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Abstract 
 

The energetic cost of walking is important for mobility. The energetic cost of normal healthy 

people walking has been shown as a minimization objective for determining some gait 

parameters, but there lacks of understanding about the energetic cost for people walking with 

challenging conditions or various disabilities. It is well known that the energetic cost of walking 

with carried load increases substantively. Also, patients with ankle weakness due to pathologies 

have greater energetic cost of walking. Several prosthetic feet and ankle-foot orthoses (AFO) use 

elastic spring to restore ankle function by performing elastic push-off. However, there still lacks 

of mechanistic explanation how and why the energetic cost increases in these cases, and how the 

elastic push-off affect the energetic cost. In this thesis, I proposed mechanistic models for the 

energetic cost of human walking with carried load, with reduced push-off and with elastic push-

off and then tested the model predictions with human subjects.   

Three dynamic walking models were used to predict the energetic cost of these conditions. First, 

I used a rigid-leg walking model to predict the energetic cost of walking with carried load at 

different speed. The rigid-leg model can only predict the mechanical work of walking but cannot 

predict some gait parameters, such as double support duration, so I secondly used a compliant-

leg walking model to offer complimentary explanations for walking with carried load. The same 

rigid-leg walking model was also used to predict the energetic cost of walking with reduced 

push-off. Finally, I used the springy ankle walking model to predict the energetic cost of walking 

with elastic push-off. I then measure the mechanical work performed by lower limb extremity 

and estimate the metabolic cost of healthy subjects walking with carried load, with restricted 

ankle and with compliant artificial feet to test the predictions.  

The results of the experiments agreed with the predictions from the dynamic walking models. I 

found the energetic cost of these tasks can be explained by the mechanical work performed by 

lower extremity. The push-off greatly affects the energetic cost by modulating the heel-strike 

collision.  
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Chapter 1 Introduction 
 

 

 

Walking is one of the most common activities in our daily life. Like all other activities, it 

requires energy to walk. The amount of energetic cost of walking depends on different 

conditions. It requires more energy to walk at faster speeds (Griffin et al., 2003). The gait 

parameters, such as step length (Grieve, 1968) and step width (Donelan et al., 2001b), can also 

affect the energetic cost of walking. Humans tend to choose their step frequency and step width 

to minimize the energetic cost in normal walking. The self-selected step frequency (Grieve, 

1968) and step width (Donelan et al., 2001b) are always the optimum yielding minimal energetic 

cost. The mechanical work performed by lower extremity can explain the optimal value of step 

frequency and step width. Walking at slower step frequency or wider step width has more 

positive mechanical work performed by lower extremity and therefore has greater energetic cost. 

According to basic thermal dynamic law, it requires energy to perform active mechanical work. 

Margaria (1968)  found the efficiency of 25 and -120% for positive and negative work 

respectively during human walking. The mechanical work has been showed to explain the 

energetic cost of normal human walking (Donelan et al., 2002a), but it is unclear if the energetic 

cost of walking with challenging conditions can also be explained by mechanical work.  

The energetic cost of walking with challenging conditions, such as walking with carried load, is 

significant higher than normal walking. The energetic cost can double when walking with carried 

load about 40 % of the body weight (Griffin et al., 2003; Huang and Kuo, 2014). For patients 

with ankle weakness due to ankle arthroplasty (Doets et al., 2009)  or pathologies such as 

multiple sclerosis, stroke or amputation (Bregman et al., 2011b; Waters and Mulroy, 1999) also 

have higher energetic cost for walking. Several prosthetic feet, ankle-foot orthoses and 

exoskeleton systems were designed to reduce the energetic cost of walking. However, why and 
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how the energetic cost increases with these conditions is still unclear. It is hard to design a device 

to improve the walking economy without understanding the mechanism behind the energetic cost.    

In normal healthy human walking, the energetic cost can be explained by the amount of 

mechanical work performed by the lower extremity (Adamczyk and Kuo, 2009; Donelan et al., 

2002b).  Theoretically, no mechanical work is needed if an object is moving at a constant speed. 

However, the heel-strike collision at each step dissipates mechanical energy of walking and 

requires positive work to offset. One of the most effective way to perform positive work is ankle 

pus-off. Ankle performs a burst of positive work during late stance, termed as push-off. The 

ankle push-off during walking is considered to redirect the center of mass (COM) during step-to-

step transition and reduce the heel-strike collision, according to a simplest dynamic walking 

model (Adamczyk and Kuo, 2009; Donelan et al., 2002b; Kuo et al., 2005a). This simplest 

dynamic walking model has successfully explained the relationship between preferred step 

length and walking velocity of normal walking (Donelan et al., 2001a; Kuo, 2001). 

The mechanical work performed by lower extremity has been shown to be able to explain the 

energetic cost of normal walking, and the simplest dynamic walking model can explain the 

mechanical work based on push-off-collision relationship. In this thesis, I purposed the 

mechanical work and the simplest dynamic walking model can also explain the energetic cost of 

walking with challenging conditions.  

The most common challenging condition is walking with carried load. It is well known that the 

cost of human walking increases substantively to carrying a load, but lacks of a mechanistic 

explanation (Goldman and Iampietro, 1962; Griffin et al., 2003; Soule et al., 1978). Therefore, in 

Chapter 2, I tested if the mechanical work performed by lower extremity can explain the 

energetic cost of healthy adults walking with carried load. I purposed an  hypothesis based on the 

simplest dynamic walking model, in which the mechanical work performed by each leg on body 

center of mass (COM) and the energetic cost should be proportionate to the total mass of the 

body. An experiment of human walking with different carried loads is performed to test this 

hypothesis. We found linear relationship between all measurements of work and carried load. 

Also, we found linear relationship between the net metabolic rate and mechanical work 

performed on COM by each leg, yielding a delta efficiency of 16 % of mechanical work.  
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To explore the energetic cost of human walking with more challenging conditions, we tested 

human walking with carried load at different speeds. The energetic cost of walking with faster 

speed increases more severely than walking with carried load (Griffin et al., 2003), and the 

mechanical work performed by each leg on COM can explain the energetic cost for walking with 

no carried load at different speeds (Donelan et al., 2002d). An overall explanation for the 

energetic cost of walking with carried load and at different speeds is still missing. In Chapter 3, I 

predicted the mechanical work performed by each leg on COM as a function of total mass and 

walking speed based on the simplest rigid-leg dynamic walking model. The rigid-leg model 

predicts the mechanical work performed on COM should be proportionate to the body bass 

multiplies walking speed raised to the power of 3.42. I tested this prediction by testing healthy 

adults walking at different speeds with carried load. I found that the rigid leg model can explain 

the increases of the mechanical work performed on COM and the metabolic rate. The rigid-leg 

model can only predict the mechanical work performed on COM, so I used a compliant-leg 

model to predict other gait parameters such as double support duration as complement. The 

compliant-leg model predicts the double support duration should increase at faster speed. The 

compliant-leg model can explain the double support duration and COM fluctuations. 

The energetic cost of walking with ankle weakness due to pathologies such as multiple sclerosis 

or stroke is higher than with normal intact ankle (Bregman et al., 2012; Waters and Mulroy, 

1999). The less ankle push-off due to the ankle weakness could be a reason why the energetic 

cost is higher. However, in most patient groups it is impractical to isolate ankle weakness from 

other effects that accompany the diseased state. Therefore, I studied healthy subjects walking 

with restricted ankle motion, which reduced the ankle push-off, in Chapter 4. The simplest 

dynamic walking model predicts the energetic cost of human walking based on the push-off-

collision relationship: the push-off preemptive to heel-strike can reduce heel-strike collision and 

energetic cost of walking. The model predicts that the less push-off would cause greater collision 

and requires more mechanical work to compensate causing higher energetic cost. I then estimate 

the metabolic rate and measure the collision work of healthy subjects walking with reduced 

push-off by ankle restriction. The results agreed with the prediction from simplest walking model 

and revealed the importance of restoring ankle push-off.  
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To restore ankle push-off, several prosthetic feet and AFOs use elasticity elements to store and 

return energy as push-off. The patients with ankle weakness or amputations usually prefer these 

devices, and the energetic cost of walking with these devices is significantly less than rigid ones. 

However, the elastic push-off has not been studied independently from other disabilities due to 

pathologies or amputations. Therefore, I studied how elastic push-off affects the energetic cost of 

healthy subjects walking with compliant artificial feet in Chapter 5. I used the springy ankle 

dynamic walking model (Zelik et al., 2014) to predict the energetic cost of walking with different 

level of elastic push-off by tuning the ankle stiffness and foot length. I estimate the metabolic 

rate and the mechanical work performed by lower extremity of healthy subjects walking with 

compliant artificial feet. The results show that the timing and the amount of elastic push-off, 

which depends on the ankle stiffness and foot length, affects the energetic cost of walking.  
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Chapter 2 Mechanics and Energetics of Load Carriage during 
Human Walking 

 

Published in Journal of Experimental Biology (2014) 

Abstract 
 

Although humans clearly expend more energy to walk with an extra load, it is unclear what 

biomechanical mechanism explains contribute to that increase. One possible contribution is the 

mechanical work performed on the body center of mass (COM), which simple models predict 

should increase linearly with added mass. The work should be performed primarily by the lower 

extremity joints, although in unknown distribution, and cost a proportionate amount of metabolic 

energy. We therefore tested normal adults (N=8) walking at constant speed (1.25 m/s) with 

varying backpack loads up to about 40% of body weight. We measured mechanical work (both 

performed on the COM and joint work from inverse dynamics), as well as metabolic energy 

expenditure through respirometry. Both measures of work were found to increase approximately 

linearly with carried load, with COM work rate increasing by about 1.40 W for each 1 kg of 

additional load. The joints all contributed work, but the greatest increase in positive work was 

attributable to the ankle during push-off (about 45 – 60% of stride time), and the knee in the 

rebound after collision (12 – 30% stride). The hip performed increasing amounts of negative 

work, near the end of stance. Rate of metabolic energy expenditure also increased approximately 

linearly with load, by about 7.6 W for each 1 kg of additional load. The ratio of the increases in 

work and metabolic cost yielded a relatively constant efficiency of about 16%. The metabolic 

cost not explained by work appeared to be relatively constant with load and did not exhibit a 

particular trend. Most of the increasing cost for carrying a load appears to be explained by 

positive mechanical work, especially about ankle and knee, with both work and metabolic cost 

increasing nearly linearly with added mass.    

  



6	
  
	
  

Introduction 
Humans expend considerably more effort to walk when carrying a backpack load. Metabolic 

energy expenditure increases sharply with the load carried, and can easily double for a moderate 

load (Goldman and Iampietro, 1962; Soule et al., 1978). Gait kinematics do not change nearly as 

much (Ghori and Luckwill, 1985; Tilbury-Davis and Hooper, 1999), suggesting that the 

energetic cost appears less due to an altered gait pattern than to the effort of transporting the load 

itself. Indeed, the forces and joint moments of walking do increase markedly with load, as does 

the electromyographic activity of muscles in the lower limbs and trunk (Ghori and Luckwill, 

1985; Knapik et al., 1996). However, it remains difficult to predict how biomechanical variables 

should increase with load, and how they might mechanistically contribute to greater metabolic 

energy expenditure. This underscores the need for a mechanistic explanation for the metabolic 

cost of walking as a function of load.  

A major contributor to metabolic cost is the active mechanical work performed by muscles. 

Physical principles dictate that active work must cost energy; muscles perform work with an 

empirically observed efficiency (defined as work divided by energetic cost) of 25% or less, as 

observed in a variety of human experiments and isolated muscle preparations (Margaria, 1976). 

Negative work also costs positive energy although at lower cost, with efficiency about -120%. 

During walking, work is performed on the body center of mass (COM) and to move body 

segments relative to the COM (Cavagna and Kaneko, 1977). The former appears dominated by 

work needed to redirect the COM between successive stance phases (Donelan et al., 2002a; 

Donelan et al., 2002b). This is because the COM moves atop a stance leg that behaves 

approximately like a pendulum (Fig.  2.1), and hence its velocity must be redirected from one 

pendulum-like arc to the next. A backpack load would be expected to add proportionately to the 

work needed to redirect the COM, and to add little to work performed for motions relative to the 

COM. Indeed, measurements of work performed on the COM do appear to increase with load 

(Grenier et al., 2012; Griffin et al., 2003). Much of that work is performed simultaneously as 

positive work by the trailing leg and negative work by the leading leg, and could account for 

much of the metabolic cost of walking (Donelan et al., 2002b).  
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Figure 2.1: Mechanical work to redirect the center of mass during walking.  
The body center of mass (COM) moves atop pendulum-like legs, so that motion during single 
support requires relatively little work. The COM moves in an arc, and its velocity v must be 
redirected from a downward-and-forward direction to an upward-and-forward direction when 
transitioning from one stance leg to the next. Each leg produces a ground reaction force (largely 
directed along the leg) to effect this transition, and consequently performs work on the COM. 
The addition of an extra load increases the total mass that must be redirected, with a proportional 
increase in work. That work is hypothesized to require additional metabolic energy expenditure. 
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There are also metabolic energetic costs other than for moving the COM. One example is a cost 

for moving the legs back and forth relative to the body. That cost may be associated more with 

activating muscle than with performing work (Doke and Kuo, 2007; Doke et al., 2005). It would 

be expected to contribute to walking energetics, but not to increase with a backpack load. Energy 

also appears to be expended to make small adjustments in foot placement from step to step, for 

balance control (O’Connor et al., 2012). Another possible cost is for supporting body weight, 

originally proposed by Taylor et al. (1980) for running gaits, but also applied to walking by 

Griffin et al. (2003). Such a cost should increase with carried load, presumably in amount 

separable from work. These and other energetic contributions are, unfortunately, far less 

straightforward to identify empirically. Perhaps an indication of their magnitude can be formed 

indirectly, from the metabolic cost changes that occur independently of work on the COM.  

These metabolic energetic costs contributions may be estimated in comparison with mechanical 

work, which must therefore be quantified for walking. One empirical measure is the work 

performed on the COM by each limb (termed “COM work” here), defined as the integral of the 

vector dot product of the limb’s ground reaction force against the COM velocity. Although it is a 

relatively simple measure, it can quantify the substantial work performed by the limbs against 

each other during double support (Donelan et al., 2002c), and as a function of load carriage 

(Grenier et al., 2012; Griffin et al., 2003). It does not, however, reveal which joints perform that 

work. That information is better revealed through the inverse dynamics technique, which 

estimates the resultant mechanical power from each joint (“joint work”). But neither inverse 

dynamics nor COM work can determine the actual work by muscles, nor can they isolate work 

performed by tendon (Alexander, 1991) and other soft tissues (Zelik and Kuo, 2010), which can 

contribute passively with little direct metabolic energy cost. Some such contributions can be 

quantified through imaging techniques such as ultrasound, particularly for the ankle (Fukunaga 

et al., 2001), but not as readily for the other joints. We consider COM work and joint work to be 

practically useful, if imperfect, measures for the work of walking. However, they have not 

previously been quantified together to help explain the metabolic cost of load carriage. 

The complementary features of different work measures might reveal insight regarding load 

carriage during walking. An advantage of COM work is that it bears a straightforward link to a 

simple hypothesis, that COM work should increase linearly with carried load. Joint work can 
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then indicate where in the leg the work is performed, and its difference with COM work can 

indicate work for movements relative to the COM. If a carried load mainly affects COM work, 

then metabolic cost would be expected to increase proportionately, with an additional offset term 

that is constant relative to load. That offset term may indicate the metabolic cost for the work 

performed relative to the COM, as well as other metabolic costs not related to work. We 

therefore hypothesize that there would be a linear increase in COM work and metabolic cost as a 

function of carried load. Furthermore, those increases imply a linear dependence between work 

and metabolic energy expenditure. The present study is intended to test for such relationships 

between the mechanics and energetics of walking with a backpack load.  
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Method 
We performed an experiment to measure healthy adults walking with a backpack load. We 

measured metabolic energy expenditure and gait kinematics and kinetics during treadmill 

walking. Kinetic measures consisted of COM work performed by the individual limbs as well as 

joint work for the ankle, knee, and hip. We tested for linear relationships between carried load 

and mechanical work, between load and metabolic energy expenditure, and between work and 

metabolic energy expenditure. The details of the experiment are presented below, followed by a 

brief explanation of the mechanism by which carried load should translate into work. 

Experiment 
Eight subjects (N = 8, 6 male and 2 female) were tested while walking with a backpack load at a 

constant speed of 1.25 m⋅s-1. Four loads ranging 6.8 – 20.4 kg (steel weights of 15, 25, 35, 45 

lbs) were tested, carried by an external-frame backpack (3.8 kg) with standard shoulder straps 

and hip belt. The loads were placed behind the back, about 0.23 m higher than sacrum. Normal 

walking without a backpack was also tested for reference. Subjects ranged 19-26 years of age 

and had average body mass M of 71.1±12.0 kg (mean ± s.d.), and leg length L, 0.99±0.03 m. All 

subjects provided informed consent prior to the study, according to Institutional Review Board 

procedures. 

We measured the rate of oxygen consumption and carbon dioxide production (in mL per min) to 

estimate the metabolic energy expenditure rate, expressed in units of power (W) using standard 

conversion factors (Brockway, 1987a). Each walking trial lasted at least 8 minutes, with the first 

3 minutes discarded to ensure steady state, and average power computed from the remaining 

duration. Net metabolic rate 𝐸 was calculated by subtracting metabolic power for quiet standing 

(109.54±20.32 W, 0.0507±0.0065 dimensionless) from the gross metabolic power. 

We calculated instantaneous COM work rate 𝑃!"# as the inner product of ground reaction force 

𝐹 of each leg and COM velocity 𝑣!"# (Donelan et al., 2002c), 

 𝑃!"# =   𝐹    ∙   𝑣!"# . (2-1) 

The ground reaction force under each leg was measured with a custom instrumented, split-belt 

treadmill (Collins et al., 2009). The COM velocity was computed from the integration of total 

ground reaction force, subject to constraints on periodicity. The positive work per stride 𝑊!"#
!  
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was calculated from the integration of positive intervals of instantaneous COM work rate 𝑃!"# 

over each stride, and the average rate of positive COM work 𝑊!"#
!  was defined as the positive 

COM work per stride divided by stride time and multiplied by 2 for two legs (and similarly for 

negative work, 𝑊!"#
! ). Thus, while work per stride is a single-leg quantity, mechanical work rate 

is for both legs, to facilitate comparison with net metabolic rate to yield apparent efficiency. We 

also qualitatively examined four phases of COM work rate defined from positive and negative 

intervals: Collision, Rebound, Preload and Push-off (Donelan et al., 2002b). We also measured 

other gait parameters such as step length, step time and double support time.      

