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ABSTRACT

Small-Molecule Organic Photovoltaic Devices: Applications and Reliability

by

Xiaoran Tong

Chair: Stephen R. Forrest

The development of organic optoelectronic devices has moved forward at an in-

credible pace over the past three decades. Prototype organic solar cell panels have

emerged in the personal electronic market, and displays using organic light-emitting

diodes have become an essential part of consumer electronics. This thesis focuses

on the application and reliability of organic photovoltaic cells (OPVs), as they are

promising candidates as low-cost, flexible solar energy conversion sources.

Top-illuminated organic photovoltaic cells present opportunity to widen OPV ap-

plications, with potential use as power generating coatings on flexible and low-cost

substrates. In the first part of the thesis, we explore inverted small-molecule organic

photovoltaic cells on reflective metal substrates. We investigate the design of inverted

OPVs. We demonstrate methods to overcome challenges in device performance and

achieve inverted OPV on metal substrates with comparable efficiency to conventional

devices.

In the second part of the thesis, we study the reliability of small-molecule OPVs.

We start with an extensive overview of characterization and reporting of OPV oper-

xii



ational lifetime, device packaging and current research progress. We present a fully-

automated, compact experimental setup for long-term reliability testing. We identify

exciton-induced product as a dominant degradation mechanism in organic solar cells,

and describe the physical theory that accurately predicts the burn-in period of device

degradation. Device reliability can be greatly improved by reducing exciton lifetime,

such as employing a mixed donor-acceptor active layer. The degradation mechanism

also applies to photodegradation of neat OPV materials, and the stability is substan-

tially improved in the mixed donor-acceptor film. In long-term lifetime study, we

show that oxygen diffusion into the active layer is the primary cause of degradation,

leading to increased recombination current.
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CHAPTER I

Introduction to organic semiconductors and

devices

We begin with a review of organic semiconductors and optoelectronic devices.

We discuss the unique capabilities, fundamental physics, processing techniques and

applications of organic semiconductors and devices. This chapter is not intended

to be exhaustive but rather introductory to major advances in the field of organic

optoelectronic devices.

1.1 Organic semiconductors

Organic semiconductors are a group of conjugated carbon-based materials with

key differences from their inorganic counterparts such as Si, Ge, or III-V compounds.

Organic materials are weakly bonded by van der Waals force, resulting in low evapora-

tion temperatures (<500 �) and mechanical versatility, while inorganic semiconduc-

tors are covalent bonded crystals that are often brittle.[1] The optical and electronic

properties of organics can be tailored via synthesis, thus providing unlimited possi-

bilities in terms of material properties and combination. Moreover, organics have the

potential as low-cost and flexible electronic devices that are compatible with cost-

effective fabrication techniques such as roll-to-roll processing.[2, 3]

The optoelectronic properties of organic materials arise from the π-conjugated

system. In carbon atoms, the 2s and 2p orbitals form sp2 hybridization, where the

three sp2 orbitals exhibit a planar trigonal structure and the pz orbital is perpendic-

ular to the sp2 plane. A σ-bond is formed by the orbital overlap of two sp2 orbitals

from two carbon atoms. The resulting occupied bonding orbitals (σ) and unoccupied

1



Figure 1.1: Orbitals and bonds for two sp2-hybridized carbon atoms.

anti-bonding orbitals (σ∗) have a large energy difference beyond the visible spec-

tral range. On the other hand, the neighboring pz orbitals overlap and form the

so-called π-bond, creating a delocalized electron density. The energy difference be-

tween the bonding and anti-bonding π-orbitals is much smaller thus contributing to

semiconducting properties. The electronic properties of the material are determined

by the π-electrons in the highest occupied molecular orbital (HOMO), as they are

the most-easily excited into the lowest unfilled π∗-orbitals, known as lowest unoccu-

pied molecular orbital (LUMO).[1] A schematic of the orbitals and bonds is shown in

Figure 1.1.

The field of conjugated organic materials is largely divided into two categories

- small-molecules and polymers. Polymers are large molecules with repeating units

known as monomers. Conjugated polymers have π-systems that extend along the

carbon backbone chain forming one-dimensional electronic systems, resulting in con-

siderable bandwidth (on the scale of eV). Polymer-based devices are fabricated via

solution processing.[4] The photoexcited states are generally singlet excitons, which

2



(a) (b) (c)

Figure 1.2: Examples of small-molecule organic semiconductors. (a) C60 is the most
widely used acceptor material in organic photovoltaic cells. (b) SubPc is
an archetypal donor material in OPVs. (c) Pentacene is a common p-type
channel material in organic thin-film transistors.

can generate polaron pairs via interchain or intrachain interactions.[5, 6]

On the other hand, the term small-molecule refers to small molecular weight

(<1000 g/mol) organic semiconductors. Figure 1.2 shows the molecular structure of

three small-molecule materials. Fullerene C60 and boron sub-phthalocyanine chloride

(SubPc) are widely used acceptor and donor materials in organic photovoltaic cells

(OPVs) (Fig. 1.2(a) and (b)). Pentacene (Fig. 1.2(c)) is used as the p-type channel

material in organic thin-film transistors (OTFTs), with carrier mobility exceeding

1 cm2/V·s.[7]

Amorphous thin films of small-molecules are the most commonly seen in literature,

as they are easily fabricated and do not require post-processing. It has been shown,

however, that devices benefit from crystallization, as carrier and exciton transport are

enhanced via crystalline domains.[8, 9, 10] Single crystals of small-molecules can also

be produced, providing an extraordinary system to study the electronic structure and

properties of organic materials.[11, 12] Despite the difference in molecular structure

between polymers and small-molecules, the photoexcitation and carrier transport pro-

cesses in these materials are similar in nature, thus theoretical approaches often apply

3



to both categories. Since conjugated small-molecules are the foundation of this thesis,

all following introduction to the physics and applications of organic semiconductors

will focus on small-molecules.

1.2 Electronic processes in organics

1.2.1 Excitons

1.2.1.1 Excited states in organic molecules

Upon absorption of a photon, the electron in the HOMO is excited into the LUMO.

The lowest energy required for such a transition to occur is the HOMO-LUMO gap

minus the exciton binding energy, also called the optical gap, which is typically be-

tween 1-4 eV for the organic materials concerned in this thesis. The excitation results

in 25% of singlet (spin = 0) and 75% of triplet (spin = 1) states. According to con-

servation of angular momentum, transitions between singlet and triplet states are

forbidden. However, intersystem crossing exists when strong spin-orbit coupling is

present. For example, transition metal complexes such as fac tris(2-phenylpyridine)

iridium (Ir(ppy)3) can achieve efficient intersystem crossing, thus are used as high-

efficiency phosphorescent materials in organic light-emitting diodes (OLEDs).[13] Fig-

ure 1.3 shows the radiative and non-radiative processes and corresponding rates in a

typical organic molecule. Once an electron is excited from the ground state (S0) to

the singlet state S1, it can decay radiatively (fluorescence) or nonradiatively from the

singlet state, or go through intersystem crossing to the triplet state (T1), then decay

radiatively (phosphorescence) or nonradiatively. The rate of internal conversion is

several orders of magnitude higher than other decay processes, thus relaxation from

the excited state is generally assumed to be from the lowest vibronic state.

All the processes compete with one another. The overall lifetime of a given singlet

4



Figure 1.3: Radiative and nonradiative processes in organic materials. The subscripts
r and nr represent the radiative and nonradiative decay in the singlet
manifold, and rp and nrp represent processes in the triplet manifold. The
subscript isc stands for intersystem crossing.[1]

state is determined by the rates of all processes, viz:

τ0 = (kr + knr + kisc)
−1 (1.1)

Here kr, knr and kisc are rates corresponding to radiative, nonradiative decay, and

intersystem crossing. The natural lifetime of excited states in organic molecules are

on the order of nanoseconds for singlets and microseconds for triplets.[14, 15]

The above describes photoexcitation in isolated molecules. When molecular ag-

gregates are formed, the excitation can migrate among molecules. The movement of

excited states in aggregates is described by quasi-particles known as excitons. First

proposed by Frenkel then generalized by Wannier, the concept of exciton describes

the particle-like traveling of the excitation energy between molecules.[16, 17] Exci-

tons are viewed as bound electron-hole pairs with zero electric charge. Excitons in

organic aggregates largely resemble excited states in isolated molecules, since the in-

termolecular interaction is weak.[1] Excitons are generated primarily by direct optical

excitation in the case of organic photovoltaic cells and photodetectors, and by carrier

recombination in the case of organic light-emitting diodes. They are central to all

5



energy generation and transfer processes in organic materials.

1.2.1.2 Types of excitons

Excitons are categorized according to their spatial extent. The predominant type

in organic materials is the Frenkel exciton, where the electron-hole pair resides on the

same molecule and migrates among molecules as a unit.[16] The radius of the Frenkel

exciton is on the order of the size of a single molecule, generally below 5 Å. Such a

tightly bound electron-hole pair is a result of the weak Coulombic screening, as the

relative dielectric constant (εr) in organic materials is small (∼3). On the contrary, the

large εr of inorganic semiconductors (εr(Si)=11.7, εr(GaAs)=12.9) results in strong

Coulombic screening, thus the excited states are loosely bound Wannier-Mott excitons

with the electron-hole separation on the order of 40-100 Å.[17] The general expression

of exciton binding energy is shown in Equation 1.2.

EB =
e2

4πε0εrr
(1.2)

Here EB is the binding energy, e is the elementary charge, ε0 is the vacuum per-

mittivity, εr is the relative dielectric constant and r is the electron-hole separation.

The binding energies of Wannier-Mott excitons are small, thus the excitons in bulk

inorganic semiconductors are easily dissociated into free charge carriers at room tem-

perature. Excitonic behavior in inorganic materials is observed at low temperature or

under quantum confinement. The third category of exciton is the charge transfer (CT)

exciton, which is a neutral excited state that extends to one or two nearest-neighbor

intermolecular distances.[1] The CT excitons are particularly important in fullerene

(C60 and C70) thin films, with significant contributions to absorption and photocarrier

generation.[18]
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Figure 1.4: A schematic of Förster energy transfer. The labeled processes are: (1)
Donor excitation; (2) Internal conversion in donor and acceptor; (3) Non-
radiative decay in donor; (4) Acceptor excitation; and (5) Acceptor emis-
sion. Processes (3) and (4) are the resonance energy transfer.

1.2.1.3 Exciton energy transfer

The movement of excitons in organic materials is governed by energy transfer pro-

cesses. In organic devices, nonradiative energy transfer processes dominate. Förster

resonance energy transfer is an energy transfer process through nonradiative dipole-

dipole interaction.[19] In a Föster transfer, the nonradiative decay of the donor excited

state and excitation of the acceptor are resonant processes due to the overlap in the

emission and absorption spectra. Here the terms donor and acceptor denote the giver

and receiver of excitation energy. They can be the same or different molecular species.

In the acceptor, the excited state can either quickly go through vibronic relaxation

and reach the lowest vibronic state, making the transfer process irreversible; or trans-

fer the energy to another molecule, enabling diffusion process. Figure 1.4 shows a

schematic of the energy transfer process.
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(a)

(b)

Figure 1.5: Comparison between (a) Förster and (b) Dexter energy transfer

The Förster transfer rate is given by:

KF
D→A =

1

τD

(
R0

R

)6

, R6
0 =

3c4Φem

4πω4n4
0τDR

6

∫
FD(ω)σA(ω)dω (1.3)

where R is the distance between donor and acceptor molecules, FD(ω) is the nor-

malized fluorescence emission spectrum, σA(ω) is the normalized acceptor absorption

cross section, τD is the natural exciton lifetime of the donor, n0 is the refractive index

and Φem is the emission quantum yield.[19, 1] At the Förster radius R = R0, the

Förster transfer rate equals the natural lifetime, and the transfer efficiency is 50%.

The Förster radius depends on the spectral overlap between the donor emission and

acceptor absorption.

In 1953, Dexter proposed a nonradiative energy transfer process where donor and

acceptor molecules exchange electrons.[20] Figure 1.5 shows the difference between

Förster and Dexter transfer processes.
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Dexter energy transfer is allowed when spin is conserved in both molecules, thus

both singlet-singlet and triplet-triplet Dexter transfer is possible. The transfer rate

is given by:

KD
D→A = 2π |βDA|2

∫
FD(ω)σA(ω)dω (1.4)

Here βDA is the exchange energy interaction between the donor and acceptor

molecules. The transfer rate again depends on the spectral overlap of donor emission

and acceptor absorption. Dexter energy transfer is a much shorter range interaction,

which only occurs when the donor and acceptor molecules are nearest neighbors. The

Förster radius, however, can be on the order of a few nanometers.[14]

Radiative energy transfer is also possible. In a radiative energy transfer process

(photon re-absorption), the fluorescence emitted from the donor material is reab-

sorbed by the acceptor material. Photon reabsorption is an important incoherent

transfer process at longer distance (>10 nm). It requires the donor and acceptor

materials to have large oscillator strengths and significant overlap between emission

and absorption spectra. It also leads to an increase in observed singlet lifetime.

1.2.1.4 Exciton diffusion

The ability of excitons to migrate in the material is described by the exciton dif-

fusion length, LD =
√
Dτ0, where D is exciton diffusivity and τ0 is exciton natural

lifetime. The diffusion length is on the order of 10 nm for amorphous films.[9, 14] Dif-

fusion lengths on the order of microns have been reported for highly ordered structures

such as anthracene crystals.[21, 22] The exciton diffusivity depends on the scattering

time of excitons by optical and acoustic phonons, and the scattering and capture

of excitons by impurities and defects.[23, 24] It was proposed that the scattering of

excitons by impurities is negligible compared to the scattering by phonons even at

relatively high impurity levels.[23]

The exciton motion in an isotropic medium is described by the exciton diffusion
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equation:

∂NX (r, λ)

∂t
= D

∂2NX (r, λ)

∂x2
− k0NX (r, λ) +G (r, λ) (1.5)

Here, NX (r, λ) is the exciton density generated by absorption of photons of wave-

length, λ, and at position, r. Also, D is the exciton diffusivity, k0 is the exciton natu-

ral decay rate in the film indicating the probability of exciton decay per unit time, and

G (r, λ) is the photogeneration rate of excitons in the device active layers determined

by the local intensity of the optical electric field.[24] Usually, one-dimensional diffu-

sion is assumed in organic devices to simplify the problem. Predicting exciton motion

is particularly important to model performance of planar heterojunction OPVs, as

only the exciton population that diffuses to the dissociating interface contributes to

photocurrent.[15] Appendix B.2 provides details on simulation of exciton diffusion in

organic devices.

1.2.1.5 Exciton quenching

Besides the unimolecular decay processes indicated in Fig. 1.3, the excited states

can also interact with other free or trapped excitons, chemical impurities or crystal

defects. The impurities create mid-energy states that can quench excitons. One

method to analyze the trap-induced quenching is the approach-collision model, where

the exciton diffuses to the trap center and is captured.[24, 25] The trap-induced

quenching rate is given by:

kXT = 8πDRC (1.6)

where RC is the trap capture radius for excitons.

The trap-induced quenching shortens the exciton lifetime by:

1

k
=

1

k0 + kXT
(1.7)

where 1/k is the observed exciton lifetime. In Chapter VI we analyze the formation
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of trap states, and their impact on OPV device performance.

There are other exciton loss mechanisms such as triplet-triplet annihilation and

singlet-triplet annihilation.[1, 26] In such processes two excitons transfer energy and

create a highly excited state and a ground state, leading to a loss of one exciton.

They play a larger role in OLEDs as the exciton density is much higher than that of

OPV and organic photodetector (OPD) devices.

1.2.2 Charge carriers

1.2.2.1 Carrier generation

Charge carriers are essential to optoelectronic device operation. The intrinsic car-

rier density is determined by the number of carriers thermally excited from the HOMO

to the LUMO of organic semiconductors (equivalent to valence band to conduction

band excitation in inorganic semiconductors). Due to the large bandgap in organic

materials (∼ 2 eV), the intrinsic carrier density is extremely low (∼ 105 cm−3) com-

pared to inorganic semiconductors (ni(Si) = 1010 cm−3). These materials only exhibit

semiconducting properties when carriers are extrinsically generated by methods such

as injection from electrodes, dissociation of optically excited states and doping.

In OPVs, the carriers are generated by dissociated excitons. In a heterojunction,

the energy difference between the HOMO of the donor and LUMO of the acceptor

is smaller than the binding energy (EB) of the exciton, thus providing the driving

force for dissociation. It has been proposed that the dissociation of exciton forms a

nascent hot CT exciton, which then creates polaron pairs that further dissociate into

carriers.[27] Jailaubekov et al., probed the hot CT exciton formation and relaxation,

and proposed that charge separation at the donor/acceptor (D/A) interface occurs

on a picosecond timescale.[28] A diagram of the dissociation processes occurring at a

heterojunction interface is shown in Fig. 1.6.
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Figure 1.6: Exciton dissociation process. Excitons that reach the D/A interface dis-
sociate to CT excitons, due to the difference in binding energy. The CT
excitons form polaron pairs that further dissociate into charge carriers.

1.2.2.2 Carrier transport

Carrier transport in a bulk material is determined by the interaction energy be-

tween neighboring molecules and the polarization energy of the molecule. When the

interaction energy is large, the carriers move in a transport band as a delocalized

plane wave. On the contrary, when the polarization energy is large, the carriers are

localized and transferred via hopping.[1] In band transport, the mobility of carriers

has a temperature dependence of µ ∝ T−n, n >1; while in the hopping case mobility

follows µ ∝ exp(−EA/kT ), where EA is the activation energy. In organic materials,

the charged molecule easily polarizes its neighboring molecules and creates geometric

distortions in its local environment. The charge carrier changes the spatial distribu-

tion of electrons in the σ-orbitals and thus bond lengths. The energy associated with

the change is the geometric reorganization energy. The often-used terms “carrier”,

“electron”, and “hole” actually refer to the charge carrier and its accompanying po-

larization field - a polaron - in the context of organic semiconductors. The polarons
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hop from molecular site to site, with a thermally-activated mobility � 1 cm2/V·s.

The carrier density and mobility are improved by doping of the material. For

example, it has been shown that oxygen doping in phthalocyanines significantly in-

creases the carrier density and dark conductivity.[29, 30, 31] Intentional n-type and

p-type doping are used in organic semiconductors to improve carrier transport. Alkali

metals or Lewis acids have been used as effective dopants, however, they are likely

to diffuse into the active layers and introduce instability in their properties.[32, 33]

More recently, conjugated small-molecules are used as dopants. Lüssem et al pro-

vided a comprehensive review of doping in organic materials and how it affects the

Fermi level, and the density and mobility of the carriers.[34] Moreover, ultralow level

of doping fills and passivates intrinsic trap states, leading to a 3 orders of magnitude

increase in the electron mobility in C60.[35]

1.3 Processing techniques

1.3.1 Organic materials deposition

Thermal evaporation in vacuum is the most commonly used fabrication technique

for smallmolecule organic thin films. Generally, the source material is placed in a

resistive heating element inside a high vacuum chamber with base pressure of 10−6

- 10−8 torr. The materials are evaporated by Joule heating as current flows through

the evaporation boats. The evaporated molecules nucleate on the cold substrate and

form a thin film. Baffled box boats are typically used as they reduce the power loss

from radiative heating, and provide more directional deposition. The evaporation

rate of organic materials is usually kept below 3 Å/s, to prevent decomposition of

materials.

One of the biggest advantages of thermal evaporation is the precise control of film

thickness and doping ratio. The thickness of the deposited thin film is measured by a
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quartz crystal monitor in the chamber and can be calibrated ex-situ by ellipsometry.

Monolayer thickness control can be achieved. Moreover, the evaporation systems

usually have the capability to evaporate two or more sources simultaneously while

monitoring the rate of each material, enabling doping of organic thin films. The high

accuracy in doping ratio is essential in organic devices. For example, the quantum

efficiency of phosphorescent OLEDs has been found to depend strongly on the doping

concentration of the emissive layer.[13] In OPVs, a graded bulk heterojunction active

layer has been employed, where the ratio between donor and acceptor materials is

varied continuously throughout the active layer, providing better charge transport and

device efficiency.[36] Molar doping ratios on the order of 10−4 have been used to study

the tail states in organic semiconductors.[35] High precision control makes thermal

evaporation the primary processing method for small-molecule organic devices.

There are many other techniques to deposit organic thin films. Solution process-

ing is a procedure where a drop of the material in solution is applied to the substrate.

A spinner then rotates at high speed (∼2000 - 6000 rpm) and spreads the material to

a uniform coating on the substrate. Solution processing is widely used in polymer de-

vices and occasionally employed in small-molecule device fabrication, especially when

the material is not thermally stable.[10, 37, 38, 39] The thickness of the spin-cast film

is given by d(t) = d0

(
1 + 4ρω2

3µv
d20t
)−1/2

, ignoring evaporation, where d is the thick-

ness of the film as a function of spin time, t, initial thickness, d0, angular velocity,

ω, and the density (ρ) and viscosity (µv) of the solution.[40] Sub-nanometer control

of the film thickness is difficult. The desired thickness is achieved by calibration of

conditions for a given material, solvent and equipment combination. Organic vapor

phase deposition (OVPD) is another promising method.[41] This low vacuum (0.1

- 10 Torr) technique uses a flow of inert gas to carry the evaporated molecules to

the substrate. Precise control and monitoring of thin film growth can be achieved

by methods such as laser-induced fluorescence.[42] It is suitable for large-area, uni-
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form deposition of organic materials.[43] By incorporating OVPD into a jet-printing

configuration (organic vapor jet printing), micron scale patterning of organics can be

realized.[44, 45]

1.3.2 Electrode preparation

The organic optoelectronic devices are sandwiched between two electrodes, usually

a reflective metal contact and a transparent conducting contact. Low work function

metals such as Al, Ag, Ag:Mg are often used as the reflective cathode materials.[46,

47, 48] Similar to deposition of organic materials, the metal contact is thermally

evaporated. Since the evaporation temperature of the metal is much higher than

that of the organic materials, the metal atoms arrive at high kinetic energy, resulting

in damage states when metal is deposited onto organic layers.[49, 50] The defect

states are known to assist carrier extraction in OPVs.[49] The damage depth is on

the order of a few nanometers and can be prevented by intensive cooling of the

substrate during deposition.[50, 51] Sufficient cooling of the substrates reduces lateral

and vertical diffusion of the metal atoms, thus decreases the probablility of defect

states generation.

The most widely used transparent conducting anode is indium-tin oxide (ITO).

Alternatives to ITO have been explored, such as ultrathin metal layer, metal grid +

poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), metal nano-

wires, and carbon nanotubes.[52, 53, 54, 55, 56, 57] These contacts are more compat-

ible with flexible OLED and OPV devices, compared to the brittle ITO. However,

ITO still possesses the best combination of transparency (>80% in the visible range)

and conductivity (10-20 Ω/sq), thus is the preferred choice for transparent contact.

Methods for ITO deposition include reactive ion plating, chemical vapor deposition

and radio frequency (RF) sputtering.[58, 59, 60, 61] Here we briefly describe the most

commonly used RF sputtering technique.
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In sputtering, ions from an excited inert gas plasma are accelerated towards a

target under an electric field. The atoms are bombarded from the target, nucleate on

the substrate and form a thin film. The electric field is applied in DC or RF mode.

In the DC mode, a constant negative voltage is applied to the target. If the target is

not very conductive, the DC mode will lead to charge build-up on the target surface

and hinder further bombardment. In such a situation, RF sputtering is employed,

where the field alternates at a frequency higher than 50 kHz to prevent charge build-

up. Sputtering maintains the stoichiometry of the target, thus is an effective method

to deposit oxides. It has been found that the properties of ITO, such as optical

constants, sheet resistance, surface morphology and work function, depend on the

sputtering and post-deposition treatment conditions.[60, 61] For example, low sheet

resistance is achieved with optimized sputtering power, and post-deposition thermal

annealing in vacuum.[60] The work function of ITO is increased by increasing the

oxygen partial pressure during sputtering, or applying post-deposition UV-Ozone

treatment, thus improving carrier collection or injection at the contact.[62, 63]

1.4 Applications

1.4.1 Organic photovoltaic cells

1.4.1.1 Basic principles and characterization methods

Renewable energy sources are of interest due to concerns with global warming,

pollution and energy shortage. Photovoltaic cells are promising renewable energy

sources compatible with large-area electricity production. The photovoltaic effect was

first introduced by Becquerel.[64] Upon photoexcitation of a semiconductor, charge

carriers are generated and then extracted to the electrodes due to the built-in electric

field, creating a photocurrent in the external circuit. Typical current density-voltage

(J-V ) characteristics of a solar cell are shown in Fig. 1.7.
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Figure 1.7: Typical current-voltage characteristics of a solar cell. The open-circuit
voltage, VOC , short-circuit current,JSC , and the maximum power output,
PMax, are labeled on the curve.

The solar cell outputs power in the fourth quadrant, where J × V < 0. The

performance of the PV is evaluated by the power conversion efficiency (PCE), defined

as the ratio of the maximum power output to the incident power (PInc).

PCE =
max(−J × V )

PInc
(1.8)

The power conversion efficiency depends on the photocurrent at zero bias, short-

circuit current (JSC); the photovoltage under open-circuit, open-circuit voltage (VOC);

and the fill factor (FF ), FF = PMax/JSCVOC . The electrical sensitivity of a solar

cell to incident light is quantified by external quantum efficiency (EQE):

EQE =
number of extracted charge carriers

number of incident photons
(1.9)

To measure the performance of a solar cell, the device is illuminated by a sim-

ulated 1 sum, AM1.5G optical source and the J-V characteristics are recorded. To

measure device EQE, a lock-in amplifier is used to measure the device current output
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under chopped monochromated light. EQE is calculated by using a Si photodiode

to calibrate the monochromated light intensity, .

As we have shown in Section 1.2.1, the photoexcited states in organic semiconduc-

tors are tightly bound Frenkel excitons; thus heterojunctions are required in order to

generate carriers. An example of device operation of a planar OPV is shown in Fig-

ure 1.8. The incident illumination through the transparent electrode is absorbed by

the active layers with efficiency, ηA. The generated excitons then diffuse to the D/A

interface with efficiency ηED. The number of excitons that reach the interface can

be estimated by solving the continuity exciton diffusion equation (Eq. 1.5). At the

interface, the excitons dissociate into charge carriers with charge transfer efficiency,

ηCT .[15] The charge carriers are then collected by the electrodes with efficiency ηCC .

In a planar heterojunction OPV, the electrons and holes are spatially separated, thus

ηCC is usually approximately unity.[15] In a bulk heterojunction OPV, however, car-

rier recombination mechanisms such as Langevin recombination and Shockley-Read-

Hall recombination are significant.[65, 66] A much more complicated model is needed

to describe the charge collection efficiency.[67]

The extended quantum efficiency is then:

EQE = ηAηEDηCTηCC (1.10)

The latter three efficiencies determine the internal quantum efficiency (IQE) of

the device: EQE = ηAηEDηCTηCC = ηA × IQE. Ideally, every absorbed photon can

be converted into an extracted charge, resulting in 100% IQE, however, this is not

the case due to exciton diffusion and charge recombination losses.

With a known EQE, the photocurrent (Jph) under a given incident spectrum is:

Jph = q

∫
EQE(λ)S(λ)

λ

hc
dλ (1.11)
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Figure 1.8: Device operation of a planar heterojunction organic photovoltaic cell. The
external quantum efficiency is determined by the product of the absorp-
tion (ηA), exciton diffusion (ηED), charge transfer (ηCT ) and charge col-
lection (ηCC) efficiency.[15]

Here S(λ) is the power spectrum of the incident light, q is the elementary charge, λ

is the wavelength, h is Planck’s constant and c is the speed of light.

Standards have been developed to measure the solar cell performance under simu-

lated test conditions.[68] A standard Air Mass 1.5 global (AM1.5G) spectral irradiance

should be used for solar cell testing ,with an integrated 1 sun power density of 1000.4

W/m2.[69, 70] Among all the white light sources, the Xenon-arc lamp provides an ap-

proximate spectral match to 1 sun, AM1.5G illumination, and thus is used as a solar

simulator light source. Figure 1.9 shows the comparison between a 1 sun, AM1.5G

illumination and a Xenon-arc lamp spectrum.

According to Eq. 1.11, any spectral mismatch between the measurement conditions

and 1 sun, AM1.5G illumination condition will lead to a difference in photocurrent.

