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ABSTRACT

Multidomain Demand Modeling in Design for Market Systems

by

Namwoo Kang

Co-chairs: Fred M. Feinberg and Panos Y. Papalambros

Design for Market Systems (DMS) research has aimed to develop enterprise-level

design optimization approaches linking consumer demand and engineering design.

Applying demand models to engineering optimization has allowed a design objective

to consider enterprise profit beyond engineering performance. However, most demand

models in DMS are based on conventional discrete choice analysis (DCA) that is

limited to functional product attributes decided by engineering design decisions.

Consumers make choices based not only on functional product attributes (e.g., fuel

economy) but also on non-functional attributes (e.g., vehicle form). Consequently,

ignoring non-functional product attributes in demand modeling can lead to prod-

uct designs less attractive to consumers. This dissertation focuses on two major

non-functional product attributes: (i) aesthetic product form as a perceptual product

attribute and (ii) services as external product attributes.

The issue with non-functional attributes is that they are not typically controlled

by engineering designers. Instead, these attributes may be decided by designers in

different domains such as industrial, service, or operations design.

A separate or sequential decision making in each design domain is not effective

xi



if the design domains share design variables that lead to trade-offs between the do-

mains’ decisions. This dissertation offers a quantitative methodology to interface and

reconcile decisions within different domains and guide the design process to balanced

decisions.

A limitation in conventional DCA is that it handles functional and non-functional

attributes within a single demand model. An aesthetic product form is generated by

a potentially huge number of geometric variables; thus, it cannot be quantified simply

and it is difficult to integrate with functional attributes. Similarly, when considering

services, it is challenging to incorporate the relationship (or channel) between product

and service attributes (or multiple providers) into a single demand model.

This dissertation proposes a multidomain demand modeling approach to integrate

functional and non-functional attributes, whose values are decided by different design

domains, into a single demand model. We employ consumer choice models from Mar-

keting, systems design optimization from Engineering, machine learning algorithms

and human-computer interaction from Computer Science, and location network mod-

els from Operations Research within a design optimization framework. This work

addresses three demand models: (i) a demand model for engineering and industrial

design, (ii) a demand model for engineering and service design, and (iii) a demand

model for engineering and operations design. The benefits of this unified approach is

demonstrated through three respective design applications including gasoline vehicle

design, electric vehicle and charging station location design, and tablet and e-book

service design.

The contribution of this research is in helping resolve trade-offs between conflicted

design domain decisions, by integrating disparate attributes into a multidomain de-

mand model. This work consequently extends the scope of Design for Market Sys-

tems from product design to business model design by considering external product

attributes.
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CHAPTER I

Introduction

Consumer preferences for a product are affected not only by functional product

attributes (decided by the engineering design domain), but also by non-functional

product attributes (decided by non-engineering design domains). Thus engineering

designers alone may not find an optimal product design for the market system as

a whole. This is because different domains often share design variables, and there

are oftentimes trade-offs between product attributes (e.g., aesthetic attributes by in-

dustrial designers vs. functional attributes by engineering designers) that depend on

these variables. Even if these different domains cooperate, making decisions sequen-

tially and separately may not lead to an optimal product design for the enterprise.

A decision maker therefore needs a method to quantify and control these disparate

attributes together in order to achieve “balanced” design solutions. This dissertation

details how consumer demand modeling can contribute to a reconciliation between

these different design domains. Incorporating attributes of different domains into a

single demand model can help a decision maker to resolve trade-offs between different

design domains, and thus to find the optimal design for a market system.

Design for Market Systems (DMS) covers profit maximization product design

research linking demand model and design decision model (Michalek et al., 2005;

Lewis et al., 2006; Frischknecht et al., 2010). The role of the demand model in

1



Figure 1.1: Role of multidomain demand modeling in DMS
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DMS is linking engineering design decisions with consumer preferences and, therefore,

marketability. Most DMS research has adopted conventional discrete choice analysis

(DCA) to predict product demand based on price and functional product attributes.

The problem is that such a demand model is limited to examining engineering design

decisions related to well defined or quantifiable functional attributes as shown in

Fig. 1.1(a). This dissertation is motivated by two major non-functional attributes

that can have significantly impact on product demand but cannot be controlled by

engineering designers: First, aesthetic product form is a perceptual product attribute

decided by industrial designers. Second, services are external product attributes

decided by service or operations designers. We focus our attention on two types of

service attributes: (a) Service content attributes (using a product as service platform),

and (b) infrastructure attributes (supporting product usage). Previous DMS has not

considered these types of non-functional attributes due to the absence of demand

models that contain both functional and non-functional attributes.

1.1 Multidomain Demand Modeling

This dissertation proposes a ‘multidomain demand model’ to quantify trade-offs

between design decisions from domains such as engineering, industrial, service, and

operations designs as shown in Fig. 1.1(b). The dissertation details the theory and

the benefits of this unified approach through these major studies: (i) Demand mod-

eling for engineering and industrial design, (ii) demand modeling for engineering and

service design, and (iii) demand modeling for engineering and operations design. This

study also develops DMS frameworks using the proposed demand models, and demon-

strates the proposed models in three respective design applications gasoline vehicle

design, electric vehicle and charging station design, and tablet and e-book service

design. These three studies and associated multidomain demand modeling approach

are introduced briefly in Sections 1.1.1, 1.1.2, and 1.1.3.

3



Figure 1.2: Multidomain demand modeling for engineering and industrial design
(First research: Chapter III)

1.1.1 Modeling for Engineering and Industrial Design

Chapter III of this dissertation addresses the first research problem, which is how

to model consumer demand and give design targets to engineering designers and

industrial designers, where a consumer choice is a trade-off between product function

and product form as shown in Fig. 1.2. Chapter III presents a mathematical approach

using machine learning algorithms and optimizations, as well as a human interface

interactions for online real-time preference elicitation.

The motivation for this study can be summarized as follows. First, in the automo-

bile industry, marketers incorporate the vehicle form into overall consumer preference

modeling to predict accurate market demand; product designers get target geometric

design values from the marketers (Dotson et al., 2012; Sylcott et al., 2013a). How-

ever, vehicle form preference is not easy to quantify and to link with other functional

attributes due to the large number of geometric features of the vehicle form, and the

highly non-linear and heterogeneous nature of the form preference.

Second, the internet connectivity allows marketers to collect data from large num-

ber of people (“crowds”) at low cost and to gather choice data from them very quickly.

4



However, one common problem is that online crowds are typically anonymous and

they do not accept time delay in the generation of survey queries. Therefore, mar-

keters have only a single chance to survey each subject, and cannot use the same

subject in different surveys after a certain time. The demand modeler should then

design a single survey without query time delay to build individual-level preference

models. Previous research, e.g., on multidomain demand models, is not suitable for

crowdsourcing because it employed two separate surveys, for form and overall prefer-

ence models, and combined them (Dotson et al., 2012; Sylcott et al., 2013a).

Based on the above motivation of modeling individual-level form and overall pref-

erences of an online crowd, we propose a multidomain demand modeling strategy

that decomposes preferences into form preference and overall preference and adap-

tively combines them in real time. A bi-level adaptive conjoint analysis method is

implemented to (i) modeling vehicle form preference based on 3D geometries and (ii)

modeling overall preference by revealing tradeoffs between form and functional at-

tributes, namely, price and fuel efficiency. We test this approach using Monte Carlo

simulation and with an online crowd experiment. Results indicate that the proposed

method can elicit more accurate individual-level preferences than conventional DCA.

1.1.2 Modeling for Engineering and Service Design

Chapter IV of this dissertation addresses the second research problem, which is

how to model consumer demand and give design targets to engineering designers and

service designers, where a consumer choice is a trade-off between product function

and service content attributes, as shown in Fig. 1.3.

The scope of attribute types here is extended to include service attributes besides

product attributes. The multidomain demand modeling effort now is towards han-

dling product demand and service demand within a single demand model framework.

By addressing service aspects in consumer choice, the proposed model can be used

5



Figure 1.3: Multidomain demand modeling for engineering and service design (Second
research: Chapter IV)

for optimal business model design besides optimal product design.

This research is motivated by the fact that integration of products and services

is a common and profitable business model in many markets, for example, for elec-

tronic devices and digital service content. When customers choose a physical product

and associated services sequentially (e.g., PCs and software; cell phones and apps;

eReaders and eBooks), the product producer’s channel structure should take this into

account. That is, some products can use a range of services, while others cannot, and

sharing a channel across market players requires strategic cooperation.

This study examines three types of channel: exclusive, where each product can

use only its own proprietary services; non-exclusive asymmetric, where only some

products can use multiple services; and non-exclusive symmetric, where all products

can.

An enterprise-wide profit maximization framework is proposed to optimize prod-

ucts and services for all three channel types in a competitive marketplace. A tablet

and e-book service example, using market-level information from four real firms

and conjoint-based product-service choice data, is used to demonstrate the proposed

6



Figure 1.4: Multidomain demand modeling for engineering and operations design
(Third research: Chapter V)

framework.

1.1.3 Modeling for Engineering and Operations Design

Chapter V of this dissertation addresses the third research problem, which is

how to model consumer demand and give design targets to engineering designers and

operations designers, where a consumer choice is a trade-off between product function

and infrastructure attributes as shown in Fig. 1.4. Here the infrastructure is used as

the extended concept of service supporting product usage and adoption rather than

selling services. We focus on validating the advantage of the integrated decision-

making approach using the multidomain demand model, as compared to a sequential

decision-making approach.

The motivation regarding a real design problem is the fact that a major barrier

in consumer adoption of electric vehicles (EVs) is ‘range anxiety,’ the concern that

the vehicle will run out of power at an inopportune time. Range anxiety is caused by

the current relatively low electric-only operational range and sparse public charging

station infrastructure. Consequently, we must consider engineering and operations

7



attributes together to design a marketable business model.

Range anxiety may be significantly mitigated if EV manufacturers and charging

station operators work in partnership using a cooperative business model to balance

EV performance and charging station coverage. This model is in contrast to a se-

quential decision-making model where manufacturers bring new EVs to the market

first and then charging station operators decide on charging station deployment given

EV specifications and market demand.

This study proposes a DMS framework to assess profitability of a cooperative busi-

ness model using models from marketing, engineering, and operations. This model

is demonstrated in a case study involving battery-electric vehicle design and direct-

current fast charging station location network in Southeast Michigan. Results from

such a study can inform both government and private enterprise decisions.

1.2 Contributions

The main contribution of this dissertation is to integrate into a single demand

models consumer preferences about disparate attributes that depend on design deci-

sions in different domains. The proposed model can be used as a quantitative decision

making tool to resolve trade-offs between different design domains such as engineer-

ing, industrial, service, and operations, while conventional DCA in DMS has so far

focused on only the engineering design domain.

Moreover, by considering external product attributes such as service content and

infrastructure, the scope of DMS research is extended to optimal business model

design beyond product design alone. As a practical contribution, the proposed model

is demonstrated in vehicle and electric device design examples demonstrating the

advantage of integrated decision-making for market systems.

8



1.3 Dissertation Overview

The dissertation proceeds as follows. Chapter II reviews related works for DMS,

product demand modeling, and service demand modeling. Chapters III to V present

the main three demand modeling studies of the dissertation: Chapter III proposes a

multidomain demand model for engineering and industrial designs; Chapter IV de-

velops a multidomain demand model for engineering and service designs; Chapter V

presents a multidomain demand model for engineering and operations designs. Chap-

ter VI concludes with a summary, contributions, and future work. The appendices

provide detailed background information on the studies in Chapters III, IV, and V.

9



CHAPTER II

Literature Review

2.1 Design for Market Systems

2.1.1 Overview

Hazelrigg (1998) advocated for a Decision-Based Design (DBD) approach adopt-

ing the concept of rational decisions in selecting the design option with the highest

expected value. He proposed a framework for DBD to maximize the value of a prod-

uct (e.g., profit) as shown in Fig 2.1. DBD uses customer preferences for examining

utility of a design decision, while conventional engineering optimization research has

used product performance as design objectives. In adopting the DBD framework,

several researches developed product demand models using discrete choice analysis

(DCA) from marketing (e.g., Wassenaar and Chen (2003)).

Market systems are affected by not only consumer choice decisions but also dy-

namic market environments including competitions, economics, and regulations. Con-

sequently, research in the emergent field of Design for Market Systems (DMS) ad-

dresses a multidisciplinary design optimization framework linking engineering, mar-

keting, manufacturing, economics, and public policy considerations (e.g., Michalek

et al. (2005); Frischknecht et al. (2010); Kang et al. (2014)). DBD and DMS research

have been developed within the same engineering design community; consequently,

10



Figure 2.1: Framework of Decision-Based Design. Figure from Hazelrigg (1998).

these two research areas have became almost indistinguishable. This dissertation

uses DMS as the broader concept including DBD. Table 2.1 summarizes previous

main DMS studies.

Table 2.1: Previous DMS research

Literature
Design

objective

Demand

modeling

Design

domains

Main consid-

erations
Application

Hazelrigg

(1998)

Product

profit
vN-M utility1 Engineering

Solution

strategy

Engineering

education

Li and Azarm

(2000)

Product

profit,

Market

share

Conjoint Engineering Uncertainty
Cordless

screwdriver

Gu et al.

(2002)

Product

profit
Demand curve Engineering

Solution

strategy

Aircraft concept

sizing

Cooper and

Papalambros

(2003)

Product

profit
Demand curve Engineering

Demand,

Technology

Hybrid medium

truck

1Von Neumann-Morgenstern utility
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Wassenaar

and Chen

(2003)

Product

profit
MNL2 Engineering Demand Universal motor

Kim et al.

(2004)

Product

profit
MNL Engineering

Solution

strategy

Suspension

system

Michalek et al.

(2004)

Product

profit
MNL Engineering

Regulation,

Competition
Vehicle

Wassenaar

et al. (2004)

Market

share

MNL, Latent

variable model
Engineering Demand Vehicle

Georgiopoulos

et al. (2005)
Firm’s profit Demand curve Engineering

Investment,

Regulation
Vehicles

Luo et al.

(2005)

Market

share,

Design

robustness

MNL
Engineering,

Ergonomics

Robustness,

Multi-

objective

Handheld power

tool

Michalek et al.

(2005)

Product

profit
MNL Engineering

Solution

strategy
Weight scale

Wassenaar

et al. (2005)

Product

profit
MNL, Kano Engineering Demand Vehicle engine

Cooper et al.

(2006)

Product

profit
Demand curve Engineering

Solution

strategy

Hybrid electric

truck

Kumar et al.

(2006)

Product

profit
MNL Engineering

Solution

strategy

Suspension

system

Michalek et al.

(2006)

Product

profit
HB3 Engineering

Manufacturing,

Product line
Weight scale

Olewnik and

Lewis (2006)

Product

profit
MNL Engineering

Flexible

system
Flexible room

2multinomial logit
3Hierarchical Bayes estimation
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Kumar et al.

(2007)

Market

share

Nested logit,

Ordered logit
Engineering Demand Vehicle package

Shiau and

Michalek

(2007)

Product

profit
MNL Engineering

Regulation,

Competition
Vehicle

Shiau et al.

(2007)

Product

profit

MNL, Mixed

logit
Engineering Demand

Laptop

computer

Frischknecht

and

Papalambros

(2008)

Product

profit, Fuel

consumption

MNL Engineering
Regulation,

Competition
Vehicle

Williams et al.

(2008)

Product

profit
MNL Engineering Channel Angle grinder

Hoyle et al.

(2009)
Utility

Human

appraisals,

Ordered logit

Engineering Demand Vehicle package

Karimian and

Herrmann

(2009)

Product

profit
Logit Engineering

Solution

strategy

Universal

electric motor

Kumar et al.

(2009)

Product

profit
Nested logit Engineering

Product

family

Universal

electric motor

Shiau and

Michalek

(2009a)

Product

profit

MNL, Latent

class model
Engineering Competition

Pain reliever,

Weight scale,

Power grinder

Shiau and

Michalek

(2009b)

Product

profit

MNL, Mixed

logit
Engineering Channel Vehicle

Shiau et al.

(2009)

Product

profit
Mixed logit Engineering

Regulation,

Competition
Vehicle
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Frischknecht

et al. (2010)

Product

profit

Econometric

demand model
Engineering

Demand,

Competition
Vehicle

Hoyle et al.

(2010)
Utility

HB, Mixed

logit, Ordered

logit

Engineering Demand Vehicle package

He et al.

(2011)

Market

share

CSS4, Mixed

logit
Engineering Demand Vehicle

Hoyle et al.

(2011)
Utility

HB, Cluster

analysis,

Ordered logit

Engineering Demand Vehicle package

Michalek et al.

(2011)

Product

profit
HB Engineering

Product line,

Demand
Weight scale

Wang et al.

(2011a)

Product

profit
MNL Engineering

Channel,

Competition
Angle grinder

Wang et al.

(2011b)

Product

profit
HB Engineering

Convergence

product

Laptop,

Smartphone

Resende et al.

(2012)

Product

profit
MNL Engineering

Demand

uncertainty
Weight scale

Kang et al.

(2013a)

Product-

service

profit

HB
Engineering,

Service
Service

Tablet &

E-book

Ma and Kim

(2014)

Product

profit
CPTM5 Engineering Life cycle Tablet

Morrow et al.

(2014a)

Product

profit

Consider-then-

choose

models

Engineering Demand Vehicle

4customer satisfaction survey
5continuous preference trend mining
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Morrow et al.

(2014b)

Product

profit
Mixed logit Engineering Competition Vehicle

Chapter III Utility SVM6, HB
Engineering,

Industrial

Aesthetic

form,

Demand

Vehicle exterior

Chapter IV

Product-

service

profit

HB
Engineering,

Service

Service,

Channel,

Demand,

Competition

Tablet &

E-book

Chapter V,

Kang et al.

(2014)

Product-

service

profit

HB
Engineering,

Operations

Infrastructure,

Demand

Electric vehicle

& charging

station

Table 2.1 shows that most DMS research has focused on engineering design prob-

lems, and thus it has developed demand models for engineering design decisions.

There is limited research in demand modeling for other design domains such as in-

dustrial, service, and operations. This dissertation addresses this limitation by ex-

tending the DMS research area from the engineering design domain to multiple design

domains. The remainder of this chapter introduces the main considerations that pre-

vious DMS research has focused on, i.e., solution strategy, demand, competition, and

regulation.

2.1.2 Solution strategy

A general DMS framework consists of demand, cost, design, regulation, and com-

petition models as shown in Fig 2.2.

Most DMS frameworks solve the formulated design optimization problems using

6support vector machine
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Figure 2.2: General framework of Design for Market Systems. Figure from
Frischknecht et al. (2009).

the All-in-One (AIO) approach. A general optimization equation is stated as follows.

max
X,p

Π = q(p− c)

subject to lb ≤ X ≤ ub

lb ≤ p ≤ ub

where q = fd(Z, p)

Z = fe(X)

c = fc(X)

(2.1)

where Π is profit, q is demand, p is price, c is cost, X is engineering design variables,

Z is product attributes, fd is demand model, fe is engineering model, and fc is cost

model.

On the other hand, some studies have used a decomposition-based approach. This

is because, in industry, the AIO approach may not be practical due to the complex-

ity of the engineering systems and the decentralized organization of marketing and

16



engineering. Gu et al. (2002) has adopted collaborate optimization (CO) which is

a bi-level optimization method for multidisciplinary design optimization (MDO). In

the system-level optimization, enterprise decisions are made to maximize profit, then

engineering performance targets are translated to subspace optimization. At the

subspace-level optimization, multidisciplinary engineering design optimization and

cost optimization are carried out to satisfy system-level targets.

The decomposition approach in DMS has been extended by adopting Analytical

Target Cascading (ATC) which is a hierarchical optimization methodology for multi-

level systems developed by Kim (2001). Theoretical convergence of the ATC coor-

dination strategy was proven (Michelena et al., 2003). The computational behavior

was enhanced using Augmented Lagrangian relaxation (Tosserams et al., 2006). ATC

has been demonstrated in several industrial cases (e.g., Kang et al. (2012, 2013b)).

Cooper et al. (2006) applied ATC to multi-level engineering design optimization

and proposed the concept of Analytical Target System (ATS) at the enterprise level to

identify target engineering performances and then translate them into the engineer-

ing design problem as shown in Fig. 2.3. In that earlier version of ATS, engineering

performance targets cascaded from the enterprise-level are fixed and there is no it-

eration between marketing and engineering decisions. Michalek et al. (2005) linked

the marketing product planning subproblem and the engineering design subproblem

using ATC to find iteratively a converged optimal design decision, as shown in Fig 2.4.

Karimian and Herrmann (2009) proposed a separation approach which decom-

poses a DMS problem into subproblems, and solves the subproblems sequentially

without iteration. This approach has a limitation in that it cannot guarantee the

globally optimal design, but it can reduce the computational cost significantly when

product development time is a main concern in the design process.

Most hierarchical frameworks in DMS (e.g., Gu et al. (2002); Michalek et al.

(2005); Cooper et al. (2006); Kumar et al. (2006)) are based on a top-down approach
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Figure 2.3: Framework for Analytical Target Setting. Figure from Cooper et al.
(2006).

Figure 2.4: Analytical Target Cascading formulation for DMS. Figure from Michalek
et al. (2005).
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(i.e., the marketing decision model gives the system level targets to the engineering

decision model). This top-down approach is easy to understand and many enterprises

have such hierarchical structures between their marketing and engineering organiza-

tions. Williams et al. (2008) and Michalek et al. (2011) argued that the top-down

approach will not work when marketing decisions are not feasible in terms of en-

gineering design and, possibly, cost constraints. Williams et al. (2008) proposed a

bottom-up framework beginning at the engineering-level with feasible engineering de-

cision options. They argued that the bottom-up approach can be more logical to

find marketable engineering design options than the top-down approach, where an

enterprise has accurate cost and engineering models. In Michalek et al. (2011), ATC

is used to balance the top-down and bottom-up approaches.