Joint work was computed from joint powers using inverse dynamics methods. An optical motion 

capture system (VICON, LA) was used to capture lower extremity kinematics, and inverse 

dynamics analysis was performed using standard software (Visual3D, Germantown) for 

calculating joint angles, moments and powers for ankle, knee, and hip, in three dimensions. A six 

degree-of-freedom model was used for each segment (Hanavan Jr., 1964), although only sagittal 

plane angles and moments are plotted for simplicity. Positive joint work per stride was calculated 

from the integration of positive intervals of joint power over each step. As a simple summary for 

an entire leg, we defined summed joint power as net power from ankle, knee, and hip of one leg. 

Positive summed joint work per stride 𝑊!"#$%
!  was defined as the integration of positive intervals 

of summed joint power. Similar integrations were performed for negative work quantities (e.g., 

𝑊!"#$%
! ). Average work rates were defined as work per stride multiplied by 2 and divided by stride 

time. 

To serve as the primary independent variable in the study, we defined total mass 𝑀!"!#$ as the 

combined mass of the body M plus the added mass 𝑀!"#$ of the  load including backpack and 

load. Measurements were reported in dimensionless form, using base units of body mass M, 

standing leg length L (ground to greater trochanter), and gravitational acceleration g. For 

example, masses were normalized by M (average 71.1 kg), moment and work by MgL (average 

692.66 N-m), power by Mg1.5L0.5 (average 2176.12 W) and step length by L (0.99 m). 

Model and Data analysis 
We analyzed the data with respect to three relationships between carried mass, mechanical work, 

and metabolic energy expenditure. The first such relationship was for the dependency between 

rate of mechanical work performed on the COM and added mass. Simple models of dynamic 
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walking (Fig. 2.1) predict that work must be performed to redirect the COM velocity between 

pendulum-like steps (Kuo, 2002a). Push-off from the trailing leg performs positive work at the 

end of one stance phase. This is followed by a Collision of the leading leg, which performs 

negative work at the beginning of the next stance phase. Experiments show that COM redirection 

also occurs during stance, in a burst of positive work termed Rebound, followed by negative 

work termed Pre-Load (Donelan et al., 2002b), that appear to interact with Collision and Push-

off. Just as kinetic energy is proportional to mass, so is the work performed on the COM each, 

proportional to 𝑀!"!#$𝑣!𝑠!, where 𝑣 is walking speed and 𝑠 is step length (Adamczyk and Kuo, 

2009; Donelan et al., 2002b). Previous studies have shown carried mass to have little effect on 

step length at a fixed speed . We therefore expect that for a fixed speed, the positive COM work 

per step will increase in proportion to added mass (load + backpack weight), 

 𝑊!"#
! = 𝑐 ⋅𝑀!"#$ + 𝑑, (2-2) 

where c is an empirical coefficient of proportionality, and d is a constant representing work 

independent of load. 

The second relationship tested was between rate of metabolic energy expenditure and added 

mass. We expect that COM work should account for a substantial fraction of metabolic cost, and 

therefore the metabolic rate 𝐸 should also increase according to 

 𝐸 = 𝑐! ⋅𝑀!"#$ + 𝑑′, (2-3) 

where c′ is an empirical coefficient and 𝑑′ is a constant representing energy cost independent of 

load (and the prime symbol ′ refers to metabolic energy as opposed to work). An example of the 

latter is basal metabolism, which proceeds regardless of task. The combination of work and 

energy expenditure are also made more explicit by the third relationship, 

 𝐸 = !
!
⋅𝑊!"#

! + 𝐸! , (2-4) 

where the empirical efficiency 𝜂 is expected not to exceed 25% (Margaria, 1976), and constant 

𝐸! represents metabolic energy cost independent of work. The 𝜂 defined here represents the 

change in metabolic cost per change in work, sometimes termed a delta efficiency (Gaesser and 

Brooks, 1975). It is also possible that there are other contributions to energy expenditure that 
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also change with total mass, but are unrelated to COM work, which would be expected to appear 

as a residual error in Eqn. 4.  

 

We used linear regression to test these hypothesized relationships. We performed standard least 

squares regression, with 𝑀!"#$ as the independent variable, for Eqns. 2 and 3. We used total least 

squares to test for Eqn. 4, treating both 𝑊!"#
!  and 𝐸 as subject to measurement error. To focus 

on linear trends that apply across different individuals, each regression was performed with a 

single slope across all subjects (reported with a corresponding 95% confidence interval, c.i.) and 

a separate offset for each individual. The offsets account for the fact that individuals can differ in 

many respects not related to the independent variable, such as body mass distribution, muscle 

fiber composition, and basal metabolic rate. These can result in different amounts of work and 

energy expenditure for normal walking, and therefore to considerable variation in the offsets. To 

summarize these effects, graphical results are presented with the mean offset across individuals, 

and tabular results include the standard deviation (s.d.) of offsets across individuals. We also 

examined residual errors in the linear fits to test for metabolic costs not hypothesized here, such 

as energy expended with increasing mass but not explained by work. 

We also tested for other trends that were less hypothesis-based. We tested how the positive joint 

work per stride (𝑊!"#
! , 𝑊!"#

! , and 𝑊!"#
!  for ankle, knee, and hip, respectively) changed as a 

function of total mass, and similarly for negative work per stride (𝑊!"#
! , 𝑊!"#

! , 𝑊!"#
! ). There is no 

fundamental principle governing how work should be apportioned between the joints, and so we 

applied linear regression to determine and quantify the dependence, rather than to test a specific 

hypothesis. We did, however, expect the positive summed joint work per stride 𝑊!"#$%
!  to increase 

linearly with mass, because the joints are ultimately responsible for the positive work performed 

on the COM (Eqn. 2). Similarly, we expected negative summed joint work per stride 𝑊!"#$%
!  to 

increase in magnitude with mass. Its magnitude should also be less than the positive summed 

joint work, because some negative work is performed passively through deformation of soft 

tissues (Zelik and Kuo, 2010).   
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Results 
Walking with a backpack load caused a number of energetic and biomechanical effects. As 

expected, subjects expended more metabolic energy when carrying heavier loads, with an 

approximately linear increase in net metabolic rate with load. Biomechanical effects most 

notably included increased mechanical work, both in terms of COM work and joint work. Work 

rate increased approximately linearly with load, similar to net metabolic rate. As a result, net 

metabolic rate and work rate also increased in approximately linear proportion to each other. The 

specifics of these results, as well as other associated findings, are  presented below and are also 

quantified in Table 2.1.  

To serve as a baseline for comparisons, normal walking condition values were as follows. At the 

fixed walking speed of 1.25 m/s, subjects walked with average step length 0.662 m, step width 

0.142 m, step time 0.532 s, and double support time 0.179 s. Average positive COM work per 

stride was 23.6 J, and positive summed joint work per stride 48.8 J. Gross metabolic rate was 

about 344 W, and net metabolic rate 232 W. The net metabolic cost of transport, defined as 

metabolic rate divided by walking speed (all in dimensionless units), was 2.57.  

Load had little effect on most step parameters (Fig.  2.2). There were no significant changes in 

step length, width (Fig. 2.2A), and duration (Fig. 2.2B) with carried load. However, step width 

variability did increase significantly (P = 0.01, Fig. 2.2 C) and approximately linearly with total 

mass, by about 50% over the range of loads studied. Step length variability did not change 

significantly (P = 0.06, Fig. 2.2D). Although there was no significant change in step duration, the 

duration of double support did increase slightly, by about 30%. As a fraction of step period, 

double support times increased from about 29% to 38%.   
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Table 2-1: Quantitative results for walking with a backpack load.  
Data shown include normal, unloaded walking in both dimensional SI units (first column) and 
dimensionless (second column, “d’less”) form (mean ± s.d.). Linear fit parameters for slope and 
offset are also shown, in dimensionless form (mean ± c.i., 95% confidence interval). Degree of 
fit is indicated by 𝑅! values, and statistical significance of the linear trends by P-values for 
significance of overall fit. Statistically significant (S, final column) trends (P < 0.05) are 
indicated by an asterisk *. 
 Normal (SI) Normal (d’less) Slope ± c.i. Offset ± s.d. 𝑅! P S 
Step length, mean 0.662 ± 0.024 m 0.666 ± 0.022 -0.0029 ± 0.0440 0.6738 ± 0.0161 0.00 0.89  
Step width, mean 0.142 ± 0.038 m 0.143 ± 0.040 0.0308 ± 0.0312 0.1345 ± 0.0333 0.19 0.05  
Step period, mean   0.53 ± 0.02 s 1.67 ± 0.05 0.0536 ± 0.1060 1.6763 ± 0.0507 0.05 0.30  
Step length, RMS 0.024 ± 0.009 m 0.025 ± 0.008 0.0302 ± 0.0316 0.0172 ± 0.0056 0.18 0.06  
Step width, RMS 0.023 ± 0.004 m 0.023 ± 0.004 0.0268 ± 0.0183 0.0231 ± 0.0082 0.34 0.01 * 
DS duration 0.18 ± 0.05 s 0.56 ± 0.16 0.4059 ± 0.2720 0.4611 ± 0.0785 0.35 0.01 * 
        
COM work rate, 
𝑊!"#

!  
55.98 ± 16.24 W 0.0203 ± 0.0037 0.0458 ± 0.0075 0.0197 ± 0.0048 0.90 7E-12  * 

COM work rate, 
𝑊!"#

!  
-46.67 ± 8.08 W -0.0215 ± 0.0032 -0.0355 ± 0.0091 -0.0195 ± 0.0033 0.79 3E-8 * 

COM work, 𝑊!"#
!  23.63 ± 5.73 J 0.0333 ± 0.0062 0.0785 ± 0.0128 0.0331 ± 0.0079 0.90 7E-12 * 

COM work, 𝑊!"#
!  -24.75 ± 4.03 J -0.0352 ± 0.0062 -0.0612 ± 0.0153 -0.0327 ± 0.0051 0.80 2E-8 * 

Joint work, 𝑊!"#$%
!  48.80 ± 9.20 J 0.0426 ± 0.0086 0.0982 ± 0.0491  0.0530 ± 0.0171 0.49 4E-4 * 

Joint work, 𝑊!"#$%
!  -16.37 ± 4.46 J -0.0141 ± 0.0033 -0.0496 ± 0.0238 -0.0326 ± 0.0114 0.51 2E-4 * 

Ankle work, 𝑊!"#
!  25.39 ± 4.88 J 0.0363 ± 0.0071 0.0659 ± 0.0145 0.0351 ± 0.0083 0.83 2E-9 * 

Ankle work, 𝑊!"#
!  -14.36 ± 4.55 J -0.0206 ± 0.0066 -0.0322 ± 0.0129 -0.0220 ± 0.0094 0.60 2E-5 * 

Knee work, 𝑊!"#
!  9.34 ± 2.22 J 0.0132 ± 0.0024 0.0421 ± 0.0113 0.0128 ± 0.0034 0.77 8E-8 * 

Knee work, 𝑊!"#
!  20.44 ± 4.56 J -0.0290 ± 0.0051 -0.0080 ± 0.0112 -0.0342 ± 0.0085 0.11 0.15  

Hip work, 𝑊!"#
!  33.34 ± 10.72 J 0.0483 ± 0.0195 0.0298 ± 0.0302 0.0277 ± 0.0127 0.19 0.05  

Hip work, 𝑊!"#
!  -0.84 ± 0.74 J -0.0012 ± 0.0010 -0.0490 ± 0.0421 0.0011 ± 0.0097 0.24 0.03 * 

        
Metabolic rate, 𝐸 231.6 ± 57.1 W 0.105 ± 0.015 0.249 ± 0.055 0.0858 ± 0.0188 0.83 3E-9 * 
Gross rate, 𝐸!"#$$ 343.8 ± 67.8 W 0.156 ± 0.013 0.249 ± 0.055 0.1364 ± 0.0188 0.83 4E-9 * 
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Figure 2.2: Step parameters for walking with a backpack load.  
(A) Average step length and width as a function of load, as a fraction of unloaded body weight 
(N = 8). (B) Average step period and double support duration as a function of load. (C) Step 
length and (D) step width variability as a function of load, where variability is defined as root-
mean-square (RMS) deviations from average steps. Solid lines represent significant linear trends 
with added mass (P < 0.05). Of the step parameters shown, only double support and step width 
variability exhibited significant trends, both increasing with load. Open symbols represent 
normal unloaded walking (with error bars for s.d.). Left-hand vertical axes show dimensionless 
quantities, using body mass M, leg length L, and gravitational acceleration g as base units. Right-
hand vertical axes show dimensional SI units. 
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Figure 2.3: Force and power measures as a function of stride time, for different loads.  
(A) Vertical ground reaction force and (B) horizontal (fore-aft) ground reaction force vs. percent 
stride time. (C) Instantaneous COM (center-of-mass) power 𝑃!"#  vs. time, defined as dot 
product of COM velocity with ground reaction force from one leg. (D) Summed joint power vs. 
time, defined as sum of powers from ankle, knee, and hip from one leg. Left-hand vertical axes 
show dimensionless quantities, right-hand vertical axes show dimensional SI units. Data shown 
are trajectories averaged across subjects (N = 8). 
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In terms of mechanics, there are several qualitative observations to be made regarding the force 

and power trajectories (Fig. 2.3). The amplitudes of vertical and horizontal ground reaction 

forces increased with load (Fig. 2.3A & B), most notably in the two peaks of the vertical force. A 

similar trend may be observed from the COM work rate trajectories (Fig. 2.3C). Amplitudes 

appeared to increase with load for each of the four phases of positive or negative COM work, 

Collision, Rebound, Preload, and Push-off. That effect is mirrored by the summed joint power 

trajectories (Fig. 2.3D), which behaved roughly similarly with increasing load. Examining the 

joints individually (Fig. 2.4), there appeared to be little change in joint angle trajectories with 

load. The amplitudes of joint moments and powers did increase with load.  

We next examine how work and metabolic energy expenditure rates increase with load (Fig. 2.5). 

The rate of positive work performed on the COM (𝑊!"#
! ) increased approximately linearly with 

total mass, and nearly doubled across the range of loads studied. Subjects performed about 1.40 

W of additional positive mechanical work rate for each additional 1 kg carried by backpack (Fig. 

2.5A). They also expended about 7.62 W of additional metabolic power for each additional 1 kg 

carried by backpack, at the designated speed of 1.25 m/s (Fig. 2.5B). Net metabolic power nearly 

doubled across the loads tested. To illustrate the effect of the normalization procedure, which 

was intended to reduce scatter due to differences in subject body mass and leg length, results are 

presented in terms of absolute physical units of power (W) vs. mass (kg), as well as using 

dimensionless variables (Figs. 2.5C and 2.5D, respectively). The linear fits for both work and 

metabolic cost also yield residuals (Figs. 2.5C and 2.5D), which did not obviously reveal any 

additional trends. 
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Figure 2.4: Joint kinematics and kinetics vs. stride time for walking with different loads.  
Angle, moment, and power trajectories are shown for ankle, knee, and hip joints. Left-hand 
vertical axes show dimensionless quantities, right-hand vertical axes show dimensional SI units. 
Data shown are trajectories averaged across subjects (N = 8). Positive angles and moments are 
defined in extension (Ext) as opposed to flexion (Flx). 
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Figure 2.5: Mechanical work and metabolic energy cost as a function of load, with and without 
normalization. 
(A) Rate of positive work 𝑊!"#

!  performed on the COM and (B) Net metabolic rate 𝐸 vs. added 
load, both in un-normalized form. Each subject’s data are denoted by a separate color; open 
symbols denote normal, unloaded walking. (C) Normalized mechanical work rate and (D) net 
metabolic rate vs. load, along with residuals after subtracting the linear trend from data. 
Statistically significant linear trends were observed for both work and metabolic data (P = 7E-12 
and 3E-9, respectively). Normalization procedure includes non-dimensionalization, using body 
mass M, leg length L, and gravitational acceleration g as base units. In addition, a separate y-
intercept was determined for each subject’s linear trend, reducing variability due to differing 
constant offsets. Net metabolic rate is defined as gross rate minus the rate for quiet standing. 
Data points for individual subjects are distinguished by color.  
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The work trends may be examined more closely on a per-stride basis. The work performed on 

the COM, and from the summed joints, both increased approximately linearly with load (Fig. 

2.6A). The slopes of these increases were not significantly different (COM work per stride 

increased 0.76 ± 0.12 J per 1 kg of load, and joint work by 0.96 ± 0.48 J; P = 0.77, analysis of 

covariance). The amount of positive COM work was close to the negative COM work, indicating 

zero net mechanical work for steady state walking, but the sum of negative joint work was much 

less than sum of positive work, implying the soft tissue work also increased with load (Zelik and 

Kuo, 2012a). Examining the individual joints (Fig. 2.6B), they generally performed positive 

work increasing approximately linearly with load. Work is normally performed by the ankle, hip, 

and knee, in decreasing order of contributions. With carried loads, however, the greatest 

increases were at the ankle, knee, and (with marginal significance) hip, in decreasing order. The 

joints also normally perform negative work at the knee, ankle, and hip (in decreasing order of 

magnitude). With load these magnitudes increased at the hip and ankle, with no significant effect 

at the knee.  

Work and metabolic energy expenditure may also be compared against each other (Fig. 2.7). A 

total least squares fit between COM work rate and metabolic rate yields slope 6.394 ± 0.246 (c.i.) 

and offset -0.051 ± 0.008 (Eqn. 4). The inverse of the slope yields an efficiency 𝜂 = 0.156±

0.006 for COM work. A similar calculation with summed joint power yields an efficiency 0.163 

± 0.059 for summed joint work. 

 

Figure 2.6: Mechanical work as a function of load mass.  
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(A) Average positive COM work 𝑊!"#
!  and summed joint work per stride 𝑊!"#$%

!  (labeled C+ and 
J+, respectively), along with negative work (C– and J–). (B) Positive work by ankle, knee, and hip 
joints (A+, K+, H+, respectively; negative work also shown), compared to summed joint work per 
stride. Linear trends (denoted by lines, N = 8) were fit to each measure, and were statistically 
significant (P < 0.05) in all cases except for negative knee work and positive hip work. Open 
symbols represent normal unloaded walking (with error bars for s.d.). Left-hand vertical axes 
show dimensionless quantities, right-hand vertical axes show dimensional SI units. 