The spectral mismatch factor (M) has been introduced to correct for the measurement
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Figure 1.9: Comparison between 1 sun AM1.5G spectrum and Xenon-arc lamp spec-
trum.

error.[71, 72]

M =

∫
SSIM(λ)EQED(λ)dλ ·

∫
SAM1.5G(λ)EQER(λ)dλ∫

SAM1.5G(λ)EQED(λ)dλ ·
∫
SSIM(λ)EQER(λ)dλ

(1.12)

Here the subscripts AM1.5G and SIM represent the standard 1 sun, AM1.5G spec-

trum and that of the solar simulator, respectively. The subscripts R and D stand for

the device and the reference cell used to measure spectra. The power spectra of the

solar simulator and AM1.5G appear in both the numerator and denominator, elim-

inating the need for measuring absolute values of these quantities. Moreover, exact

measurement of the device active area is not necessary. The spectral mismatch factor

provides a convenient way to translate measurement results to device performance

under standard conditions.
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1.4.1.2 Diode equation for organic photovoltaic cells

The J-V characeristics of a p-n junction diode are described by the Shockley

equation:[73]

J = JS

[
exp

(
Va − JRSA

nkBT/q

)
− 1

]
− Jph (1.13)

Here JS is the reverse saturation current density, VA is the applied voltage, RSA is

the series resistance, n is the ideality factor, kB is the Boltzmann constant, and Jph

is the photocurrent.

Setting J = 0, the open-circuit voltage can be obtained:

VOC =
nkBT

q
ln

(
Jph
JS

+ 1

)
(1.14)

The Shockley equation was derived for inorganic p-n junctions with well-defined

band structure. Since the photoexcited states in organic materials are tightly bound

Frenkel excitons, the physics is fundamentally different. Several studies have modeled

the J-V characteristics of OPVs and arrived at similar expressions of Eq.1.13 with

very different physical pictures.

Giebink et al., analyzed the J-V characteristics of a planar heterojunction OPV

based on the polaron pair dynamics at the D/A interface.[74] As shown in Fig. 1.10,

at the D/A heterojunction, the excitons diffuse to the interface with current density

JX and form polaron pairs. The polaron pairs then recombine or dissociate with

rates kPPr and kPPd. The free electron (nI) and hole (pI) at the interface can also

recombine and form polaron pairs, with a recombination rate krec.

By incorporating exponentially distributed trap states, Giebink et al., derived the
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Figure 1.10: Processes at the donor/acceptor heterojunction. Adapted from Ref. [74]

ideal diode equation for organic solar cells.

J = JsD

[
exp (qVa/nDkBT )− kPPd

kPPd,eq

]
+JsA

[
exp (qVa/nAkBT )− kPPd

kPPd,eq

]
−qηPPdJX

(1.15)

Here JsD and JsA are reverse saturation current density, nD and nA are the ide-

ality factors corresponding to the donor and acceptor layers, respectively. Moreover,

kPPd and kPPd,eq are the polaron pair dissociation rates and ηPPd is the polaron pair

dissociation efficiency. The reverse saturation current density and ideality factors

depend on the density of states at the HOMO and LUMO, the characteristic trap

temperature, the injection barrier and voltage drop across the donor and acceptor

layers, respectively. In an ideal case with symmetric injection barriers, Eq. 1.15 is

reduced to an expression.

J = Jsym

[
exp (qVa/nsymkBT )− kPPd

kPPd,eq

]
− qηPPdJX (1.16)

Studies have focused on determining the VOC of the bulk heterojunction devices,

in particular, the origin of recombination losses that lead to the difference between

VOC and the HOMO-LUMO gap of the donor and acceptor. Blakesley et al., showed

that Eq. 1.14 is valid for an ideal bulk heterojunction, assuming constant electron-hole

pair generation rate and detailed balance.[75] By including exponentially distributed
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energetic disorder, the dependence of VOC on light intensity is accurately predicted.

1.4.1.3 Types of organic photovoltaic cells

Organic photovoltaic cells are categorized according to the structure and mor-

phology of the active layers. The term planar heterojunction OPV denotes a device

structure where the active layer comprises two neat layers of donor and acceptor mate-

rials with a planar interface. Tang introduced the first efficient planar heterojunction

OPV with >1% efficiency.[76] In a planar heterojunction cell, the excitons generated

in the donor and acceptor materials dissociate at the D/A interface. Therefore, the

PCE of a planar heterojunction OPV is limited by the exciton diffusion length in

small-molecule organic semiconductors, which is usually below 40 nm.[15, 14, 4] To

overcome this limit, bulk heterojunction OPVs were introduced, where the active layer

utilizes a mixture of donor and acceptor, allowing excitons to dissociate immediately.

The morphology of the mixed layer can be a controlled interpenetrating network of

donor and acceptor layers, or a random mixture of the two materials.[77, 78, 79] It is

generally agreed that a continuous charge extraction pathway is necessary to minimize

charge recombination in the bulk heterojunction. Devices usually achieve higher PCE

when the bulk morphology is designed to improve charge extraction, such as a “finger”

interpenetrating donor/acceptor network or a graded bulk heterojunction.[77, 36]

1.4.2 Organic thin-film transistors

Transistors are indispensable components of all electronic devices. Organic thin-

film transistors have inherently lower carrier mobility and switching speed compared

to their inorganic equivalents. However, they possess the advantages of flexibility,

low processing temperature and compatibility with a large variety of substrates.

OTFTs have attracted significant research interest for potential low-cost bendable

electronics.[80]
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(a) (b)

(c) (d)

Figure 1.11: Four organic thin film transistor structures. (a) Top-contact, top-gate
OTFT. (b) Bottom-contact, top-gate OTFT. (c) Top-contact, bottom-
gate OTFT. (d) Bottom-contact, bottom-gate OTFT

Typically, an OTFT uses the metal-insulator-semiconductor field-effect transis-

tor configuration. The organic semiconductor is connected to the source and drain

electrodes, and separated from the gate electrode by a layer of insulating dielectric.

When a gate voltage (VGS) is applied, carriers are generated at the organic/dielec-

tric interface and subsequently swept out of the channel by the applied drain-source

voltage (VDS). By tuning VGS, the current flow across the channel can be controlled.

Depending on the relative position of each material, four OTFT configurations can

be fabricated, as shown in Fig. 1.11.

The performance of top-drain-source-contact OTFTs is superior to that of bottom-

contact devices. The difference has been ascribed to large contact resistance, poor

organic morphology, and a large potential drop at the source/organic interface due to

deficiency of carriers.[81, 82, 83, 84, 80] Bottom-gate devices benefit from dielectric

surface modification, resulting in improved morphology of organic layers and proper

dipole alignment at the interface.[80]

The majority of OTFTs are p-type transistors, where holes are transported through
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the HOMO of the channel. Small-molecule organic semiconductors such as pentacene,

sexithiophene and copper phthalocyanine (CuPc) are often used as the p-channel

materials.[80] It is more difficult to fabricate n-type OTFTs, as the energy barrier be-

tween the Fermi level of the contacts and LUMO of the organics is much larger. More-

over, it has been reported that electron trapping at the interface, grain boundaries and

environmental impurities are more significant for electrons than holes.[85] Nonethe-

less, much progress have been made in n-type OTFTs, as they are key components

for low-power-consumption complementary circuits.[86] The carrier mobility can be

further improved when the gate dielectric surface is modified by a self-assembled

monolayer, as it has been shown that growth on a low-energy surface favors carrier

transport.[80, 87]

1.4.3 Other applications

Organic optoelectronic devices have many other applications that are beyond the

scope of this thesis. Research in optically-pumped organic lasers, organic polariton

lasers, and OLEDs has made significant progress in the past few decades.[88, 89, 12,

90, 91, 92] Among all the applications of organic optoelectronics, OLEDs is by far the

most successful and commercialized technology. They have been growing rapidly in

the flat panel display market. Lighting sources utilizing OLEDs are also progressing.

A few selective OLED products are shown in Figure 1.12.

Compared to dominant LCDs, OLED technology has the advantage of being

energy-efficient, ultra-thin, light-weight and flexible. By incorpoarting individual

emissive RGB pixels, OLED displays provide high contrast ratio and vibrant colors.

As of 2013, mobile devices using OLED displays have become common, and large-

area OLED TVs emerging. OLED is also a promising technology for lighting sources.

Currently, compact fluorescent and incandescent lamps dominate the lighting market,

and light-emitting diode (LED) lamps are becoming popular. However, each tech-
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(a) (b) (c)

Figure 1.12: Commercial organic light emitting diode products. (a) A Samsung
Galaxy S4 phone using a 5-inch, 441 ppi active-matrix OLED display.[93]
(b) An LG 55-inch OLED TV (right) compared to a conventional LCD
(left).[94] (c) Philips Lumiblade OLED light source.[95]

nology has its drawbacks. Incandescent bulbs are notoriously inefficient. LED bulbs

require aggressive cooling and outcoupling structures. On the other hand, OLEDs

have the benefit of high energy efficiency, ultra-low operating temperature, low driv-

ing voltage, tunable color, a good color rendering index and good color temperature.

It is suitable for large-area diffusive lighting sources. The flexibility and form factor

of OLEDs also opens up possibilities for creative architectural design.

Organic semiconductors have attracted extensive research interests in device physics

and applications. In particular, organic photovoltaic cells are promising sources for

solar energy conversion. This thesis consists of two parts that focus on the application

and reliability of OPVs. Part I - Inverted organic photovoltaic devices - discusses the

design, fabrication, device physics and application of top-illumination small-molecule

OPV cells, in search of novel and cost-effective ways to utilize OPVs. Inverted OPVs

eliminate the need for a transparent substrate, and thus have the potential as cost-

effective power generation coatings. Part II - Reliability of organic photovoltaic cells -

investigates the long-term stability and degradation mechanisms of OPV cells. Meth-

ods that alleviate device degradation are proposed. A conclusion and future outlook

is provided in the last chapter.
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PART I

Inverted organic photovoltaic devices

CHAPTER II

Inverted small-molecule solar cell on reflective

substrates

As OPVs gain recognition for their potential as promising solar energy conversion

sources, it is important to explore ways to cost-effective utilization. Conventionally,

OPVs are fabricated on transparent substrates such as glass or plastics, and employ

a transparent anode consisting of ITO.[76] In this chapter, we explore the possibility

of building small-molecule OPVs on reflective substrates. The inverted architecture

eliminates the need for comparatively high-cost transparent substrates, allowing for

use in applications such as power-generating coatings, or for growth on flexible and

inexpensive opaque substrates. We demonstrate inverted small-molecule organic pho-

tovoltaic cells incorporating a reflective metal bottom contact, and a sputter-deposited

transparent conducting oxide top contact.

The use of the term “inverted” is not to be confused with prior usage describing

a different device architecture. In previous work, the term “inverted” has been re-

lated to bottom-illuminated solar cells grown on electron-extracting transparent ITO

substrates. This requires the acceptor to be placed near the ITO contact in a planar

OPV;[96, 97] or modification of the ITO by an electron selective interfacial layer,

such as TiO2,[98] or ZnO,[99] in a bulk heterojuction OPV. In this chapter, we use
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inverted solar cell to describe top-illuminated cells grown on a reflective metal anode

and sputter-deposited ITO as the top transparent cathode. The use of a top ITO

cathode eliminates the need for transparent ITO/glass substrates or a conductive

metal grid,[53] thus enabling more flexible structure design without sacrificing device

active area.

2.1 Experimental procedure

The inverted structure uses a bilayer system consisting of the donor, CuPc, and the

acceptor, 3,4,9,10-perylenetetracarboxylic bis-benzimidazole (PTCBI).[76] Quartz sub-

strates were solvent cleaned,[100] then loaded into an electron beam evaporator where

a 100 nm thick layer of Ni was deposited at a rate of 5 Å/s. The Ni anodes were

exposed to ultraviolet (UV) ozone treatment for 30 minutes, then immediately loaded

into a high-vacuum thermal deposition chamber with a base pressure of 5×10−7 Torr.

Purified organic sources [100] were grown at a pressure of 1 × 10−6 Torr, and a rate

of 1-2 Å/s. A vacuum break and exposure to air occurred before attaching a shadow

mask to the deposited layers and substrate in an ultra-high-purity N2 ambient. The

top contact consisted of a 40 nm thick ITO layer sputter-deposited at 20 W (0.1 Å/s)

and a pressure of 2 mTorr using Ar plasma.[61] An array of 1 mm diameter circu-

lar cathodes was defined by a shadow mask. Current-voltage (I-V ) measurements

were used to characterize the performance of the cells in the dark and under 1 sun,

AM1.5G illumination (uncorrected for solar spectral mismatch) using a 150 W Xe arc

lamp. A transfer matrix formalism was used to predict the JSC under an AM1.5G

solar spectrum at 1 sun (100 mW/cm2) illumination.[15] The optical constants of or-

ganic materials and sputtered-ITO were measured using variable-angle spectroscopic

ellipsometry of neat films grown on Si.
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2.2 Challenges in designing inverted organic photovoltaic cells

Inverting the OPV structure introduces challenges in carrier transport and op-

tical design. In a conventional OPV cell, a wide-bandgap buffer layer such as

bathocuproine (BCP) or bathophenanthroline (BPhen) is often used prior to metal

cathode deposition in order to prevent excitons from quenching at the organic/metal

interface, as well as protect the photoactive layers from cathode deposition. Carrier

extraction through such wide-bandgap materials is assisted via the damage states

known to form upon hot metal deposition.[49] When the layer sequence is reversed,

no defect state is formed, thus the carrier extraction becomes difficult. According

to simulation, the photocurrent of an inverted device with the structure: quartz/Ag

100 nm/BCP 10 nm/PTCBI 30 nm/CuPc 15 nm/ITO 400 nm should be 94% of that

obtained for a conventional device: glass/ITO/CuPc 15 nm/PTCBI 30 nm/BCP

10 nm/Ag 100 nm, assuming unity charge transfer efficiency and carrier collection

efficiency.[15] As shown in Fig. 2.1, the lower photocurrent in inverted device is due

to reduced EQE in the CuPc layer, attributed to the change in optical constants in

the sputtered ITO, resulting in higher reflection at the air/ITO interface. However,

this inverted structure showed high device resistance and minimal photoresponse, as

seen in Fig. 2.2, possibly due to the BCP layer acting as an insulator, and damage in

the CuPc layer due to ITO deposition. Similar results were observed when the BCP

thickness was reduced. When the buffer layer was omitted entirely, the direct contact

between the acceptor and metal cathode leads to shorts.

As shown in Sec.1.3.2, sputter-deposited ITO films require annealing (∼ 400 �) in

order to reduce sheet resistance. In the case of inverted OPVs, annealing the top

ITO contact is not possible due to the low evaporation temperature of organic layers

underneath. Thus the optical and electrical properties of the ITO film is inferior

to that of commercial substrates. The extra absorption in sputtered-ITO can be
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Figure 2.1: Simulation of EQE of conventional (circles) and inverted (squares) CuPc/
PTCBI devices with structure shown in text.

Figure 2.2: J-V characteristics of fully inverted CuPc/PTCBI devices quartz/Ag 100
nm/BCP 5(10) nm/PTCBI 30 nm/CuPc 15 nm/ITO 400 nm under 1
sun, AM1.5G illumination
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limited by reducing the ITO thickness. The other optical loss in sputtered-ITO is the

higher Fresnel reflection at the ITO/air interface compared to the glass/air interface

in the conventional OPV case due to the difference in the refractive index of the

materials (nITO = 2.05 and nGlass = 1.42). Moreover, the sputtered-ITO exhibits

higher sheet resistance resulting in the higher series resistance of inverted devices

that can be solved by employing a metal grid subelectrode to reduced the distance

between carrier generation and carrier collection.[101]

2.3 Inverted organic solar cells on reflective substrates

In this section, we explore inverted devices utilizing ITO as the top cathode while

the organic layer sequence is kept the same as a conventional OPV device. In this

structure, damage states which assist carrier extraction in BCP can form upon ITO

deposition. Since the donor is adjacent to the metal anode, Ni is used as the elec-

trode given its deep work function and reasonable reflectivity. Performance data for

the inverted structure of quartz/Ni (100 nm)/CuPc (35 nm)/PTCBI (10 nm)/BCP

(10 nm)/ITO (40 nm) are shown in Fig. 2.3. The power conversion efficiency peaks at

0.74± 0.03% under incident illumination power 98 mW/cm2, with VOC= 0.44 V and

FF= 0.53. The VOC increases without saturating as the incident power increases.[102]

The peak FF = 0.56 at incident power 20 mW/cm2. The dark current density-

voltage (JD-V ) characteristics are fit to the modified ideal diode equation:[103] JD =

JS

{
exp

[
q(V−JDRSA)

nkT

]
− 1
}

, giving an ideality factor n = 1.78± 0.004, a series resis-

tance (RSA) = 4.55±0.012 Ω ·cm2, and a reverse saturation current JS = 1.46×10−7

A/cm2.

Fig. 2.4 shows the comparison between the conventional and inverted CuPc/PTCBI

devices in the dark and under 1 sun, AM1.5G illumination. The conventional device:

glass/ITO/CuPc (20 nm)/PTCBI (25 nm)/BCP (10 nm)/Ag (100 nm) showed a VOC
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Figure 2.3: Performance of an optimized inverted CuPc/PTCBI device. PCE (cir-
cles), VOC (triangles) and FF for the inverted device structure: quartz/Ni
(100 nm)/CuPc (35 nm)/PTCBI (10 nm)
acbcp (10 nm)/ITO (40 nm) as a function of incident power density.

= 0.47 V, a FF = 0.62, and a responsivity JSC/PInc = 0.041 A/W. Here, PInc is the

incident optical power density under simulated AM1.5G illumination. These values

result in a power conversion efficiency of PCE = 1.2± 0.1%, which is consistent with

previous work.[104] Fits to the JD-V characteristics give an ideality factor (n) = 1.54,

RSA = 1.54 Ω·cm2, and a reverse saturation current density (JS) = 4.9×10−8 A/cm2.

The high series resistance of the inverted device is due to the high sheet resistance of

the sputtered-ITO.

The performance of the inverted device depends on the thicknesses of both the

CuPc (tCuPc) and PTCBI (tPTCBI) layers, as shown in Fig. 2.5. For tCuPc < 35 nm,

the photocurrent (at 1 sun) increases monotonically with tCuPc, due to the improved

optical field distribution. In a thin-film layered stack, the optical field for long wave-

length light is enhanced farther away from the reflective electrode due to interference

effects.[15] Since CuPc absorbs in the 600-800 nm range,[105] as tCuPc increases, the

overall absorption in the CuPc layer increases, and is located near the D/A interface,

resulting in higher photocurrent. On the other hand, the photocurrent is also lim-
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Figure 2.4: J-V characteristics of a conventional CuPc/PTCBI device in the dark
(squares) and under 1 sun, AM1.5G illumination (dash-dotted lines), and
for the optimized inverted structure in the dark (triangles), and under
illumination (dashed line). The solid lines are fits to the measurement
using theory in text.

ited by the exciton diffusion length (LD) of the material, hence the enhancement in

photocurrent reaches a plateau after 35 nm. Similarly, the roll-off of the measured

photocurrent at larger thickness of PTCBI is partially due to the shift of the optical

field intensity maximum away from the D/A interface, resulting in reduced exciton

dissociation. From the fits to the data in Fig. 2.5, we obtain LD = 8 ± 2 nm for

CuPc, and LD = 3 ± 0.5 nm for PTCBI, consistent with previously reported values

for these materials.[15] The divergence between the simulated and measured data at

tCuPc = 40 nm is ascribed to a slightly decreased LD, possibly a result of disruption

of molecular stacking order as the film thickness is increased.[15] The VOC does not

vary significantly with CuPc thickness, as seen in Fig. 2.5(a). A PCE = 0.74±0.03%

is achieved at a CuPc thickness of 35 nm, decreased to PCE = 0.60 ± 0.04% at a

thickness of 40 nm.

Figure 2.5(b) shows device performance as a function of PTCBI thickness, with

tCuPc = 40 nm. The low performance of the device with 0 nm PTCBI verifies that the
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(a) (b)

Figure 2.5: Simulated (line) and measured short-circuit current (JSC) at 1 sun in-
tensity (diamonds) for quartz/Ni (100 nm)/CuPc (x nm)/PTCBI (y
nm)/BCP (10 nm)/ITO (40 nm). Power conversion efficiency, PCE
(squares), VOC (triangles), and FF (circles) under simulated 1 sun,
AM1.5G illumination are also shown. (a) y = 10 nm and x is varied
from 10 to 40 nm. (b) x = 40 nm and y is varied from 0 to 30 nm.
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CuPc-Ni interface does not form a photoactive Schottky diode, and the heterojuction

is active in dissociating excitons. A fit to the data with LD = 8± 2 nm for CuPc and

LD = 3± 0.5 nm for PTCBI is shown by the solid line. Similar to the case of varying

CuPc thickness, VOC and FF do not change significantly with PTCBI thickness, hence

PCE follows the same trends as the photocurrent, peaking at PCE = 0.6 ± 0.04%

for tPTCBI = 10 nm. For a 30 nm thick PTCBI layer, PCE = 0.35 ± 0.02%. When

the thickness of the PTCBI layer is greater than 10 nm, the absorption in PTCBI

occurs at distances considerably larger than the exciton diffusion length from the

D/A interface. In this case, photogenerated excitons cannot be efficiently dissociated,

resulting in a reduction in cell performance.

Using the experimentally determined values for LD of CuPc and PTCBI, in Fig. 2.6

we simulate the photocurrent at 1 sun, AM1.5G illumination as a function of the

donor and acceptor layer thicknesses. Exciton lifetimes of 2 ns are assumed for both

CuPc and PTCBI.[15] The optimized photocurrent in Fig. 2.6 is 3.2±0.002 mA/cm2,

consistent with experimental data. The inverted device exhibits inherently lower

photocurrent compared to that of a conventional device due to the reverse active

layer sequence. In order to maximize the absorption in the active layers, the material

absorbing longer wavelength light should be placed farther away from the reflective

electrode. In the next chapter we propose solutions to overcome this limit.

In summary, an inverted small-molecule organic photovoltaic cell employing a re-

flective Ni anode and an ITO cathode is demonstrated. Device performance is found

to be in agreement with simulations with a measured peak power conversion efficiency

of 0.74± 0.03%. These devices have potential applications as power-generating coat-

ings on a variety of flat or curved opaque surfaces.
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Figure 2.6: Simulated JSC in an inverted CuPc/PTCBI solar cell as a function of
CuPc and PTCBI thicknesses. The exciton diffusion lengths of CuPc and
PTCBI are taken as 8± 2 nm and 3± 0.5 nm, respectively. The exciton
lifetimes of 2 ns are used. Values of Ni anode, ITO cathode and BCP
layer thicknesses are 100 nm, 40 nm, and 10 nm.
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CHAPTER III

Inverted small-molecule photovoltaic cell with high

open-circuit voltage

In the previous chapter, top-illuminated inverted OPVs utilize a bottom metal

anode and a transparent top cathode without changing the deposition sequence of

the organic layers. Although defect states assisting carrier extraction are present in

the buffer layer in such structures, the resulting solar cells have limited efficiency

because the optical field distribution is sub-optimal relative to the position of the

donor and acceptor layers. For example, short wavelength light between λ = 300 nm

and 550 nm is absorbed by the acceptor PTCBI, thus the acceptor should be placed

near the reflective metal electrode. On the other hand, the phthalocyanine donor

absorbs longer wavelengths, hence should optimally be adjacent to the transparent

anode.

In this chapter, we demonstrate a top-illuminated organic solar cell based on

vacuum-deposited SubPc and C60, with an inverted layer structure optimized for

maximum absorption of the optical field. Efficient carrier extraction is achieved by

eliminating the BCP layer, thereby also eliminating the need for defect-induced carrier

transport. In addition to preventing damage to the donor layer during ITO deposition,

MoO3 contributes to hole extraction.[106] The effects of varying the MoO3 layer

thickness and cathode materials are investigated. Inverted OPV cells on stainless

steel substrates are also demonstrated.
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3.1 Experimental procedure

To prepare both conventional and inverted devices, bare and ITO-coated glass sub-

strates were cleaned by a standard solvent regimen followed by a UV-ozone treatment.

[107] Materials were deposited at a rate of 2 Å/s for metals, and 1 Å/s for purified

organics and MoO3 in a high-vacuum thermal evaporation chamber (base pressure

< 4×10−7 Torr). Prior to the deposition of the top contact, samples were transferred

to an ultra-high-purity N2 (<1 ppm O2 and H2O) where a shadow mask defining ar-

rays of 1 mm-diameter circular openings was attached. The top ITO contact was

sputter-deposited at a power of 40 W (0.2Å/s) and a pressure of 2 mTorr using Ar

plasma.[61] All deposition rates and thicknesses were measured using quartz crystal

monitors and calibrated by variable-angle spectroscopic ellipsometry. Device perfor-

mance was measured in air using a semiconductor parameter analyzer in the dark

and under illumination from a 150 W Xe lamp with AM1.5G filters using standard

procedure.[108] Lamp intensity was varied with neutral density filters and measured

by an NREL-calibrated Si photodiode. A transfer-matrix formalism was used to sim-

ulate the optical field and absorption, and to predict the JSC of the device.[15] The

aborption spectra of the materials were measured using a Lambda 1050 UV/Vis/NIR

spectrophotometer.

3.2 Inverted solar cell with maximized absorption

The donor material that normally absorbs long wavelength light should be placed

far away from the reflective electrode. The inverted structure design is restricted by

the fact that they have low yield when the acceptor is in direct contact with an Ag

contact. However, we find that shorting of the devices might be due to diffusion of Ag

into the organic layers, and can be alleviated when the acceptor layer is thick and when

other low-work-function metals are used. For devices using PTCBI as the acceptor,
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Figure 3.1: Two ways to construct photoactive layers in a planar inverted photovoltaic
cell.

the thickness of PTCBI layer is kept thin due to the short exciton diffusion length

of the material. When a material with a long exciton diffusion length such as C60 is

used,[15] shorting of the devices is prevented, allowing for an inverted OPV structure

optimized for optical field absorption. In Fig. 3.1 we show two different inverted

structures, where only type (2) maximizes the absorption in the active layers.

To prevent damage to the donor during ITO deposition, a MoO3 buffer layer is

inserted into the following inverted structure: glass/Al 100 nm/C60 50 nm/SubPc

9 nm/MoO3 10 nm/ITO 40nm. This device showed PCE = 0.86 ± 0.08%, with

responsivity (R) = 0.032± 0.002 A/W, FF = 0.48± 0.01 and VOC = 0.56± 0.02 V

under 1 sun, AM1.5G illumination. For the inverted device, the ideality factor n =

2.0±0.1, RSA = 4.9±0.1 Ω·cm2, and JS = (2±1)×10−5 A/cm2 were obtained by fitting

the JD-V characteristics with the modified Shockley equation.[103] The conventional

device with the structure: glass/ITO/SubPc 11nm/C60 40 nm/BCP 10 nm/Al 100
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Figure 3.2: J-V characteristics of conventional and inverted SubPc/C60 devices with
the structure: ITO-coated glass/SubPc 11 nm/C60 40 nm/BCP 7 nm/Al
100 nm in the dark (squares) and under 1 sun, AM1.5G illumination (solid
line); and glass/Al 100 nm/C60 50 nm/SubPc 9 nm/MoO3 10 nm/ITO 40
nm in the dark (triangles) and under 1 sun, AM1.5G illumination (dashed
line). Fits according to the theory in text are indicated by thin solid lines.

nm achieved a responsivity of R = 0.048 ± 0.001 A/W, FF = 0.63 ± 0.01, and VOC

= 1.10±0.02 V, resulting in a PCE = 3.3±0.1% under 1 sun, AM1.5G illumination.

A comparison of the J-V characteristics between the conventional device and inverted

device is provided in Fig. 3.2.

The low VOC of the inverted device is attributed to the low work function of sput-

tered ITO (4.03 eV) as compared to commercially-prepared and UV-ozone-treated

ITO (4.7 eV) used in the conventional cell.[61] Large band bending occurs at the an-

ode/donor interface when a shallow work function material is used as the anode, re-

ducing the injection barrier at the anode/donor interface, thereby reducing VOC .[109]

Meanwhile, the change in contact work function also reduce the interface field, lead-

ing to an increase in the polaron pair recombination rate and a reduction in polaron

pair dissociation rate. However, the VOC change due to the field reduction is small,

since the VOC change follows VOC ∝ kbT ln(kppr/kppd), as indicated in Ref.[74] The
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decreased fill factor is primarily due to the increased series resistance of the device

from RSA = 0.24 ± 0.05 Ω · cm2 to RSA = 4.9 ± 0.1 Ω · cm2, a result of the higher

contact resistance of the C60/Al interface and sheet resistance of sputtered ITO.

