing Q units of energy, in a format of

a simple quadratic function C(Q,K) = 10K+19Q+6Q2/K, defined for Q ≤ K, where K =

1000 MWh represents the total production capacity of the aggregate coal-fired intermediate

gas plants. The natural gas peaking power plant is used to supplement demand in excess

of K during any period at a rate of 50$/MWh. Given a limited budget B of $ 180 million,

the objective is to invest in a subset of the available storage technologies: flywheels or lead-

acid batteries so as to minimize the net operating cost. The basic attributes of the storage

technologies are as follows (ES-Select 2012):

• Flywheels: Investment Cost= 1.6 Million $/MWh, efficiency= 86%

• Lead Acid Batteries: Investment Cost= 0.56 Million $/MWh , efficiency= 65%

Consider three potential investment choices: either invest in only flywheels or only in

lead acid batteries or invest half the capital in each; in order to run the system for 2 periods.

Period 1 (Night) demand: 500 MWh

Period 2 (Day) demand: 1500 MWh

Table 3.1 summarizes the costs in each of three scenarios as well as the default case with

no storage investment.

In this simplest deterministic two period scenario, with linear investment and convex

generating costs. We observe an 8.57% cost decrease due to use of both types of storage.

This example demonstrates the benefits of both the technologies: for the same budget,
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No Storage Case Only Flywheels
Only Lead

Acid Battery
Using both

Period 1
Production (MWh)

500.0 630.8 994.5 812.7

Period 2
Production (MWh)

1500.0 1387.5 1178.6 1283.0

Total Cost (M $) 81.0 78.7 78.8 78.6

Table 3.1: This table illustrates the benefit of investing in multiple storage technologies.

using solely the more efficient technology results in minimal conversion losses, while using

solely the cheaper technology provides greater smoothing due to higher storage capacity.

However, while mixing, initially, it appears that the inefficient technology has higher value

per dollar (= value per capacity * capacity per dollar) and as the capacity invested increases,

the efficient technology will have higher value for dollar. This is because, even though the

efficient technology always has higher benefit per unit capacity, the relative difference in the

benefits per unit capacity between the two technologies increases as more storage capacity is

invested (due to the convexity of the value function), making the more efficient technology

have higher value per dollar as storage capacity increases.

3.2. Literature Survey

This paper deals with capacity investment and operation of multiple storage technologies.

Two streams of literature are relevant: the literature on energy storage and the traditional

OM literature on capacity investment in multiple technologies.

3.2.1 Energy storage

In this subsection, we first discuss the various literature on energy storage services, and

specifically, the arbitrage service that we study in our paper. Then, we discuss the problem

of ‘mixing’ storage technologies and related literature.

Energy storage is gaining increasing attention due to its applications to several grid ser-

vices. The grid services include frequency regulation (Oudalov et al. 2007), system stability

(Mercier et al. 2009), load shifting (Even et al. 1993) and spinning reserve (Kottick et al.

1993). Interestingly, each of these services is historically served by significantly different

storage technologies (Denholm et al. 2010), with different parameters for cost per unit ca-
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pacity, conversion efficiency, charging and discharging rates etc. A review of the different

technologies best suited for each of these different services is in Hadjipaschalis et al. (2009).

Further, Schoenung and Hassenzahl (2003) consider an extensive comparison of the different

storage technologies in terms of capital cost, operation and maintenance, efficiency, parasitic

cost, replacement costs to perform a life-cycle cost of this analysis. Recently, Xi et al. (2011)

consider using the same technology to provide multiple services in tandem, since each of

these services is relevant to the grid at different times of the day. Of the several services of

storage, the use of load shifting is increasing because of growing use of intermittent renew-

ables to provide energy to the grid (Zeng et al. 2006, Arulampalam et al. 2006, Teleke et al.

2010). Such renewable generation systems are typically built in conjunction with a storage

unit in order to smooth the output flow. This service is typically provided by Compressed

Air Energy Systems (CAES), Battery Energy Storage Systems (BESS) and Pumped Storage

Systems (PSS) technologies. While the current storage market is dominated by Pumped

Storage Systems, Dunn et al. (2011) suggest that battery technologies are beginning to offer

high value opportunities.

The problem of choosing technologies to provide arbitrage service is practically impor-

tant, especially because both the capital costs of storage and the potential benefits can range

to the millions of dollars (Alt et al. 1997). Several papers consider the optimal technology

selection, sizing and operating of storage under different operating conditions (Lee and Chen

1993, Yoshimoto et al. 2006, Banos et al. 2006, Oudalov et al. 2006), but the focus is on

choosing a single best technology, while we investigate the possibility of investing and si-

multaneously operating storage facilities with multiple technologies or ‘mixing’ technologies.

We are not aware of any other paper other than Kraning et al. (2011) that model the simul-

taneous operation of multiple technologies. They consider a similar model and demonstrate

numerically, that using multiple technologies is beneficial using Receding Horizon Control

(RHC) methodology. We extend their work, by considering the features of the set of tech-

nologies and describe the ‘efficient frontier’ of the technology set. We also provide analytical

structure to the optimal operating and investment policy to the grid.

Optimal operation and investment of storage technologies in the grid is a well studied

problem in the Energy Storage literature. See Mokrian and Stephen (2006) for a comprehen-
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sive review of methodology related to evaluation of the economic benefit of energy storage

from arbitrage, operating in a market with exogenous prices. In contrast, our work focuses

on both the system perspective and the decentralized perspective. In order to understand

the system perspective, we consider one of the main reasons for the variation in energy prices

in markets: the variation in marginal cost of energy due to the use of expensive sources of

energy, such as natural gas power plants, during high demand periods. We model this as

convexity in the production cost function similar to Wu and Kapuscinski (2013). Several

other recent papers consider the perspective of revenue maximizing storage owner. These

papers also differ from our paper in the methodology. Korpaas et al. (2003), Castronuovo

and Lopes (2004), Brunetto and Tina (2007), attempt this problem as a deterministic opti-

mization problem given a particular sample path over a finite horizon and then averaging the

results over the sample paths. Bitar et al. (2010), Bitar et al. (2011), Kim and Powell (2011)

consider a stochastic generalization of this problem. They derive closed form expressions for

the value of storage under certain special cases of the energy price and wind distributions, to

help evaluate storage investments. We focus on deriving operational insights in more general

demand situations.

3.2.2 Inventory Control models

The electric energy storage optimization problem is similar to a classical multi-period

inventory problem with stochastic demand. While most of the inventory literature assumes

linear production costs, energy markets have convex production costs. A treatment of the

traditional inventory model with convex production costs can be found in Karlin (1960). An-

other significant difference between electric energy storage and traditional inventory models

is the upfront efficiency loss incurred when inventory is added to a buffer. Thus, storage

conversion losses act as a one time non-linear holding cost, which depends on the production

cost function as well as the production quantity during that period. In energy markets,

production is generally load-following and we cannot allow for unsatisfied demand, unlike

traditional inventory models where there’s a lead time for production and stock outs are

permitted. We extend the inventory control literature by providing another model with

practical applications in Energy markets.
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3.2.3 Multiple Technologies in Operations Management

We are not aware of any paper in OM literature that considers inventory in multiple

storage technologies, but there are papers that consider multiple technologies in a variety of

other settings including manufacturing and fleet control. All the papers we discuss in this

subsection deal with capacity adjustment in multiple technologies, similar to our work. How-

ever, we capacity of consider storage technologies where as these papers consider production

technology capacities.

In their seminal paper, Crew and Kleindorfer (1976) consider the problem of investing in

different plant types (technologies) when demand is stochastic and price dependent. They

describe the efficient technological frontier and the optimal production policy. They also

discuss the optimal pricing scheme from the perspective of a public utility maximizing the

welfare of society. Chao (1983) and Kleindorfer and Fernando (1993) extend this work to

include supply uncertainty. The production cost is linear in these papers. Drake et al.

(2010) consider capacity investment into two technologies with different emission intensities

and uncertainty in the emissions allowances of the future. In contrast, our model considers

a non-linear production cost with multiple technologies in an energy setting. We also model

multiple storage technologies with different cost structures from standard OR literature.

In a linear production cost setting, several papers consider capacity size adjustment. Dixit

(1997) and Eberly and Van Mieghem (1997) include capacity adjustment cost associated with

changing capacity during the horizon. They, however do not consider technology selection.

More recently, Kleindorfer et al. (2012) and Wang et al. (2013) consider the problem of

co-investing in more than one technology, with uncertainty in operating costs and dynamic

capacity adjustment and identify a control-limit policy structure for capacity adjustment.

In contrast, our work considers a static setting with multiple technologies but focus on

technology selection. Our application for the electric grid implies a different cost structure

with a non-linear production cost model. The trade-off between cost of investment in storage

and operating efficiency, is different from the traditional fixed cost-variable cost trade-off

considered in the papers above.

Our paper also considers the uncertainty in future demand and it’s impact on the storage
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investment decision. Uncertain demand leading to uncertain operating cost in production

planning has been considered, in different settings, in Ding et al. (2007), Kazaz et al. (2005),

Plambeck and Taylor (2011). Several papers consider dynamic capacity adjustment of a

single technology under uncertainty settings (Chao et al. 2009). However, we consider ca-

pacity adjustment of multiple technologies under a static setting. Our paper also identifies

the intuition of decreasing marginal benefit of the flexibility of being able to invest in, and

operate multiple technologies in tandem. Similar decreasing marginal benefits of flexibility

in queuing systems have been shown in Bassamboo et al. (2012). In contrast to all these

papers, our model considers a non-linear cost function. Hence, our trade-off of investing in

a portfolio of technologies applies under deterministic as well as under stochastic demand.

3.3. The Model

We consider a problem of investing in energy storage facilities built fromM(≥ 2) available

technologies. The objective is to minimize the combined cost of investment and operations

of the system serving demands, that can use storage facility. We use t ∈ {1, 2, . . . , T} to

index time periods. Storage facilities are built prior to t = 1, and once built, the storage

size is fixed throughout the horizon. First, we describe the setting of storing and releasing

energy. In the subsections that follow, we consider the objective function. Both the system

operator and storage investor perspectives will be considered.

Assumption III.1 (Storage). (i) The storage size is a continuous decision variable and the

cost of storage facility is linear in its size. (ii) Storage can be filled up or emptied within one

period. (iii) Energy loss takes place when injecting energy to storage. The loss is linear in

the amount of energy injected.

In this paper, “storage level” or “inventory level” refer to the amount of energy that

a storage facility can release until empty. We denote a storage investment decision by

S = (Sj)Mj=1, where S
j ≥ 0 is the storage size (i.e. maximum storage level) of the facility

with technology j. Note that Sj = 0 implies we choose not to invest in technology j.

The round-trip efficiency of technology j is the product of the charging and discharging

efficiencies of that technology. We denote the loss factor σj as the inverse of the efficiency.

Thus, storing σj(> 1) units of energy into storage facility of technology j accounts for
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an inventory level increase of 1 unit. σ = (σj)Mj=1 represents the vector of loss factors.

The energy flow into storage corresponding to change of storage by δ (positive for storing,

negative for releasing), is:2

ψj(δ)
def
=

 δσj, if δ ≥ 0,

δ, if δ < 0.
(3.1)

We denote cost of storage technology by c = (cj)Mj=1, where investing in technology j

with facility size Sj costs cjSj. Each technology j is represented by the parameters (σj, cj).

We define Ω = {(σj, cj) : 1 ≤ j ≤ M} as the set of available technologies. Without loss of

generality, we assume σ1 < σ2 < · · · < σM and c1 > c2 > . . . > cM (i.e., more expensive and

less efficient technology can be eliminated from consideration).

The storage level at the beginning of period t is denoted as st = (sjt)
M
j=1. The feasible

storage levels are in the set A def
= {s : 0 ≤ s ≤ S}.

We consider an electrical system with stochastic demand. Let dt denote the total de-

mand across the grid in period t. We assume dt is a deterministic function of a vector of

Markovian states, dt, which include the factors driving the demand. We assume there are

no transmission losses or transmission constraints in the grid.

3.3.1 Central Decision Maker Perspective

We first formulate storage investment problem from the perspective of a central decision

maker who considers given set of technologies Ω and invests in storage capacity Sj for

j = 1, . . . ,M and then operates the system across multiple periods. We consider this as

a benchmark model, to help understand the perspective of the first best for the system.

The storage investment decision is made prior to period 1 and no additional investment

or divestment can be made over the planning horizon. When operating the system, the

sequence of events in each period is as follows; at the beginning of period t, the system

operator observes the period-starting storage level st and the state dt. The corresponding

demand dt(> 0) must be satisfied in period t. The system operator decides the period-

ending storage level st+1 = (sjt+1)
M
j=1 ∈ A. Energy balance during period t implies the total

2Note that the storage efficiency is accounted for differently in this chapter, as compared to the previous
chapters.
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power plant generation, denoted as qt, as a function of demand dt and inventory change

∆st = st+1 − st:

qt = q(∆st,dt)
def
= dt +

M∑
j=1

ψj(∆sjt) (3.2)

Let C(qt) denote the production cost during period t, for qt ≥ 0.

Assumption III.2 (Production). (i) C(q) is strictly convex and increasing in q for q ≥ 0.

(ii) The total power plant generation, q, can be adjusted to any desired level at negligible

cost;

The convexity holds in practice and is typically assumed in the literature, e.g., Bessem-

binder and Lemmon (2006), Madrigal and Quintana (2000), Dominguez-Garcia et al. (2012),

Alvarez Lopez et al. (2010). The seminal reference for power generation and operation in

the industry, Wood and Wollenberg (1996), use a convex approximation for costs of power

generation in thermal plants.

We aim to decide an energy storage investment strategy and corresponding operating

policy that satisfies the demand at minimum cost. To evaluate a storage investment decision

S, we define V o
t (st,dt) as the minimum expected discounted operating costs of the system

from period t onward when the initial state is (st,dt). γ ∈ (0, 1] is the discount factor. The

optimal operating policy is determined by the following stochastic dynamic program:

V o
t (st,dt) = min

st+1∈A

{
C(q(st+1 − st,dt)) + γEt[V

o
t+1(st+1,dt+1)]

}
, t = 1, . . . , T, (3.3)

s.t. q(st+1 − st,dt) ≥ 0, (3.4)

where Et denotes the expectation conditioning with respect to dt. The terminal condition is

V o
T+1(·, ·) = 0. We define U o(S,σ) = E0[V

o
1 (0,d1|S,σ)], as the minimum expected operating

cost at the time storage investment is made, for given storage size S, whose loss factor is

given by σ. The storage investment decision trades off between the upfront investment cost

c · S =
M∑
j=1

cjSj and the ongoing operating cost U o(S,σ). To capture the liquidity issues

faced by decision makers, we set a budget constraint B for the storage investment. Thus,
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the investment is decided by solving

V
o
(B) =min

S≥0

{
c · S+ U o(S,σ)

}
, (3.5)

s.t. c · S ≤ B, (3.6)

The objective is to make storage portfolio decision taking into account storage investment

costs, operating costs, and storage efficiencies, within a limited budget constraint.

3.3.2 Storage Investor Perspective

The perspective of the independent storage investor is different from the central decision

maker. Since storage investor invests and operates the storage, we refer to them as storage

operator. In a decentralized system, the storage operator invests in storage capacity with

the objective of maximizing his profit from buying and selling energy (arbitrage). However,

a different entity, the system operator, generates the energy and satisfies the demand, while

also buying and selling energy from the storage investor.

The investment decisions S for the M technologies are made up front. Then, at the

beginning of each period, after observing the current storage level st and demand factor dt,

the storage operator decides the final storage level st+1 ∈ A. Note that storage decisions

imply the power plant generation qt per (3.2) for the system and the resulting market price

for energy. The net energy traded by the storage operator is given by
M∑
j=1

ψj(∆sj) (positive

for energy purchased, negative for energy sold).

We convert the maximization problem to the equivalent minimization for ease of com-

parison of the central decision maker and storage investor perspectives. For given storage

investment decision S, we define V I
t (st,dt) to be the storage operator’s minimum expected

discounted operating costs less revenues from period t onward when the state is (st,dt). The

optimal operating policy is determined by the following stochastic dynamic program:

V I
t (st,dt) = min

st+1∈A

{
pt(st+1 − st,dt)

M∑
j=1

ψj(∆sj) + γEt[V
I
t+1(st+1,dt+1)]

}
, t = 1, . . . , T,

(3.7)

s.t. q(st+1 − st,dt) ≥ 0. (3.8)
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where pt(∆st,dt) is the unit price of energy to be stored or released in period t. The

terminal condition is V I
T+1(·, ·) = 0. Note that the storage operator’s current period cost is

given by
(
pt(∆st,dt)

M∑
j=1

ψj(∆sj)
)
, and also V I

t (., .) may be negative. Similar to the previous

section, the net out-flow of cash, for given storage capacity investment decision S, is given

by, U I(S,σ) = E0[V
I
1 (0,d1|S,σ)]. The investment cost c · S, is bounded by budget B and

storage operator’s objective is:

V
I
(B,Ω) =min

S≥0

{
c · S+ U I(S,σ)

}
, (3.9)

s.t. c · S ≤ B. (3.10)

3.4. Optimal Investment under Central Decision Maker Perspec-

tive

We consider here the perspective of the central decision maker trying to minimize total

costs of the entire system. We first discuss the structure of the optimal operating policy.

The result will help in selecting technologies optimally. We also provide a canonical example

to demonstrate the insights and conclude the section with numerical evaluations.

3.4.1 Optimal Operating Policy for given Storage Investment

The constraint in (3.4) defines a non-convex feasible region for st+1, which complicates

the analysis. Below we show that the problem in (3.3)-(3.4) is equivalent to a problem

without constraint (3.4).

Lemma III.3. (i) For fixed S, if {s∗t+1} is an optimal policy for (3.3)-(3.4), then it is also

optimal for the following problem:

V r
t (st,dt) = min

st+1∈A

{
C(q(st+1 − st,dt)) + γEt[V

r
t+1(st+1,dt+1)]

}
, t = 1, . . . , T, (3.11)

where C(q) ≡ 0 for q < 0, and the terminal condition is V r
T+1(·, ·) = 0.

(ii) V o
t (st,dt) = V r

t (st,dt) for any (st,dt) and t = 1, . . . , T .

(iii) V o
t (st,dt) is jointly convex and decreasing in st, for any fixed dt, and any t = 1, . . . , T .

The proof of this Lemma mimics proof of Lemma 1 from Chapter II. The above lemma
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shows that relaxing the constraint (3.4) has no effect on the value function and optimality

of policies. Thus, from this point onward, we focus on problem (3.11). We next prove

additional properties of the value function, which are useful in deriving the optimal policy.

Lemma III.4. Let st, s̃t ∈ A satisfy one of the two conditions below,

(i) s̃it = sit+ ε/σ
i, s̃jt = sjt − ε/σj for some 1 ≤ i < j ≤M , ε ≥ 0 and s̃kt = skt for all k ̸= i, j,

(ii) s̃it = sit − ε, s̃jt = sjt + ε for some 1 ≤ i < j ≤M , ε ≥ 0 and s̃kt = skt for all k ̸= i, j,

Then, we have, V o
t (s̃t) ≤ V o

t (st), for any dt and t = 1, . . . , T .