Most DMS research has addressed single objective optimization problems with the

assumption that an enterprise’s decision is based on maximizing profit. Some DMS

research has addressed multi-objective design problems. Luo et al. (2005) showed the

trade-off between market share and design robustness; Frischknecht and Papalambros

(2008) used Pareto curves for profit and fuel consumption to explore how to align

public and private interests.

2.1.3 Demand

Much DMS research has focused on enhancing demand models as shown in Ta-

ble 2.1. Fig. 2.5 shows how a demand model is generally used for an enterprise-level

design objective such as profit (Kumar et al., 2009). Demand is estimated based on

price and product attributes (customer-desired attributes) which are the responses

of engineering design decisions. Customer demographic attributes and exogenous

variables also can help to predict demand. The profit is calculated using estimated

demand, price, and cost. The cost is calculated based on engineering design decisions

and the estimated demand. In profit-optimization, price and engineering design vari-
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Figure 2.5: Role of demand model in DMS. Figure from Kumar et al. (2009).

ables are used as decision variables. Thus, demand modeling plays a critical role in

linking engineering decisions with enterprise-wide decisions.

For demand modeling, Wassenaar and Chen (2003) adopted discrete choice anal-

ysis (DCA) assuming that a customer chooses a product whose utility is the highest

among given product options. DCA has been widely used as the standard demand

modeling technique in marketing and in DMS. To measure utility of each product

option, the random utility concept is used,

uij = vij + εij, (2.2)

where uij is utility that product j provides to individual i, v is a deterministic com-

ponent that can be observed, and εij is an error component that cannot be observed.

In marketing, the deterministic component vij is generally assumed as a linear

function of discrete levels of attributes and is defined as

vij =
K∑
k=1

Lk∑
l=1

βiklzjkl, (2.3)

where zjkl are binary dummy variables indicating product j possesses attribute k at

level l, and βikl are the part-worth coefficients of attribute k at level l for individual

i (Green and Krieger , 1996b).

The probability that individual i chooses product j from a set of options J can
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be defined as the probability that product j has a higher utility than all alternatives:

Pij = Pr[uij > uij′ ;∀j′ ∈ J ] = Pr[vij + εij > vij′ + εij′ ;∀j′ ∈ J ]. (2.4)

If the error component εij is assumed to be independently and identically dis-

tributed (iid) across choice alternatives and if it follows the extreme value distri-

bution7 (Gumbel, Weibull or double exponential), then the probability Pij can be

estimated by the multinomial logit (MNL) model as

Pij =
evij∑

j′∈J
evij′

. (2.5)

MNL estimates part-worth coefficients using the maximum likelihood method with

consumer preference data. The main limitation of MNL is the Independence of Ir-

relevant Alternatives (IIA) modeling assumption that the utility of each product

alternatives has the same error component, so that the choice probability between

two alternatives is not affected by other alternatives.

While MNL is the most widely-used demand modeling technique in DMS research

as shown in Table 2.1, some DMS studies have used advanced DCA models such as

mixed logit (Shiau et al., 2007; Shiau and Michalek , 2009b; Shiau et al., 2009; Morrow

et al., 2014b), nested logit (Kumar et al., 2007, 2009), ordered logit (Kumar et al.,

2007; Hoyle et al., 2011), and Hierarchical Bayesian (HB) models (Michalek et al.,

2006; Hoyle et al., 2010; He et al., 2011; Michalek et al., 2011; Wang et al., 2011b;

Kang et al., 2013a, 2014). Kumar et al. (2007) and Hoyle et al. (2010) have integrated

different DCA models into a hierarchical structure.

MNL is an aggregate logit model assuming that consumer preference is homoge-

neous so that the part-worth coefficients in Eq. (2.3) are deterministic and the same

across individuals. Mixed logit accounts for heterogeneity of consumer preferences

7Pr[ε < x] = exp[− exp(−x)]
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treating part-worth coefficients as a distribution across individuals. The mixed logit

probability of choice is estimated as

Pij =

∫
evij∑

j′∈J
evij′

f(βi)dβi ≈
1

R

R∑
r=1

evij∑
evij′

, (2.6)

where f(βi) is the joint probability density function of βi distribution, and R is a

infinite number of draws from the distribution (Shiau et al., 2007). For practical

purposes, the simulated probability can be approximated using the average of results

from random draws. The advantages of mixed logit compared to MNL are that mixed

logit captures heterogeneity and it is free of the IIA property.

However, mixed logit ignores correlations between part-worth coefficients, and

multivariable sampling for maximum likelihood estimation is not practical due to

high computational cost (Shiau et al., 2007; He et al., 2011). In marketing, the HB

model (Lenk et al., 1996; Rossi and Allenby , 2003) is regarded as a solution to this

problem using Markov Chain Monte Carlo (MCMC) with a Gibbs sampler which

draws part-worth coefficients from a joint normal distribution. Recent DMS research

including this dissertation has begun to use HB models, and this technique will be

introduced in detail in Chapter III.

While MNL assumes all pairs of choice alternatives have equal competition (i.e.,

IIA), the nested logit model accounts for unequal competition considering correlations

among the choice alternatives. Nested logit allows to partition the set of choice

alternatives into subsets (nests) of choice alternatives, so that the model can be used

for demand modeling in multiple market segments (Kumar et al., 2007, 2009). Where

a consumer survey is based on ordinary rating rather than choice, the ordered logit

model can be more useful than MNL (Kumar et al., 2007; Hoyle et al., 2011).

For preference data as an input of DCA, two different types of data such as stated

preference (SP) data and revealed preference (RP) data can be used. SP data are
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gathered though surveys such as a conjoint survey to model new product demand

(product not yet in the market). RP data are gathered from real purchase data of

existing products in the market. While most DMS research has used SP data for

demand modeling of new products, some studies have used RP data, e.g., Wassenaar

et al. (2005).

Various consumer data considerations beyond choice data were proposed to en-

hance DCA. Wassenaar et al. (2004) used a latent variable such as perceived per-

formance; Wassenaar et al. (2005) used the Kano method to decide the shape of

preference function; Hoyle et al. (2009) used human appraisals; He et al. (2011) used

the CSI (customer satisfaction index) to incorporate rating survey results into the

choice model. Econometric modeling approaches were also employed fitting demand

curves using historical data and stochastic forecast (Georgiopoulos et al., 2005; Cooper

et al., 2006)

2.1.4 Regulation

DMS research considering government regulations has focused on vehicle designs in

the US, such as safety requirements, emission standards, and fuel economy regulations

in the US (Shiau, 2010). CAFE (Corporate Average Fuel Economy) regulation has

been most widely considered in DMS, where the government places a financial penalty

to automakers whose sales-weighted average of fuel efficiency of vehicles sold cannot

meet the standard. (e.g., Georgiopoulos (2003); Michalek et al. (2004); Shiau et al.

(2009))

Michalek et al. (2004) used CAFE, CO2 emission tax, and alternative fuel vehi-

cle sales quotas as regulation constraints. Frischknecht and Papalambros (2008) has

considered price ceiling as a regulation constraint. According to simulation results

of Shiau et al. (2009), low CAFE standard is ignorable in the vehicle design opti-

mization, moderate CAFE standard can be useful as an active constraint, and high
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Figure 2.6: Sequential optimization algorithm in DMS for Nash equilibrium. Figure
from Shiau and Michalek (2007).

CAFE standard can be violated to get the optimal vehicle design. This regulation

consideration in DMS can give practical insights for policy makers to make reasonable

standards for the regulation in automobile market.

2.1.5 Competition

Most DMS research addressing competition between producers (Michalek et al.,

2004; Shiau and Michalek , 2007, 2009b; Shiau et al., 2009; Frischknecht et al., 2010)

has adopted Nash equilibrium in game theory, which refers to an equilibrium point

where no producer can increase its profit anymore by changing its decision (Tirole,

1988). For practical application to the DMS framework, each producer optimizes

its design decisions sequentially, while fixing the other competitors’ previous optimal

design decisions at each optimization round. This sequential optimization is iterated

until all producers’ design decisions cannot increase profit, which means their design

decisions reach equilibrium. Fig. 2.6 shows the process of sequential optimization for

Nash equilibrium.
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Michalek et al. (2004) employed Nash equilibrium in DMS, and showed that de-

cision making without competition considerations can overestimate the profit of op-

timal decisions. However, the sequential optimization process above can cause high

computational cost, and cannot guarantee convergence to a globally optimal equilib-

rium point. Shiau and Michalek (2007) proposed an alternative method to search

the equilibrium point directly using the first-order necessary condition (FOC) and

second-order sufficient condition (SOC). While most DMS research has used a design-

and -pricing approach optimizing design and pricing decisions simultaneously, Morrow

et al. (2014b) proposed a design-then-pricing model optimizing design decisions first,

then optimizing pricing decisions through competition (Bertrand-Nash equilibrium

pricing).

Despite successful applications of Nash equilibrium to DMS, Wang et al. (2011a)

presented the limitations of this approach. Nash equilibrium assumes that all produc-

ers’ decisions occur simultaneously; all producers can predict each others’ decisions;

and the equilibrium point requires first-oder optimality conditions for each producer.

These assumptions may not be applicable to real market competition situations and

to non-differentiable engineering models.
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2.2 Demand Modeling for Product Design

Two types of demand models for product design are reviewed here. Section 2.2.1

discusses eliciting form preference only. Section 2.2.2 discusses eliciting both form

preference and overall preference. In addition, Section 2.2.3 reviews optimization and

machine learning algorithms for advanced conjoint analysis.

2.2.1 Form Preference Modeling

Table 2.2 summarizes previous research focusing on eliciting form preference. Most

of this research comes from the engineering design field rather than the marketing

field.

Quadratic and linear functions have been used widely for parametric preference

modeling. Interaction terms between design variables also have been addressed (Kelly

et al., 2011; Sylcott et al., 2013b) because form geometries are not independent. Some

research has not modeled parametric preference functions, because their purpose is

not to quantify the preference surface but to find the most preferable form (Ren and

Papalambros , 2011) or to understand the relationship between form preferences and

some performance metric (Reid et al., 2010, 2013; Tseng et al., 2013). For estimation

of function parameters, multinomial logit (MNL) models are used with choice surveys,

and regression is used with rating surveys. Case studies are usually for vehicle design,

because form preference is important in the automobile industry, and presents trade-

offs with engineering performance metrics.

There are several limitations in this engineering design research. First, most

research ignores consumer preference heterogeneity and models an aggregated prefer-

ence function. Orsborn et al. (2009) has modeled an individual-level preference func-

tion using the Bradley-Terry-Luce (BTL) method without using population data, but

this method is not useful for making accurate individual-level functions with a limited

number of choice survey data. On the other hand, marketing research has modeled
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Table 2.2: Previous research on eliciting form preference

Research

Parametric

preference

function

Parameter

estima-

tion

HeterogeneitySurvey
Query

design
Product

Represen-

tation

Lai et al. (2005) S/N ratio Taguchi Aggregate Rating
Non-

adaptive
Vehicle 2D

Swamy et al.

(2007)
Cubic spline MNL Aggregate Choice

Non-

adaptive

Vehicle

head-

lights

2D

MacDonald

et al. (2009)
Linear MNL Aggregate Choice

Non-

adaptive

Wine

bottle
2D

Orsborn et al.

(2009)
Quadratic BTL Individual Choice

Non-

adaptive
Vehicle 2D

Reid et al.

(2010)
N/A

T-test &

ANOVA
Aggregate

Rating,

etc.

Non-

adaptive
Vehicle 2D

Kelly et al.

(2011)

Quadratic

with

interaction

term

PREFMAP Aggregate Rating
Non-

adaptive

Water

bottle
2D

Petiot and

Dagher (2011)
Quadratic PREFMAP Aggregate Simulation N/A

Vehicle

head-

lights

2D

Ren and

Papalambros

(2011)

Non

parametric

model

EGO Individual Choice Adaptive Vehicle 3D

Lugo et al.

(2012)
Linear Regression Aggregate Rating

Non-

adaptive

Wheel

rim
2D

Reid et al.

(2012)
Linear Regression Aggregate Rating

Non-

adaptive
Vehicle 2D

Tseng et al.

(2012)

Neural

network
ANN Aggregate Rating

Non-

adaptive
Vehicle 2D

Reid et al.

(2013)
N/A BTL Aggregate Choice

Non-

adaptive

Vehicle &

carafe
3D

Sylcott et al.

(2013b)

Linear with

interaction

term

MNL Aggregate Choice
Non-

adaptive

Vase &

vehicle
2D

Tseng et al.

(2013)
N/A Correlation Aggregate Rating

Non-

adaptive
Vehicle 2D
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individual-level preferences with the Hierarchical Bayesian (HB) method shrinking

individual-level partworth to the mean of population partworths (Lenk et al., 1996;

Rossi and Allenby , 2003). This will be explained again in Section 2.2.3. This disser-

tation addresses the heterogeneity issue using advanced machine learning algorithms.

Second, most research has used non-adaptive query designs. Since a complex

product form such as a vehicle form consists of a large number of design variables or

features, adaptive query design could offer better fit than conventional design of exper-

iments (DOE). Marketing research has demonstrated that adaptive query design out-

performs the case of limited choice data (Toubia et al., 2003, 2004; Toubia and Florès ,

2007; Abernethy et al., 2008). This will be discussed again in Section 2.2.3. Beyond

estimation performance, DOE may not be suitable at the early design stage where

product form options are not decided yet. While visual conjoint uses pre-designed

form options, adaptive query design can generate new form options in real time for

each question, so that the overall design space can be tested without pre-designed

form options. Our proposed method used an adaptive query design approach.

Third limitation is that most research uses 2D representation. Even though Reid

et al. (2013) has applied a 3D representation for consumer surveys, this representation

is not a parametric model, so that only pre-designed form options can be used. To

control 3D rendering parametrically is a challenge, because all geometric features are

dependent on each other. However, 3D realistic representation is essential to the

perception of respondents. Our proposed method adopted the parametric vehicle

design model of Ren and Papalambros (2011) which can generate 3D renderings with

19 continuous high-level design variables and 276 low-level design variables. This

model will be explained in detail in Chapter III.

The last limitation is that most research has not performed validation tests such as

hit rate checking that is the standard validation method of choice models in marketing.

Most engineering design work has focused on proposing a modeling process without
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demonstrating the accuracy of the model.

2.2.2 Form and Overall Preferences Modeling

Engineers, industrial designers, and marketers oftentimes have conflicting design

choices due to trade-offs between form and function attributes. For example, vehicle

form is related to engineering requirements such as aerodynamics and system layout

as well as cost considerations due to manufacturing complexity. That is why decision

makers should find an optimal balance between product form and function based on

consumer preference. Unfortunately, there is little research on revealing trade-off be-

tween form and overall preferences compared to research on form preference discussed

in Section 2.2.1. The author found two papers addressing this research problem: Dot-

son et al. (2012) from marketing (collaboration with computer science) and Sylcott

et al. (2013b) from engineering design. Table 2.3 summarizes the differences these

between two previous studies and our proposed model.

Dotson et al. (2012) conducted two separate surveys: a rating survey for form

preference, and then a choice survey for overall preference with visual form options

selected based on rating survey results. When they incorporate form preference into

the overall preference model, they used a covariance structure as an error term of

the overall preference model, which is based on the Euclidean distance between form

alternatives in the design space of physical dimensions. This covariance matrix can be

easily updated by calculating the Euclidean distance between a new form alternative

and the currently existing form alternatives in a database. This makes it possible

to test new forms even after finishing a survey, in contrast to traditional pictorial

conjoint analysis. But, there are some limitations of this research. This model has

assumed that the Euclidean distance between form alternatives can approximate the

form preference dissimilarity, but it is hard to be demonstrated. They have not

modeled a parametric form preference. The covariance matrix cannot give designers
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Table 2.3: Previous research on eliciting form and overall preferences

Dotson et al. (2012) Sylcott et al. (2013b) This study

Survey

Two separate surveys
(1) form: rating

(2) overall: choice

Three separate
surveys

(1) form: choice
(2) function: choice

(3) overall: pairwise

comparison

Bi-level questions in
single survey

(1) form: metric
paired-comparison

(2) overall: choice

Time delay

between

surveys

Yes Yes No (real time)

Query

design
Non-adaptive Non-adaptive Adaptive

Preference

function

Form: covariance
structure

Overall: linear

Form: quadratic
Function: linear

Overall: linear

Form: radial basis

Overall: linear

Estimation
Form: Euclidian distance

Overall: Bayesian

Bradley-Terry-Luce

(BTL)

Form: Rank SVM mix

Overall: Hierarchical

Bayesian

Heterogeneity Individual Individual Individual

Product Vehicle Vehicle Vehicle

Representation 2D 2D 3D
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the target design values, and it cannot be used to find the optimal design.

Sylcott et al. (2013b) conducted three separate conjoint surveys. First conjoint sur-

vey is for form preference; second conjoint survey is for function preference (without

price); and the last conjoint survey is for overall preference using two meta-attributes

such as form and function, where meta-attributes consist of three levels such as low,

medium, and high. Based on the first and second surveys, three form levels and three

function levels are selected, and then nine profiles are used for the third survey of

conjoint analysis. There are some limitations of this research. Their work has not

proposed a way to incorporate a form preference model into an overall preference

model. They used the first and second surveys only for designing choice profiles of

the last meta-conjoint survey. The meta-conjoint analysis cannot be linked with form

preference and the function preference functions, and so this model cannot show how

a form design variable can affect overall preference. They modeled individual-level

preference functions without using population data, but this is not possible to model

accurate individual-level preference functions with a limited number of choice data.

The common and main limitation of these work is that they survey and estimate

form and overall preferences separately. Doing separate surveys with different crowd

groups may not be a proper way to build an individual-level preference model because

it cannot link form and overall preferences for the same individual. Even using sep-

arate surveys with a single group is not suitable for online-based surveys and crowd

sourcing. This is because the previous research approaches require time for analyzing

the data of the first survey to design the second survey. Online crowdsourcing does

not allow such time delay. From this reason, our study proposes a bi-level conjoint

survey conducted in real time that can model individual-level preference without time

delay. The proposed method will be explained in detail in Chapter III.
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Table 2.4: Advanced estimation methods (modified from Toubia et al. (2007a)
Research Method Shrinkage

Lenk et al. (1996)

Rossi and Allenby (2003)
Hierarchical Bayesian Yes

Toubia et al. (2003)
Metric paired-comparison analytic-center

estimation
No

Cui and Curry (2005) Support Vector Machine (SVM) No

Evgeniou et al. (2005) Support Vector Machine (SVM) mix Yes

Toubia et al. (2004)

Toubia and Florès (2007)

Adaptive choice-based analytic-center

estimation
No

Evgeniou et al. (2007)
Heterogeneous partworth estimation with

complexity control
Yes

This study
Form preference: Rank SVM mix

Overall preference: Hierarchical Bayesian
Yes

2.2.3 Optimization and Machine Learning Algorithms

High computing power, web-based surveys and advanced methods in optimization

and machine learning allow us to build a choice model more efficiently than traditional

conjoint estimation such as the aggregate-level logit model (Chapelle et al., 2004;

Netzer et al., 2008; Toubia et al., 2007a). It is expected that these advanced methods

can help to estimate a complex attribute such as form, and web-based adaptive and

interactive query designs can be useful to generate form alternatives in real time

instead of pre-designed form alternatives. Previous research is summarized according

to two categories: Estimation methods as shown in Table 2.4, and adaptive query

design methods as shown in Table 2.5.

Hierarchical Bayesian (HB) method for conjoint analysis is a popular method for

estimation of individual-level partworths by shrinking individual-level partworth to-

wards the population mean of partworths (Lenk et al., 1996; Rossi and Allenby , 2003).

Since the performance of HB has been demonstrated well in much previous market-

ing research, our study adopted HB for estimating the individual-level partworths of

overall preference model.

Toubia et al. (2003) proposed a polyhedral method for metric paired-comparison
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which can be used for both estimation and adaptive metric paired-comparison query

design. The basic idea in this method is that a polyhedron consisting of hyperplanes

representing the constraints based on observation, this polyhedron can represent the

set of feasible estimates. Then we can find the analytic center of this polyhedron

defined as the point maximizing the distances to the hyperplanes of the polyhedron.

Toubia et al. (2004) extended this polyhedral model for adaptive choice queries, and

Toubia and Florès (2007) added a Bayesian interpretation.

Evgeniou et al. (2007) proposed a method for shrinking individual-level estimates

towards population-level estimates like the HB concept. But they used a different

shrinking method from HB by minimizing a convex loss function depending on only

endogenous parameters while HB draws samples from posterior distributions depend-

ing on exogenous parameters.

Cui and Curry (2005) and Evgeniou et al. (2005) applied Support Vector Machine

(SVM) into conjoint analysis. SVM is a popular machine learning algorithm generally

used in classification problems. Especially, Evgeniou et al. (2005) proposed a SVM

mix which can handle heterogeneity. The basic idea is that individual-level partworths

can be shrinking towards population-level partworths using a linear sum of individual

partworths and populations mean of partworths: w∗i = γiwi + (1− γi)( 1
N

∑N
i=1wi) for

individual i where N is the number of individuals. This method can reduce compu-

tational cost dramatically compared to HB, and Evgeniou et al. (2005) demonstrated

that this method performs at a similar level of accuracy as that of HB. Our research

here adopts this method not only for estimation of form preference, but also for adap-

tive design for form and overall queries. Furthermore, we use a rank SVM mix with

Gaussian kernel for handling non-linear form preference. This will be explained in

detail in Chapter III.