3.3 Role of MoO3

To increase VOC , a series of inverted devices was fabricated with varied MoO3

layer thicknesses from 10 nm to 70 nm, while using a low work function, 5 vol.%

Mg:Ag cathode. It is found that VOC increases from 0.78 ± 0.02 V to 1.02 ± 0.02

V when the thickness of MoO3 layer thickness changes from 10 nm to 30 nm, and

saturates for thicker films, as shown in Fig. 3.3(d). The responsivity peaks at 30 nm

thick MoO3,(Fig. 3.3(a)) consistent with optical simulations.

Previously it has been found that the ionization potential of MoO3 increases log-

arithmically with layer thickness, leading to an increase in VOC .[110] In an inverted

device, since the MoO3 is deposited on top of the organic layers, it is not possible to

measure the energy level at the MoO3/organic interface as a function of MoO3 thick-

ness. In Fig. 3.4 we show the measured absorption coefficient of MoO3 films on quartz

substrates, where the absorption edge corresponds to the MoO3 band gap (Eg). It

is found to increase by 0.43 eV as the thickness increases from 10 nm to 30 nm, and

saturates thereafter. The absorption edge is also influenced by optical interference.

After subtracting the optical effect, the increase in Eg is approximately 0.3 eV. The

energy shift increases the build-in field in the active layers, thus improves the VOC to

1.02± 0.02 V, close to that of the conventional device.
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(a) (b)

(c) (d)

Figure 3.3: The influence of MoO3 thickness on device characteristics under 1 sun,
AM1.5G illumination. Sample structure: glass/Mg:Ag 100 nm/C60 50
nm/SubPc 9 nm/MoO3 x nm/ITO 40 nm. The MoO3 thicknesses are x
= 10, 30, 50, and 70 nm, respectively. (a) The dependence of R. (b) The
dependence of PCE. (c) The dependence of FF . (d) The dependence of
VOC .
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Figure 3.4: The absorption coefficient of MoO3 on quartz for layer thicknesses of 10
(solid line), 30 (dashed line), 50 (dotted line), and 70 nm (dash-dotted
line), respectively.

3.4 Effect of cathode work function on device performance

The influence of the cathode work function (ΦCat) on device performance is in-

vestigated, with results shown in Fig. 3.5. Values used for ΦCat are from Ref. [111].

Here, 100 nm thick layers of Ag, Al, Au and Mg:Ag were used as cathodes, with

MoO3 layer thicknesses of 10 nm and 50 nm. Note that devices with Ag as the

cathode exhibit lower yield compared to other cathode materials. For devices with

10 nm MoO3, VOC increased significantly from 0.14 V to 0.91 V, while ΦCat decreased

from 5.0 eV (Au) to 3.7 eV (Mg:Ag), as shown in Fig.3.5(d). The power conversion

efficiency has a maximum at 2.23±0.06 % for Mg:Ag cathode and 50 nm thick MoO3

(see Fig. 3.5(b)). The increase in ΦCat results in more pronounced injection barrier

increase at the metal/donor interface for devices using Au as the cathode than those

that use Mg:Ag, hence the increase in MoO3 thickness shows a much more dramatic

improvement on VOC (from 0.91 V to 1.02 V for Mg:Ag devices and 0.14 V to 0.7 V

for Au-cathode devices.). We conclude that to achieve a high-efficiency inverted cell,
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the electrodes and buffer layers must be chosen such that a sufficienty high built-in

electric field (Ebi) is provided based on the energy levels of the photoactive layers.

3.5 Inverted organic solar cells on stainless steel substrates

Up until this point in Part I, the inverted solar cells have been built on glass

or quartz substrates for the ease of substrate preparation. Since the inverted OPVs

are grown on vacuum-deposited metal electrodes, the underlying substrate material

does not affect device performance. In this section, the OPV devices are built on

76 µm stainless steel foil substrates (SUS). The SUS substrates are first smoothed

by mechanical polishing to reduce surface roughness to below 3 nm, then further

planarized by spun-cast PEDOT:PSS.

The method for polishing stainless steel involves the following steps: (1) The foil

substrates are bonded to a 105 mm glass carrier disc using quartz wax heated to

80 �; (2) After cooled to room temperature, the glass carrier is mounted onto a

vacuum chuck on the lapping jig; (3) The foils are then polished at 20 rpm under

1300 gram of force, using a free flowing slurry composed of 1 µm calcined aluminum

oxide and DI water; (4) After polished for 30-45 minutes, the foils are removed from

the glass carrier by melting the wax; (5) The foils are sonicated in xylene to remove

the residual wax, then cleaned in acetone and boiling isopropanol. The resulting

surface is non-directional, highly reflective and sufficiently smooth for thin-film solar

cell fabrication. A layer of PEDOT:PSS is spin-casted at 1000 rpm for 30 seconds

followed by 6000 rpm for 1 minute to provide a better planarized surface and better

wetting for the metal electrode. Fig. 3.6 and Fig. 3.7 show the scanning electron

microscope and atomic force microscope images of the foil substrates before and

after polishing. The roughness is reduced from > 200 nm to 3 nm. With further

planarization using PEDOT:PSS, OPV cells can be grown on low-cost metal foil
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(a) (b)

(c) (d)

Figure 3.5: The influence of cathode work function (ΦCat) on device characteristics
under 1 sun, AM1.5G illumination. Sample structure: glass/cathode 100
nm/C60 50 nm/SubPc 9 nm/MoO3 x nm/ITO 40 nm. The cathode is
composed of Mg:Ag, Al, Ag, and Au respectively. The MoO3 thicknesses
are x = 10 nm (open symbols) and 50 nm (closed symbols). Cathode work
functions (from Ref.[111]) are indicated by dashed vertical lines. (a) The
dependence of R. (b) The dependence of PCE. (c) The dependence of
FF . (d) The dependence of VOC .
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Figure 3.6: Scanning electron microscope image of stainless steel foil substrates before
polishing.

substrates.

Fig. 3.8 shows the J-V characteristics of a conventional SubPc/C60 described

in Section 3.2, as well as inverted devices on quartz and SUS, with the structure:

substrate/Mg:Ag 100 nm/C60 50 nm/SubPc 9 nm/MoO3 30 nm/ITO 40 nm. The

inverted device on SUS substrates exhibited a PCE = 2.3 ± 0.1 %, with a FF =

0.56 ± 0.02 and VOC = 1.0 ± 0.02 V. Moreover, > 70% yield can be achieved when

PEDOT:PSS is used. The identical performance of inverted devices regardless of

substrate materials indicates that the inverted device can be used in novel power-

generating coating applications.

In conclusion, we demonstrate 2.4 ± 0.2 % power conversion efficiency in planar

inverted small-molecule organic photovoltaic cells. A buffer between the cathode and

photoactive layer is not necessary, allowing for device structure design optimized for

active materials absorption. The inverted device performance can be substantially

improved by employing a compound MoO3/ITO anode and a shallow-work function
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(a)

(b)

Figure 3.7: Stainless steel foil substrates after polishing. (a) Scanning electron mi-
croscope image. (b) Atomic force microscope image
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Figure 3.8: J-V characteristics of conventional and inverted SubPc/C60 devices on
quartz and stainless steel substrates in the dark (symbols) and under 1
sun, AM1.5G illumination (lines).

cathode, which enhance the device VOC by providing a sufficient built-in field. Finally,

we demonstrate inverted OPVs can be fabricated on a variety of substrates and

achieve nearly identical performance.
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PART II

Reliability of organic photovoltaic cells

CHAPTER IV

Overview of organic photovoltaic cell reliability

The power conversion efficiency of organic photovoltaic cells has been improving

steadily over time. State-of-the-art organic solar cells exhibit power conversion effi-

ciencies of 8.9% for small-molecule bulk-heterojunction devices;[112] 9% for polymer

bulk-heterojunction devices;[113] and 12% for tandem devices.[114, 115] The increase

in efficiency has drawn more attention to studying the long-term operational lifetime

of OPVs. In the second part of this thesis, we study the degradation mechanisms of

small-molecule organic photovoltaic cells and propose methods to mitigate degrada-

tion pathways thus prolonging device lifetime. We will begin with a review of the

current research progress in lifetime of organic solar cells, followed by investigations

of burn-in degradation and long-term stability of OPVs.

In this chapter, we discuss laboratory characterization of OPV reliability, encapsu-

lation techonologies and provide an overview of the state-of-the-art in OPV reliability

research. We will organize the overview in terms of the stability of active materials,

buffer layers and interfaces with a focus on small-molecule OPVs. Stability of polymer

OPVs and materials will be used for comparison as they dominate literature on OPV
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reliability. Extensive reviews of OPV lifetime research can be found in publications

by Jørgensen et al., and Krebs.[116, 117, 118]

4.1 Characterization of device lifetime

4.1.1 Device lifetime

The lifetime of an OPV is evaluated by the operation time until the PCE reaches

80% (T80) or 50% (T50) of its initial value. Figure 4.1 shows an example of the

normalized PCE decay curve and the two common ways lifetime is defined. It can be

the time until the efficiency drops to 80% of the initial value (from PCE to PCE80),

or to 80% of an arbitrary point (from PCE′ to PCE′80). Many studies have reported

a fast burn-in loss at the beginning of the aging, followed by a slow decay, similar

to the example shown in Fig. 4.1. The burn-in degradation has been attributed to

the oxidation of the metal contact, or trap formation that prevents carrier collection

or exciton diffusion.[119, 120, 121] The second slow decay is often approximated

as a linear process and attributed to the diffusion of oxygen and water into the

device active layers.[116] The diffusion process is not a linear function of time. The

linearity may arise from the steady minute permeation of oxygen and water into device

packaging, while the diffusion and degradation reactions occur at a much faster rate

compared to aging time. For devices that exhibit large intial burn-in degradation,

the T80 is more meaningful as an indicator of long-term operational lifetime.

4.1.2 Characterization methods

In Section 1.4.1, we have discussed typical characterization methods to evaluate

the performance of an as-grown OPV device. The OPV lifetime measurements often

involve examining the performance parameters as a function of time. Among all the

characterization tools, testing device J-V characteristics as a function of time is the

primary method to evaluate lifetime, as it directly provides the time dependence of
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Figure 4.1: Typical power conversion efficiency decay curve and the two ways device
lifetime T80 is defined.

photovoltaic parameters. In a lifetime study, the OPVs are aged under pre-defined

environmental conditions (see Section 4.1.3), and the J-V characteristics under 1 sun,

AM1.5G illumination are measured over time. If the dark J-V curve is also recorded,

it can give insights of the changes in the series resistance, reverse saturation current

and ideality factor.[15] An example of parameter degradation curves is shown in

Figure 4.2.

In an OPV device, the donor and acceptor materials generally absorb in differ-

ent wavelength ranges and may degrade at different rates. For devices that exhibit

significant photocurrent loss, EQE is useful to identify the degraded species as it

reveals the device photoresponse as a function of wavelength. A few studies mea-

sured the EQE before and after aging, and showed that some devices had uniformly

degraded EQE, ascribed to reduced carrier extraction;[122, 123] while in other cases

one material dominates the degradation process and the device EQE drops more

significantly at the corresponding wavelength range.[124, 121] Device absorption data

are necessary to interpret the change in EQE, as the drop could be due to a reduction

in absorption, carrier generation, or an increase in quenching of carriers or excitons.
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Figure 4.2: An example of photovoltaic parameters as a function of time for a mixed
SubPc:C60 device with the structure: glass/ITO/MoO3 10nm/ SubPc:C60

55nm/PTCBI 8nm/Al 100nm.

Even when the EQE degrades uniformly across the entire spectral range, it is use-

ful to test EQE throughout the aging experiment, instead of only at the beginning

and the end, as it provides infomration about the relative degradation speed of one

photoactive material to the other.

4.1.3 Testing conditions

Determining the lifetime and degradation mechanisms of a photovoltaic cell is a

complex task that requires highly controlled environment and testing conditions. For

inorganic photovoltaics, there are well-established qualification test standards by the

International Electrotechnical Commission (IEC), such as IEC 61215 for crystalline

silicon terrestrial photovoltaic modules, IEC 61646 for thin-film terrestrial photo-

voltaic modules, and IEC 62108 for concentrator photovoltaic modules and assem-

blies. Scientists have gained considerable knowledge into the degradation mechanisms

of inorganic solar cells after decades of research. For example, studies on crystalline

Si PV systems have suggested that degradation is often due to the failure in solder

joints or interconnects, or degradation of encapsulants.[125, 126] Amorphous Si solar
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cells suffer from light-induced degradation reversible by thermal annealing.[127] On

the other hand, organic PV technologies are relatively young and diverse. The wide

variety of OPV materials, device architectures, and processing techniques makes it

difficult to have a universal standard to study device lifetime. Reese et al. published

a consensus on OPV test conditions aiming to provide a better guideline for reporting

reliability results.[128] The article summarizes OPV test conditions in terms of ag-

ing and testing light source, environment, humidity, temperature, and electrical load

conditions, as shown in Table 4.1. Following the standardized approach is useful as

it allows for comparing data among different laboratories and OPV systems.

Environmental factors may cause different device degradation routes, which can be

separated by using controlled aging conditions. In 2008, Gevorgyan et al., introduced

a setup where the oxygen level, humidity, atmosphere, temperature and light intensity

are individually controlled.[129] In this setup, up to 2 devices are placed in an at-

mospheric chamber with quartz windows for illumination, electrical feedthroughs and

flanges connected to vacuum pumps and gas sources. Temperature control is achieved

by applying cooling fluid or heating blocks. Environment conditions are measured by

pressure gauges, thermocouples and oxygen and humidity sensors connected to the

chamber. When ambient or artificial atmosphere is used, fans are used to eliminate

temperature variations within the atmospheric chamber. The setup provides strictly

controlled environments for aging studies yet is bulky in size. Given the testing area

is limited by the illumination area of the solar simulator, it is neither efficient nor

cost-effective to have a large atmospheric chamber. The authors later improved the

testing setup to a more compact design, where 4 substrates (16 devices) can be stud-

ied simultaneously in different gas environments.[130] Reese et al., demonstrated a

simple miniature atmospheric chamber that also serves as encapsulation.[131] In the

atmospheric chamber, the back of the device substrate is directly pressed against an

o-ring seal. The device is then capped with either an encapsulation cover with a
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Table 4.1: Overview of different types of test protocols adapted from Ref. [128]
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getter to maximize device lifetime, or a cover with gas ports to control the chamber

environment. The devices are connected by pogo pins and electrical feedthroughs

to the source measurement unit. The authors also proposed methods to incorporate

temperature control. A Ca test (See Section 4.2.1) showed that the chamber has a

moisture ingress of ∼ 0.5µg/day when desiccant is included. This atmospheric cham-

ber design minimizes the error in illumination intensity as no quartz window is used

and the light intensity on the substrate can be directly calibrated.

Jørgensen et al., proposed that commercial weather chambers should be used to

control the environmental factors.[118] The commercial chambers accurately control

temperature and humidity. Cycling of temperature and illumination intensity is also

programmable. Such a setup provides consistent control of aging environments. How-

ever, the gas composition cannot be changed and the equipment may be costly.

4.1.4 Accelerated aging

The time it takes for an OPV to degrade can take months to years, therefore

accelerated aging is of interest.[132, 120] An acceleration factor such as light intensity,

temperature or humidity is applied to the device and the degradation rate is measured

under different conditions. Device lifetime under normal operating conditions can be

extrapolated.

The degradation rate is extracted by assuming a linear or exponential decay of

the parameter, viz.:

f(t) = f(t0) (1− kdegt) (4.1)

f(t) = f(t0) exp (−kdegt) (4.2)

Here f(t) represents the parameter of interest and kdeg is degradation rate. Degrada-

tion of OPVs generally exhibit a fast burn-in degradation for the initial few hours then

a linear decay onwards, therefore Eq. 4.1 is used.[133, 129, 121, 118, 134] Material
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systems that exhibit exponential degradation are rarely seen in the literature.[135]

Lifetime testing at elevated temperature is the most commonly used accelerating

test. The temperature dependence of degradation rate follows the Arrhenius relation-

ship:

kdeg = A exp

(
− EA
kBT

)
. (4.3)

Here A is the prefactor, EA is the activation energy, kB is Boltzmann constant

and T is temperature. Therefore the acceleration factor from temperature T1 to T2 is

defined as:

K =
kdeg(T1)

kdeg(T2)
= exp

[
EA
kB

(
1

T1
− 1

T2

)]
. (4.4)

The activation energy is highly material-dependent in OPVs. Schuller et al.,

studied the degradation of MDMO-PPV/[6,6]-phenyl-C61-butyric acid methyl es-

ter (PCBM) bulk heterojunction solar cells and obtained an activation energy of

300-350 meV for photocurrent degradation.[133] Gevorgyan et al., investigated the

aging of poly(3-hexylthiophene) (P3HT)/PCBM and found the activation energy of

efficiency degradation is 103 meV when aged in ambient atmosphere and 29 meV

when aged in N2.[129] Moreover, competing degradation mechanisms may have dif-

ferent dependence on temperature, making projection of device lifetime from one

temperature to another difficult. Nonetheless, high-temperature accelerated testing

does provide useful insights on degradation kinetics, however, care must be taken to

verify no new degradation mechanism is introduced at higher temperature.

Elevated humidity can also be used in accelerated testing. Voroshazi et al., quan-

titatively analyzed the shelf-life of devices as a function of humidity.[136] It was

found that high humidity level caused P3HT/PCBM OPVs to degrade faster when

PEDOT:PSS was employed as the hole transport layer, and the effect of humidity

was not as strong when MoO3 serves as the hole transport layer, despite that both
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transport layers are water-soluble.

Another method to accelerate device aging is to apply concentrated illumination.

Hermenau et al., examined the accelerated aging of zinc phthalocyanine (ZnPc):C60

OPVs and concluded that the degradation can be described by the total extracted

charge carriers.[137] The degradation of device PCE is only proportional to the num-

ber of total extracted carriers when aged under white LEDs for intensities varied be-

tween 163-872 mW/cm2. However, the proportionality does not hold when different

intensities of blue illumination were used, and devices aged under different wave-

length light degraded differently. Therefore it is unclear if the relationship between

extracted carriers and lifetime holds for devices aged under AM1.5G illumination,

given the spectrum may play an important role in degradation behavior.

4.1.5 Data reporting

The OPV lifetime is affected by numerous factors, therefore all the necessary

details in terms of device performance, aging conditions and testing conditions need

to be reported. The device T80, reflected by the degradation in PCE, is a combined

result of the change in R, VOC and FF , which should all be shown. Moreover, the

decay curve of the dominant degradation parameter should be provided. The aging

conditions such as the encapsulation of the device, testing environment, temperature,

humidity, aging light spectrum and intensity, and electrical load conditions need to

be clarified, allowing for comparison across different laboratories.

4.2 Hermetic packaging

Studies have shown that organic semiconductors are sensitive to moisture and oxy-

gen, thus effective encapsulation is necessary to extend device operational lifetime.[138,

116] In this section we review hermetic packaging techniques that have been applied

to organic optoelectronic devices.
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4.2.1 Evaluation of packaging quality

Generally, the packaging quality is assessed by the water vapor transmission

rate (WVTR) of the barrier. So far, no definitive WVTR value for long-lifetime

organic devices has been suggested, given the moisture sensitivity and degradation

mechanisms of organic devices are highly material-dependent. Burrows et al., pro-

posed that WVTR below 10−5 g/(m2d) is required to achieve long operational lifetime

in OLEDs.[139] Cros et al., investigated the effect of water vapor on the lifetime of

conventional and inverted polymer devices and concluded that lifetime of several years

can be achieved with barrier WVTR of ∼ 10−3 g/(m2d).[140] Currently there is no

conclusion on whether OPVs are more resistant to humidity than OLEDs, yet it is

likely that long operational lifetime can be achieved in OPVs with low-cost barrier

technologies.

Standard ASTM F1249-06 provides a guideline for measuring the WVTR of film

or sheeting barriers. To measure ultra-low WVTR in a laboratory, the Ca test is one

of the most widely employed methods owing to its easy implementation. The test is

based on the reaction of Ca with water and oxygen, resulting in the change in the

color (opaque to transparent) and conductivity (conductive to insulating) of the Ca

thin film. The reactions involved in the Ca test are:

Ca + H2O −→ CaO + H2,

2 Ca + O2 −→ 2 CaO, and

CaO + H2O −→ Ca(OH)2.

In a Ca test, a thin film of Ca is deposited on the substrate, which is then encapsulated

with the barrier in test and placed in a highly controlled environment. Accelerated

testing may be employed where the temperature and humidity of the ambient are

elevated. The transparency or conductivity of the Ca film is monitored over time and

WVTR is calculated accordingly. This method can differentiate between pinhole-
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Figure 4.3: Schematic of glass-on-glass encapsulation. The dimensions are not to
scale.

induced permeation and bulk permeation based on the uniformity of the property

change. Schubert et al., provided full test layout and calculation methods.[141]

4.2.2 Encapsulation methods

A glass lid with UV-cured epoxy resin has often been used for encapsulation. The

sample is placed in an inert gas environment such as N2. After the epoxy is dispensed

around the edges, a glass lid is placed on top forming a seal around the perimeter.

The epoxy is then cured under a UV lamp. Moreover, a thin-film getter such as BaO

or CaO is used to adsorb any residual water and oxygen in the encapsulated volume.

A schematic of glass-on-glass encapsulation is shown in Figure 4.3.

The glass encapsulation is rigid and not compatible with flexible OPV design,

therefore researchers have explored thin-film encapsulation and barrier lamination. In

a thin-film encapsulation process, an inorganic thin film is deposited as the barrier via

atomic layer deposition, plasma-enhanced chemical vapor deposition, or sputtering.

[142] Currently, the inorganic materials for thin-film encapsulation mostly comprise

Si- or Al-based oxides or nitrides. Research efforts are focused on reducing the defect

density, thus WVTR, in the barrier. Lamination of a barrier film directly onto the

device is suitable for roll-to-roll processing. WVTR on the order of 10−2 g/(m2d) has

been reported for OPV modules with a laminated multi-layer barrier.[2]
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4.3 Stability of photoactive materials

The photoactive layers in an OPV are susceptible to degradation, as they are at

higher energy excited states. The degradation of active materials directly leads to

deterioration of device performance, thus understanding active materials stability is

important for improving device lifetime. Organic materials are prone to photochemi-

cal reactions such as bond brokerage, crosslinking reactions and rearrangements.[117]

Finding active materials with good photostability is a necessary but insufficient con-

dition to long-lifetime OPVs, thus is an important starting point.

Fullerene C60 has been the most widely-used acceptor material due to its wide ab-

sorption range, long exciton diffusion length and charge mobility.[143, 15] The photo-

stability of C60 has been studied prior to its utilization in organic photovoltaic devices.

Taylor et al. first reported photoinduced decomposition of C60 in solution.[144] Rao

et al. showed photoinduced polymerization of C60 thin films in an oxygen-free envi-

ronment. The vacuum-deposited C60 thin film was polymerized up to C600 as shown

in laser desorption mass spectroscopy data after 12 hours of illumination under a

300W Hg lamp. However, no similar phototransformation has been observed in OPV

degradation studies. It is possible that such phototransformation requires a large

dose of UV illumination, which is hard to achieve since ITO absorbs the majority of

light below 320 nm.

Besides intrinsic degradation, C60 is also affected by environmental factors such

as water and oxygen. Matsushima et al. investigated the effect of absorbed oxygen

and water in a C60 OTFT.[145] An increase in the electron trap density was observed,

which decreased the mobility in the material. The degradation was reversed by ther-

mally annealing the C60 thin film. Lessman et al. studied long-term reliability of a

planar heterojunction ZnPc/C60 solar cell at different temperatures and under illu-

mination of a blue LED at 475 nm.[124] The devices exhibited a significant increase

in sheet resistance, a decrease in FF and a drop in photocurrent after 1200 h of ag-
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ing. The loss in photocurrent was primarily due to the lesser contribution from C60,

as indicated by EQE. The time-of-flight matrix-assisted laser desorption/ionization

spectroscopy (MALDI) data suggested that the degradation is due to photooxidiza-

tion of C60. Similar incorporation of oxygen in C60 was found in a degradation study

of P3HT/C60 OPV.[132] The authors proposed that oxygen diffused through pinhole

defects in the electrode then further diffused laterally, therefore attacking the device.

The donor polymer was not significant affected in either study.

Opposite results were found when the active layer is based on a mixed hetero-

junction comprised of ZnPc and C60. In another study on degradation of a ZnPc:C60

OPV, it was found that oxidation of the donor material is far more pronounced than

C60. Hermenau et al., studied the effects of water and oxygen on a mixed ZnPc:C60

bulk heterojunction OPV aged in isotopically labeled H18
2 O and 18O2:N2.[146] By

combining X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion

mass spectrometry (TOF-SIMS), the authors identified that water molecules causing

oxidation of ZnPc was the main degradation mechanism. By mapping the oxygen

content using TOF-SIMS, it was found that the oxygen diffused through pinholes in

the Al electrode. The oxidation was accelerated by illumination and does not occur

when aged in dry O2. The acceptor C60 was not affected by oxygen in this case.

Water caused the device to fully degrade within hours, while devices aged in dry N2

exhibit a T80 of 405 h.

Active materials in polymer OPVs may also degrade. Seemann et al., investigated

the degradation of P3HT:PCBM solar cells by J-V characteristics, impedance mea-

surements and charge extraction by linearly increasing voltage.[147] The degradation

in the presence of oxygen was ascribed to photochemical formation of carbonyl and

carboxylic groups that trap electrons. The degradation was accelerated by illumina-

tion and partially reversible.
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4.4 Degradation of non-active layers and interfaces

Deterioration of buffer layers and the electrode/organic interface can also de-

grade performance. The metal electrode in an OPV device is usually deposited

via thermal evaporation, which leads to pinhole defects in the thin film. Environ-

mental contaminants such as water and oxygen molecules will migrate along the

defects and cause metal oxidation at the metal-organic interface.[146] Several stud-

ies have shown that water-induced oxidation of electrodes does not depend strongly

on illumination.[146, 148] Studies have found that the metal electrode may diffuse

through the organic layer. However, whether the metal diffusion deteriorates device

performance is controversial.[146, 132]

PEDOT:PSS is a common hole transport layer that is extensively used in polymer

OPVs. Yamanari et al., found that the hygroscopic and acidic nature of PEDOT:PSS

accelerated oxidation of the Al electrode, while devices using MoO3 or no buffer layer

showed superior lifetime.[149]

Using an inverted device structure may prolong device lifetime. Zimmermann et

al., studied the degradation of a top-illuminated inverted device using PEDOT:PSS

and metal grid as the transparent top contact.[150] The devices were packaged and

then aged under a sulfur plasma lamp at 1 sun, AM1.5G illumination (AM1.5G)

and 50�. Auger electron spectroscopy showed that the metal contact was partially

oxidized leading to a drop in FF . The lifetime was improved when a metal with

a semiconducting oxide such as Cr was used. Norrman et al., proposed that phase

segregation of PEDOT:PSS and oxidation occuring at the PEDOT:PSS/active layer

interface was the main degradation mechanism for a bottom-illuminated inverted

cell.[151]

Schäfer et al., examined the degradation of ZnPc:C60 bulk heterojunction devices

aged under illumination and in inert gas.[138] The degradation was ascribed to a

change in the ITO work function caused by illumination in the UV. The lifetime was
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investigated within a very short aging period (7 minutes) and the effect on long-term

degradation is unclear.

In Chapter V, we present a compact testing system that is used to measure

the degradation of OPVs at elevated temperature. In Chapter VI, we will exam-

ine the physical mechanisms leading to the burn-in degradation in small-molecule

OPV photocurrent, and propose methods to mitigate the process. In Chapter VIII,

we examine the activation energy, degradation mechanisms and long-term stability of

small-molecule organic photovoltaic cells.
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CHAPTER V

Experimental setup for long-term reliability

testing

112 In this chapter, we present an, automated indoor laboratory solar cell testing

system for studying long-term operational lifetime of organic photovoltaic cells. As

discussed in Chapter 1, OPVs are susceptible to degradation when exposed to wa-

ter and oxygen. All devices are encapsulated, and tested under continuous AM1.5G

illumination and at different temperatures, in accordance with stability measure-

ment protocol ISOS-L-1.[128] The testing system is fully automated with individual

substrate temperature control, device current-voltage (I-V ) measurement and data

analysis and logging.

5.1 Light source

The illumination is provided by an AM1.5G, Class AAA solar simulator with an

illumination area of 8 inch × 8 inch. Previous lifetime studies have employed single

color or white LEDs and sulfur plasma lamps as illumination sources.[124, 152] As we

will show in Chapter VI, the OPV aging behavior depends on the number of photons

absorbed, therefore the incident spectrum may have little effect on device degradation.