Lemma III.4 shows the relative change in the value function for changes in the storage

level in each of the facilities 1 through M . Part (i) says that, for i < j, storing energy at

technology i is more economical than storing at technology j. Part (ii) shows that withdraw-

ing from storage i is preferred compared to storage j. Using these properties, the structure

of the optimal policy follows.

Theorem III.5. For each period t = 1, 2, . . . , T , for given dt, st ∈ A, optimal policy st+1

for state (st,dt) satisfies,

(i) If sjt+1 > sjt for any given 1 < j ≤M , then sit+1 = Si for all i < j,

(ii) If sjt+1 < sjt for any given 1 < j ≤M , then sit+1 = 0 for all i < j,

(iii) For M = 2, for any ŝt ∈ A, if ŝt ≤ st, then corresponding optimal policy ŝt+1 satisfies,

q(st+1 − st,dt) ≤ q(ŝt+1 − ŝt,dt), i.e., optimal production quantity is monotonically

decreasing and V (st,dt) is supermodular in st for given dt.

Part (i)-(ii) describes a structure in storage operations for given production quantity. If

production exceeds demand, part (i) implies excess energy is stored in the most efficient

facility first until it is full or we run out of excess energy. If more excess energy remains

to be stored, the next most efficient storage facility is used. Similarly, if demand exceeds

production, excess demand is satisfied using stored energy in the most efficient facility.

Energy from a less efficient technology is used only when all storage facilities with greater

efficiency are empty. This also implies that either st+1 ≥ st or st+1 ≤ st. Clearly, ending

states may be non monotonic and thus, the optimal policy is not monotonic. For example,

ŝt = (0, 0), st = (0, 10) may have an optimal policy ŝt+1 = (1, 0), st+1 = (0, 10) resulting in

st+1 ̸≥ ŝt+1 even though st ≥ ŝt.
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This simple form of optimal policy for storage operations reduces the computational

complexity of the problem to one-dimensional decision of production quantity. Furthermore,

the monotonicity in optimal production quantity and supermodularity of the value function

with respect to st, means that the benefit of increasing storage level in one facility decreases

as the storage level in another facility increases.

3.4.2 Selection of Technologies and Capacity Investment

Given a set of available technologies, it may be sub-optimal to invest non-zero amounts

in all the technologies. In this section, we discuss the properties of the technologies that

may be excluded for investment, given a set of technologies. Ω = {(σj, cj) : 1 ≤ j ≤ M};

V
o
(B,Ω) is the total operating and investment cost, defined in (3.6), for given Ω and B.

From this section on, we do not impose the assumption that σ1 < σ2 < · · · < σM for a given

Ω.

For given budget B and set of technologies Ω, let Ωo
E(B,Ω) be the set of technologies

that should not be considered for co-investment with the set of technologies Ω. These are

the technologies, (σM+1, cM+1), that do not decrease the cost. Formally,

Ωo
E(B,Ω)

def
=

{
(σM+1, cM+1) : V

o(
B, Ω ∪ {(σM+1, cM+1)}

)
≥ V

o
(B,Ω)

}
. (3.12)

Obviously, V
o(
B, Ω ∪ {(σM+1, cM+1)}

)
≥ V

o
(B,Ω) implies, V

o(
B, Ω ∪ {(σM+1, cM+1)}

)
=

V
o
(B,Ω) as adding another technology can not increase the costs. Clearly (σj, cj) ∈ Ω im-

plies (σj, cj) ∈ Ωo
E(B,Ω) for all B. Note that in the optimal investment that gives V

o
(B,Ω),

not all technologies in Ω, may be invested. We discuss some useful properties of the set

Ωo
E(B,Ω) and V

o
(B,Ω) in the following theorem.

Theorem III.6. Let Ω1,Ω2 be two finite sets of technologies. The following statements are

equivalent:

a. V
o(
B, Ω ∪ Ω1

)
≥ V

o
(B,Ω) and V

o(
B, Ω ∪ Ω2

)
≥ V

o
(B,Ω)

b. V
o(
B, Ω ∪ Ω1 ∪ Ω2

)
≥ V

o
(B,Ω).

c. Ω1 ∪ Ω2 ⊂ Ωo
E(B,Ω)
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The basic idea of the benefit of mixing is that, when using multiple technologies, one

can achieve costs lower than when using the technologies individually. The above theorem

describes that if one set of technologies Ω1 is dominated by a set Ω of technologies, and

another set Ω2 is dominated by the same set Ω, the combined set Ω1 ∪Ω2 cannot be used to

achieve better costs i.e., if two sets individually do not improve costs, then their combined

benefit, still does not improve costs. This theorem allows us to consider one technology at a

time, with Ω and exclude it entirely from consideration, if it does not help individually.

Now, using the above properties, we describe a useful property of the set, Ωo
E(B,Ω).

Lemma III.7. Let (σ, c) = κ(σ1, c1) + (1− κ)(σ2, c2) for some 0 ≤ κ ≤ 1, then, V
o
(B,Ω ∪

{(σ, c)}) ≥ V
o
(B,Ω ∪ {(σ1, c1), (σ2, c2)}).

Note that the above lemma holds for σ but would not hold for 1/σ. Thus, our definition

of parameters was imposed for choosing from the given set of technologies.

From Lemma III.7, we have,

Theorem III.8. Ωo
E(B,Ω) is convex for budget B ≥ 0 and any given set of technologies Ω.

Theorem III.8 helps to identify dominated technologies, independent of demand distribu-

tions. Consider a graph with σ on horizontal axis and c on vertical axis. Each coordinate in

the first quadrant with σ ≥ 1 represents a feasible storage technology. The Theorem implies

a non-trivial way to eliminate technologies from consideration prior to taking into account

the demand and budget information. Lemma III.7 suggests that any technology that is

dominated by a technology on the straight line connecting any two technologies of the set

Ω may be neglected from consideration. Consequently, any technology in the “convex hull”

of the given technologies Ω under consideration and the points ( min
1≤j≤M

σj,∞), (∞, min
1≤j≤M

cj)

may be neglected, as shown in Figure 3.1.

We observe that the ‘convex hull’ defined in Theorem III.8 provides a tight bound as

illustrated in the following example.

Example III.9. Consider, Ω = {(σ1, c1), (σ2, c2)} and T = 2. Let d1 = 0 and d2 > 0 and

C(q) = q2/2.
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σ
Region always part of 

Figure 3.1: The dotted region (“convex hull” of Ω) is always part of Ωo
E(B,Ω) for all B ≥ 0.

For this example, note that, ΩE(∞, {c1, f 1}) = {(c, f)|c > 0, f > 1, c1 + σ1(d2 − c1)(σ1 −

σ)/(1 + (σ1)2) ≥ c}. Hence, it can be shown that there exist d2 > 0 such that, ΩE(∞,Ω) =

{(c, f)|c > 0, f > 1, c1 − (σ − σ1)(c1 − c2)/(σ2 − σ1) ≤ c}. In other words, for any given

point below the line connecting (σ1, c1) and (σ2, c2), we can always find a demand scenario,

which does not belong to ΩE(B,Ω).

We now show decreasing marginal benefit from increasing number of technologies. That

is, for given a set of two technologies, the benefit of investing in at most one technology,

exceeds the incremental benefit of using both technologies instead of one.

Lemma III.10. For given set of technologies Ω, with cost vector c and loss factors σ, we

have that,

(i) V o
t (st,dt|S,σ) is convex in S for t = 1, . . . , T and therefore, U o(S,σ) is convex in S.

Consider Ω = {(σ1, c1), (σ2, c2)}, we have the following:

(ii) For all t = 0, 1, . . . , T+1, given S = (S1, S2), we have, V o
t ((s

1
t , s

2
t ),dt|S)+V o

t ((0, 0),dt|0) ≥

V o
t ((s

1
t , 0),dt|(S1, 0)) + V o

t ((0, s
2
t ),dt|(0, S2)).

(iii) Given S = (S1, S2), we have that, U o(0,σ)+U o(S,σ) ≥ U o((S1, 0),σ)+U o((0, S2),σ)
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Lemma III.10 shows convexity with respect to S and supermodularity when M = 2.

In other words, the benefit of adding one unit of S1 is decreasing with S2 and vice versa.

This intuitive property is used to show the marginal decreasing benefit of mixing, which we

discuss below.

Theorem III.11. Given a set of technologies, Ω = {(σ1, c1), (σ2, c2)} and any B > 0, then,

V
o
(B, ϕ) + V

o
(B,Ω) ≥ 2×min{V o

(B, {(σ1, c1)}), V o
(B, {(σ2, c2)})}.

Note that Theorem III.11 means that the benefit of having one technology over no tech-

nology is greater than the benefit of having two technologies over one technology, when

choosing the best possible of the two available technologies. This shows decreasing marginal

benefit of including more flexibility in choosing technologies for two technologies. Operating

multiple technologies requires certain costs of operation, maintenance, as well as building the

required technological expertise. These additional costs would further reinforce decreasing

benefit of multiple technologies.

Further, we show a useful property of the optimal investment decision S∗ and it’s sensi-

tivity to the price per unit capacity of storage technologies.

Lemma III.12. Let S∗ be the optimal investment decision of (3.5) for a set of technologies

Ω = (c,σ), when budget B is not binding. Then the optimal investment decision of technology

j, Sj∗ is decreasing in cj for all 1 ≤ j ≤M .

Proof of Lemma III.12. We prove the lemma by contradiction. Assume that cj2 > cj1

and ck1 = ck2 for all k ̸= j. Let S1, S2 be the optimal decision for capacity per unit costs c1

and c2 respectively. Because of their respective optimalities, we have,

U o(S1,σ) + c1.S1 ≤ U o(S2,σ) + c1.S2,

U o(S2,σ) + c2.S2 ≤ U o(S1,σ) + c2.S1.

Adding the two inequalities gives, that (cj1 − cj2)(S
j
1 − Sj

2) ≤ 0. This implies, Sj
1 ≤ Sj

2.

Interestingly, for given budget B, while it is tempting to believe that the optimal in-

vestment decision S∗(B) is monotonically increasing, the example in the next section will
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demonstrate otherwise.

3.4.3 Canonical example

In order to demonstrate the nature of the trade-offs affecting the decision to invest in

multiple storage units, we consider a two-period deterministic demand setting with two

technologies, i.e., M = 2, i = 1, j = 2.3 This example, shows how changing parameters

affects the storage investment decision and leads to some counter intuitive insights. This

example also allows us to revisit (from the motivating example in Section 3.1.1) the trade-off

of ‘mixing’ under deterministic demand, because of non-linear costs.

Let T = 2 and d1 = dl and d2 = dh be the low and high demands of this horizon (dl <<

dj). Hence, (3.5) reduces to min
S≥0

{
ciSi+cjSj+C(q1)+γC(q2)

}
where q1 = dl+S

iσi+Sjσj and

q2 = dh−Si−Sj. The optimal allocation must also satisfy the constraint ciSi+cjSj ≤ B. As

is standard in the literature (Lu and Shahidehpour 2004), we assume that the cost function

C(q) = Xq2 + Y q + Z is quadratic. Without loss of generality, we assume, ci ≥ cj and

σi ≤ σj.

Note that in a 2 period deterministic setting, it can be shown that it is optimal to invest

in at most 2 technologies, from any portfolio of available technologies. We consider two cases

in the solution to the problem: when budget B is binding and when budget B is not binding.

3.4.3.1 Case 1: Budget is Binding

We assume that the budget B is binding, i.e., ciSi + cjSj = B. In this case, the optimal

fraction of capital invested in technology i, ξi∗ = ciSi∗/B, given by (assuming γ = 1),

ξi∗ =

(
ci(ci − cj) + ciσj(ciσj − cjσi)− cicj

B
((dh +

Y
X
)(ci − cj)− (dl +

Y
X
)(ciσj − cjσi))

)+
(ci − cj)2 + (ciσj − cjσi)2

(3.13)

and ξj∗ = 1− ξi∗.

ci− cj represents the marginal benefit of choosing the cheaper technology j over the more

efficient technology i during the withdrawal period. ciσj − σicj represents the benefit of

choosing the more efficient technology over the cheaper one during the storage period. The

3We use i, j instead of 1, 2 in order to avoid confusion between the power square x2 and index j repre-
senting technology j.
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capital allocation ratio ξi∗, depends on the ratio of these benefits. The higher the dh, the

more the benefit during the withdrawal period and hence more capital is invested in the

cheaper storage. Similarly, from the above expressions, we observe the following:

• As invested capital B increases, ξi∗ increases.

• As high period demand dh increases, ξi∗ decreases.

• As low period demand dl increases, ξ
i∗ increases.

• As convexity of generation cost, X increases, ξi∗ decreases.

• As base cost of generation, Y increases, ξi∗ increases.

It seems that the two attributes of storage technologies, price per unit capacity and

efficiency provide cost benefit to grid operation under different circumstances. We notice

that the cheaper less efficient storage is preferred when there is a greater need for storage

(i.e., high dh, low dl, high X, low B), by focusing on volume of energy stored rather than

the efficacy of storage. Similarly, as the more efficient storage is preferred when the need for

storage is lesser, focusing on capturing the benefit more efficiently.

This example succinctly captures the primary trade-off in mixing. We observe, through

robust numerical analysis, that these lessons continue to hold for more general demand

scenarios.

Counter-intuitive situations

For this example, a number of counter intuitive situations arise:

• We observe for cases with high ξi∗ values, increasing σi (making technology i less

efficient), counter intuitively increases the amount of money invested in technology i.

This is because, increasing σi in this range, substantially increases q1 and decreases

q2. Under such a situation, the inefficient technology becomes less useful. As the gap

between q1 and q2 is quite small, efficiency becomes more important and we invest

more in the efficient technology.

A numerical example where it can be seen that dξi∗

dσi is positive is: dh = 1, σi = 1.047,

σj = 1.25, ci = 0.625 and cj = 0.5, B = 0.174.
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• We observe in cases with moderate ξi∗(> 0.5) values and low σi (very efficient technol-

ogy), increasing σj (making technology 2 more inefficient), counter intuitively increases

the amount of money invested in technology 2. This is because, increasing σj in this

range, substantially reduces the smoothing achieved by the portfolio of technologies,

while increasing q1 and reducing q2, but not to a large extent. Under such a situation,

the cheaper technology becomes relatively more beneficial, as it is more valuable to

achieve greater smoothing.

A numerical example where it can be seen that dξi∗

dσj is negative is: dh = 1, σi = 1.004,

σj = 1.625, ci = 0.5, cj = 0.25 and B = 0.125.

• As another example, we observe, counter intuitively, that as ci increases, it is possible

that ξi∗ may increase. In other words, we invest more in the expensive technology when

it becomes more expensive. This idea is quite similar to fixed budget optimization

decisions in economics. As ci becomes more expensive, when ξ1 is close to 1, the

greater need for efficacy causes greater investment in c1.

A numerical example where it can be seen that dξi∗

dci
is negative is: dh = 1, σi = 1.004,

σj = 1.17, ci = 0.3755, cj = 0.375 and B = 0.25.

It is interesting to note that such counter intuitive insights may arise under limited budget

investment decisions, analogous to the concept of a Giffen good in economics (Spiegel 1994).

3.4.3.2 Case 2: Budget is not Binding

Here, we assume the budget is sufficient, i.e., ciSi+cjSj < B. We have that, the solution

may be one of four cases (for simplicity, we assume Y = dl = 0),

• Invest in no storage at all, i.e., S∗ = 0

• Invest only in technology 1, i.e., S∗ =
(

2dh−ci

2X(1+(σi)2)
, 0
)

• Invest only in technology 2, i.e., S∗ =
(
0, 2dh−cj

2X(1+(σj)2)

)
• Invest non zero capital in both technologies, i.e.,

S∗ =
(2dhσjX(σj − σi)− (ci − cj)− σj(ciσj − cjσi)

2X(σj − σi)2
,
(ci − cj) + σi(ciσj − cjσi)− 2dhσ

iX(σi − σj)

2X(σj − σi)2

)
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The intuition of the sensitivities with respect to dh, X etc. from the above results remains

similar to Case 1. However, we do not find any counter intuitive relationships when the

budget is not binding. In fact, Lemma III.12 shows that increasing the cost of a technology

decreases the capacity invested in that technology. The investment in a technology may

decrease as σ increases.

3.4.4 Numerical Example of the Benefits of Mixing Multiple Technologies

In this subsection, we discuss a series of numerical examples, where it is optimal to

invest in several technologies (> 2). Through these examples, we also observe a pattern of

decreasing marginal benefit in the flexibility of using a number of technologies, consistent

with Theorem III.11.

Consider the following four period example, which shows the benefit of mixing four

technologies.

Example III.13. Consider, Ω = {(σ1, c1), (σ2, c2), (σ3, c3), (σ4, c4)} and T = 4, γ = 1. Let

d1 = 0, d2 = 100, d3 = 0, d4 = 10 and C(q) = q2 and the technology parameters per the

table below.

Technology j 1 2 3 4
Cost/Unit Capacity cj 99 89 39.2 27
Loss Rate σj 1 1.134 1.818 2

We consider optimally investing in a storage portfolio from this set of technologies Ω

restricting the number of technologies with non-zero investment. Let W (n) be the minimum

operating and investment cost of investing in at most n technologies from the set Ω. Further,

let MB(n) = W (n−1)−W (n)
W (0)−W (1)

represent the relative marginal benefit of the additional flexibility

of using the nth technology, compared to the benefit of adding the first technology.

For Example III.13, applying the structure of the optimal policy discussed in Section

3.4.1, we consider the optimal policy and investments for n = 0 to 4.

By Theorem III.11, we have that MB(2) ≤ MB(1) = 1. For this particular example,

it is interesting to note that the initial benefits of mixing are decreasing very quickly after

M = 2 technologies.
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Table 3.2: Marginal Benefit of multiple technologies
n W (n) W (n− 1)−W (n) MB(n)% Technologies Used
0 10100 - - None
1 8575.502 1524.49781 100 3
2 8569.709 5.79355578 0.38003 2, 3
3 8569.536 0.17238215 0.011307 1, 3, 4
4 8569.532 0.00458542 0.000301 1, 2, 3, 4

This example provides a methodology to construct similar examples that show non-

zero (but tiny) benefit of mixing multiple technologies (n > 4). For example, in order to

show an example that allows optimally mixing 5 or 6 technologies, we may consider a six

period deterministic example, with three cycles of low and high demands. Each consecutive

cycle has decreasing average demand. Hence, the most efficient technologies may be used

in all three cycles, while the least efficient technology is only used in the first cycle. This

presents a set of simultaneous equations for the investment quantities and there always exist

a set of technologies and demand distributions satisfying that it is optimal to mix multiple

technologies. Interestingly, the canonical example in Section 3.4.3 suggests that in a two

period deterministic case, only two technologies can be mixed. This subsection and the

following section together provide insights that the marginal benefit of mixing is decreasing.

3.4.5 Numerical analysis

In this subsection, we consider a numerical example of realistic demand to evaluate the

benefit of using multiple technologies. The goal of this section is to investigate the impact of

demand distribution parameters on the storage technology choice problem. Theorem III.5

provides an explicit solution for s∗t+1 given qt, allowing for efficient computational study.