Adaptive question design methods for conjoint analysis is typically based on “util-

ity balance” which means that the profiles in each choice set have similar utilities
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Table 2.5: Advanced question design methods (modified from Toubia et al. (2007a)

Research Method Sampling Data using

Toubia et al.

(2003)

Adaptive metric

paired-comparison

polyhedral question

design

Minimize the volume of

the polyhedron and

minimize the length of its

longest axis

Individual prior

responses

Toubia et al.
(2004)

Toubia and Florès

(2007)

Adaptive choice-based

polyhedral question

design

Minimize the volume of

the polyhedron and

minimize the length of its

longest axis

Individual prior

responses

Abernethy et al.

(2008)

Hessian-based adaptive

choice-based conjoint

analysis

Maximize the smallest

positive eigenvalue of the

Hessian of the loss

function

Individual prior

responses

This study

Adaptive metric

paired-comparison

Support Vector Machine

(SVM) mix question

design

Minimize difference

between utilities of new

pairs and maximize

Euclidean distance among

all profiles

Other previous

respondents

responses and

individual prior

responses

based on prior beliefs of partworths, and this utility balance for the next query can

be achieved based on estimated partworths of the previous answers (Toubia et al.,

2007a). This approach is also called “uncertainty sampling” for the query strategy

in machine learning field (Settles , 2010). Previous research noted in Table 2.5 has

demonstrated that adaptive query design outperforms non-adaptive query design, es-

pecially when response errors are low, heterogeneity is high, and the number of queries

is very limited (Toubia et al., 2007a).

Toubia et al. (2003), Toubia et al. (2004), and Toubia and Florès (2007) select

the next query by minimizing the volume of polyhedron and the length of its longest

axis. The basic concept of this method is to find the most efficient constraints (i.e.,

next queries) to reduce uncertainty of feasible estimates (i.e., polyhedron). Abernethy

et al. (2008) defined uncertainty as the inverse of the Hessian of the loss function and

selected the next query by maximizing the smallest positive eigenvalue of the Hessian

of the loss function.
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Our research uses the utility balance concept, but for more effectiveness, we use not

only individual prior responses, but also other previous respondents responses. The

previous research presented in Table 2.5 use only individual prior responses and they

did not use the shrinkage approach of HB, because it has high computational cost.

The adaptive query design using single respondent’s response may not be efficient in

the early steps of sampling questions when there is still not enough choice data. We

use a SVM mix for adaptive query design that does not need high computational cost

to shrink. It is expected to sample more efficient queries despite insufficient individual

responses. This will be explained in detail in Chapter III.
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2.3 Demand Modeling for Product-Service Design

2.3.1 Product-Service Systems

The term Product-Service System (PSS) was first introduced by Goedkoop (1999),

defining “a marketable set of products and services capable of jointly fulfilling a user’s

need”. PSS has since been regarded as a new emerging research area for an integrated

product-service ecosystem (Mont , 2002; Baines et al., 2007; Roy and Baxter , 2009).

Besides the tablet and digital service market example discussed in the introduction,

a frequently used example in PSS research is the case of Rolls-Royce PLC, which

supplies total-care package services to airlines, as opposed to merely selling a gas

turbine engine alone. This business model is called “power by the hour,” and works

by supplying the services to maintain and repair the engines and collecting data on

product performance and using them to upgrade engine efficiency and reduce the

cost and environmental impact (Brady et al., 2006; Baines et al., 2007; Hudson et al.,

2011). Baines et al. (2007) explained PSS as a special case of ‘servicitization’ with

business model transformation of ‘sale of product’ to ‘sale of use’. The core idea

underlying product and service integration is addressed not only in PSS research,

but has been discussed in other fields in various ways. To differentiate from other

research fields, much PSS research has tried to address and develop new types of

business models combining products and services that did not exist in conventional

industry, and has also focused on reducing the environmental impact of production

and consumption beyond achieving economic values (Mont , 2002). Although the

range of extant PSS research is vast, relatively little is aimed at market-driven and

profit maximization design approaches for producers to implement this paradigm in

a practical manner (Vasantha et al., 2012).

36



2.3.2 Profit Maximization in Product-Service Design

In marketing, profit maximization product design research has a rich and long

history (Green and Krieger , 1991; Moore et al., 1999). Marketing research has utilized

conjoint-based methods to quantify customer preference and predict market shares.

Early conjoint approaches used ranking of product profiles, which respondents found

cumbersome, followed later by rating, which introduced issues with scale usage (e.g.,

two respondents could reply with the middle scale point, but mean different things

by it). Econometric developments eventually led to the prevalence of choice-based

conjoint, and further refinements using Bayesian estimation have allowed for better

accommodation of preference heterogeneity - allowing superior inference regarding

individual-level customer preference - as well as decreased reliance on presumptions

about functional forms (Rossi and Allenby , 2003; Orme, 2009). Because demand

can be written as a function of product attributes and price, conjoint thereby allows

profit optimization (given a product cost model, which manufacturers can supply

internally).

A similar profit maximization approach (based on the conjoint / choice model) has

also been applied to service design (Pullman and Moore, 1999; Easton and Pullman,

2001; Goodale et al., 2003). Most service design research addresses the operations

aspect as well as the marketing aspect. This occurs because, although product design

methods are applicable to service design, service possess unique characteristics - such

as simultaneity of production and consumption, perishability, inability to stockpile,

etc. - so that operations management techniques are needed to handle service capac-

ity and demand management (Pullman and Moore, 1999). Service design research

considers not only tangible services (i.e., technical features), but also how the service

is delivered, such as waiting lines, service delays, scheduling, and congestion in the

service facility (Pullman and Moore, 1999; Easton and Pullman, 2001; Goodale et al.,

2003). Several research papers have addressed product and service characteristics
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together. For example, Cohen and Whang (1997) designed the joint product/service

bundle, addressing trade-offs between product profit and after-sales service profit,

and Verma et al. (2001) addressed product and process attributes as key inputs into

the “operating difficulty” of meeting customer demand patterns.

Real product design decisions, of course, cannot be made based only on marketing

considerations. The marketer and engineer must consider the trade-offs between mar-

ketable design and feasible design (Michalek et al., 2005; Kang et al., 2007). While

marketing research does not typically consider design feasibility, engineering design

research has begun to adopt profit optimization as an enterprise-driven design objec-

tive subject to engineering constraints. This ‘Design for Market Systems’ approach

integrates marketing, engineering, manufacturing, operations, and policy considera-

tions into a profit-optimization framework (Michalek et al., 2005; Lewis et al., 2006;

Frischknecht et al., 2010; Kang et al., 2014); most such research has focused on prod-

uct design, not service design. Kang et al. (2013a) addressed trade-offs between prod-

uct profit and service profit, and demonstrated that integrated design of products and

services can achieve higher overall profit than product optimization alone. Specifi-

cally, enterprises can expect higher overall profit when they sacrifice product profit

to attract more service customers; this work considered only an exclusive PS channel,

so that customer service choices are fully determined after choosing a product. Kang

et al. (2014) studied electric vehicle design and charging station location simultane-

ously to maximize product-service profit in the case where a product supplier and

a service supplier cooperate and share profits and costs. This research showed that

a cooperative business model between producers and service operators can overcome

the adoption barrier more effectively than in a non-cooperative business model. This

research, however, did not address other competitors’ cooperation and asymmetric

cooperation.
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2.3.3 Product-Service Channel Design

A PS channel here is defined as compatibility between product and service from the

customer’s perspective, and cooperation with a competitor’s product and service from

the producer’s perspective. This is different from a conventional distribution channel

between suppliers and retailers that most previous research has focused on (Jeuland

and Shugan, 1983; McGuire and Staelin, 1983; Lee and Staelin, 1997; Sudhir , 2001;

Luo et al., 2007). First, the PS channel differs substantially from the distribution

channel wherein products are delivered from supplier to customers via an intermediary

retailer. In a PS channel, services are delivered through products. Second, in a PS

channel, producers can be both product suppliers and service suppliers; in the case of

service platforms (i.e., Appstore), there could be external service suppliers (i.e., App

developers). Third, customers in a PS channel make multiple choices sequentially,

while conventional channels consider a single choice made by customers. Specifically,

a customer chooses a product first, and then chooses services through a product for

the period of the product ownership. This is different from a complementary goods

market, where a retailer sells a bundle of products and services to a customer just

once. Fourth, the PS channel structure is a decision variable, while analyses have

typically considered a predetermined fixed channel structure.

We can gain some insight from distribution channel research in the marketing

science and management fields (Jeuland and Shugan, 1983; McGuire and Staelin,

1983; Lee and Staelin, 1997; Sudhir , 2001; Luo et al., 2007; Cai et al., 2012). This

research has been based on profit maximization, focusing on pricing, given channel

structures. The majority employ game theory, with the equilibrium condition that no

players can gain more profit by altering their decisions. Since each channel player’s

decision can affect the other channel player’s profit and subsequent actions, it is

important to understand the relationship between channel decisions (e.g., Jeuland

and Shugan (1983)). Sudhir (2001) has further categorized then-extant distribution
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channel research according to manufacturer-manufacturer interaction, manufacturer-

retailer interaction, retailer pricing rule, demand functional form, and wholesale price

information availability.

Some earlier channel research is more directly related to this study. Cai et al.

(2012) addressed the combination of exclusive channel and revenue sharing strategies

for complementary goods markets and modelled compensatory benefit by revenue

sharing with commentary partners even if they sacrifice part of their potential market

due to the exclusive channel decision. This concept could well be applicable to the

PS channel situation; but modifications would be necessary, as in Cai’s (2012) set-up

suppliers provide products to the retailers, who sell complementary products/services

simultaneously. Luo et al. (2007) integrated an individual-level preference model

based on conjoint analysis and the game-theoretic model of suppliers and retailers in

the market setting before the entry of a new product and after a new product entry.

Retailers’ acceptance decisions affect suppliers’ products design decisions, so that this

conceptualization can potentially be applied to the PS channel negotiation issue. In

channels research, the use of internet-based sales mechanisms has emerged as a critical

topic (Hsiao and Chen, 2013), and some engineering design research (Williams et al.,

2008; Shiau and Michalek , 2009b) has begun addressing the distribution channel to

optimize a product design for suppliers’ profit, subject to enhanced profitability of

retailers. Both product price and product design are optimized, while most marketing

channel research has focused solely on price as a decision variable. Shiau and Michalek

(2009b) applied game theory, in a manner common to much marketing research, but

focused on product design and the ‘conventional’ distribution channel. Separately, in

terms of choice modelling, Aribarg and Foutz (2009) addressed category-based choice

modelling for complementary products in a study of cell phones and service plans;

this work considered the single choice case of a product-service bundle and not the

sequential choices of product and multiple services.
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Overall, both Marketing and Design, as disciplines, have started to address the

complex task of optimizing subsets of product attribute, service attribute, and channel

structure variables. To date, however, the channel structure has been either predeter-

mined or closely linked to the nature of the products themselves, for example, through

unique service providers. By contrast, here we consider the channel structure to in-

terrelate with all other variables, and to allow standard game theoretic considerations

to help choose among the high-dimensional space of possible joint product, service,

and channel configurations when multiple services can be offered on each product.

2.4 Summary

This chapter reviewed three related works. Section 2.1 reviewed research in De-

sign for Market Systems (DMS) focusing on solution strategy, demand, competition,

and regulation modeling. Section 2.2 reviewed product demand modeling research

focusing on (a) form preference modeling, (b) form and overall preferences modeling,

and (c) optimization and machine learning algorithms. Section 2.3 reviewed product-

service demand modeling research focusing on (a) product-service systems, (b) profit

maximization product-service design, and (c) product-service channel design.

Based on this literature review, Chapters III to V present the main three de-

mand modeling studies of the dissertation. Next chapter (Chapter III) proposes a

multidomain demand model for engineering and industrial design.
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CHAPTER III

Multidomain Demand Modeling for

Engineering and Industrial Design

The main goal of this chapter is to integrate functional attributes, whose quan-

tification is relatively straightforward, and aesthetic attributes - those whose quan-

tification ordinarily requires extensive subjective intervention - into a single demand

model. Specifically, we focus on disintermediated mathematical approaches within the

context of a multidomain demand model. The proposed demand modeling structure

is motivated by a partitioning and coordination scheme widely deployed in complex

systems optimization. Machine learning algorithms are used for estimating and co-

ordinating preferences on both aesthetic forms and functional attributes. A human-

computer interaction process is developed for anonymous crowdsourcing of choice-

based information in online environment.

We apply the proposed model to exterior shape design for a passenger vehicle,

in part because automotive choice is widely believed to be strongly driven by both

form and function. Demand modeling for the “look and feel” of an automobile is

a rich research problem, because a vehicle’s shape is determined by a huge number

of geometric design values; moreover, consumer preferences for vehicle shapes may

be nonmonotonic, highly non-linear, and heterogeneous. Moreover, vehicle exterior

shape can affect engineering performance, such as aerodynamic efficiency and systems
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layout, which themselves result in functional attributes that consumers also value.

The expected contribution of this chapter is to help engineering and industrial

designers to understand how vehicle shape design variables can affect both form pref-

erence and overall preference, as well as the trade-off between functional and aesthetic

attributes. The proposed multidomain demand model can be further extended for

specific perceptual product attributes, e.g., luxuriousness and eco-friendliness.

3.1 Introduction

Product form has long been acknowledged as an important attribute in consumer

choice. Form preference modeling studies have been conducted in both market-

ing and product design fields with differing terminology, including “form” (Bloch,

1995; Swamy et al., 2007; Orsborn et al., 2009; Orsborn and Cagan, 2009; Petiot

and Dagher , 2011; Tseng et al., 2012; Reid et al., 2013; Sylcott et al., 2013a,b; Tseng

et al., 2013), “shape” (MacDonald et al., 2009; Kelly et al., 2011), “design” (Landwehr

et al., 2011; Ren and Papalambros , 2011), “silhouette” (Reid et al., 2010, 2012), “pro-

file” (Lai et al., 2005), “appearance” (Creusen and Schoormans , 2005), and “styling”

(Dotson et al., 2012). Form often assumes a central role in real-world preference

modeling problems. According to Bloch (1995), form helps products gain consumers’

notice, helps communicate information of products to consumers, stimulates con-

sumers’ pleasure, and leaves a long-lasting impression on consumers’ perception. In

practice, marketers can predict sales significantly better by taking form into account

(Landwehr et al., 2011). In addition to its own importance, marketers and designers

also find valuable trade-offs between form and functional attributes (Dotson et al.,

2012; Sylcott et al., 2013a), as revealing these trade-offs could lead to better design

decisions in terms of balancing product appeal and functionality (Reid et al., 2012).

Product form can be composed of a large number of essentially geometric at-

tributes, but mapping from the geometry of a product to how much people like it

43



(i.e., form preference) is a complex and often discouraging exercise. A further chal-

lenge is quantifying how form preference affects a consumer’s choice decision when

functional attributes such as price and performance are also included. This research

is motivated by the fact that marketers have long incorporated product form into

overall preference modeling to predict consumer choice, so that product designers

may obtain geometrical form design targets from marketers (Dotson et al., 2012); for

example, wanting a “sleek” car translates into certain physical shapes being closer

to this design ideal than others. Another motivation is the internet allows marketers

to avail of low-cost crowdsourcing to gather choice data relatively quickly. However,

online “crowds” are typically anonymous – we cannot know who will take our survey

among online crowd, even if we set a limit on qualifications of taking survey such as

demographics, product ownership, etc. – and they have a low willingness to accept

accept time delay or response latency. Therefore, marketers typically have only a

single chance to survey each subject, and cannot be assured of gathering data from

any particular subject in a follow-up survey later on. Ideally, one should rely on a

single survey, without time delay and intervening, unobserved experiences, to build

individual-level preference models.

To the authors’ knowledge, there are few studies that combine the form prefer-

ence model with one for overall preference. Both Dotson et al. (2012) and Sylcott

et al. (2013a) conducted separate surveys, one each for modeling form and overall

preferences. While the methodology is reasonable for an off-line, “controlled” group

(i.e., under lab conditions), it is arguably less so when applied to an anonymous, large

crowd, as data collected from the two surveys may correspond to different crowds that

differ in crucial characteristics. Combining form and overall preference models from

different crowds presents enormous challenges in accurately modeling individual-level

preference (see, for example, Feit et al. (2010)). Moreover, no prior study has made

use of realistic 3D rendering to assess preference, instead relying on 2D and sketch-
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level representations, which can literally distort the appearances that the methodology

is intended to account for.

To model individual-level form and overall preferences using online crowdsourc-

ing, this paper proposes a new conjoint-based modeling methodology that disentan-

gles form preference from overall preference and coordinates then adaptively, in real

time. We apply the proposed “bi-level adaptive conjoint” analysis to (1) model ve-

hicle form preference based on 3D geometries, and (2) model overall preference by

revealing tradeoffs between form and functional attributes, namely, price and fuel

efficiency. We demonstrate, via a Monte Carlo simulation and a crowd-based experi-

ment, that the proposed method can elicit more accurate individual-level preferences

than conventional conjoint analysis. We similarly discuss the potential for enhanced

segmentation, e.g., whether price-sensitive consumers have marked preferences for

certain styles, or assessing relative willingness-to-pay for small car buyers, etc.

The paper is structured as follows: Section 3.2 proposes the “bi-level adaptive

conjoint” method. We show the advantage of the proposed method over traditional

conjoint by simulations in Section 3.3 and using online crowd experiment in Sec-

tion 3.4. Section 3.5 discusses findings and potential extensions, and concludes the

paper.

3.2 Proposed Model

3.2.1 Overview

The proposed survey consists of iterative “bi-level” questions. A bi-level question

consists of two sequential sub-questions, as shown in Fig. 3.1: one sub-question is a

form question and the other sub-question is a purchase question, the latter including

both form and function attributes. For the form question, we utilize a standard an-

chored scale task. That is, we present two 3D vehicle renderings and ask “Which of
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Figure 3.1: Iterative bi-level questions

the following styles do you prefer more?”, to which the respondent makes a metric

paired-comparison on an ordered 4-point scale; specifically, “left one is much better”,

“left one is better”, “right one is better”, or “right one is much better”. Four points

were used to allow a moderate degree of preference expression over a binary choice

task, but without exact indifference, which provides little ‘traction’ for the forthcom-

ing adaptive algorithm. Next, for the purchase question, we present the previous 3D

vehicle renderings again with “functional attributes”, such as price and MPG. The

respondent is then asked “Which car will you be more likely to buy?”, and engages

in a binary choice task between the two presented vehicles. Such bi-level questions

are repeated a specific number of times, set by the analyst. The potential tendency

for respondents to maintain their choice on form question for the purchase question,

irrespective of the newly supplied functional attribute information, is controlled for

by counterbalancing, that is, by switching the order of the two sub-questions from

round to round. The actual interactive interface used for this study can be accessed

at vehiclechoicemodel.appspot.com.
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We define that form preference of individual i is represented by her form score

(i.e., form appeal) which is an output of her form preference model:

si = Si(x) + εi (3.1)

where x is a vector of design variables representing the form, si is the form score,

Si is the non-linear preference function, and εi is an error term. Based on the form

score, the overall preference for individual i is then given by the following linear utility

model:

Ui(si, a) = λisi + βT
i a + εi (3.2)

where a is a vector of binary dummy variables of function attributes, βi is the

associated part-worths vector for functional attributes, si is the form score, λi is the

weight of the form score, and εi is an error term. Two preference models (3.1) and

(3.2) are coordinated in real time by iterative bi-level questioning, as in Fig. 3.1. The

process for the odd-numbered rounds is as follows:

• Form question: an individual makes a metric paired-comparison between two

forms created by design variables, x(1) and x(2). Preference model Si(x) in

Eq. 3.1 is trained, then form scores, si
(1) and si

(2), are estimated. Two function

attributes, a(1) and a(2), are sampled for the following purchase question.

• Purchase question: an individual makes a binary choice between two bundles

of form and functions [si
(1), a(1)] and [si

(2), a(2)]. The weight of the form score

λi and the part-worths for functions βi in Eq. 3.2 are estimated. Two forms,

x(1) and x(2), for the following form question are sampled.

The overall process for querying, sampling, and learning is shown in Fig. 3.2, with

each step is explained below it.
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Figure 3.2: Overall process for querying, sampling, and learning
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• Start. A new questionnaire is initialized when an individual accesses the website.

• Step 1: Sampling form pair. A pair of vehicle renderings are generated from

the design space based on the current form preference model. The generated

rendering pair is such that their expected form preference should be roughly

equal, but their shapes should not only differ maximally from one another, but

from all forms used before. If this is the first question for the current subject,

a fixed form pair is used.

• Step 2: Querying form question. A metric paired-comparison response is re-

ceived from the subject.

• Step 3: Learning form preference. A form preference model is trained based on

previous form responses from this subject. Once the form model is learned (or

updated if not the first round), the form scores of previously sampled vehicle

renderings for the current subject are updated. Former subjects’ form preference

models are also used for shrinkage.

• Step 4: Learning overall preference. Except for the first round, the overall

preference model is adjusted based on the updated form scores. Former subjects’

overall preference models are also used for shrinkage.

• Step 5: Sampling function pair. Generate function attributes, i.e., price and

MPG, for the current pair of vehicle forms based on the updated overall pref-

erence model.

• Step 6: Querying purchase question. A (binary) choice is received from the

subject once the function attributes are shown along with the forms.