However, for devices employing donor and acceptor materials with small absorption

overlap, the illumination source may play a bigger role on device degradation, given

each active material responds strongly to different parts of the spectrum. Xenon

lamps should be used as the light source for indoor lifetime testing, as the spectral
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match best simulates the aging conditions under a solar spectrum.

The solar simulator intensity is controlled by a built-in photodetector and pro-

portional - integral - derivative controller (PID controller). The intensity fluctuation

caused by Xenon bulb flickering is monitored by a 1 cm2 Si photodectector during

I-V measurement to minimize error in data analysis.

5.2 Device characterization

The device aging behavior is analyzed by measuring the I-V characteristics over

time. The system utilizes custom-built printed circuit boards for device mounting,

a Keithley 2400 sourcemeter for measurement, and a Keithley 2700 datalogger with

7705 module combined with custom-built printed circuit boards (PCBs) for device

switching.

5.2.1 Device encapsulation and mounting

Each substrate contains four 1 cm2 devices with the area defined by the overlap

between 1 cm wide strips of ITO anode and an Al cathode. The devices are encap-

sulated by UV-cured epoxy and cover glass. Prior to encapsulation, a 50 nm thick

Ca film is thermally evaporated on the cover glass to provide visual aid of packaging

quality.[141] A thin-film BaO desiccant is attached to the cover glass to adsorb any

residual moisture within the package. The schematic of the packaged device is shown

in Fig. 5.1.

Once encapsulated, the substrate is connected to a carrier board, which then

connects to the motherboard in the testing system. Individual carrier boards enable

easy device mounting and minimal interference with the devices already on test.

The electrical connection between the substrate and the carrier board contact pads

is achieved by silver paste and gold wire, which are found to be the most reliable
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Figure 5.1: Schematic of a packaged device

connection over long duration testing.

5.2.2 Device switching and measurement

The electrical connection between the computer, instruments and devices for

switching and measurement is defined by custom-built PCBs. The circuit layout

for the main switching board is shown in Fig. 5.2.

The 24-pin connectors link to a motherboard that holds three carriers. Each pair

of device electrical contacts are connected to a relay that switches between measure-

ment and idle conditions. A pair of 12-pin female headers are used to set the device

electrical connection during idle condition, such as short-circuit, open-circuit or at

maximum power point (MPP). The relays interface with the computer via Keithley

2700 datalogger and 40-channel 7705 module. One channel on the module is dedi-

cated to a calibrated Si photodiode to monitor the light intensity. When a device is

measured, the datalogger controls the relay to switch to the sourcemeter for I-V char-

acteristic scanning. Immediately after measurement, the module switches to measure

the current output from the Si photodiode in order to obtain the light intensity for

data analysis, and the device is set back to idle condition.
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(a)

(b)

Figure 5.2: Circuit layout of the main switching board. (a) Relay contacts switching
the device contacts (24-pin header) between the measurement condition
(sourcemeter) and idle condition (two 12-pin header resistor banks). (b)
Relay windings controlled by the datalogger (DB-50 connectors).
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(a)

(b)

Figure 5.3: The completed carrier board layout demonstrating device mounting with
temperature control. (a) Back side of the carrier board showing the con-
tacts to the motherboard, thin-film Kapton heater, copper plate, and
Ag paste and Au wire connection between device and board. (b) Front
side of the board showing the device area, thermal couple, and thin-film
desiccant and Ca in the encapsulation.

5.3 Temperature control

Aging devices under elevated temperature allows for accelerated lifetime testing as

well as measuring the activation energy associated with the degradation mechanisms.

In our test setup, each substrate is connected to an individual thin-film Kapton heater.

A copper plate is inserted between the heater and the cover glass for more uniform

heating. A K-type thermal couple is adhered to the device on the substrate side.

All the heaters and thermal couples are conected to an Omega CN616 temperature

controller, a power supply and custom-built relay control board. Figure 5.3 shows a
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Figure 5.4: The lifetime testing system operating in full capacity. The bottom two
substrates have 4 devices of different device area, while the other 7 sub-
strates have four 1 cm2 devices.

completed device on carrier board ready for testing.

The testing system has a total capacity of nine substrates, thirty-six 1 cm2 de-

vices with individual substrate temperature control. By employing custom circuit

boards, all the electrical connections are pre-defined, allowing for consistent lifetime

measurement with convenient device mounting. A picture of the system testing in

full capacity is shown in Fig. 5.4.
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CHAPTER VI

Intrinsic limits to small-molecule organic

photovoltaic cell operational lifetimes

Practical and economical solar module installations require operational lifetimes

of 15 years or more.[153] An overview of the state-of-art in OPV reliability research is

provided in Chapter 1. Previous studies have suggested that photo-induced chemical

degradation of the molecules comprising the OPV active region is the primary source

of long-term deterioration in device performance. Hence, the devices are found to be

stable when stored in the dark, whether or not they are connected to an electrical

load.[120] In polymer OPVs, the degradation has been attributed to photo-oxidation

leading to the formation of defects in the active layer,[120, 154, 155, 156, 157] buffer

layer [158] and at interfaces.[159, 122, 160] The defect trap states cause nonradiative

recombination, reduce carrier mobility, or result in build-up of space charge in the

device active region. In small-molecule organic solar cells, studies have shown that

degradation can be caused by oxygen-induced exciton quenching in C60,[124] degra-

dation of the exciton blocking layer,[161] and a reduction in the ITO work function

due to irradiation by UV light.[138] While there have been several previous studies of

aging phenomena in a variety of OPVs, to our knowledge none have applied physics-

based models that can quantitatively and accurately model the observed degradation

processes.

In this chapter, we develop a systematic, analytical model to describe the early

aging (i.e. the “burn-in”) of SubPc donor/fullerene acceptor OPVs in the absence
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of water and oxygen. We find that the photo-induced degradation is due to reduc-

tion of exciton lifetime at exciton-induced defects in the photoactive layers, either

through quenching of the excitons or generation of new species with shorter exciton

lifetime. The model accurately predicts the time dependence of the efficiency during

the burn-in period. The defect formation can be decelerated by reducing the exciton

density; therefore, mixed donor/acceptor OPV devices and materials systems [162]

are more stable than their planar analogues. Furthermore, devices employing a C70

acceptor exhibit improved stability compared to those with C60, suggesting mixed

donor/acceptor (D/A) devices employing C70 can be used in OPVs with extended

long-term performance.

6.1 Degradation mechanism

Upon illumination of the OPV, excitons are formed and subsequently diffuse to

a nearby D/A interface where they dissociate into free charges. The steady-state

exciton distribution is described by the diffusion equation:

∂NX (x, λ)

∂t
= D

∂2NX (x, λ)

∂x2
− k0NX (x, λ) +G (x, λ) = 0 (6.1)

Here, exciton density (NX (x, λ)) is the exciton density generated by absorption

of photons of wavelength, wavelength (λ), and at position, x. Also, D is the exci-

ton diffusivity, exciton natural decay rate (k0) is the exciton natural decay rate in

the as-grown film including the natural (τ0) and nonradiative (τnr) decay lifetimes

(i.e.,k0 = 1/τ0 + 1/τnr), and G (x, λ) is the photogeneration rate of excitons in the

device active layers determined by the local intensity of the optical electric field.[15]

Details regarding the optical modeling of layered structure and exciton diffusion pro-

cess can be found in Appendix B.

The energetically photoexcited states can induce chemical reactions and create
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dissociative defect states on the molecular sites on which they occur. Previously, it

has been shown for OLEDs that such defects can be formed due to excess energy

released from polarons in an Auger process, or from exciton localization, exciton-

exciton annihilation, and exciton-polaron annihilation, depending on the nature of

the reaction.[163] Materials absorbing photons whose energies are well in excess of

their energy gaps are the most vulnerable to degradation by these mechanisms. If

the resulting defects behave as deep charge recombination centers, they can reduce

the efficiency of photogenerated charge collection. The loss in EQE, in this case, is

expected to be uniform across the entire spectral range where the affected material

normally absorbs. On the other hand, when defects act as nonradiative exciton re-

combination centers, the exciton diffusion process is directly affected, and the changes

in EQE over time will exhibit a wavelength dependence. Here the defect states are

assumed to be of the latter species, and formed by exciton localization in accordance

with experimental observations in Sec. 6.3. The proposed mechanism during burn-in

differs from that leading to the long-term aging of OLEDs where exciton-polaron an-

nihilation is the dominant mechanism,[163] possibly due to the relatively high charge

mobility typical of efficient OPV devices, where the polaron density is expected to be

low.

The decay pathways introduced by defect states ultimately reduce the exciton life-

time through increased recombination. Consequently, Eq. 6.1 is modified to account

for trap generation and sebsequent recombination, viz.:

∂NX(x, λ)

∂t
= D

∂2NX(x, λ)

∂x2
− k′NX(x, λ) +G′(x, λ)

= D
∂2NX

∂x2
−NX(k0 + kXTNT + kF ) +G′

(
1− NT

NM

)
= 0 (6.2)

Here the increased decay rate, k′, includes: (i) exciton quenching at traps (at
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rate kXTNT , where kXT is the bimolecular reaction rate and NT is the trap density;

and (ii) exciton loss due to defect creation expressed by kF , the trap formation rate.

Furthermore, NM is the molecular density in the layer, G′(x, λ) is the generation rate

including the change in optical constants due to both morphological and chemical

changes in the film over time, and (1−NT/NM) accounts for the loss of photoactive

molecular sites to defect formation. That is, it is assumed that the exciton generation

rate decreases with time as an increasing number of degraded molecules no longer con-

tribute free excitons. It has been shown that the exciton diffusivity does not depend

strongly on defect density,[23] therefore exciton diffusivity (D) is approximated as a

constant.

The capture of excitons by traps involves a two-stage approach-collision process.[25]

In a material where the exciton diffusion length is much larger than the collision ra-

dius, the bimolecular quenching rate is expressed as:[25]

kXT = 8πDRC (6.3)

where RC is the trap capture radius for excitons.

Excitons form trap states through dissociative reactions on the excited molecules.

The traps quench subsequent excitons that diffuse to within the trap capture radius,

R. Hence, trap formation, exciton quenching at traps, exciton natural decay and

exciton diffusion to a D/A interface are four principle competing processes, only the

last of which generates charge. When the trap density is sufficiently high, trap-induced

quenching becomes dominant, resulting in a significant loss in photocurrent.

When a molecule absorbs a photon, the generated exciton rapidly relaxes (over

time scales of fs to ps), and reaches the lowest excited state before trap formation can

occur on a time scale of 1/kF ∼ 10-100s. In this case the trap formation statistics are

independent of wavelength. Therefore, the trap formation rate after the aging time,
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ta, at position, x, is proportional to the total exciton density NX−tot:

∂NT (x, ta)

∂ta
= kFNX−tot = kF

λ2∫
λ1

NX(x, λ, ta)dλ (6.4)

Here [λ1, λ2] is the spectral range of absorption of the material.

Now, NX (x, λ) obtained from Eq. 6.2 implies that the exciton population is in

steady-state, which is valid for time scales relevant to energy transfer and exciton

transport (ps to µs), but not to that of degradation, aging time (ta) (minutes to

years). During the aging process, the excitons are more likely to be quenched before

they can form traps. That is, the formation rate decreases with an increasing trap

population. Here we assume the simple case where the formation rate decreases

linearly with trap density. Then:

∂NT (x, ta)

∂ta
= kF

(
1− NT

NT∞

) λ2∫
λ1

NX(x, λ, ta)dλ (6.5)

Here NT∞ is the saturation trap density. At saturation, the total trap density

is sufficiently large that excitons are trapped at a defect, or diffuse to a D/A in-

terface before they have an opportunity to form an additional trap on an otherwise

undamaged molecule.

The progression of change in exciton density is found from the solution to Eq. 6.2

using Eq. 6.5. The EQE can be determined by the dissociated exciton flux at the

D/A interface normalized to the incident photon flux, viz.:

EQE(λ) = D
∂NX(x, λ)

∂x

∣∣∣
D/A

/
1

2

cεrε0|E|2

hc/λ
(6.6)

We assume that both the charge transfer and charge collection processes achieve

unity efficiency in an optimized device. Details on high-performance implementation
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Table 6.1: Parameters and values used to simulate the degradation of an archetype
SubPc/C60 planar heterojunction organic photovoltaic cell.

Parameter Unit Material Value Ref.

kF s−1 C60 6.5± 0.1× 10−3 [121]

NT∞ cm−3 C60 1.2± 0.4× 1017 [121]

k0 s−1
C60 1× 106 [164]

SubPc 5× 108 [9]

D cm2/s
C60 1.6× 10−5 [15]

SubPc 3.2× 10−4 [14]

R nm
C60 1 [165]

SubPc 2 [166]

kXT cm3/s
C60 4.0× 10−11 [121]

SubPc 1.6× 10−9 [121]

of solving the differential equations is provided in Appendix B.2.

In Fig. 6.1 we show the simulated change in the time dependence of total exciton

density (NX−tot) and trap density (NT ) 6.1(a), as well as EQE (Fig. 6.1(b)) as a planar

SubPc/C60 OPV device is aged (see Table 6.1). Under illumination, excitons are

generated in the active materials following the optical field distribution. The excitons

generated remotely from the D/A interface have a greater opportunity to form defects

before they rapidly decay via dissociation or other mechanisms. Once trap states are

formed, they quench subsequently generated excitons, thereby reducing their lifetime

and their probability of reaching a D/A interface is correspondingly reduced. Excitons

generated by short-wavelength photons are located closer to the reflective electrode

(away from D/A interface in a planar structure), and hence are more likely to be

quenched at defects, while the distribution created by long-wavelength photons peaks

at a location nearer to the D/A interface where they can immediately dissociate

into free charge. Hence, in Fig. 6.1, the EQE shows a more significant decrease for

wavelengths between λ = 300 nm and 500 nm than at longer wavelengths.
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(a)

(b)

Figure 6.1: Simulated results for a planar SubPc/C60 OPV device. (a) The change
in total exciton (NX−tot) and trap (NT ) densities over aging time during
burn-in. The x-axis is the position in the layer, where x = 0 is the location
of the donor-acceptor interface. The total thickness is 50 nm. (b) Change
in EQE as a function of device operating time during burn-in using the
same analysis and archetype structure as in (a).
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Trap-induced quenching becomes dominant when the number of defects increases

and the quenching rate exciton-trap quenching rate (kXT )NT is comparable to the

exciton natural decay rate k0, leading to a drop in NX (x, λ) and thus the observed

“burn-in” loss in EQE. Eventually the degradation stops when the trap density

saturates at saturation trap density (NT∞), corresponding to the probability that

an exciton is quenched by a defect or is collected before it has an opportunity to

form an additional trap. The resulting EQE after the burn-in period depends on the

quenching rate, kXT , and the saturation trap density, which are functions of material

properties (particularly the exciton natural decay lifetime and absorption spectra)

and device structure.

6.2 Experimental procedure

Archetype SubPc/fullerene OPV devices were fabricated with the following struc-

ture: glass/ITO/MoO3 10nm/active layer/PTCBI 8nm/Al 100nm. The active layer

structures and thicknesses are provided in Table 6.2. Devices incorporating either a

planar or mixed donor acceptor active layer with fullerene acceptors (C60 and C70)

are explored (Device P-60 corresponds to a planar SubPc/C60 active region, M-60

corresponds to an analogous OPV with a mixed active region, and P-70 and M-70 are

similar architectures based on a C70 acceptor). The mixed photoactive layers have a

1:4 donor (SubPc):acceptor (fullerene) ratio, by volume.

Prior to thin-film deposition, ITO-coated glass substrates were solvent cleaned

followed by CO2 snow cleaning using procedures described previously.[167] Following

UV-ozone treatment, substrates were loaded into a high-vacuum (base pressure <4×

10−7 Torr) thermal evaporation chamber, where MoO3, organic materials, and the Al

cathode were deposited at a rate of 1 Å/s. The device size was defined by an array

of 1 mm-diameter circular openings in a shadow mask, through which the cathode

metal was deposited. All deposition rates and thicknesses were measured using a
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quartz crystal thickness monitor. Thicknesses and optical constants were determined

by variable-angle spectroscopic ellipsometry.

Device performance was measured with a semiconductor parameter analyzer using

illumination from a source that provides 1 sun, AM1.5G illumination. The EQE

spectra were measured using a lock-in amplifier and monochromated light from a

150 W Xenon lamp chopped at ∼ 200 Hz. The light intensities and spectra were

determined using NREL-traceable calibrated Si photodiode standard.

The devices were aged at 35± 5 � under varied applied bias, intensity and spec-

tral ranges of simulated AM1.5G illumination. The bias conditions were controlled

either actively by a source meter, or passively by a load keeping the device at the

MPP with ±10% accuracy. The illumination intensity and spectral range were ad-

justed using neutral density filters and band pass filters, respectively. The device J-V

characteristics and EQE were automatically recorded periodically under continuous

illumination. Devices were kept in an ultra-high-purity N2 (<1 ppm O2 and H2O)

environment for all transfer and testing procedures. Ellipsometry and atomic force

microscopy measurements on 50 nm thick as-grown and aged neat photoactive films

on Si were obtained in air to determine absorption and morphology changes over time.

The aging of the neat film was performed on samples encapsulated with cover glass

and UV-cured epoxy.

6.3 Burn-in degradation of planar and mixed SubPc/fullerene

photovoltaic cells

Figure 6.2 shows the normalized performance as a function of aging time for

Devices P-60 and M-60 under 1 sun, AM1.5G illumination. After 10 hr of device

operation, Device P-60 exhibited a 28% drop in JSC from its original value of 4.4 ±

0.2 to 3.2 ± 0.1 mA/cm2, consistent with the change in its integrated EQE over
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the incident spectrum, i.e., JSC = q
∫
EQE(λ)S(λ) λ

hc
dλ, where S(λ) is the power

spectrum of the incident light, c is the speed of light in vacuum, and q is the electron

charge. Following aging, FF decreased from 0.63 ± 0.01 to 0.59 ± 0.01,while VOC

remained constant within experimental error. Taken together, these results yield a

decrease in power conversion efficiency from PCE= 2.9 ± 0.1% to 2.1 ± 0.1%. The

loss in PCE saturates after 10 hr once NT → NT∞.

For Device M-60, VOC decreased from 0.99± 0.01 V to 0.91± 0.01 V after 48 hr,

while FF and JSC remained unchanged, leading to a decrease in PCE from 2.7±0.2%

to 2.4 ± 0.2%. Both planar and mixed devices employing C70 exhibited improved

stability compared with analogous devices employing C60, as is apparent from the

detailed J-V characteristics in Fig. 6.3. Device P-70 showed only a minor change

in JSC after 15 hr under illumination. The decrease in PCE from 2.8 ± 0.1 % to

2.7± 0.1 % is due to the change in FF from 0.60± 0.03% to 0.57± 0.02 %, whereas

VOC was unchanged at 1.07 ± 0.01V. All device performance parameters remained

unchanged to within experimental error for Device M-70 after 15 hr. A summary of

device performance is provided in Table 6.2.

The origin of photocurrent decrease in Device P-60 is primarily due to the decrease

in the C60 response to the incident illumination, indicated by the spectrally-resolved

EQE in Fig. 6.4(a). After 10 hr of 1 sun, AM1.5G illumination, the maximum drop of

45% in EQE in Device P-60 occurs at a wavelength of λ = 450 nm, from 23.9± 0.5%

to 13.2±0.5%. To study the influence of different aging conditions, P-60 devices with

an initial EQE0 (at λ = 450 nm) = 23.9± 0.8 % were aged at open-circuit and under

AM1.5G spectrum with intensities of 33 mW/cm2, 60 mW/cm2, and 100 mW/cm2

(the last corresponding to 1 sun intensity), and at λ = 450±2 nm, and 450±2 nm by

using band-pass filters with a full width at half maximum of 10±2 nm. Figure 6.4(b)

shows the loss in EQE, i.e., ∆EQE = EQE0 (as-grown) - EQE (aged) for the device
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(a)

(b)

Figure 6.2: (a) Normalized planar SubPc/C60 (P-60) device performance character-
istics vs. aging time (ta) under 1 sun, AM1.5G illumination and at open-
circuit bias: Short-circuit current (JSC , squares), open-circuit voltage
(VOC , circles), fill factor (FF , up triangles), and power conversion effi-
ciency (PCE, down triangles). (b) Normalized aging performance for a
mixed SubPc/C60 (M-60) device.
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(a) (b)

(c) (d)

Figure 6.3: J-V characteristics in the dark (lines) and under 1 sun, AM1.5G illumi-
nation (symbols) for devices as grown, and after aging under simulated 1
sun, AM1.5G illumination. (a) Device P-60, (b) Device M-60, (c) Device
P-70, (d) Device P-70.
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Table 6.2: The performance of several archetype small molecular OPVs before and
after burn-in aging at open circuit under simulated 1 sun, AM1.5G illumi-
nation

Device Condition JSC FF VOC PCE
(active layers) (mA/cm2) V (%)

P-60 (SubPc 11
nm/C60 50 nm)

As-grown 4.4± 0.2 0.63± 0.02 1.06± 0.01 2.9± 0.1
Aged 10h 3.2± 0.1 0.59± 0.01 1.06± 0.01 2.1± 0.1
Aged 25h 3.2± 0.1 0.59± 0.01 1.06± 0.01 2.1± 0.1

M-60 (SubPc:
C60 55 nm)

As-grown 6.0± 0.03 0.45± 0.01 0.99± 0.01 2.7± 0.2
Aged 48h 6.0± 0.03 0.44± 0.01 0.91± 0.01 2.4± 0.2

P-70 (SubPc 11
nm/C70 30 nm)

As-grown 4.4± 0.02 0.60± 0.03 1.07± 0.01 2.8± 0.1
Aged 15h 4.4± 0.02 0.57± 0.02 1.06± 0.01 2.7± 0.1

M-70 (SubPc:
C70 55 nm)

As-grown 6.9± 0.02 0.45± 0.01 1.03± 0.01 3.2± 0.1
Aged 15h 6.9± 0.02 0.45± 0.02 1.03± 0.01 3.2± 0.1

exposed to 1 sun, which has a distinctive spectral shape independent of aging time

or condition, as shown in the plot of normalized ∆EQE.

Given the particular spectral dependence, only the change in EQE at one wave-

length is needed to analyze the aging behavior, the change for other wavelengths

can be derived thereafter. Figure 6.5(a) shows the relationship between the EQE at

λ = 450 nm and the total number of absorbed photons per unit area (Nph) in the

C60 layer, where nph = ta
∫ d
0

∫ λ2
λ1
G(x, λ)dλdx, with [λ1, λ2] equal to the absorption

range of C60, and d = 50 nm is the layer thickness. We observe that ∆EQE is only a

function of Nph, and is independent of incident photon energy or illumination inten-

sity. Moreover, we do not observe any dependence on bias between 0 V and VOC used

during aging. In Fig. 6.5(b) we show the normalized PCE as a function of time for

4 P-60 devices aged under MPP set with a passive load and open-circuit condition

at 1 sun intensity. Note that there is no difference in aging when biased between

open circuit (in the absence of current) and at MPP, where the power output is at

maximum. From this it can be concluded that trap formation is due only to the
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(a)

(b)

Figure 6.4: (a) EQE of Device P-60 before and after aging under simulated 1 sun,
AM1.5G illumination. (b) Left axis: Evolution of the change in EQE
(∆EQE) from its value for an as-grown device for Device P-60 at different
aging times under 1 sun, AM1.5G illumination. Right axis: Normalized
difference in EQE from t = 0 to ta, ∆EQE, after aging from ta = 1 to
25 hours. Note that all exciton peaks corresponding to C60 absorption
(at wavelengths less than 500 nm) decrease uniformly with time, whereas
there is little change in the spectrum at longer wavelengths characteristic
of absorption in SubPc.
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localization of excitons without any interactions with charge, and the formation rate

is proportional to the exciton density, as in Eq. 6.5.

The model described in Sec. 6.1 has been used to fit the decrease in EQE at

λ = 450 nm of Device P-60, as indicated by the solid line in Fig. 6.6(a), with the fitting

parameters that were used provided in Table 6.1. The theory predicts a saturation

in device degradation at the end of the burn-in process after an extreme decrease in

EQE of nearly 50% in this case. Following an initial steep efficiency decrease with

time, the efficiency exhibits a second, slower and approximately long-term decrease

arising from mechanisms such as multiple exciton annihilation and exciton-polaron

effects not considered here.[163] The lifetime of the device to 80% of its original power

conversion efficiency is 289 days (Fig. 6.6(b)), assuming an exposure of the cell to an

equivalent of 5 hours of AM1.5G per day.

From the fits to the SubPc/C60 aging data in Fig. 6.6(a), the saturation trap

density can be obtained, NT∞= (1.2 ± 0.4) × 1017 cm−3, or approximately 0.01% of

the C60 molecular density has been damaged during burn-in. This density accounts

for almost 30% loss in photocurrent. The total number of trap states is 6 × 1011

cm−2 in a 50nm thick C60 layer, which is reached after ∼ 1025 cm−2 excitons have

been generated in the layer, suggesting that one out of 2 × 1013 excitons results in

the formation of a defect state. Furthermore, the fits to the burn-in transient imply

that the trap formation rate is kF = (6.5 ± 0.1) × 10−3 s−1. This is much less than

the trap-induced exciton quenching rate of kXTNT 6 4.8 × 106s−1, indicating that

the exciton loss due to formation of traps is negligible compared to quenching of

excitons in steady-state operation under standard illumination conditions. As the

device ages, trap states are rapidly generated at distances greater than an exciton

diffusion length (typically ∼10 nm) from the D/A interface, where the exciton density

is high. The resulting quenching reduces the diffusion length, leading to a reduction
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(a)

(b)

Figure 6.5: (a) Normalized EQE at a wavelength of λ = 450 nm as a function of Nph

absorbed in the C60 layer for Device P-60 EQE. Devices were aged at
open-circuit bias and under AM1.5G spectrum at 100 mW/cm2 (circles),
60mW/cm2 (squares), 33mW/cm2 (triangles), as well as 1 sun AM1.5G
spectrum filtered by a band pass filter centered at λ = 400 nm with a
spectral half width of 2 nm (dash-dotted line), and a band pass filter
centered at λ = 450 nm with a spectral half width of 2 nm (short-dashed
line). Note the spectral independence of the aging characteristic. (b)
Normalized PCE as a function of time for four, P-60 devices aged under
open-circuit bias (squares and circles), as well as at the MPP (up and
down triangles).
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(a)

(b)

Figure 6.6: (a) Fit (line) of normalized EQE at 450 nm (data points) as a function
of aging time, ta, for Device P-60 aged under 1 sun, AM1.5G illumination
to the exciton/molecular dissociation theory. (b) PCE on a linear time
scale, emphasizing the change in slope of the change in efficiency with
time past the burn-in duration of several hours. The straight line is a fit
of normalized PCE as a function of ta post burn-in.
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in photocurrent.

Excitons in a degraded solar cell can undergo exciton diffusion, natural decay, trap-

induced quenching or trap formation. Only the diffusion to a D/A interface results

in photocurrent generation, while all other processes lead to loss. The efficiency of

exciton diffusion to a D/A interface where dissociation into charge occurs, ηED, can

be expressed as the ratio:

ηED =
kDiff (x)

kDiff (x) + k0 + kXTNT + kF
(6.7)

Here the diffusion rate kDiff (x) = D∂2NX/∂x
2 represents the rate at which an exciton

can diffuse to the interface. It depends on the location of the exciton in the layer and

kDiff (x)→∞ near the D/A interface.[28]

Similarly, the trap formation efficiency is:

ηTF =
kF

kDiff (x) + k0 + kXTNT + kF
(6.8)

Therefore, as kXTNT increases, the exciton diffusion efficiency is reduced. How-

ever, since the trap formation efficiency also decreases with kXTNT , the loss in EQE

due to traps eventually reaches a steady-state value of EQE = 13.2±0.5% at a wave-

length of λ = 450 nm. When a mixed donor-acceptor active layer is used, kDiff (x)

is increased significantly, leading to an improved device lifetime, as is apparent in

Fig. 6.2.