 

Figure 2.7: Net metabolic rate vs. positive COM work rate for walking with varying amounts of 
backpack load.  
Also shown are residuals after subtracting a linear trend fit (solid line; total least squares fit 
applied to load data only). A significant trend was found with slope 6.394 (± 0.246 c.i., 95% 
confidence interval) and offset -0.051 ± 0.008 (s.d.). Reciprocal of slope yields 𝜂 =   0.156±
0.006, meaning a delta efficiency of positive work of about 16%. No obvious trend was 
observed in the residuals. Left-hand vertical axes show dimensionless quantities, right-hand 
vertical axes show dimensional SI units, and similarly for bottom and top axes. Data points for 
individual subjects are distinguished by color. 
 

  



23	
  
	
  

Discussion 
This experiment was intended to test whether a carried load proportionally increases the work 

performed on the COM, and whether that work leads to a proportional increase in metabolic 

energy expenditure. We had hypothesized that a backpack load mainly affects the inertia of the 

COM, which must be redirected in the transition between pendulum-like steps. The load should 

also have little effect on the work performed for motions relative to the COM, and on other 

metabolic energetic costs not related to work. Our results yielded three main linear 

proportionalities between load, mechanical work, and metabolic energy expenditure. We next 

consider how well the results agreed with these expectations, and examine the complementary 

measures of joint work, which may indicate how the body performs the greater workload. 

Backpack loading resulted in approximately proportionate increases in mechanical work (Fig. 

2.6). A linear fit suggests that the increased COM work is largely explained by the added mass. 

This is because redirection of the COM is determined mainly by mass, walking speed, and step 

length (Adamczyk and Kuo, 2009). Here, only mass was varied (as the independently controlled 

variable) and speed was kept fixed. Subjects tended to maintain nearly the same step parameters 

(Fig. 2.2) and joint kinematics (Fig. 2.4), leaving little opportunity to change how the COM was 

redirected. This means that COM work is mainly determined by how much mass is redirected, as 

predicted by Eqn. 2. An approximately linear increase was also observed in the positive summed 

joint work (𝑊!"#$%
! ). This is largely as expected, because COM work must largely result from 

actions at the joints. In addition, the joints also perform work to move the limbs relative to the 

COM, as indicated by the difference between summed joint work and COM work (Fig. 6; about 

38% of summed joint work). While most of the joint work may be attributable to moving the 

COM, a smaller amount of work is also performed to move body segments relative to the COM.  

The individual joint powers reveal more detail about the distribution of work (Fig. 2.4). We had 

no prediction for the apportionment between joints, but much of the increase with load appeared 

to occur at the ankle during Push-off, which produces the largest proportion of the positive work 

in both unloaded and loaded walking. The knee also performed increasing positive work, mostly 

during Rebound (Fig. 2.4 knee power). In contrast, the hip only performed marginally more work 

with mass. As for negative work, its magnitude also increased, primarily at the hip, and mostly 

near the end of swing phase. This might aid the faster swing that occurred with increasing double 
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support time and relatively constant stride time (Birrell and Haslam, 2009; Martin and Nelson, 

1986). These various changes in joint work accounted for the largely parallel changes in summed 

joint work and COM work with load. 

Closer examination of joint work also reveals possible roles of tendon and other soft tissues. 

Tendons are highly elastic, as exhibited by considerable passive energy return at the ankle during 

walking (Fukunaga et al., 2001). Here, increasing mass led to greater amplitude in the sequence 

of ankle Pre-load and Push-off, where negative and then positive work is performed. Similarly, 

the amplitude of negative Collision work of the knee was apparently accompanied by greater 

positive Rebound work (Fig. 2.4 knee power). Both sequences may benefit from elastic energy 

return, as is implied by our terminology (Donelan et al., 2002b; Kuo et al., 2005b). Indeed, the 

increase in double support duration (Fig. 2.2D) is consistent with a spring-mass system, whose 

natural frequency decreases with greater mass. The amplitude of both COM and joint powers 

also increase with mass (Figs. 2.3B and D), also consistent with a driven mass-spring oscillation, 

as previously proposed by Holt et al. (2003). Aside from tendon elasticity, other soft tissues such 

as the viscera and heel pad can act as passive, damped elastic elements. They can thus perform 

work not captured by inverse dynamics (Zelik and Kuo, 2010; Zelik and Kuo, 2012a). Here, the 

negative summed joint work was considerably lesser in magnitude than the corresponding 

positive work, ranging about 57 – 61% of positive work for the loads examined. This suggests 

some negative work was performed by soft tissue deformation (DeVita et al., 2007; Zelik and 

Kuo, 2010) and not captured by joint work, because the body must perform equal amounts of 

positive and negative work to walk at steady speed. These results suggest the possibility of 

elastic and damped elastic energy return during walking with load carriage. 

We also observed an approximately linear increase in net metabolic rate with load (Fig. 2.5D), 

expected from Eqn. 3. The cost may be described by the increase in net metabolic rate per extra 

load as a fraction of body weight (𝑐! in Eqn. 3), with a value of about 0.25, which exceeds the 

corresponding value of 0.11 for net metabolic rate of normal unloaded walking (or 0.16 for gross 

rate, Table 1). These measures suggest that humans expend relatively more energy to carry a 

backpack load than to carry an equivalent amount of their own body mass. The metabolic cost is 

also consistent with the approximately linear increase observed for mechanical work (Fig. 2.5B), 

assuming a constant efficiency. The observed delta efficiency (Eqn. 4) was about 𝜂 = 15.6% for 



25	
  
	
  

positive COM work, and about 16.3% for positive summed joint work. These are somewhat 

lower than the typical 25% efficiency for positive work by muscle (or 21% if the cost of negative 

work is also included; Donelan et al., 2002b). Both work measures may tend to underestimate 

actual muscle work, due to positive work at one muscle that inadvertently cancels negative work 

by another, even though both may exact a metabolic cost. This may occur in the form of co-

contraction about a single joint, or as cancellation across multiple joints. Motion capture-based 

measures of mechanical work cannot generally resolve such effects, nor can they easily quantify 

passive work by elastic tendon. We nevertheless prefer simple measures such as COM work, 

because its trends can be predicted from simple models, whereas those for the individual joint 

powers are far more challenging to predict from first principles. As a complementary measure, 

summed joint power is also relatively simple and helps to indicate work performed for body 

motions relative to the COM (Zelik and Kuo, 2010).   

A number of other factors aside from work are expected to contribute to metabolic energy 

expenditure. Walking also requires maintenance of balance and motion of the arms and legs 

relative to the body, among other features. It is possible that load carriage places increasing 

demands on balance, as perhaps indicated by increasing step width variability (Fig. 2.3). Such 

variability is thought to contribute to energy expenditure (O’Connor et al., 2012), but in quite 

small amount relative to the large increases observed here. These and other costs appear to 

contribute quite substantially to the overall cost of walking, but relatively little to the change in 

energy expended with increasing backpack load. 

Our results may be compared with other published studies. Others have reported relatively subtle 

changes in step parameters and kinematics with moderate loads (Harman et al., 2000; Martin and 

Nelson, 1986), which appeared to occur here as well. There are few other studies quantifying 

joint work as a function of load (e.g. peak power quantified by Chow et al., 2005), but the results 

for unloaded walking appear consistent with the literature (Winter, 2005; Zelik and Kuo, 2010). 

As for COM work, our measure (𝑊!"#
! ) is equivalent to the “individual limb external work” of 

Griffin et al. (2003), and to the “total work” of Grenier et al. (2012) which sums the “external 

work” for combined limbs with the “internal work during double contact”. (There are 

inconsistent definitions implied for “external” and “internal” within the literature, and so we 
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prefer the term “COM work.”) Accounting for the different walking speeds applied, our work 

results are largely consistent with those studies. 

Our metabolic energy results are also comparable to the literature. A number of previous studies 

have reported approximately linear increases with mass (Griffin et al., 2003; Pierrynowski et al., 

1981; Soule et al., 1978). For an extra load of 30% body mass, we observed the equivalent of 

about 40% increased gross metabolic cost, similar previous reports (Pierrynowsi et al., 1981; 

Quesada et al., 2000). It must be noted that some studies have reported somewhat lower 

metabolic costs, for example 20 – 35% by Griffin et al. (2003) depending on speed, and about 

25% by Grenier et al. (2012). Studies often differ in the means of load attachment, which 

included a waist belt (Griffin et al., 2003) and military load attachment (Grenier et al., 2012), 

which could affect metabolic costs. Our subjects were also relatively unpracticed with the 

backpack, whereas others (e.g., Grenier et al., 2012; Polcyn et al., 2002) have examined 

practiced infantrymen, who may be better adapted to carrying a backpack. Despite these and 

other differences, most studies appear to agree on an approximately proportionate metabolic cost 

increase with added mass, if not the actual value of that proportionality. 

Our results also lead to slightly different conclusions from some other studies. Griffin et al. 

(2003) found that locomotor efficiency, defined as COM work rate divided by net metabolic rate, 

varied with load and speed between about 16 and 28%. That non-constancy led them to conclude 

that work cannot explain the metabolic cost of load carriage, in favor of a metabolic cost of 

generating force to support body weight. We suspect the variation in efficiency results from non-

zero offsets present in work and energy data. Non-zero offsets arise for a variety of reasons, 

including the somewhat arbitrary designation of quiet standing as the baseline for net metabolic 

rate. Our preference is to ignore the offsets and concentrate on the changes in energy and work 

(Fig. 7) in delta efficiency, which does appear to be quite consistent, and can explain metabolic 

energy expenditure in terms of work. Although we cannot eliminate other costs for load carriage, 

they must either be independent of load, or contribute to the constant offset or the (rather small) 

residual (Fig. 7), or be correlates of work that are therefore difficult to separate from work. 

Regarding the residual, we have observed substantial residuals for other tasks such as bouncing 

about the ankles that we believe to be costly and unrelated to work (Dean and Kuo, 2011). Yet 

there was no obvious trend in the residuals found here. Furthermore, re-examination of Griffin et 
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al.’s (2003) data yields a fairly constant delta efficiency (of about 27% with 𝑅! = 0.96 for a fit 

through means across subjects for 16 combinations of speed and load), and a similar offset to 

what we observed (𝐸! of 0.010 vs. 0.008). For our data, we can also form a conservative estimate 

of the minimum cost of work, by assuming that the positive work measured here was not an 

underestimate, and that negative work has no energetic cost. Applying an efficiency of 25% 

efficiency, positive mechanical work alone would still account for a minimum of about two-

thirds of the metabolic cost we observed. This leads us to favor mechanical work as the primary 

cause of increased metabolic cost for load carriage, similar to the conclusions of Grenier et al. 

(2012). 

Our experiment entailed a number of simplifications. Subjects walked on a smooth treadmill 

surface at fixed speed, whereas typical load carriage is often performed at self-selected, non-

constant speed and on uneven ground, where there may be additional metabolic costs and 

challenges to balance. We also examined only moderate loads, whereas heavier loads may entail 

a more nonlinear and greater relative metabolic cost (Soule et al., 1978) and different kinematics 

(Attwells et al., 2006; Birrell and Haslam, 2009). We also did not study the effect of the load’s 

position on the back, which can potentially affect the COM location and energy expenditure 

(Stuempfle et al., 2004). We instead placed the loads at one consistent location on the back, as 

might be typical of many applications. As discussed above, the measures of COM work and joint 

work are both imperfect indicators of actual muscle work. Muscle work, even if the accurately 

measured, also does not necessarily indicate actual metabolic cost, as when activation and 

deactivation costs are high (Dean and Kuo, 2011). These limitations may cause differences 

between the results reported here and actual walking with load carriage. 

There are nevertheless some findings that may apply to load carriage in general. A backpack load 

increases the mass that must be redirected through COM work, appears to have relatively little 

effect on gait kinematics and the amount of redirection. The result is a proportionate increase in 

COM work, accomplished mostly by the ankle and knee for positive work, and the hip for 

negative work. The increases in COM work (and summed joint work) appear to translate into a 

proportional increase in metabolic energy expenditure. While other metabolic costs might also 

contribute to walking, their contributions appeared to be either relatively fixed despite added 

mass, or correlated with (and therefore not separable from) the work we observed. The largest 
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effect of a carried backpack load appears to be a proportional increase in mechanical work, with 

a proportional increase in metabolic cost. 
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Chapter 3 Dynamic walking model predicts the energetic cost of 
human walking with carried loads and different speed 

Abstract 
The energetic cost of human walking increases with both walking speed and carried load. The 

mechanical work performed by the legs on the center of mass by each leg seems to explain the 

energetic cost as a function of each variable alone. However, there lacks a biomechanical 

mechanism explaining how and why mechanical work should increase with both walking speed 

and carried load. In this study, we used two dynamic walking models with rigid legs and 

compliant legs to provide an explanation of how the energetics and mechanics of human walking 

are changed at different walking speeds and carried load, and compared to the empirical results.  

A dynamic walking model with rigid legs predicts that the mechanical work performed on the 

body center of mass during walking is a function of walking speed, total mass and step frequency. 

We therefore tested normal adults (N = 9) walking at different speeds (1.0-1.75 m/s) and carried 

loads (6.8 – 20.4 kg). We measured the mechanical work performed on the body center of mass 

and metabolic energy expenditure through respirometry. The metabolic energy expenditure is 

proportionate to the mechanical work with a constant delta efficiency of 16.9%. The mechanical 

work performed on the body center of mass was found as a function of total mass, walking speed 

and step frequency, as predicted by the rigid leg model. However, the rigid leg model cannot 

explain the ground reaction force and the double support duration of walking at different speed 

and with different carried loads. We therefore use a compliant leg walking model to explain how 

ground reaction force and double support duration change with walking speeds and carried loads. 

We found a good match between the empirical data and the SLIP model simulation if we choose 

leg stiffness and step length as a certain function of total mass and walking speed.   
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Introduction 
Humans expend considerably more effort to walk at faster speed and with carried loads. 

Metabolic energy expenditure increases sharply with walking speed and the carried load, as does 

the mechanical work performed by the lower extremity muscles(Grenier et al., 2012; Griffin et 

al., 2003). According to basic physical principles, it requires energy to perform active 

mechanical work. The metabolic energy expenditure of human walking at faster speed and with 

carried load can be the result of performing extra active mechanical work, but there lacks of 

mechanistic explanation how the mechanical work increases with the walking speed and carried 

load. The purpose of this study is to provide mechanistic explanation how the walking speed and 

carried load affect the energetics and mechanics of human walking, using two simplified 

dynamic walking models.  

Two types of pendulum-like dynamic walking models are sometimes used to explain energetics 

and mechanics of human walking. The first one is the simplest inverted pendulum model, termed 

as rigid-leg model in this study. The body center of mass (COM ) is located near the pelvis and 

moves in an arc determined by the pendulum-like stance leg (Fig. 3.1). The COM velocity must 

be redirected upward between the end of one step and the beginning of the next (Adamczyk and 

Kuo, 2009; Kuo, 2002b). This entails negative, dissipative work by the leading leg’s collision 

with ground, which is compensated by positive push-off work from the trailing leg (Donelan et 

al., 2002b). The energetic cost depends on the amount of positive push-off work, which is a 

function of walking speed, carried load and step frequency. This model has been tested to for 

speed alone and load alone, but has not been tested for both speed and load together. The 

limitation of rigid-leg model is that there is no double support period and the shape of vertical 

ground reaction force is pretty different from the empirical human walking data. The vertical 

ground reaction force of human walking has an M-shape profile, but the rigid-leg model has a 

single hump profile with two instantaneous impulses.   

The second type of model is the spring-loaded inverted pendulum (SLIP) model, here termed as 

compliant-leg model, which assumes each leg acts like a linear spring. The periodic dynamics of 

leg springs determines the mechanics of walking. The compliant-leg model can generate human-

like ground reaction force (Geyer et al., 2006; Whittington and Thelen, 2008) and has double 

support phase. Kim and Park (2011) used the compliant-leg model to characterize the leg 
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stiffness of human walking and found leg stiffness increase for faster walking speed. Holt et 

al.(2003) also used a compliant-knee model to characterize the knee stiffness increases with 

walking speed and carried load. Nevertheless, the compliant-leg model cannot predict the 

mechanical work because of the passive-spring assumption and the spring constant is arbitrary.  

In this study, we test whether the rigid and complaint legs can provide complementary prediction, 

and whether there is a degree of compatibility between the two models. We first  used a rigid-leg 

dynamic walking model to predict how the mechanical work perform on the center of mass 

(COM work) by each leg increases as a function of walking speed, total mass and step frequency. 

We then used the compliant-leg model to predict how double support period changes with 

carried loads and walking speeds.  

    



32	
  
	
  

Method 
We first used the rigid-leg model to predict how mechanical work changes with different total 

mass (carried load) and walking speed, then we used the compliant-leg model to predict how 

double support duration changes with total mass and walking speed. We then tested healthy 

adults walking with carried loads and different walking speeds. We measured the metabolic 

energy expenditure and the mechanical work performed on the COM by each leg. We compared 

the experimental results to the rigid-leg model and compliant-leg model.  

Model 

Both rigid and compliant leg models have concentrated mass at pelvis and infinitesimal mass at 

each foot. The legs rotate freely about pelvis during swing with no cost. We modulated the step 

length and walking speed using a hip spring. The relationship between step length and walking 

speed is based on empirical result from previous study (Grieve, 1968) . All the units are 

dimensionless.  

 

𝑠   ∝ 𝑣!.!"  (3-1) 

Rigid-leg model 

The rigid-leg model has two degree of freedom during single support phase, comprising the 

rotations for each leg (Fig. 3.1 A). During stance phase, the COM moves atop the stance leg 

along the inverted pendulum arc. At the step-to-step transition, the COM velocity is redirected 

from the trailing leg inverted pendulum arc to the leading leg inverted pendulum arc in part by 

the impulsive collision. The kinetic energy is dissipated by the collision and equal amount of 

positive work is required to offset the energy loss. The energy dissipated by collision can be 

reduced by applying positive work, termed push-off, immediately preemptive to the collision. 

The total positive work, including the work performed by push-off and during stance phase, can 

be minimized with an equal amount of push-off and collision and no extra work during stance 

phase. The amount of positive work per step 𝑊!"for optimized case depends on the total mass  𝑀, 

COM velocity before heel-strike 𝑣! and the ankle between legs 𝛼. 