• Step 7: Learning overall preference. Same as Step 4. (Steps 1 through 7

complete an odd-numbered round in the questionnaire. The even-numbered
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round will then switch the order of the two questions, with steps as listed

below.)

• Step 8: Sampling form pair. Same as Step 1.

• Step 9: Sampling function pair. Same as Step 5.

• Step 10: Querying purchase question. Same as Step 6.

• Step 11: Querying form question. Same as Step 2.

• Step 12: Learning form preference. Same as Step 3.

• If the iteration has reached the maximum round number, m, go to Step 13;

otherwise, go to Step 1.

• Step 13: Querying validation question. Several validation sets will be presented

to the subjects; these will be used to check hit rate.

• If all subjects have completed their surveys, go to Step 14; otherwise, wait until

all have finished.

• Step 14: Final learning form preference. Finalize individual-level form prefer-

ence models using all other subjects’ results.

• Step 15: Final learning overall preference. Finalize individual-level overall pref-

erence models using all other subjects’ results.

• End. Hit rate will be checked using responses to the validation questions.

Different machine learning algorithms are used for active learning (learning for

sampling), and final learning ,as shown in Table 3.1. We used a rank SVM mix al-

gorithm (see Evgeniou et al. (2005)) for active learning (step 3, 4, 7, and 12) and for

final learning of form preference (step 14). We used Hierarchical Bayesian (HB) meth-

ods for final learning of overall preference (step 15). Active learning is for sampling
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Table 3.1: Machine learning algorithms used in this proposed model

Type
Active learning

(Learning for sampling)
Final learning

Form preference
Rank SVM mix

(Gaussian kernel)

Rank SVM mix

(Gaussian kernel)

Overall preference
Rank SVM mix

(linear)

Hierarchical Bayesian

(linear)

subsequent questions and is carried out in real time. Final learning is for finaliz-

ing preference models and validating them after finishing all surveys. Although HB

methods are attractive for active learning, their high computational cost precludes

their use in interactive online environments. We are agnostic, however, on specific

machine learning algorithms, any of which can be replaced with alternatives better

suited to the analyst’s specific survey environment and research goals.

The rest of this section will elaborate on how these algorithms are applied in our

proposed model: Section 3.2.2 will focus on the learning methods for both form and

overall preference models, and Section 3.2.3 will focus on the sampling methods to

generate 3D vehicle rendering and function attributes, such as price and MPG.

3.2.2 Learning Preferences

3.2.2.1 Form Preference Learning

As mentioned earlier, the form preference model in Eq. (3.1) is trained using a rank

SVM mix algorithm with a Gaussian kernel. While the original SVM creates the linear

decision function as maximum margin classifier between two separable categories

(e.g., chosen profiles vs. unchosen profiles in conjoint survey) (Vapnik and Vapnik ,

1998), kernel transformation allows the possibility of creating a nonlinear decision

function in case a linear decision function cannot completely separate observations

in the original space (Boser et al., 1992). The basic idea of kernel transformation is

mapping observations x in the original input space into φ(x) in the feature space (i.e.,
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an unknown higher-dimensional space) and then finding a linear decision function in

feature space.

Following Joachims (2002), Modeling preference from pairwise comparison data

can be formulated as follows

min
w

wTw

subject to wTφ(x
(1)
j )−wTφ(x

(2)
j ) ≥ cj, ∀j = 1, . . . ,m

where cj ∈ {1, 2}

(3.3)

where [x
(1)
j ,x

(2)
j ] is a pair of design variables that represent each form alternative

in the j-th of m questions, x
(1)
j is of the chosen form, x

(2)
j is of the unchosen form, w

is the normal vector of linear decision function wT , and cj is the minimum margin,

which means the difference between chosen and unchosen form preferences. Since we

used two levels of metric in our case study (i.e., better or much better), there are two

levels of minimum margin as an interval scale.When a form x
(1)
j is better than x

(2)
j ,

cj is 1, and when a form x
(1)
j is much better than x

(2)
j , cj is 2. Then we can have m

constraints. By minimizing wTw, we can maximize the margin between chosen form

φ(x
(1)
j ) and unchosen form φ(x

(2)
j ) in feature space.

Kernel function K is defined as K(xi,xj) = φ(xi)
Tφ(xj) with respect to two

observations xi and xj. Specifically, the Gaussian kernel is defined as K(xi,xj) =

exp(−γ‖xi−xj‖2), where the Gaussian parameter γ is typically set at γ = 1/number

of features (design variables) (Chang and Lin, 2011).

This SVM problem (3.3) can be transformed into dual form using Lagrangian

multipliers.

min
α

1
2
αTQα− cTα

subject to α ≥ 0
(3.4)

where, α and c are Lagrangian multipliers and the vector of minimum margin of
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Eq. (3.3), respectively. Q is defined as an m by m matrix with Qij = K(x
(1)
i , x

(1)
j )−

K(x
(1)
i , x

(2)
j ) −K(x

(2)
i , x

(1)
j ) + K(x

(2)
i , x

(2)
j ), where i = 1, ...,m, j = 1, ...,m, and m is

the number of questions.

Based on Lagrangian multipliers, α, form preference model can be quantified as

S(x) =
m∑
j=1

αj(K(x,x
(1)
j )−K(x,x

(2)
j )) (3.5)

where x is the vector of design variables, x
(1)
j contains the design variables of

chosen form at j-th question, x
(2)
j contains the design variables of unchosen form at

j-th question, αj is the Lagrange multiplier for the j-th question, and m is the number

of questions.

Note that design variables x in Eqs (3.3), (3.4), and (3.5) are used after normal-

ization, that is, x = (x− µ)/σ, where µ and σ are the mean and standard deviation

of all x used across questionnaires, respectively. This pre-processing enables uniform

handling of effectively differently-scaled design variables.

By intuition, since the Gaussian kernel function, K(xi,xj) = exp(−γ‖xi − xj‖2),

is based on Euclidean distance, the form preference in Eq. (3.4) increases when new

design variables x is close to chosen form x(1), and decreases when x is close to

unchosen form x(2). The Gaussian kernel function can be suitable for form preference

modeling which may be continuous and highly non-linear. However, trade-off between

fit and complexity is important problem for estimating preference functions (Toubia

et al., 2007a). This is because complex models, such as those with nonlinear kernels,

may not be able to predict well out-of-sample, while fitting well in-sample. SVM

model can also avoid over-fitting by using the soft-margin method, which includes

positive slack variables in the decision function (Cortes and Vapnik , 1995; Cristianini

and Shawe-Taylor , 2000).

For eliciting individual-level preferences with limited data, we made use of the
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shrinkage concept, by adopting the linear sum method of Evgeniou et al. (2005),

which calculates shrunk individual partworths based on the linear sum of individual

partworths and the population partworth means, as in Eq. 3.6. Evgeniou et al. (2005)

have demonstrated that this approach outperforms or performs similarly well as HB.

Since the form preference in this study is not modeled as a linear function, we

model the shrunk individual form preference based on linear sum of individual form

preference and the population form preference means. The final individual form

preference model S∗i (x) is given by

S∗i (x) = ηiSi(x) + (1− ηi)
1

N

N∑
i=1

Si(x) (3.6)

where x is design variables, ηi is the weight between 0 and 1 for each individual

i, and N is the number of individuals. Optimal ηi for the final estimation is can be

determined by cross-validation. If ηi is small, the function of individual i shrinks more

toward the population-level function. For active learning during survey, ηi should be

selected manually by the analyst. When there aren’t many former respondents, a

large value of ηi can be used. When there are many former respondents, a smaller ηi

value is appropriate.

3.2.2.2 Overall Preference Learning

For the overall preference model in Eq. (3.2), we estimate linear coefficients Wi =

[λi,βi], where λi is form score weight and βi is the partworth vector for function

attributes. We used the rank SVM mix algorithm and Hierarchical Bayesian (HB)

methods for active learning and final learning, respectively.

min
Wi

WT
i Wi

subject to WT
i X

(1)
ij −WT

i X
(2)
ij ≥ 1, ∀j = 1, . . . ,m

(3.7)

where Wi = [λi,βi] is the vector of linear coefficients for the overall preference
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model, λi is the form score weight, βi is the partworth vector for function attributes,

Xij = [sij, aij] is the vector of input for overall preference function, sij is the form

score, and aij is a vector of binary dummy variables of function attributes for the j-th

question of individual i. Eq 3.7 can be transformed into dual form using Lagrangian

multipliers α, as for Eq. (3.4). Then Wi is obtained as

Wi =
m∑
j=1

(X
(1)
ij −X

(2)
ij )Tαij. (3.8)

The linear sum method of Evgeniou et al. (2005) is also used to model individual-

level overall preference. We get shrunken W∗
i as

W∗
i = ηiWi + (1− ηi)

1

N

N∑
i=1

Wi (3.9)

where ηi is the weight (between 0 and 1) for individual i, and N is the number of

individuals.

For final learning, a hierarchical binary logit model (Rossi et al., 2005b), with

weakly-informative and zero-centered priors, is used for estimation. At the upper

level, Wi of individual i has a multivariate normal distribution, Wi ∼ N(θ,Λ),

where θ is a vector of means of the distribution of individuals and Λ is the covariance

matrix. At the lower level, choice probabilities take binary logit form,

Pr(yij = 1) =
exp[WT

i X
(1)
ij ]

exp[WT
i X

(1)
ij ] + exp[WT

i X
(2)
ij ]

= (1 + exp[WT
i (X

(2)
ij −X

(1)
ij )])−1 (3.10)

where Pr(yij = 1) denotes the probability of selecting X
(1)
ij ; Pr(yij = 0) denotes

the probability of selecting X
(2)
ij for j-th question of individual i; and Wi and Xij are

as in Eqs (3.8) and (3.9).
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3.2.3 Sampling Questions

Adaptive question sampling is based on two criteria, as follows. (i) Utility bal-

ance: a profile pair comprising a question should have similar utility. (ii) Maximize

minimum distance between data points: all data points, such as previous question

profiles and new question profiles, should be spread in balanced manner. Using these

two criteria, question sampling can be a single- or multi-objective problem. The first

form alternative for the form pair is sampled by solving the single-objective problem

as

max
xnew
1

∑m
xold

j=1 ‖xnew
1 − xold

j ‖2

subject to lb ≤ xnew
1 ≤ ub

(3.11)

where xnew
1 is the first form alternative for the next question, xold

j are the j-th form

alternatives used in previous questions, and mxold is the number of form alternatives

used before. The first form is sampled by maximizing Euclidean distance between

data points.

The second form alternative for the form pair is sampled by solving the multi-

objective problem as

min
xnew
2

υ1 exp(‖S(xnew
2 )− S(xnew

1 )‖2)− υ2(‖xnew
2 − xnew

1 ‖2 +
∑m

xold

j=1 ‖xnew
2 − xold

j ‖2)

subject to lb ≤ xnew
2 ≤ ub

(3.12)

where xnew
2 is the second form alternative for the next question; S(x) is the form

preference model; v1 is the associated weight for minimizing utility differences be-

tween form pairs (i.e., utility balance); and v2 is the associated weight for maximizing

Euclidean distance between data points. xnew
2 should be far away from not only used

forms xold
j but also the first form alternative xnew

1 sampled in Eq. (3.11). v1 and v2
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should be selected by the analyst based on specific characteristics of the parametric

model for 3D rendering.

For form sampling, the problems (3.11) and (3.12) are solved here by genetic

algorithms (GA). For sampling the next pair of function attributes, we can solve

the same optimization problem as Eqs (3.11) and (3.12) by only replacing the form

preference model S(x) and design variables x into the overall preference model U(s, a)

and function attributes a, respectively. In our study, function attributes are not

continuous variables but binary dummies, so that testing all possible combinations

of function attributes is feasible. Thus, we enumerated all possible combinations and

compared them, instead of using GAs, to sample subsequent function pairs.

3.3 Simulation

3.3.1 Simulation Design

As explained at the outset, we presume that the choice modeler wants to model

both individual-level form and overall preferences, but can pose but a limited number

of questions to anonymous online crowd via a single-shot survey instrument. Dotson

et al. (2012) and Sylcott et al. (2013a), as explained in Section 2.2.2, are not suitable

to build an individual-level preference model for anonymous online environments, due

to the need for time-intensive data analysis between the form question survey and

design purchase questionnaire.

For just such environments, we simulated three possible modeling options, includ-

ing the proposed model, as shown in Table 3.2. Model 1 is the “base” model, model

2 is the “half version” of the proposed model, and model 3 is the “full version” of

the proposed model. The reason we tested the half version of the proposed model

is to examine the effects of bi-level question structure and adaptive question design

separately. These three models also are tested via an online experiment in Section 3.4.
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Table 3.2: Simulation models and characteristics

Models Querying Learning Sampling

Model 1

(Base: single-level)

Single level:

20 purchase questions

Form and overall:

HB (linear)

Non-
adaptive

(DOE)

Model 2

(Half: bi-level)

Bi-level:
10 form questions &

10 purchase questions

Form: Rank SVM mix
(nonlinear)

Overall: HB (linear)

Non-
adaptive

(DOE)

Model 3

(Full: bi-level & adaptive)

Bi-level:
10 form questions &

10 purchase questions

Form: Rank SVM mix
(nonlinear)

Overall: HB (linear)

Adaptive

It is assumed that all models are informed by the survey responses of 100 subjects,

with a total of 20 questions, including form and purchase questions. An online pilot

study suggested that 20 questions are suitable for this particular application. For

validation, we used 100 hold-out questions each for form and purchase questions (i.e.,

200 total) to compute hit-rates. We used a form attribute consisting of 19 continuous

design variables and two function attributes consisting of four discrete levels, as for

the online experiment in Section 3.4.

Model 1 is the base model using only purchase questions and accommodating

form and function with a single linear preference model, in line with conventional

conjoint analysis techniques. Hierarchical Bayesian methods are used for specifying

and estimating the linear preference model. For DOE (design of experiments), we

used a Latin hypercube sampling method to generate questionnaire designs for both

continuous and discrete variables.

Model 2 is the half version of the proposed model for testing bi-level structure

and non-linear modeling effects. The bi-level structure makes it possible for form and

overall preferences to be modeled using different techniques (i.e., a nonlinear model

for form preference and a linear model for overall preference), after which the form

model can be nested into the overall model. For the online experiment in Section 3.4,

subjects may be more easily able to trade-off between form and functions because
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they are shown a pair of vehicle forms first, followed by price and MPG with the

same forms. Form preference is modeled by a rank SVM mix (Gaussian nonlinear),

and overall preference is modeled by HB (linear). Compared to model 1, model 2

sacrifices 10 purchase questions, while adding 10 separate form questions. A latin

hypercube sampling method is used for DOE.

Model 3 is the full version of the proposed model for testing bi-level structure,

non-linear modeling, and adaptive questionnaire design effects, all together. Querying

and learning structure are the same as model 2, but model 3 uses adaptive sampling

so that form and function profiles are generated in real time adaptively, so that each

question has different form profiles (a potentially limitless number of forms).

Regarding software used in this study, for Latin hypercube sampling, we used the

Matlab library (lhsdesign); for HB, we used the hierarchical binary logit model in

a specific R package (rhierBinLogit) (Rossi et al., 2005b); and for rank SVM, we

modified the LIBSVM package (Chang and Lin, 2011).

Broadly speaking, for the simulation design, we adopted and modified the stan-

dard simulation design which has been widely used for conjoint analysis research

throughout the marketing area (Arora and Huber , 2001; Toubia et al., 2004; Evge-

niou et al., 2005; Abernethy et al., 2008). A mainstay of previous research is that

response accuracy is controlled by the magnitude of an individual’s parameters (part-

worths), while respondent heterogeneity is controlled by the variance of parameters

(across respondents). We operationalize accuracy and respondent heterogeneity by

setting them each to two levels, “low” and “high”. For example, the magnitudes of

parameters are set to β=0.5 and β=3 for low response accuracy and high accuracy,

respectively. On a logit scale, these represent deviation in log-odds of 0.5 and 3.0 from

a baseline of zero (i.e., β=0); or, in terms of probability, according to (1+exp [−β])−1,

which translates into 0.62 and 0.95, respectively, on a probability baseline of 1
2
. The

parameter variances are set relative to the level of β, to σ2 = 0.5β and σ2 = 3β for
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low respondent heterogeneity and high heterogeneity, respectively. Based on these

parameters, four normal distributions are defined, β is drawn from each distribution,

and then four levels partworths for each function attribute, (−β,−β/3, β/3, β), are

generated, keeping constant differences set to 2β/3. Two function attributes such as

price and MPG with four levels are used for the simulation.

For creating true preference functions of individual, 19 continuous design variables

are defined for form attribute. This setting corresponds to the online experiment in

Section 3.4. Here we generate a complex form preference model by using independent

parameters γ and interaction parameters δ. For independent term of k-th design

variable, γk is drawn from four pre-defined distributions similar to the method used

for the function attributes, where k=1,2,...,19; four points (−γk/3, γk,−γk, γk/3) are

generated, and then cubic spline interpolation, Φ, is applied to create a continuous

function with respect to k-th design variable xk. For interaction term, we define and

draw 171 interaction terms δij representing relationship between i-th and j-th design

variables where i and j are different. The number of possible pairs of 19 design

variables is 171 (i.e. 19×18/2 = 171). Finally, form function, with respect to 19

design variables, is defined as follows, where the function is taken to be nonlinear and

continuous.

S(x) =
19∑
k=1

Φ(γk, xk) +
171∑
i 6=j

δijxixj (3.13)

The distributions of δ were balanced in the sense that the independent terms and

interaction terms were set to a 2:1 ratio. Following Evgeniou et al. (2005), we gen-

erate 1,000 random form profiles and 1,000 consumer form preference models, then

compare the ratio of absolute values of independent term and interaction term (mean

of 1000×1000 ratios), given the sigma of distribution of δ. Form score weight, λ,

in Eq. 3.2 represents the importance of form preference. We selected λ that can

make the ratio of absolute values of form score s and function attribute preference
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Table 3.3: Consumer preference scenarios

Form

importance

Response

accuracy

Respondent

hetero-

geneity

Form score

weight (λ)

Form attribute

coefficients
Functional

attributes

partworths (β)
Independent

terms (γ)

Interaction

terms (δ)

Low Low Low 0.0043 N(0.5, 0.25) N(0, 4.8) N(0.5, 0.25)

Low Low High 0.0044 N(0.5, 1.5) N(0, 13.7) N(0.5, 1.5)

Low High Low 0.0028 N(3, 1.5) N(0, 56.25) N(3, 1.5)

Low High High 0.0057 N(3, 9) N(0, 88.36) N(3, 9)

High Low Low 0.0173 N(0.5, 0.25) N(0, 4.8) N(0.5, 0.25)

High Low High 0.0176 N(0.5, 1.5) N(0, 13.7) N(0.5, 1.5)

High High Low 0.0112 N(3, 1.5) N(0, 56.25) N(3, 1.5)

High High High 0.0230 N(3, 9) N(0, 88.36) N(3, 9)

Note: form attribute coefficients and functional attributes partworths are drawn from
a normal distribution, N(µ, σ2)

βTa a to be 1:2 and 2:1 for low importance case and high importance case of forms,

respectively. For this, we generate 10,000 random product profiles and 10,000 con-

sumer preference models, then examine the ratio of absolute values of form score and

function preference, then select the values that allow for the 1:2 and 2:1 ratios.

Consequently, we created eight consumer preference scenarios, and define their

distributions as shown in Table 3.3. To check hit-rate, we generate five sets of all

eight scenarios, so that total 40 scenarios are used for the simulation.

3.3.2 Simulation Results

Table 3.4 shows the results of the various simulation scenarios, where hit-rates

are taken as the mean across the five sets. (·)∗ indicates the best, or not significantly

different from best at p < 0.05, across three models.

Except for one case (low form importance, low response accuracy, and high re-

spondent heterogeneity), model 3 outperformed model 1 statistically for both form

and overall hit-rates. For the form hit-rate, every case suggests that model 2 (bi-level

structure and non-linear modeling) offers sizable improvements over model 1 (base).
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Table 3.4: Hit rates of simulation

Simulation design Form preference hit rate Overall preference hit rate

Form im-

portance

Response

accuracy

Respondent

hetero-

geneity

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Low Low Low 50.8 65.2 66.2* 90.5 91.9 93.2*

Low Low High 51.0 65.6* 65.3* 91.6 91.7 90.1

Low High Low 52.0 63.3 66.7* 92.7 93.6* 94.6*

Low High High 51.2 63.4 65.2* 89.7 92.3* 92.8*

High Low Low 52.5 65.1* 66.1* 87.2 87.9 90.1*

High Low High 52.3 65.2* 65.1* 87.2 88.1* 88.7*

High High Low 53.5 62.9 66.3* 93.0 92.8 94.4*

High High High 53.2 62.4 64.7* 87.5 88.5* 89.8*

*Best or not significantly different than best at p < 0.05 across all models

Five out of eight cases has model 3 (adaptive questionnaire design) outperforming

model 2 (non-adaptive questionnaire design). For overall hit-rate, half of cases favor

model 2 over model 1, whereas 3 out of 8 favor model 3 over model 2. These sim-

ulation results suggest that the proposed bi-level and adaptive conjoint analysis can

outperform the conventional one, even though it “sacrifices” 10 purchase questions.

Notably from the perspective of the goals of the present study, form preference accu-

racy can be improved substantially (average 14%), enabling marketers to pass along

more reasonable target design values to industrial designers and engineers.

We conducted a post-analysis, testing sensitivity to the total number of questions

(form questions and purchase questions) on hit-rate, as shown in Fig. 3.3, using the

results of model 1 and model 3 with what is arguably the most difficult scenario in

Table 3.4 (i.e., high form importance, low response accuracy, and high heterogeneity).