3.4.6 Model Parameters and Simulation Details

We consider, specifically, the choice of mixing under two technologies. The two tech-

nologies we consider have the parameters: c1 = 2.96, σ1 = 1.004016 and c2 = 0.931, σ2 =

1.041666667. Aggregate production cost of the grid is often approximated as quadratic in

the total energy produced in a given period (Bessembinder and Lemmon 2006). We assume
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the cost function as follows, satisfying Assumption III.2:

c(q) = a q2 + 10q (3.14)

where a is the co-efficient of the quadratic term, indicating the convexity.

The evolutions of load exhibit predictable patterns and random fluctuations. Let Lt be

the predictable load at time t and lt be the unpredictable load variations. The net demand

is given by:

dt = Lt + lt

The predictable component {Lt} is a deterministic processes whose values are known prior

to time zero. The stochastic processes {lt} represents the deviations from the deterministic

levels and evolve according to preset probability distributions. We model lt to be influenced

by the wind variations, caused by the penetration of wind energy; hence lt can be negative.

We consider a cycle of T periods. For given investment in storage capacities, denoted

by S, we employ an infinite-horizon average-cost model assuming every cycle faces the same

distribution of demands. In the second stage of the optimization, we search for optimal

investment capacity S that minimizes the total investment and operating costs.

The following demand model, while stylized, illustrates the trade-offs in a more realistic

system. Consider 8 periods per day (of 3 hrs each), with each period representing 3 hours.

Predictable components of load and wind are cyclic over these 8 periods.

Table 3.3: Predictable Components of Load

Time (hour of the day) 0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24 Average

Predictable load Lt (MWh) 12 14 25 36 38 36 25 14 25

The unpredictable variations in each period is given by, lt = ξl0t , where ξ is a measure of
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the variability in the demand, here ξ changes from 1 to 5.

lt =



−2 p = 0.015618765,

−1.33 p = 0.093747594,

−0.66 p = 0.234379485,

0 p = 0.312508313,

0.66 p = 0.234379485,

1.33 p = 0.093747594,

2 p = 0.015618764.

(3.15)

Our objective is to study the impact of changes in the demand parameters on the optimal

investment decisions in this scenario. We plot the following metrics against change in ξ

in Figure 3.2. Observe that l0t suggests huge swings in the variability of demand, where

as Lt presents smaller periodic variations in the variability of demand. As expected, the

investment in the cheaper technology 2 increases as ξ increases, and for these parameters,

the benefit of mixing is also increasing. This confirms an important intuition of the benefit

of mixing. Investing in the cheaper technology allows to smooth large variations in demand,

that happen occasionally, while the more efficient expensive technology can smooth tiny

variations, especially when frequent.
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Figure 3.2: Impact of change in ξ for a = 0.1.

We also choose to study the impact of variation in quadratic co-efficient a. We observe

that the impact of changes in a are non-linear.
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3.5. Decentralized Storage Owner Perspective under Inelastic Prices

Assumption

For the decentralized storage owner perspective discussed in Section 3.3.2, we consider

two possibilities: (a) Small Storage Investor, (b) Large Storage Investor. For each case, we

estimate the value function and optimal decisions of the storage investor (See Chapter 6 of

Carlton and Perloff (2010)).

3.5.1 Small Storage Investor

Consider the case where the storage facility is considered to be small compared to the size

of the market, as typically assumed in the literature (Zhou et al. 2011, Kim and Powell 2011,

Denholm and Sioshansi 2009), and pt(∆st,dt) = pt(dt) for all ∆st for all t in {1, 2, 3, . . . , T}

through out this subsection. Here, the price of energy transfer is independent of the actions

of the storage owner. Under this case, the constraint of q(∆st,dt) ≥ 0 may be neglected.

Storage investment decisions are made by independent profit maximizing players under

their individual beliefs about the price path. The objective of this section is to yield analytical

evidence to justify the dynamics observed in the market today, and understand how storage

investment decisions are affected by the nature of the price paths.

We first observe some properties of the function V I
t (st,dt|S,σ), per (3.7).

Lemma III.14. For all t = 1, . . . , T , we have the following properties:

(i) V I
t (st,dt|S,σ) is jointly convex and decreasing in st.

(ii) V I
t (st,dt|S,σ) is jointly concave in σ.

Proof of Lemma III.14. The proof of part (i) is similar to the proof of Lemma III.3(iii).

We now show part (ii) by induction on t. It can be seen that V I
T+1(st,dt|S,σ) is concave

in σ. Now we prove the hypothesis for period t, assuming it is true for period t + 1. Note

further that the term pt
M∑
j=1

ψj(∆st) is linear in σ for any ∆st. Hence, the term inside the

minimization of (3.7) is concave in σ in small storage investor case. Since the minimization

of a concave function is always concave, we have that the V I
t (st,dt|S,σ) is concave in σ.

103



Because the price is independent of the actions of the storage operator, we have that

the optimal operating revenue of a portfolio of facilities is the sum of the optimal operating

revenues of each of the individual facilities. Further, for given technology, each unit of

capacity can garner the same revenue. This gives us some simplifying properties of the value

function.

Lemma III.15. For all t = 1, . . . , n, n+ 1, st ∈ A we have the following:

(i) V I
t (st,dt|S,σ) =

M∑
j=1

V I
t (s

j
t ,dt|Sj, σj).

(ii) V I
t (st,dt|S,σ) = kV I

t (st/k,dt|S/k,σ) for all k > 0.

Proof of Lemma III.15. Part (i) follows by construction. We prove part (ii) by induction.

It can be seen that both statements are true for t = T +1 as V I
T+1(., .) = 0. We now assume

the lemma is true for period t+ 1. Applying (3.7), for period t, we have:

V I
t (st,dt|S,σ) =min

{
Et[γV

I
t+1(st+1,dt|S,σ)]− pt

( M∑
j=1

ψj(∆sjt)
)}

=min
{
Et[γkV

I
t+1(st+1/k,dt,S/k,σ)]− kpt

( M∑
j=1

ψj(∆sjt/k)
)}

=kmin
{
Et[γV

I
t+1(st+1/k,dt,S/k,σ)]− pt

( M∑
j=1

ψj(∆sjt/k)
)}

=kV I
t (st/k,dt,S/k,σ)

where the second equality follows from the induction and the linearity of the ψj() function,

and the third equality follows from the fact that the action st+1/k is feasible per (3.7). This

proves part (ii).

Because the size of the storage does not directly affect the prices in this model, each

dollar that is invested in storage garners the highest revenue per dollar invested independent

of the other investments. Hence, one does not observe any synergy of mixing, the total

capital is invested in the technology that gives the highest expected net present value of the

profits per dollar invested.

Lemma III.16. For given investment B and set of technologies Ω = {(σj, cj) : j =
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1, . . . ,M}, there exists an optimal solution to (3.9) such that Sj > 0 for at most one of

the M technologies.

3.5.1.1 Technology Choice

While at most one technology will be chosen, it is still a non-trivial decision to make the

choice. Given capacity cost per unit investment c and conversion loss factor σ, if a technology

is worse in both parameters, it may directly be eliminated from the choice set. Consider a

set of non-dominated technologies Ω; similar to (3.12), we define,

ΩI
E(B,Ω)

def
=

{
(σM+1, cM+1) : V

I(
B, Ω ∪ (σM+1, cM+1)

)
≥ V

I
(B,Ω)

}
. (3.16)

Theorem III.17. For any set of technologies, Ω, and budget B ≥ 0, we have that the set,

ΩI
E(B,Ω) is convex.

Proof. From Lemma III.14(ii) and separability of investment and operations, we have

that, V
I
(B,Ω) is jointly concave in (σ, c). Hence, V

I(
B, Ω ∪ (σM+1, cM+1)

)
is concave in

(σM+1, cM+1). If we consider this to be a function on (σM+1, cM+1), then ΩI
E is a set of the

form {(x, y)|f(x, y) ≥ 0}. Hence, Lemma III.20 implies the set is convex. �
Similar to the discussion in Section 3.4, this allows to eliminate any technologies in Ω

that are in the convex hull of a subset of technologies (See Figure 3.1).

3.5.1.2 Canonical Example

In order to gain further insights into the type of technology that may be chosen based

on the system metrics, we consider a cyclic price scenario with periodicity two, where the

storage operator acts as a price taker in the market. We also assume that the distribution

of prices for each cycle is stationary, hence, our analysis on a 2 period model will extend to

the entire horizon. Let p1 = pl and p2 = ph, with pl << ph. The objective of the storage

operator is to invest a given amount of capital B (often, decided by other constraints, such

as company budgets, Public Relations efforts and government grants and bills etc.) in order

to maximize the net present value of the investment. We address the question of which
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technology to choose based on the prices. Note that s∗1 = S, s∗2 = 0, hence,

V
I
(1, {(σ, c)}) = min{1− E[(phγ − plσ)]

1− γT

c(1− γ2)
, 0} (3.17)

We assume the distribution of prices is such that the random variable phγ−plσ is always

positive, hence ensuring that is optimal to buy and sell during each cycle of the horizon.

Hence choosing the optimal technology from a set Ω, depends on the particular expression

for each technology, (θ−σ)/c, where θ = E[ph]γ/[pl]. Specifically, when θ is high, suggesting

huge disparity between the high and low price periods, we prefer the cheaper storage to

capitalize on the arbitrage as much as possible. If θ is low, we choose the more efficient

technology, preferring to make more efficient use of the price differences.

In summary, this section considers a simplistic but common assumption about price

paths, showing that ‘mixing’ is in fact not beneficial under this assumption. Further, using

a simplistic canonical example, we learn that higher the variation of prices, we choose the

cheaper technology and vice versa.

3.5.2 Large Storage Owner Perspective

If the amount of storage invested influences market prices, price should influence quantity

produced. In this subsection, we assume that there is only one storage investor in the market,

and that his actions determine qt. Thus pt = C ′(q(st+1 − st,dt)), price of energy traded is

equal to the marginal cost of energy in the system during that period. This assumption is

also common in the literature (Lynch and Law 2004). We begin this section by considering

the properties of the value function, V I
t (st,dt|S,σ) under this price path assumption.

Lemma III.18. Suppose C(q) is quadratic in q, For all t = 1, . . . , T , we have the following

properties,

(i) V I
t (st,dt|S,σ) is jointly convex and decreasing in (st,S).

(ii) U I(S,σ) is jointly convex in S.

Proof of Lemma III.18. We prove part (i) by induction. V I
T+1(s,d|S,σ) is convex and

decreasing in (s,S) by assumption. We now prove convexity for period t assuming that part
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(i) is true for period t+ 1. Suppose C(q) = Xq2 + Y q + Z, then C ′(qt) = 2Xqt + Y . Hence,

the current period cost in (3.7), is given by (2X(
M∑
j=1

ψj(∆sj) + dt) + Y )(
M∑
j=1

ψj(∆sj)). It can

be seen that this expression is jointly convex in st, st+1,S. Hence, the expression inside the

minimization in (3.7) is convex in both the state and the decision variables. By the theorem

on convexity preservation under minimization Heyman and Sobel (1984, p. 525), we conclude

that V I
t (st,dt|S,σ) is convex in st,S.

Suppose that the optimal solution for st,dt is s
∗
t+1. To prove that V I

t (st,dt|S,σ) is de-

creasing in st, the intermediate value theorem gives the existence of action s′t+1 ∈ [s∗t+1,S]

for given storage level s′t ≥ st such that 0 ≤ q(∆s′t,dt) ≤ q(∆st,dt). This and the induc-

tive hypothesis prove that V I
t (st,dt|S,σ) is decreasing in st. Further, it can be seen that

V I
t (st,dt|S,σ) is decreasing in S as any feasible action under S would be feasible for given

S′ ≥ S.

Part (ii) follows from applying part (i) to the definition of U I(S,σ).

Note that V I
t (., .) under a general convex cost function C(q) is not necessarily convex

in s. Further still, U I(S,σ) may not also be convex in S. For example, in the two period

deterministic problem with d1 = 0 and d2 = dh, and C(q) = eq, it can be verified that the

U I(S, σ) is not convex in S.

While it is useful to note that convexity is guaranteed only under quadratic generation

cost function, we observe that, in two period deterministic setting with multiple technologies,

the optimal investment under the decentralized is always less than the optimal investment

under centralized perspective.

Example III.19. For a given set of technologies Ω, and T = 2, with deterministic demands

d1 << d2, let S
o be the optimal solution to (3.5) and SI be an optimal solution (3.9). We

have that SI ≤ So, when B is not binding.

It can be seen that the optimal operating policy, for given investment S (assuming it is

optimal) is to produce to fill up storage in period 1, i.e., q1 = d1 +
M∑
j=1

ψj(Sj) and empty
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storage in period 2, i.e., q2 = d2 −
M∑
j=1

Sj. Further, we have,

dV
I
(S,Ω)

dSk
= (C ′′(q1)σ

k(
M∑
j=1

ψj(Sj)) + C ′′(q2)(
M∑
j=1

Sj))(
M∑
j=1

ψj(Sj)) + C ′(q1)σ
k − C ′(q2) + ck

(3.18)

dV
o
(S,Ω)

dSk
= C ′(q1)σ

k − C ′(q2) + ck (3.19)

Due to the convexity of C() per Assumption III.2, we have that dV
I
(S,Ω)

dSk − dV
o
(S,Ω)

dSk ≥ 0.

Further, since, V o(S,Ω) is convex in S per Lemma III.10(i), we have that if So∗ is a solution

to the problem in (3.5), dV
I
(S,Ω)

dSk ≥ 0 for all S > So∗, hence SI∗ ≤ So∗, where SI∗ is optimal

solution to (3.9). Note that this discussion does not assume convexity of V
I
(S,Ω) with

respect to S.

Note that, when B is binding, the total investment is the same in both centralized and

decentralized scenarios, so this result cannot be extended to the case when B is binding. For

each dollar of capacity invested, the benefit gained under the centralized case is the difference

between the marginal cost in the high demand period and the low demand period (adjusted

for efficiency). However, under the decentralized case, this difference is further decreased,

proportionate to the rate of change of marginal cost, as the price of all the energy purchased

by the storage unit increases at the rate of C ′′(q1) and the price of all energy sold by the

storage unit decreases at the rate of C ′′(q2). Figure 3.3 demonstrates this result.

Notice that Example III.19 describes an elegant intuition. If the optimal investment

under SI is vested in more than one technology, then so is So. In other words, if we ‘mix’

technologies under the decentralized case, then we mix technologies under the centralized

case. This suggests that we mix more under the centralized decision maker perspective than

the decentralized perspectives.

3.5.2.1 Canonical Example

We now consider the system with demands and costs described in Section 3.4.3. We

further assume X = 1, Y = 0, dl = 0 and γ = 1. Again, here, since M = 2, we have that

i = 1 and j = 2. For this system, we again consider the problem under two cases, with the
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C’(q)

C’(q2) dS

C’’(q2) S

-

--

d1 d2
qq2q1

C’(q1) dS σ
C’’(q1) S σ

Figure 3.3: The marginal benefit of each infinitesimal unit of storage capacity in a two pe-
riod deterministic demand system under the decentralized case is less than the
marginal benefit under the centralized system by the area of the light blue rect-
angles.

‘myopic markets’ assumption about the price paths:

Case 1: Budget B is binding, here, the total investment is the entire available budget B and we

similarly measure the optimal investment in the more efficient technology as follows,

ξi∗ =
(ci(ci − cj) + ciσj(ciσj − cjσi)− cicj

2B
((dh)(c

i − cj)))+

(ci − cj)2 + (ciσj − cjσi)2
(3.20)

Note that the ξi∗ described above is higher than the ξi∗ that is described in (3.13),

explaining a preference for the more efficient technology. We observe that the de-

centralized system inherently prefers the more efficient storage under binding budget

because there is an additional penalty due to the inefficiency under the ‘myopic mar-

kets’ assumption. For each additional unit of storage capacity, we pay not only the

additional increase in marginal cost for that unit but also the rate of increase of c′(q) is

felt on the entire purchased energy, so, the effect of inefficiency σ is felt twice, effecting

a double taxation.

Case 2: In this case, we assume that the budget B is not binding. Here, the optimal investment

when investing in both technologies, given by,
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S∗ =
(2dhσjX(σj − σi)− (ci − cj)− σj(ciσj − cjσi)

4X(σj − σi)2
,
(ci − cj) + σi(ciσj − cjσi)− 2dhσ

iX(σi − σj)

4X(σj − σi)2

)
(3.21)

Compared to the centralized example in Section 3.4.3, notice that while the ratio of

investments in the two technologies remains the same, the absolute capacity invested

is halved. This result is consistent with Example III.19.

In this section, we demonstrate that having more generic price path assumptions can

create non-convex optimizations, making them harder to solve. However, for a deterministic

two period setting, we provide intuition that the storage investment under decentralized case

is substantially smaller than under the centralized case and that we invest smaller amounts.

However, (3.21) suggests that the ratio of mixing remains the same.

3.6. Conclusion and Future Research

In summary, this chapter demonstrates the benefit of using multiple storage technologies

in tandem. While the traditional fixed cost/variable cost trade-off presents synergies in

‘mixing’ of technologies in a variety of settings, we further observe that the convexity of the

cost function allows for synergies of ‘mixing’ even in a two period deterministic setting, for

our problem. Apart from Kraning et al. (2011), to the best of our knowledge, we are the only

other work to consider using multiple technologies simultaneously to provide a single service

to the grid. While their focus is on computational methodologies for evaluating the optimal

operating policies and investment decision, we focus on providing structural insights by

identifying the structure of the optimal operating policy and establish identifiable properties

of the optimal investment portfolio.4 We further demonstrate that the marginal benefit of

this flexibility of ‘mixing’ is decreasing in the number of technologies available. To the best of

our knowledge, we are the first to extend such insights from other settings to the non-linear

setting of energy markets.

This chapter also identifies some situations where investment decisions under limited bud-

get can be counter-intuitive, when technologies in the portfolio under consideration change.

4They additionally consider the discharge rate of storage units.
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In particular, when a technology becomes worse (either in the cost or efficiency metric), it

may be optimal to invest more in that technology because of the increased relative scarcity of

the budget. Finally, our work offers a nascent explanation to the lack of ‘mixing’ in the grid

today. We posit that the incentives of individual storage operators maximizing their own

profits does not present synergies to invest in multiple technologies in tandem. Specifically,

we observe no benefits of mixing under the ‘small storage’ assumption, which is common in

the literature.

For future research, it may be apt to consider a storage model where we compare technolo-

gies differing in their power ratings and number of life cycles as well. It would be a stronger

analytical result if we can conclude that the marginal benefit of ‘mixing’ is decreasing for

M > 2 as well, extending Theorem III.11.

3.7. Appendix: Definitions and Proofs

In this section, we define some functions and discuss their properties in order to prove

the theorems in the paper. We first discuss some preliminary results.

Lemma III.20. Let f(x, y) be a function that is jointly concave in x, y, then the set described

by Ξ = {(x, y)|f(x, y) ≥ 0} is convex.