𝑊!" =
!
!
𝑣! tan 𝛼 ! (3-2) 
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Simplify Eqn 3-1 by substituting 𝑣! by average walking speed   𝑣  and using a small angle 

approximation. 

tan 𝛼 ≈ 𝛼 ≈ !
!
 (3-3) 

𝑊!" ∝ 𝑀𝑣!𝑠! (3-4) 

In steady state walking, the step length 𝑠, walking speed 𝑣 and step frequency 𝑓 yield the 

following relationship. 

𝑠 = 𝑣/𝑓 (3-5) 

Substitute Eqn. 3-4 into Eqn. 3-3 

𝑊!" ∝ 𝑀𝑣!𝑓!! (3-6) 

The positive work per step 𝑊!"  indicates how much mechanical work is required for each step. 

The average positive work rate, defined as work per step 𝑊!" times step frequency 𝑓, yields  

𝑊!" ∝ 𝑀𝑣!𝑓!! (3-7) 

We test for Eqn 3-7 from the empirical data to verify this model. Also, the relationship between 

step length and walking speed (𝑠 ∝ 𝑣!.!") can be applied here (Grieve, 1968). Therefore, Eqn. 3-

7 becomes 

𝑊!" ∝ 𝑀𝑣!.!" (3-8) 
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Figure 3.1: Rigid-legged (A) and compliant-leg model (B).  

Compliant-leg model 
The compliant-leg model has a linear spring for each leg (Fig. 3.1B). We searched for the limit 

cycle for different walking speeds and total mass by changing the initial condition at the 

beginning of a gait and the stiffness hip spring. We modulated the step length according to Eqn. 

3-1(Grieve, 1968).   

We therefore choose the natural frequency of the mass-spring system for stance leg to match the 

step frequency  

2𝜋𝑓 ∝ 𝜔! = 𝑘!"#/𝑀 (3-9) 

Substitute Eqn 3-9 into Eqn 3-10, the leg stiffness becomes a function of total mass and walking 

speed.  

𝑘!"# ∝ 4𝜋!𝑀𝑣!.!"  (3-10) 

We added a constant term to Eqn. 3-10 and tuned the constant slightly for a reasonable result. 

We ended up using Eqn. 3-12 for leg stiffness.  

𝑘!"# = 4𝜋!𝑀𝑣!.!" + 5 (3-11) 
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In summary, we constrained the step length 𝑠, total mass 𝑀, walking speed 𝑣 and leg stiffness 

𝑘!"#, and then searched for a limit cycle. We calculated the mechanical power performed by each 

leg (COM power), ground reaction forces, COM velocity, and double support duration of model 

walking with different walking speeds (0.32-0.50 dimensionless unit) and total mass (1-1.4 

dimensionless unit).  

Simulations show that the amplitude of COM power increases with faster walking speeds (Fig. 

3.2 A) and total mass (Fig. 3.2 B). The peaks of ground reaction forces in vertical and horizontal 

direction also increas with faster walking speed (Fig. 3.2 C) and total mass (Fig. 3.2 D). 

However, the trough of the vertical ground reaction force around between the peaks decreases 

with faster speeds (Fig. 3.2 C), in contrast to the increasing of trough with heavier loads (Fig. 3.2 

D). The COM velocity trajectories in forward direction shift up for faster speeds and the 

trajectories in vertical direction fluctuates with larger amplitude for faster speeds (Fig. 3.2 E). 

The COM velocity trajectories have no significant change with increased loads. The effects on 

COM velocity trajectories can be better visualized by the hodograph (Fig. 3.2 G & H), which is 

plotted with forward velocity as horizontal axis and vertical velocity as vertical axis. As walking 

speed increases, the hodograph shifts to the right, and expanded in vertical direction, indicating 

more vertical displacement of COM. 

The average positive COM work rate, defined as the positive COM work per step times step 

frequency, increases with faster walking speeds (Fig. 3.3 A) and heavier carried loads (Fig. 3.3 

B). The double support duration decreases with faster walking speed (Fig. 3.3 C) but increases 

with carried loads (Fig. 3.3 D).       
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Figure 3.2: Compliant-leg simulation results: COM power, ground reaction force and velocity. 
(Left column) Walking with increasing speed and constant load (𝑀 = 1, 𝑣 = 0.32− 0.5). (Right 
column) Walking with increasing load and constant speed (𝑀 = 1− 1.4, 𝑣 = 0.4). The 
instantaneous COM power (A & B), ground reaction force (C & D) and COM velocity (E & F) 
measures as a function of stride time for different walking speed (left column) and loads (right 
column). Hodograph of COM velocity (G & H). Stance phase is divided into Collision (CO), 
Rebound (RB), Preload (PL) and Push-off (PO) regarding to the sign of COM power.  
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Figure 3.3: Compliant-leg simulation results: COM work rate and double support duration.  
Average positive COM work rate (A & B) and double support (DS) duration (C & D) as 
functions of speeds and loads. (Left column) Walking with increasing speed and constant load 
(𝑀 = 1, 𝑣 = 0.32− 0.5). (Right column) Walking with increasing load and constant speed 
(𝑀 = 1− 1.4, 𝑣 = 0.4). 
 

Experiment 

To test rigid-leg model predictions, we measured the mechanical work perform by each leg on 

body COM and the net metabolic rate as function of speed and load. We also measured the 

double support duration, COM power and velocity trajectories to compare to the simulation 

results of compliant-leg model.    
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Nine healthy adults (N = 9, 7 male and 2 female) were tested walking with different carried loads 

(6.8 – 20.4 kg ) and speeds (1.0-1.75 m·s-1). Subjects ranged 18-29 years of age and had average 

body mass M of 78.6±12.8 kg (mean±s.d.) and leg length L, 0.97±0.06 m. We tested subject 

walking at their preferred step frequency and step length for each trial. We estimated the 

metabolic rate of steady state walking with indirect respirometry. A custom instrumented force 

treadmill was used to measure the ground reaction force during walking  (Collins et al., 2009). 

All subjects provided informed consent prior to the study, according to Institutional Review 

Board procedures.  

The metabolic rate was expressed in units of power using standard conversion factors (Brockway, 

1987a). Each walking trial lasted at least 8 minutes, with the first 3 minutes discarded to ensure 

steady state, and average power computed from the remaining duration. Net metabolic rate 𝐸 

was calculated by subtracting metabolic power for quiet standing (105.13±21.28 W,0.042±0.006 

dimensionless) from the gross metabolic power. 

The instantaneous COM work rate 𝑃!"# is defined as the inner product of ground reaction force 

𝐹 of each leg and COM velocity 𝑣!"# (Donelan et al., 2002c), 

 𝑃!"# =   𝐹    ∙   𝑣!"# . (3-13) 

The COM velocity was computed from the integration of total ground reaction force, subject to 

constraints on periodicity. The positive work per stride 𝑊!"#
!  was calculated from the 

integration of positive intervals of instantaneous COM work rate 𝑃!"# over each stride, and the 

average rate of positive COM work 𝑊!"#
!  was defined as the positive COM work per stride 

divided by stride time and multiplied by 2 for two legs (and similarly for negative work, 𝑊!"#
! ). 

Thus, while work per stride is a single-leg quantity, average mechanical work rate is for both 

legs, to facilitate comparison with net metabolic rate to yield apparent efficiency. We also 

qualitatively examined four phases of COM work rate defined from positive and negative 

intervals: Collision, Rebound, Preload and Push-off (Donelan et al., 2002b). 

We analyzed data with respect to the predictions from the rigid legged dynamic walking model 

using least squares regression method. We expect the positive COM work rate will increase 

depending on the added mass, walking speed and step frequency according to Eqn. 3-7. 
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Contracting the rigid-leg model (Eqn. 3-7) with the preferred step frequency and speed 

relationship, we expect the positive COM work will increase proportionately to 𝑀𝑣!.!"(Eqn 3-8). 

We also expect a linear relationship between the positive COM work rate and the net metabolic 

rate with a constant delta efficiency.   

Results 
Walking with a carried load and at faster speeds caused increases in ground reaction force, COM 

work rate and net metabolic rate. The positive COM work rate increased as a function of carried 

load and speed, agreeing with the rigid legged dynamic walking model prediction (Eqn 3-7 and 

3-8). The net metabolic rate can be explained by the positive COM work rate, with a constant 

delta efficiency of 16%.  

Several qualitative observations can be made regarding the power, force and velocity trajectories 

(Fig. 3.4). The amplitude of COM work rate in each phase increases with walking speed and 

carried load (Fig. 3.4 A & B). Carried load seems to have a uniform effect on COM work rate in 

each phase, but increasing walking speed seems to result greater increase of amplitude of COM 

work rate during collision than other phases. Similarly, the ground reaction force (Fig. 3.4 C & 

D) increased with walking speed and carried load. Walking speed seems to have greater effect on 

the first peak of vertical ground reaction force than the second one, contracting to the uniform 

increase due to carried load. The forward COM velocity trajectories shift upward as walking 

speed increase, and the amplitude of vertical COM velocity increases with walking speed (Fig 

3.4 E). The COM velocity trajectories appear unchanged with carried load (Fig. 3.4 F). The 

effects on COM velocity trajectories can be better visualized by the hodograph (Fig. 3.4 G & H), 

which is a plot of the vertical vs. forward components of COM velocity. As walking speed 

increases, the hodograph shifts to the right, and expanded in vertical direction, indicating more 

vertical displacement of COM. 

The positive and negative COM work rate (𝑊!"#
!  & 𝑊!"#

! ) increase with carried walking speed  

and carried load (Fig. 3.5 A&B). Both positive and negative COM work rates increased 

approximately with the walking speed raised to the power of 3.42 (Fig. 3.5 A), and linearly to the 

carried load (Fig. 3.5 B) as predicted in Eqn. 3-8. Similarly, the net metabolic rate increased 

approximately with the walking speed raised to the power of 3.42 (Fig. 3.5 C), and linearly to the 

carried load (Fig. 3.6D). We then tested the Eqn. 3-7 that positive COM work rate depends on 



40	
  
	
  

carried load 𝑀, walking speed 𝑣 and step frequency 𝑓. We found a significant linear relationship 

between COM work rate and 𝑀𝑣!𝑓!! with a slope of 0.48 ± 0.07 (95% confident interval, c.i. 

Fig 3.6A). We also tested the same relationship including the preferred step frequency and 

walking speed relationship (Eqn. 3-8), and found a significant linear relationship between COM 

work rate and 𝑀𝑣!.!" with a slope of 0.83 ± 0.19 (95% confident interval, c.i. Fig 3.6 B). Finally 

we tested the linear relationship between net metabolic rate and positive COM work rate, and 

found a significant slope of 5.93 ± 0.10 (Fig 3.8), which corresponded to a delta efficiency 𝜂 of 

16.9 %. 

Walking speeds and carried load also affected gait parameters. The step length 𝑠 increased 

substantially with walking speed (Fig. 3.8 A), but has no significant change to carried loads (Fig. 

3.8 A). We tested for the linear relationship between step length and walking speed to the power 

of 0.42, according to Grieve (1968). We found a significant slope of 1.26 ± 0.05. Similarly, the 

step frequency 𝑓 increased with walking speed (Fig. 3.9 C), and maintain relatively unchanged to 

carried loads (Fig. 3.9 D). We tested the linear relationship between step frequency and walking 

speed to the power of 0.58 and found a significant slope of 2.51 ± 0.13. The double support 

duration decreased with walking speed (Fig. 3.9 E) and increased with carried load (Fig. 3.9E).      
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Figure 3.4: Experimental results: COM power, ground reaction forces and COM velocity 
trajectories for different loads and walking speeds. 
Instantaneous COM work rate.  (A & B), ground reaction force (C & D) and COM velocity (E & 
F) measures as a function of stride time for different walking speed (first column) and loads 
(second column). Hodograph of COM velocity (G & H). Left-hand vertical and bottom 
horizontal axes show dimensionless quantities, right-hand vertical and top horizontal axes show 
dimensional SI units. Data shown are trajectories of one representative subject (N = 1).  
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Figure 3.5: AverageCOM work rate and net metabolic rate as function of walking speed and 
carried load. 
The positive and negative COM work rate increased with walking speed to the power of 3.42 (A), 
and proportionately to carried load (B). The net metabolic rate has similar trend as COM work 
rate (C & D).  Left-hand vertical and bottom horizontal axes show dimensionless quantities, 
right-hand vertical and top horizontal axes show dimensional SI units. Each data point represent 
one trial of one subject (N = 9). The darkness indicates different carried loads (A & C) and 
walking speeds (B & D). The darker is for heavier loads and faster speeds respectively.   
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Figure 3.6: Positive COM work rate as functions of total mass, walking speed and step frequency.  
(A) Positive COM work rate is proportionate to 𝑀𝑣!𝑓!! as predicted in Eqn 3-7. (B) Positive 
COM work rate is proportionate to 𝑀𝑣!.!" as predicted in Eqn 3-8. Left-hand vertical and 
bottom horizontal axes show dimensionless quantities, right-hand vertical and top horizontal 
axes show dimensional SI units. Each color represent one subject (N = 6). 

 

Figure 3.7: The net metabolic rate as function of positive COM work rate for walking at varying 
speeds and loads.  
Left-hand vertical and bottom horizontal axes show dimensionless quantities, right-hand vertical 
and top horizontal axes show dimensional SI units. Each color represent one subject (N = 6). 
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Figure 3.8: Step parameters.  
Step length as a function of walking speeds. (A) and carried loads (B). Step frequency as a 
function of walking speeds (C) and carried loads (D). Double support duration as a function of 
walking speeds (E) and carried loads (F). Left-hand vertical and bottom horizontal axes show 
dimensionless quantities, right-hand vertical and top horizontal axes show dimensional SI units. 
Each data point represent one trial of one subject (N = 9). Shading of symbols denotes different 
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carried loads (A , C & E) and walking speeds (B, D& F). The darker is for heavier loads and 
faster speeds respectively.   

Discussion 
 

This study was intended to provide a mechanistic explanation for how energetic cost and the 

mechanics of human walking change with walking speed and carried load. We used rigid-leg and 

compliant-leg models to predict how human gait changes with different walking speeds and 

carried load. The net metabolic rate was found to be approximately proportionate to the COM 

work rate (with a constant delta efficiency 𝜂 of 16.9 %), which implies that the mechanical work 

performed on the COM by each leg is a main determinant of energetic cost. The COM work rate 

were found to follow the prediction from the rigid-leg model, which predicts the COM work rate 

is a function of total mass 𝑀, walking speed 𝑣 and step frequency 𝑓 (Eqn. 3-7, Fig 3.6 A). The 

rigid-leg model predicts that energetic cost is highly depending on the positive work performed 

on the COM, which is to offset energy dissipated by the heel-strike collision. The results of net 

metabolic rate and COM work rate imply the energetic cost of walking is highly depends on the 

heel-strike collision, as hypothesized by the rigid-leg model (Kuo, 2002a). The rigid-leg model 

predicts the amount of positive work perform on the COM based on the assumption of equal 

amount of push-off and collision relationship. There is an underlying assumption behind this 

relationship that humans prefer to their gait with the minimum energetic cost. This assumption 

allows us to derive the analytical solution of the positive COM work as the function of walking 

speed 𝑣, carried load 𝑀!"#$ and step frequency 𝑓. Furthermore, we used the empirical step length 

and speed relationship (Donelan et al., 2001a; Grieve, 1968) to simplify our analytical solution.   

In the compliant-leg simulation, we found a good match at the double support duration (Fig. 3.8 

E & F), which decreased with faster walking speed and increased with carried load. There were 

two main assumptions in the compliant-leg model simulation.  The first one was that step length 

is a function of walking speed (Grieve, 1968). This relationship can be explained by minimizing 

the energetic cost of rigid-leg model with a cost of swing leg (Kuo, 2001). Another assumption 

was that the leg stiffness is to modulate the natural frequency to match with the step frequency, 

so we have the leg stiffness 𝑘!"# is proportionate to the total mass 𝑀 times walking speed 𝑣. 

Previous studies also found similar trends of leg stiffness for walking (Holt et al., 2003; 2011). It 
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is possible that the leg stiffness is just closely coupled with the step frequency of walking, which 

we choose for minimal energetic cost.    

The compliant-leg model also had reasonable agreement with the COM power, ground reaction 

force and COM velocity (Fig. 3.3 vs. Fig. 3.5), COM work rate (Fig. 3.4 vs. Fig. 3.6 and Fig. 

3.7), in terms of the trend of the change with respect to the walking speeds and carried loads. 

However, there are several small discrepancies. The ground reaction force and COM work rate 

are higher in the compliant leg model results than the empirical results. The double support 

duration is smaller in compliant leg model results than the empirical results. Another discrepancy 

in the shape of vertical ground reaction force and COM power trajectories. As walking speed 

increases, the first peak of vertical ground reaction force increases much faster than the second 

peak, and the M-shape becomes more asymmetric (Fig. 3.5 B). This causes greater increase of 

negative COM collision work than the increase of positive COM push-off work (Fig. 3.5 A). The 

discrepancies may be due to the over simplification of the model. There is not foot in our 

compliant-leg model. A curved foot could lead to a smoother ground reaction force of walking 

and less COM work. Also, we constrained the step length as a function of walking speed and the 

leg stiffness as a function of total mass and walking speed (Eqn. 3-12). These constraints may 

also lead to the discrepancies.  

Obviously, the energetic cost of human walking does not only depend on the mechanical work. 

Other factors, such as muscle force (Griffin et al., 2003) and muscle co-contraction (Unnithan et 

al., 1996), could also affect the energetic cost of walking. In this study, we found the COM work 

rate is one of the main factors which can explain the how the energetic cost of human walking 

increase with walking speeds and carried load. The other factors either remained unchanged for 

different walking speeds and carried loads, or were coupled with the mechanical work. For 

example, the muscle force, which could be highly correlated to the ground reaction force, may 

affect the energetic cost of human walking, but is couple with the mechanical work since the 

work is defined as force dot displacement.  

The rigid-leg model has two limitations to explain human gait. The first is the instantaneous 

double support phase, which assumes the impulsive push-off and collision. The second is the 

non-human-like vertical ground reaction force. The vertical ground reaction force of human 

walking has an M-shape profile which rigid-leg model cannot regenerate. The double support 
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duration and the shape of ground reaction force are also changed with walking speed and carried 

load. Therefore we used the compliant-leg model to explain these left over phenomena.    