It should be noted that due to the complexity in the electronic structure of C60,

the reported exciton natural lifetimes range from less than 1 ns to over 1 ms. In

this work, the values of k0= 1 µs and LD= 40 nm are used, which agrees with the

typical OPV device data. However, the actual D and exciton natural lifetime (τ0) in

our devices could be different, which will change the fitted results for kXT and NT∞

accordingly, while the physical picture of the burn-in degradation remains the same.
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6.4 Effect of exciton lifetime on burn-in degradation

Interestingly, C60 shows particularly pronounced burn-in degradation despite its

small value of kXT compared to either that of SubPc or C70. Similar aging results

have also been reported for planar OPVs where this phenomenon was attributed to

irreversible C60 oxidation.[124] It is likely that the defect states in C60 are chemi-

cally damaged molecules. Fig. 6.7 shows the change in the optical constants for a

50 nm C60 neat film on Si after aging under AM1.5G. The peaks in the extinc-

tion coefficient broaden after illumination when the samples are encapsulated. The

broadening is minor after 1 hr, while the same aging time causes degradation in the

EQE of Device P-60 by almost 30%. Similar changes in C60 absorption have been

reported in photopolymerized C60 transformed by prolonged high-intensity UV laser

illumination,[168] where the chemical composition change was clear in MALDI.[169]

However, the measurements reported here are conducted in a high-purity N2 envi-

ronment with < 1 ppm O2, suggesting that oxidation may not be the primary source

of degradation in this work. Moreover, based on the atomic force microscopy (AFM)

images (6.8) and the apparent lack of significant changes in FF and VOC over time

for the P-60 devices, it is unlikely that the interfacial and bulk morphologies are

significantly affected.

The difference in reliability between the species (i.e., SubPc, C70 and C60) could

be due to differences in their natural exciton lifetimes. That is, the long-lived triplet

excitons (τ0 = 1 µs [164]) in C60 can lead to a high steady-state exciton density,

thus a higher efficiency for forming dissociative traps, ηTF , while in materials with

comparatively short exciton lifetime (e.g., C70,[170] SubPc,[9] or mixed D/A layers),

the excitons decay before forming a defect state. This could explain why oxygen was

found to have no effect on C60 in a mixed ZnPc:C60 OPV, while C60-O species was

diagnosed as the primary degradation mechanism in a planar ZnPc/C60 OPV.[146,
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(a)

(b)

Figure 6.7: The change in the optical constants for a neat 50nm C60 film on Si.
(a): The refractive index and (b): the extinction coefficient. The films
were aged either encapsulated with quartz (open symbols), or exposed
in ambient air (closed squares). The optical constants for the as-grown
sample is shown for comparison (closed circles).
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Figure 6.8: Atomic force microscope images of a 50 nm thick neat C60 film on Si (Left):
before, and (Right): after aging under 1sun, AM1.5G illumination

124]

This dependence on k0 is readily apparent in Fig. 6.9, where the simulated degra-

dation behavior in devices as a function of the natural decay rate is shown. A com-

parison to the fit to the data for Device P-60 with k0 = 1 µs is also shown. The

exciton diffusion length (LD =
√
D/k0) is kept constant to maintain the same initial

EQE in the original sample. All other parameters are given in Table 6.1. As k0

increases, the trap-formation efficiency is reduced, and the trap density required to

compete with natural decay is correspondingly increased. In this case, the onset ofthe

burn-in is postponed, and the total drop in EQE to saturation is reduced. Note that

increasing k0 while keeping LD constant implies that the exciton diffusivity increases

accordingly, which is not achievable in a planar device. However, this is the case of

incorporating a mixed D/A layer, where the effective exciton lifetime is reduced due

to fast dissociation. Given the intrinsic stability of C70, a mixed donor-C70 device

could provide the most promising materials and structural routes to reliable organic

solar cells.
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Figure 6.9: Simulated plots of the EQE at wavelength of λ = 450 nm as a function
of aging time for different exciton natural decay rates, (filled symbols).
The data (points) shown in Fig. 6.6(a) is reproduced for comparison to
the fit at k0 = 1µs (open circles). Parameter values other than k0 used in
the simulations are given in Table 6.1.

6.5 Burn-in degradation due to C60 polymerization

In Section 6.1, we developed a physical theory to accurately describe the burn-

in degradation. However, the model does not provide information on the chemical

nature of the trap states, and it is unclear why the trap states reach saturation

before extending across the full film. In this section, we develop the theory with the

hypothesis of C60 photopolymerization, discuss the similarity and differences to that

of Section 6.1, and propose next steps necessary to confirm the chemical degradation

mechanism.

In OLED lifetime studies, the degradation have been ascribed to exciton-quenching

dissociative states, typically broken chemical bonds, generated through exciton-exciton

or exciton-polaron annihilations.[163] As we have shown in Section 6.3, the formation

of the degradation species in the burn-in period is through single exciton processes,

with energy well below what is required to break C-C bonds (3.6 eV). In C60, the large

number of charge transfer excitons may facilitate dimerization and/or polymerization,
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as illustrated in Fig. 6.10. It is known that C60 is susceptible to photopolymerization,

potentially leading to degradation.[171, 168]

Figure 6.10: Configurational diagram of C60 degradation pathways

Studies have shown that the lifetime of the excited states in C120 is 3-10x shorter

than that of C60, but similar to that of C180.[172, 173] There are key difference between

burn-in degradation due to polymerization and the theory described in Section 6.1.

In the case of photopolymerization, the exciton-induced degradation species does not

quench excitons, but serve as a replacement to C60 molecules, with shorter excited

states lifetime. As more C60 molecules are polymerized, on average the excited state

lifetime is reduced, and fewer excitons can reach the dissociation interface, leading

to the burn-in degradation. For simplicity we assume the excited state lifetime is

the same for all polymer regardless of the order of polymerization, thus the exciton

diffusion equation is modified as:

∂NX(x, λ)

∂t
= D

∂2NX

∂x2
−NX [k0ψ + kPoly(1− ψ) + kP ] +G′ = 0 (6.9)

Here kPoly is the excited state lifetime of polymer, ψ is the fraction of monomer,
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and kP is the rate of polymerization. The change in absorption is accounted for in

the generation term G′. As shown in Fig. 6.7, the change in C60 extinction coefficient

does not change the absorption significantly, and the exciton generation rate is within

5% of the as-grown sample. The loss in monomer population is proportional to the

polymerization rate, kP , and number of remaining excited monomers, i.e.,

∂NMonomer(x, ta)

∂ta
= −kPψNX−tot = −kPψ

λ2∫
λ1

NX(x, λ, ta)dλ (6.10)

And by definition we have:

ψ = 1 +
1

NM

ta∫
0

∂NMonomer(x, ta)

∂ta
dta (6.11)

Here NM is the molecular density of C60.

At the end of burn-in, the C60 film is fully polymerized, and the post-burn-in

exciton density is determined by:

∂NX(x, λ)

∂t
= D

∂2NX

∂x2
−NXkPoly +G′ (6.12)

Similar to Section 6.1, degradation in EQE is calculated by solving Eq.6.9, Eq.6.10

and Eq.6.6 for the dissociated exciton flux at the D/A interface as a function of aging

time. Fitting of the theory to the experimental data gives kPoly = 172 ± 2 ns, and

kP = 12.5 ± 0.5 ms, with results shown in Fig. 6.11. The progression of EQE

degradation and monomer concentration in the film are shown in Fig. 6.12. In the

simulation, we assumed the extreme case where the C60 film is fully polymerized by

the end of aging. Mathematically it is the same as if the film is partially polymerized,

and the resulting exciton decay rate is the weighted average of monomer and polymer

natural decay rates. The end state of the post-burn-in C60 film can be determined if

one measures the remaining monomer concentration, or C60 polymer lifetime in thin
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film.

The theory based on photopolymerization described in this section has a similar

mathematical form as the trap-induced degradation theory discussed in Section 6.1.

Both are based on exciton-induced degradation species that develop over time, and

the growth rate is proportional to the exciton density in the film. In trap-induced

degradation, since the quenching sites no longer contribute to exciton dissociation, a

saturation trap density is arbitrarily put in the formation equation (Eq.6.5), in order

to describe the post-burn-in saturation. On the other hand, the degraded species in

the polymerization theory, the C60 polymers, have nonzero exciton lifetime, therefore

saturation is reached when all C60 monomers are consumed. At the end of the burn-in

period, the leading exciton decay rate, kXTNT∞ = 210± 40 ns, is within error range

of kPoly = 172± 2 ns.

Figure 6.11: Fit (line) of normalized EQE at 450 nm (data points) as a function of
aging time, ta, for Device P-60 aged under 1 sun, AM1.5G illumination
to the C60 polymerization theory.
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(a)

(b)

Figure 6.12: Simulated results for a planar SubPc/C60 OPV device assuming C60

polymerization. (a) The change in C60 monomer concentration over
aging time during burn-in. The x-axis is the position in the layer, where
x = 0 is the location of the donor-acceptor interface. The total thickness
is 50 nm. (b) Change in EQE as a function of device operating time
during burn-in using the same analysis and archetype structure as in (a).

In summary, quantitative models are provided which describes the physical pro-

cesses resulting in a rapid fall-off in the efficiency of small molecular weight organic

photovoltaic cells commencing immediately upon initial device operation. The models

are based on degraded species with shortened exciton lifetime, or species that quench

95



subsequent excitons, and the growth rate is proportional to the exciton population

in the film. In order to probe the chemical nature of the aged species, thereby iden-

tifying the degradation mechanism, accurate measurement of exciton lifetime and/or

film composition at post-burn-in state is necessary. The aging of planar SubPc/C60

devices is accurately modeled. It was found that the operational lifetime of archetype

small-molecule devices employing C60 can be significantly improved by employing

a mixed donor-acceptor layer that reduces the natural lifetime of the C60 excitons,

therefore inhibiting rapid generation of degraded species. Furthermore, it was found

that C70 exhibits improved photostability compared to analogous C60-based OPVs

also due, in part, to the shorter exciton lifetime of the former molecule. A mixed

donor/acceptor OPV using C70 is optimal for use in long-lifetime organic solar cells

among the materials systems and device architectures explored here.
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CHAPTER VII

Photodegradation of archetypal small-molecule

organic semiconductors

In this chapter, we investigate the photostability of OPV active layers comprised

of SubPc and fullerene thin films, aged under either AM1.5G or in the dark, and in

either air or inert atmosphere. We show that the photodegradation mechanisms differ

for donor and acceptor materials. However, all photodegradation can be mitigated

by reducing the exciton lifetime using a donor/acceptor blend, similar to what we

observed in Chapter VI. Under long-term exposure to light, we observe significant

photobleaching and crystallization of SubPc. On the other hand, the photodegrada-

tion in C60 is led by photo-dimerization, suggested by the spectral change over time.

Increasing the fraction of SubPc in SubPc:C60 blend leads to a decrease in the rate

of photo-degradation, providing further evidence for C60 dimerization. Similar to the

findings in Chapter VI, C70 is more stable than C60 due to its reduced tendency for

photo-dimerization.

7.1 Experimental procedure

Thin films of active materials were deposited on Si or ITO-coated glass substrates

that were solvent cleaned followed by CO2 snow cleaned using procedures described

previously.[167] Following UV-ozone treatment, substrates were loaded into a high-

vacuum (base pressure <4× 10−7 Torr) thermal evaporation chamber, where organic

materials were deposited at a rate of 1 Å/s. All deposition rates and thicknesses were
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measured suing a quartz crystal thickness monitor and calibrated using variable-angle

spectroscopic ellipsometry.

A subset of deposited films was encapsulated in an ultra-high-purity N2 (<1 ppm

O2 and H2O) environment with a glass-on-glass configuration, using UV-cured epoxy

as the sealant. Films were aged either in the dark, or at 35± 5 � and under 1 sun,

AM1.5G illumination. Optical intensity was calibrated using an NREL-traceable Si

reference cell. Absorbane was recorded by a Lambda 1500 spectrophotometer. X-ray

diffraction and atomic force microscopy measurements on as-grown and aged films

were obtained in air.

7.2 Photo-degradation of active materials used in organic

photovoltaic cells

The absorption spectra of SubPc (11 nm thick) samples aged in air are shown

in Fig. 7.1. For the SubPc film kept in the dark, there is a moderate decrease of

the peak absorption at a wavelength of λ = 590 nm after 30 hr. However, for the

SubPc sample exposed to 1 sun intensity illumination, the same absorption peak

disappears after 30 hour, indicating complete bleaching of SubPc film. In contrast, a

SubPc:C60 (1:4, 55 nm thick) blend shows no degradation when kept in the dark, and

the decrease in absorption for a similar sample under illumination indicates that the

rate of photo-bleaching is significantly slower, with only ∼50% loss of the absorption

peak at λ = 590 nm after 67 hr.

When packaged in N2, the photo-degradation is substantially mitigated, as shown

in Fig. 7.2. After 2000 hr, the reduction in SubPc film absorption is only ∼10%,

considerably less than the sample exposed to air (Fig. 7.2(a)). However, after 660 hr,

we observe a red shift of SubPc absorption at λ = 590 nm, while the intensity of the

shoulder at λ = 540 nm increases slightly, along with a similar wavelength shift. After
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(a) (b)

(c) (d)

Figure 7.1: Time evolution of absorption spectra in air for (a) SubPc, kept in the
dark; (b) SubPc, under 1 sun, AM1.5G illumination; (c) SubPc:C60 (1:4),
kept in the dark; (d) SubPc:C60 (1:4), under 1 sun, AM1.5G illumination
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(a) (b)

Figure 7.2: Time evolution of absorption spectra for samples packaged in an ultra-
high-purity N2 environment and kept in the dark over the period tested,
for (a) SubPc (arrow indicates the red shift in SubPc absorption at λ =
590 nm), and (b) SubPc:C60 (1:4).

mixing SubPc with C60 at 1:4 SubPc:C60 ratio, the absorption spectrum between λ

= 300 nm and 700 nm is stable over 3300 hr (Fig. 7.2(b)).

The AFM images of fresh and aged SubPc films are shown in Fig. 7.3(a) and (b).

The morphology of the as-grown SubPc layer in Fig. 7.3(a) indicates that the SubPc

film has a root-mean-square roughness of RMS = 1.5 nm. On the other hand, after

storing the sample in the dark for 385 hr, there is significant crystallization and a

concomitant roughening to RMS = 5.7 nm, as shown in Fig. 7.3(b). Similar trends

are observed for the SubPc film aged under 1 sun illumination. X-ray diffraction

(XRD) patterns for as-deposited and aged (in the dark) SubPc films are shown in

Fig. 7.3(c). The fresh SubPc film is amorphous, as indicated by the absence of a

diffraction peak. Contrarily, the aged SubPc film has a peak at 20.8° that we assign

to the < 221 > plane, confirming crystallization over time.[174] Finally, a neat SubPc

layer in a planar SubPc/C60 device aged at 80�exhibits significant crystallization,

leading to spherulitic growth, as shown in Fig. 7.3(d). Previously, it has been shown

that spherulites cause pronounced surface roughening and the formation of current
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(a) (b)

(c) (d)

Figure 7.3: AFM images of an 11 nm thick SubPc film on Si packaged in N2 (a) before,
and (b) after storage in the dark for 385 hr, (c) X-ray diffraction of the
SubPc film before and after aging, and (d) Optical microscope image
of crystallinity in the packaged planar SubPc/C60 film aged at 80�and
under 1 sun, AM1.5G illumination for 530 hr.
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shunt paths across the film. [175]

Based on the microscopy and photostability data, we conclude there is no crys-

tallization in the mixed layers aged either in the dark or under light. On the other

hand, neat SubPc undergoes substantial changes, indicating that in the absence of

oxygen, C60 inhibits crystalline growth of SubPc.

To further investigate the stability of C60, the time evolution of the absorption of

packaged C60 (50 nm thick), SubPc:C60 (1:4, 55 nm thick), SubPc:C60 (1:1, 55 nm

thick), and BPhen:C60 (1:4, 55 nm thick) films under 1 sun, AM1.5G illumination

are shown in Fig. 7.4. The absorption spectrum between λ = 400 nm and 550 nm

of a neat C60 film (Fig.7.4(a)) shows increased absorption centered at λ = 450 nm

due to the increase in density of an intermolecular CT state, [176] accompanied by

an increase of absorbance at λ = 316 nm due to a monomolecular excted state. In

contrast, SubPc absorption in mixed layers remains unchanged, as shown in Fig.7.4(b)

and Fig.7.4(c).

To determine the effects of SubPc on C60, we measured the time evolution of the

absorption of packaged SubPc:C60 (1:1) and BPhen:C60 (1:4) film, with data from

the latter shown in Fig. 7.4(d). There is no significant difference in the changes for

a neat C60 film (Fig. 7.4(a)) and Bphen:C60 samples, although the SubPc:C60 (1:1)

exhibits better stability than the more dilute SubPc:C60 (1:4) film. The differences

in the time evolutions of these various pure and mixed films is summarized in Fig.

7.5, which shows the absorption at λ = 316 nm for packaged C60, SubPc:C60 (1:4),

SubPc:C60 (1:1), and Bphen:C60 (1:4) under 1 sun illumination, normalized to the

initial film optical density. We observe a rapid increase of absorbance of C60 during

the first 7 hr, followed by a slower linear increase over the long term. On the other

hand, SubPc:C60 (1:4) exhibits a 16% increase, and SubPc:C60 (1:1) showed <5%

increase, while Bphen:C60 (1:4) has almost the same rate of increase as neat C60.
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(a) (b)

(c) (d)

Figure 7.4: Time evolution of absorbance spectra for packaged films under 1 sun,
AM1.5G illumination. (a) C60 (arrows indicate the increase of C60 ab-
sorbance), (b) SubPc:C60 (1:4), (c) SubPc:C60 (1:1), and (d) BPhen:C60

(1:4). There are a fast burn-in period and a slow linear degradation period
for the changes in (a) .
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Figure 7.5: Absorption at a wavelength of λ=316 nm for packaged C60 (squares),
SubPc:C60 (1:4, circles), SubPc:C60 (1:1, up triangles), and Bphen:C60

(1:4, down triangles) films under 1 sun illumination, normalized to indi-
vidual film initial optical densities.

Finally, we measured the time evolution of packaged C70 (30 nm thick) and

SubPc:C70 (1:4, 35 nm thick) film absorption with results given in Fig.7.6. The

C70 film absorption is noticeably more stable than C60, and indeed we observe no

changes in the absorption spectra upon illumination of either film.

7.3 Degradation mechanisms

The photooxidation of SubPc requires both O2 and excited states, as shown in

Fig.7.1 and Fig.7.2. When the films are packaged in ultra-high-purity N2, the stablil-

ity of SubPc is considerably improved due to the absence of O2. The degradation is

related to the crystallization of SubPc film, where film dichroism can affect the com-

plex refractive index along different crystal axes, as observed in other phthalocyanine

films. [177] The reorientation and change in molecular stacking lead to red shifted

spectra, as observed in Fig.7.2(a).
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(a) (b)

Figure 7.6: Time evolution of absorbance spectra for packaged samples under 1 sun,
AM1.5G illumination (a) C70, (b) SubPc:C70 (1:4).

The degradation observed in Fig.7.4 is likely due to the photo-polymerization of

C60, where double bonds from two adjacent C60 molecules separated by less than ∼4.2

Åcan break and form a four-sided ring.[168] The dimerization reaction is endother-

mic, requiring the presence of light (Fig. 7.4(a)). The FTIR spectra for C60 films

aged under different conditions is shown in Fig.7.7. Samples that were aged in the

dark showed no spectral change, regardless of aging environment (air or N2). When

the film was aged under illumination and in N2, where the photodegradation is the

most pronounced as shown in Fig.7.4(a), the FTIR spectrum deteriorates, indicating

chemical change in the film. On the other hand, when the C60 film is aged under illu-

mination without encapsulation, there is no change in C60 absorption spectrum. Yet a

broad absorption peak between 1730 and 1800 cm−1 occurs, which corresponds to C-O

vibrational stretching peaks at 1798 cm−1 and 1752cm−1 in oxidized fullerence.[178]

From this we conclude that photo-polymerization proceeds via the C60 triplet state,

which is quenched by oxygen. [179]

Similar to previous discussion in Chapter VI, the reduced exciton lifetime in

donor/acceptor blends removes the molecular excited state before an energy-induced

defect (in this case a C60 dimer) can form. Therefore photo-polymerization of C60
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Figure 7.7: Fourier transform infrared spectra of C60 films on CaF2 substrates ob-
tained after 1 week of aging under conditions indicated. The C-O peak
observed for the sample aged in air under illumination is indicated.

is significantly slower in a 1:4 blend than in neat C60 films, and is further mitigated

when the ratio of the donor to acceptor is increased to 1:1. When C60 is mixed with

BPhen, the excited state is localized on C60, and its lifetime (and hence its ability to

form traps) is unaffected by the presence of BPhen.

It has been reported that C70 has a considerably reduced ability to photo-polymerize

than C70. [168] Indeed, the stability of C70 after 2000hr of aging (Fig.7.6(a)) strongly

supports this hypothesis. The reduced tendency to polymerization may be due to the

reduced symmetry of C70 relative to C60. There are only 10 carbon double bonds in

C70 while there are 30 such bonds in a C60 molecule, leading to the reduction of the

[2+2] photo-cycloaddition in C70.

In summary, we present effects of aging in the presence or absence of 1 sun,

AM1.5G illumination or oxygen on the aborbance and morphology changes in SubPc

and fullerene films. We show that the degradation of SubPc requires oxygen and

light, and can be mitigated by encapsulation or blending with acceptor materials.

On the other hand, the degradation in C60 films shown in this chapter, as well as

degradation in device performance shown in Chapter VI, are likely due to the photo-
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polymerization of C60. Devices and films based on C70 exhibit complete stability

during the aging period investigated, owing to the reduced tendency of this acceptor

molecule to polymerize.
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CHAPTER VIII

Long-term reliability of small-molecule organic

solar cells

Chapter VI discussed the mechanism leading to the initial burn-in degradation

in the absence of water and oxygen. It has been found that the degradation is due

to exciton-induced defect states, and the deterioration of device performance oc-

curs on the time scale of hours. Devices exhibit improved stability post burn-in,

and degradation occurs on the time scale of weeks under continuous 1 sun, AM1.5G

illumination. Therefore accelerated testing is necessary to understand device degra-

dation within a reasonable time frame. Thermal activation of device degradation is

the most commonly used method, while humidity and light intensity can also serve as

stress factors.[122, 137] Given that solar panels under outdoor operating conditions

are at elevated temperature (40-50 �), it is crucial to understand device reliability

at higher temperatures. By analyzing the temperature dependence of degradation

rate according to the Arrhenius relationship, the activation energy of the process is

calculated, providing insights into associated degradation processes. Previous studies

have focused on activation energy of polymer solar cell degradation.[133, 129] In this

chapter, we discuss the thermally activated degradation of small-molecule OPVs.

8.1 Experimental procedure

Thin-film OPV devices were fabricated with the following structure: glass/ITO/

MoO3 10 nm/active layer/BPhen 8 nm/Al 100 nm. The active layer comprises either
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a planar (SubPc 11 nm/C60 50 nm, Device P-60) or mixed (SubPc:C60 55 nm, Device

M-60) SubPc-C60 thin film. The mixed active layers have a 1:4 SubPc to C60 ratio

by volume. Prior to thin-film deposition, glass substrates with patterned 1 cm wide

ITO stripes were solvent cleaned followed by CO2 snow cleaning using procedures de-

scribed previously.[167] Following UV-ozone treatment, substrates were loaded into

a high-vacuum (base pressure < 4× 10−7 Torr) thermal evaporation chamber, where

MoO3, organic materials, and the Al cathode were deposited at a rate of 1 Å/s. The

Al cathode was deposited through a shadow mask defining 1 cm wide strips. The

active device area of 1 cm2 was defined by the overlap between the ITO and cathode.

All deposition rates and thicknesses were measured using a quartz crystal thickness

monitor and calibrated using variable-angle spectroscopic ellipsometry. After fab-

rication, the devices were encapsulated in a glass-on-glass configuration. Prior to

encapsulation, a 0.6 cm2, 50 nm thick Ca film was deposited onto the cover glass as a

visual indicator of packaging quality.[141] Moreover, a thin-film desiccant was applied

on the cover glass as a getter of residual moisture. The cover glass and substrate were

then sealed using UV-cured epoxy. All transfer and encapsulation processes were done

in an ultra-pure N2 environment (< 1 ppm H2O and O2).

Samples of Device M60 for selected area electron diffraction (SAED) images and

the TOF-SIMS measurements were prepared identically to the devices described

above. For SAED images, the samples were placed in water where MoO3 layer was

dissolved and the organic film was captured by a Cu transmission electron micro-

scope (TEM) grid with a porous carbon film. The SAED patterns were taken at

200 kV using a JEOL 2010F analytical electron microscope, with a selective aperture

diameter of 100 µm. Samples for TOF-SIMS measurements were kept under N2 for

all transfer procedures. TOF-SIMS mass spectra and depth profiles of the samples

were carried out using a PHI TRIFT III TOF-SIMS with a 22 keV Au+ analytical

ion beam and a 2 keV Cs+ sputtering gun. Charging compensation was used during
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the surface analyses.

To study aging as a function of temperature, 6-8 devices (2 substrates) from two

growths were tested for each temperature and device structure. Device performance

under continuous simulated AM1.5G illumination as a function of time and temper-

ature was measured in the test setup described in Chapter V.

8.2 Accelerated degradation of planar SubPc/C60 organic

photovoltaic cells

In Chapter VI, planar SubPc/C60 devices were stable post the burn-in period.

Yet understanding the thermally-activated degradation is difficult due to the crys-

tallization of SubPc described in Chapter VII. As-grown Device P-60 with initial

performance of R = 0.034± 0.002 A/W, FF = 0.65± 0.05, VOC = 1.05± 0.01 V, and

PCE = 2.4± 0.3% were tested under simulated AM1.5G at 40, 60 and 80 �. Figure

8.1 shows the normalized performance of Device P-60 as a function of time. Here, half

of the devices were passively set at MPP with an electrical load, while the other half

were set at open-circuit condition. Once the trap formation saturates, the degrada-

tion in responsivity reaches equilibrium, and the long-term degradation is led by the

decrease in FF . At high aging temperature, Device P-60 undergoes crystallization,

leading to a drastic drop in FF or shorting of the devices. It results in a reduced

sample size and large variation in lifetime and no Arrhenius relationship is observed

in Fig. 8.2. At 40 � aging temperature, T80 = 360± 60 days is obtained, assuming

an average of 5h of AM1.5G per day. The longest device lifetime T80 = 560 ± 90

days is obtained for devices aged under 60 �.
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(a)

(b)

(c)

Figure 8.1: Normalized responsivity (R, squares), fill factor (FF , up triangles), open-
circuit voltage (VOC , circles), and power conversion efficiency (PCE,
down triangles) of Device P-60 as a function of time when age dunder
1 sun, AM1.5G illumination and at 40 (a), 60 (b), and 80 (c) ± 3 �. Fit
of PCE degradation rate according to theory described in text is shown
(line).
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Figure 8.2: Degradation rate of PCE (kdeg, squares) as a function of aging tempera-
ture.

8.3 Thermally-activated degradation of mixed SubPc:C60 or-

ganic photovoltaic cells

The as-grown samples of Device M-60 exhibit R = 0.068 ± 0.002 A/W, FF =

0.43±0.02, and VOC = 1.02±0.05 V, resulting in PCE = 3.0±0.3%. The error range

includes measurement error and variation between devices, substrates and different

growths. The responsivity of Device M-60 is stable for long periods of time, due to

fast exciton dissociation inhibiting trap formation discussed in Chapter VI. As shown

in Figure 8.3, when the aging temperature is between 40-80 �, the loss in responsivity

is less than 7 % of 70 days of aging. Similarly, the FF is relatively stable for aging

at 90 �, with less than 10 % decrease (Fig. 8.3(b)). The degradation in PCE is

dominated by the decrease in VOC , as shown in Fig. 8.3(c) and 8.3(d). At aging

temperature >90 �, noticeable loss in R occurs and FF decreases more rapidly,

indicating new degradation mechanism.

The post-burn-in degradation in PCE is approximated by a linear decay, viz:

PCE(t) = kdegt + PCE0, where kdeg is the degradation rate, and PCE0 is the in-
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tercept corresponding to the post-burn-in PCE value. The device lifetime (T80)

is taken as the time at which PCE drops to 80% of its post-burn-in value, i.e.,

(T80 = 0.2PCE0/kdeg). For devices aged at 40 �, a lifetime of T80 = 1500 ± 500

days is obtained, assuming an average of 5 hours of 1 sun, AM1.5G illumination

per day. Figure 8.4 shows the degradation rate of PCE, kdeg, as a function of

aging temperature between 40-80 �, where the degradation behavior is similar.

The dependence of kdeg on aging temperature follows the Arrhenius relationship,

kdeg = kdeg(0) exp (−EA/kBT ), where EA is the activation energy, kB is the Boltz-

mann constant, T is temperature and kdeg(0) is the pre-factor. Fitting of the data

gives an activation energy EA = 430± 60 meV, indicating the degradation is associ-

ated with sub-bandgap processes.