Proof of Lemma III.20. Suppose (x1, y1), (x2, y2) ∈ Ξ, Consider (x̃, ỹ) = τ(x1, y1) + (1−

τ)(x2, y2) for some τ ∈ [0, 1]. Observe that f(x̃, ỹ) ≥ τf(x1, y1) + (1 − τ)f(x2, y2) ≥ 0,

where the first inequality follows from concavity and the second inequality follows from the

assumption. Hence, (x̃, ỹ) ∈ Ξ.

Lemma III.21. Let f(x, y) be a non-negative function that is jointly convex and decreasing

in x, y, then the lim
m→∞

lim
n→∞

f(x+ 1/n, y + 1/m)

1/n
= lim

n→∞
lim

m→∞

f(x+ 1/n, y + 1/m)

1/n
.

Proof of Lemma III.21. Let amn = f(x+1/n,y+1/m)
1/n

for m,n ∈ N and cmn = am(n+1) − amn.

Suppose further that cmn ≤ 0 for all m,n and that cmn is increasing in n. Then, by the

monotone convergence theorem, we have, lim
m→∞

∞∑
j=1

cmj =
∞∑
j=1

lim
m→∞

cmj, which simplifies to,

lim
m→∞

lim
n→∞

amn = lim
n→∞

lim
m→∞

amn.

Hence, it suffices to show that cmn ≤ 0, and cmn is increasing with n. Because f(., .)

is convex, it can be seen that f(x+∆,y)−f(x,y)
∆

is increasing with respect to ∆. Hence, if
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∆n = 1/n is decreasing with increasing n, we have that amn is decreasing with respect to n,

giving cmn ≤ 0.

Further, we have that f(x + 1/∆, y)/∆5 is convex in ∆ when ∆ ≥ 0, hence, we observe

that cm(n+1)−cmn = (n+2)f(x+1/(n+2), y)+nf(x+1/n, y)−2(n+1)f(x+1/(n+1), y) ≥ 0.

We define the function Γ as follows to represent the marginal increase in total costs by

adding infinitesimal capacities across the M technologies along the vector v. For given set

of technologies Ω = {(σj, cj) : 1 ≤ j ≤ M}, let |Ω| = M be the cardinality of the set of

technologies, we have,

Γ(v,S,Ω) = lim
r→0+

c · v +
U o(S+ rv,σ)− U o(S,σ)

r
(3.22)

where S ∈ (ℜ+)M , and v ∈ ℜM , such that, there exists ε > 0 satisfying, S+ rv ∈ (ℜ+)M

for all 0 < r < ε. Similarly, for all 1 ≤ j ≤M , we define,

Γ+
j (S,Ω) = Γ(1j,S,Ω), Γ

−
j (S,Ω) = Γ(−1j,S,Ω)

where, 1j is the unit vector along the axis of Sj. Note that it can be shown that Γ+
j (S,Ω) =

Γ−
j (S,Ω) when C(.) is differentiable.

We now show the properties of these functions, in order to help us understand the prop-

erties of the set ΩE defined in (3.12).

Lemma III.22. Given Ω and that C() is continuous and twice differentiable in q and C ′(0) =

0, we have that V o
t (s,d|S) as in (3.3) is convex and semi-differentiable in each variable of

(s,S) for all t ∈ {1, 2, . . . , n, n+ 1}, S > 0 and s ∈ (0,S).

Proof of Lemma III.22. Since V o
t (., .) is convex (Lemma III.3) and on the open interval I

of each variable of (s,S) as per Lemma statement. Hence, the left and right derivatives with

respect to s and S exist and are continuous in all but countably many points (set D, say) on

the open interval, per Theorem 25.3 in Rockafellar (1997). In each point of set D, the left

5Check double derivative with respect to ∆
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and right derivatives exist because of continuity and existence of V ′ on the set I −D. This

proves that it is semi-differentiable in the entire open set described by the Lemma.

Lemma III.23. The function Γ(., ., .) defined per (3.22) satisfies the following properties:

(i) Γ exists for given Ω,v for all feasible S, and for all 1 ≤ i, j ≤M , lim
h→0+

Γ+
i (S+h1j,Ω) =

Γ+
i (S,Ω), lim

h→0+
Γ−
i (S+ h1j,Ω) = Γ−

i (S,Ω).

(ii) Γ(v,S,Ω) =
M∑
j=1

|vj|
(
1{vj>0}Γ

+
j (S,Ω) + 1{vj<0}Γ

−
j (S,Ω)

)
.

(iii) Suppose Ω̃ ⊂ Ω , ṽ ∈ ℜ|Ω̃|, S̃ ∈ (ℜ+)|Ω| and v = (ṽ,0|Ω|−|Ω̃|),S = (S̃,0|Ω|−|Ω̃|) are the

extensions of ṽ, S̃ respectively in the extended space of Ω technologies and that (ṽ, S̃, Ω̃)

is in the domain of the function Γ, then, Γ(ṽ, S̃, Ω̃) = Γ(v,S,Ω).

Proof of Lemma III.23. First, we prove part (i). Existence is implied from Lemma III.22

and (3.5). Consider,

lim
h→0+

Γ+
i (S+ h1j,Ω) = ci + lim

h→0+
lim
r→0+

U o(S+ r1i + h1j,σ)− U o(S+ h1j,σ)

r

= ci + lim
r→0+

lim
h→0+

U o(S+ r1i + h1j,σ)− U o(S+ h1j,σ)

r

= Γ+
i (S,Ω). (3.23)

where the first equality follows from the definition and the second equality follows from

Lemma III.21. The proof is similar for Γ−
i (S,Ω).

Now, to prove part (ii), consider, v = a1i + b1j.

Γ(v,S,Ω) = (aci + bcj) + lim
r→0+

U o(S+ r(a1i + b1j),σ)− U o(S,σ)

r

= aci + a lim
r→0+

U o(S+ r(a1i + b1j),σ)− U o(S+ r(b1j),σ)

ar

+ bcj + b lim
r→0+

U o(S+ r(b1j),σ)− U o(S,σ)

br

= lim
r→0+

aΓ+
i (S+ br,Ω) + bΓ+

j (S,Ω)

= aΓ+
i (S,Ω) + bΓ+

j (S,Ω), (3.24)
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where the first two equalities follow from the definition and the last equality follows from

part (i). The proof is similar for all other v.

Now, to prove part (iii), note that c ·v = c̃ · ṽ, U o(S,σ) = U o(S̃, σ̃) and U o(S+ rv,σ) =

U o(S̃+ rṽ, σ̃). This implies part (iii).

Proof of Theorem III.6.

We first show (a) =⇒ (b). Let S∗ be the optimal solution to (3.5) using the set of

technologies Ω. Let S1 be a projection of S∗ on the set of technologies Ω∪Ω1, i.e., S
j
1 = Sj∗

for 1 ≤ j ≤M and Sj
1 = 0 for M + 1 ≤ j ≤ |Ω ∪ Ω1|. Similarly, let S2, S̃ be the projections

of S∗ on the sets Ω ∪ Ω2 and Ω ∪ Ω1 ∪ Ω2 respectively. Given the optimality of S∗ in the

space of Ω, V
o(
B, Ω∪Ω1

)
≥ V

o
(B,Ω) and V

o(
B, Ω∪Ω2

)
≥ V

o
(B,Ω) together imply (from

the equivalence of local minimality with global minimality in a convex optimization),

Γ(v1,S1,Ω ∪ Ω1) ≥ 0, Γ(v2,S2,Ω ∪ Ω2) ≥ 0, Γ(v0,S
∗,Ω) ≥ 0 (3.25)

for all v1 in the space of Ω ∪ Ω1 whose projection on the space of Ω is 0, v2 in the space of

Ω∪Ω2 whose projection of Ω is 0, and all v in the space of Ω, while still part of the domain

of Γ (per (3.22)). Hence, we have,

0 ≤ Γ(v1,S1,Ω ∪ Ω1) + Γ(v2,S2,Ω ∪ Ω2) + Γ(v0,S
∗,Ω)

= Γ(ṽ0, S̃,Ω ∪ Ω1 ∪ Ω2) + Γ(ṽ1, S̃,Ω ∪ Ω1 ∪ Ω2) + Γ(ṽ2, S̃,Ω ∪ Ω1 ∪ Ω2)

= Γ(ṽ0 + ṽ1 + ṽ2, S̃,Ω ∪ Ω1 ∪ Ω2), (3.26)

where the first equality follows from Lemma III.23 (iii) and the second equality follows

from Lemma III.23(ii). Note that any vector in the space of Ω∪Ω1∪Ω2 which has a projection

0 on the space of Ω can be expressed as a sum of the vectors ṽ1, ṽ2 which are the projections

of v1,v2 on the space of Ω1 and Ω2 respectively extended to the entire set Ω∪Ω1∪Ω2. Hence

(3.35) implies part (b). Hence, (a) =⇒ (b). Part (b) trivially implies (c).

Now we show (c) =⇒ (a), completing the equivalence. (c) implies that for every technol-

ogy (σj, cj) ∈ Ω1 ∪Ω2, V
o
(B,Ω ∪ (σj, cj)) ≥ V

o
(B,Ω). Since (a) =⇒ (b) is true for any two

subsets of Ω, this implies (b).
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Proof of Lemma II.4: The statement of the lemma holds for period T because VT (·, ·) = 0.

Suppose Vt+1(st+1,dt+1) is decreasing and convex in st+1 for any dt+1.

For any dt, the objective function in (2.5) is defined on a non-convex set {(st, st+1) ∈

A × A : q(st+1 − st,dt) ≥ 0}. We introduce the following auxiliary function, which is an

extension of the objective function in (2.5) to a larger convex set:

ft(st+1, st,dt)
def
= c

(
[q(st+1 − st,dt)]

+
)
+ γEt

[
Vt+1(st+1,dt+1)

]
, for (st+1, st) ∈ A×A.

For state (st,dt), let s∗t+1 be an optimal decision found by (2.5)-(2.6). Consider any

s̃t ≥ st. If s
∗
t+1 is feasible for state (s̃t,dt), i.e., q(s

∗
t+1− s̃t,dt) ≥ 0, then

Vt(s̃t,dt) ≤ ft(s
∗
t+1, s̃t,dt) ≤ ft(s

∗
t+1, st,dt) = Vt(st,dt).

If q(s∗t+1− s̃t,dt) < 0 (infeasible), then using q(S− s̃t,dt) ≥ 0 and applying the intermediate

value theorem, we can find a feasible decision s̃t+1 with s∗t+1 ≤ s̃t+1 ≤ S and q(s̃t+1− s̃t,dt) =

0. Thus,

Vt(s̃t,dt) ≤ γEt

[
Vt+1(s̃t+1,dt+1)

]
≤ γEt

[
Vt+1(s

∗
t+1,dt+1)

]
≤ ft(s

∗
t+1, st,dt) = Vt(st,dt),

where the second inequality follows from the induction hypothesis and s̃t+1 ≥ s∗t+1. Using

the intermediate value theorem, we can also show that min
st+1∈A

ft(st+1, st,dt) = Vt(st,dt).

Note that c
(
[q(∆s,dt)]

+
)
is a composition of convex increasing functions, and thus it is

convex in ∆s. From the induction hypothesis, Et

[
Vt+1(st+1,dt+1)

]
is convex in st+1. There-

fore, ft(st+1, st,dt) is jointly convex in (st+1, st) on closed convex set A × A. Then, using

the theorem on convexity preservation under minimization from Heyman and Sobel (1984,

p. 525), we conclude that Vt(st,dt) = min
st+1∈A

ft(st+1, st,dt) is convex in st.

Proof of Lemma III.4. Part (i) holds trivially for T + 1 since V o
T+1(., .) = 0. Suppose the

statement of the Lemma holds for t+1. For period t, we consider states (st,dt) and (s̃t,dt),

with s̃t, st satisfying part (i) of the Lemma for some ε ≥ 0. Let s∗t+1 be the optimal action

for state (st,dt), and denote ∆st = s∗t+1− st and q
∗ = qt(∆st,dt). For state (s̃t,dt), consider

action s̃t+1 ∈ A and denote ∆s̃t = s̃t+1 − s̃t and q̃t = qt(∆s̃t,dt). Consider for some ε̃ ≥ 0
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such that s̃it+1 = si∗t+1 + ε̃/σi, s̃jt+1 = sj∗t+1 − ε̃/σj, s̃kt+1 = sk∗t+1 for all k ̸= i, j, and q̃t ≤ q∗t , then

the feasibility of the action s̃t+1 and the induction hypothesis leads to the intended result:

V o
t (s̃t,dt) ≤ C(q̃t) + Et[V

o
t+1(s̃t+1,dt+1)] ≤ C(q∗t ) + Et[V

o
t+1(s

∗
t+1,dt+1)] = V o

t (st,dt). (3.27)

Below, we identify such ε̃. Consider two cases:

Case 1: If si∗t+1+ε/σ
i ≤ Si and sj∗t+1−ε/σj ≥ 0, we set ε̃ = ε. We have s∗t+1−st = s̃t+1−s̃t;

hence, q̃t = q∗t .

Case 2: If si∗t+1 + ε/σi > Si or sj∗t+1 − ε/σj < 0 or both inequalities hold, we set ε̃ =

min
{
(Si − si∗t+1)σ

i, sj∗t+1σ
j
}
. Note that s̃t+1 ∈ ∂A (the boundary of A), i.e., s̃it+1 = Si or

s̃jt+1 = 0. This implies

∆s̃it = s̃it+1 − s̃it ≥ 0 or ∆s̃jt = s̃jt+1 − s̃jt ≤ 0. (3.28)

Let δ = ε− ε̃. Note that ε̃ < ε, hence δ > 0. Then, by definitions, we have

∆st −∆s̃t = s∗t+1 − s̃t+1 − st + s̃t (3.29)

That is, ∆sit = ∆s̃it + δ/σi, ∆sjt = ∆s̃jt − δ/σj and ∆skt = ∆s̃kt for k ̸= i, j. Applying (3.2),

we have

qt − q̃t = ψi(∆sit)− ψi(∆s̃it)−
[
ψj(∆s̃jt)− ψj(∆sjt)

]
≡ Γ,

Now consider the two conditions derived in (3.28):

• If ∆s̃it ≥ 0, then Γ = δ −
[
ψj(∆s̃jt)− ψj(∆sjt)

]
≥ δ − σjδ/σj = 0.

• If ∆s̃jt ≤ 0, then Γ =
[
ψi(∆sit)− ψi(∆s̃it)

]
− δ/σj ≥ δ/σi − δ/σj ≥ 0.

Hence, qt ≥ q̃t and the result in (3.27) holds.

For part (ii) of the lemma, the proof follows similar lines as above. However, we choose

ε̃ = min
{
si∗t+1, (S

j − sj∗t+1)
}
for case 2, and s̃it+1 = 0 or s̃jt+1 = Si implies ∆s̃it ≤ 0 or ∆s̃jt ≥ 0,
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and (∆sit,∆s
j
t)− (∆s̃it,∆s̃

j
t) = (−δ, δ). The corresponding inequalities become

qt − q̃t =
[
ψj(∆sjt)− ψj(∆s̃jt)

]
−
[
ψi(∆s̃it)− ψi(∆sit)

]
,

≥

 δ − δ = 0, if ∆s̃it ≤ 0,

δσj − δσi ≥ 0, if ∆s̃jt ≥ 0.

Proof of Theorem III.5.

Parts (i) and (ii) follow directly from Lemma III.4. For part (iii), sinceM = 2, we assume

i = 1, j = 2. We prove part (iii) by induction. We assume that V o
t+1(., .) is supermodular in

st (true for T + 1 since VT+1(., .) = 0). Let qt = q(st+1 − st,dt), q̂t = q(ŝt+1 − ŝt,dt).

We prove, qt ≤ q̂t by contradiction. Suppose that qt > q̂t; for optimal actions satisfying

part (i)-(ii), we have three cases:

• If sit+1 < ŝit+1, then ∆sit < ∆ŝit and (3.2) imply ∆sjt > ∆ŝjt , hence ∆s
j
t > 0 or ∆ŝjt < 0;

part (i)-(ii) implies either sit+1 = Si or ŝit+1 = 0, hence, sit+1 ≥ ŝit+1, which gives a

contradiction.

• If sjt+1 < ŝjt+1, then ∆sjt < ∆ŝjt , hence, ∆s
j
t < 0 or ∆ŝjt > 0; part (i)-(ii) implies,

sit+1 = 0 or ŝit+1 = Si; hence, sit+1 ≤ ŝit+1. This gives qt < q̂t from (3.2), which is a

contradiction.

• Else if, st+1 ≥ ŝt+1, note that st+1 ̸= ŝt+1 as qt > q̂t per our assumption and st ≥

ŝt. We find a st+1, st+1 s.t. st+1 ≥ st+1 ≥ st+1 ≥ ŝt+1, st+1 − st+1 = st+1 − ŝt+1,

qt − q(st+1 − st) ≥ q(st+1 − ŝt)− q̂t and qt ≥ q(st+1 − st), q(st+1 − ŝt) ≥ q̂t, which when

combined with the strict convexity of C(.) implies,

C(q(st+1 − st,dt))− C(q(st+1 − st,dt)) > C(q(st+1 − ŝt,dt))− C(q(ŝt+1 − ŝt,dt)).

(3.30)
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Consider,

C(q(st+1 − st,dt))− C(q(st+1 − st,dt)) ≤ Et[V
o
t+1(st+1,dt+1)]− Et[V

o
t+1(st+1,dt+1)]

≤Et[V
o
t+1(ŝt+1,dt+1)]− Et[V

o
t+1(st+1,dt+1)] ≤ C(q(st+1 − ŝt,dt))− C(q(ŝt+1 − ŝt,dt)),

(3.31)

where the first inequality is from the optimality of st+1 for state (st,dt), the second

inequality follows from the supermodularity and convexity of Vt+1(st+1,dt) w.r.t st+1

(inductive hypothesis), and the third inequality follows from the optimality of ŝt+1 for

state (ŝt,dt). (3.30) and (3.31) together imply a contradiction. Now we propose such

st+1, st+1 in two cases:

– If sit+1 > ŝit+1, we choose a δ ∈ (0, (qt − q̂t)/(2σ
i)) which is small enough s.t,

ψi(sit+1 − sit)− ψi(sit+1 − δ − sit) ≥ ψi(ŝit+1 − ŝit)− ψi(ŝit+1 − δ − ŝit). Such δ exists

as q̂t < qt.
6 We choose st+1 = (sit+1 − δ, sjt+1) and st+1 = (ŝit+1 + δ, ŝjt+1). This

implies qt − q(st+1 − st) ≥ q(st+1 − ŝt)− q̂t and qt ≥ q(st+1 − st), q(st+1 − ŝt) ≥ q̂t.

– Else, it means sit+1 = ŝit+1 = 0 or sit+1 = ŝit+1 = Si (due to part (i)-(ii)). In

either case, we choose a δ ∈ (0, (qt − q̂t)/(2σ
j)) which is small enough such that,

ψj(sjt+1 − sjt) − ψi(sjt+1 − δ − sjt) ≥ ψj(ŝjt+1 − ŝjt) − ψj(ŝjt+1 − δ − ŝjt) and set

st+1 = (sit+1, s
j
t+1 − δ) and st+1 = (ŝit+1, ŝ

j
t+1 + δ). Again, such δ exists and this

satisfies the above conditions establishing the contradiction.