Despite the discrepancies, several conclusions appear to be supported. The rigid-leg model 

predicts the increases of COM work rate for different walking speeds and carried loads. The 

compliant-leg model, with the natural frequency corresponding to the step frequency, predicts 

the double support duration and COM fluctuations. Simple models have more predictive value 

than complex models. Even a minor increase in complexity requires parameter choices, which 

either requires more assumptions or has to be systematically tuned. Finally, the net metabolic 

rate is proportionate to the COM work rate.      
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Chapter 4 Mechanical and energetic consequences of reduced ankle 
plantarflexion in human walking 
Submitted in Journal of Experimental Biology  

Abstract 
The human ankle produces a large burst of “push-off” mechanical power late in the stance phase 

of walking, impairment of which leads to considerably greater energy expenditure. It has not 

been shown experimentally whether the energetic penalty results from poorer efficiency when 

the other leg joints substitute for the ankle’s push-off work, or from a higher overall demand for 

work due to some special feature of push-off. Here we show that greater metabolic energy 

expenditure is indeed explained by a greater demand for work. This is predicted by a simple 

model of walking on pendulum-like legs, because proper push-off reduces collision losses from 

the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy 

adults (N = 8) walking on a treadmill, using ankle-foot orthoses with steel cables limiting motion. 

These produced up to about 50% reduction in ankle push-off power and work, resulting in up to 

about 50% greater net metabolic power expenditure to walk at the same speed. For each 1 J 

reduction in ankle work, we observed about 0.6 J more dissipative work by the other leg, 1.3 J 

more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss 

of ankle push-off required more positive work elsewhere, principally at the knee. Subjects 

appeared to perform that additional work at relatively high efficiency. Normal ankle push-off 

appears to be important for the economy of walking.  

Introduction 
During human walking, the ankle produces the highest mechanical power among the joints, in a 

burst late in the stance phase termed push-off. Its importance is illustrated by cases of impaired 

or reduced push-off, which generally result in considerably more metabolic energy expenditure 

to walk (Doets et al., 2009; van Engelen et al., 2010; Waters and Mulroy, 1999). If walking were 

only a matter of supplying a requisite amount of forward propulsion, then other joints might be 

expected to supply a greater proportion of the mechanical work to offset the reduced push-off 

work, and not necessarily at higher metabolic cost. The actual energetic penalty suggests that the 
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normal push-off conveys some unique advantage, perhaps in its timing or spatial location, that is 

not presently understood. To gain insight on this matter, we propose and test a mechanistic 

explanation for the disadvantages of reduced ankle push-off. 

Ankle push-off appears to be important to walking economy. The ankles normally produce a 

burst of positive push-off power peaking at more than 2.5 W/kg (e.g., Zelik and Kuo, 2010). That 

peak is more than three times the maximum power produced by the other joints, and is reduced 

considerably with gait pathologies. For example, the peak can be reduced by more than half in 

patients with multiple sclerosis,  individuals recovering from stroke (Bregman et al., 2011a), and 

those with ankle arthrodesis or arthroplasty (Singer et al., 2013). The energetic penalty varies 

considerably with severity and condition, but typically entails an increase of 30% or more in net 

metabolic power (subtracting the cost of upright standing from gross power) expended to walk at 

the same speed (Doets et al., 2009; Torburn et al., 1995; Waters and Mulroy, 1999). 

The energy expenditure of walking is explained in part by the mechanical work performed in the 

transition between pendulum-like steps (Kuo et al., 2005a). The body center of mass (COM) is 

located near the pelvis and moves in an arc determined by the pendulum-like stance leg (Fig. 1). 

The COM velocity must be redirected upward between the end of one step and the beginning of 

the next (Adamczyk and Kuo, 2009; Kuo, 2002b). This entails negative, dissipative work by the 

leading leg’s collision with ground, which is compensated by positive push-off work from the 

trailing leg (Donelan et al., 2002b). If push-off is timed to begin just before the collision, it also 

theoretically reduces the loss during this step-to-step transition (Kuo, 2002b). Indeed, in cases of 

total ankle arthroplasty, reduced push-off results in greater collision losses and greater metabolic 

energy expenditure (Doets et al., 2009). But one discrepancy is that the overall positive work 

performed on the COM is not observed to increase (Doets et al., 2009), as would be expected 

from the imbalance between push-off and collision. The theory of step-to-step transitions would 

therefore appear to only partially explain the effects of reduced push-off. 

There are two potential explanations for this discrepancy. The first is that the muscles might 

perform additional mechanical work not observed in previous studies. Work performed on the 

COM is a summary of work from an entire limb, convenient for indicating when the two limbs 

simultaneously perform positive and negative work (Donelan et al., 2002c). But it is also an 

incomplete measure, because it does not indicate when one joint performs work that cancels that 
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out another within the single limb (Donelan et al., 2002b). It is possible that reduced push-off 

does indeed increase the overall positive work performed during a step, if measured at the joints 

instead of the limbs. The alternative possibility is that there is nothing special about push-off so 

long as propulsion and a requisite amount of work is performed elsewhere in the body. The 

energetic penalty of reduced push-off might instead be explained by poor efficiency of muscular 

propulsion, as might be the case with co-morbidities accompanying limb loss or joint fusion, 

rather than the mechanics of COM motion as we have theorized.  

In the present study, we propose to address these questions in two ways. First, we present a 

simple dynamic walking model to demonstrate the theoretical effects of bilaterally reduced push-

off. Although the model does not predict how the joints will compensate for reduced push-off, it 

does suggest that overall work will increase, even if not captured by work performed on the 

COM. Second, we experimentally test human subjects walking with artificial constraints on 

ankle push-off. We test healthy subjects and focus on the effects of reduced push-off alone, 

rather than the co-morbidities of pathological gait. The experiment allows for continuous 

adjustment of the degree of constraint, which facilitates identification of trends associated with 

reduced push-off. We test whether the overall amount of mechanical work by the joints increases 

with artificially reduced push-off as predicted by the step-to-step transition hypothesis, or 

whether the energetic penalty is explained better by poor efficiency of the joints that perform 

compensatory work according to the propulsion hypothesis. 

 

Method 

Model 

We used a dynamic walking model (Fig. 4.1) to predict the effects of reduced push-off on 

locomotion dynamics and energetics. In the “simplest walking model” (Kuo, 2002b), the legs 

behave like ideal pendulums, with the body center of mass (COM) moving in an inverted 

pendulum arc atop the stance leg. With each footfall, an impulsive collision redirects the COM 

velocity to a new arc determined by the leading leg. This collision performs negative work on the 

COM, and requires positive work to offset the loss. The most economical solution is an 

impulsive push-off just prior to, and equal in magnitude to, the leading leg collision (Fig. 4.1A). 
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This reduces the collision loss and allows walking speed to be maintained with the least positive 

work. These principles have been found to predict the mechanical and energetic effects of 

walking with, for example, greater step lengths (Donelan et al., 2002b) and step widths (Donelan 

et al., 2001a). 

There are several consequences if the optimal push-off is reduced (Fig. 4.1B). First, reduced 

push-off increases the leading leg’s ensuing collision. Second, the imbalance in push-off and 

collision work requires more positive work to be performed elsewhere in the stride, in the 

interval after collision and before the next push-off, referred to here as the middle-stance phase. 

Third, the imbalance also requires more positive work overall from the push-off and middle-

stance phases. All of these effects are predicted quantitatively by models described previously 

(Adamczyk and Kuo, 2009; Kuo, 2002b; Kuo et al., 2005a), as summarized in the Appendix. 

The overall result is that collision work 𝑊!" is predicted to change with push-off work 𝑊!" 

according to 

 𝑊!" ≈ −!!!!!

!!!
+ 𝑊!"

!!"
!

 (1) (1) 

where s denotes step length, L leg length, M body mass, and 𝑣! the COM velocity just prior to 

push-off. To ensure zero net work over a gait cycle, the stance phase work between collision and 

push-off, termed middle-stance work 𝑊!", is 

 𝑊!" = −𝑊!" −𝑊!"   (2) 

When push-off work is reduced, the magnitudes of collision and middle-stance work both 

increase for a given walking speed and step length (Fig. 4.1B). These effects are approximately 

linear for push-off reductions up to about 50% (Fig. 4.1C), for conditions similar to the 

experiment conducted here (equivalent to dimensionless speed of 0.44 and step length 0.78, 

using M, L, and gravitational acceleration g as base units). Although this model is quite crude 

compared to the complexity of actual human walking, it is sufficient to demonstrate the general 

trends in work that should result from reduced push-off, so long as the legs behave like 

pendulums.  
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Figure 4.1 Dynamic walking model predicts effects of reduced push-off work.  
(A) Model has pendulum-like legs supporting body center of mass (COM), whose velocity must 
be redirected from 𝑣! at end of one stance phase to 𝑣! at beginning of the next stance phase. 
This is most economical when positive push-off work is performed just before and in equal 
magnitude to the leading leg’s negative collision work (impulses PO and CO, respectively, 
perform work 𝑊!" and 𝑊!" proportional to square of impulses; Kuo, 2002). (B) With reduced 
push-off capacity, the collision is greater and dissipates more energy. The COM velocity must be 
increased during the rest of the step, requiring net positive “middle-stance” work, 𝑊!", and 
greater positive work overall. (C) Model prediction of collision and middle-stance work as a 
function of push-off work, for walking at fixed speed and step length. Starting from most 
economical case (right-most point on plot), reduced push-off work leads to greater magnitudes of 
negative collision work and positive middle-stance work. Symbols: step length s, leg angle 𝛼. 
 

Experiment 

We tested the model by measuring the work performed by healthy adults while they walked with 

restricted ankle plantarflexion. Rather than control push-off explicitly, we found it more practical 

to control kinematic displacement of the ankle. We therefore tested whether this restriction was 

indeed able to affect ankle work as intended, and in turn cause the predicted increases in overall 

positive mechanical work and overall metabolic cost.  

We tested eight healthy adults walking at 1.40 m ⋅ s-­‐! while wearing bilateral ankle-foot orthoses 

(AFO, Bledsoe Brace System, Grand Prairie, Texas, USA) modified to restrict ankle 

plantarflexion range of motion (Fig. 4.2). This was achieved through the addition of steel cables 

between the shank and fore-foot. We applied five controlled conditions with different cable 

lengths (including one with no restriction). For comparison, we also applied a separate normal 

shod condition, in which subjects wore their normal street shoes. Subjects were young adults 

(aged 21-27, 6 males and 2 females) with body mass M of 76.6 ± 8.8 Kg (mean ± s.d.), leg length 



53	
  
	
  

𝐿 of 0.95 ± 0.06 m. All subjects provided written informed consent prior to the study, according 

to Institutional Review Board procedures. 

 

Figure 4.2 Method for experimentally reducing push-off.  
(A) An ankle-foot orthosis (AFO) was modified with steel cables restricting plantarflexion 
motion on both sides. (B) Diagram shows relative lengths of cables (25 – 29 cm) for five 
constraint conditions experienced by human subjects walking at constant speed (1.40 m ⋅ s!!).  
 

The data collected included joint kinematics and kinetics, mechanical work performed on the 

COM, and metabolic energy expenditure. Subjects walked on a split-belt instrumented treadmill 

(Bertec, Columbus, OH, USA) that yielded ground reaction forces from the individual legs. 

Lower extremity kinematic data were recorded using a marker-based motion capture system 

(Phasespace, San Leandro, CA, USA). We measured oxygen consumption and carbon dioxide 

production using a wireless portable respirometry system (CareFusion, Vernon Hills, IL, USA). 

We quantified mechanical work performed on the COM and by the lower extremity joints. The 

instantaneous COM work rate 𝑃!"# was calculated as the inner product of ground reaction force 

𝐹 of each leg and COM velocity 𝑣!"# (Donelan et al., 2002c), where the velocity was computed 

by integrating the total ground reaction force, subject to constraints on periodicity. The stride 

was defined as starting and ending at consecutive same-side heelstrikes and was examined in 

terms of three phases defined by zero-crossings of COM work rate: collision (about 0 – 18%), 

middle-Stance (about 18 – 49%), and push-off (about 49 – 66%). The work rate was integrated 

over each of these intervals (𝑊!", 𝑊!", and ,𝑊!", respectively), and separately over the positive 

intervals to yield positive work per stride, 𝑊!. The middle-stance work includes two phases we 
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have previously referred to as rebound and pre-load (Donelan et al., 2002b); these were lumped 

together here because the model only predicts trends in overall work between collision and push-

off. We also measured other gait parameters such as step length, step time and double support 

time.      

Joint kinematics and kinetics were computed from ground reaction force and motion capture data 

using standard methods. We used commercial software (Visual3D, Germantown, MD, USA) to 

calculate joint angles, moments and powers for ankle, knee, and hip, in three dimensions. As a 

simple summary of power from an entire leg, we calculated summed joint power 𝑃!"#$% by adding 

together the powers from ankle, knee, and hip of one leg. Positive (negative) joint work per 

stride was defined as the integral of positive (negative) intervals of each joint power. We also 

calculated the positive (negative) summed joint work per stride 𝑊!"#$%
!  (𝑊!"#$%

! ) by adding 

together the positive (negative) ankle, knee and hip work of one leg. For simplicity, only sagittal 

plane angles and moments are plotted here, although power and work quantities were calculated 

in three dimensions. 

We estimated the net metabolic rate of energy expenditure from oxygen consumption and carbon 

dioxide production data. These data were collected over walking trials of at least 6 minutes, with 

only the final 3 minutes of each trial retained for analysis to ensure steady state. Gross metabolic 

energy expenditure (in W) was calculated using standard conversion factors (Brockway, 1987a). 

Net metabolic rate 𝐸 was defined as the gross metabolic rate for walking minus that for quiet 

standing (110 ± 22 W). 

To account for differences in subject body size and facilitate comparison with the model, 

measurements were normalized to dimensionless form, using base units of body mass M, 

standing leg length L (ground to greater trochanter), and gravitational acceleration g. The mean 

normalization constant for force was therefore 𝑀𝑔 (average 751.87 N), for work 𝑀𝑔𝐿  (717.10 

J), and for power 𝑀𝑔!.!𝐿!.! (2299.82 W). We performed statistical tests to test three main 

predictions. The first was to determine whether kinematic ankle restriction could reduce push-off 

work, examined through repeated measures analysis of variance (ANOVA) across conditions. 

We then tested whether the following work quantities increased with reduced push-off work: 

collision work 𝑊!", middle-stance work 𝑊!", and total positive work 𝑊!. Finally, an increase 
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in total positive work should lead to an increase in net metabolic rate 𝐸 as a function of push-off 

work. These were all tested with linear regression against push-off work 𝑊!", with a significant 

slope indicated by its 95% confidence interval. The threshold of significance for all tests was set 

at 𝛼 = 0.05. We also examined several other quantities such as joint work measures, but there 

were no specific predictions other than that total joint work should increase with reduced push-

off.  

 

Results 

Restricted ankle plantarflexion had a substantial effect on the mechanics and energetics of 

walking. We found that the ankle constraints did reduce push-off work as intended, which in turn 

led to increases in positive work performed elsewhere, as well as greater metabolic cost. These 

effects occurred despite no statistically significant differences in step length, step frequency, and 

double support time (see Table 4-1). Below we first describe some qualitative observations of the 

effects on time-varying variables, followed by quantitative summaries of the mechanical and 

energetic effects over an entire stride. 

We qualitatively observed a number of effects from the ankle restriction conditions. Examining 

the ankle (Fig. 4.3), angular displacement was reduced by as much as about 40 deg, and peak 

power was substantially reduced during push-off (particularly near 60% stride), although the 

ankle moment trajectory was relatively unaffected. While the constraints were generally effective 

in reducing plantar-flexor motion in a controlled manner, depending on their normal range of 

ankle motion and alignment of the AFO some subjects were relatively unaffected by the two 

least restrictive conditions,. There were also effects on the force and power trajectories (Fig. 4.4). 

The first peak of the vertical ground reaction force tended to increase with greater restriction, 

whereas the second peak tended to decrease (Fig. 4.4A). The anterior-posterior force exhibited 

decreasing amplitude with greater ankle restriction (Fig. 4.4B). These caused corresponding 

changes in instantaneous COM work rate: amplitude of push-off work rate decreased while 

collision amplitude increased with degree of restriction (Fig. 4.4C). During middle-stance, 

subjects performed positive and then negative work, yielding slightly negative work overall, in 

the normal shod condition. With increasing ankle restriction, the middle-stance trajectory shifted 

toward positive. This was true for both the positive and negative intervals of this phase, which 
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are termed rebound and preload, respectively (Donelan et al., 2002b; Kuo et al., 2005a). The 

summed joint power, defined as sum of ankle, knee and hip power, had a similar trend during 

that interval, also shifting to the positive, indicating more positive work overall (Fig. 4.4D).  

There are related observations regarding joint mechanics (Fig. 4.5). In addition to the effects at 

the ankle mentioned above, we observed stance phase knee flexion to increase with greater 

restriction, along with knee extension moment (Fig. 4.5A). This occurred in the interval 

beginning slightly before and ending after middle-stance, about 5 – 40% of stride. This was 

accompanied by more negative knee power during collision, and greater positive ankle power 

during the earlier (rebound) portion of middle-stance. We observed much smaller changes in 

kinematics and kinetics of the hip angle, moment and power. Examining the positive and 

negative joint work per stride, these had relatively linear trends as a function of COM push-off 

(Fig. 4.5B). Swing phase appeared to be relatively unaffected by the ankle restrictions. 

The observations above are supported by quantitative examination of the mechanical work 

performed on the COM (Fig 4.6). Significant differences were observed in COM push-off work, 

mid-stance work and collision work across ankle restriction conditions (repeated measures 

ANOVA, P = 1E-12, 7E-3 and 1E-9, respectively). With increasing restriction, push-off 

decreased from about 19.1 J to 11.8 J, middle-stance work increased from about -2.7 J to 6.8 J, 

and collision work increased from about -19.38 J to 6.82 J.  