To understand the degradation mechanism, the dark current density (JDark) of

a series of Device M-60 before and after aging is monitored during aging, as shown

in Fig. 8.5. The dark current increases when the device is heated, and continues

rising as devices ages. As mentioned in Chapter 1, the OPV current-voltage is de-

scribed by the ideal diode equation J = JsD [exp (qVa/nDkBT )− kPPd/kPPd,eq] +

JsA [exp (qVa/nAkBT )− kPPd/kPPd,eq]−qηPPdJX . Under forward bias, kPPd is similar

to kPPd,eq, therefore the ideal diode equation reduces to J = JsD [exp (qVa/nDkBT )− 1]

+ JsA [exp (qVa/nAkBT )− 1]− qηPPdJX , where Va = V − JRsa. In the aged devices,

the dark current increases and the inflection point disappears. Hence only one of the

two diode expressions in Giebink’s double diode model has a meaningful fit. There-

fore in the following analyses we only include one of the diodes. It is likely that the

other diode go through similar aging processes, however due to the lack of accurate

fit we do not know the exact change in the the diode parameters.

Fitting the dark current according to the ideal diode equation gives the reverse

saturation current density, JS, series resistance, RSA, and ideality factor, n. For as-
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(a) (b)

(c) (d)

Figure 8.3: Normalized performance for Device M-60 aged under 40 �(squares),
60 �(circles), 70 �(left triangles), 80 �(up triangles) and 90 �(down
triangles) and ac1am15g. (a) R, (b) FF , (c) VOC , (d) PCE.

114



Figure 8.4: The degradation rate of PCE (kdeg, symbols) for Device M-60 as a func-
tion of aging temperature (T ) and the fit according to the Arrhenius
relationship described in text (line).

grown devices, we obtain JS = (3.0 ± 0.3) × 10−9 A/cm2, JS = 3.6 ± 0.2, and RSA

= 24±5Ω ·cm2. After aging under 40 � for 70 days, JS increases to (1.1±0.2)×10−8

A/cm2 and n increases to 6.6 ± 0.1 (Fig. 8.6). For device aged under 80 �, JS

increases to ((2.0 ± 0.1) × 10−5A/cm2) and n increases to 6.6 ± 0.1. The high JS

and n indicates increased recombination in the active layer, leading to the loss in

VOC . Meanwhile, RSA remains approximately the same for all aging temperature,

suggesting no significant change has occured in contact or interface resistance.

In order to investigate the chemical nature of degradation, SAED and TOF-SIMS

measurements are conducted on as-grown M-60 devices and the devices aged at

80 � for 24 days, when PCE drops to 50 % of its initial value. All samples stay

amorphous, as indicated by the broad diffraction rings in the SAED images shown in

Fig. 8.7(a) and 8.7(b). Meanwhile, TOF-SIMS measurements suggest oxygen diffusion

from the cathode into the active layer, possibly through the pinholes in the cathode

layer (Fig. 8.7(c) and 8.7(d)). It is likely that oxygen has introduced sub-bandgap
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(a) (b)

Figure 8.5: Dark current density vs. voltage characteristics for Device M-60 before
(a) and after (b) aging under 40 � (squares), 60 � (circles), 70 � (up
triangles), 80 � (down triangles) and 90 � (diamonds). The JDark-V
characteristics were measured under room temperature.

(a) (b)

Figure 8.6: (a) Reverse saturation current JS and (b) ideality factor (n) of as grown
(squares) and aged (triangles) Device M-60 from fits to the Shockley equa-
tion.
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(a) (b)

(c) (d)

Figure 8.7: Selected area electron diffraction of Device M-60 after growth (a) and
after aging at 80 �for 24 days (b). Secondary ion mass spectroscopy
results of Device M-60 after growth (c) and after aging at 80 �for 24
days (d).

defect states that serve as recombination centers.

In conclusion, we investigated thermally-activated degradation in large area SubPc:C60

devices. The loss in efficiency is dominated by the decreased VOC , due to the increase

in recombination current. The recombination centers are resulted from oxygen dif-

fusion from the cathode into the active layer. The degradation corresponds to an

activation energy of 430± 60 meV, indicating sub-bandgap processes.
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CHAPTER IX

Future outlook

Device reliability is arguably the most important research area in organic pho-

tovoltaic cells at present. In this chapter, we propose future directions in organic

photovoltaic cells reliability research. We focus on areas that will advance under-

standing of the dynamics of excitons and polarons and the implications on device

reliability and device/material design.

In Part II: Reliability of Organic Photovoltaic Cells, we have demonstrated that

excited states are detrimental to OPV stability on many levels - morphology, molecu-

lar structure, absorption, and exciton generation and diffusion. In a planar structure,

the exciton-induced degradation products shortens the lifetime of excited states, re-

sulting in a significant reduction in photocurrent during the burn-in period. The

degradation products could be trap states that quenches subsequently generated ex-

citons, or polymerized products with shorter excited state lifetime. It will be inter-

esting to accurately measure the post-burn-in film composition or exciton lifetime, in

order to confirm the chemical degradation process. The degradation mechanism is

suppressed by using a mixed donor/acceptor structure where the excitons are quickly

dissociated. We have also shown that the exciton-induced photodegradation can be

best mitigated by balancing the donor-to-acceptor ratio to 1:1. However, recent high-

efficiency single cells have extremely imbalanced donor-to-acceptor ratio.[180] It is

necessary to investigate how a donor-rich or acceptor-rich OPV degrades, particu-

118



larly the morphology degradation.

Another important next step to achieve stable high-efficiency OPVs is to under-

stand the effect of charge carriers on device stability. We have shown in Chapter VI

that for low-current OPVs (J < 5 mA/cm2), charge does not introduce additional

degradation mechanisms. However, as current density increases in more efficient

OPVs, it is likely that polaron-polaron and polaron-exciton recombination will de-

crease device lifetime through similar pathways that have been observed in the OLED

case.[163] Comparing device lifetime for a high-efficiency single cell vs. a tandem cell,

where the current density can be drastically different, will bring interesting results on

carrier-induced degradation. So far the research on tandem OPV reliability has been

rare, yet promising.[181, 182]

In addition to photoactive layers, the stability of OPV buffer layers is crucial.

Studies have shown that by eliminating corrosive PEDOT:PSS in polymer OLEDs,

the device lifetime is substantially improved.[183] It was also found that BPhen

is stablized by mixing Aluminum(III)bis(2-methyl-8-quinolinato)4-phenylphenolate

(BAlq) due to its higher glass transition temperature.[184] Finding the most stable

buffer layer will likely extend device lifetime, and allows for more focused research in

degradation processes in the active layer.

In Chapter VII we have demonstrated that compared to C70, C60 is inherently

unstable due to its tendency to form polymerized C60. Currently there is no broad

understanding on how the molecular structure will affect OPV device lifetime. With

deeper understanding of how exciton- and polaron-induced effects cause morphology

and molecular changes, designing long-lifetime organic materials and device architec-

ture will be achievable in the future.
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APPENDIX A

An integrated organic passive pixel sensor utilizing

an inverted photodetector

Among organic optoelectronic devices, OPDs have attracted particular interest for

use in optical imagers owing to their light weight, broad spectral detectivity and

compatibility with flexible or conformal substrates. For example, a passive-matrix

OPD imaging array has been demonstrated on a hemispherical substrate.[185, 186]

However, such an OPD array is limited because the dark current is a function of

the array size, scaling linearly with the number of rows or columns. Consequently,

transistors must be used as switching elements to reduce the total leakage current.

An organic passive pixel sensor was recently reported consisting of a bottom-contact

(BC) pentacene OTFT and a bottom-illuminated SubPc/C60 OPD.[187] This inte-

grated pixel achieved an 8-bit dynamic range, limited mainly by the low ON-drain

current and hole mobility (µ = 0.0025 cm2/V·s) of the BC-OTFT. On the other hand,

it has been shown that top-contact (TC) OTFTs have superior performance com-

pared with BC-OTFTs owing to the improved carrier injection and reduced contact

resistance.[188, 189, 190] However, the integration of bottom-illuminated OPDs and

TC-OTFTs often involves complicated processing, such as photolithography, inkjet

printing,[191] laser drilling or lamination.[192] Therefore, it is of interest to mod-

ify the pixel to include TC-OTFTs while retaining the simple fabrication process of

bottom-contact devices.

In this chapter, we demonstrate a small-molecule organic passive pixel sensor
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consisting of an inverted SubPc/C60 OPD described in Chapter III and a bottom-gate,

top-contact pentacene OTFT. By using a transparent, sputter-deposited ITO anode,

the top-illuminated OPD can be integrated with a TC-OTFT via thermal evaporation

and shadow-mask patterning. The OTFT achieves a drain current ON/OFF ratio of

105 at a drain-source voltage, VDS = -4 V, and carrier mobility (µm) = 0.09 ± 0.02

cm2/V·s, resulting in a 12-bit dynamic range for the circuit.

A.1 Experimental procedure

The integrated pixels in Fig. A.1 were fabricated on high thermal conductivity

sapphire substrates to prevent heating during ITO sputtering. Prior to thermal de-

position in a vacuum chamber with a base pressure <4×10−7 Torr, the substrates were

cleaned by ultrasonication in acetone followed by immersion in boiling isopropanol.

The OTFT gate and OPD cathode consisting of 50 nm-thick Al were simultaneously

thermally evaporated. Next the OPD structure (C60 50 nm/SubPc 9 nm/MoO3 30

nm) was thermally evaporated at a rate of 1 Å/s. A 50 nm-thick ITO anode was

sputtered at a power of 20 W (rate = 0.1 Å/s) using an argon plasma at a pressure of

2 mTorr. After depositing the OPD layers, the samples were loaded into a parylene

deposition system where 0.7 g of parylene C (relative dielectric constant, εr = 3.15)

was coated onto the OTFT gate contact, forming a 270 nm-thick insulator. Finally,

the 50 nm-thick pentacene channel and the 40 nm-thick Au source and drain con-

tacts were sequentially evaporated at the rates of 0.5 Å/s and 0.3 Å/s, respectively,

to complete the OTFT. All features were defined using shadow masks attached in an

ultra-high-purity N2 (<1 ppm O2 and H2O), with the exception of a brief exposure

to air before and after parylene deposition. The OPD dimensions (100 µm ×800

µm) and OTFT channel width-to-length ratio (W/L = 500 µm/30 µm) were set by

shadow-masking during ITO and Au deposition, respectively.
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Figure A.1: Schematic diagram of the integrated passive pixel sensor consisting of
a top-illuminated organic photodetector with an indium-tin-oxide (ITO)
top contact in series with a pentacene organic thin film transistor. Layer
compositions are indicated.

Device performance was measured in air using a semiconductor parameter ana-

lyzer. Incident light for measuring the circuit dynamic range (DR) was provided by

a mercury lamp with a spectral bandpass filter at a center wavelength of λ = 580± 2

nm, matching a Hg emission peak as well as the absorption maximum of SubPc.

The illumination intensity was varied using neutral density filters and measured us-

ing a calibrated Si photodetector. EQE was measured using a lock-in amplifier and

monochromated light from a tungsten-halogen lamp chopped at ∼ 200Hz. Voltage

was applied to the detector with a current amplifier at the input to the lock-in for

biased EQE measurement. The circuit transient response was measured using an

oscilloscope and a pulse generator with rise and fall times of 2 ns controlling the

transistor gate.
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A.2 Performance of individual sensor and transistor compo-

nents

The characteristics of the discrete pixel components were individually measured

with results shown in Fig. A.2 and Fig. A.3. The OTFT output characteristic is

shown in Fig. A.2(a). The drain current (IDS) when the transistor is in the OFF

state is IDS = 27± 3 pA at VDS = -4 V, and the ON/OFF ratio is 105 (Fig. A.2(b)).

The OFF current is comparable to that of a BC-OTFT at a small VDS.[187], while the

ON current is improved by more than two orders of magnitude. The field-effect hole

mobility, µm = 0.09 ± 0.02 cm2/V·s, was obtained using IDS = µmWC
2L

(VGS − Vth)2

in the saturation region, where C is the gate-insulator capacitance, VGS is the gate

voltage, and Vth is the threshold voltage. The OTFT ON current is comparable

to previously reported bottom-gate pentacene transistors employing a polymer gate

dielectric, while the low OFF current was achieved with a much smaller dielectric

thickness (270 nm) than a previously reported thickness of >500 nm.[193] This is at-

tributed to reduced gate leakage due to small gate-source overlap (<350µm ×500µm).

The current-voltage (IOPD-V ) response of the OPD is shown in Fig. A.3(a). Under

a reverse bias of -1.5 V, the OPD dark current is IDark = 20 pA. Also EQE = 18.2 % at

λ = 580 nm, and increases to 19.9 % at -2 V due to increased polaron-pair dissociation

at high voltages (Fig. A.3(b)).[74] The EQE of an analogous inverted discrete OPD

is also shown in Fig. A.3(b). The EQE of both devices is within device-to-device

variations. Over the range of incident optical powers used here (from 2.6 µW/cm2

to 151 mW/cm2), the OPD photocurrent is linear, resulting in a high detection DR.

The photodetector specific detectivity (D∗) at -1.5 V is shown in Fig. A.3(b). Now,

D∗ is calculated using D∗ =
√
A∆f/NEP, where A is the detector area, ∆f is the

bandwidth, and NEP is the noise equivalent power.[186] Under reverse bias, shot noise
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(a)

(b)

Figure A.2: Characteristics of a discrete pentacene thin-film transistor. (a) Output
characteristics for VGS = 0, -10, -20, -30, -40 and -50 V. (b) Transfer
characteristics of IDS vs. VGS of the OTFT at a drain-source voltage
of VDS = -4 V (solid line), -5 V (dashed line) and -10 V (dash-dotted
line). The square-root of the drain-source current (squares) and the fit
(short-dashed line) are shown on the right-hand axis.
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dominates the NEP, giving D∗ =
√
A∆f · R/

√
2qIDark, where R is the responsivity,

and q is the elementary charge. At λ = 580 nm, D∗ = 9.4× 1011 cm·Hz1/2·W−1.

A.3 An integrated organic pixel sensor

The integrated pixel performance was characterized by measuring the current

between the anode of the OPD and the source of the OTFT (IAS) under various light

intensities and VGS (Fig. A.4). The pixel has a dark OFF current of IAS = 31± 5 pA

and dark ON current of 950± 130 pA. The dark OFF current is consistent with the

OFF current of the discrete OTFT within measurement error. The slight difference

is due to the change in VDS across the sample from testing the discrete OTFT (VDS =

-4 V) vs. testing the integrated pixel (VAS = -4 V). The dark ON current of the pixel

at VAS = -4 V is noticeably higher than that of the OPD at -1.5 V in Fig. A.3(a).

Nevertheless, this pixel performance is sufficient for application to a 30 × 30 sensor

array.

The lowest detectable light intensity is 17 µW/cm2, as shown in Fig. A.5, estab-

lishing a lower limit to the DR. Since the OPD photocurrent does not saturate within

the testing range used, the upper limit is determined by the ON current (4.6±0.05 µA)

of the OTFT at light intensities >130 mW/cm2. Furthermore, ∆IAS is the difference

between the ON current undre illumination and in the dark at a gate bias, VGS =

-39.5 V. Fitting the pixel photocurrent ∆IAS vs. incident illumination power gives R

= 0.083 ± 0.003 A/W, consistent with the EQE result. The pixel showed a 12-bit

dynamic range (corresponding to DR = ∆IAS(max)/∆IAS(min) = 4.1 × 103). The

improved performance is due to the enhance ON current of TC-OTFTs compared

with previously reported BC transistors.[187]

The pixel response time is determined by measuring the voltage across a resistor
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(a)

(b)

Figure A.3: (a) current-voltage characteristics of the organic photodetector (I +OPD

-V ) in the dark and under illumination at different intensities. The inci-
dent wavelength is λ = 580±2 nm. (b) EQE of the integrated SubPc/C60

OPD under 0 V bias (solid line), -1 V (dashed line) and -2 V reverse bias
(short-dashed line), compared to that of a control inverted OPD (open
circles). The specific detectivity (D∗) at -1.5 V is shown on the right-hand
axis (squares).
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Figure A.4: Transfer characteristics of the integrated pixel. Anode-source current
(IAS) vs. VGS at an anode-source voltage of -4 V for various illumination
intensities at λ = 580± 2 nm.

Figure A.5: Pixel photoresponse, ∆IAS, as a function of incident illumination power
intensity extracted from the transfer characteristics at VGS = -39.5 V,
where ∆IAS is the difference between IAS under illumination and in the
dark. The line is a linear fit to the data. The extent of the linear range
of the data gives the circuit dynamic range, equal to 12 bits.
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between the source of the OTFT and ground. A pulsed VGS from +2 V (OFF state) to

-40 V (ON state) is applied while the device was kept under a constant anode-source

voltage (VAS) = -4 V and an illumination intensity of 49 mW/cm2. The resulting

data were modeled by a bi-exponential decay following Eq. A.1.

− IAS = I0 + A1 exp [− (t− t0) /τP ] + A2 exp [− (t− t0) /tRO] (A.1)

,

Here I0 is the steady state pixel current when the gate is ON, and t0 is the

time when the pulse is applied (Fig. A.6). The RC charging time constant is τ =

29±8 µs when using a 37.7 kΩ load, corresponding to the fast decay initially observed.

Previously, it has been found that the optical response of analogous SubPc/C60 OPDs

is on the order of nanoseconds,[187, 194] indicating that the circuit response time tRO

is limited by the discarging time through the OTFT channel. Note that τRO is larger

than the charge travel time in the channel derived from mobility (25 µs), indicating

charge trapping in the channel. This response can be further improved by using a

transistor with a higher mobility employing, for example, self-assembled monolayers

at the insulator-channel interface that result in enhanced crystal orientation.[195, 193,

196]

In conclusion, an organic integrated pixel based on a bottom-gate, top-contact

pentacene transistor and an inverted SubPc/C60 photodetector has been demon-

strated. It has a 12-bit dynamic range, an OFF current of 31± 5 pA, and a read-out

time of 0.4 ± 0.05 ms. The circuit performance is adequate for use in video-rate,

high-sensitivity focal plane arrays of dimensions of at least 30× 30 pixels.
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Figure A.6: Transient response of the pixel to a square voltage pulse applied at the
transistor gate electrode measured using a 37.7 kΩ load. Also shown
(line) is a bi-exponential decay fit to the data. The time constants ex-
tracted from the fit are the read-out time of τRO = 0.4 ± 0.05 ms, and
the RC time constant of τ = 29± 8µs.
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APPENDIX B

Modeling of current generation in solar cells

A transfer matrix formalism allows for efficient modeling of the local optical field

amplitude in planar layered structures.[15] The current generation in an OPV device

can be estimated by optical modeling combined with calculation of exciton diffusion.

Here, we summarize the well-established simulation methods and provides means to

high-performance implementation.

B.1 Optical modeling of multilayer dielectrics

We consider uniform plane waves incident normally on the interfaces of a mul-

tilayer structure. The materials are assumed to be homogeneous and isotropic with

optically flat interfaces. The optical fields across different layers are related by a 2×2

matrix - a transfer matrix. All variables in this section are a function of the incident

wavelength, λ, thus the dependence (λ) is omitted.

Consider an optical field propagating along the x direction in the multilayer struc-

ture shown in Fig. B.1. Each layers has a thickness of dj, where j is the index of

the layer. The 0th and m+1th layers are the semi-infinite ambient environment. The

optical properties of each layer is described by the complex index of refraction:

nj = nj + i · kj (B.1)

where nj and kj are the refractive index and extinction coefficient of the layer, re-

131



Figure B.1: A multilayer thin-film device.

spectively.

The schematic of the fields across an interface between layer j and layer j + 1 is

shown in Fig. B.2. Here, the notations + and − indicate the propagation direction

of the electric field. Prime (′) indicates different materials. Symbols r and t are the

Fresnel reflection and transmision coefficient, respectively.

The boundary conditions require that the total electric and magnetic fields be

continuous across the interface:

E = E+ + E− = E ′ = E+′ + E−′ (B.2a)

H =
1

η

(
E+ − E−

)
= H ′ =

1

η′
(
E+′ − E−′

)
(B.2b)

Here, η =
√
µ/ε is the characteristic impedance of the dielectric, where µ and ε

are the permeability and permittivity of the material, respectively.
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Figure B.2: Fields across an interface between two dielectric thin films. The nota-
tions + and − indicate the propagation direction of the field. Prime (′)
indicates different materials. Symbols r and t are the Fresnel reflection
and transmision coefficient, respectively.

The Fresnel reflection and transmission coefficient are:

r = rj(j+1) =
nj − nj+1

nj + nj+1

; (B.3a)

t = tj(j+1) =
2nj

nj + nj+1

; (B.3b)

Eq. B.2a and B.2b can be written in a matrix form:

E+

E−

 =
1

tj(j+1)

 1 rj(j+1)

rj(j+1) 1


E+′

E−′

 (B.4)

The interface matrix is therefore defined as:

Ij(j+1) =
1

tj(j+1)

 1 rj(j+1)

rj(j+1) 1

 , (B.5)

As shown in Fig. B.3, the field propagating through a layer of dielectric thin film

is related in a matrix form as:
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Figure B.3: Field propagated through a dielectric layer.

E+
L

E−L

 =

e−idjξj 0

0 eidjξj

 ·
E+

R

E−R

 (B.6)

where ξj = 2πnj/λ. The layer propagation matrix is:

Lj =

e−idjξj 0

0 eidjξj

 (B.7)

The fields incident on the multilayer structure from the left to those from the right

is linked by the product of a series of propagation and interface matrices, viz:
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S =

S11 S12

S21 S22

 =
1

tjk
·

 1 rjk

rjk 1

 =

(
m∏
n=1

I(n−1)nLn

)
· Im(m+1), (B.8)

S = S−j LjS
+
j , (B.9)

with (B.10)

S−j =

(
j−1∏
n=1

I(n−1)nLn

)
· I(j−1)j, (B.11)

and (B.12)

S+
j =

(
m∏

n=j+1

I(n−1)nLn

)
· I(m−1)m. (B.13)

The electric field at the left interface of layer j is related to the incident field by:

E+
j

E+
0

= t+j =

1
S−
j11

1 +
S−
j12S

+
j21

S−
j11S

+
j11

ei2djξj
; (B.14)

E−j
E+

0

= t−j = t+j
S+
j21

S+
j11

ei2djξj . (B.15)

The total electric field at position x of layer j is:

Ej(x) = E+
j (x) + E−j (x) =

(
t+j e

ixξj + t−j e
−ixξj

)
E+

0 . (B.16)

In general, the multilayer structure is supported by a substrate with thickness

d � λ. The effect of the substrate is calculated by including the reflection at the

air/substrate and substrate/multilayer interfaces instead of including it in the transfer

matrix.
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R′ =
RAir/Sub +RSub/Stack

1 +RAir/Sub ×RSub/Stack

(B.17)

T ′ =
TAir/Sub × TSub/Stack

1 + TAir/Sub × TSub/Stack
(B.18)

with

RAir/Sub =

∣∣∣∣1− nSub1 + nSub

∣∣∣∣2 , (B.19)

TAir/Sub =

∣∣∣∣ 2

1 + nSub

∣∣∣∣2 , (B.20)

and

RSub/Stack =

∣∣∣∣S21

S11

∣∣∣∣2 (B.21)

TSub/Stack =

∣∣∣∣S21

S11

∣∣∣∣2 · nm+1

n0

(B.22)

(B.23)

The aborption efficiency is ηA = 1 − R′ − T ′. The optical field at position x is

corrected to:

Ej(x) = E+
j (x) + E−j (x) =

(
t+j e

ixξj + t−j e
−ixξj

)
E+

0 (1−R′ − T ′) (B.24)

The overall time-averaged absorbed power at position x in layer j is

Qj(x) =
4πcε0kjnj

2λ
|Ej(x)|2 (B.25)
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B.2 Modeling of exciton diffusion in planar organic solar cells

The power intensity of the local optical field determines the exciton generation

rate. The exciton density at wavelength, λ, and position, x, is calculated by the

steady-state exciton diffusion equation:

∂NX (x, λ)

∂t
= D

∂2NX (x, λ)

∂x2
− k0NX (x, λ) +G (x, λ) = 0 (B.26)

Here, NX (x, λ) is the exciton density generated by absorption of photons of wave-

length, λ, and at position, x. Also, D is the exciton diffusivity, k0 is the exciton

natural decay rate including the natural (τ0) and nonradiative (τnr) decay lifetimes

(i.e.,k0 = 1/τ0 + 1/τnr), and G (x, λ) is the photogeneration rate of excitons in the

device active layers determined by the local intensity of the optical electric field.

Assuming unity photon absorption efficiency, G (x, λ) = Q(x, λ)/(hc/λ).

Eq. B.26 is solved by using boundary conditions:

(i)Ideal non-quenching interface:

∂NX

∂x

∣∣∣∣
Boundary

= 0; (B.27)

and (ii)Ideal exciton dissociation interface:

NX |Boundary = 0. (B.28)

The case of partial-quenching interface with finite exciton dissociation rate is not

considered here.

The EQE of the device is the exciton flux at the dissociating interface normalized

to the incident field:

EQE(λ) = D
∂NX(x, λ)

∂x

∣∣∣
D/A

/
1

2

cεrε0|E|2

hc/λ
(B.29)
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Such boundary value problems (BVPs) of ordinary differential equations (ODEs)

can be solved using numerical methods. Details on numerical methods and algorithm

are in Ref. [197]. There are many effective programs for solving BVPs. In this

section we discuss implementation of solving Eq. B.26 using a common BVP solver,

MATLAB® bvp4c.[198]

The solver bvp4c implements a collocation method for the solution of BVPs of

the form:

y′ = f(x, y, p), a ≤ x ≤ b, subject to: g (y(a), y(b), p) = 0. (B.30)

Here p is a vector of unknown parameters in the general nonlinear, two-point boundary

conditions.

The solver bvp4c requires the ODEs to be written as a system of first order ODEs

- one for each variable in the original problem and one for each of its derivatives up

to one less than the highest derivative appearing. To solve Eq. B.26, set y1(x) =

NX (x, λ) and y2(x) = ∂NX (x, λ)/∂x. The required inputs are:

dydx =

y′1
y′2

 =

 y2

1
D

(k0y1 −G(x, λ))

 (B.31)

Assuming the simple case of a photoactive layer in a planar OPV cell that the left

interface is non-quenching and the right one is exciton dissociating. The boundary

conditions are:

y2(a) = 0 and y1(b) = 0. (B.32)

Once the exciton density is solved, the EQE of the device is calculated as the

dissociated exciton flux at the D/A interface divided by the incoming photon density.

Certainly the run time of the program depends on the hardware and its config-

uration. Yet the performance of the BVP solver can be significantly improved by
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proper coding. There are a number of references discussing ways to efficiently imple-

ment numerical methods in great details.[199, 200, 201, 202] Here we summarize a

few methods to shorten the elapse time of the program:

(a) Including the partial derivatives of the ODE and boundary conditions.

BVPs are generally solved much faster with improved robustness when the an-

alytical partical derivatives are given. One can inform the solver of functions for

evaluating the partial derivatives for ODEs as well as for the boundary conditions.

Some BVPs do not have convenient analytical form of partial derivatives, thus it

is often not required to provide it in BVP solvers. However, including them when

possible, at least the Jacobian of the ODEs, can substantially reduce the run time.

The exciton diffusion equation have straightforward expressions for the partial

derivatives.

J =
∂dydx

∂y
=

∂dydx1∂y1

∂dydx1
∂y2

∂dydx2
∂y1

∂dydx2
∂y2

 =

 0 1

1
D

0

 (B.33)

The function for evaluating the partial derivatives of the boundary condition

g (y(a), y(b), p) = 0 involves two vectors: ∂g/∂ya and ∂g/∂yb. The Jacobian of the

boundary conditions should be provided according to the types of boundary condition.

For the example shown in Eq. B.32, the Jacobians are:

dBCdya =

0 1

0 0

 , and (B.34a)

dBCdyb =

0 0

1 0

 (B.34b)
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(b) Vectorizing the input.

Many MATLAB® BVP solvers forms Jacobians using finite differences by default.

Vectorizing the evaluation of the ODE function can significantly shorten the run time.

To utilize vectorization, code the ODE such that F ([x1, x2, ...] , [y1, y2, ...]) returns

[(x1, y1), (x2, y2)...]. This way, the ODE function passes to the solver a whole array

of vectors at once, reducing the number of function evaluations and therefore the run

time. The options of vectorization and supplying analytical Jacobians are indepen-

dent. One may be more effective at reducing run time than the other depending on

the types of BVPs. Note that for stiff ODE solvers, vectorization is ignored when

analytical Jacobians are provided. bvp4c benefits from vectorization even when ana-

lytical Jacobians are used, thus one should include both whenever possible to speed

up computation to its maximum.

(c) Utilizing parallel computing.