Now, we prove supermodularity of V o(st,dt) in st. Consider any, st > ŝt. Let st =

(sit, ŝ
j
t), st = (ŝit, s

j
t). It suffices to prove, V o

t (st,dt) + V o
t (ŝt,dt) ≥ V o

t (st,dt) + V o
t (st,dt) for

any dt. It is sufficient to find feasible policies st+1 for state (st,dt) and st+1 for state (st,dt)

satisfying:

C(qt) + C(q̂t) ≥ C(q(st+1 − st,dt)) + C(q(st+1 − st,dt)), (3.32)

V o
t+1(st+1,dt+1) + V o

t+1(ŝt+1,dt+1) ≥ V o
t+1(st+1,dt+1) + V o

t+1(st+1,dt+1), (3.33)

6If sit+1 > sit, then we choose δ < ∆sit, implying, ψi(sit+1 − sit) − ψi(sit+1 − δ − sit) = δσi ≥ ψi(ŝit+1 −
ŝit) − ψi(ŝit+1 − δ − ŝit). Else, q̂t < qt implies ŝit+1 < ŝit, giving, ψ

i(sit+1 − sit) − ψi(sit+1 − δ − sit) ≥ δ =
ψi(sit+1 − sit)− ψi(sit+1 − δ − sit) ≥ δ = ψi(ŝit+1 − ŝit)− ψi(ŝit+1 − δ − ŝit).
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for any dt+1. We find such st+1, st+1 in three cases:

Case 1: If sjt+1− ŝ
j
t+1 > sjt − ŝ

j
t , then part (i) implies, sit+1 ≥ ŝit+1; hence, we choose st+1 =

(sit+1, s
j
t+1−(sjt−ŝ

j
t)) and st+1 = (ŝit+1, ŝ

j
t+1+(sjt−ŝ

j
t)). The assumptions ensure st+1, st+1 ∈ A,

q(st+1−st,dt) = q(st+1−st,dt) and q(st+1−st,dt) = q(st+1−s,dt). Hence, this policy satisfies

(3.32). Further, V o
t+1(ŝt+1,dt+1)−V o

t+1(st+1,dt+1) ≥ V o
t+1((s

i
t+1, ŝ

j
t+1),dt+1)−V o

t+1((s
i
t+1, ŝ

j
t+1+

(sjt − ŝjt)),dt+1) ≥ V o
t+1(st+1,dt+1)− V o

t+1(st+1,dt+1), where the first inequality follows from

supermodularity and the second inequality follows from convexity of V o
t+1(st+1,dt) w.r.t st+1

which verifies (3.33).

Case 2: Else if sjt+1 − ŝjt+1 < sjt − ŝjt , part (i) implies sit+1 = 0 or ŝit+1 = Si, giving

sit+1 ≤ ŝit+1; We choose st+1 = ŝt+1 and st+1 = st+1. By applying (3.2), we have: have:

qt = ψi(sit+1 − sit) + ψj(sjt+1 − sjt), q̂t = ψi(ŝit+1 − ŝit) + ψj(ŝjt+1 − ŝjt), q(st+1 − st,dt) =

ψi(ŝit+1 − sit) + ψj(ŝjt+1 − ŝjt), q(st+1 − st,dt) = ψi(sit+1 − ŝit) + ψj(sjt+1 − sjt). From our

assumptions, it can be verified that, qt + q̂t ≥ q(st+1 − st,dt) + q(st+1 − st,dt) and q̂t ≥

q(st+1− st,dt), q(st+1− st,dt) ≥ qt. Hence, convexity of C(.) w.r.t qt implies (3.32). Further,

(3.33) reduces to equality, proving supermodularity.

Case 3: Else if sjt+1 − ŝjt+1 = sjt − ŝjt , we consider two subcases:

• If sit+1 ≥ ŝit+1, we choose st+1, st+1 similar to Case 1.

• Else if, sit+1 < ŝit+1, we choose st+1, st+1 similar to Case 2.

Proof of Theorem III.6.

We first show (a) =⇒ (b). Let S∗ be the optimal solution to (3.5) using the set of

technologies Ω. Let S1 be a projection of S∗ on the set of technologies Ω∪Ω1, i.e., S
j
1 = Sj∗

for 1 ≤ j ≤M and Sj
1 = for M +1 ≤ j ≤M + |Ω1|. Similarly, let S2, S̃ be the projections of

S∗ on the sets Ω ∪Ω2 and Ω ∪Ω1 ∪Ω2 respectively. Given the optimality of S∗ in the space

of Ω, V
o(
B, Ω ∪ Ω1

)
≥ V

o
(B,Ω) and V

o(
B, Ω ∪ Ω2

)
≥ V

o
(B,Ω) together imply (from the

equivalence of local minimality with global minimality in a convex optimization),

Γ(v1,S1,Ω ∪ Ω1) ≥ 0, Γ(v2,S2,Ω ∪ Ω2) ≥ 0 (3.34)

for all v1 in the space of Ω ∪ Ω1 whose projection on the space of Ω is 0, while still part of

119



the domain of Γ (per (3.22)) and for all v2 in the space of Ω ∪ Ω2, feasible in the domain of

Γ (per (3.22)) whose projection in the space of Ω is 0. Hence, we have,

0 ≤ Γ(v1,S1,Ω ∪ Ω1) + Γ(v2,S2,Ω ∪ Ω2) = Γ(ṽ1, S̃,Ω ∪ Ω1 ∪ Ω2) + Γ(ṽ2, S̃,Ω ∪ Ω1 ∪ Ω2)

= Γ(ṽ1 + ṽ2, S̃,Ω ∪ Ω1 ∪ Ω2), (3.35)

where the first equality follows from Lemma III.23 (iii) and the second equality follows

from Lemma III.23(ii). Note that any vector in the space of Ω∪Ω1∪Ω2 which has a projection

0 on the space of Ω can be expressed as a sum of the vectors ṽ1, ṽ2 which are the projections

of v1,v2 on the space of Ω1 and Ω2 respectively extended to the entire set Ω∪Ω1∪Ω2. Hence

(3.35) implies part (b). Hence, (a) =⇒ (b).

Now, if (c) is not true, there exists at least one technology (σj, cj) ∈ Ω1 ∪ Ω2 which

satisfies V
o
(B,Ω ∪ (σj, cj)) < V

o
(B,Ω). By using the same storage size that achieves the

value in V
o
(B,Ω∪ (σj, cj)), and investing 0 in the remaining storage technologies of Ω1∪Ω2,

we have a solution to (3.5) using the set of technologies Ω ∪ Ω1 ∪ Ω2. This contradicts (b).

Hence (b) =⇒ (c).

Now we show (c) =⇒ (a), completing the equivalence. (c) implies that for every technol-

ogy (σj, cj) ∈ Ω1 ∪Ω2, V
o
(B,Ω ∪ (σj, cj)) ≥ V

o
(B,Ω). Since (a) =⇒ (b) is true for any two

subsets of Ω, this implies (b).

Proof of Lemma III.7.

For given optimal solution S to (3.5) with the set of technologies Ω ∪ {(σ, c)}, consider

solution to (3.5) with the set of technologies Ω ∪ {(σ1, c1), (σ2, c2)}, with S̃, where S̃j = Sj

for 1 ≤ j ≤ |Ω|, and S̃|Ω|+1 = κS|Ω|+1 and S̃|Ω|+2 = (1 − κ)S|Ω|+1. The investment costs

under both investments are the same, i.e., c̃ · S̃ = c · S.

Further, we also claim that: V o
t (st,dt|S,Ω∪{(σ, c)}) ≥ V o

t (s̃t,dt|S̃,Ω∪{(σ1, c1), (σ2, c2)}).

The proof follows by induction. It can be verified that the statement is true for period T +1.

If in period t, the optimal policy under for state (st,dt) is st+1 for investment S with, set

of technologies, Ω ∪ {(σ, c)}, consider the equivalent policy, s̃t+1 such that, s̃jt+1 = sjt+1 for

1 ≤ j ≤ |Ω| and s̃|Ω|+1
t+1 = κs

|Ω|+1
t+1 and s̃

|Ω|+2
t+1 = (1−κ)s|Ω|+1

t+1 . Note that, this and (3.2) implies,

q(∆st,dt) = q(∆s̃t,dt), which is sufficient for the induction hypothesis for period t to hold.
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Proof of Lemma III.10.

The proof of part (i) is similar to the proof of Lemma III.3(iii) applied on the relaxed

problem. We further have that U o(S,σ) is convex by applying the definition.

We prove part (ii) by induction. Clearly, the statement is true for period T +1. Assume

that the statement is true for period t + 1. Let s∗t+1 = (s1∗t+1, s
2∗
t+1) be the optimal solution

for state (st,dt) for the system with storage capacity S. Clearly, the optimal policy for the

system with capacity 0 is (0, 0). Consider the following inequalities,

γEt[V
o
t+1(s

∗
t+1,dt+1|S) + V o

t+1(0,dt+1|0)] ≥ γEt[V
o
t+1((s

1∗
t+1, 0),dt|(S1, 0)) + V o

t+1((0, s
2∗
t+1),dt|(0, S2))]

C(q(s∗t+1 − st,dt)) + C(dt) ≥ C(dt + ψ1(s1∗t+1 − s1t )) + C(dt + ψ2(s2∗t+1 − s2t ))

where the first inequality follows from the induction hypothesis and the second inequality

follows from the property that ∆si∗t ∆s
j∗
t ≥ 0 for all 1 ≤ i, j ≤ M for an optimal policy

(consequence of Theorem III.5 parts (i),(ii) ) and convexity of C(.).

Adding these two inequalities and (3.3) together implies the inductive hypothesis on

part (i), because (s1∗t+1, 0) is a feasible policy for state
(
(s1t , 0), dt

)
with investment (S1, 0)

(similarly for state (0, s2t ),dt).

Part (iii) follows directly from applying part (ii) to the definition of U o(S,σ).

Proof of Theorem III.11.

Let (S1, S2) be optimal investments from the set Ω. From part (iii) of Lemma III.10,

U o(S
1
, S

2
) + U o(0, 0) ≥ U o(S

1
, 0) + U o(0, S

2
)

Adding the above 3 inequalities, we get,

U o(S1, 0) + c1S1 + U o(0, S2) + c2S2 ≤ U o(S
1
, S

2
) + c1S

1
+ c2S

2
+ U o(0, 0)

This implies, V
o
(B, ϕ) + V

o
(B,Ω) ≥ V

o
(B, {σ1, c1}) + V

o
(B, {σ2, c2}), which proves the

result.
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3.8. Appendix: Alternative Investment Problem formulation

In this section, we consider the investment decision in order to minimize operating costs

given a fixed budget for initial investment B.

V ∗(B) = min
0≤cI ·S≤B

{
E0[V

o
1 (0,d1)|S]

}
, (3.36)

where S is the storage size that defines the action space A in (3.3) and V1(., .) is the value

function per (3.3). Note that investment portfolio that solves min
B≥0

V ∗(B) will also solve

(3.5). In that sense, the two models are equivalent when B is large enough. Let S∗(B) be

the optimal storage investment that solves (3.36).

We define c̃j = |∂E0[V1(0,d1)]
∂Sj

|S=S∗(B) (Lagrangian of (3.36)) for all j = 1, . . . ,M . It can be

verified that the solution to (3.5) with the investment cost vector c = c̃ is S∗(B). Hence,

the two formulations are structurally equivalent.
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CHAPTER IV

Enhancing the effect of Social Comparisons in Energy

markets

4.1. Introduction

The previous two chapters focused on reducing the cost of Electric Energy Supply. In

this chapter, we shift our focus to the demand side of the supply chain and consider the

potential methods to reduce the cost of satisfying consumer preferences. Reducing ‘demand’

or reducing the cost of serving consumers, known as ‘behavioral energy efficiency,’ may be

accomplished in primarily two ways: motivating consumers to upgrade to energy-efficient

equipment and/or motivating consumers to modify their consumption behaviors.

Upgrading to energy-efficient equipment may include simple changes such as upgrading

to programmable thermostats or CFL light bulbs as well as more extensive projects such as

winterizing homes. These are recognized as one time actions with a cost associated with the

upgrade. Motivating consumers to manage their consumption behaviors, include sending

variety of messages, e.g. patriotic messages to reduce energy dependence of the nation, mes-

sages describing economic benefits to consumers of consuming less, ‘Go Green’ messages to

incite saving the environment or peer-consumption information intended to trigger a healthy

competition on being energy efficient. Cialdini and Schlutz (2004) describe a study in San

Marcos, California where it was found that peer comparisons was the most effective motiva-

tor. In fact, Opower, an Arlington based company, involved in data mining of energy usage of

households, combines both these methods in their monthly Home Energy Reports (HER) to

consumers, providing upgrade information and peer-comparison information. Several stud-
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ies have shown these reports have decreased average energy consumption by as much as 3%

(Todd et al. 2014).

The objective of our work is to model and study each of the two above methods (modi-

fying behaviors and upgrading equipment) and the interaction between them. In particular,

we characterize the situation where these two outcomes are synergetic. We provide a parsi-

monious model to evaluate the effects of both these methods and also extend the literature

on modelling the impact of social comparisons from the perspective of the population with

continuous consumer types. Finally, we provide one additional reason explaining the effec-

tiveness of Opower’s HER program: its combination of economic (i.e., upgrades) and social

information (i.e., peer comparisons) can reinforce each other justifying the joint use of both

of them.

Through the rest of this chapter, Section 4.2 reviews the current literature, Section 4.3

discusses the model combining both social and economic incentives, Section 4.4 derives the

outcomes under the various incentives, Section 4.5 discusses the numerical results and the

chapter concludes in Section 4.6.

4.2. Literature Review

Our work considers the interaction of economic and social incentives provided to con-

sumers under the Opower HER program. Hence, it is related to three streams of literature:

the empirical research on the impact of Opower’s HER program, the modelling of social

comparisons (as an incentive), and the literature on the impact of economic incentives for

Energy consumers. We discuss each of these streams in detail below.

4.2.1 Opower’s HER program

There are a few recent empirical research papers analyzing the effects of Opower’s HER

program. Cialdini and Schlutz (2004) show that normative messages coupled with appeals

to reduce consumption of energy can have a significant impact on energy consumption. In

particular, peer consumption information was found to be the most effective. Applying

this concept, Opower began sending monthly energy reports to consumers comparing their

consumption with that of similar households. Several papers report that Opower HER

program has reduced energy consumption by around 2% (Allcott 2011, Ayres et al. 2013).

124



The longevity of these effects have been questioned in Ferraro and Price (2013), with the

effects depending on the political inclinations of the consumer (Costa and Kahn 2013).

HER program, however, has been widely accepted as effective in helping to achieve the

state and federal energy efficiency requirements, to the extent that many of the nations

largest utilities (like PG&E, ComEd, AEP) have begun to ramp up their behavioural energy

efficiency portfolios (Opower 2012). While the above papers study the effects of Opower’s

HER program empirically, we model these effects analytically.

4.2.2 Utility from Social Comparisons

In general, there are several papers that consider the outcome of social comparisons as a

part of utility of consumers. Similar to our work, a majority of the literature assumes that

such utility is linear and proportional to the difference between the individual’s outcome and

the reference point. The main types of social comparison models are as follows,

• Status seeking (Frank 1985): The original hypothesis was that individuals are generally

spiteful or envious of others and derive utility from being ahead of others performance,

in order to seek status relative to other individuals. Frank (1985) proposed that indi-

viduals seek small ‘ponds’ in which they are relatively big fish rather than big ponds,

in which they are relatively small fish. The paper models the utility as linear func-

tion of the difference between performance of an individual and the reference point x0

in that ‘pond’. If xi is the performance of an individual, then individuals are either

ahead-seeking, where their utility from being ahead of a reference point is given by,

α(xi − x0)
+ or behind-averse where they experience disutility from being below the

reference point, contributing to utility as: −β(x0 − xi)
+.

• Inequity averse (Fehr and Schmidt 1999): In this model, individuals are generally

averse to all kinds of inequity, whether they are ahead or behind compared to other

individuals in the pool.1 The standard form of utility of an individual i is given by,

Ui({xi, xj}) = xi −
α

n− 1

∑
(xj − xi)

+ − β

n− 1

∑
(xi − xj)

+, (4.1)

1There is often the assumption that individuals are more averse to being behind than being ahead.
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where α ≥ β. This model is often considered the gold standard for social comparisons

and its variations are used frequently in the literature (Charness and Rabin 2002,

Bolton and Ockenfels 2006).

• Risk aversion models (Linde and Sonnemans 2012, Bolton and Ockenfels 2010): These

models extend the Fehr and Schmidt (1999) model by including uncertainty in the

outcome of an individual’s action due to a state of nature or the actions of other

individuals. Bolton and Ockenfels (2010) argue that consumers would rather take a

higher risk due to a state of the nature than risk of being ‘betrayed’ by another indi-

vidual (in a teamwork setting). Linde and Sonnemans (2012) consider the implications

of Prospect theory and risk aversion when utility derived from social comparisons is

uncertain because of uncertain outcomes.

• General Utility function (Levitt and List 2007): Some authors consider a general utility

function where each individual’s utility depends on the performance of all individuals

in the economy and may be increasing or decreasing non linearly in the parameters

associated with other individuals.

Roels and Su (2013) belongs to the first group and is methodologically closest to our

paper, while asking different research questions. Motivated by Opower, Roels and Su (2013)

study how social comparisons may affect performance of consumers when consumer popula-

tion consists of two types. Their research assumes that consumers are either ahead-seeking

or behind-averse. The focus of their work is to consider the most effective reference system

to provide the consumer population, in order to achieve the social planner’s objectives. We

extend their model to consider continuous population types and analyze the combined effect

of the social comparisons (that they consider) and economic incentives (that they do not

consider). Like Roels and Su (2013), we restrict our attention to the “ahead-seeking” and

“behind-averse” social utility models. The current empirical research on social comparisons

is often based on decisions of players in ultimatum games, responder games and such similar

set ups where players make a decision to up-hold/allocate pay-offs (Fehr and Schmidt 2006).

In these contexts, we observe that the “behind-averse” utility may be applicable (Bolton

and Ockenfels 2006). Our context is to evaluate the effort levels of the players in relation to
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the social motivation they receive from comparison to a reference, akin to students efforts

when provided reference information of other student’s performances (Stevenson et al. 1990).

Here, in some cultural contexts, students strive to be at the top of their class, i.e., we observe

‘ahead-seeking’ behavior. A similar behavior is observed in income distribution preferences

of German citizens (Schwarze and Härpfer 2003). We hypothesize that a population may

consist of both ‘ahead-seeking’ and ‘behind-averse’ consumers.

There are two other social utility models that are related: inequity averse and concave

utility functions. However, inequity aversion is not applicable in our context as it is unlikely

that customers feel a penalty by consuming far less than the average. While concave utility

is a likely option, we do not consider it in this chapter, for the sake of analytical tractability.2

4.2.3 Energy Efficiency Incentives to Energy Consumers

One of key decisions consumers in power markets can make is to invest in more energy-

efficient equipment. The energy savings constitute an economic incentive for investment. The

Opower HER program provides consumers with necessary information about investments in

energy savings and upgrades. This subsection discusses the stream of literature that models

energy efficiency upgrades.