We next examine the main changes in work as a function of COM push-off work as a continuous 

variable (rather than the discrete experimental conditions). As push-off was reduced, ankle 

positive work and negative work per stride decreased significantly in magnitude (Fig. 4.5B; 

quantitative summary in Table 1). Ankle restriction also had slightly less effect on ankle work 

itself than on COM Push-off, with a slope of 0.75 (change in ankle positive work per change in 

COM push-off). At the knee, both positive and negative work increased significantly in 

magnitude with the degree of push-off restriction, with slopes -1.41 and 0.89, respectively 

(where negative slope means knee power decreased with increasingly push-off). At the hip, only 

positive work increased significantly with degree of restriction, with slope -0.67. In terms of 

COM work per stride, collision work magnitude increased with reduced push-off (Fig. 4.7A), as 

evidenced by a significant linear trend between the two, with slope 0.64 (change in collision 

work divided by change in push-off work). Correspondingly, middle-stance work also increased 
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(i.e., became more positive, Fig. 4.7A) with reduced push-off work, with slope -1.32.  Total 

positive COM work did not change significantly with reduced push-off work (Fig. 4.7A).  The 

positive sum of joint work per stride decreased with a slope of -1.33 (Fig. 4.7B).  Negative 

summed joint work increased in magnitude, with slope 0.60.  

Net metabolic rate also increased with reduced push-off (Fig. 4.7C). The slope of the change, 

expressed dimensionlessly, was -2.34 ± 0.59 (change in metabolic rate divided by change in 

push-off work). Comparing rates directly (change in metabolic rate divided by change in push-

off work rate for both legs), the equivalent slope was -3.94 ± 0.96. 

 

Figure 4.3 Ankle angle, moment, and power vs. stride time for all experimental conditions.  
Shown are averaged trajectories across subjects (N = 8) over one full stride (defined by same-
side heelstrikes), with increasing push-off restriction (solid line to dotted lines), as well as 
normal shod walking (solid gray line). Quantities are shown in terms of dimensionless units (left-
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hand vertical axes), using body mass, leg length, and gravitational acceleration as base units. 
Equivalent SI units are shown on right-hand axes. 

 

 

Figure 4.4 Effect of ankle restriction on ground reaction forces and power measures.  
(A) Vertical ground reaction force and (B) horizontal (fore-aft) ground reaction force versus 
stride time. (C) Instantaneous center of mass (COM) work rate (dot product of COM velocity 
with ground reaction force from one leg) versus time. Zero-crossings of COM work rate define 
collision, middle-stance, and push-off phases of stride  (CO, MS, and PO, respectively). Middle-
stance is an interval including both positive rebound and negative pre-load work (RB and PL). 
(D) Summed joint power (sum of ankle, knee and hip powers) versus time. Left-hand vertical 
axes show dimensionless units, and right-hand vertical axes show equivalent dimensional SI 
units. Data shown are trajectories averaged across subjects (N = 8). 
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Figure 4.5 Lower extremity joint kinematics and kinetics as function of ankle restrictions.  
(A) Angle, moment and power trajectories versus time for ankle, knee and hip. Data shown are 
trajectories averaged across subjects (N= 8). Angles and moments are defined as positive in 
extension (Ext), and negative in flexion (Flx). (B) Positive and negative joint work per stride for 
ankle, knee, and hip, as function of push-off work. Data points are shown for each subject and 
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each condition (denoted by color and symbol, respectively). Vertical axes shown in 
dimensionless and SI units (left- and right-hand axes, respectively).  
 

 

Figure 4.6 Summary of work performed on center of mass (COM work) as function of ankle 
restriction.  
Shown are COM work per step during collision, middle-stance, and push-off phases (𝑊!", 𝑊!", 
and 𝑊!", respectively). Error bars denote s.d., asterisk indicates statistically significant 
differences across conditions (P < 0.05, repeated measures ANOVA). Vertical axes are shown 
with dimensionless and SI units (left- and right-hand sides, respectively). 
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Figure 4.7 Effect of reduced push-off work on overall mechanical work and metabolic energy 
expenditure.  
(A) Collision work and middle stance work per stride (𝑊!!and 𝑊!"#, respectively) as function 
of COM Push-off work. (B) Positive and negative summed joint work per step versus push-off 
work. Summed joint work is defined as integral of positive and negative (Pos and Neg) intervals 
of summed joint powers (see Figure 4D). (C) Net metabolic rate as function of COM push-off 
work. Data are shown for each experimental condition (denoted by color and symbol, 
respectively), along with linear fits (all statistically significant, P < 0.05). Vertical axes shown in 
dimensionless and SI units (left- and right-hand axes, respectively).  
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Table 4-1: Quantitative results for linear regression against push-off work 

 

 

 

 

  

Measure Normal (SI) Normal (d’less) Slope ± c.i. Offset ± s.d. 𝑅! S P 

Double support time 0.29 ± 0.02 s 0.27±0.02 -0.83±0.80 0.30±0.01 0.69 * 0.04 

Swing time 0.76 ± 0.06 s 0.73 ± 0.02 0.84 ± 0.80 0.70 ± 0.01 0.69 * 0.04 

Step length, s 0.73 ± 0.03 m 0.78±0.04 0.10 ±1.55 0.78±0.05 0.89  0.89 

Step width 0.14 ± 0.03 m 0.15±0.04 1.80±0.85 0.11±0.02 0.79 * 1e-4 

Step frequency, f 1.91 ± 0.11 s-1 0.59±0.02  -0.05±0.99 0.59±0.02 0.75  0.91 

Push-off work, 𝑊!" 19.75 ± 5.36 J 0.027±0.004 NA NA NA  NA 

Collision work, 𝑊!" -17.58 ± 4.36 J -0.025±0.006 0.64±0.36 0.043±0.008 0.74 * 1e-3 

Middle-stance work, 𝑊!" -5.24 ± 2.22 J -0.007±0.006 -1.33±0.41 0.032±0.008 0.82 * 2e-7 

Summed joint work, 𝑊!"#$%
!  55.39 ± 8.62 J 0.0778±0.0122  -1.33±0.52 0.117±0.013 0.86 * 1e-5 

Summed joint work, 𝑊!"#$%
!  -60.61 ± 14.65 J -0.0859±0.0261 0.60±0.55 -0.094±0.015 0.84 * 0.03 

Pos ankle work, 𝑊!"#
!  21.27 ± 6.87 J 0.030±0.010 0.75±0.30 0.009±0.006 0.71 * 2e-5 

Neg ankle work, 𝑊!"#
!  -17.81 ± 6.36 J -0.0245±0.0071 -0.42±0.27 -0.004±0.006 0.72 * 3e-3 

Pos knee work, �!"#
!  11.74 ± 4.64 J 0.0165±0.0071 -1.41±0.47 0.056±0.007 0.72 * 9e-7 

Neg knee work, 𝑊!"#
!  -32.70 ± 4.85 J -0.0464±0.0099 0.89±0.32 -0.074±0.009 0.86 * 4e-6 

Pos hip work, 𝑊!"#
!   22.38 ± 

5.73 J 
0.0315±0.0082 -0.67±0.25 0.053±0.010 0.92 * 8e-6 

Neg hip work, 𝑊!"#
!   -10.10 ± 

8.91 J 
-0.0150±0.0148 0.13±0.26 0.017±0.008 0.87  0.30 

Metabolic rate, 𝐸  230.73 ± 
 40.88 W 

0.10 ± 0.02 -2.34±0.59 0.189±0.021 0.89 * 6e-9 
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List of symbols and abbreviations 

COM center of mass 
𝑀 

body mass 
𝐿 

leg length 
𝑣!"# 

center of mass velocity 
𝑃!"# 

instantaneous center of mass work rate 
𝐹 

ground reaction force 
𝑊!"#$%

! ,𝑊!"#$%
!  

sum of joint work per stride 
𝑊!"#

! ,𝑊!"#
! , 

ankle joint work per stride 
𝑊!"#

! ,𝑊!"#
!  

knee joint work per stride 
𝑊!"#

! ,𝑊!"#
!  

hip joint work per stride 
𝑊!" center of mass work during push-off 

𝑊!" center of mass work during collision 

𝑊!" 
center of mass work during middle-stance 

𝑔 
gravitational acceleration  

� 
net metabolic rate 
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Discussion 
This study was intended to test the mechanism by which reduced push-off leads to increased 

energetic cost of walking. A simple model predicts that reduced push-off work from the trailing 

leg should lead to greater collision losses at the leading leg, which must be offset with more 

positive work elsewhere in the gait cycle to maintain the same walking speed. We 

experimentally applied a kinematic restriction to the ankle, and found it to successfully reduce 

push-off work produced by healthy subjects. This was accompanied by more dissipative collision 

work, more positive work by the joints over the entire stride, and greater metabolic energy 

expenditure overall. These results are consistent with the proposed mechanistic link between 

ankle push-off and overall energy expenditure. The results also yield insight regarding 

compensation for reduced push-off, with possible implications for patient groups with similar 

deficits. 

Reduced push-off resulted in more work performed elsewhere in the gait cycle, and greater 

dissipation during the opposite leg’s collision. For each 1 J of reduced push-off work, subjects 

performed an additional 0.64 J of dissipative collision work (from slope of linear fits in Fig. 4.7), 

as well as about 1.33 J more work during middle-stance. The dissipation was less than one-to-

one with respect to push-off, suggesting that subjects were able to adjust their gait to avoid 

increased collision to some degree. They nevertheless paid a 33% penalty in positive work for 

performing it elsewhere than at push-off. No such penalty would be expected if walking were 

solely a matter of performing a constant amount of positive, propulsive work. Our results agree 

with the model prediction, that a properly timed push-off can reduce the energy dissipated by 

collision, which then reduces the amount of positive work needed over a stride. 

There were several ways that subjects compensated for reduced push-off. The COM work rate 

during middle-stance shifted positively, in terms of both greater positive rebound work and less 

negative pre-load work. Here, COM measures are limited in their resolution, and closer 

examination of joint kinetics reveals that the knee bears the brunt of the compensations for 

reduced ankle push-off. When ankle push-off was restricted the knee experienced greater flexion 

while producing considerably greater extension moment during much of the stance phase. The 

net effect was to contribute substantially more work during most of middle-stance, and 

particularly during rebound. The knee power also remained positive for part of the (net negative) 
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preload phase. Thus, there is simultaneous positive and negative work within the limb that is not 

captured well by COM work.  

There were also subtler compensations at the other joints. For example, the ankle appeared to 

contribute less negative work, particularly during pre-load. This is largely consistent with the 

expectation that reduced plantarflexion should result in decreases in amount of both negative and 

positive work at the ankle. A separate model of walking, including series elasticity at the ankle, 

suggests that elastic pre-load can enhance push-off work through passive dynamics (Zelik et al., 

2013). Thus, we would not consider reduced ankle pre-load to be energetically advantageous, 

even though it contributed to the positive shift in middle-stance work. Separate from that effect, 

the ankle also appeared to perform slightly less negative work immediately following heelstrike, 

and the hip performed slightly more positive work over a stride. Our subjects therefore 

redistributed work across joints and throughout the gait cycle, and performed more of it overall, 

to compensate for reduced push-off. 

A primary consequence of these changes in work was greater metabolic energy expenditure. We 

observed about an extra 2 W of metabolic power for each 1 W reduction in push-off work. For 

reference, a 50% reduction in push-off resulted in an energetic penalty comparable to carrying an 

extra load of about 10 kg (Huang and Kuo, 2014). As discussed above, no increase would be 

expected if walking were merely a matter of supplying sufficient work. Closer examination of 

the knee’s positive work reveals a distinct possibility that some of it could be powered elastically 

as a consequence of the immediately preceding collision (Shamaei et al., 2013). Accordingly, the 

term rebound refers not only to the knee’s rapid flexion and extension, but also to the possibility 

that some of the work could be elastic. We also consider it likely that subjects sought other 

compensations to substitute for push-off and avoid the penalties incurred by our model, which 

lacks the degrees of freedom to compensate efficiently. Although it is difficult to predict how 

humans might adapt to artificially induced deficits, it appears reasonable for them to seek 

relatively efficient compensations with the many degrees of freedom available to them. However, 

despite this compensation, it nevertheless appears quite costly to walk with reduced push-off. 

While these results demonstrate a clear link between push-off and efficient gait, there are 

opposing opinions regarding ankle push-off. Others have proposed that push-off aids initiation of 

the swing phase (Bajd et al., 1997; Meinders et al., 1998), more so than redirection of the COM 
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(Lipfert et al., 2014). Reduced push-off might then be expected to adversely affect swing 

initiation. This would be expected to result in either a slower swing phase, or the avoidance of 

slow swing through compensations such as greater moments and powers at hip and knee. In fact, 

swing phase appeared slightly faster, not slower, with reduced push-off (as indicated by a 

positive correlation between swing time and push-off work; Table 1). We did not observe 

significant change at hip and knee moments and powers. Our data therefore do not suggest a 

strong detriment in swing phase initiation due to reduced push-off. 

The findings presented here are subject to a number of limitations. We reduced push-off work 

with an artificial kinematic constraint. This may have had unintended consequences, such as 

causing subjects to exaggerate knee flexion (and thus negative work) during collision (Fig. 4.6). 

A more direct approach might have been to constrain ankle kinetics more explicitly, for example 

with mechanical damping, or more invasively through a nerve block to the plantarflexor muscles. 

There may be yet other ways to reduce push-off more effectively, especially if the intent is to 

model particular pathologies. Depending on the condition, such as ankle fusion, ankle-foot-

orthosis, or prosthesis, the actual effect on push-off in patients, and associated co-morbidities, 

could potentially be quite different from the constraint applied here. We had sought here to 

control against such effects by studying able-bodied individuals, but future studies might benefit 

from experimental models more similar to actual pathologies affecting push-off.  

Another challenge we encountered was in the quantification of mechanical work. Our model 

only predicts broad trends in work without ability to predict how it might be redistributed 

between the joints. The measurements were similarly broad, with COM and summed joint work 

both characterizing the overall work performed on the body in roughly similar ways (Fig. 4.4). 

But positive COM work over a stride appears not to capture the increased work demands 

resulting from reduced push-off (Doets et al., 2009), which appear to be met by the knee and hip 

(Fig. 4.5). Increased positive joint work may cancel negative work at other joints, for example 

the ankle during pre-load, and therefore appear as less negative work on the COM rather than 

more positive work. We thus find it more suitable to examine the work performed over the 

middle-stance phase (including both rebound and pre-load phases), which did yield more work 

with greater ankle restriction, as expected. Middle-stance work is actually more relevant to the 

simple model, which does not predict the separate effects on rebound and preload phases.  



67	
  
	
  

We also caution that all of the work measures are incomplete. Although we find COM work to 

be a helpful measure for testing some hypotheses (e.g., Adamczyk et al., 2006; Donelan et al., 

2001a; Donelan et al., 2002b; Zelik and Kuo, 2010), it does not quantify work performed 

peripheral to the COM (Zelik and Kuo, 2012b). Summed joint work appears more suitable for 

that purpose. It also remains helpful to examine the individual joint powers to determine 

compensations for reduced push-off. But joint powers, like all other non-invasive measures 

practical for human locomotion, are also only indirect indicators of the work actually performed 

by muscle fascicles. 

Despite these limitations, our findings may have implications for patient groups with reduced 

push-off. Both the amount and timing of push-off appear important for energy economy, as also 

suggested by studies of ankle exoskeletons (Malcolm et al., 2013; Sawicki and Ferris, 2008), 

ankle orthoses (Bregman et al., 2011a), and lower limb prosthetics (Collins and Kuo, 2010; Zelik 

et al., 2011). If push-off cannot be restored, an alternative is to reduce the collision loss, for 

example with arc-shaped foot bottoms (Adamczyk and Kuo, 2013; Adamczyk et al., 2006; van 

Engelen et al., 2010; Vanderpool et al., 2008). Such interventions might help to mitigate the 

disadvantages of impaired ankle strength or power. 

 

Supplementary Material  

We briefly summarize details of the dynamic walking model, which comprises pendulum-like 

legs and concentrated mass at the pelvis (Kuo, 2002b). During stance phase, the COM moves in 

an inverted pendulum arc atop the stance leg. The COM moves down-and-forward with a 

velocity  𝑣! just before heelstrike, and must be redirected to up-and-forward for the next leg’s 

inverted pendulum arc (denoting that velocity  𝑣!). The COM velocity is redirected by a 

preemptive push-off impulse and a heelstrike collision impulse. Because all the mass is 

concentrated at the COM, the push-off and collision impulses can only point to the COM, and 

perpendicular to  𝑣! and  𝑣! respectively. The COM velocity after push-off and before collision is 

denoted 𝑣!"#. The push-off work 𝑊!" can be derived as  

 𝑊!" =
!!" !      
!!

  (A1)  
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where 𝑀 is total mass and 𝐹!"  is the push-off impulse. Similarly the dissipative work by the 

collision impulse 𝐹!" is: 

 𝑊!" = − !!" !

!!
 . (A2)  

The relationship between the collision impulse and 𝑣!"# is  

 𝐹!" = 𝑀𝑣!"#  sin  (2𝛼 − 𝛽) (A3) 

where 𝛼 is the angle between each leg and vertical during the step-to-step transition, and 𝛽 is the 

angle between 𝑣!"# and  𝑣!. Using geometry, we have 

 𝑣!"# = 𝑣! ! + 𝐹!"
!/𝑀!     (A4) 

 𝛽 = tan!!(𝐹!"/𝑀𝑣!) (A5) 

This yields collision impulse 

 𝐹!" = 𝑀 𝑣! ! + 𝐹!"
!/𝑀!     sin!(2𝛼 − tan!!(𝐹!"/𝑀𝑣!)) (A6) 

Substituting Eqns 4 - 6 into Eqn 2 

 𝑊!" = −!
!

𝑣! ! + !!!"
!

sin!   2𝛼 − tan!! !!!"
!"

 (7) 

Assuming small angle approximations and that 𝑣! is close to the average walking speed 𝑣, 

 2𝛼 ≈ !
!
   (A8) 

 tan !!!"
!"

  ≈ !!!"
!"

 (A9) 

Where s is step length and L leg length. Then we have our final formula for dissipative collision 

work: 

 𝑊!" ≈ −!
!
  𝑣! + !!!"

!
!
!
− !!!"

!"

!
 (A10) 

 ≈ −!!!!!

!!!
+𝑊!"

!
! !!"

!
−𝑊!"

! !
!
+ !!

!!
+𝑊!"

!
! ! !!

!"#
−𝑊!"

! !
!!!!