The Parallel Computing Toolbox� in MATLAB® uses multicore processors, graph-

ics processing units (GPUs) and computer clusters to solve computationally intense

problems. In order to use the Parallel Computing Toolbox� , every iteration must

be independent. That is, the variables used in one iteration do not reference results

from other iterations. When solving the exciton diffusion equation across the inci-

dent spectrum, each solution at different wavelengths can be handled by the Parallel

Computing Toolbox� since they are all independent from each other. This speeds

up the computation when using multicore processor and is very easy to implement

without reprogramming.
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Modeling provides a powerful way to predict device performance and optimize

material selection and device structure. As computation becomes more complicated,

such as designing tandem devices, it is essential to fully take advantage of the existing

resources, thus significantly expands the computation capability, allowing for efficient

OPV modeling and design.
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APPENDIX C

List of Publications

C.1 Journal publications

[1] Xiaoran Tong, Nana Wang, Michael Slootsky, Junsheng Yu, and Stephen R. For-
rest. Intrinsic burn-in efficiency loss of small-molecule organic photovoltaic cells
due to exciton-induced trap formation. Solar Energy Materials and Solar Cells,
118:116–123, November 2013.

[2] Xiaoran Tong and Stephen R. Forrest. An integrated organic passive pixel sensor.
Organic Electronics, 12(11):1822–1825, November 2011.

[3] Xiaoran Tong, Brian E. Lassiter, and Stephen R. Forrest. Inverted organic pho-
tovoltaic cells with high open-circuit voltage. Organic Electronics, 11(4):705–709,
April 2010.

[4] Xiaoran Tong, Rhonda F. Bailey-Salzman, Guo dan Wei, and Stephen R. Forrest.
Inverted small molecule organic photovoltaic cells on reflective substrates. Applied
Physics Letters, 93(17):173304–3, October 2008.

[5] Nana Wang, Xiaoran Tong, Quinn Burlingame, Junsheng Yu, and Stephen R.
Forrest. Photodegradation of small-molecule organic photovoltaics. Solar Energy
Materials and Solar Cells, 125:170–175, June 2014.

[6] Nana Wang, Jeramy D. Zimmerman, Xiaoran Tong, Xin Xiao, Junsheng Yu,
and Stephen R. Forrest. Snow cleaning of substrates increases yield of large-
area organic photovoltaics. Applied Physics Letters, 101(13):133901–4, September
2012.

C.2 Conference contributions

[1] Xiaoran Tong, Nana Wang, Michael Slootsky, and Stephen Forrest. Exciton-
induced degradation of photocurrent in small-molecule organic solar cells. In Bul-
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letin of the American Physical Society, volume 58, Number 1. American Physical
Society, March 2013.

[2] Xiaoran Tong and Stephen R. Forrest. Integrated organic thin-film transistor with
an inverted organic photodetector. In ICEL 2010 - 8th International Conference
on Electroluminescence & Organic Optoelectronics, October 2010.

[3] Xiaoran Tong and Stephen R. Forrest. The open-circuit voltage of inverted small
molecule organic photovoltaic cells. In Symposium S: Organic Materials and De-
vices for Sustainable Energy Systems - 2009 MRS Fall Meeting, November 2009.

[4] Xiaoran Tong, Stephen R. Forrest, and Rhonda Bailey-Salzman. Inverted small
molecule organic photovoltaic cells. In Symposium H: Physics and Technology of
Organic Semiconductor Devices - 2008 MRS Fall Meeting, December 2008.

[5] Jung-Yong Lee, Steve T. Connor, Xiaoran Tong, Yi Cui, Stephen R. Forrest, and
Peter Peumans. Enhanced outcoupling of organic light emitting devices via metal
nanowire mesh transparent electrodes. In Symposium B: Transparent Conductors
and Semiconductors for Optoelectronics - 2008 MRS Fall Meeting, December 2008.

C.3 Patents

[1] Stephen R. Forrest, Xiaoran Tong, Jun Yeob Lee, and Yong Joo Cho. Methods of
preparing the surface of metal substrates for organic photosensitive devices, May
2013. US20130105779 A1.

143



BIBLIOGRAPHY

144



BIBLIOGRAPHY

[1] Martin Pope and Charles E. Swenberg. Electronic processes in organic crystals
and polymers. Oxford University Press, 1999.

[2] Frederik C. Krebs, Jan Fyenbo, and Mikkel Jrgensen. Product integration of
compact roll-to-roll processed polymer solar cell modules: methods and manu-
facture using flexographic printing, slot-die coating and rotary screen printing.
Journal of Materials Chemistry, 20(41):8994–9001, October 2010.

[3] Roar R. Sndergaard, Markus Hsel, and Frederik C. Krebs. Roll-to-roll fabri-
cation of large area functional organic materials. Journal of Polymer Science
Part B: Polymer Physics, 51(1):1634, 2013.

[4] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky,
and F. Wudl. Semiconducting polymerbuckminsterfullerene heterojunctions:
Diodes, photodiodes, and photovoltaic cells. Applied Physics Letters, 62(6):585–
587, February 1993.

[5] R.H. Friend, G.J. Denton, J.J.M. Halls, N.T. Harrison, A.B. Holmes, A. Khler,
A. Lux, S.C. Moratti, K. Pichler, N. Tessler, K. Towns, and H.F. Wittmann.
Electronic excitations in luminescent conjugated polymers. Solid State Com-
munications, 102(23):249–258, April 1997.

[6] J. Cornil, D. Beljonne, J.-P. Calbert, and J.-L. Brdas. Interchain interactions in
organic -conjugated materials: Impact on electronic structure, optical response,
and charge transport. Advanced Materials, 13(14):1053–1067, 2001.

[7] S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson. Temperature-
independent transport in high-mobility pentacene transistors. Applied Physics
Letters, 72(15):1854–1856, April 1998.

[8] Qian Miao, Thuc-Quyen Nguyen, Takao Someya, Graciela B. Blanchet, and
Colin Nuckolls. Synthesis, assembly, and thin film transistors of dihydrodi-
azapentacene: an isostructural motif for pentacene. Journal of the American
Chemical Society, 125(34):10284–10287, August 2003.

[9] Richard R. Lunt, Noel C. Giebink, Anna A. Belak, Jay B. Benziger, and
Stephen R. Forrest. Exciton diffusion lengths of organic semiconductor thin
films measured by spectrally resolved photoluminescence quenching. Journal of
Applied Physics, 105(5):053711–7, March 2009.

145



[10] Jeramy D. Zimmerman, Xin Xiao, Christopher Kyle Renshaw, Siyi Wang, Vy-
acheslav V. Diev, Mark E. Thompson, and Stephen R. Forrest. Independent
control of bulk and interfacial morphologies of small molecular weight organic
heterojunction solar cells. Nano Letters, 12(8):4366–4371, August 2012.

[11] S. C. Ganguly and N. K. Chaudhuri. Directional properties of single crys-
tal of anthracene regarding fluorescence phenomena. The Journal of Chemical
Physics, 19(5):617–618, May 1951.

[12] S. Kna-Cohen and S. R. Forrest. Room-temperature polariton lasing in an
organic single-crystal microcavity. Nature Photonics, 4(6):371–375, June 2010.

[13] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest.
Very high-efficiency green organic light-emitting devices based on electrophos-
phorescence. Applied Physics Letters, 75(1):4–6, July 1999.

[14] Wade A. Luhman and Russell J. Holmes. Investigation of energy transfer in
organic photovoltaic cells and impact on exciton diffusion length measurements.
Advanced Functional Materials, 21(4):764771, 2011.

[15] Peter Peumans, Aharon Yakimov, and Stephen R. Forrest. Small molecular
weight organic thin-film photodetectors and solar cells. Journal of Applied
Physics, 93(7):3693–3723, April 2003.

[16] J. Frenkel. On the transformation of light into heat in solids. i. Physical Review,
37(1):17–44, January 1931.

[17] Gregory H. Wannier. The structure of electronic excitation levels in insulating
crystals. Physical Review, 52(3):191–197, August 1937.

[18] S. Kazaoui, N. Minami, Y. Tanabe, H. J. Byrne, A. Eilmes, and P. Petelenz.
Comprehensive analysis of intermolecular charge-transfer excited states in c-60
and c-70 films. Physical Review B, 58(12):7689–7700, September 1998.

[19] Theodor Frster. Delocalized Excitation and Excitation Transfer. Florida State
University, 1965.

[20] D. L. Dexter. A theory of sensitized luminescence in solids. The Journal of
Chemical Physics, 21(5):836–850, May 1953.

[21] P. Avakian and R. E. Merrifield. Experimental determination of the diffu-
sion length of triplet excitons in anthracene crystals. Physical Review Letters,
13(18):541–543, November 1964.

[22] D. F. Williams and J. Adolph. Diffusion length of triplet excitons in anthracene
crystals. The Journal of Chemical Physics, 46(11):4252–4254, June 1967.

[23] V. M. Agranovich and Yu. V. Konobeev. Diffusion of free excitons in molecular
crystals. physica status solidi (b), 27(1):435–442, 1968.

146



[24] Vladimir Moiseevich Agranovich and M. D. Galanin. Electronic Excitation
Energy Transfer in Condensed Matter. North-Holland Publishing Company,
1982.

[25] Subrahmanyan Chandrasekhar. Stochastic problems in physics and astronomy.
Reviews of Modern Physics, 15(1):1–89, January 1943.

[26] Bernhard Dick and Bernhard Nickel. Accessibility of the lowest quintet state of
organic molecules through triplet-triplet annihilation; an indo ci study. Chem-
ical Physics, 78(1):1–16, July 1983.

[27] Jean-Luc Brdas, Joseph E. Norton, Jrme Cornil, and Veaceslav Coropceanu.
Molecular understanding of organic solar cells: The challenges. Accounts of
Chemical Research, 42(11):1691–1699, November 2009.

[28] Askat E. Jailaubekov, Adam P. Willard, John R. Tritsch, Wai-Lun Chan,
Na Sai, Raluca Gearba, Loren G. Kaake, Kenrick J. Williams, Kevin Leung, Pe-
ter J. Rossky, and X.-Y. Zhu. Hot charge-transfer excitons set the time limit for
charge separation at donor/acceptor interfaces in organic photovoltaics. Nature
Materials, 12(1):66–73, 2013.

[29] I. Zhivkov, S. Neprek, and F. Schauer. Influence of oxygen on the parameters
of a thin film copper phthalocyanine field effect transistor. Advanced Materials
for Optics and Electronics, 9(5):175–180, 1999.

[30] Thomas D. Anthopoulos and Torfeh S. Shafai. Oxygen induced p-doping of
$\alpha$-nickel phthalocyanine vacuum sublimed films: Implication for its use
in organic photovoltaics. Applied Physics Letters, 82(10):1628–1630, March
2003.

[31] Kihyon Hong, Kisoo Kim, and Jong-Lam Lee. Enhancement of electrical prop-
erty by oxygen doping to copper phthalocyanine in inverted top emitting or-
ganic light emitting diodes. Applied Physics Letters, 95(21):213307–3, Novem-
ber 2009.

[32] G. Parthasarathy, C. Shen, A. Kahn, and S. R. Forrest. Lithium doping of
semiconducting organic charge transport materials. Journal of Applied Physics,
89(9):4986–4992, May 2001.

[33] Jun Endo, Toshio Matsumoto, and Junji Kido. Organic electroluminescent
devices with a vacuum-deposited lewis-acid-doped hole-injecting layer. Japanese
Journal of Applied Physics, 41(Part 2, No. 3B):L358–L360, 2002.

[34] B. Lssem, M. Riede, and K. Leo. Doping of organic semiconductors. physica
status solidi (a), 210(1):943, 2013.

[35] Selina Olthof, Shafigh Mehraeen, Swagat K. Mohapatra, Stephen Barlow,
Veaceslav Coropceanu, Jean-Luc Bredas, Seth R. Marder, and Antoine Kahn.

147



Ultralow doping in organic semiconductors: Evidence of trap filling. Physical
Review Letters, 109(17):176601, October 2012.

[36] Richa Pandey and Russell J. Holmes. Graded donor-acceptor heterojunctions
for efficient organic photovoltaic cells. Advanced Materials, 22(46):5301–5305,
2010.

[37] Fabio Silvestri, Michael D. Irwin, Luca Beverina, Antonio Facchetti, Giorgio A.
Pagani, and Tobin J. Marks. Efficient squaraine-based solution processable
bulk-heterojunction solar cells. Journal of the American Chemical Society,
130(52):17640–17641, December 2008.

[38] Guodan Wei, Siyi Wang, Kyle Renshaw, Mark E. Thompson, and Stephen R.
Forrest. Solution-processed squaraine bulk heterojunction photovoltaic cells.
ACS Nano, 4(4):1927–1934, April 2010.

[39] Aung Ko Ko Kyaw, Dong Hwan Wang, Vinay Gupta, Wei Lin Leong, Lin Ke,
Guillermo C. Bazan, and Alan J. Heeger. Intensity dependence of currentvoltage
characteristics and recombination in high-efficiency solution-processed small-
molecule solar cells. ACS Nano, 7(5):4569–4577, May 2013.

[40] Alfred G. Emslie, Francis T. Bonner, and Leslie G. Peck. Flow of a viscous
liquid on a rotating disk. Journal of Applied Physics, 29(5):858–862, May 1958.

[41] P.E. Burrows, S.R. Forrest, L.S. Sapochak, J. Schwartz, P. Fenter, T. Buma,
V.S. Ban, and J.L. Forrest. Organic vapor phase deposition: a new method for
the growth of organic thin films with large optical non-linearities. Journal of
Crystal Growth, 156(12):91–98, November 1995.

[42] Cedric Rolin, Garen Vartanian, and Stephen R. Forrest. Laser induced fluo-
rescence monitoring of the transport of small organic molecules in an organic
vapor phase deposition system. Journal of Applied Physics, 112(11):113502–7,
December 2012.

[43] Richard R. Lunt, Brian E. Lassiter, Jay B. Benziger, and Stephen R. Forrest.
Organic vapor phase deposition for the growth of large area organic electronic
devices. Applied Physics Letters, 95(23):233305–3, December 2009.

[44] Max Shtein, Peter Peumans, Jay B. Benziger, and Stephen R. Forrest. Mi-
cropatterning of small molecular weight organic semiconductor thin films using
organic vapor phase deposition. Journal of Applied Physics, 93(7):4005–4016,
April 2003.

[45] Gregory J. McGraw and Stephen R. Forrest. Vapor-phase microprinting of mul-
ticolor phosphorescent organic light emitting device arrays. Advanced Materials,
25(11):1583–1588, 2013.

148



[46] L. S. Hung, C. W. Tang, and M. G. Mason. Enhanced electron injection in
organic electroluminescence devices using an al/LiF electrode. Applied Physics
Letters, 70(2):152–154, January 1997.

[47] M. Stssel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker. Impact
of the cathode metal work function on the performance of vacuum-deposited
organic light emitting-devices. Applied Physics A, 68(4):387–390, April 1999.

[48] Junji Kido, Kenichi Hongawa, Masafumi Kohda, Katsutoshi Nagai, and Katsuro
Okuyama. Molecularly doped polymers as a hole transport layer in organic
electroluminescent devices. Japanese Journal of Applied Physics, 31(Part 2,
No. 7B):L960–L962, 1992.

[49] G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest. A
metal-free cathode for organic semiconductor devices. Applied Physics Letters,
72(17):2138–2140, April 1998.

[50] Asuka Yamamori, Sachiko Hayashi, Toshiki Koyama, and Yoshio Taniguchi.
Transparent organic light-emitting diodes using metal acethylacetonate com-
plexes as an electron injective buffer layer. Applied Physics Letters, 78(21):3343–
3345, May 2001.

[51] Y. Jin, A. Yadav, K. Sun, H. Sun, K. P. Pipe, and M. Shtein. Thermal boundary
resistance of copper phthalocyanine-metal interface. Applied Physics Letters,
98(9):093305–3, March 2011.

[52] Brendan OConnor, Kwang H. An, Kevin P. Pipe, Yiying Zhao, and Max Shtein.
Enhanced optical field intensity distribution in organic photovoltaic devices
using external coatings. Applied Physics Letters, 89(23):233502–3, December
2006.

[53] M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch,
and J. Luther. Organic solar cells using inverted layer sequence. Thin Solid
Films, 491(1-2):298–300, November 2005.

[54] Whitney Gaynor, Jung-Yong Lee, and Peter Peumans. Fully solution-processed
inverted polymer solar cells with laminated nanowire electrodes. ACS Nano,
4(1):30–34, January 2010.

[55] Zhuangchun Wu, Zhihong Chen, Xu Du, Jonathan M. Logan, Jennifer Sip-
pel, Maria Nikolou, Katalin Kamaras, John R. Reynolds, David B. Tanner,
Arthur F. Hebard, and Andrew G. Rinzler. Transparent, conductive carbon
nanotube films. Science, 305(5688):1273–1276, August 2004.

[56] Jun-Seok Yeo, Jin-Mun Yun, Dong-Yu Kim, Seok-Soon Kim, and Seok-In Na.
Successive solvent-treated PEDOT:PSS electrodes for flexible ITO-free organic
photovoltaics. Solar Energy Materials and Solar Cells, 114:104–109, July 2013.

149



[57] Dechan Angmo and Frederik C. Krebs. Flexible ITO-free polymer solar cells.
Journal of Applied Polymer Science, 129(1):114, 2013.

[58] Cui Yuanri, Xu Xinghao, Jin Zhaoting, Peng Chuancai, and Xie Shuyun. De-
position of transparent conducting indium tin oxide thin films by reactive ion
plating. Thin Solid Films, 115(3):195–201, May 1984.

[59] J. Kane, H.P. Schweizer, and W. Kern. Chemical vapor deposition of transpar-
ent electrically conducting layers of indium oxide doped with tin. Thin Solid
Films, 29(1):155–163, September 1975.

[60] S. Naseem and T.J. Coutts. The influence of deposition parameters on the
optical and electrical properties of r.f.-sputter- deposited indium tin oxide films.
Thin Solid Films, 138(1):65–70, April 1986.

[61] Jiangeng Xue and Stephen R. Forrest. Carrier transport in multilayer organic
photodetectors: II. effects of anode preparation. Journal of Applied Physics,
95(4):1869–1877, February 2004.

[62] M. W. Choi, K. Cho, C. Sung, J. Yang, Y. Yi, M. Noh, J. C. Choi, and K. Jeong.
Enhanced hole injection in organic electroluminescent device with an additional
oxygen-rich indiumtinoxide sublayer. Journal of Vacuum Science & Technology
B: Microelectronics and Nanometer Structures, 22(2):758–761, 2004.

[63] Kiyoshi Sugiyama, Hisao Ishii, Yukio Ouchi, and Kazuhiko Seki. Dependence
of indium-tin-oxide work function on surface cleaning method as studied by
ultraviolet and x-ray photoemission spectroscopies. Journal of Applied Physics,
87(1):295–298, January 2000.

[64] A.E. Becquerel. Recherches sur les effets de la radiation chimique de la lumiere
solaire au moyen des courants electriques. Comptes Rendus de LAcademie des
Sciences, 9:145–149, 1839.

[65] Yanming Sun, Gregory C. Welch, Wei Lin Leong, Christopher J. Takacs,
Guillermo C. Bazan, and Alan J. Heeger. Solution-processed small-molecule
solar cells with 6.7% efficiency. Nat Mater, advance online publication, Novem-
ber 2011.

[66] Yutaka Matsuo, Ayako Ozu, Naoki Obata, Naoya Fukuda, Hideyuki Tanaka,
and Eiichi Nakamura. Deterioration of bulk heterojunction organic photovoltaic
devices by a minute amount of oxidized fullerene. Chemical Communications,
48(32):3878–3880, March 2012.

[67] Brett M. Savoie, Bijan Movaghar, Tobin J. Marks, and Mark A. Ratner. Simple
analytic description of collection efficiency in organic photovoltaics. The Journal
of Physical Chemistry Letters, 4(5):704–709, March 2013.

150



[68] E44 Committee. Test method for electrical performance of photovoltaic cells
using reference cells under simulated sunlight. Technical report, ASTM Inter-
national, 2009.

[69] G03 Committee. Tables for reference solar spectral irradiances: Direct normal
and hemispherical on 37 tilted surface. Technical report, ASTM International,
2012.

[70] IEC: International Electrotechnical Commission. IEC 60904-3 photovoltaic de-
vices part 3: Measurement principles for terrestrial photovoltaic (PV) solar
devices with reference spectral irradiance data. Technical report, April 2008.

[71] IEC: International Electrotechnical Commission. IEC 60904-7 photovoltaic de-
vices part 7: Computation of the spectral mismatch correction for measure-
ments of photovoltaic devices. Technical report, November 2008.

[72] C.R. Osterwald. Translation of device performance measurements to reference
conditions. Solar Cells, 18(34):269–279, September 1986.

[73] W. Shockley. The theory of p-n junctions in semiconductors and p-n junction
transistors. The Bell System technical journal, 28(3):435–489, 1949.

[74] N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest. Ideal
diode equation for organic heterojunctions. i. derivation and application. Phys-
ical Review B, 82(15):155305, October 2010.

[75] James C. Blakesley and Dieter Neher. Relationship between energetic disorder
and open-circuit voltage in bulk heterojunction organic solar cells. Physical
Review B, 84(7):075210, August 2011.

[76] C. W. Tang. Two-layer organic photovoltaic cell. Applied Physics Letters,
48(2):183–185, January 1986.

[77] Fan Yang, Max Shtein, and Stephen R. Forrest. Controlled growth of a molecu-
lar bulk heterojunction photovoltaic cell. Nat Mater, 4(1):37–41, January 2005.

[78] P. Sullivan, S. Heutz, S. M. Schultes, and T. S. Jones. Influence of codeposition
on the performance of CuPc-c60 heterojunction photovoltaic devices. Applied
Physics Letters, 84(7):1210–1212, February 2004.

[79] Soichi Uchida, Jiangeng Xue, Barry P. Rand, and Stephen R. Forrest. Organic
small molecule solar cells with a homogeneously mixed copper phthalocyanine:
C60 active layer. Applied Physics Letters, 84(21):4218–4220, May 2004.

[80] Hagen Klauk. Organic thin-film transistors. Chemical Society Reviews,
39(7):2643–2666, June 2010.

[81] N. Koch, J. Ghijsen, R. L. Johnson, J. Schwartz, J.-J. Pireaux, and A. Kahn.
Physisorption-like interaction at the interfaces formed by pentacene and samar-
ium. The Journal of Physical Chemistry B, 106(16):4192–4196, April 2002.

151



[82] P. G. Schroeder, C. B. France, J. B. Park, and B. A. Parkinson. Orbital
alignment and morphology of pentacene deposited on au(111) and SnS2 stud-
ied using photoemission spectroscopy. The Journal of Physical Chemistry B,
107(10):2253–2261, March 2003.

[83] Joo H. Kang and X.-Y. Zhu. Pi-stacked pentacene thin films grown on au(111).
Applied Physics Letters, 82(19):3248–3250, May 2003.

[84] Yoshinori Ishikawa, Yasuo Wada, and Toru Toyabe. Origin of characteristics
differences between top and bottom contact organic thin film transistors. Jour-
nal of Applied Physics, 107(5):053709–7, March 2010.

[85] Christopher Siol, Christian Melzer, and Heinz von Seggern. Electron trapping in
pentacene based p- and n-type organic field-effect transistors. Applied Physics
Letters, 93(13):133303–3, September 2008.

[86] Qing Meng and Wenping Hu. Recent progress of n-type organic semiconducting
small molecules for organic field-effect transistors. Physical Chemistry Chemical
Physics, 14(41):14152–14164, October 2012.

[87] Y-Y Lin, D. J. Gundlach, S.F. Nelson, and T.N. Jackson. Stacked pentacene
layer organic thin-film transistors with improved characteristics. IEEE Electron
Device Letters, 18(12):606–608, 1997.

[88] M. D. McGehee and A. J. Heeger. Semiconducting (conjugated) polymers as
materials for solid-state lasers. Advanced Materials, 12(22):1655–1668, 2000.

[89] I. D. W. Samuel and G. A. Turnbull. Organic semiconductor lasers. Chemical
Reviews, 107(4):1272–1295, April 2007.

[90] D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and
S. Walker. Room temperature polariton emission from strongly coupled organic
semiconductor microcavities. Physical Review Letters, 82(16):3316–3319, April
1999.

[91] Malte C. Gather, Anne Khnen, and Klaus Meerholz. White organic light-
emitting diodes. Advanced Materials, 23(2):233–248, 2011.

[92] Neal R. Armstrong, Weining Wang, Dana M. Alloway, Diogenes Placencia, Erin
Ratcliff, and Michael Brumbach. Organic/organic heterojunctions: Organic
light emitting diodes and organic photovoltaic devices. Macromolecular Rapid
Communications, 30(9-10):717–731, 2009.

[93] Samsung GALAXY s4 - life companion.

[94] OLED TV: Discover LG’s OLED TV | LG USA.

[95] Lumiblade OLEDs - philips.

152



[96] Q. L. Song, M. L. Wang, E. G. Obbard, X. Y. Sun, X. M. Ding, X. Y. Hou, and
C. M. Li. Degradation of small-molecule organic solar cells. Applied Physics
Letters, 89(25):251118–3, December 2006.

[97] Ycel Sahin, Salima Alem, Rmi de Bettignies, and Jean-Michel Nunzi. Devel-
opment of air stable polymer solar cells using an inverted gold on top anode
structure. Thin Solid Films, 476(2):340–343, April 2005.

[98] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis,
and C. J. Brabec. Highly efficient inverted organic photovoltaics using solution
based titanium oxide as electron selective contact. Applied Physics Letters,
89(23):233517–3, December 2006.

[99] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley. In-
verted bulk-heterojunction organic photovoltaic device using a solution-derived
ZnO underlayer. Applied Physics Letters, 89(14):143517–3, October 2006.

[100] Rhonda F. Bailey-Salzman, Jiangeng Xue, Barry P. Rand, Alex Alexander,
Mark E. Thompson, and Stephen R. Forrest. The effects of copper phthalocya-
nine purity on organic solar cell performance. Organic Electronics, 6(56):242–
246, December 2005.

[101] Seungkeun Choi, William J. Potscavage, and Bernard Kippelen. Area-scaling
of organic solar cells. Journal of Applied Physics, 106(5):054507–10, September
2009.

[102] Barry P. Rand, Diana P. Burk, and Stephen R. Forrest. Offset energies at
organic semiconductor heterojunctions and their influence on the open-circuit
voltage of thin-film solar cells. Physical Review B, 75(11):115327, March 2007.

[103] Jiangeng Xue, Soichi Uchida, Barry P. Rand, and Stephen R. Forrest. 4.2%
efficient organic photovoltaic cells with low series resistances. Applied Physics
Letters, 84(16):3013–3015, April 2004.

[104] P. Peumans, V. Bulovic, and S. R. Forrest. Efficient photon harvesting at
high optical intensities in ultrathin organic double-heterostructure photovoltaic
diodes. Applied Physics Letters, 76(19):2650–2652, May 2000.

[105] K. Yamamoto, S. Egusa, M. Sugiuchi, and A. Miura. Photogeneration mecha-
nism of charged carriers in copper-phthalocyanine thin films. Solid State Com-
munications, 85(1):5–10, January 1993.

[106] Ning Li, Brian E. Lassiter, Richard R. Lunt, Guodan Wei, and Stephen R.
Forrest. Open circuit voltage enhancement due to reduced dark current in small
molecule photovoltaic cells. Applied Physics Letters, 94(2):023307–3, January
2009.

153



[107] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn. Surface modification of indium
tin oxide by plasma treatment: An effective method to improve the efficiency,
brightness, and reliability of organic light emitting devices. Applied Physics
Letters, 70(11):1348–1350, March 1997.

[108] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang. Accurate
measurement and characterization of organic solar cells. Advanced Functional
Materials, 16(15):2016–2023, 2006.

[109] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens. Cath-
ode dependence of the open-circuit voltage of polymer:fullerene bulk hetero-
junction solar cells. Journal of Applied Physics, 94(10):6849–6854, November
2003.

[110] Yoshiki Kinoshita, Rie Takenaka, and Hideyuki Murata. Independent control
of open-circuit voltage of organic solar cells by changing film thickness of MoO3
buffer layer. Applied Physics Letters, 92(24):243309–243309–3, June 2008.

[111] M. A. Baldo and S. R. Forrest. Interface-limited injection in amorphous organic
semiconductors. Physical Review B, 64(8):085201, August 2001.

[112] Aung Ko Ko Kyaw, Dong Hwan Wang, David Wynands, Jie Zhang, Thuc-
Quyen Nguyen, Guillermo C. Bazan, and Alan J. Heeger. Improved light
harvesting and improved efficiency by insertion of an optical spacer (ZnO) in
solution-processed small-molecule solar cells. Nano Letters, June 2013.