Except for the 10 questions case (i.e., 5 form questions and 5 purchase questions for

model 3 vs. 10 purchase questions for model 1), model 3 consistently outperformed

model 1. This owes to the fact that the form preference accuracy (for hit rate) of model

3 is always significantly better than for model 1, even though half of the purchase

questions are sacrificed. More questions enable better form preference accuracy for
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Figure 3.3: Sensitivity of the number of questions

model 3, while the performance of model 1 does not improve substantially after 30

questions. This test shows that form preference accuracy is more sensitive to the

number of questions than overall preference accuracy in model 3.

3.4 Online experiment

We have launched three online surveys that correspond with the three models1

simulated in Section 3.3 (see Table 3.2). Model 1 is the base model, using linear utility

modeling with single-level questioning; Model 2 is the half version, using non-linear

utility modeling with bi-level questioning; and Model 3 is the proposed model, using

non-linear utility modeling with adaptive and bi-level questioning. Three online crowd

groups were recruited through ClearVoice Research (Clearvoice, 2014), a prominent

online panel provider, and each group includes 100 subjects for each survey. The

demographic data for subjects are shown in the Appendix. A total of 20 questions

are used for learning and 10 holdout questions (i.e., 5 form and 5 purchase holdout

questions) are used to check hit-rates.

1Model 1: http://1.vehiclechoicemodel.appspot.com
Model 2: http://2.vehiclechoicemodel.appspot.com
Model 3: http://3.vehiclechoicemodel.appspot.com
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Figure 3.4: 19 design variables

For vehicle form representation, we adopted the 3D parametric vehicle shape

model of Ren and Papalambros (2011). This parametric model generates 3D ren-

dering using two-leveled structures. First, nineteen design variables x (ranging from

0 to 1) were decided upon. These variables control the coordinates of control points,

which in turn defines the surfaces of the 3D model. Fig. 3.4 illustrates locations of

all control points, some coordinates of which are controlled by the design variables

while others are either fixed or adjusted automatically to maintain surface smooth-

ness. During the training, the set of variable values are mapped to some 276 design

features, each representing the distance between a pair of control points. These de-

sign features are controlled considering feasible (smooth and continuous) shapes, and

these features generate a 3D vehicle rendering.

Here, form preferences of Model 2 and Model 3 are modeled with respect to 276

low-level design features using SVM, while form preference of Model 1 is modeled

with respect to 19 high-level design variables using HB. This is because HB may not

be able to estimate properly individual preferences for 276 design variables using only

20 choice data (Dotson et al., 2012). For functional attributes, the five attribute levels

for each vehicle price and MPG are selected based on sales data of CD car in US, as
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Table 3.5: Function attributes levels
Level Price (MSRP) MPG (city/highway) Percentile (market data)

1 $23K 23/27 10th

2 $25K 23/29 25th

3 $26K 24/30 50th

4 $29K 25/31 75th

5 $31K 26/32 90th

Table 3.6: Hit rates of online experiment
Form preference hit-rate Overall preference hit-rate

Model 1 (Base: single-level) 54.4% 57.2%

Model 2 (Half: bi-level) 62.6%(8.2%) 65.0%(7.8%)

Model 3 (Full: bi-level & adaptive) 66.6%(12.2%) 69.8%(12.6%)

Note: Percentages in parentheses refer to differences of hit-rate from Model 1.

shown in Table 3.5.

Hit-rates of all three models for the online experiments are shown in Table 3.6.

The results show that the proposed model has the highest performance among the

three included here.

Model 2 (in Table 3.6) shows the effect of the bi-level structure. These results

suggest that bi-level structure entails substantial improvements in prediction, 8.2%

and 7.8% for form and overall preferences hit-rates, respectively, compared to Model

1. We believe this owes to the fact that bi-level structure allows for distinct and

appropriate modeling techniques for each of form and overall preference modeling.

Here, specifically, SVM was used for form preference modeling, and HB was used for

overall preference modeling, but these choices can be crafted by the researcher for the

application domain at hand.

Model 3 (again in Table 3.6) shows the effect of the bi-level structure with adap-

tive sampling. These results further suggest that Model 3 offers 12.2% and 12.6%

improvements for form and overall preferences hit-rates, respectively, compared to

Model 1. Moreover, Model 3 entails 4.0% and 4.8% improvements for form and over-

all preference hit-rates, respectively, compared to Model 2 (bi-level structure without
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adaptive sampling). This suggests that adaptive sampling is useful to elicit both

non-linear form preferences and linear overall preferences.

The overall pattern of results provides evidence that the bi-level questionnaire

structure and adaptive sampling are helpful in capturing empirical patterns in both

form and overall preference. Specifically, the bi-level structure appears to have af-

fected predictive accuracy for form preference more than for overall preference; and

adaptive sampling affected overall preference predictions more than those for form.

The overarching purpose of this study is to model both form and function prefer-

ences together, within the confines of a one-shot survey, and to measure the tradeoffs

among specific design variables and functional ones. However, we did test one more

model that did not consider form attributes. Specifically, we removed form attributes

from Model 1 to check overall preference prediction based on only functional at-

tributes. In Model 1a, we trained the overall preference model using only function

attribute, price and MPG, then checked hit-rate. The results were dramatic: the

hit-rate increases to 64.6%, from the 57.2% of Model 1. This strongly suggests that

predicting overall preference by incorporating form design variables and function at-

tributes within single linear model is suboptimal as a general approach. Model 2 in

fact shows still slightly better performance of overall preference hit-rate, even though

Model 2 sacrifices 10 purchase questions and models form preference. The proposed

method, Model 3, affords significantly better prediction (69.8%) for overall preference

than Model 1a (64.6%) .

The proposed model can be useful for product design with market segmentation.

For example, from our online experiment results, 100 subjects can be clustered into

four groups by K-means according to form importance (λ), price importance, and

MPG importance as shown in Fig. 3.5. Price importance and MPG importance are

calculated by the difference between highest partworth and lowest partworth.

Four groups may be interpretable as:
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Figure 3.5: Clustering for market segmentation

Figure 3.6: Optimal vehicle form of each group

• Group 1 – consumers who think form and MPG are important

• Group 2 – consumers who think form and price are important

• Group 3 – consumers who think price and MPG are very important

• Group 4 – consumers who think form is very important

To get the optimal vehicle form for each group, we maximized the sum of individual-

level form preference models (i.e., aggregate objective function with the same weight)

in each group. The obtained optimal vehicle forms are shown in Fig. 3.6.

This result does not represent the real market, because we used our own parametric

vehicle design model and limited number of survey data. However, this approach can
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give a practical insight to marketers and designers on how to use form and function

preference models for market segmentation. If a decision maker has his own paramet-

ric vehicle design models and manufacturing cost models, he can trade-off between

form and function in each market segment, and estimate how much consumers are

willing to pay.

3.5 Conclusion

It has been demonstrated by simulation and online experiment that the proposed

bi-level adaptive conjoint analysis can effectively elicit both individual-level form and

overall preferences using a single survey. The proposed model can sort out tradeoffs

between specific design variables and function attributes in terms of eventual con-

sumer choice. We summarize below the main challenges that remain in following up

on this study, and associated contributions of our modeling approach.

The first such challenge was to design a single survey for individual-level prefer-

ence modeling for both form and overall preferences. This paper presents a bi-level

structure survey. Each round the user answers two pair-wise choice questions: (1)

“Which of the following styles do you prefer more?” for vehicle 3D renderings, and

(2) “Which car will you be more likely to buy?” for the same vehicle 3D renderings,

coupled with functional attributes. Form scores (form appeal) are estimated based

on user responses to question (1) and, as a consequence, the overall preference model

can be trained using form scores as inputs and user responses to question (2). This

approach makes it possible to build individual-level preference models without in-

tervening time delays, and to use different modeling techniques in form (non-linear)

and overall (linear) preferences. The experiment with real-time respondents showed

that the bi-level structure survey offers substantial improvement in form preference

modeling accuracy, compared to (single-level) conventional conjoint.

The second challenge was the requirement that one limit the number of questions
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overall, due to user fatigue in online settings, given that form preference modeling

entails the burden of accommodating non-linear and continuous geometric attributes.

To address this persistent problem, this paper presents a mechanism to adaptively

generate form and function attributes based on responses of both the real-time re-

spondent and previous respondents. While adaptive questionnaires have been investi-

gated previously (Toubia et al., 2003, 2004, 2007b; Abernethy et al., 2008), this paper

demonstrates its usage in a large and continuous design space and with a nonlinear

underlying model. Moreover, this paper adopted not only Hierarchical Bayesian but

also a more recent approach based on support vector machine mix (Evgeniou et al.,

2005) for shrinkage with relatively low computational cost. The online experiment

of this study showed that adaptive sampling in bi-level structure offers a nontrivial

degree of improvement in overall preference modeling accuracy, compared to non-

adaptive sampling in a bi-level structure.

The third challenge was the lack of choice modeling research on complex 3D

geometric forms. Most research has used 2D parametric models, but user choices

made using 2D form representations can differ from those in reality (Artacho-Ramirez

et al., 2008; Reid et al., 2013). This paper adopted an online parametric 3D rendering

tool that generates vehicle forms with 19 continuous high-level design variables and

276 low-level design variables, and demonstrated that the proposed conjoint analysis

can handle a large number of design variables and elicit preference effectively.

3.6 Summary

This chapter proposed a multidomain demand model for engineering and industrial

design. The proposed model integrates functional attributes and aesthetic attributes

into a single demand model. This helps decision makers to understand how vehicle

shape design variables can affect both form preference and overall preference, as well

as the trade-off between functional and aesthetic attributes.
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Next chapter develops a multidomain demand model for engineering and service

design.
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CHAPTER IV

Multidomain Demand Modeling for

Engineering and Service Design

This chapter expands the scope of demand modeling from product alone to prod-

uct and associated services. While Chapter III focused on handling preferences on

disparate attributes in a single product. this chapter dedicates to handling external

product attributes and product attributes together. As the integrated product-service

has emerged as an attractive business model, producers need to predict demands of

both product and associated services and then co-design.

The demand model in this chapter considers multiple choices (i.e., a product and

multiple services) rather than a single product choice in Chapter III. The business

model used in this study assumes that a consumer chooses a product and then asso-

ciated services sequentially during the horizon of product ownership, where products

and services can be provided by the same producers. In this case, product demand

can affect associated services demand, and the relationship between two demands can

depend on product-service channels.

This chapter proposes a multidomain demand model as an interface system be-

tween engineering and service designs. The main challenge in this chapter is to figure

out how to control product-service channels in demand model, and how to design

optimal product-service channels. Based on the proposed demand modeling, profit-
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maximized product-service design framework will be applied to tablet and E-book

service example.

4.1 Introduction

The formal integration of products and services has been regarded as an avenue

to enhance both the profitability and sustainability of an enterprise (Brady et al.,

2006; Hudson et al., 2011). Such “product-service systems” have been defined in the

academic literature as “a marketable set of products and services capable of jointly

fulfilling a user’s need” to achieve more economic value and less environmental impact

than conventional product-oriented businesses(Mont , 2002; Baines et al., 2007; Roy

and Baxter , 2009). An oft-cited example concerns the integration of tablets and

digital services (e.g., iPad with App Store, Kindle with Amazon); as noted by an

industry leader: “Some of the companies that have made tablets and put them on

the market have not been successful – because they made tablets. They didn’t make

services.” (Hudson et al., 2011). That is, they were focused on the physical product

being produced, not the integration of that product with the services from which

many consumers derive primary value.

For a successful business operating in an integrated product-service market, pro-

ducers must examine profitability jointly. Research in profit-maximizing product de-

sign methodology has long been a staple of academic marketing, especially via the

conjoint approach (Green and Krieger , 1991; Moore et al., 1999), with further ap-

plications to optimal service design (Pullman and Moore, 1999; Easton and Pull-

man, 2001; Goodale et al., 2003). The engineering design research field has extended

this approach to multi-disciplinary design in engineering, manufacturing, and policy

(Michalek et al., 2005; Lewis et al., 2006; Frischknecht et al., 2010). Most previous

research in profit-maximizing design has focused, for reasons of tractability and data

availability, on either the product or the service aspect in isolation. Some marketing
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research has addressed product and service design jointly, but only in such conven-

tional settings such as after-sales service (Cohen and Whang , 1997) which takes the

form of schedule maintenance or repair, and delivery service (Verma et al., 2001),

considering operating variables such as waiting time and service reliability. As such,

it is not directly applicable to current market integration settings, such as e-devices

and digital services, where the choice of services is an integral and preliminary as-

pect of product choice itself. While some research in the design literature has begun

to address profit-maximizing product-service design (Kang et al., 2013a, 2014), opti-

mal product-service design with non-exclusive channels - those in which a producer’s

product can avail of services from other firms as well - has yet to be addressed.

The product-service channel (PS channel) decision is the main topic in this study,

where the PS channel represents (i) compatibility between product and service for

customers’ perspective and (ii) strategic cooperation with competitors’ products and

services.

The model put forth in the present study analyzes the following type of product-

service market. (1) Producers supply both products and associated services; (2)

according to available PS channels, customers can purchase other producers services

as well; (3) customers first purchase a particular product, and subsequently purchase

multiple services (through a service platform) for the period of product ownership;

(4) decisions regarding PS channels among competitors requires contractual agree-

ments. Within such a market set-up, we propose a joint optimization method with

respect to three interrelated elements: PS channels; product prices and attributes;

and service prices and attributes. Since the PS channel structure is a shared decision

variable across competitors, we use standard game-theoretic techniques to establish

and determine market equilibria. A tablet and e-book service example is used to

demonstrate the proposed method.

The present paper follows Kang et al. (2013a), who showed that, since an in-
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tegrated product-service business model has trade-offs between product profit and

service profit, decision makers should design the product and service simultaneously

and consider optimal balancing of product/service prices and attributes. Specifically,

if a producer launches a product with a lower price than competitors, higher real-

ized product demand can augment service demand and thereby enhance total profits.

Even if product profit is sacrificed due to low product price, service profit can make up

for the loss. However, in this previous study, PS channels were considered exclusive,

so that product users of producer A can access only the services of producer A. When

the PS channel is non-exclusive, product users of producer A can use services of other

producers, B or C, so that product users of producer A are no longer guaranteed as to

generate service demand for producer A. This additional source of consumer freedom

in the PS channel renders product-service choice and demand far more complex to

model, as well as dynamic. Since the particular PS channel availability is a shared

decision variable, firms need to understand how PS channel decisions affect not only

their own product and service demand levels, but also those of competitors’ share

channels.

The PS channel design problem is well exemplified by tablet and e-book service de-

signs. Kindle/Amazon, Nook/Barnes&Noble (B&N), iPad/iBook, and Nexus/GooglePlay

are supplying both tablets and their associated e-book services. Assuming all PS chan-

nels are exclusive, Kindle users can use only Amazon e-books; Amazon will supply

e-books to only Kindle users; iPad users can use only iBook; and iBook will sup-

ply e-books to only iPad users. However, in reality, PS channels are non-exclusive

and asymmetric. At the time of writing, a Kindle user can avail only of the Ama-

zon e-book market because there is no iBook app in Amazon’s App store; Amazon

supplies e-book services to not only Kindle, but also the iPad through the Kindle

app in Apple’s App store. Therefore, iPad can use not only iBook but also Ama-

zon e-books, while iBook supplies e-book services to only the iPad (Carnoy , 2011).
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Third-party software may create additional channels, e.g., through PDF conversions,

but these “informal”, labor-intensive, non-quality-preserving (and in many cases of

questionable legal status) channels are not addressed in the present framework.

That PS channel structure affects customer choices is clear from the fact that cus-

tomers choose services from multiple providers, that is, other than the one explicitly

provided by the manufacturer of their equipment. But this cuts both ways: choice

of product is affected by which services will be available when using any particular

one. In a non-exclusive channel structure, when choosing a product, customers can

consider service quality and price, as well as how many services (i.e., service vari-

ety) are available through any particular product. After settling on a product, a

customer can make ongoing choices from among possible service options, as meets

their moment-to-moment needs. The PS channel thereby affects product choice and

service demand. For example, an Amazon customer who has many Amazon e-books

does not need to buy a Kindle specifically: s/he has other product choice options,

such as the iPad kindle app. Analogously, an iPad user does not need to buy all,

or indeed any, e-books through iBook, because other iPad-compatible options, like

Amazon, are available.

More subtly, the PS channel structure affects producers’ design decisions. When a

producer supplies its services to other competitors’ products, it allows users of those

products to access its own content. For example, when that content is proprietary,

those who chose the producer’s product(s) merely to be able to access their content no

longer have to. [Currently, many Apple programs are specific to their own operating

system; those wishing to use these programs must purchase from Apple to do so.

Porting the software to other operating systems might therefore lower product demand

for Apple overall.] On the other hand, when a producer allows its product to use other

competitors’ services, its product becomes more attractive due to increased service

variety; however, it may cede service demand to competitors. Thus, decisions to
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“open up” a device to services from others is a double-edged sword, involving trade-

offs between demand/share for a product and that for its formerly exclusive services.

Because the PS channel decision is a shared, it is affected by competitors’ deci-

sions. First and most obviously, the PS channel decision requires acceptance from

competitors. While deleting the channel - i.e., an equipment manufacturer deciding

to no longer support content from a specific provider, or a provider electing to no

longer serve a particular device - could be decided by only one partner, adding a

channel requires an agreement between two producers, a decision that can hinge on

predicted profit change for the two producers. If adding a channel brings more of a

valued quantity (usually, profit, but potentially also sales or share) to both producers,

it will, ceteris paribus, be accepted. Second, the PS channel can have different levels

of ease of use. A producer may offer more advantages to its own PS channel than to

a channel with other competitors. For example, in its early days, Apple allowed iPad

users to shop for e-books (from Amazon) though Kindle app; however, Apple began

to require a 30% portion of the revenue from each Amazon book purchase on iOS,

perhaps in a bid to protect its own iBook service. Amazon decided not to include a

store function in the Kindle app on iOS so that the Kindle app users could no longer

shop Amazon e-books directly; instead, iPad users go the more laborious route of

shopping Amazon e-books from a web-based store outside the app, sync them with

the app on iPad, and then access them (Carnoy , 2011). In short, ease of use for ser-

vices can vary according to competitors’ PS decisions. In the current tablet market,

the PS channel can also be controlled by the OS (operating system) itself.

In summary, producers need to strike an optimal balance between exclusive and

non-exclusive PS channels to maximize overall product/service profit. They also

need to anticipate potential profit changes of competitors to best negotiate a mutu-

ally beneficial channel decision. For example, a tablet producer (e.g., Apple) can only

reasonably propose to support e-books from another firm if the arrangement is prof-
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itable to that firm, and we will use this insight, to our knowledge for the first time,

to impose constraints on possible contractual solutions. It is important to note that

optimal prices and attributes for both products and services depend on the PS chan-

nel structures themselves, and cannot be optimized for an in “exogenous” manner,

then fed into the PS design problem as fixed quantities. That is, producers need to

understand the relationship among all these variables, and then optimize them con-

currently. Although much marketing science and management research (Jeuland and

Shugan, 1983; McGuire and Staelin, 1983; Lee and Staelin, 1997; Sudhir , 2001; Luo

et al., 2007; Cai et al., 2012) and some design research (Williams et al., 2008; Shiau

and Michalek , 2009b) has addressed distribution channels for maximizing profit, these

are “conventional” channels between suppliers and retailers that have a given, fixed

structure, and are not selected in terms of joint optimization.

The remainder of the paper is organized as follows. Section 4.2 introduces the

product-service design profit maximization framework. In Section 4.3, we demon-

strate the proposed method on the tablet and e-book services example and discuss

results. Section 4.4 offers conclusions and direction for future research.

4.2 Proposed Model

4.2.1 Market setting

Here, we detail the market setting for the integrated product-service business

model addressed in this paper. Fig. 4.1 depicts an example of some possible PS chan-

nel structures with two producers. Service choice examples are also shown, according

to the PS channel structure.

It is important to underscore some of the key properties emerging from Fig. 4.1:

• A producer supplies a product and service together. Producer A supplies prod-

uct pA and associated service sA; producer B supplies product pB and associated
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Figure 4.1: Examples of market settings

service sB.

• A service consists of multiple subservices: sA includes {sAi}, that is, sA1, sA2,

sA3, and sA4 , while sB includes sB1, sB2, sB3, and sB4.

• Subservices can be unique to a particular provider, or similar across providers.

In the case of similar services, pairs such as (sA1, sB1), (sA2, sB2), (sA3, sB3),

(sA4, sB4) may have different prices and qualities while providing functionally

equivalent benefits to the user.

• Each customer chooses one product, either pA or pB; we do not model the sit-

uation where a user might elect to purchase both. S/he then chooses a service,

either sAi or sBi. Service choice occurs multiple times during the horizon of

product ownership (due to potential renewals, and which can vary across con-

sumers), and elected services correspond to a subset of all available services.

Duplication of equivalent services is technically allowable under this set-up,

although is rarely economically advisable.

• In Case 1, which deals with exclusive channels, pA users can use subservices
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from only sA; pB users can use subservices from only sB.

• In Case 2 non-exclusive and asymmetric channels, pA users can use subservices

from only sA; but pB users can use subservices from both sA and sB so that pB

users can choose some subservices from the pairs such as (sA1, sB1), (sA2, sB2),

(sA3, sB3), (sA4, sB4). For example, a pB user can choose {sB1, sA2, sB3} sequen-

tially for using pB.

• In Case 3, non-exclusive and symmetric channels, regardless of product choice,

customers can choose any subservices.