To entice consumers to be energy efficient, utilities and government agencies have been

providing Energy Efficiency (EE) or Demand Side Management (DSM) programs for decades.

These programs include Appliance recycling, HVAC upgrade initiations, Energy Star cam-

paigns, Green lights programs etc, which result in significant reductions in energy consump-

tion (Geller et al. 2006, Eto et al. 1994). These programs typically cost between 3.9-5 cents

per KWh of Energy reduction (Arimura et al. 2011), and are estimated as being overall

profitable (Friedrich et al. 2009). Additionally, energy efficiency programs have other tan-

gential benefits including improved health and comfort for the consumer and generation of

jobs (Clinch and Healy 2000, Mills and Rosenfeld 1996).

Interestingly, while these programs have been effective, the effectiveness observed is gen-

erally much lower than their predicted effectiveness. This is known as the ‘energy efficiency’

gap (Jaffe and Stavins 1994). The empirical evidence for this gap is well established, showing

2Concave social utility makes the consumption decision maximizing a non-concave function
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that consumers make decisions based on an implied discount rate of 25-100%, which is far

above the market discount rate (Sanstad et al. 2006, Train 1985). There are a wide vari-

ety of explanations for this gap, such as hidden costs of switching (Jaffe et al. 2004), other

product attributes (e.g., lower lighting quality), heterogeneity of consumers (Hausman and

Joskow 1982), and future uncertainties (Sutherland 1991). Reddy (1991) suggest that these

barriers may be because of liquidity constraints with the consumers, indifference, bounded

rationality, legacy issues, and imperfect information (Howarth and Andersson 1993). See

Gillingham et al. (2009) for a complete survey of potential behavioral and market failures to

explain this energy efficiency gap.

Our paper attempts to model the barriers that cause this gap analytically. Due to the

higher discount rate, adoption rates of EE programs are higher for programs with faster

payback and greater annual savings (Anderson and Newell 2004). The initial investment

costs may be significant and include, for example, transactions costs associated with making

the switch to low-carbon technologies (Mundaca et al. 2013), search costs, deciding from

the array of available options and making life style changes etc. B Howarth et al. (2000)

argue that EPA programs such as ‘Green Lights’ and ‘Energy Star Office Products’ have

been successful because their campaigns address the imperfect information and bounded

rationality issues (i.e., huge costs of decision making) well. Note that Opower’s HER program

provides this benefit with the information sent in the reports. We explicitly model these

transaction costs in the context of making the decision to switch and the additional costs of

the new technology. We capture these costs as a one time fixed cost of making the switch

and a linear cost with increase in energy efficiency ability. Related to our work, Gillingham

et al. (2009) model consumers’ Energy Efficiency decisions as a trade-off between capital

costs of making the switch and cost of energy, while providing the same level of energy

service. In contrast, we assume a concave utility function for the service provided by energy

consumption and assign the energy efficiency ability as a parameter that affects the utility

from energy consumption. Additionally, we also consider the effects of social comparisons

while they focus on the design of energy efficiency programs.
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4.3. The Model

In this section we describe the model, which we use to compare the effects of different

incentives.

We consider a population of consumers with a continuous distribution of their types,

indexed by θ. Intuitively, θ stands for the energy efficiency. Each player chooses a demand

quantity to consume x ∈ [0, X], where minimum demand is normalized to 0 and X is the

maximum possible demand. From the system perspective, lower net demand is environmen-

tally friendly and more desirable. However, consumer of type θ receives a utility from their

consumption, given by Vθ(x), with decreasing marginal benefit. We assume Vθ(x) is strictly

increasing and strictly concave. Also, each player incurs a financial cost of consuming de-

mand x, given by γx. Thus each player has a unique demand consumption that maximizes

the net utility Vθ(x)− γx.

The customer types arise from their inherent differences in consumption utility from given

demand. We consider a continuum of player types θ, per an atomless distribution, given by

the Probability Distribution Function (PDF), f(θ) : [0, θmax] → ℜ+, and the differentiable

Cumulative Distribution Function (CDF) given by F (θ). We assume that a player of higher

type-θ requires to put a lesser amount of effort to achieve the same utility as a player of

lower type. Specifically, we assume that the consumption utility for type-θ player is given

by, Vθ(x) = V (x + θ) where V (.) = V0(.) is the utility function of player of type 0. Note

that players with higher θ value are predisposed to have lower demand consumption, as their

marginal utility of consuming x units is the same as the marginal utility of consuming x+ θ

for player of type 0. This allows us to consider the well-defined function v1(y) = (V ′)−1(y)

on [−∞, V ′(0)], which represents the inverse of V ′(x).3 We further assume X is large enough

to be not binding.

The social planner has two potential methods of incentivizing consumers to consume less

demand. We label them as economic and social incentives.

• Under economic incentives, the social planner provides information to consumers about

investments that improve energy efficiency, may be in the form of making investments to

3We assume γ < V ′(0), else the optimal consumption is 0 for all cases.
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caulk windows, improve insulation, upgrade to more energy efficient equipment etc. The

HER reports radically simplify the process by providing relevant information. Given this

information, these decisions would typically involve significant transactions costs making the

choice to upgrade. Once the consumers have acquired the information, they may upgrade

to any level, i.e., up to θmax, with a fixed cost c, and a cost of δ per unit improvement in

θ. Let the binary decision variable, i, reflect consumers’ investment decision, with the net

utility given by,

Uθ(x, i) =

 max
θ≤θ∗≤θmax

{V (x+ θ∗)− γx− c− δ(θ∗ − θ)}, if i = 1,

V (x+ θ)− γx, else,
(4.2)

• Under social incentives, the social planner may choose to provide a reference consumption

x̂, which typically is the average consumption of the consumers. A consumer may derive

utility from social comparisons with the outputs of other consumers in the economy and thus,

the reference consumption provided to the consumers, may influence consumers’ decision.

In our model, the utility gains/losses from social comparisons are brought in addition to

the economic value achieved from consumption, Vθ(x) − γx. The reference consumption

provided to the consumers, may influence consumers’ decision. We consider two types of

social comparison utilities. First, the player may face disutility (or guilty feeling) from

higher consumption compared to other players. Hence, the utility of a player of type θ,

similar to Fehr and Schmidt (1999), is given by,

Uθ(x, x̂) = Vθ(x)− γx− β
(
x− x̂

)+
, (4.3)

where, β
(
x− x̂

)+
is called “behind loss” of this particular player and players in such model

are “behind-averse.” Alternatively, a player may receive additional utility from consuming

less than other players. We label these players as “ahead-seeking” and their utility function

is given by,

Uθ(x, x̂) = Vθ(x)− γx+ α
(
x̂− x

)+
. (4.4)
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The optimal consumption decision function for each player of type θ, depends on other

players’ decisions and the reference point, i.e., x∗(θ) ∈ argmax
i∈{0,1}

Uθ(x, x̂, i), where x̂ =∫ θmax

θ=0
f(θ)x∗(θ)dθ. The equilibrium characterizes the consumption of all players in the pop-

ulation. We assume that all players have the same parameters α and β. When the players

receive both social and economic incentives, their utility depends on the investment θ, con-

sumption x and the benchmark consumption x̂,

Uθ(x, i, x̂) =

 max
θ≤θ∗≤θmax

{V (x+ θ∗)− γx− c+ g(x, x̂)− δ(θ∗ − θ)}, if i = 1,

V (x+ θ)− γx+ g(x, x̂), else,
(4.5)

where g(x, x̂) = α(x̂− x)+ or −β(x− x̂)+, in the ahead-seeking and behind-averse cases

respectively.

We compare the impact of providing social (in both ahead-seeking and behind-averse

environments) or economic incentives, separately or together. That is, we compare the

equilibrium consumption profiles under 4 cases: case without economic or social incentives,

case with only economic incentives, case with only social incentives and case with both

economic and social incentives. Among social incentives, we consider both ahead-seeking and

behind-averse cases. Additionally, let θ′ = min{v1(α + γ), θmax} and θ′′ = min{v1(γ), θmax}

represent two thresholds of customer types. If θ′ < θmax or θ′′ < θmax, then we will describe

in the next section that it may be optimal to consume 0 units (the lower limit). We also

assume that α, β, γ, c > 0.

4.4. Equilibria characterization

In this section, we characterize the equilibria under the various scenarios. First, we

consider the benchmark case of no incentives and compare it to the case with economic

incentives.

Proposition IV.1. (i) Under no social or economic incentives, the optimal decision func-

tion is, x∗(θ) = (v1(γ)− θ)+, with average consumption x̂ =
∫ θ′

0
(v1(γ)− θ)f(θ)dθ.
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(ii) Under economic incentives, the optimal decision function is,

(x∗(θ), θ∗(θ)) =

 (v1(γ)− θ′, θ′), if θ ≤ θ̃,

((v1(γ)− θ)+, θ), else,
(4.6)

where θ̃ = (θ′ − c/(γ − δ))+ if δ < γ, else θ̃ = 0.

No Incentives Investment Only

x*(θ) x*(θ)

θ θθ
~

Figure 4.1: Pattern of optimal consumption function under the vanilla case and the case
with only economic incentives.

Clearly, when we have economic incentives, the average consumption decreases. There

exists a threshold θ̃, below which all consumers choose to invest. However, consumers who

have reasonably high ability choose to not invest. Those that upgrade, choose their technol-

ogy level θ∗ = θ′ if δ < γ.

Now, we consider the optimal policies under only social incentives, in both ahead-seeking

and behind-averse scenarios:

Proposition IV.2. The equilibrium under social incentives is given by,

(i) Under ahead-seeking scenario, the optimal decision function is given by,

x∗(θ) =

 v1(γ)− θ, if 0 ≤ θ ≤ θ̂,

(v1(γ + α)− θ)+, if θ̂ < θ < θmax,

where θ̂ = v1(α + γ)− x̂ + kα, where kα = (V (v1(γ))− V (v1(α + γ)) + γ(v1(α + γ)−

v1(γ)))/α for some unique x̂.

(ii) Under behind-averse scenario, the optimal decision function is as follows,
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If v1(γ)− θ′ ≤ v1(γ + β),

x∗(θ) =


v1(γ + β)− θ, if 0 ≤ θ < θ,

x̂ if θ ≤ θ ≤ θ,

(v1(γ)− θ)+, if θ < θ ≤ θmax,

where θ = v1(γ + β)− x̂, θ = v1(γ)− x̂, for some unique x̂ ∈ (v1(γ)− θ′, v1(γ + β)).

Else, x∗(θ) = x̂ for all θ ∈ [0, θmax] is optimal for all x̂ ∈ [v1(γ + β)+, v1(γ)− θ′].

θ

Behind averse
x*(θ)

θ

Ahead seeking
x*(θ)

θ θ θ
^

_
_

Figure 4.2: Pattern of optimal consumption function under the case with only social incen-
tives.

In both ahead-seeking and behind-averse scenarios, unique equilibria exist and are as

described above. The average consumption, in each case is smaller than the case with no

incentives. However, the relative ordering of the average consumption under economic only

incentive and social only incentive depends on the value of the parameters c and α.

Now, we consider the case when both incentives are applied.

Proposition IV.3. Given δ < γ, the optimal decision function under social and economic

incentives is as follows:

(i) Under ahead-seeking scenario,

(x∗(θ), θ∗(θ)) =


(v1(γ + α)− θ′′, θ′′), if 0 ≤ θ ≤ θ̃,

(v1(γ)− θ, θ), if θ̃ < θ ≤ θ̂,

(v1(γ + α)− θ, θ), if θ̂ < θ ≤ θmax,

where θ̂ = min{v1(α + γ) − x̂ + kα, θmax}, and θ̃ = (θ′′ − c/(γ − δ) + α(θ′′ − (v1(α +

γ)− x̂+kα))/(γ− δ))+, and kα = (V (v1(γ))−V (v1(α+γ)))+γ(v1(α+γ)− v1(γ)))/α

for some unique x̂.
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(ii) Under behind-averse scenario, if v1(γ)− θ′ ≤ v1(γ + β),

(x∗(θ), θ∗(θ)) =



(v1(γ)− θ′, θ′), if 0 ≤ θ < θ̃,

(v1(γ + β)− θ, 0), if θ̃ ≤ θ < max{θ, θ̃},

(x̂, 0), if max{θ, θ̃} ≤ θ ≤ θ,

(v1(γ)− θ, 0), if θ < θ ≤ θmax,

where θ = (v1(γ + β)− x̂)+, θ = v1(γ)− x̂, θ̃ =
(
(γ − δ)θ′ + β(v1(γ + β)− x̂) + βkβ −

c
)+
/(γ + β − δ) , and kβ = (V (v1(γ)) − V (v1(β + γ)) + γ(v1(β + γ) − v1(γ)))/β for

some unique x̂ ∈ [v1(γ)−θ′, v1(γ+β)]. Else, x∗(θ) = x̂ = v1(γ)−θ′ for all θ ∈ [0, θmax]

is optimal.

θ

Behind averse
x*(θ)

θ

Ahead seeking
x*(θ)

θ
θ θ^

_
θ
~

θ
~ _

Figure 4.3: Pattern of optimal consumption function under the case with both economic and
social incentives.

The above case is more involved and contains more intricacies than the previous two

propositions. However, we observe that there ends up being a social pressure for “investing”

in more energy efficient equipment, hence the threshold of investment θ̃, goes up dramatically,

especially in the ahead-seeking scenario. Applying Propositions IV.1-IV.3, we have the

following result about the relative values of the average consumptions under the various

incentive schemes.

Proposition IV.4. Assume population with uniform probability distribution function f(θ) =

1/θmax for all θ ∈ [0, θmax], c >
√

2γ2θmaxkα + (γ(v1(γ)− v1(α + γ)))2−γ(v1(γ)−v1(α+γ))

and v1(α + γ) ≥ θmax and the value function V (.) quadratic. In ahead-seeking scenarios,

the reduction in average consumption due to the combined social and economic incentives is

higher than the sum of the reductions due to each of the incentives individually.

134



Proposition IV.4 states that the two types of incentives, when combined provide larger

reduction in the average consumption of the population, as compared to the sum of reductions

under the individual incentives, under ahead-seeking scenarios. This behavior is illustrated

in Figure 4.4. Observe the relatively large decrease in the average consumption under both

incentives. The grayed region and the tiled region under both incentives is larger then the

respective regions under social and economic incentives respectively.

No Incentives Social Only

Investment Only Both incentives

xavg = 41.5 xavg = 40.25

x*(θ) x*(θ)

x*(θ)x*(θ)

θ
θ

xavg = 34.59xavg = 39.21

θ

θ

Figure 4.4: Output consumptions under all four incentive schemes for an example with θ ∼
U [0, 15], V (x) = 100x − x2, α = 5, γ = 2, c = 25, θmax = 15. The tiled region
represents the magnitude of the decrease in consumption because of consumers
who upgrade. The gray region denotes the decrease in consumption due to social
utility achieved by consumers who are below the reference point.

Interestingly, under behind-averse scenarios, we discuss in the following section that

depending on the relative values of β and c, the benefit of both methods can be sub-additive

or super-additive.

We note that Proposition IV.4 requires the additional constraint that v1(α+γ)−θmax > 0.

This constraint implies that conditional on making the decision to invest, consumers upgrade

to the highest ability level θmax. Indeed, the varying level of investment for different customer

types is a more realistic reflection of the markets, i.e., only some consumers may choose to

upgrade and their upgrade levels would depend on their starting level θ. We observe that

under these relaxed constraints, the proposition no longer holds. This is because, for high

enough α and low enough c, it may be that each of the incentives individually may be
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sufficient to motivate all consumers to consume the lower limit 0. Hence, introducing both

incentives provides no additional benefit compared to introducing a single incentive, as in

the following example.

Example IV.5. Consider the case when V (x) = 20x − x2, c = 5, δ = 1, γ = 10, α = 10,

θmax = 15 and f(θ) = 1/15 for θ ∈ [0, θmax].

For this example, observe that the optimal consumption function under the vanilla case

is given by, x∗(θ) = (5 − θ)+, i.e., θ′ = 5. Interestingly, given that α = 10, it can be shown

that x∗(θ) = 0 for all θ ∈ [0, θmax] for the case with social incentives only. However, for the

case with economic incentives, the optimal consumption function is given by x∗(θ) = (5− θ)

if θ ∈ [40/9, 5] and x∗(θ) = 0 otherwise. Observe that in the case with both incentives the

optimal consumption function is still x∗(θ) = 0 for all θ ∈ [0, θmax]. Hence, the net reduction

in average consumption under both incentives is −0.823 less than the sum of reductions

under the individual incentives, contradicting the superadditivity hypothesis.

4.5. Impact of Parameters on superadditivity

In this section, we consider the effect of varying the parameters, c, δ, γ, α(= β) and the

PDF f(.) on the superadditivity of the two incentive schemes. We measure the superadditiv-

ity in terms of the difference between the sums of the outcomes: ∆ = (x̂i+ x̂α)− (x̂0+ x̂α,i),

in other words, this describes the additional decrease in the average consumption under pro-

viding both incentives when compared to the sum of the benefits under both incentives. We

first describe the intuition behind the superadditivity under the ahead-seeking social utili-

ties. Similarly, we describe why superadditivity may not be true under the behind-averse

scenario. Then, we compare the changes in the output ∆ and the benefit of the incentives

to changes in the parameters.

4.5.1 Mechanism of superadditivity

We first discuss the intuition behind the superadditivity in the ahead-seeking case. Ob-

serve that under economic incentives, several consumers of lower type θ switch to the higher

type, where-as under the social incentives, the broad upper range of types θ under ahead-

seeking are willing to consume less, for the benefit of increasing how much they are ahead.
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This can be seen in Figure 4.4. Under both incentives combined, the social incentives moti-

vates more consumers to make the upgrade, hence, the threshold θ̃ up to which consumers

upgrade increases (i.e., the size of the tiled region in the Figure increases). Interestingly not

only do the lower types decide to upgrade, but they also consume less because they have

the additional incentive of being ahead of the average (i.e., the size of the shaded region in

Figure 4.4 increases). We identify these as the two sources of superadditivity. Through the

rest of this section, we explain the changes in the superadditivity to changes in parameters

by attributing to the change in size of these areas.

Under the behind-averse scenario, applying social incentives benefits the low types of

consumers, as these customers decrease their consumption to get closer to the average.

Similarly, the economic incentives also provides the low type consumers possibility to upgrade

to a higher technology. However, under both incentives, consumers either upgrade to the

highest level or work extra hard to consume less (to reduce the behind loss), in other words,

they choose one of the two incentives to motivate them as once they upgrade to the highest

level, they do not have any motivation to consume even less. Hence, we observe in our

extensive numerical study that often, ∆ < 0, i.e., the two benefits are sub-additive. However,

when c is quite high or β is quite low, providing both benefits presents the additional nudge

for more consumers to upgrade further or pushing down the average causing the ‘guilty

feeling’ on more consumers. In these cases, the benefits may be super-additive.

4.5.2 Explanation of numerical study

To illustrate the interaction of incentives, we consider a simple quadratic model with

V (x) = 100x − x2 and a range for the values of parameters c, δ, α, β. We assume that the

distribution of consumer types is triangular and follows the PDF f(.) given by,

f(θ) =
g

θmax
+


4θ(1−g)
(θmax)2

if θ < θmax

2

4(θmax−θ)(1−g)
(θmax)2

else
(4.7)

where g ∈ [0, 2] is an index of variance of the distribution, while the mean remains the

same.