 .  
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For typical human walking speeds, 𝑊!" is quite small, and so 𝑊!" will generally be dominated 

by the two terms of lowest order, yielding Eqn. 1. 
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Chapter 5 Parametric Study on Energetics and Mechanics of 
Human walking with Compliant Artificial Feet 

Abstract 
Ankle performs a burst of positive work at late stance phase, which has been shown to reduce the 

negative work of heel-strike collision and improve human walking economy. For healthy 

individuals, most of the ankle positive work is contributed by elasticity of the Achilles tendon, 

which stores and returns energy. The elasticity could reduce the active work demanded of 

muscles and could be beneficial to walking economy. But this does not explain what spring 

stiffness would be the most appropriate since any spring could return energy. The particular 

value of stiffness for the Achilles tendon, and the related parameter of foot length, might be 

critical to walking economy. Indeed, a dynamic walking model with an compliant ankle predicts 

an optimal combination of the two, as well as consequences for non-optimal combinations. Too 

stiff an ankle and too short a foot is predicted to cause early and weak push-off, whereas too long 

a foot and too compliant an ankle is predicted to cause late push-off. The trade-offs have not, 

however, been tested experimentally. We therefore tested healthy adults (N = 10) wearing 

compliant artificial feet walking at constant speed with different ankle stiffnesses and foot 

lengths. We found later and more elastic push-off for more compliant ankle and short foot. The 

more elastic push-off was beneficial to the energetic cost, but late push-off diminished the 

benefit. The trade-off between earlier push-off, for stiffer ankle and shorter foot, and more elastic 

push-off, for more compliant ankle and longer foot, explained the minimum energetic cost we 

found for intermediate ankle stiffness and foot length.  
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Introduction 
Human ankle performs a burst of positive work, termed push-off, late in the stance phase, which 

appears to benefit walking economy(Adamczyk and Kuo, 2009; Huang and Kuo, 2014; Zelik et 

al., 2013). Much of this ankle push-off is contributed by the elastic Achilles tendon, which stores 

energy earlier in  stance as ankle dorsiflexes, and return during late stance phase, as the ankle 

plantarflexes (Ishikawa et al., 2005). Patients with gait pathology or lower extremity amputation 

usually perform much less push-off, which leads to greater energetic cost for walking(Waters 

and Mulroy, 1999). Several ankle-foot orthoses and prosthetic feet are designed to regenerate the 

ankle push-off work using passive elastic elements. The elastic push-off seems to be able to 

improve patients walking economy, but what the main factors determine the amount of elastic 

push-off, and what the best elastic push-off is are still unknown. Two important parameters 

affecting the elastic push-off are the compliant ankle stiffness and foot length. Intuitively, too 

stiff ankle or too compliant ankle cannot perform any elastic push-off, so the energetic cost of 

walking with too stiff or too compliant ankle should be greater than intermediate stiffness. The 

too stiff ankle can be considered as a rigid ankle, and too compliant ankle can be considered as a 

free joint. Either way there is no elastic push-off. On the other hand, too long or too short foot 

should also have greater energetic cost intuitively. The too long foot may causes problem to 

maintain the ground clearance and too short foot can also be considered as a free joint, which 

performed zero elastic push-off. However, it had not been tested systematically and 

experimentally how the compliant ankle stiffness and the foot length of a compliant ankle affect 

the energetic cost of human walking. Here we performed a parametric study on the ankle 

stiffness and length of compliant artificial foot. We sought to determine how ankle stiffness and 

foot length affect the elastic push-off, as well as the energetic cost of walking.  

A number of commercially available prosthetic feet with compliant keel, such as Flex-foot and 

Seattle foot, are considered preferable to non-compliant designs (Hafner et al., 2002). The elastic 

properties of these feet can store energy during mid-stance and return it in late stance. Some 

quantitative improvements have been observed including faster self-selected walking 

speed(Snyder et al., 1995a), longer stride lengths (Perry and Shanfield, 1993), less peak vertical 

ground reaction force (Lehmann et al., 1993; Perry and Shanfield, 1993; Powers et al., 1994; 

Snyder et al., 1995b) and apparently resuced energetic cost of walking (Nielsen et al., 1988).  

Therefore, it appears that the energy-store-and-return property can improve patients’ walking, 
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although the mechanisms not yet understood. Also, how to design a compliant ankle prosthetic 

foot providing the best performance for minimal energetic cost of amputee walking is still 

unclear.  

Several dynamic walking models have shown there is an optimal stiffness of compliant ankle for 

minimal mechanical work (Bregman et al., 2011b; Zelik et al., 2014). In fact, walking can 

theoretically have zero cost in a model with appropriate ankle stiffness and foot length (Zelik et 

al., 2014). A compliant ankle dynamic walking model (Fig. 5.1 A) predicts that the heel-strike 

collision can be modulated by the energy return from the elastic ankle (Zelik et al., 2014). The 

amount of elastic push-off and the timing of it are the main factors determining the heel-strike 

collision. The collision can be reduced by the elastic push-off preemptive to heel-strike which 

redirects COM. The ankle stiffness and foot length are two important factors determining the 

amount and timing of the elastic push-off. Karl Zelik found that the more compliant ankle and 

longer foot leads to more and later elastic push-off. The energetic cost is therefore a function of 

ankle stiffness and foot length (Fig. 5.1 B & C). However, these predictions from the compliant 

ankle model have not been tested experimentally.  

In this study, we tested healthy adults (N = 10) walking wearing compliant artificial feet with 

different ankle stiffnesses and foot lengths. We expected more and later elastic push-off (Fig 5.1 

B & C) for more compliant ankle and longer foot according to the compliant ankle model. Also, 

we expected optimal ankle stiffness and foot length yielding minimum energetic cost, based on 

the compliant ankle walking model.  

Method 
We performed a parametric study on human walking with compliant artificial feet with different 

ankle stiffnesses and foot lengths (Fig. 5.1 D). We examined these parameters in two separate 

experiments to measure mechanical work and metabolic cost. First we test how the ankle 

stiffness of artificial ankle affects the energetic cost and mechanics of human walking. Second 

we test how the length of compliant feet affects the energetic cost and mechanics. The compliant 

artificial feet have rigid base and elastic foot plates made by fiberglass (Garolite). The stiffness 

of ankle is simulated by the leaf spring construction. The stiffness and foot length can be 

adjusted by replacing different thickness and length of foot plates. The compliant artificial foot is 

0.13 m height and 3 inch wide.    
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In the stiffness experiment, ten healthy adults (N = 10, 6 male and 4 female) were recruited to 

walk with four different thicknesses (0.1250, 0.1875, 0.2500 and 0.375 inches) of foot plates 

with the same length of 9 inch (Fig. 5.1 E). Subjects ranged 18-26 years of age and had average 

body mass M of 73.16 ±12.92 kg (mean ± s.d.), and leg length L 0.95 ± 0.05 m. We measured the 

ankle stiffness by the slope of force-displacement curve using material test machine. The 

corresponding linear stiffnesses are 6.60, 18.68, 38.66, 58.29 kN·m-1. In foot length experiment, 

8 healthy adult participates(N = 8, 6 male and 2 female) walked with five different lengths (5, 9, 

11, 13, 15 inches) of compliant foot with same thickness of 0.25 inches (Fig. 5.1 F). Subjects 

ranged 18-26 year of age and had average body mass M of 71.79 ± 12.43 and leg length L 0.97 ± 

0.06 m. Each subject had two 15 minutes training session before data collection. Subjects were 

asked to walk on the instrumental treadmill with constant walking speed 1.25 ms-1 for at least 8 

minutes for each trial to ensure steady state walking. Rates of oxygen consumption and carbon 

dioxide production were measured (Carefusion, Vernon Hills, IL, USA) to estimate the 

metabolic rate, expressed in unit of power (W) using standard conversion factor(Brockway, 

1987b). The ground reaction force of each leg was measured using an instrumented force 

treadmill (Bertec, Columbus, OH, USA). Lower extremity kinematic data were collected using 

marker-based motion capture system (VICON, Los Angeles, CA, USA).  

Data analysis 

We calculated the instantaneous COM power 𝑃!"# as inner product of ground reaction force 𝐹 

of each leg and the COM velocity 𝑣!"#(Donelan et al., 2002d). 

𝑃!"# = 𝐹 ∙ 𝑣!"#  (5-1) 

The stance phase of each leg can be divided into Collision, Rebound, Preload and Push-off 

according to the sign of instantaneous COM work rate (Fig 5.4A). The Rebound and Pus-off 

phases are also called Middle-stance phase. We calculated the average COM work rate 𝑊!"# as 

COM work per stride 𝑊!"# times step frequency  𝑓, where COM work per step was calculated 

by integrating the instantaneous COM work rate 𝑃!"# over a step. 

𝑊!"# = 𝑃!"#  𝑑𝑡   ×𝑓 (5-2) 
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We also calculated COM Collision, Rebound, Preload and Push-off work rate defined as the 

integral of COM power over each period times the stride frequency.  

Joint angles, moments and powers of knee and hip were calculated using inverse dynamic 

technique with commercial software (Visaul3D, C-motion, Germantown, MS, USA). Artificial 

ankle power 𝑃!"#$% was calculated as sum of translational power performed on the distal end of 

shank, defined as inner product of the ground reaction force  𝐹 and translational velocity at the 

fulcrum of the leaf spring 𝑣!"#$%, and rotational power performed on the distal end of shank, 

defined as the inner product of artificial ankle moment about the fulcrum of leaf spring 𝑇!"#$% 

and angular velocity of the shank  𝜔!"#$% (Caldwell and Forrester, 1992; Gordon et al., 1980; 

Prince et al., 1994).  

𝑃!"#$% = 𝐹 ∙ 𝑣!"#$% + 𝑇!"#!" ∙ 𝜔!"#$% (5-3) 

To quantify the timing of elastic push-off, we defined mid push-off time as the time (% stride) 

when half of elastic energy is returned.   

We also calculated the individual joint work rate, defined as the integral of positive/negative 

portion of joint power over a stride, times stride frequency, similar to the COM work rate.  

To quantify the effects of ankle stiffness and foot length on the measurements, we first tested for 

a second-order fit using least square regression method among each measurement as function of 

ankle stiffness and foot length.  

Second-order fit : 

 𝑎!𝑘!"#! + 𝑏!𝑘!"# + 𝑐! (5-4) 

𝑎!𝑙! + 𝑏!𝑙 + 𝑐! (5-5) 

Use the completing the square technique, we can rearrange Eqn. 5-4 and 5-5: 

𝑎! 𝑘!"# − 𝑘!"#
! + 𝑒! (5-6) 

𝑎! 𝑙 − 𝑙!"#
! + 𝑒! (5-7) 
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Where 𝑒! and 𝑒!are the extreme value of the measurements within the range of ankle stiffness 

and foot length, and 𝑘!"# and 𝑙!"# are the corresponding ankle stiffness and foot length.  

A second-order fit was considered significant if the confident interval of the quadratic coefficient 

(𝑎! & 𝑎!) does not include zero. If the significant second-order fit is not found, we then test for 

first-order (linear) fit.    

First-order fit: 

 𝑏!𝑘!"# + 𝑐! (5-8) 

𝑏!𝑙 + 𝑐! (5-9) 

To compare subjects with different size, we normalized all measurement by body mass 𝑀, leg 

length 𝑙, and gravity acceleration 𝑔 (9.81 ms-1). Work and moment were normalized by 𝑚𝑔𝑙 

(776.39 ± 151.78 J). Power was normalized by 𝑚𝑔!"𝑙!.! (2337.5 ± 432.2 W). Stiffness was 

normalized by 𝑚𝑔𝑙!! (664.87 ± 112.38 Nm-1). 

 

Results 

Both ankle stiffness and foot length of the compliant artificial foot had significant effects on the 

mechanics and energetic cost of walking. We found that intermediate values of stiffness and foot 

length yielded the minimum metabolic rate. Low stiffnesses resulted in late elastic energy return 

and greater heel-strike collision loses. High stiffnesses resulted in less elastic energy store and 

return. Short feet resulted in less elastic energy store and return and greater heel-strike collision 

loses. Longer feet resulted in late and greater elastic energy return, but more negative knee work. 

All these observation above could be disadvantageous for energetic economy. The trend of work 

performed by the active biological joints (knee + hip) matched the trend of metabolic rate.  

Ankle stiffness 
There are several qualitative observations to be made regarding ground reaction force and power 

trajectories. As ankle stiffness increased, the first peak of vertical ground reaction force 

decreased, indicating less impact at heel-strike. The second peak of vertical ground reaction 

increased with stiffer ankle (Fig 5.2 A). The COM power trajectories also changed with different 
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ankle stiffness (Fig. 5.3). Larger peaks were observed during Collision and Rebound for more 

compliant ankle. On the other hand, stiffer ankle had greater amplitude of COM power during 

Preload and Push-off. The active biological power trajectories (summed of knee and hip) had 

smaller amplitude in positive period (15-50 % stride) and negative period (50 – 62 % stride) for 

stiffer ankle. The compliant ankle power had less amplitude in both positive and negative periods 

for stiffer ankle. Knee power and hip power trajectories also changed with different ankle 

stiffnesses and foot lengths, but trends were more complicated and no monotonic trend was 

observed.   

Besides joint power trajectories, we also made some qualitative observation on joint angles and 

moment. For stiffer ankle, there was less dorsiflexion at compliant ankle in stance phase but 

greater plantarflexion moment. Knee had less flexion during the stride for stiffer ankle, and less 

extension moment during Rebound and greater flexing moment during Preload. No obvious 

change was observed at hip angle, but hip extension moment was less during Collision for stiffer 

ankle (Fig. 5.4).  

The metabolic rates 𝐸 exhibited a U-shape trend as a function of the ankle stiffness (Fig. 5.6 A). 

The optimal ankle stiffness was about 63.3 (dimensionless), which yielded a minimal metabolic 

rate of 0.18 (412.39 W). 

We found significant second-order fits for ankle stiffness results in positive/negative COM work 

rates (𝑊!"#
!   &  𝑊!"#

! ), active biological work rates (𝑊!"#
!   &  𝑊!"#

! ), COM Collision, Middle 

stance and Push-off work rates (𝑊!",𝑊!"#  &  𝑊!"   ), knee negative work rate (𝑊!"#
! ) and stride 

frequency (𝑓). We also found significant first order fits in ankle, knee and hip positive work rates 

(𝑊!"#
! ,𝑊!"#

!   &  𝑊!"#
! ) and mid push-off time with negative slopes indicating reduction for stiffer 

ankle. No significant fit was found ankle and hip negative work rates (𝑊!"#
!   &  𝑊!"#

! ). More 

details about the fitting can be found in Table 5.1, Fig. 5.6 and 5.7.  

Foot length 
 

There are several qualitative observations to be made regarding ground reaction force and power 

trajectories. As foot length increased, the first peak of vertical ground reaction force decreased, 

while the second peak maintained similar (Fig. 5.2 B). For different foot length, the positive 
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period (15-50% stride) of biology power changed with no monotonic trend. The amplitude of 

biology power in negative period (50-62 % stride) increased with longer foot. The compliant 

ankle power (Fig. 5.3) had less amplitude in both positive and negative periods for stiffer ankle, 

and greater amplitude for longer foot. Knee power and hip power trajectories also changed with 

different foot lengths, but trends were more complicated and no monotonic trend was observed 

(Fig. 5.3).   

Besides joint power trajectories, we also made some qualitative observation regarding joint 

angles and moment for different foot lengths. For longer foot, compliant ankle had more 

dorsiflexion angle and moment during stance phase. Knee had more flexion during swing phase 

and greater flexion moment during Preload for longer foot. No obvious change was observed at 

hip angle and moment (Fig. 5.5).        

The metabolic rates exhibited a U-shape trend as a function of foot length (Fig. 5.6 A). The 

optimal foot length was about 0.23 (dimensionless) yielding the minimal metabolic rate of 0.18 

(423.32 W).  

We found significant second-order fits for foot length results in positive/negative COM work 

rates (𝑊!"#
!   &  𝑊!"#

! ), active biological work rates (𝑊!"#
!   &  𝑊!"#

! ), COM Collision work rates 

(𝑊!"), knee positive/negative work rate (𝑊!"#
!   &  𝑊!"#

! ), hip positive work rate (𝑊!"#
! ) and stride 

frequency (𝑓). W e also found significant first order fits in COM Push-off work rate (  𝑊!"), 

ankle positive/negative work rates (𝑊!"#
!   &  𝑊!"#

! ), hip negative work rate (𝑊!"#
! ) and mid push-

off time, which all increased with longer foot length. More details about the fitting can be found 

in Table 5.2, Fig. 5.6 and 5.7. 
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Table 5-1: Qualitative results for walking with different ankle stiffnesses. 
        

 
𝑎!± c.i 𝑏!± c.i 𝑐!± s.d. 𝑅! p 𝑘!"# 𝑒! SI unit 

COM work rate, 
𝑊!"#

!  7.3±7.2E-7 -1.3±0.8E-4 2.3±0.2E-2 0.78 0.05 91.9 0.017 38.82 
COM work rate, 
𝑊!"#

!  -1.1±0.7E-6 1.5±0.8E-4 -2.3±0.2E-2 0.78 4E-3 67.7 -0.017 -40.71 
Bio work rate, 
𝑊!"#

!  3.3±3.2E-6 -4.3±3.3E-4 5.9±0.6E-2 0.62 0.04 65.2 0.045 105.23 
Bio work rate, 
𝑊!"#

!  -1.8±1.6E-6 2.8±1.6E-4 -3.3±0.4E-2 0.76 0.03 79.4 -0.020 -47.49 
Collision work 
rate, 𝑊!" -1.8±0.8E-6 2.6±0.9E-4 -1.9±0.3E-2 0.89 2E-4 74.1 -0.009 -20.66 
Mid stance work 
rate, 𝑊!"# 2.5±0.8E-6 2.5±0.8E-6 1.1±0.5E-2 0.93 3E-6 79.3 -0.003 -7.53 
Push-off work 
rate, 𝑊!" -1.2±0.4E-6 1.6±0.4E-5 6.1±1.5E-3 0.89 1E-5 68.2 0.011 26.65 
Ankle work rate, 
𝑊!"#

!  N/A -4.5±3.0E-5 1.5±0.4E-2 0.79 6E-3 N/A N/A NaN 
Ankle work rate, 
𝑊!"#

!  N/A 5.0±7.8E-5 -3.4±1.2E-2 0.82 0.20 N/A N/A NaN 
Knee work rate, 
𝑊!"#

!  N/A -2.9±3.0E-5 9.2±2.0E-3 0.52 0.06 N/A N/A NaN 
Knee work rate, 
𝑊!"#

!  -1.6±1.4E-6 2.7±1.5E-4 -3.0±0.4E-2 0.82 0.03 81.4 -0.019 -44.70 
Hip work rate, 
𝑊!"#

!  N/A -7.0±7.6e-5 4.5±0.7E-2 0.60 0.07 N/A N/A NaN 
Hip work rate, 
𝑊!"#

!  N/A 3.0±8.0E-6 -1.4±1.0e-3 0.75 0.45 N/A N/A NaN 
Metabolic rate, 𝐸 6.4±3.4E-6 -8.3±3.6E-4 2.0±0.02e-1 0.52 5E-4 63.3 0.18 412.39 
Stride frequency, 
𝑓 3.8±2.8eE-6 -5.2±3.0E-4 3.1±0.14e-01 0.90 0.01 69.3 0.29 0.88 
Mid push-off time N/A -2.2±0.8E-2 59±1 0.88 7E-6 N/A N/A NaN 
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Table 5-2: Qualitative results for walking with different foot lengths 

 
𝑎!± c.i 𝑏!± c.i 𝑐!± s.d. 𝑅! p 𝑙!"# 𝑒! 