• Adding a channel requires acceptance from competitors, while removing a chan-

nel can be decided by only one partner (unless specifically contractually disal-

lowed). For example, when producer A wants to add a channel between pA and

sB or a channel between sA and pB, acceptance by producer B is required.

We assume that a customer chooses a product based on product price, product

attributes, and the PS channel; he/she chooses a service based on service price and

attributes. Taking the example of the tablet and e-book service market, pA and sA

can be the Kindle and Amazon market, respectively; pB and sB can be iPad and

iBook markets, respectively. For example, {sA1, sA2, sA3, ..., sAM} are e-books in the

Amazon market and {sB1, sB2, sB3, ..., sBM} are e-books in the iBook market. In

practice, M, the number of total potential books, can number in the millions. Note

that sAt and sBt are the same book, where t = 1, 2, 3,..., M , and can either can

take on a value of 1, if the book is available, or 0 if it is not. In the product and

service market, book price and shopping method can be different. Each customer can

purchase a different number of e-books for a different period of product ownership.
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4.2.2 Demand and profit modeling under product-service channel

We model products and services based on the market set-up described above, with

a demand model that can be modified for different market settings. We adopt the

latent (to the researcher) consumer utility concept underlying random-utility-based

discrete choice models (Green and Krieger , 1996b), which have come to dominate

both theoretical and applied work in the marketing field, as has Hierarchical Bayes

(HB) choice-based conjoint (Rossi and Allenby , 2003; Orme, 2009), which is used to

estimate heterogeneous customer preferences (often referred to as “part-worths” for

discrete attributes).

Product demand modeling follows recent design research using the HB approach

(Michalek et al., 2011; Kang et al., 2013a), which itself builds upon decades of research

in marketing modeling (e.g., Green et al. (2001)). The basic process can be summa-

rized as follows: (i) Choice data are gathered using a conjoint-based survey; (ii) HB

choice model estimates parameters (i.e., part-worths) of individual-level preference

function based on choice data are obtained; (iii) splines interpolate across discrete

part-worths, enabling optimization over a continuous design space; (iv) market de-

mand is predicted, based on choice probabilities and potential market size.

The individual-level discrete utility, vipj, of individual i and product pj takes the

usual linearized form with respect to discrete attributes levels, as

vipj =
K∑
k=1

Lk∑
l=1

βiklzjkl, (4.1)

where zjkl are binary dummy variables indicating if alternative product j possesses

attribute k at level l; zjkl represent product price, product attributes, and service

compatibility; βikl are the part-worth coefficient of attribute k at level l for individual

i. Service compatibility is the response of the PS channel decision. For example,

in Fig 4.1, there are four PS channel decision variables: Channels between pA − sA,
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pA−sB, pB−sA, and pB−sB. Since channel decision variables here are binary dummy

variables, if a variable is 1, a channel is connected (as depicted by lines in Fig 4.1);

if it is 0, a channel is not connected. Note that pA − sA and pB − sB should always

be connected. In this case, customers can have three levels of service compatibility:

sA, sB, and (sA, sB) according to product choice. If there are four producers, they

will have 24 − 1 = 15 levels of service compatibility, as shown later for our specific

empirical example in Table 4.2.

The HB choice model estimates conjoint part-worths via a two-level process. At

the “upper level”, we assume individuals’ part-worths, βi, follow a multivariate nor-

mal distribution, βi ∼ N(θ,Λ), where θ indicates a vector of means of individuals’

preferences and Λ is the covariance matrix; that is, the former (θ) suggests what a

“typical” consumer would like, while the latter suggests how much variability there is

in consumer preference (diagonal elements of Λ), as well as how preferences for one

attribute help predict those for a different attribute (off- diagonal elements of Λ). At

the “lower level”, choice probabilities have logit form, which is particularly amenable

to gradient and elasticity computation:

Pri(pj) =
exp(vipj)∑
j′∈J exp(vipj)

, (4.2)

where Pri(pj) is the probability that individual i chooses product option pj from a

set of product alternatives J. Markov chain Monte Carlo (MCMC) is used to generate

posteriors of the part-worths of individuals i.

Product demand can be calculated, for various market scenarios, based on hetero-

geneous customer preference models. Either total or averaged demand can be used

for optimization (as these contain identical information), so that projected (averaged

across participants) demand is given by:
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qpj =
1

I

I∑
i=1

µPri(pj) (4.3)

where qpj is the product demand of product option pj, µ indicates the potential

product market size (i.e., number of users), and I indicates total number of partici-

pants.

Next, service demand is calculated via conditional probability, given product

choice and demand. A choice-based conjoint survey can conducted (as before) to

gather service preference data; estimation of service attributes part-worths proceeds

analogously to that for products. Note, however, that the setting is somewhat more

complex, for the following reasons: (1) service alternative options depend on product

choice; (2) services consist of subservices; and (3) service choice occurs on multiple

occasions.

The individual level discrete utility, visht , of individual i and service sht , can be

expressed in linear form with respect to discrete attributes levels as

visht =
M∑

m=1

Nm∑
n=1

βimnzhtmn, (4.4)

where h is a service platform, t indicates subservice, zhtmn are binary dummy vari-

ables, zhtmn represents service price and service attributes m at level n. Some service

attributes can be decided by the PS channel; βimn are the part-worth coefficients

of service attribute m at level n for individual i. Using the HB choice model, βimn

are estimated, and then service choice probabilities can be calculated using the usual

logit-based method as

Pri(sht | pj) =
exp(visht )∑

h′∈Hpj
exp(vish′t

)
, (4.5)

where Pri(sht | pj) is the conditional probability that after individual i chooses

product pj, s/he chooses service option sht from the set of service alternatives Hpj of
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product pj. Service alternatives are dictated by the PS channel decision.

Equations (4.4) and (4.5) represent, for simplicity of exposition, single choices for

subservices (e.g., one e-book choice). Service demand can be calculated by summing

all subservice choices over all products during the product’s life cycle.

As before, the averaged (across consumers) demand value is used for profit opti-

mization:

qsh =
1

I

I∑
i=1

∑
t∈Ti

∑
j′∈J

µPri(pj′)Pri(sht | pj′), (4.6)

where qsh is service demand of service option sh, µ indicates (as before) the po-

tential product market size, Pri(pj′) is choice probability of product pj′ , Pri(sht | pj′)

is conditional probability of service sht given pj′ , J is a set of product alternatives, Ti

is a set of service choices of individual i, and I indicates total number of individuals.

The set Ti is can be determined by foreknowledge, an additional survey, or inferred

from market statistics (e.g., e-book purchase history).

To illustrate, we apply Equations (4.1) to (4.6) to Case 2, that is, a non-exclusive

and asymmetric channel (as in Fig. 4.1), for two products, A and B:

qpA =
1

I

I∑
i=1

µ

[
exp(vipA)

exp(vipA) + exp(vipB) + exp(vipnone)

]
(4.7)

qpB =
1

I

I∑
i=1

µ

[
exp(vipB)

exp(vipA) + exp(vipB) + exp(vipnone)

]
(4.8)

qsA = 1
I

∑I
i=1

∑
t∈Ti

[
µ
[

exp(vipA )

exp(vipA )+exp(vipB )+exp(vipnone )

] [
exp(visAt

)

exp(visAt
)+exp(visnone )

]

+µ
[

exp(vipB )

exp(vipA )+exp(vipB )+exp(vipnone )

] [
exp(visAt

)

exp(visAt
)+exp(visBt

)+exp(visnone )

]] (4.9)
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qsB =
1

I

I∑
i=1

∑
t∈Ti

[
µ

[
exp(vipB)

exp(vipA) + exp(vipB) + exp(vipnone)

][
exp(visBt

)

exp(visBt
) + exp(visnone)

]]
(4.10)

Here, qpA and qpB are product demands of producer A and B, respectively, qsA and

qsB are service demands of producer A and B, respectively, and “none” indicates the

case where a customer “chooses the no-choice option”, that is, refrains from choosing

entirely. Note that that Eq. (4.9) has one more term than Eq. (4.10) because service

sA can be used by both pA and pB.

Based on the demand model given previously, product profit and service profit

are calculated as

Πpj = qpj(Ppj − Cpj) (4.11)

Πsh =
1

I

I∑
i=1

∑
t∈Ti

∑
j′∈J

µPri(pj′)Pri(sht | pj′)(Psht
− Csht

) (4.12)

where Πpj is profit of product pj, qpj is product demand, Ppj is product price, Cpj is

product cost, Πsh is profit of service sh, Psht
is price of service sht , Csht

is cost of service

sht , and other symbols retain their definitions from Eq. 4.6. For optimization, the sum

of product profit and service profit is used as the objective, although modifications

to include a known discount rate (because service profits are made after those for

products) are straightforward.

4.2.3 Product-Service Design Framework

Based on the demand modeling above, we propose a profit optimization frame-

work for product-service design as shown in Fig. 4.2. Before optimization, the current

PS channel structure and competitors’ product and service prices/attributes are set.
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Decision variables are the PS channel structure, product price, product attributes,

service prices, and service attributes. That is, these variables are set for the competi-

tor, then optimized for the focal firm. Note that this framework is used for the design

of a single product and multiple services for each producer. While it can be extended

to product family design, this would require a (straightforward) modification of the

present optimization framework.

The PS channel is a binary design variable, so that if a channel links a product

and a service platform, its value is 1, otherwise, 0. When there are n producers

in the market, the PS channel can be described as an n × n matrix, as shown in

Table 4.1. Optimization amounts to a producer’s choosing values within this matrix

for its product and service options; note that diagonal values are 1 because products

and services from the same manufacturer are always connected. Product demand

is calculated based on product price, product attributes, and service compatibility

as per Eq. (1) to (3). Using individuals’ potential services sets, service demand is

calculated based on service prices, service attributes, the PS channel, and product

demand, through Eq. (4.4) to (4.6). Product profit and service profit are calculated

using price, cost, and demand for products and services, through Eq. (4.11) and

(4.12).

A notable feature of the proposed framework is that it uses a competitor’s profit

change as a constraint: When given producer wants to add channels with a competi-

tor’s product or service, if its design decision affects the competitor’s profit positively,

it is taken to be a feasible design decision; otherwise, it is not. That is, a producer

can only reasonably propose channels to a competitor that will enhance that com-

petitor’s profit. For product and service constraints, three types - boundary, equality,

or inequality - can be used. For feasibility constraints (e.g., whether a product’s com-

ponents can fit in its case), engineering or operation simulation models can be used

as in previous research (Kang et al., 2014). Optimization proceeds iteratively across
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Figure 4.2: Profit maximization framework for product-service design
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producers: After optimizing the overall profit of a focal producer, other competitors

optimize their profit with the same process that the ‘optimized’ producer followed.

These sequential optimizations proceed until all players (producers) cannot find a

better design (i.e., one that increases profit). This results in a Nash equilibrium, a

“solution concept” well studied in marketing and engineering design research (Shiau

and Michalek , 2009b). Here we assume that, during the initial iteration, producers

decide on all decision variables; for subsequent iterations, they decide only on prod-

uct/service prices and channels. That is, because product design decisions are slow

and costly to alter, we presume that producers first decide on product attributes,

then engage in (iterative, sequential) optimization for prices and channels for both

products and services.

4.3 Case Study: Tablet and E-book

4.3.1 Market setting

The proposed framework is demonstrated via tablet (product) and e-book (service)

designs. Because the main purpose of this study is illustrative, market assumptions

are deliberately generic, transparent, and simple, as follows. First, we selected four

main producers, each of which has both tablet and e-book markets: (1) Kindle /

Amazon Kindle books, (2) Nook / Barnes & Noble (B&N), (3) iPad / iBook, and

(4) Nexus / GooglePlay books. The study focuses on single product designs rather

(as opposed to product family designs), so assumes that each producer optimizes for

a single ‘flagship’ tablet with full-color display; that is, we do not consider black

and white e-readers and their interactions with the full-color market. For e-book

services, price distribution across the four e-book markets are based on real observed

prices of 20 best-seller e-books in each market (Gilbert , 2012). Specifically, we assume

that these 20 best-seller e-books prices can serve as a reliable proxy for e-book price
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Table 4.1: Market setting for case study

Product (Tablet)

Service (E-book market)

Amazon B&N iBook GooglePlay

$9.78 (2.14)(a) $9.98 (1.81) $10.41 (1.64) $10.14 (2.32)

Kindle, $169, 7”, 16GB 1 0 0 0

Nook, $149, 7”, 16GB 0 1 0 0

iPad, $399, 9.7”, 16GB 1 1 1 1

Nexus, $229, 7”, 16GB 1 1 0 1

(a) Prices and figures in parentheses refer to average prices and standard deviations,
respectively, across 20 best-seller books.

distributions (see Appendix A). The PS channel structure is based on the market

situation at the time of writing. In addition, we assume that when a customer shops

for an e-book from her tablet’s producer, she does so via an in-tablet app, but uses a

web-based interface for e-books from other competitors’ (Carnoy , 2011).

Table 4.1 summarizes the market setting for the study, with four flagship tablets

and four e-book markets. The e-book prices shown are averages of 20 best-sellers

so, for example, Amazon’s price of $9.78 compares favorably with those for B&N

($9.98), iBook ($10.41), and GooglePlay ($10.14). The binary indicators listed in

Table 1 indicate whether a channel exists between tablet and e-book markets. Note,

for example, that the PS channel is asymmetric: iPad users can access all four e-book

services (row 3 of 4), while iBook does not supply e-book services to competitors

(column 3 of 4).

4.3.2 Demand modeling

We conducted two choice-based conjoint surveys, for tablet choice and e-book

choice, sequentially. 152 US respondents were surveyed using Amazons Mechanical

Turk (Amazon, 2012a) and Sawtooth Software (Orme, 2009). Respondent demo-

graphics were broadly consistent with the US in general: 41% male, 59% female; 20%

were 15-24 years of age, 49% 25-34, 16% 35-44, and 15% older than 45; 72% and
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Table 4.2: Attribute levels and relative importance in tablet choice

Attributes Levels
Estimated

Importance

Compatible

e-books

15 levels: {Amazon} / {B&N} / {iBook} /

{GooglePlay} / {Amazon, B&N} / {Amazon, iBook}
/ {Amazon, GooglePlay}/ {B&N, iBook} / {B&N,

GooglePlay} / {iBook, GooglePlay} / {Amazon,

B&N, iBook} / {Amazon, B&N, GooglePlay} /

{Amazon, iBook, GooglePlay} / {B&N, iBook,

GooglePlay} / {Amazon, B&N, iBook, GooglePlay}

30.5%

Tablet

brand
4 levels: Kindle HD / Nook HD / iPad / Nexus 19.3%

Tablet

price
5 levels: $129 / $199 / $299 / $399 / $499 28.2%

Display size 5 levels: 7” / 7.9” / 8.9” / 9.7” / 10” 9.8%

Storage 5 levels: 8GB / 16GB / 32GB / 64GB / 128GB 12.2%

58% of respondents reported tablet and e-book use experiences, respectively. Analo-

gous figures for the US (Census , 2012; Research) are: tablet users are 47% male and

53% female; 18% are 15-24 years of age, 19% 25-34, 24% 35-44, and 40% are over

45. Because our focus is on methodology rather than empirical modeling, such small

deviations between sample and population demographics seem satisfactory.

For the tablet choice-based conjoint survey, five attributes - compatible e-books,

tablet brand, price, display size, and storage - were included, as shown in Table 4.2.

Respondents were asked to suppose that they are considering purchasing a tablet,

with the specific objective of being able to read e-books, and that their tablet choices

would determine which of multiple compatible e-book services would be available

to them. They understood the nature of co-branding; for example, when the tablet

brand is Kindle HD, compatible e-book options always include Amazon (as evidenced

by ones along the diagonal in Table 4.1). As is typical, each choice set included a

small number (in this case, three) tablet profiles along with a “none”, that is, the

so-called “no choice option”.

Previous respondents from the tablet survey were surveyed again, supposing they
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Table 4.3: Attribute levels and relative importance in e-book choice

Attributes Levels
Estimated

Importance

E-book

market
4 levels: Amazon / B&N / iBook / GooglePlay 42.6%

E-book

price

(best-seller)

4 levels: $8.99 / $9.99 / $1.99 / $11.99 39.5%

Easy of

shopping(a) 2 levels: By app / By web-based store outside app 17.9%

(a) When tablet and e-book market are from the same producer, e-books can be pur-
chased by an in-tablet app.

had bought a tablet and then wanted to purchase an e-book. For the e-book choice-

based conjoint survey, three attributes of known importance were included - e-book

market, e-book price, and ease of shopping - and are shown in Table 4.3. Subjects

were told that prices for the same book can vary across markets. As mentioned earlier,

customers can buy a book from the market of their tablet’s producer via an in-tablet

app, or from another seller using a web-based store. This reflects the reality that

using your tablet brand’s e-book market is simply more convenient than buying from

a competitor. As in the tablet conjoint, each choice set included three e-book profiles

and a “none” choice option.

Using HB estimation (as per Section 4.2.2), individual preference functions were

quantified for each of the 152 respondents. Tables 4.2 and 4.3 list average relative

importance for each attribute, while Appendix B lists estimated part-worths for each

level separately. MCMC draws were ‘thinned’ to every tenth; burn-in was 50,000

(these were discarded); and inference proceeds from the final 50,000 draws, which

were used to obtain preference part-worths. Lastly, cubic splines interpolation allows

the estimation of continuous preference functions from the discrete part-worths used

in the study (see Michalek et al. (2011)).

The conjoint survey was supplemented by follow-up questions aimed at assessing
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eventual service demand, e.g., “Suppose you buy a new tablet now. How long do

you intend to use it?” and “Supposing you use the e-book service, how often are you

likely to purchase E-books?” Mean and standard deviation of the period of product

ownership were 4.4 years and 2.7 years, respectively; analogous values for frequency

of e-book purchase were 19.2 and 15.8 books per year, respectively. These data were

used in calculating individual level service demand. Recall that we used price data

on 20 e-books (Gilbert , 2012), some of which were the same across the four markets,

while others differed. For optimization purposes, we used average prices.

Since tablets are multi-purpose products, estimate the market “share” and size

for tablets among e-book users is challenging. Summary statistics can provide bench-

marks: 457 million e-books were sold in 2012 (USATODAY , 2013), 25% of e-books

are read on tablets (Books , 2012), and the average number of e-books read (among

those who read electronically) is 24 books per year (Rainie, 2012). Based on this

data, a rough estimate of projected tablet demand used for e-reading is 4.76M (i.e.,

457M × 25% / 24). Because this is an input figure that ‘scales linearly’ within the

model, improved estimates of market size can be easily slotted into the methodology.

4.3.3 Cost and optimization modeling

For tablet cost modeling, we adapted conventions from previous tablet design

research (Wang et al., 2011b) focusing on display and memory storage costs:

Cdj = Cd0q
b1
dj
zb2dj (4.13)

Cmj
= Cm0zmj

(4.14)

where Cdj is cost of LCD display j, Cd0 is $50 (of variable cost), qdj is demand for

displays, zdj is display size in inches, b1 and b2 are parameters with values -0.1032 and
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0.7965, respectively, Cmj
is cost of flash memory j, Cm0 is $4 (of variable cost), and

zmj
is memory size in Gigabytes (GB). Display costs follow economies of scale, while

other costs are considered constant with respect to demand / production, including

costs for batteries, integrated circuits, and ‘miscellaneous’, which are assumed to be

$115 in total (Wang et al., 2011b). E-book prices can be broken down into margin,

royalty fees, taxes, and delivery costs. Since the royalty fees make up a majority of

an e-book’s price (Amazon, 2012b), we consider only the royalty fee as the cost of

e-book service provision, and used iBook’s royalty rate, 70% (Mill city press , 2012).

The decision variables are the PS channels (z1, ..., z16 = 0 or 1), tablet price

($129 ≤ z17 ≤ $499), display size (7 ≤ z18 ≤ 10), memory storage size (8 ≤ z19 ≤

128), and e-book price change (−$2 ≤ z20 ≤ +$2). The PS channel decisions are

binary decision variables. Since we have four products and services, the PS channel

matrix, as mentioned previously, is 4 by 4, so the space of possible channel combi-

nations has size 2(4×4) = 65, 536. However, some of these are impermissible: the PS

channels between the same producers (i.e., on the diagonal) must be set to 1, and a

producer can control only its channels so that each producer has possible PS channel

options of 26 = 64. Each producer optimizes its decision sequentially so that tablet

brand and e-book market brand are optimized in order. As discussed earlier, in terms

of PS channel acceptance between competitors, removing a PS channel does not re-

quire the other party’s agreement, while adding a PS channel is possible only when

neither player’s profits are harmed. Profit optimization is achieved subject to this PS

channel constraint in addition to tablet and e-book design boundary constraints.

For the equilibrium calculation, optimization is carried out in order (determined

at random) of Amazon, B&N, Apple, and Google; this is repeated until the optimal

design decisions of all producers have converged, and profit cannot be enhanced by fur-

ther changes. Previous producers’ (optimal) decisions are used for the next producer’s

optimization, as parameters of the demand model. Because product features cannot
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Figure 4.3: Sequential profit maximizations for four producers

be changed frequently, we assume that producers first decide on all decision variables,

including product attributes, and secondarily decide only on product/service prices

and channels. Since the design problem is a mixed integer optimization, we used ge-

netic algorithms (GA) (MathWorks , 2014a) to solve the profit optimization problem.

Owing to high computational costs for performing all optimization and validation at

the individual level, the following procedure was used. For optimization, mean part-

worths were calculated and used as inputs; for validation, demand was computed at

the individual-level, then averages, as per Eq. (4.3).