137



4.5.3 Impact of c and δ

First consider the impact of the fixed cost of upgrading, c. Recall that superadditivity in

ahead-seeking scenarios stems from the increase in the areas of the tiled and shaded regions,

as seen in Figure 4.4. Superadditivity is high for very low c and very high c. This is because,

at very low c, the increase in the area of the shaded region is high, because the threshold θ̃

is high. At very high c, the relative increase in the area of the tiled region is high because

of the increase in the threshold θ̃ from the case with economic incentives to the case with

combined incentives.

In behind-averse scenario, as c increases, fewer consumers react to economic incentives.

Recall that in behind-averse scenarios sub-additivity arises because the ones who upgrade

lose the motivation due to social incentives as they are ahead of the average (due to economic

incentives). However, as c increases, more consumers have insufficient incentives to upgrade

and combining it with social incentives helps. Thus, we observe superadditivity increases.

Interestingly, as δ represents the unit cost of upgrading while c represents the fixed cost

of upgrading, the effect on the output parameters to changes in δ follows similar patterns as

c, providing the same insights.
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Figure 4.5: Impact of fixed cost of investment when δ = 1, γ = 6, g = 1, α(= β) = 5.
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4.5.4 Impact of γ

As γ increases, the threshold θ̃ up to which consumers upgrade increases.4 Hence, the

area of the shaded region is increasing, i.e., superadditivity, which captures the additional

decrease in consumption of those who upgrade due to social incentives, is increasing. In con-

trast, under behind-averse scenario, increasing the threshold up to which consumers upgrade,

implies more consumers (who upgrade) lose out on the social sensitivity benefits. Hence, the

superadditivity factor ∆ decreases with increase in γ.
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Figure 4.6: Impact of cost of consumption γ when δ = 1.1, c = 20, g = 1, α(= β) = 5.

4.5.5 Impact of PDF f(.)

In this subsection, we measure the impact of the variance in the distribution f(.) of the

consumer types.

Observe that the value of the threshold θ̃ up to which consumers upgrade does not change

with g. We first consider the case when θ̃ is larger than the median of the distribution. In

this case, observe that larger g implies that a smaller proportion of the population is less

than the threshold. Hence, the weighted area of the shaded region (i.e., the amount by which

consumers who upgrade reduce their consumption) decreases as g increases for the ahead-

seeking scenario. Hence, we observe that superadditivity is decreasing when g increases. In

contrast, for the behind-averse scenario, as g increases, the number of consumers upgrading

decreases. Hence, in line with the arguments in section 4.5.1, the super additivity benefit is

4All consumers who upgrade choose the same final ability level.
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increasing as fewer consumers are missing out on the double benefits.
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Figure 4.7: Impact of Distribution parameter g when the threshold of upgrading θ̃ is higher
than the median, and δ = 1.1, γ = 50, c = 30, α(= β) = 5.

For the behind-averse scenario, when the threshold θ̃ is below the median, increasing g

increases the proportion of the population who upgrade when subject to economic incentives.

Hence, using the same arguments as above, the superadditivity benefit is decreasing. How-

ever, for the ahead-seeking scenario, when g increases, while the proportion of population

who upgrade is increasing the proportion of the population in the higher distribution of types

who are above the average is also increasing, neutralizing the effects of the change in area

of the shaded region. More interestingly, increasing g reduces the impact of the increase in

the area of the tiled region. Hence, superadditivity decreases when g increases in this case.

4.5.6 Impact of α(= β)

For ahead-seeking case, as α increases, the relative increase in the upgrade threshold due

to applying both incentives increases, because there’s more motivation to upgrade, as up-

grading allows the consumer to be ahead of the average. Hence superadditivity is increasing,

until α becomes high enough that the constraint x ≥ 0 becomes binding. At this point, the

two benefits become redundant as one benefit is already beginning to achieve the maximum

possible reduction in the consumption. Hence, ∆ starts to decrease at higher α.

In contrast, under the behind-averse scenario, the sub additivity comes from low ability

consumers who either upgrade or reduce behind loss by consuming less. As β increases,

consumers who upgrade lose relatively more to the social case when they would consume
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(a) Ahead seeking case (b) Behind averse case
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Figure 4.8: Impact of Distribution parameter g when the threshold of upgrading θ̃ is less
than the median, and δ = 1.1, γ = 5, c = 50, α(= β) = 5.

lesser for being closer to the average. Hence, the sub-additivity increases, as β increases.
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Figure 4.9: Impact of social comparison factor α(= β) when δ = 1.1, γ = 50, g = 0, c = 5.

4.6. Conclusion and Extensions

The Home Energy Reports (HER) program of Opower have proved very effective in

reducing the average demand consumption of the energy customer population. This work

attempts to provide one explanation as to why the combination of actionable information

(ideas for upgrading to energy efficient equipment etc) and appropriate social comparisons

can be motivating to consumers rather than the individual effects of these two ‘incentive’
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schemes, within the framework of the literature on social comparisons.

We consider a stylized model which compares the impact of economic and social incen-

tives on the consumption levels of energy consumers. We prove the structure of the optimal

consumption functions for consumers as a function of their type θ. Proposition IV.4 ana-

lytically verifies the observation that the net reduction under both incentives is higher than

the sum of the separate reductions under the individual incentive schemes, for ahead-seeking

social comparisons, under some constraints.

Further, we conduct an extensive numerical study to measure the effect of changes in

parameters on the ‘superadditivity’ of the two effects, in both ahead-seeking scenarios. In

general, we note that often when a change of parameters increases superadditivity for ahead-

seeking, it is likely to reduce superadditivity for the behind-averse scenario. Specifically, we

find that as γ, the cost of consumption increases, the threshold level up to which consumers

upgrade increases, hence the superadditivity increases under ahead-seeking and decreases

under behind-averse.

Finally, when the consumption level begins to hit the lower bound, the super additivity

may not be true in ahead-seeking scenarios. In behind-averse scenarios, superadditivity is

not generally true.

There are several interesting extensions to strengthen the results. One may consider

generalizations of Proposition IV.4 to more general distributions of consumer types. One

may consider a concave utility from social comparisons rather than linear in the difference.

One may also consider the case when there are customer types associated with the social

sensitivity parameter α or β. This work will benefit from these extensions to provide further

insights on the effectiveness of social comparisons in energy markets.

There is some evidence to believe that certain energy efficiency improvements are easier

and often more fruitful than other energy efficiency improvements, i.e., the cost of increasing

ability θ may be convex instead of concave. This kind of extensions may also be considered.

4.7. Appendix: Proofs

Proof of Proposition IV.1. Part (i) follows directly from the fact that Uθ(x) = Vθ(x)−γx

is strictly concave in x, for given θ, giving a unique maximizer, x∗(θ) = (v1(γ) − θ)+ and
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x̂ =
∫ θmax

θ=0
f(θ)x∗(θ)dθ, per the definition.

The proof of part (ii) is similar. Observe first that Uθ(x, 1) = V (x+θ′)−c−γx−δ(θ′−θ)

as long as δ < γ, else Uθ(x, 1) = V (x + θ) − c − γx. Further, note that Uθ(x, 1) and

Uθ(x, 0) are both strictly concave in x respectively per (4.2). Further, x∗1(θ) = v1(γ)− θmax

and x∗0(θ) = v1(γ) − θ maximizes Uθ(x, 1) and Uθ(x, 0) respectively. Finally, we note that,

Uθ(x
∗
1(θ), 1) − Uθ(x

∗
2(θ), 0) = γ(θ′ − θ) − c is greater than 0 when θ < θ̃ and less than 0,

when θ > θ̃. Hence, we have the optimal policy per (ii). Further, the expression of x̂ follows

directly from the expression for the average.

Proof of Proposition IV.2.

First, we prove part (i). Observe that concavity of V (.), implies, (V (v1(γ)) − V (v1(α +

γ))/(v1(γ)− v1(α+γ)) ≥ V ′(v1(γ)) = γ, hence, we have, kα ≥ 0. For given mean x̂, in order

to satisfy rationality, the utility function, given by Uθ(x, x̂) = V (x + θ) + α(x̂ − x)+ must

be maximized. This function is clearly concave. Hence, if x < x̂, then the optimal decision

satisfies, x∗1(θ) = (v1(γ + α) − θ)+ and if x > x̂, then x∗2(θ) = v1(γ)− θ. Note further that,

x∗(θ) ̸= x̂ for any θ, as such a value cannot be optimal (except when x̂ = 0). For each x̂,

there exists θ̂ = (v1(α+γ)− x̂)+k at which the optimal solutions from both x∗1(θ) and x
∗
2(θ)

yields the same value. This shows optimality. Now, we show the existence of a unique x̂,

which achieves optimality. Consider,

−x̂+
θ̂∫

0

f(θ)x∗2(θ)dθ +

θmax∫
θ̂

f(θ)x∗1(θ)dθ = 0 (4.8)

For θ′′ = θmax, observe that the first derivative of the LHS of (4.8) is −1−f(θ̂)(v1(γ)−v1(γ+

α)), which is strictly negative. Further the LHS of (4.8) is positive at x̂ = v1(α+γ)−θmax+kα,

and negative at x̂ = v1(γ +α) + kα. If x̂ > 0, then stability requires that x∗1(θ̂) < x̂ < x∗2(θ̂),

i.e., there does not exist θ for which x∗(θ) = x̂. We observe that this is true due to the strict

concavity of V (.).

Proof of part (ii) is similar to the proof of part (i). Note that the utility function is

concave in x even in the behind-averse scenario.

Proof of Proposition IV.3. Observe, similar to the proof in Proposition IV.2, that
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kα, kβ > 0. First, we prove part (i) for the case when c > (v1(γ)−v1(γ+α))γ. Note that the

function remains concave in the decision variable x, for both i = 0, 1. Hence, the expressions

for x∗(θ) are similar to the proofs of Proposition IV.1 and IV.2. Further, substituting the

expressions gives θ̂− θ̃ ≥ 0 for all x̂ ∈
[
v1(α+γ)−θmax+kα, v1(γ+α)−θmax+c/(α+γ)+kα

]
.

Clearly, x̂ solves,

−x+
θ̃∫

0

f(θ)x∗1(θ
′′)dθ +

θ̂∫
θ̃

f(θ)x∗2(θ)dθ +

θmax∫
θ̂

f(θ)x∗1(θ)dθ = 0 (4.9)

where x∗1(θ), x
∗
2(θ) are as defined in the proof of Proposition IV.2. Uniqueness is established

because the first derivative of the LHS of the above expression is negative, similar to (4.8).

The proofs for the other cases is similar.

The proof of part (ii) is similar.

Proof of Proposition IV.4. Firstly, for the given range of c, it can be seen that θ̂ =

v1(α + γ)− x̂+ kα. We consider the proof in three cases:

• If δ ≤ γ, in this case, the variable cost per unit of increasing ability is lower than the

benefit received from higher ability. Hence, if a consumer decides to invest, they will

invest to increase their ability to the maximum level. So, the structure of equilibria will

remain the same, however, the expression for θ̃ for cases under Proposition IV.1(ii) and

IV.3(i) become θmax−c/(γ−δ) and θmax−c/(γ−δ)+α(θmax− θ̂)/(γ−δ), while the rest

of the expressions remain exactly the same. Substituting these changes into the expres-

sion for, x̂0+x̂α,i−(x̂i+x̂α) is a positive factor of, α
2 (− (c2r − θmax(γ − δ)3))+θmaxr(γ−

δ)2
(
2γ2θmax − 4γδθmax −

√
(γ−δ)2(α+2θmaxr)(α3+2α2(γ−δ)+α((γ−δ)2+4cr)+2θmaxr(γ−δ)2)

r2
+ 2δ2θmax

)
+

αθmax(γ−δ)2 ((γ − δ)2 + 2cr), where r is the negative of the co-efficient for the quadratic

term in V (.). It can be shown that this term is always negative, for the given conditions,

proving the result.

• Else if γ < δ ≤ γ + α, then x̂i = x̂0, proving the result trivially.

• Else if δ > γ +α, in this case, the variable cost per unit of θ is higher than the benefit

received from higher ability, giving, x̂i = x̂0 and x̂α = x̂α,i. Hence, in this case, the
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reduction due to providing both incentives is exactly the same as the reduction due to

providing only social incentives.

4.8. Appendix: Model Extension from Roels and Su (2013)

In this section, we extend the model in Roels and Su (2013) to show that their insights

continue to hold for more general distributions of consumer types. While most of the notation

remains similar to the original model in section 4.3, we apply the notation in Roels and Su

(2013) in order to be consistent.

We attempt to use the same notation as Roels and Su (2013) as much as possible in

order to facilitate comparison. Each player chooses an output x ∈ [0, X], where X is the

maximum possible out. Higher outputs are more valuable but come at a cost, for example,

students prefer to receive higher grades, but will require to put more effort. We summarize

all costs and benefits using a strictly concave (net) value function Vθ(x), so each player has

a unique utility maximizing output.

The customer types arise from their inherent costs of achieving a given output. We

assume that a player of type θ requires to put an additional amount of effort to achieve the

same output as a player of type 0. Hence, the utility to a type θ player for an output x

is given by, Vθ(x) = V (x + θ) where V (.) is the utility function of player of type 0. Note

that players with higher θ value are predisposed to have lower outputs, as their marginal

utility of achieving output x is the same as the marginal utility of achieving output x+ θ for

player of type 0. We also assume that V ′′(x) < −1 for all x and V ′(0) > 0. Note that strict

concavity anyway implies, V ′′(x) < 0 for all x. Further, this allows us to consider the well

defined function v1(y) = (V ′)−1(y) on [−∞, V ′(0)], which represents the inverse of V ′(x).

Each player also derives utility from social comparisons with the outputs of other players

in the economy, which is evaluated based on the Cumulative Distribution Function (CDF)

G(x) : [0, X] → [0, 1] of outputs of the other players in the system, where G(X) = 1

and G(.) is non-negative, increasing and upper semi-continuous. For the sake of analytical

convenience, we further assume that 0, X are not binding solutions.

We consider two models of social comparisons. First, the player may face disutility from

achieving a lower output compared to other players. Hence, the utility of a player of type θ,
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similar to Fehr and Schmidt (1999), is given by,

Uθ(x,G(.)) = Vθ(x)− β lim
h→0+

n∑
i=1

(x− xi)
+(G(xi)−G((xi−1)) (4.10)

where n = ⌊X
h
⌋, xi = ih, and x+

def
= max{x, 0} and β represents the parameter associated

with the social sensitivity of the population. Note that we use Reimann integrals to describe

the social comparison utility in order to succinctly capture the possibility of distributions

with atoms. If G() were differentiable, we have, that Uθ(x,G(.)) = Vθ(x)−β
∫ X

x
(x̃−x)g(x̃)dx̃,

where g(x) = dG(x)/dx. We refer to the term as β
∫ X

x
(x̃ − x)g(x̃)dx̃ as the behind loss of

this particular player and say that the player is behind-averse.

Alternatively, a player may receive additional utility from being ahead of other players

in the population. We label these players as ahead-seeking and their utility function (for

continuous G(.), the definition would be equivalent for a distribution with atoms) is given

by,

Uθ(x,G(.)) = Vθ(x) + α

X∫
0

(x− x̃)+g(x̃)dx̃ = Vθ(x) + α

x∫
0

(x− x̃)g(x̃)dx̃ (4.11)

We refer to these players as ahead-seeking and the term, α
∫ x

0
(x − x̃)g(x̃)dx̃ as the ahead

gain of this particular player for output x.

In our model, the utility gains/losses are brought about from social comparisons on top of

the value achieved from the outputs, Vθ(x). Further, the social planner can actively influence

the outputs of players by providing the appropriate reference structure. We consider two

possible reference structures that may be provided to the consumers: the average output

of population x̂ =
∫ X

0
(1 − G(x))dx5 or the entire distribution of the population (i.e. the

distribution G(x)). We label these as the aggregate reference point or the full reference

distribution cases.

The utilities under the full reference distributions are described above. Similarly, the

utilities under the aggregate reference point for the behind-averse and ahead-seeking type θ

5Fubini’s theorem shows that this is an expression for the mean of a random variable, as long as the
CDF G(x) is integrable.
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players respectively can be written as,

Uθ(x, x̂) = Vθ(x)− β
(
x̂− x

)+
, (4.12)

Uθ(x, x̂) = Vθ(x) + α
(
x− x̂

)+
. (4.13)

Our analysis hopes to compare the impact of the reference structures through the two extreme

cases ( average point vs. entire distribution ), in both ahead-seeking and behind-averse

environments. Hence, we consider a total of four possible cases. We consider a continuum of

player types θ, per an atomless distribution, given by the Probability Distribution Function

(PDF), f(θ) : [0, θmax] → ℜ+, and the differentiable Cumulative Distribution Function

(CDF) given by F (θ). We assume that all players have the same parameters α and β.

4.8.1 Definition of Nash Equilibrium

Using simplified notation, we describe the notion of an equilibrium for a game with

infinite players. See Housman (1988) for a rigorous analytical treatment of the same. In

the game derived from our model, we describe the equilibrium by means of the family of

CDFs Hθ(.) : [0, X] → [0, 1] for each θ ∈ [0, θmax], which represents the distribution of the

outputs of the players of type θ. Since the players are nameless (Housman 1988), we are

only concerned with the distribution of their outputs. We label Hθ(.) as the best response

distribution of players of type θ.

Equivalent to the constraints of an equilibrium strategy satisfying the principle of no

deviation in a Nash Equilibrium, we formulate the following three conditions that must be

true for any equilibrium that makes ‘sense’.

1. Rationality: Each player enters the game with a belief about the distribution of the

outputs of the other players, represented by the Cumulative Distribution Function

G(x) : [0, X] → [0, 1]. This is equivalent to the strategy set of all players in a fi-

nite player game. Note here, that since there are an infinite number of players, the

individual player’s actions are assumed to not affect the distribution, hence this is a

non-atomic game (Khan and Papageorgiou 1987). However, the player will choose from

the set of actions that maximizes his utility. Hence, the if the CDF Hθ has positive
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support at some x̃, then it maximizes Uθ(x,G()), formally,

if lim
r→0+

(Hθ(x̃)−Hθ(x̃− r))

r
> 0, then, x̃ ∈ argmax

x∈[0,X]

Uθ(x,G(.)), (4.14)

In Behind Averse environments, it can be seen that the term Uθ(x,G()) is strictly

concave in x. In such a case, there is a unique maximum for Uθ(x,G(.)). For these

cases, we express the optimal action simply as a function θ and G(.), i.e., x∗(θ,G(.)),

the best response function, which corresponds to Hθ() as follows,

Hθ(x) =

 0, if x < x∗(θ,G(.)),

1, else,
(4.15)

We label an equilibrium whose ‘best response distribution’ Hθ satisfies the above ex-

pression as a ‘smooth equilibrium’.