 
SI unit 

COM work rate, 
𝑊!"#

!  4.6±1.3E-1 -1.9±0.6E-1 4.0±0.4E-2 0.87 6E-8 0.21 0.017 46.48 
COM work rate, 
𝑊!"#

!  -3.6±1.2E-1 1.5±0.6E-1 -3.2±0.6E-2 0.92 7E-7 0.207 -0.017 -40.35 
Bio work rate, 𝑊!"#

!  1.4±0.5 -6.8±2.6E-1 1.3±0.1E-1 0.75 9E-6 0.24 0.045 115.37 
Bio work rate, 𝑊!"#

!  -7.0±3.1E-1 2.7±1.4E-1 -5.0±0.8E-2 0.80 6E-5 0.19 -0.023 -55.30 
Collision work rate, 
𝑊!" -3.2±1.3E-1 1.9±0.6E-1 -3.3±0.4E-2 0.88 1E-5 0.30 -0.006 -14.92 
Mid stance work 
rate, 𝑊!"# 4.8±2.6E-1 -2.9±1.2E-1 3.8±0.2e-2 0.73 8E-4 0.30 -0.006 -13.342 
Push-off work rate, 
𝑊!" N/A 2.9±0.9E-02 6.2±2.3E-3 0.76 7E-8 N/A N/A NaN 
Ankle work rate, 
𝑊!"#

!  N/A 1.4±0.2E-1 -7.1±6.5E-3 0.85 1E-12 N/A N/A NaN 
Ankle work rate, 
𝑊!"#

!  N/A -1.2±0.5E-1 -2.1±1.5E-2 0.75 4E-6 N/A N/A NaN 
Knee work rate, 
𝑊!"#

!  4.1±1.6E-1 
-1.8±0.7E-

01 2.9±0.4E-2 0.77 9E-6 0.22 0.010 23.42 
Knee work rate, 
𝑊!"#

!  -5.8±2.9E-1 2.3±1.4E-1 -4.4±0.8E-2 0.80 3E-4 0.20 -0.020 -48.27 
Hip work rate, 
𝑊!"#

!  1.0±0.4 -5.1±2.0E-1 1.0 ±0.1E-1 0.79 2E-5 0.25 0.039 91.36 
Hip work rate, 
𝑊!"#

!  N/A 
-1.62±0.7E-

3 -5.7±33E-4 0.82 1E-4 N/A N/A NaN 
Metabolic rate, 𝐸 3.0±0.8 -1.40±0.4 3.4±0.2E-1 0.82 1E-8 0.23 0.18 423.32 
Stride frequency, 𝑓 9.1±5.2E-1 -6.5±2.4E-1 4.1±0.1E-1 0.87 1E-3 0.36 0.29 0.87 
Mid push-off time N/A 36±4 48±0.5 0.90 9E-17 N/A N/A NaN 
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Discussion 
The goal of this study was to examine how ankle stiffness and foot length affect the mechanics 

and energetic cost of human walking. We observed a U-shape metabolic (Fig. 5.6) rate as a 

function of ankle stiffness and foot length implying the trade-off between compliant and stiff 

ankle, and the trade-off between short and long foot of the compliant artificial feet in human 

walking. The too compliant ankle and too short foot caused greater COM collision (Fig. 5.7 A) 

due to less COM push-off than stiffer ankle and longer foot, requiring more bio work rate (Fig. 

5.6 B)  than intermediate ankle stiffness and foot length to compensate. The too stiff ankle had 

more COM push-off work than softer ankle, but had more knee work contributed to the COM 

push-off work, ending up more active joint work (hip + knee work) than intermediate ankle 

stiffness. The too long foot had greater elastic push-off, but the push-off work was dissipated by 

knee due to the late timing, ending up more active joint work (hip + knee work) than 

intermediate foot length. The active joint work therefore exhibited similar U-shape as a function 

of ankle stiffness and foot length comparing to the metabolic rate.    

The energetic cost of normal human walking has been shown to be depending on the positive 

mechanical work performed by lower extremity (Donelan et al., 2002d; Huang and Kuo, 2014), 

including the COM push-off work and rebound work. Ideally, the active mechanical work 

requirement can be zero if all the mechanical work, both positive and negative work, is 

performed by elastic mechanism. If there is energy dissipation somewhere besides the elastic 

material due to heel-strike collision or active negative joint work, it will require active 

mechanical work to compensate no matter how we design the elastic mechanism. Therefore, 

reducing the energy dissipation due to heel-strike collision and negative joint work is the key 

point to reduce energetic cost of walking.  

The simplest dynamic walking model predicts that the push-off can reduce the heel-strike 

collision (Kuo et al., 2005b). In our experiment, we observed this relationship between COM 

push-off and collision, which more COM push-off led to less collision. For overly compliant 

ankle and short foot, we there was less COM push-off work and greater collision. Therefore 

there is more active positive joint work causing greater energetic cost of walking.   
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In normal human walking, COM push-off is mostly contributed by ankle push-off, and more 

COM push-off accompanies with more ankle push-off. In the stiffness experiment, however, we 

observed a reversed trend between COM push-off work and elastic ankle push-off work. For 

stiffer ankle, there was more COM push-off but less elastic ankle push-off. Instead, knee joint 

contributed more positive work during push-off for the stiffer ankle than more compliant ankle. 

Therefore, although too stiff ankle had more COM push-off and less collision, there was more 

active summed joint work which requires more metabolic energy.      

Another important factor of the elastic push-off is the timing of it. The simplest dynamic walking 

model predicts that it would be the best if the push-off happens right before heel-strike. The 

compliant ankle model also found the optimal gait when the elastic push-off happens slightly 

before the heel-strike. Both too early and too late elastic push-off is not as effective in terms of 

reducing collision. In our experiments, the timing of push-off was after heel-strike for most of 

the trials except the extremely short foot, and was later for more compliant ankles and longer feet 

(Fig. 5.8). To perform earlier push-off, it requires enough ankle moment to lift the heel. The 

amount of ankle moment needed to lift heel depends on the foot length and the total body weight. 

For more compliant ankle, there was less ankle elastic moment than stiffer ankle and therefore 

later elastic push-off. For longer foot, although there was more elastic ankle moment, the 

required moment to lift heel was even larger due to the longer foot length. Therefore, although 

there was more energy stored in the compliant ankle for longer feet, it required the support from 

the leading leg and knee flexion to release energy. The elastic push-off for longer foot ends up 

dissipated by knee flexion.  

Another possible factor for the metabolic rate besides the active biological work for longer foot 

is knee hyperextension. Close examinations of the positive biological work rate and gross 

metabolic rate (Fig. 5.6 A) reveals that metabolic rate increased faster than the positive 

biological work rate, implying other factors could also cause the metabolic rate increase. When 

the foot was longer, the center of pressure (COP) moved more forward in front of knee during 

stance phase and inducing an external knee hyperextension moment. The human knee performed 

larger flexion moment (Fig. 5.5, 40 % stride) to counter this effect. Although the knee power did 

not change much, this knee flexion moment could be costly due to greater muscle forces 

provided to avoid discomfort. We also observed similar but less severe increases in knee flexion 
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moment with stiffer ankle (Fig. 5.4, 40% stride), which could be also due to the COP moving too 

far forward of the knee. The primary concern is therefore with regards to foot length, rather than 

ankle stiffness.      

In this study, we used mechanical work performed by knee and hip to explain the metabolic rate. 

There are still other factors, such as muscle force and co-contraction etc., which also contribute 

to the metabolic rate. Here we found the mechanical work alone can well explain the metabolic 

rate, which implies that other factors may not have significant change when walking with 

different ankle stiffness and foot length, or the effects of them were coupled to the mechanical 

work.  

There are several limitations of this study. First, we tested healthy adults walking with compliant 

ankle using simulator boots, which increased the leg length by 13 cm. This increase could 

potentially affect the energetics and mechanics of walking. Secondly, we did not discuss the 

energetic cost due to other factors when explaining the metabolic rate. For example, the energetic 

cost due to the discomfort of knee hyperextension was not quantified in this study.  

The results of this study indicate the importance of choosing proper ankle stiffness and foot 

length of human walking with compliant artificial ankle. Although we tested healthy subjects, 

the results can be implicated into design of prosthetic feet and ankle foot orthoses to improve 

patient walking economy. Also, this study can also potentially benefit the design of bipedal 

robots, which usually only have rigid or compliant ankle due to the difficulty to transfer power to 

the end of leg.     
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Figure 5.1 The energetic cost of springy ankle dynamic walking model (Zelik et al., 2013) and 
experiment set up.  
(A)Springy ankle dynamic walking model has torsional spring at ankle and hip. The hip spring is 
used to modulate step frequency. (B) The energetic cost of springy ankle dynamic walking 
model as a function of ankle stiffness. The elastic push-off happened earlier for stiffer ankle. (C) 
The energetic cost of springy ankle dynamic walking model as a function of foot length. The 
elastic push-off happened earlier for shorter foot. (D) Subjects walking on an instrumental 
treadmill with constant speed wearing the simulator boots with compliant artificial foot attached 
at the bottom. The simulator boots fixated the ankle of the subjects. (E)The stiffness of the 
artificial ankle depends on the thickness of the fore-plate. Four thicknesses were tested in 
stiffness experiment, and (F) five lengths of foot plates for foot length experiment. 
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Figure 5.2 Ground reaction forces.  
Vertical and  horizontal (fore-aft) ground  reaction force vs. stride time for different (A) ankle 
stiffnesses and (B) foot lengths. The hodograph, vertical COM velocity vs. horizontal (fore-aft) 
COM velocity, for different (C) ankle stiffnesses and  (D) foot lengths Left-hand vertical axes 
show dimensionless quantities, right-hand axes show dimensional SI units. Data shown are 
trajectories averaged across subjects (N = 8). 
.     
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Figure 5.3Mechanial power measures vs stride time, for different ankle stiffnesses (first column) 
and foot lengths (second column).  
Left-hand vertical axes show dimensionless quantities, right-hand vertical axes show 
dimensional SI units. Data shown are trajectories averaged across subjects (N = 8). 
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Figure 5.4 Joint kinematics and kinetics vs. stride time with different ankle stiffnesses.  
Angle, moment and power trajectories are shown for ankle (artificial), knee and hip. Data shown 
are trajectories averaged across subjects (N = 8). Positive angle and moments are defined in 
extension (Ext) as opposed to flexion (Flx). Left-hand vertical axes show dimensionless 
quantities, right-hand axes show dimensional SI units. Data shown are trajectories averaged 
across subjects (N = 8). 
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Figure 5.5 Joint kinematics and kinetics vs. percent stride time with different foot lengths.  
Angle, moment and power trajectories are shown for ankle (artificial), knee and hip. Data shown 
are trajectories averaged across subjects (N = 8). Positive angle and moments are defined in 
extension (Ext) as opposed to flexion (Flx). Left-hand vertical axes show dimensionless 
quantities, right-hand axes show dimensional SI units. Data shown are trajectories averaged 
across subjects (N = 8). 
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Figure 5.6 Gross metabolic rate and mechanical work rates vs. ankle stiffness (left column) and 
foot length (right column).  
(A) Gross metabolic rate. Each color represents one subject. The gray bars represent normal 
walking and standing metabolic rate from previous study (Huang and Kuo, 2014).  (B) Average 
COM work rate (red diamond) and bio work rate (blue square). The bio work rate represents the 
active biological work rate, defined as sum of knee and hip work rate. Left-hand vertical axes 
show dimensionless quantities, right-hand axes show dimensional SI units. 
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Figure 5.7 COM Collision, Middle stance and Push-off work rates (A) and individual joint work 
rates (B) vs. ankle stiffness (Left column) and foot length (right column).  
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Figure 5.8 Mid push-off time vs. (A)ankle stiffness and (B) foot length 
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Chapter 6 Conclusions 
	
  

I used the dynamic walking models to predict the energetic cost of human walking at different 

walking speeds with carried load, with constrained and with elasticity at ankle. I also tested these 

predictions experimentally by testing healthy subjects walking in constrained conditions. The 

energetic cost of human walking highly depends on the amount of positive mechanical work 

performed by the lower extremity muscles. One of the important reasons for the positive 

mechanical work is to compensate the energy dissipated during walking, especially the 

dissipation due to heel-strike collision. One way to perform positive mechanical work is to 

perform a push-off, a burst of positive work at late stance. A push-off, often contributed by ankle 

for healthy individuals, can not only compensate the heel-strike collision but also reduce amount 

of heel-strike collision according to simplest dynamic walking models.  

The main questions I want to answer in my study are that whether the dynamic walking models 

can explain the energetic cost of human walking with challenging conditions. The dynamic 

walking models consist simplified lower extremity model and passive dynamics. The energetic 

cost of the models is due to the rigid impact at the heel-strike, which dissipates kinetic energy, 

requiring positive mechanical work to maintain walking speed. Performing positive mechanical 

work should cost energy according basic thermodynamic principles. I therefore hypothesized that 

the positive mechanical work can explain the energetic cost of human walking with challenging 

conditions, and the dynamic walking models can predict the amount of positive mechanical work 

required for human walking. I then designed human experiments to test the model predictions, 

and discuss about the limitations of the models.  

We found that the inverted pendulum model extends well to predict for load carriage. The model 

predicts the proportionality between the positive mechanical work performed by each leg on 

COM and the total mass of body. I therefore tested healthy subjects walking with carried load 

and estimate the metabolic rate and mechanical work performed by lower extremity. We found 
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the work performed on COM is proportionate to the carried load. The metabolic rate is 

proportionate to the positive COM work rate with a constant delta efficiency.    

Besides carrying load, the energetic cost of human walking also increases substantively to faster 

walking speed. The simplest dynamic walking model with rigid legs also predict that the 

energetic cost of human walking at different speeds to be proportionate to the total body mass 

times the walking speed raised to the power of 3.42. Hypothesizing the proportionality between 

the energetic cost and positive mechanical work, I expected the energetic cost should be 

proportionate to the total body mass times the walking speed raised to the power of 3.42. I tested 

these predictions by testing healthy subjects walking at different speeds with carried load. We 

found the COM work rate of walking at different speeds with carried load agrees to the 

prediction and the proportionality between net metabolic rate and positive COM work rate.  

The rigid-leg model has the limitations that it cannot predict the double support duration and the 

pattern of ground reaction forces. I then used a compliant-leg model to predict the double support 

duration and the pattern of ground reaction forces. Assuming that the natural frequency of the 

compliant leg corresponds to the stride frequency, the compliant leg model can predict the 

double support duration and the pattern of ground reaction forces. Therefore, I concluded the 

rigid-leg model can predict the COM work and the energetic cost, and the compliant-leg model 

can complementarily predict the double support duration and the pattern of ground reaction 

forces of human walking at different speed with carried load.      

The simplest waking model is based on the push-off –collision relationship, which also predicts 

that the reduced push-off should lead to greater heel-strike collision, and requires more positive 

work to compensate. The reduced push-off should therefore be energetic costly. This hypothesis 

has not been tested experimentally before. I thus studied how the push-off affects the energetics 

and mechanics of human walking. We tested healthy subjects walking with ankle restriction, 

which reduced push-off. We found the more collision dissipation and more total joint work for 

reduced push-off, agreeing with the model prediction. The metabolic rate therefore increased for 

less push-off.  

The simplest walking model has shown the benefit of push-off in terms of reduce the energetic 

cost by reducing collision. Most of the push-off is contributed by the elastic Achilles tendon for 
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healthy individuals. How the elasticity at ankle could benefit human walking is unclear. A 

springy ankle dynamic walking model shows how ankle stiffness and foot length affect the 

energetic cost, but have not been tested experimentally. I therefore tested the energetics and 

mechanics of human walking with compliant artificial feet with different stiffnesses and foot 

lengths. I found the trade-off between stiff and complaint ankle, and the trade-off between long 

and short feet. Both ankle stiffness and foot lengths affect the amount and the timing of elastic 

push-off. Stiff ankle and short foot have less and earlier push-off. Compliant ankle and long foot 

have more and postponed push-off. Less and postponed elastic push-off requires more joint work 

for walking and cost more energy. Therefore, we found minimal metabolic rate for intermediate 

ankle stiffness and foot length. 

The timing and amount of push-off are critical to the walking economy. Reduced push-off leads 

to greater heel-strike collisions requiring additional mechanical work to compensate. The 

energetic cost therefore becomes higher with reduced push-off. The elasticity at ankle can 

contribute to push-off by storing and returning energy, but specific stiffness and foot length is 

required to achieve proper timing and amount of push-off for maximizing the benefit of elasticity. 

The optimal ankle stiffness and foot vary for different body weight, leg lengths and perhaps 

walking speeds. An AFO or a prosthetic foot with automated mechanism, which can adjust the 

ankle stiffness or foot length for different conditions, could be potentially more beneficial to 

patients’ walking economy.    

The inverted pendulum walking model can well predict the energetic cost of normal walking and 

walking with challenging conditions, but has a limitation to predict some gait parameters, such as 

double support duration, and COM fluctuations. A more complex model, such as compliant-leg 

model, would be able to explain more complex phenomena in human walking. However, a 

complex model usually requires more assumptions or systematic parameter tuning to obtain 

reasonable results. Therefore, the complex model could have less predictive value than the 

simple model.   

The mechanical work performed by each leg is able to explain the metabolic rate of these tasks. 

There are still other factors, such as muscle forces or muscle co-activation, which could 

contribute to the metabolic rate of walking. These factors are either maintain unchanged in these 

tasks or coupled with the mechanical work. In this thesis, we did not try to isolate these factors 
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from mechanical work. In the future, it would be interesting to design an experiment to de-

couple these factors from the mechanical work and explore the contribution of these factors on 

the energetic cost.  
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