4.3.4 Optimization results and discussion

Fig. 4.3 shows how the optimal profit of each producer changed and converged over

the iteration history, where the x-axis indicates the iteration and y-axis profit ($). The

profit of each producer is the response to its optimal design at each iteration. At the

11th iteration, all profits are nearly converged; that is, no design change can entail

more profit for any producer. Figs. 4.4 and 4.5 similarly suggest that all optimal

decision values have converged. Note again that product attributes are optimized

and fixed at the first iteration, while product/service prices and channel decisions are

re-optimized at each subsequent iteration.

Fig. 4.6 lists optimal design decisions, including the PS channel and product/service
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Figure 4.4: Convergence of price decisions of each producer

Figure 4.5: Convergence of channel decisions of each producer
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Figure 4.6: Optimal design decisions for each producer

attributes of each producer, where initial values are shown in Table 4.1. For Ama-

zon, the Kindle’s optimal price, display, and storage are $396.3, 10”, and 18.4GB,

respectively; optimal e-book price (for Amazon) is $9.95; and the optimal channel ar-

rangement is for Kindle users to be able to use all competitors’ e-book services, while

Amazon supplies e-books to only Kindle users. Table 4.4 lists market responses of

optimal decisions, where the values shown are means of the market response distribu-

tion based on 152 (heterogeneous) customer preference parameters. Optimal profits

result when each producer optimizes its own situation; however, because the channel

is not exclusive, service profit can arise not only from the same producer’s product,

but also competitors’ products. For example, B&N supplies e-books to Nook and

Nexus, so that 95% of service profit comes from Nook users and 5% of service profit

comes from Nexus users.

The proposed demand model can also help determine where the service profit

comes from. Market shares of products and services in each case are shown in the

last two columns. We must underscore that the various assumptions made to restrict

attention to the focal variables (e.g., the lack of black-and-white tablets) suggests the
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Table 4.4: Market responses of optimal decisions

Producer

Overall

Profit

($)

Product

Profit

($)

Service

Profit

($)

Service Profit

from (%)

Product M/S

(%)
Service M/S (%)

Amazon 759M 312M 447M

Kindle: 100% Kindle: 47% Amazon: 38%

Nook: Nook: 14% B&N: 29%

iPad: iPad: 12% iBook: 17%

Nexus: Nexus: 13% GooglePlay: 16%

B&N 297M -138M 435M

Kindle: Kindle: 27% Amazon: 25%

Nook: 95% Nook: 43% B&N: 38%

iPad: iPad: 11% iBook: 18%

Nexus: 5% Nexus: 7% GooglePlay: 19%

Apple 437M 155M 282M

Kindle: 7% Kindle: 19% Amazon: 32%

Nook: Nook: 24% B&N: 24%

iPad: 93% iPad: 39% iBook: 23%

Nexus: Nexus: 8% GooglePlay: 22%

Google 388M 577M 331M

Kindle: 11% Kindle: 18% Amazon: 35%

Nook: Nook: 9% B&N: 18%

iPad: iPad: 25% iBook: 19%

Nexus: 89% Nexus: 38% GooglePlay: 27%
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results should be applied with caution to the actual market for these four producers.

However, the simulation results do suggest that the proposed model yields results with

reasonable face validity, and can help decision makers understand market behavior.

4.4 Conclusion

Over the last decade, more and more products have been endowed with “in-

telligence”, in the sense of incorporating information technology, connectivity, and

enhancements via non-physical “updates”. They are, quite literally, more than the

sum of their parts. When a consumer chooses a cell phone, for example, she must

envision which apps it can run, and therefore the degree of choice and competition

in that related, service-based marketplace. Traditional demand models, primarily

from marketing and engineering design, can decompose both the product and service

decisions, and help optimize them separately. Difficulties arise, however, when these

decisions are conjoined and are necessarily sequential, with product choice preceding

service access. This paper proposed a framework designed to optimize over several

disparate, but interacting, elements - PS channel, product price, product attributes,

service prices, and service attributes - jointly, using the objective of overall product

and service profits. Notably, it does so for three distinct multi-channel structures, ex-

clusive, non-exclusive asymmetric, and exclusive asymmetric. Such a framework helps

producers understand how PS channel decisions affect not only their own customer

demand and profit patterns, but those of all market players. An extensive simulation

and optimization, using summary market information (e.g., for prices) and conjoint

choice data for both tablet and E-books, illustrated how the model can be used for

a real product category, and how channel structures affect demands and profit levels

for a producer’s products and related services.

We view the proposed framework as evolutionary, building firmly on widely-used

techniques in economics, marketing, and engineering design. In that light, there are a
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number of novel features of the framework that serve to unify aspects of the techniques

developed in those cognate literatures. First, the demand model in this framework

accommodates the actual, sequential nature of choice of product and multiple associ-

ated services; previous customer choice research had, by contrast, focused on a single

choice of a product or a product-service bundle. Second, the PS channel structure

was accommodated via decision variables, not as pre-determined parameters; previ-

ous distribution channel research in this area has largely examined price optimization

under a given channel structure. Lastly - and we believe this to be a methodological

innovation with the potential for broad application - the proposed framework consid-

ers competitors profit changes as (non-negativity) constraints, owing to the fact that

PS channels are shared decisions requiring acceptance from both product producers

and service providers.

4.5 Summary

This chapter proposed a multidomain demand model for engineering and service

design. The proposed model integrates product demand and service demand into

a single demand model framework. An enterprise-wide profit maximization frame-

work was proposed to optimize products and services for three types of channel (i.e.,

exclusive, non-exclusive asymmetric, and exclusive asymmetric) in a competitive mar-

ketplace.

Next chapter presents a multidomain demand model for engineering and opera-

tions design.
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CHAPTER V

Multidomain Demand Modeling for

Engineering and Operations Design

This chapter expands the scope of services consumed along with a product as

discussed in Chapter IV, to the infrastructure supporting the use of a product. The

business model used in this study assumes that usability of a product is affected by

infrastructure design so that a consumer chooses a product considering infrastructure

attributes along with product attributes.

This chapter focuses on mapping consumer preference between the demand model

and design simulation models of different domains. While Chapter III and IV focused

on proposing a new demand modeling approach, this chapter dedicated to develop-

ing DMS (Design for Market Systems) framework for cooperative decision-making

in partnership, and demonstrates the advantage of this approach compared to the

sequential decision-making case.

As a design application, we addressed how Electric Vehicle (EV) and charging

station attributes affect consumer adoption of EVs; how EV design decisions are

coupled with charging station design decisions. The proposed multidomain demand

model and integrated decision-making framework is developed for an interface system

between engineering design (i.e., to find optimal EV function) and operations design

(i.e, to find optimal charging station locations). Especially, the proposed EV demand
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model reflects geographical input of target consumers: the charging station coverage

is estimated based on consumers locations, and EV demand for each target city is

predicted considering charging station coverage for each city.

5.1 Introduction

In the Electric Vehicle (EV) market, one can identify five key players besides the

consumers themselves (Vardera, 2010): Original Equipment Manufacturers (OEMs)

assemble vehicles and sell them to consumers; battery manufacturers supply batteries

to OEMs; utilities supply electricity to charging stations; charging station manufac-

turers supply Electric Vehicle Supply Equipment (EVSE) to utilities; and govern-

ments support all related activities through a variety of policies.

EVs face several consumer adoption barriers such as vehicle operating range, ve-

hicle cost, perceived safety, unusual emergency situations, reliability, vehicle size and

performance, infrastructure support, long charging time, high charging cost, and long

payback period expectations (Vardera, 2010; Egbue and Long , 2012). The individual

market players mentioned above are expending significant effort to overcome such bar-

riers. In this paper, we adopt the argument that to overcome these barriers effectively,

the market players must use a holistic approach to develop cooperatively integrated

business models rather than just pursue their individual business models (Kley et al.,

2011). In this spirit, we present a mathematical formulation of a decision-making

(optimization) framework that can support an integrated business model. Some of

the market players are already cooperating in the market using business to business

(B2B) models. For example, cooperation of OEMs and battery manufacturers or co-

operation of utilities and charging station manufacturers are common. In the current

study, we address a cooperative business model between two groups: EV manufac-

turers (i.e., OEMs and battery manufacturers) and charging station operators (i.e.,

utilities and charging station manufacturers).
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A major barrier to consumer adoption is range anxiety. The consumer perception

of its importance depends not only on the actual operating range determined by the

design of the vehicle and its battery (vs. that of a conventional fuel vehicle) but

also on the availability of charging stations and required charging times when the

consumer plans a particular, possibly long, trip. Thus, consumers hesitate to buy

EVs due to range anxiety, EV manufacturers hesitate to develop and produce EVs

due to small market demand, and charging station operators hesitate to invest in

charging infrastructure for the same reason (Melaina and Bremson, 2008).

Addressing range anxiety requires coordination of engineering business decisions

by EV manufacturers and operation business decisions by charging station operators.

For example, a short range vehicle in a market with ample charging stations may

induce less range anxiety than a long range vehicle in a market with sparse charging

stations. Interestingly, research shows that the average daily driving range in the US is

less than 20 miles (Pearre et al., 2011; Smart and Schey , 2012), and so range anxiety

may be due more to a psychological need for security in an occasional long trip.

Appealing to consumers through, say, joint advertising, for both EV performances

and public charging stations coverage as a ‘bundle’ could be more effective in EV

technology adoption. This approach could also address the issue of high initial vehicle

cost due to a large battery pack that accounts for almost half of total consumer vehicle

cost (Wikipedia, 2014).

EV manufacturers and charging station operators can partner to identify optimal

‘system’ balance between vehicle performance and charging station infrastructure to

maximize market share or profit for both parties. A cooperative example in the US is

the EV project supported by the U.S. Department of Energy engaging partners such

as ECOtality, Nissan LEAF, and Chevrolet Volt in major states (ECOtality , 2014);

the ChargePoint program supported by Coulomb Technologies is a cooperation among

Chevrolet, Ford, and Smart USA (ChargePoint , 2014); Reliant Energy is working with
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Nissan in Houston, and Southern California Edison is working with Ford in California.

Such cooperations typically focus only on funding for installation of EVSEs in target

EV markets rather than the broader cooperation suggested here.

In this study, we consider a charging infrastructure with direct current (DC) fast

charging stations for commuting between major cities or trips longer than the range

offered by a typical EV in the current market. EVs generally use three types of

charging modes (or stations), Level 1, Level 2, and DC fast. It takes at least three

hours to recharge a battery using Levels 1 or 2, while DC fast can recharge a battery

to 80% capacity (for safety reasons) within 30 minutes. DC fast charging stations are

considered promising for a future public charging infrastructure, but there were only

154 stations in the US as of 2012 (Young , 2014).

The proposed decision-making framework combines the EV design and charging

station location network design problems. EV manufactures decide on vehicle price

and attributes such as range, MPGe (miles per gallon gasoline equivalent), top speed,

and acceleration (0 to 60 mph). Charging station operators decide on charging fee,

how many stations to build, and where these stations should be located considering

EV range offered by the manufacturer. The optimization objective is to maximize

overall profit, and it is assumed that EV manufacturers and charging station operators

invest together and share the profits. Optimization results show that a cooperative

business model (i.e., integrated decision-making for overall profit) is more profitable

than a sequential business model (i.e., engineering decision-making and then operating

decision-making for maximizing each player’s profit) for both partners.

The remainder of the paper is organized as follows. Section 5.2 introduces the

decision-making framework and associated models. Section 5.3 presents an imple-

mentation case study for an EV market in Southeast Michigan. Section 5.4 and

Section 5.5 discuss results, conclusions and limitations.
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Figure 5.1: Framework of decision making

5.2 Integrated Decision Making Framework

5.2.1 Framework

The decision-making framework consists of three models for marketing, engineer-

ing and operations with shared decision variables. The framework is given in Fig. 5.1.

The EV design model represents the engineering problem with EV design variables

(xEV ) such as battery (BEV ), motor (MEV ), and gear (GEV ) designs as variable

inputs; and EV attributes (AEV ) such as range (rEV ), MPGe (mpgEV ), top speed

(spEV ), and acceleration (accEV ) as outputs. These outputs are used as inputs to the

marketing and operations models.

The DC fast Charging Station (CS) location network model represents the oper-

ations problem with CS design variables (xCS) such as number (NCS) and locations

(LCS) of stations as variable inputs, EV range (rEV ) as input from engineering, and

charging station coverage (CVCS) as the output. This output is used as input to the

marketing model. Coverage is defined as the percentage of possible paths a consumer
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can drive from his origin (e.g., home) without running out of power by using DC fast

charging stations.

The marketing model predicts EV and charging station demands (qEV , qCS) using

the EV attributes (AEV ) from the engineering model and charging station coverage

(CVCS) from the operations model as inputs, as well as EV price (pEV ) and charging

fee (pCS) as variable inputs.

The optimization objective is to maximize overall profit (ΠEV + ΠCS) from EVs

and charging stations with respect to the variables: EV price (pEV ), charging fee

(pCS), EV design (xEV ), and charging station design (xCS).

The overall optimization equation is stated as follows.

max
x̄

ΠEV + ΠCS

= (pEV − cEV )qEV + (pCS − cEC)qCS − cCS

(5.1)

with respect to

x̄ = [pEV , pCS,xEV ,xCS]

xEV = [BEV ,MEV , GEV ]

xCS = [NCS,LCS]

(5.2)

subject to

lb ≤ x̄ ≤ ub (5.3)

g(AEV ) ≤ 0 (5.4)

where

AEV = [rEV ,mpgEV , spEV , accEV ] (5.5)

[cEV , cCS] = fc(xEV ,xCS) (5.6)

[qEV , qCS] = fq(pEV , pCS,AEV ,CVCS) (5.7)

AEV = fEV (xEV ) (5.8)
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CVCS = fCS(xCS, rEV ) (5.9)

where x̄ in Eq. (5.2) are decision variables, Eq. (5.3) are boundary constraints, and

Eq. (5.4) are inequality constraints for EV attributes as shown in Table 5.2. Fur-

thermore, fc, fq, fEV , and fCS are linking cost, demand, engineering, and operations

outputs to decision variables, respectively. Each model is explained in more detail in

the next sections.

5.2.2 Electric Vehicle Design Model (Engineering)

The engineering performance model of a Battery Electric Vehicle (BEV), fEV , in

Eq. (5.8) is built using the AMESim software. The subsystem models include ana-

lytical expressions from the AMESim libraries (AMESim, 2014). Previous research

showed that analytical models of EV systems are appropriate for efficient system-level

simulations in the early design stage, and their adequate fidelity has been assured

through comparison with finite element models or laboratory measurements (Chan,

2000; Lee and Tolbert , 2009; Tenner et al., 2011).

The engineering model here consists of driver, control unit, motor torque control,

battery, inverter, permanent magnet synchronous motor, and vehicle models as shown

in Fig. 5.2. The overall architecture and vehicle parameters for the modeled vehicle

are similar to the Nissan Leaf. The subsystems designed in the study are lithium-ion

battery, permanent magnet synchronous motor, and gearing. Six design variables

and their lower and upper bounds are summarized in Table 5.1. Four responses

(attributes) and associated inequality constraints are are summarized in Table 5.2.

These practical inequality constraints are placed to ensure highway driving feasibility.

5.2.2.1 Battery Design

We use the simple battery model shown in Fig. 5.3 where OCV is open circuit

voltage, r is internal resistance, I is current, CF is filtering capacitance, and U is
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Figure 5.2: Engineering simulation model

Figure 5.3: Battery model (AMESim, 2014)

the output voltage. Based on this model, state of charge (SOC), output voltage, and

heat flow rate (i.e., thermal losses) are computed as outputs of the simulation.

Battery design variables are the number of cells in series in one branch and the

number of branches in parallel, and they are used to calculate the following battery

characteristics:

Cbt = Ccell · np (5.10)

CFbt = CFcell ·
np

ns

(5.11)
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Table 5.1: Design variables of engineering model

System Symbol Design variables
Lower

bound

Upper

bound

Battery
ns Number of cells in series in one branch 80 200

np Number of branches in parallel 1 4

Motor

Ld Stator inductance of the d-axis 1.62mH 3.42mH

Lq Stator inductance of the q-axis 1.98mH 4.18mH

Rs Stator resistance 0.001Ω 0.1Ω

p Number of pole pairs 1 4

Gear G Gear ratio 2 12

Table 5.2: Responses and inequality constraints of engineering model
Response Constraint

Top speed (spEV ) ≥70 mph

Acceleration (0 to 60 mph) (accEV ) ≤30 sec

Range (rEV ) N/A

MPGe (mpgEV ) N/A

OCVbt = OCVcell · ns (5.12)

rbt = rcell ·
ns

np

(5.13)

Here ns and np are the number of cells in series in one branch and the number of

branches in parallel, respectively; Cbt is battery capacity, Ccell is cell capacity, CFbt is

battery filtering capacitance, CFcell is cell filtering capacitance, OCVbt is battery open

circuit voltage, OCVcell is cell open circuit voltage, rbt is battery internal resistance,

and rcell is cell internal resistance. Since OCVcell and rcell are affected by SOC,

OCVcell and rcell are computed by linear interpolation of available experimental data.

All parameter values in the above equations are based on Nissan Leaf battery cell

tests (EERE , 2011a).

From the battery characteristics above, SOC, output voltage, and heat flow rate

are computed:

dSOC

dt
= 100 · I2

Cbt

(5.14)
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dU

dt
=
I2 − U−OCVbt

rbt

CFbt

(5.15)

dh =
(U −OCVbt)2

rbt
(5.16)

where U is the output voltage and dh is heat flow rate based on Joule’s losses.

5.2.2.2 Motor Design

The motor model outputs such as torque and heat flow rate are computed using

permanent magnet flux linkages, stator inductance, and the number of pole pairs as

design variables.

The stator flux linkages are computed from the equations

ϕd = LdId +

√
3

2
ϕPM (5.17)

ϕq = LqIq (5.18)

where ϕPM is permanent magnet flux linkage, ϕd and ϕq are stator flux linkages of

the d-axis and q-axis, respectively, Ld and Lq are stator inductances of the d-axis

and q-axis, respectively, and Id and Iq are stator currents of the d-axis and q-axis,

respectively. The toque and heat flow rates are then computed from

T = p(ϕdIq − ϕqId) (5.19)

dh = RsI
2
d +RsI

2
q (5.20)

where T is torque, p is number of pole pairs, dh is heat flow rate, and Rs is stator

resistance.
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5.2.2.3 Gear Ratio Design and Other Parameters

For the rotary mechanical gear ratio, we use the equations

wmotor = G · waxle (5.21)

Taxle = G · Tmotor (5.22)

where wmotor is motor velocity, waxle is axle velocity, Tmotor is motor torque, and Taxle

is axle torque. Range and MPGe are computed on the EPA Highway Fuel Economy

Driving Cycle, the standard way to compare EV performance in the market. Top

speed and acceleration are computed for straight line running. We set initial vehicle

mass, dimensions, and drag coefficient based on Nissan Leaf specifications (Wikipedia,

2014; EERE , 2011b). Battery and motor masses change depending on variable design

values: battery mass (kg) = total number of cells (ns × np) × mass of a cell, where

approximate mass of a cell in Nissan Leaf is 1.53kg (EERE , 2011b); motor mass

(kg) = 21.6 + 0.532 × motor power (kW) (Simpson, 2006). The relation of driving

performance and the size of battery pack is nonlinear because larger battery mass

diminishes driving performance while more battery capacity improves driving range

(Karabasoglu and Michalek , 2013).

5.2.2.4 EV Manufacturing Cost

Since our design variables are for battery and motor designs, battery pack cost and

motor cost are variable costs in the EV manufacturing cost model. The remaining

costs are considered fixed. Battery cost currently ranges from $300 to $600 per kWh;

it is decreasing with time and is expected to reach $250 per kWh by 2020 Traut et al.

(2012); Henry and Lovellette (2003). We used $500/kWh as battery cost for the case

study, and performed a parametric study with respect to this cost parameter. For

motor cost calculation, we used the cost model in (Simpson, 2006): motor cost ($) =
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16 × motor power (kW) + 385. We assumed that fixed cost is $6,000, resulting in a

manufacturing cost for an EV with 24kWh battery estimated as $12,000 and 80kW

motor estimated as $1,665.

5.2.3 Charging Station Location Network Model (Operations)

In the operations model, we focused on DC fast charging stations for round trips

between cities using highways. Two different types of DC fast charging station cov-

erage are used in the study: local path coverage, a charging station attribute in the

consumer demand model; and total flow coverage, an objective of location modeling.

Local path coverage is defined as the percentage of possible paths (i.e., shortest round

trips from a city of residence to another city using the highway) a consumer can drive

without running out of power using DC fast charging stations. For example, if a

consumer lives in a city out of 19 cites in the target state and he can drive to all 18

cities using DC fast charging stations, local path coverage for his city is 100%. We

assume that consumers fully charge the EV in their home, drive to a destination with

the shortest highway, then drive back home. If a battery runs out and there are DC

fast charging stations on the way, they use DC fast charging stations; otherwise, they

use other options such as Level 1 or Level 2 charging stations. We assume that there

are Level 1 or 2 charging stations in every city, but they are not suitable for trips

between cities due to long charging time. For local path coverage, if the coverage is

100%, a consumer can drive from his city of residence to any other select city using

only DC fast charging stations; if the coverage is 50%, a consumer can drive only

50% of the possible paths using DC fast charging stations, and he needs to use Level

1 or 2 charging stations for the other 50% of the possible paths. When the locations

of charging stations are decided, the local path coverage of each city will be differ-

ent, because possible paths are different according to each city (origin) as shown in

Fig. 5.6.
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Total flow coverage is defined as the percentage of total traffic flows that can be

recharged. Possible paths for total flow coverage are defined as combinations of paths

from one city to another. For example, if there are 19 cities in the target state, the

number of possible paths is 19 × 18 / 2 = 171. Since each possible path has different

amount of traffic flow, a path with more flow should have more relative weight on

charging station location decisions. Maximizing flow coverage is the overall desirable

goal to decide the optimal locations of charging stations.