2. Fairness: We posit that equilibriums that make sense also conform that the actions

taken by players must be concomitant with their ability. Hence players with higher θ

(less ability) must have weakly lower output. More precisely, if θ1 > θ2, the highest

x with positive support in Hθ2 must be weakly less than the lowest x with positive

support in Hθ1 . Formally, let,

xmax(θ) = max
{
x̃|x̃ ∈ [0, X] and lim

r→0+
(Hθ(x̃)−Hθ(x̃− r))/r > 0

}
,

xmin(θ) = min
{
x̃|x̃ ∈ [0, X] and lim

r→0+
(Hθ(x̃)−Hθ(x̃− r))/r > 0

}
. (4.16)

We describe, by a sense of fairness that if θ1 > θ2, then x
max(θ1) ≤ xmin(θ2). Hence, for

a smooth equilibrium, we require that x∗(θ,G(.)) is weakly decreasing in θ, for given

G(.).

3. Stability: The equilibrium is also required to satisfy a stability condition. In other

words, if all the players choose an output from their optimal set per Hθ(), the out-

put distribution must be consistent with the original assumption G(x). Hence, the
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equilibrium output must also satisfy,

G(x)−
θmax∫
θ=0

f(θ)Hθ(x)dθ = 0, for all x ∈ [0, X]. (4.17)

Definition IV.6. Rational Expectations Equilibrium (REE): A Rational Expectations Equi-

librium is a correspondence between from θ ∈ [0, θmax] to a family of functions Hθ() : [0, X] →

[0, 1] that satisfies the above the conditions of Rationality, Fairness and Stability.

Smoothness is also a useful property (per (4.15)), which implies a sense of equality among

all participants of equal ability. For the sake of ease of analysis, we restrict our initial results

to smooth REEs. Note that a smooth equilibrium can be represented by the function x∗(θ),

which we label as the ‘strategy profile’. We assume that X is sufficiently large, so that it

is never a binding solution. In this rest of this section, we characterize smooth REEs under

4 scenarios, arising from a combination of Full reference distribution or aggregate reference

point, either ahead-seeking or behind-averse scenarios. We observe differences in the REEs

in each of the four scenarios. Note that we identify smooth equilibria in all four cases.

4.8.2 Equilibrium Characterization under full reference distribution

In order to better understand the implications of these results, we lead the discussion

with an example, with V (x) = 100x−x2, with α = β = 5 and θmax = 15 and f(θ) = 1/15 for

all θ ∈ [0, 15] (i.e., uniformly distributed). Notice this in contrast to the example in Roels

and Su (2013), where they assume the two types with θ = 0 and θ = 15, with rest of the

numbers being the same.

Proposition IV.7. Suppose that players are ahead-seeking in an infinite population with

type distribution given by the probability distribution function f(θ) : [0, θmax] → [0,∞), that

V (.) is quadratic and have the full reference distribution, then there exists a smooth REE

satisfying,

(i) The unique optimal action for every player of type θ is given by the strictly decreasing

function, x∗(θ) = v1(αF (θ)− α)− θ, defined on [0, θmax] → [0, X].
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(ii) The stable output distribution CDF is given by,

G(x) =


0, if x < x∗(θmax),

1− F (θ−1(x)) if x∗(θmax) ≤ x ≤ x∗(0),

1, else,

(4.18)

where θ−1(x) : [x∗(θmax), x∗(0)] → [0, θmax] is the inverse of x∗(θ).

Proof of Proposition IV.7. As part of the proof, we show that the x∗(θ) and the corre-

sponding output distribution G(x) satisfy, the three properties of Rationality, Fairness and

Stability.

First, part (i) implies,

V ′(x∗(θ) + θ) = (αF (θ)− α) (4.19)

Differentiating, both sides, we have,

dx∗(θ)

dθ
=

αf(θ)

V ′′(x∗(θ) + θ)
− 1. (4.20)

Hence, we observe that x∗(θ) per part (i) is strictly decreasing in θ, satisfying Fairness.

Because of strict monotonicity, the distribution resulting from this strategy profile, can be

expressed using part (ii). Hence, it satisfies the Stability condition.

We observe that the CDF in part (ii) is differentiable, giving

g(x) =


0, if x < x∗(θmax),

−f(θ−1(x))dθ
−1(x)
dx

, if x∗(θmax) ≤ x ≤ x∗(0),

0, else,

(4.21)

where θ−1(x) is the inverse of the function x∗(θ) and dθ−1(x)
dx

= 1/(dx
∗(θ)
dθ

). Note that θ−1(x)

is a well defined function on the set [x∗(θmax), x∗(0)], hence g(x) is well defined on this set

as well. For the sake of convenience, we allow, for g(x) = 0 for x < x∗(θmax) and x > x∗(0).

Hence, Uθ(.) can be expressed as Uθ(x,G(.)) = V (x + θ) + α
∫ x

0
(x − x̃)g(x̃)dx̃. Further,
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we have, the derivatives of this function as follows,

dUθ(x,G(.))

dx
= V ′(x+ θ) + αG(x)

d2Uθ(x,G(.))

dx2
= V ′′(x+ θ) + αg(x) (4.22)

Since V () is quadratic, it can be shown that the second derivative is always negative by

substituting for g(.) in (4.22). Note that x∗(θ) per part (i) satisfies the first order condition

per (4.22). Note further that this is the only point at which the first derivative is zero

including the ranges [0, x∗(θmax)] and [x∗(0), X] as the expression for the first derivative is

the same across the entire domain [0, X]. This proves Rationality property of the equilibrium.

Observe that, for the introductory numerical example, the stable output distribution will

be uniformly distributed over the range of x ∈ [35, 52.5], spread over a range of 17.5, with a

mean of 43.75.

We note that v1(.) is a well defined function on [−∞, V ′(0)] as V (x) is strictly concave,

implying that V ′(.) is monotonically decreasing. Because of strict monotonicity, the inverse

functions are generally well defined across the respective ranges for all the functions discussed

in this paper. Proposition IV.7 provides a smooth REE for the game in ahead-seeking

environments. Note that, in an ahead-seeking environment, the stable output distribution

cannot have any atoms. This is because, for a point x to be an optimal solution for a player

of type θ, we need,

lim
h→0+

Uθ(x+ h,G())− Uθ(x,G())

h
= V (x+ θ) + α lim

h→0+
G(x+ h) ≤ 0

lim
h→0−

Uθ(x+ h,G())− Uθ(x,G())

h
= V (x+ θ) + α lim

h→0−
G(x+ h) ≥ 0 (4.23)

However, if x′ is an atom, then lim
h→0+

G(x′ + h)− lim
h→0−

G(x′ + h) = P (x′) > 0, hence, x′ can

not be the optimal solution for any θ, contradicting the stability condition.

However, the setting described in Proposition IV.7 is a supermodular game. Hence, the

existence of a pure strategy ‘Nash Equilibrium’, is guaranteed. Now, we discuss the behind-

averse environment, where in a submodular game, such an existence is not guaranteed.
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Proposition IV.8. Suppose that players are behind-averse in an infinite population with type

distribution given by the probability distribution function f(θ) : [0, θmax] → [0,∞) and have

the full reference distribution and the distribution also satisfies |V ′′(v1(−βF (θ)))| > βf(θ)

for all (θ) ∈ [θmin, θmax], then there exists a unique REE satisfying,

(i) The unique optimal action for every player of type θ is given by the strictly decreasing

function, x∗(θ) = v1(−βF (θ))− θ

(ii) The stable output distribution CDF is given by,

G(x) =


0, if x < x∗(θmax),

1− F (θ−1(x)) if x∗(θmax) ≤ x ≤ x∗(0),

1, else,

(4.24)

where θ−1(x) : [x∗(θmax), x∗(0)] → [0, θmax] is the inverse of x∗(θ).

Proof of Proposition IV.8. As part of the proof, we show that the x∗(θ) and the corre-

sponding output distribution G(x) satisfy, the three properties of Rationality, Fairness and

Stability.

First, part (i) implies,

V ′(x∗(θ) + θ) = (−βF (θ)) (4.25)

Differentiating, both sides, we have,

dx∗(θ)

dθ
=

−βf(θ)
V ′′(x∗(θ) + θ)

− 1. (4.26)

Hence, we observe that x∗(θ) per part (i) is strictly decreasing in θ, per assumption, sat-

isfying Fairness. Because of strict monotonicity, the distribution resulting from this strategy

profile, can be expressed using part (ii). Hence, it satisfies the Stability condition.

We observe that the CDF in part (ii) is differentiable, giving g(x) = −f(θ−1(x))dθ
−1(x)
dx

,

where θ−1(x) is the inverse of the function x∗(θ) and dθ−1(x)
dx

= 1/(dx
∗(θ)
dθ

). Note that θ−1(x)

is a well defined function on the set [x∗(θmax), x∗(0)], hence g(x) is well defined on this set
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as well. For the sake of convenience, we allow, for g(x) = 0 for x < x∗(θmax) and x > x∗(0).

Hence, Uθ(.) can be expressed as Uθ(x,G(.)) = V (x+ θ)− β
∫ X

x
(x̃− x)g(x̃)dx̃. Further,

we have, the derivatives of this function as follows,

dUθ(x,G(.))

dx
= V ′(x+ θ) + β(1−G(x))

d2Uθ(x,G(.))

dx2
= V ′′(x+ θ)− βg(x) (4.27)

Clearly, the utility function Uθ(x,G(.)) is strictly concave. Hence, there is only one x∗(θ)

which maximizes the utility, satisfying the first order of the condition. Note that x∗(θ) per

part (i) satisfies the first order condition for part (i). This proves Rationality property of

the equilibrium.

The uniqueness can be verified from the fact that the first derivative of the utility, is

strictly decreasing in x for given θ, per (4.27), ensuring unique maximum. Hence, all REEs

must be smooth. Further, observe that x∗(θ) which satisfies the first order condition must

be strictly decreasing in θ. Hence, all REEs must satisfy part (ii) of the proposition.

Observe that, for the example being discussed, the stable output distribution will be

uniformly distributed over the range of x ∈ [37.5, 50]. Compared to the ahead-seeking case,

the range has decreased to 12.5 units, while the average remains the same at 43.75. However,

we observe that, the effect of polarization vs. clustering that is discussed in Roels and Su

(2013) is not as profound in this example with Uniform distribution of customer types.

Note that Proposition IV.8 has a restriction of distributions of θ, for which these equilibira

may exist. Note that behind-averse scenarios represent submodular games in the finite player

setting, hence, in some sense, the existence of a Pure Strategy Nash Equilibrium is not

guaranteed.

4.8.3 Case Under Aggregate Reference Point

In this subsection, we consider a more generic reference system, where each player is

provided only with the aggregate reference point, x̂. Note that the players operate under the

available information. In a sense, it is sufficient to give information about the mean to all

the players, as the players are indifferent to the distribution of G(x), if they have the same
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mean x̂. Under these simplified settings, we are able to describe the structure of all the REE

that exist. We start with the ahead-seeking scenario.

Proposition IV.9. Suppose that players are ahead-seeking in an infinite population with

type distribution given by the probability distribution function f(θ) : [0, θmax] → [0,∞) and

an aggregate reference point, then there exist two smooth REE represented by the strategy

profile,

x∗(θ) =

 v1(−α)− θ, if 0 ≤ θ < θ̂,

v1(0)− θ, if θ̂ < θ < θmax,

and x∗(θ̂) = v1(−α) − θ̂ or v1(0) − θ̂, where6 θ̂ = (v1(−α) − x̂) − k, k = (V (v1(0)) −

V (v1(−α)))/α, for some unique x̂ ∈
[
v1(−α)− θmax − k, v1(−α)− k

]
.7

Proof of Proposition IV.9. Note that the consumers are indifferent between two output

distributions G1(.), G2(.) if
∫ X

0
(1−G1(x))dx =

∫ X

0
(1−G2(x))dx = x̂.

Hence, for any distribution with fixed mean x̂, in order to satisfy rationality, the utility

function, given by Uθ(x, x̂) = V (x + θ) + α(x − x̂)+ must be maximized. This function is

not necessarily concave. In fact, it has up to two maxima. Precisely, (from the first order

conditions) if x < x̂, then it satisfies, x∗1(θ) = v1(0)−θ and if x > x̂, then x∗2(θ) = v1(−α)−θ.

Note further that, x∗(θ) ̸= x̂ for any θ, as such a value cannot be optimal. For each x̂, there

exists θ̂ = (v1(−α)− x̂)− k at which the optimal solutions from both x∗1(θ) and x
∗
2(θ) yields

the same value. Hence, the expression in the proposition satisfies the Rationality condition.

Fairness follows directly as the strategy profile is decreasing in θ. Now, we show the

existence of a unique x̂, which achieves this stability. The stability condition is,

−x̂+
θ̂∫

0

f(θ)x∗2(θ)dθ +

θmax∫
θ̂

f(θ)x∗1(θ)dθ = 0 (4.28)

Observe that the first derivative of the LHS of (4.28) is −1 − f(θ̂)(v1(−α) − v1(0)), which

6Note that any valid CDF Hθ(.) with finite support at only these two values, would be a non-smooth
REE for this game. In fact, we are able to show that these are the only non-smooth REEs possible.

7We assume that [0, X] are not binding solutions, i.e., θmax < v1(−α)− k < X
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is strictly negative. Further the LHS of (4.28) is positive at x̂ = v1(−α) − θmax − k, and

negative at x̂ = v1(−α)− k. Stability requires that x∗1(θ̂) < x̂ < x∗2(θ̂). We observe that this

is true due to the strict concavity of V (.). This satisfies the stability condition.

Here, we observe that the canonical example gives a distribution that has equal support

through the range of [35, 52.5] with the exception of [42.5, 45], where it has zero support.

Notice that the range remains the same 17.5 units as in the continuous case, with a break

in the middle, while the average remains the same as 43.75. This represents remnants of the

polarization effect that was discussed by Roels and Su (2013).

Proposition IV.10. Suppose that players are behind-averse in an infinite population with

type distribution given by the probability distribution function f(θ) : [0, θmax] → [0,∞) and

an aggregate reference point,

• If v1(−β)− θmax ≤ v1(0), then there exists a unique REE and this REE is smooth and

can be represented by the following strategy profile,

x∗(θ) =


v1(0)− θ, if 0 ≤ θ < θ,

x̂ if θ ≤ θ ≤ θ,

v1(−β)− θ, if θ < θ ≤ θmax,

where θ = v1(0)− x̂, θ = v1(−β)− x̂ for some unique x̂ ∈ [v1(−β)− θmax, v1(0)].

• Else, x∗(θ) = x̂ for all θ ∈ [0, θmax] is optimal for all x̂ ∈ [v1(0), v1(−β)− θmax]

Proof of Proposition IV.10. Note that the consumers are indifferent between two output

distributions G1(.), G2(.) if
∫ X

0
(1−G1(x))dx =

∫ X

0
(1−G2(x))dx = x̂.

Hence, for any distribution with fixed mean x̂, in order to satisfy rationality, the utility

function, given by Uθ(x, x̂) = V (x + θ) − β(x̂ − x)+ must be maximized. Clearly, it is

strictly concave, hence unique maximum exists. It can be observed that the expression in

the Proposition satisfies the first order condition of this utility function. Hence, this is the

unique response for any strategy profile with mean x̂, guaranteeing smoothness. Observe

further, that the expression also confirms fairness.
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Finally, we now show that there exists a unique x̂ satisfying stability, if v1(−β)− θmax ≤

v1(0). Else, we show that each x̂ is an REE as it is sub-optimal to deviate.

For the strategy profile described, the average response can be evaluated, based on the

distribution f(θ), and this must be equal to x̂. Hence, any stable REE must have x̂ satisfying,

−x̂+
θ∫

0

(v1(0)− θ)f(θ)dθ + x̂

θ∫
θ

f(θ)dθ +

θmax∫
θ

(v1(−β)− θ)f(θ)dθ = 0 (4.29)

Note that the expression on the right hand side has a derivative of, −1+F (θ)−F (θ), which

is strictly negative except if, θ = θmax and θ = 0, which happens only when x̂ = v1(−β) −

θmax = v1(0). Hence, either way, there can be at most one solution to (4.29). Further, it

can be seen that the expression on the LHS of (4.29) is positive for x̂ = v1(−β) − θmax

and negative for x̂ = v1(0). Hence, such x̂ exists for v1(−β) − θmax ≤ v1(0). This confirms

stability.

Note that Propositions IV.9 and IV.10 both describe sufficient information to find the

stable output distribution. Interestingly, the introductory example gives an interesting out-

put distribution here, with an atom at x = 43.75, P (x = 43.75) = 1/6, and the rest of

the probabilities uniformly spread across the range [37.5, 50] − {43.75}. Clearly, the effect

of clustering is more pronounced in the aggregate reference point case, relative to the full

distribution reference (See Proposition IV.8).

The application of the above propositions on the introductory example are summarized

in Figure 4.10. The example, demonstrates the major learning from these propositions, i.e.,

the clustering and polarization effects in behind-averse and ahead-seeking environments re-

spectively, remain in the case with continuous distributions. However, their effect is less

pronounced. Further, their effect is substantially mitigated from providing the entire refer-

ence distribution (ensuring customers’ anonymity), instead of the aggregate reference point.
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Figure 4.10: Equilibrium Output distributions under the four scenarios, for the introductory
example.
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CHAPTER V

Conclusion

This dissertation contains three essays. The first two deal with the investment and

operations of energy storage technologies, while the third essay deals with the mechanisms

to reduce consumption, by providing social and economic incentives to consumers.

In the storage investment problem, we consider a stylized model of the grid, to model the

localizing vs. centralizing trade-off in storage investments. We evaluate that the high cost

of storage capacity and high minimum demand, largely favors localizing of energy storage

capacity due to the increased efficacy of localizing. Our analytical conclusions are supported

by managerial decisions undertaken by American Electric Power (AEP) (Nourai 2007). We

manipulate this model to consider the question of energy storage technologies as well. We

consider a variation of the traditional fixed cost/variable cost trade-off and present synergies

in ‘mixing’ of technologies in a variety of settings. We provide structural insights by iden-

tifying the structure of the optimal operating policy and establish identifiable properties of

the optimal investment portfolio. We further demonstrate that the marginal benefit of this

flexibility of ‘mixing’ is decreasing in the number of technologies available. To the best of

our knowledge, we are the first to extend such insights from other settings to the non-linear

setting of energy markets.

In the third essay, we investigate the effectiveness of Opower’s HER program by apply-

ing a model to compare the potential benefits of social incentives and economic incentives.

Opower’s HER program provides both actionable investment information and social com-

parison information. Consumers react to both information and modify their consumption

behaviours to be more environmentally friendly. We show that the combined effect of both
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these sets of information can be dramatically higher than the sum of the individual effects

of providing separate pieces of information, in some circumstances.

Several extensions to the above essays are possible. For the second essay, the incentives of

individual storage operators maximizing their own profits to invest in multiple technologies

needs to be investigated. For future research, it may be apt to consider a storage model

where we compare technologies differing in their power ratings and number of life cycles as

well. For the third essay, we may consider varying utility functions which are non-linear in

the social comparisons. It is likely, that the benefit of being ahead has decreasing marginal

benefits to the consumer. Further, the social sensitivities may vary among different members

of the population. Our model is also able to consider the effects of varying the distribution

of the parameters, and how it affects the appropriate incentive schemes and comparison

benchmarks. Several analytical generalizations of the results in the dissertation may be

feasible and appropriate.
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