[113] Zhicai He, Chengmei Zhong, Shijian Su, Miao Xu, Hongbin Wu, and Yong Cao.
Enhanced power-conversion efficiency in polymer solar cells using an inverted
device structure. Nature Photonics, 6(9):591–595, 2012.

[114] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and
Ewan D. Dunlop. Solar cell efficiency tables (version 41). Progress in Pho-
tovoltaics: Research and Applications, 21(1):111, 2013.

[115] Jingbi You, Letian Dou, Ken Yoshimura, Takehito Kato, Kenichiro Ohya, Tom
Moriarty, Keith Emery, Chun-Chao Chen, Jing Gao, Gang Li, and Yang Yang.
A polymer tandem solar cell with 10.6% power conversion efficiency. Nature
Communications, 4:1446, February 2013.

[116] Mikkel Jrgensen, Kion Norrman, and Frederik C. Krebs. Stability/degradation
of polymer solar cells. Solar Energy Materials and Solar Cells, 92(7):686–714,
July 2008.

[117] Frederik C. Krebs. Stability and Degradation of Organic and Polymer Solar
Cells. John Wiley & Sons, April 2012.

[118] Mikkel Jrgensen, Kion Norrman, Suren A. Gevorgyan, Thomas Tromholt, Bir-
gitta Andreasen, and Frederik C. Krebs. Stability of polymer solar cells. Ad-
vanced Materials, 24(5):580612, 2012.

154



[119] Frederik C. Krebs, Jon E. Carl, Nicolaj Cruys-Bagger, Morten Andersen,
Mathilde R. Lilliedal, Mark A. Hammond, and Sren Hvidt. Lifetimes of or-
ganic photovoltaics: photochemistry, atmosphere effects and barrier layers in
ITO-MEHPPV:PCBM-aluminium devices. Solar Energy Materials and Solar
Cells, 86(4):499–516, April 2005.

[120] Craig H. Peters, I. T. Sachs-Quintana, William R. Mateker, Thomas
Heumueller, Jonathan Rivnay, Rodigo Noriega, Zach M. Beiley, Eric T. Hoke,
Alberto Salleo, and Michael D. McGehee. The mechanism of burn-in loss in a
high efficiency polymer solar cell. Advanced Materials, 24(5):663–668, 2012.

[121] Xiaoran Tong, Nana Wang, Michael Slootsky, Junsheng Yu, and R. Stephen
Forrest. Intrinsic burn-in efficiency loss of small-molecule organic photovoltaic
cells due to exciton-induced trap formation. Solar Energy Materials and Solar
Cells, Accepted, 2013.

[122] Eszter Voroshazi, Bregt Verreet, Tom Aernouts, and Paul Heremans. Long-
term operational lifetime and degradation analysis of p3ht:PCBM photovoltaic
cells. Solar Energy Materials and Solar Cells, 95(5):1303–1307, May 2011.

[123] Panagiotis E. Keivanidis, Frdric Laquai, Ian A. Howard, and Richard H. Friend.
Room-temperature phase demixing in bulk heterojunction layers of solution-
processed organic photodetectors: the effect of active layer ageing on the device
electro-optical properties. Advanced Functional Materials, 21(8):1355–1363,
2011.

[124] R. Lessmann, Z. Hong, S. Scholz, B. Maennig, M.K. Riede, and K. Leo. Ag-
ing of flat heterojunction zinc phthalocyanine/fullerene c60 organic solar cells.
Organic Electronics, 11(4):539–543, April 2010.

[125] D. L. King, M. A. Quintana, J. A. Kratochvil, D. E. Ellibee, and B. R. Hansen.
Photovoltaic module performance and durability following long-term field ex-
posure. Progress in Photovoltaics: Research and Applications, 8(2):241–256,
2000.

[126] K. Morita, T. Inoue, H. Kato, I. Tsuda, and Y. Kishikawa. Degradation factor
analysis of crystalline-si PV modules through long-term field exposure test. In
Proceedings of 3rd World conference on photovoltaic energy conversion, vols
A-C, volume A-C, pages 1948–1951, Osaka, JAPAN, May 2003.

[127] D. L. Staebler and C. R. Wronski. Reversible conductivity changes in discharge-
produced amorphous si. Applied Physics Letters, 31(4):292–294, August 1977.

[128] Matthew O. Reese, Suren A. Gevorgyan, Mikkel Jrgensen, Eva Bundgaard,
Sarah R. Kurtz, David S. Ginley, Dana C. Olson, Matthew T. Lloyd, Pasquale

155



Morvillo, Eugene A. Katz, Andreas Elschner, Olivier Haillant, Travis R. Cur-
rier, Vishal Shrotriya, Martin Hermenau, Moritz Riede, Kiril R. Kirov, Gre-
gor Trimmel, Thomas Rath, Olle Ingans, Fengling Zhang, Mattias Anders-
son, Kristofer Tvingstedt, Monica Lira-Cantu, Darin Laird, Christine McGui-
ness, Srinivas (Jimmy) Gowrisanker, Michael Pannone, Min Xiao, Jens Hauch,
Roland Steim, Dean M. DeLongchamp, Roland Rsch, Harald Hoppe, Nieves
Espinosa, Antonio Urbina, Glsah Yaman-Uzunoglu, Jrg-Bernd Bonekamp, Al-
bert J.J.M. van Breemen, Claudio Girotto, Eszter Voroshazi, and Frederik C.
Krebs. Consensus stability testing protocols for organic photovoltaic materials
and devices. Solar Energy Materials and Solar Cells, 95(5):1253–1267, May
2011.

[129] Suren A. Gevorgyan, Mikkel Jrgensen, and Frederik C. Krebs. A setup for
studying stability and degradation of polymer solar cells. Solar Energy Materials
and Solar Cells, 92(7):736–745, July 2008.

[130] Suren A. Gevorgyan, Mikkel Jrgensen, Frederik C. Krebs, and Kristian O.
Sylvester-Hvid. A compact multi-chamber setup for degradation and life-
time studies of organic solar cells. Solar Energy Materials and Solar Cells,
95(5):1389–1397, May 2011.

[131] M.O. Reese, A.K. Sigdel, J.J. Berry, D.S. Ginley, and S.E. Shaheen. A simple
miniature controlled-atmosphere chamber for optoelectronic characterizations.
Solar Energy Materials and Solar Cells, 94(7):1254–1258, July 2010.

[132] Frederik C. Krebs and Kion Norrman. Analysis of the failure mechanism for a
stable organic photovoltaic during 10 000 h of testing. Progress in Photovoltaics:
Research and Applications, 15(8):697–712, 2007.

[133] S. Schuller, P. Schilinsky, J. Hauch, and C. J. Brabec. Determination of the
degradation constant of bulk heterojunction solar cells by accelerated lifetime
measurements. Applied Physics A, 79(1):37–40, June 2004.

[134] Rmi De Bettignies, Jocelyne Leroy, Muriel Firon, and Carole Sentein. Ac-
celerated lifetime measurements of p3ht:PCBM solar cells. Synthetic Metals,
156(78):510–513, April 2006.

[135] Bert Conings, Sabine Bertho, Koen Vandewal, Alessia Senes, Jan DHaen, Jean
Manca, and Ren A. J. Janssen. Modeling the temperature induced degradation
kinetics of the short circuit current in organic bulk heterojunction solar cells.
Applied Physics Letters, 96(16):163301–3, April 2010.

[136] Eszter Voroshazi, Bregt Verreet, Andrea Buri, Robert Mller, Daniele Di Nuzzo,
and Paul Heremans. Influence of cathode oxidation via the hole extraction layer
in polymer:fullerene solar cells. Organic Electronics, 12(5):736–744, May 2011.

156



[137] M. Hermenau, Sebastian Scholz, Karl Leo, and Moritz Riede. Total charge
amount as indicator for the degradation of small molecule organic solar cells.
Solar Energy Materials and Solar Cells, 95(5):1278–1283, May 2011.

[138] Stefan Schfer, Andreas Petersen, Thomas A. Wagner, Rolf Kniprath, Dominic
Lingenfelser, Achmad Zen, Thomas Kirchartz, Birger Zimmermann, Uli Wrfel,
Xianjin Feng, and Thomas Mayer. Influence of the indium tin oxide/organic
interface on open-circuit voltage, recombination, and cell degradation in organic
small-molecule solar cells. Physical Review B, 83(16):165311, April 2011.

[139] P.E Burrows, G.L Graff, M.E Gross, P.M Martin, M.K Shi, M Hall, E Mast,
C Bonham, W Bennett, and M.B Sullivan. Ultra barrier flexible substrates for
flat panel displays. Displays, 22(2):65–69, May 2001.

[140] S. Cros, R. de Bettignies, S. Berson, S. Bailly, P. Maisse, N. Lemaitre, and
S. Guillerez. Definition of encapsulation barrier requirements: A method ap-
plied to organic solar cells. Solar Energy Materials and Solar Cells, 95, Supple-
ment 1:S65–S69, May 2011.

[141] S. Schubert, H. Klumbies, L. Mller-Meskamp, and K. Leo. Electrical calcium
test for moisture barrier evaluation for organic devices. Review of Scientific
Instruments, 82(9):094101–8, September 2011.

[142] Chih-Yu Chang, Chun-Ting Chou, Yun-Jun Lee, Miin-Jang Chen, and Feng-
Yu Tsai. Thin-film encapsulation of polymer-based bulk-heterojunction photo-
voltaic cells by atomic layer deposition. Organic Electronics, 10(7):1300–1306,
November 2009.

[143] N.Serdar Sariciftci. Role of buckminsterfullerene, c60, in organic photoelectric
devices. Progress in Quantum Electronics, 19(2):131–159, 1995.

[144] Roger Taylor, Jonathan P. Parsons, Anthony G. Avent, Steven P. Rannard,
T. John Dennis, Jonathan P. Hare, Harold W. Kroto, and David R. M.
Walton. Degradation of c60 by light. , Published online: 23 May 1991; |
doi:10.1038/351277a0, 351(6324):277–277, May 1991.

[145] Toshinori Matsushima, Masayuki Yahiro, and Chihaya Adachi. Estimation of
electron traps in carbon-60 field-effect transistors by a thermally stimulated
current technique. Applied Physics Letters, 91(10):103505–3, September 2007.

[146] Martin Hermenau, Moritz Riede, Karl Leo, Suren A. Gevorgyan, Frederik C.
Krebs, and Kion Norrman. Water and oxygen induced degradation of small
molecule organic solar cells. Solar Energy Materials and Solar Cells, 95(5):1268–
1277, May 2011.

[147] Andrea Seemann, Tobias Sauermann, Christoph Lungenschmied, Oskar Arm-
bruster, Siegfried Bauer, H.-J. Egelhaaf, and Jens Hauch. Reversible and irre-
versible degradation of organic solar cell performance by oxygen. Solar Energy,
85(6):1238–1249, June 2011.

157



[148] Kion Norrman, Suren A. Gevorgyan, and Frederik C. Krebs. Water-induced
degradation of polymer solar cells studied by h218o labeling. ACS Applied
Materials & Interfaces, 1(1):102–112, January 2009.

[149] Toshihiro Yamanari, Tetsuya Taima, Jun Sakai, Jun Tsukamoto, and Yuji
Yoshida. Effect of buffer layers on stability of polymer-based organic solar
cells. Japanese Journal of Applied Physics, 49(1):01AC02, 2010.

[150] B. Zimmermann, U. Wrfel, and M. Niggemann. Longterm stability of effi-
cient inverted p3ht:PCBM solar cells. Solar Energy Materials and Solar Cells,
93(4):491–496, April 2009.

[151] Kion Norrman, Morten V. Madsen, Suren A. Gevorgyan, and Frederik C. Krebs.
Degradation patterns in water and oxygen of an inverted polymer solar cell.
Journal of the American Chemical Society, 132(47):16883–16892, December
2010.

[152] Eric T. Hoke, I. T. Sachs-Quintana, Matthew T. Lloyd, Isaac Kauvar,
William R. Mateker, Alexandre M. Nardes, Craig H. Peters, Nikos Kopidakis,
and Michael D. McGehee. The role of electron affinity in determining whether
fullerenes catalyze or inhibit photooxidation of polymers for solar cells. Ad-
vanced Energy Materials, 2(11):13511357, 2012.

[153] Richard R. Lunt, Timothy P. Osedach, Patrick R. Brown, Jill A. Rowehl, and
Vladimir Bulovi. Practical roadmap and limits to nanostructured photovoltaics.
Advanced Materials, 23(48):5712–5727, 2011.

[154] Reg Bauld, Leesa M. Fleury, Marima Van Walsh, and Giovanni Fanchini. Cor-
relation between density of paramagnetic centers and photovoltaic degradation
in polythiophene-fullerene bulk heterojunction solar cells. APL: Organic Elec-
tronics and Photonics, 5(9):204–204, September 2012.

[155] Matthew O. Reese, Alexandre M. Nardes, Benjamin L. Rupert, Ross E. Larsen,
Dana C. Olson, Matthew T. Lloyd, Sean E. Shaheen, David S. Ginley, Garry
Rumbles, and Nikos Kopidakis. Photoinduced degradation of polymer and
polymerfullerene active layers: Experiment and theory. Advanced Functional
Materials, 20(20):3476–3483, 2010.

[156] Obadiah G. Reid, Glennis E. Rayermann, David C. Coffey, and David S. Ginger.
Imaging local trap formation in conjugated polymer solar cells: A comparison of
time-resolved electrostatic force microscopy and scanning kelvin probe imaging.
The Journal of Physical Chemistry C, 114(48):20672–20677, December 2010.

[157] R. A. Street and D. M. Davies. Kinetics of light induced defect creation in or-
ganic solar cells. APL: Organic Electronics and Photonics, 6(1):16–16, January
2013.

158



[158] Assaf Manor, Eugene A. Katz, Thomas Tromholt, and Frederik C. Krebs. Elec-
trical and photo-induced degradation of ZnO layers in organic photovoltaics.
Advanced Energy Materials, 1(5):836–843, 2011.

[159] Kenji Kawano, Roberto Pacios, Dmitry Poplavskyy, Jenny Nelson, Donal D.C.
Bradley, and James R. Durrant. Degradation of organic solar cells due to air
exposure. Solar Energy Materials and Solar Cells, 90(20):3520–3530, December
2006.

[160] Matthew O. Reese, Anthony J. Morfa, Matthew S. White, Nikos Kopidakis,
Sean E. Shaheen, Garry Rumbles, and David S. Ginley. Pathways for the
degradation of organic photovoltaic p3ht:PCBM based devices. Solar Energy
Materials and Solar Cells, 92(7):746–752, July 2008.

[161] Yong Hyun Kim, Christoph Sachse, Martin Hermenau, Karsten Fehse, Moritz
Riede, Lars Mller-Meskamp, and Karl Leo. Improved efficiency and lifetime in
small molecule organic solar cells with optimized conductive polymer electrodes.
Applied Physics Letters, 99(11):113305–3, September 2011.

[162] Barry P. Rand, Jiangeng Xue, Soichi Uchida, and Stephen R. Forrest. Mixed
donor-acceptor molecular heterojunctions for photovoltaic applications. i. ma-
terial properties. Journal of Applied Physics, 98(12):124902–7, December 2005.

[163] N. C. Giebink, B. W. DAndrade, M. S. Weaver, P. B. Mackenzie, J. J. Brown,
M. E. Thompson, and S. R. Forrest. Intrinsic luminance loss in phosphorescent
small-molecule organic light emitting devices due to bimolecular annihilation
reactions. Journal of Applied Physics, 103(4):044509–9, February 2008.

[164] Klaus Kuhnke, Ren Becker, Maximilian Epple, and Klaus Kern. C {60} exci-
ton quenching near metal surfaces. Physical Review Letters, 79(17):3246–3249,
October 1997.

[165] Paul A. Heiney, John E. Fischer, Andrew R. McGhie, William J. Romanow,
Arnold M. Denenstein, John P. McCauley Jr., Amos B. Smith, and David E.
Cox. Orientational ordering transition in solid c {60}. Physical Review Letters,
66(22):2911–2914, June 1991.

[166] S. Berner, M. de Wild, L. Ramoino, S. Ivan, A. Baratoff, H.-J. Gntherodt,
H. Suzuki, D. Schlettwein, and T. A. Jung. Adsorption and two-dimensional
phases of a large polar molecule:sub-phthalocyanine on ag(111). Physical Review
B, 68(11):115410, September 2003.

[167] Nana Wang, Jeramy D. Zimmerman, Xiaoran Tong, Xin Xiao, Junsheng Yu,
and Stephen R. Forrest. Snow cleaning of substrates increases yield of large-area
organic photovoltaics. Applied Physics Letters, 101(13):133901–4, September
2012.

159



[168] P.C. Eklund, A.M. Rao, Ping Zhou, Ying Wang, and J.M. Holden. Photochem-
ical transformation of c60 and c70 films. Thin Solid Films, 257(2):185–203,
March 1995.

[169] M. Karas, D. Bachmann, U. Bahr, and F. Hillenkamp. Matrix-assisted ultravi-
olet laser desorption of non-volatile compounds. International Journal of Mass
Spectrometry and Ion Processes, 78:53–68, September 1987.

[170] Brian E. Lassiter, Jeramy D. Zimmerman, Anurag Panda, Xin Xiao, and
Stephen R. Forrest. Tandem organic photovoltaics using both solution and
vacuum deposited small molecules. Applied Physics Letters, 101(6):063303–4,
August 2012.

[171] Nana Wang, Xiaoran Tong, Quinn Burlingame, Junsheng Yu, and Stephen R.
Forrest. Photodegradation of small-molecule organic photovoltaics. Solar En-
ergy Materials and Solar Cells, 125:170–175, June 2014.

[172] Mamoru Fujitsuka, Koichi Fujiwara, Yasujiro Murata, Shinobu Uemura,
Masashi Kunitake, Osamu Ito, and Koichi Komatsu. Properties of photoex-
cited states of c<SUB>180</SUB>, a triangle trimer of c<SUB>60</SUB>.
Chemistry Letters, 30(5):384–385, 2001.

[173] Mamoru Fujitsuka, Chuping Luo, Osamu Ito, Yasujiro Murata, and Koichi
Komatsu. Triplet properties and photoinduced electron-transfer reactions of
c120, the [2+2] dimer of fullerene c60. The Journal of Physical Chemistry A,
103(36):7155–7160, September 1999.

[174] Chi-Ta Chou, Wei-Li Tang, Yian Tai, Chien-Hung Lin, Chin-Hsin J. Liu, Li-
Chyong Chen, and Kuei-Hsien Chen. Effect of substrate temperature on orien-
tation of subphthalocyanine molecule in organic photovoltaic cells. Thin Solid
Films, 520(1):2289–2292, January 2012.

[175] Jeramy D. Zimmerman, Brian E. Lassiter, Xin Xiao, Kai Sun, Andrei Dolocan,
Raluca Gearba, David A. Vanden Bout, Keith J. Stevenson, Piyumie Wickra-
masinghe, Mark E. Thompson, and Stephen R. Forrest. Control of interface
order by inverse quasi-epitaxial growth of squaraine/fullerene thin film photo-
voltaics. ACS Nano, 7(10):9268–9275, October 2013.

[176] Andrew N. Bartynski, Cong Trinh, Anurag Panda, Kevin Bergemann, Brian E.
Lassiter, Jeramy D. Zimmerman, Stephen R. Forrest, and Mark E. Thompson.
A fullerene-based organic exciton blocking layer with high electron conductivity.
Nano Letters, 13(7):3315–3320, July 2013.

[177] Santanu Karan and Biswanath Mallik. Effects of annealing on the morphology
and optical property of copper(II) phthalocyanine nanostructured thin films.
Solid State Communications, 143(67):289–294, August 2007.

160



[178] C. Taliani, G. Ruani, R. Zamboni, R. Danieli, S. Rossini, V. N. Denisov, V. M.
Burlakov, F. Negri, G. Orlandi, and F. Zerbetto. Light-induced oxygen incision
of c60. Journal of the Chemical Society, Chemical Communications, (3):220–
222, January 1993.

[179] Rebecca R. Hung and Joseph J. Grabowski. A precise determination of the
triplet energy of carbon (c60) by photoacoustic calorimetry. The Journal of
Physical Chemistry, 95(16):6073–6075, August 1991.

[180] Xin Xiao, Jeramy D. Zimmerman, Brian E. Lassiter, Kevin J. Bergemann,
and Stephen R. Forrest. A hybrid planar-mixed tetraphenyldibenzoperiflan-
thene/c70 photovoltaic cell. Applied Physics Letters, 102(7):073302–073302–4,
February 2013.

[181] R. Franke, B. Maennig, A. Petrich, and M. Pfeiffer. Long-term stability of
tandem solar cells containing small organic molecules. Solar Energy Materials
and Solar Cells, 92(7):732–735, July 2008.

[182] Christian Uhrich, G. Schwartz, Bert Maennig, Wolf-Michael Gnehr, Stefan Son-
ntag, Oliver Erfurth, Eginhard Wollrab, Karsten Walzer, Jan Foerster, Andre
Weiss, Olga Tsaryova, Karl Leo, Moritz K. Riede, and Martin Pfeiffer. Efficient
and long-term stable organic vacuum deposited tandem solar cells. Proc. SPIE
7722, Organic Photonics IV, 77220G, May 2010.

[183] M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt.
Stability of the interface between indium-tin-oxide and poly(3,4-
ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting
diodes. Applied Physics Letters, 77(14):2255–2257, October 2000.

[184] Brian W. DAndrade, Stephen R. Forrest, and Anna B. Chwang. Operational
stability of electrophosphorescent devices containing p and n doped transport
layers. Applied Physics Letters, 83(19):3858–3860, November 2003.

[185] Xin Xu, Marcelo Davanco, Xiangfei Qi, and Stephen R. Forrest. Direct transfer
patterning on three dimensionally deformed surfaces at micrometer resolutions
and its application to hemispherical focal plane detector arrays. Organic Elec-
tronics, 9(6):1122–1127, December 2008.

[186] Xin Xu, Momchil Mihnev, Andre Taylor, and Stephen R. Forrest. Organic
photodetector arrays with indium tin oxide electrodes patterned using directly
transferred metal masks. Applied Physics Letters, 94(4):043313, 2009.

[187] C. Kyle Renshaw, Xin Xu, and Stephen R. Forrest. A monolithically integrated
organic photodetector and thin film transistor. Organic Electronics, 11(1):175–
178, January 2010.

161



[188] Keum-Dong Jung, Yoo Chul Kim, Hyungcheol Shin, Byung-Gook Park,
Jong Duk Lee, Eou Sik Cho, and Sang Jik Kwon. A study on the carrier injec-
tion mechanism of the bottom-contact pentacene thin film transistor. Applied
Physics Letters, 96(10):103305, 2010.

[189] Dipti Gupta, M. Katiyar, and Deepak Gupta. An analysis of the difference in
behavior of top and bottom contact organic thin film transistors using device
simulation. Organic Electronics, 10(5):775–784, August 2009.

[190] Masakazu Nakamura, Hirokazu Ohguri, Naoyuki Goto, Hiroshi Tomii, Ming-
sheng Xu, Takashi Miyamoto, Ryousuke Matsubara, Noboru Ohashi, Masaaki
Sakai, and Kazuhiro Kudo. Extrinsic limiting factors of carrier transport in
organic field-effect transistors. Applied Physics A, 95(1):73–80, December 2008.

[191] I. Nausieda, Ryu Kyungbum, I. Kymissis, A.I. Akinwande, V. Bulovic, and C.G.
Sodini. An organic active-matrix imager. Electron Devices, IEEE Transactions
on, 55(2):527–532, 2008.

[192] T. Someya, Y. Kato, Shingo Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and
T. Sakurai. Integration of organic FETs with organic photodiodes for a large
area, flexible, and lightweight sheet image scanners. Electron Devices, IEEE
Transactions on, 52(11):2502–2511, 2005.

[193] Tsuyoshi Sekitani, Ute Zschieschang, Hagen Klauk, and Takao Someya. Flex-
ible organic transistors and circuits with extreme bending stability. Nature
Materials, 9(12):1015–1022, December 2010.

[194] Michael S. Arnold, Jeramy D. Zimmerman, Christopher K. Renshaw, Xin Xu,
Richard R. Lunt, Christine M. Austin, and Stephen R. Forrest. Broad spec-
tral response using carbon nanotube/organic semiconductor/c60 photodetec-
tors. Nano Letters, 9(9):3354–3358, 2009.

[195] Tsuyoshi Sekitani, Shingo Iba, Yusaku Kato, Yoshiaki Noguchi, Takayasu Saku-
rai, and Takao Someya. Submillimeter radius bendable organic field-effect tran-
sistors. Journal of Non-Crystalline Solids, 352(9-20):1769–1773, June 2006.

[196] D. K. Hwang, Kimoon Lee, Jae Hoon Kim, Seongil Im, Chang Su Kim,
Hong Koo Baik, Ji Hoon Park, and Eugene Kim. Low-voltage high-mobility
pentacene thin-film transistors with polymer/high-k oxide double gate di-
electrics. Applied Physics Letters, 88(24):243513, 2006.

[197] J. Douglas Faires and Richard L. Burden. Numerical Methods. Cengage Learn-
ing, April 2012.

[198] MATLAB. MATLAB bvp4c document, 2013.

[199] L. F. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with MATLAB.
Cambridge University Press, April 2003.

162



[200] Won Y. Yang, Wenwu Cao, Tae-Sang Chung, and John Morris. Applied Nu-
merical Methods Using MATLAB. John Wiley & Sons, June 2005.

[201] Robert E. White. Computational Mathematics: Models, Methods, and Analysis
with MATLAB and MPI. CRC Press, September 2003.

[202] Mark S. Gockenbach. Understanding and Implementing the Finite Element
Method. SIAM, 2006.

163


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Chapter I. Introduction to organic semiconductors and devices
	Organic semiconductors
	Electronic processes in organics
	Excitons
	Excited states in organic molecules
	Types of excitons
	Exciton energy transfer
	Exciton diffusion
	Exciton quenching

	Charge carriers
	Carrier generation
	Carrier transport


	Processing techniques
	Organic materials deposition
	Electrode preparation

	Applications
	Organic photovoltaic cells
	Basic principles and characterization methods
	Diode equation for organic photovoltaic cells
	Types of organic photovoltaic cells

	Organic thin-film transistors
	Other applications


	PART I: Inverted organic photovoltaic devices
	Chapter II. Inverted small-molecule solar cell on reflective substrates
	Experimental procedure
	Challenges in designing inverted organic photovoltaic cells
	Inverted organic solar cells on reflective substrates

	Chapter III. Inverted small-molecule photovoltaic cell with high open-circuit voltage
	Experimental procedure
	Inverted solar cell with maximized absorption
	Role of "3222378 
	Effect of cathode work function on device performance
	Inverted organic solar cells on stainless steel substrates


	PART II: Reliability of organic photovoltaic cells
	Chapter IV. Overview of organic photovoltaic cell reliability
	Characterization of device lifetime
	Device lifetime
	Characterization methods
	Testing conditions
	Accelerated aging
	Data reporting

	Hermetic packaging
	Evaluation of packaging quality
	Encapsulation methods

	Stability of photoactive materials
	Degradation of non-active layers and interfaces

	Chapter V. Experimental setup for long-term reliability testing
	Light source
	Device characterization
	Device encapsulation and mounting
	Device switching and measurement

	Temperature control

	Chapter VI. Intrinsic limits to small-molecule organic photovoltaic cell operational lifetimes
	Degradation mechanism
	Experimental procedure
	Burn-in degradation of planar and mixed SubPc/fullerene photovoltaic cells
	Effect of exciton lifetime on burn-in degradation
	Burn-in degradation due to "3222378  polymerization

	Chapter VII. Photodegradation of archetypal small-molecule organic semiconductors
	Experimental procedure
	Photo-degradation of active materials used in organic photovoltaic cells
	Degradation mechanisms

	Chapter VIII. Long-term reliability of small-molecule organic solar cells
	Experimental procedure
	Accelerated degradation of planar SubPc/"3222378  organic photovoltaic cells
	Thermally-activated degradation of mixed SubPc:"3222378  organic photovoltaic cells

	Chapter IX. Future outlook
	APPENDICES
	An integrated organic passive pixel sensor utilizing an inverted photodetector
	Experimental procedure
	Performance of individual sensor and transistor components
	An integrated organic pixel sensor

	Modeling of current generation in solar cells
	Optical modeling of multilayer dielectrics
	Modeling of exciton diffusion in planar organic solar cells

	List of Publications
	Journal publications
	Conference contributions
	Patents

	BIBLIOGRAPHY