However, a consumer cares about his vehicle recharge need rather than the total

recharged flow volume, and only about local paths including his city of residence.

This is why total flow coverage is used for optimal locations, while local path coverage

is used in the consumer demand model. The demand model in next chapter below

predicts demand for each city based on local path coverage, then adds up the demands

for all cities to estimate total demand in the region of interest.

5.2.3.1 Location Model

The location model for fast DC charging stations, fCS in Eq. (5.9), is established

using practices in geographical analysis. Hodgson (1990) first proposed the Flow

Capturing Location-allocation Model (FCLM) (Hodgson, 1990). In this study, we

adopt a model variant called the Flow Refueling Location Model (FRLM) (Kuby and

Lim, 2005; Kuby et al., 2005; Kuby and Lim, 2007; Upchurch et al., 2009; Lim and

Kuby , 2010; Kim and Kuby , 2012) that has been widely used to find optimal locations

of refueling facilities for alternative-fuel vehicles with limited range.

The standard FRLM (Kuby and Lim, 2005) is used in the study resulting in a

mixed-integer linear programming problem to maximize the flow coverage with respect

to location of charging stations given the number of stations and EV range.

max
x,y,v

∑
q∈Q

fqyq (5.23)
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Subject to ∑
h∈H

bqhvh ≥ yq ∀q ∈ Q (5.24)

ahkxk ≥ vh ∀h ∈ H; k ∈ K (5.25)

∑
k∈K

xk = p (5.26)

xk ∈ {0, 1} ∀k, h, q (5.27)

0 ≤ vh ≤ 1 ∀h (5.28)

0 ≤ yq ≤ 1 ∀q (5.29)

where

• q is the index of O-D pairs (O is an origin, D is a destination, and O-D pairs

indicate the shortest paths for each pair)

• Q is the set of all O-D pairs

• fq is the flow volume on the shortest path between O-D pair q

• yq = 1 if fqis captured, 0 otherwise

• k is a potential station location

• K is the set of all potential station locations

• h is the index of combinations of stations

• H is the set of all potential station combinations

• bqh = 1 if station combination h are open, 0 otherwise

• vh = 1 if all stations in combination h are open, 0 otherwise

• ahk = 1 if station k is in combination h, 0 otherwise
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• xk = 1 if a station is located at k, 0 otherwise

• p is the number of stations to be located.

The objective function Eq. (5.23) maximizes the total flow volume (flow coverage

% can also be used) that can be recharged with p stations. The flow between two

cities, fq, is calculated by a gravity model based on the city population and path

distance (i.e., flow = population of city A x population of city B / path distance2).

In the constraints Eq. (5.24), at least one eligible combination of stations h should

be open for path q to be recharged. In Eq. (5.25), vh should be held to zero unless

all stations k in combination h are open. In Eq. (5.26), p stations are required to

be built. In Eq. (5.27), the charging station location variables xk are defined as

binary variables. Although vh and yq are also defined as binary variables, they can

be relaxed as continuous variables with lower and upper bounds in Eqs. (5.28) and

(5.29), respectively. This trick can allow us to find an all-integer solution by reducing

the number of required binary variables. More detail explanation can be found in

Kuby and Lim (2005).

Before using the FRLM, we must pre-generate all combinations of stations, H,

that can recharge a path following six steps (Kuby and Lim, 2007):

1. Generate the shortest path for all O-D pairs q, and establish an empty master

list of all combinations h.

2. Generate a temporary list of all station combinations h of nodes on path q.

3. Remove station combinations that cannot recharge an EV of the given range

on path q.

4. If any combination h is still on the list for path q:

Add it to the master list of station combinations if it is not already there.
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Record bqh=1 if station combination h can recharge path q and 0 otherwise.

Record ahk=1 if station k is in combination h, or 0 otherwise.

5. Repeat Steps 2-5 for all paths q.

For this location problem, Lim and Kuby (2010) have shown that use of a genetic

algorithm (GA) can have better performance in finding the global optimum than a

mixed-integer linear programming (MILP) algorithm. In the present study, we use

GA to solve the location optimization problem with variables being the number of

stations, station locations, and EV range; and output being the optimal flow coverage.

Fig. 5.5 shows the optimal number and locations of charging stations for the region

of Southeast Michigan explained further in the case study below. Fig. 5.4 shows how

the local path coverage for Ann Arbor, Michigan, residents changes according to the

number of charging stations and EV range. More charging stations and larger EV

range typically result in larger local path coverage for each city. Since the optimal

locations are decided to maximize total flow coverage not local path coverage for each

city, small populated cities oftentimes are not served by this optimal locations. That

is why local path coverage for Ann Arbor, Michigan in Fig. 5.4 sometimes decreases

despite more charging stations and larger EV range.

5.2.3.2 DC Fast Charging Station Operating Cost

The cost of DC fast charging station infrastructure can be decomposed into vari-

able cost, such as electricity cost, and fixed cost such as installation, equipment and

maintenance cost. We use 10.28 cents per kWh as electricity cost based on average

retail price for transportation in the US for rolling 12-month periods ending in Jan-

uary 2014 (EIA, 2014). Fixed costs depend on the condition of stations. Here we

used $75,000 for installation and equipment cost, and $5,500 for maintenance cost

for one year (Schroeder and Traber , 2012). We evaluate profit and costs for charging
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Figure 5.4: Local path coverage of charging stations for Ann Arbor, Michigan, resi-
dents

stations over a ten-year period with discount rate 10% where the life cycle of EVs is

assumed to be ten years.

5.2.4 Demand Model (Marketing)

Demands for EV and DC fast charging stations are predicted sequentially consid-

ering a heterogeneous market.

5.2.4.1 EV Demand

Hierarchical Bayesian (HB) choice-based conjoint (Rossi et al., 2005a; Orme, 2009)

is used for building a heterogeneous EV demand model. Choice data are gathered

using choice-based conjoint analysis. Individual-level discrete utility functions are

estimated using the HB choice model. Spline curves are fitted to the individual-level

posterior modes for each conjoint part-worth. Market demand is then calculated with

choice probabilities based on individual-level utility functions and market potential.

The individual level discrete utility vij is a linear function of discrete levels of

attributes and defined as,

vij =
K∑
k=1

Lk∑
l=1

βiklzjkl (5.30)
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where zjkl are binary dummy variables indicating alternative j possesses attribute k

at level l, and βikl are the part-worth coefficients of attribute k at level l for individual

i Green and Krieger (1996a).

The HB choice model has two levels. At the upper level, an individual’s part-

worths, βi, have a multivariate normal distribution, βi ∼ N(θ,Λ), where θ is a vector

of means of the distribution of individuals and Λ is the covariance matrix of that

distribution. At the lower level, choice probabilities for a logit model are used:

Pij =
evij∑

j′∈J
evij′

(5.31)

where Pij indicates probability individual i chooses option j from a set of alterna-

tives J . Markov Chain Monte Carlo (MCMC) is used to estimate the individual’s

part-worth. The utility function in Eq. (5.30) based on the HB choice model cannot

be used for continuous design decisions because the function is discrete. We cal-

culate interpolated values of discrete part-worths using cubic splines so that choice

probabilities for continuous design decisions can be estimated.

Average market demand is calculated based on individual level choice probabilities

as

qj =
1

I

I∑
i=1

sPij (5.32)

where qj is market demand of option j, s is the potential market size, and I is total

number of individuals. Note that this averaging of individual market demands is used

only for optimization. When we compare demands of different design decisions, each

individual level market demand should be compared to account for heterogeneity. In

this case, the comparison tells us what percentage of the individual market cases for

one design decision is better than the other design decision as shown in Fig. 5.7.

EV demand is computed with Eq. (5.32) using the attributes and levels of EV

and charging station shown in Table 5.3, selected based on previous research and
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Table 5.3: Attribute levels and importance

Attributes Unit
Level

Importance
1 2 3 4 5

Local path

coverage
% 0 25 50 75 100 27.2%

Charging fee $ 0 2 5 8 10 13.7%

Vehicle price $ 20K 30K 40K 50K 60K 32.0%

Range miles 70 120 170 220 270 15.5%

Fuel efficiency MPGe 70 100 130 160 190 3.8%

Top speed mph 70 85 100 115 130 3.9%

Acceleration

(0 to 60 mph)
sec 8 13 19 25 30 3.9%

the current EV market (Hidrue et al., 2011). Demands for each city are computed

first, then are summed up for total demand in a state, because local path coverage of

charging stations depends on each city location. The potential market sizes of each

city are assumed according to population size so that local path coverage in a more

populated city will have more influence on optimal decisions. DC fast charging fee ($)

is the battery 80% capacity charging fee. For easy comparison with a gasoline vehicle,

the average gas price in Michigan ($3.776 per gallon on April 6, 2014 (GasBuddy ,

2014)) was provided in the conjoint survey.

5.2.4.2 DC Fast Charging Station Demand

Public DC fast charging station demands for each city are estimated sequentially

based on EV demand. This is because EV drivers are potential consumers of charging

stations during the EV and charging station life cycles. Many scenarios of charging

behavior can be considered (Peterson and Michalek , 2012). Here we estimate DC

fast charging events based on observed data of EV users from a particular EV project

(Smart and Schey , 2012; ECOtality , 2013), which showed that the mean number of

charging events per vehicle-day driven is 1.05, and approximately 4.64% of charging

events are from public DC fast charging stations. We predict charging station demand
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over ten years to evaluate profitability of the infrastructure investment. A parametric

study on the impact of these assumed parameter values was included in the case study.

5.3 Case Study: Southeast Michigan Market

The proposed decision-making framework is applied on the potential EV market

in Southeast Michigan. In the operations model, the relevant portion of Michigan’s

highway network used to to determine possible paths and flows is shown in Fig.

5.5. There are no public DC fast charging stations in Michigan at the time of this

writing. A total of 29 locations (19 cities and 10 junctions) are selected as candidates

for charging station locations. Nineteen cities are selected based on their population,

with some neighboring cities grouped and treated as a single one. Circle nodes indicate

cities where charging stations exist, size of circles represents the size of population,

lines indicate shortest highway paths, numbers indicate path distances between nodes,

and triangles indicate additional junctions needed for charging stations because of

limited EV range.

For the marketing demand model, 124 subjects who live in Southeast Michigan

were engaged through ClearVoice Research (Clearvoice, 2014) and surveyed on-line

using Sawtooth Software (Orme, 2009). The subjects consisted of 40% males and

60% females; 3% were 18 to 24 years of age, 20% were 25 to 34 years of age, 22%

were 35 to 44 years of age, 14% were 45 to 54 years of age, 26% were 55 to 64 years

of age, and 15% were more than 65 years of age. Table 5.3 shows the average relative

importance of the attribute in the model based on estimated part-worths of attributes

levels. The charging station coverage and vehicle price are evidently important in

consumer choices. For MCMC in Hierarchical Bayesian modeling, every tenth draw

from the last 50,000 (of 100,000 total) draws were used to obtain the individual’s

parameter. The total 2014 US EV sales can be projected to 76,820 because it is

predicted that EV sales will increase by 67% in 2014 compared to 2013 (Loveday ,
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Figure 5.5: Southeast Michigan highway network and optimal locations of charging
stations

2014; IHS , 2014). We assume the potential EV market size depends on population

size. Since the population of the targeted 19 cities in SE Michigan makes up 0.85%

of the US population (Census , 2014), the potential EV market size of Southeast

Michigan was assumed to be 656 in this study. Then, potential market sizes for each

city were assigned based on city population size. Two EV competitors operating in

Michigan were assumed in computing market share so that the sum of demands of

three manufactures and no choice makes 100%.

Matlab’s implementation of the GA (MathWorks , 2014b) was used to solve the

mixed integer optimization problem of Eq. (5.1). We ran three GAs in parallel with

different initial guesses1, and the best result is reported in this study. The results

were very close giving some assurance of GA convergence. The computed optimal de-

cision values are summarized in Table 5.4. Response values for these optimal decision

values are shown in the left-hand column (cooperative business model) in Table 5.5.

1On an Intel i7 CPU 860@2.80GHz and 8.00GB RAM, an optimization run took 36 hours on
average.
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Table 5.4: Optimal decision values
Model Variable Optimal value

Marketing
Vehicle price $44,211

Charging fee $4.0

Engineering

Number of cells in series in one branch 164

Number of branches in parallel 1

Stator inductance of the d-axis 1.80mH

Stator inductance of the q-axis 2.21mH

Stator resistance 0.052Ω

Number of pole pairs 3

Gear ratio 3.87

Operations

Number of stations (out of 29

candidates)
11

Stations locations See Fig. 5.5

Note that market responses correspond to the average values of 124 market scenarios

using individual-level demand models. Since we considered a heterogeneous market in

demand modeling, market response are represented by the distribution of individual

responses. The results indicate that the charging station operator must build eleven

stations (out of 29 candidates) located in ten cities (i.e., Wyoming, Lansing, Ann Ar-

bor, Flint, Farmington hills, Westland & Canton, Detroit, Southfield, Rochester hills,

and Sterling height) and in one junction between Warren and Clinton, see Fig. 5.5.

DC fast charging station local path coverages for 19 cities are shown in Fig. 5.6.

5.4 Discussion

Two different business models are compared in order to determine the value of

the cooperative business model, described so far. The cooperative business model

considers EV manufacturer and fast charging station operator as a single decision

entity and finds optimal decisions for EV and stations simultaneously by maximizing

overall profit (i.e., EV profit + charging station profit). For this business model, EV

manufacturers are encouraged to expand their business to charging station operations
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Table 5.5: Responses of two business models
Cooperative

business model

Sequential

business model

Market

response

Total profit $8.39M $2.80M

EV profit $9.52M $2.78M

Station profit -$1.13M $0.02M

Market share 55.8% 20.0%

EV

at-

tributes

and

specs

Vehicle price $44,211 $40,208

Range 105.2miles 108.9miles

Top speed 117.8mph 119.2mph

Acceleration 13.2sec 12.3sec

MPGe 172.0 166.8

Battery capacity 20.6kWh 22.0kWh

Motor power 93.3kW 99.6kW

EV cost
Battery cost $10,314 $11,006

Motor cost $1,879 $1,978

Charging

station

attributes

Charging fee $4.0 $10.0

Number of stations 11 1 (Detroit)

Local path coverage

(average of 19 cities)
97.1% 16.4%

Charging

station cost

Installation and

equipment
$825,000 $75,000

Maintenance (10 years) $371,746 $33,795

Note: Market response shown in this table is the mean of market response distribution.

or partner with existing utilities or charging station manufacturers, sharing invest-

ment and profit. The second business model is a ‘sequential’ model similar to current

practice, where the EV OEM designs EVs to maximize OEM profit, and the charging

station provider makes location decisions for given EV designs to maximize operation

profit.

Results for these two business models are compared in Table 5.5. It is shown

that the cooperative model brings higher overall profit and market share than the

sequential model, where market responses are average values of 124 responses based

on the individual demand models. For comparison of heterogeneous market scenarios,

we compared 124 responses as shown in Fig. 5.7, so that 84% of responses shows that

the cooperative business model offers more profit than the sequential one (i.e., positive
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Figure 5.6: Charging stations coverage for each city under two business models

difference).

The cooperative model requires relatively lower EV performance in range, top

speed, acceleration, battery capacity, and motor power than the sequential one, even

if the vehicle price is higher. Regarding charging station attributes, the sequential

model could not build enough charging stations (i.e., one station for Detroit and

16.4% coverage) and offered higher charging fee than the cooperative model.

One may conclude that, under the modeling assumptions made, a non-cooperative
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Figure 5.7: Histogram of profit differences between results from the two business mod-
els

business model does not improve the attractiveness of EVs to consumers. While

the sparse charging station infrastructure of the sequential model can be the main

reason of range anxiety, a balance between EV performance and charging station

infrastructure can effectively reduce consumer range anxiety. The cooperative model

allows for more market share by supplying low charging fee and larger charging station

coverage to consumers despite lower performance and higher vehicle price than the

sequential model. Since the cooperative model allows negative profit of charging

stations, attractive charging station attributes can boost EV adoption share, resulting

in higher overall profit than the sum of the two positive individual profits from EV

and charging stations in the sequential model. This is an example of examining a

product-service system in an integrated business model (Kang et al., 2013a).

A parametric study for different battery cost parameters and sensitivity analysis

for different charging behaviors (i.e., % of DC fast charging station events out of all

charging events) were examined in a post-optimal analysis. The parametric study in

Fig. 5.8 shows that when battery cost decreases from $500 to $200, optimal profit can

increase by 31% with optimal 114 EV range. Sensitivity analysis shows that when

DC charging event (%) increases by 1%, the profit increases by 0.25%. Since the goal

of this study is not to advocate specific decision values but to propose a modeling
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Figure 5.8: Post-optimal analysis

framework, decision makers can adopt different market assumptions (parameters) for

their decisions.

5.5 Conclusion

The proposed integrated decision-making framework allows quantification of the

tradeoffs among various business models for the EV market. A cooperative business

model presents more advantages than the existing non-cooperative business model.

The results clearly depend on the modeling assumptions made; however, these are

generally sufficiently plausible to support the case for a cooperative approach to

improve consumer adoption of EVs.
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5.6 Summary

This chapter proposed a multidomain demand model for engineering and opera-

tions design; developed a DMS framework to assess profitability of a cooperative busi-

ness model using models from marketing, engineering, and operations. This study

validated the advantage of the integrated decision-making approach using the mul-

tidomain demand model, as compared to a sequential decision-making approach.

Next chapter concludes with a summary, contributions, and future work.
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CHAPTER VI

Conclusions

6.1 Summary

Previous Design for Market Systems (DMS) research has focused on modeling

engineering design attributes used in demand models, largely, limited to product

functional attributes. Engineering design-oriented demand models that ignore the

effects of non-functional product attributes (e.g., perceptual product attributes and

external product attributes) on consumer choice are likely to lead to missed market

opportunities. This dissertation proposed a multidomain demand modeling approach

to handle disparate (functional and non-functional attributes) to account for decisions

coming from various design domains such as engineering, industrial, service, and

operations. We integrated consumer preferences on these disparate attributes into

a single demand modeling framework. This proposed demand model was applied to

design problems linking it with multidisciplinary functional performance sinulation

models for joint decision making across multiple design domains. The three main

studies of this dissertation are summarized in Table 6.1.

In Chapter III, the multidomain demand model was applied to find a balanced

design decision between the engineering and industrial design domains. The scope

of attributes addressed in that study refers to the disparate attributes of engineering

functionality and aesthetic form in a single product. Our approach used machine
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Table 6.1: Summary of three multidomain demand models

Chapter Attributes scope
Choice

scenario
Design domains Design scope

III
Internal product:

function & form
Single choice

Engineering &

industrial design
Product

IV

External product:

function & service

contents

Sequential

choice

Engineering &

service design
Business model

III
External product:

function & infrastructure
Single choice

Engineering &

operations design
Business model

learning algorithms and a human computer interaction process to create and incor-

porate an aesthetic vehicle form preference model into an overall preference model.

This demand model has a bi-level and nested structure. At the first-level, form pref-

erence is modeled based on 3D geometric variables representing a vehicle’s shape.

At the second-level, the overall consumer preference is modeled revealing tradeoffs

between form preferences and function preferences. This model was demonstrated

both by Monte Carlo simulation and crowdsourced online user surveys. A Hierar-

chical Bayesian (HB) conjoint model was used as the base model, and prediction

performance was tested. In both simulation and online surveys, the model showed

substantial better prediction performance than the base model. The model can be

extended to handle other perceptual attributes besides product form attributes.

In Chapter IV, a multidomain demand model was proposed to reach balanced

design decisions between the engineering and service design domains. Compared to

Chapter III, the scope of attributes was extended from internal product attributes

to external product attributes such as those associated with services; and the choice

scenario was extended from the single choice case to the sequential and multiple

choices case (i.e., product choice first, then multiple associated service choices). The

study accounted for the impact of product-service channels on consumer demand,

and focused on linking product demand and service demand models under different

channel structures. A channel in this study was assumed to be a shared decision
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across market players and, therefore, decision-making required strategic cooperation.

The study showed channels can significantly affect customer demand and profit for all

players. The proposed demand model estimated service demand based on the condi-

tional choice probability given a product choice under non-exclusive product-service

channels. We demonstrated the model in a tablet and e-book service examples. The

simulation results showed that including channel decisions is necessary in product-

service design. This is because, when a producer supplies its service to competitors’

products, this service can attract competitors’ product users so that service profit can

be obtained from competitors’ product users besides its own product users; on the

other hand, in this exclusive channel situation, a producer can lose product demand

to competitors using its service. Competition between producers was also addressed

applying game theory with shared channel design variables.

In Chapter V, a multidomain demand model was proposed to rearch a balanced

design decision between the engineering and operations design domains. Compared

to Chapters III and IV, the scope of attributes was extended from product-service

attributes to product-infrastructure attributes; the design target was extended from

product-service of a single producer to the cooperative business model of multiple

market players. This study addressed the Electric Vehicle (EV) market that is suffer-

ing from low consumer adoption, and proposed a DMS framework for a cooperative

business model that allows EV manufacturers and charging station operators to work

in partnership. The proposed model was compared to a non-cooperative (sequen-

tial decision-making) model where manufacturers bring new EVs to the market first

and operators decide on charging station deployment. In simulation, the coopera-

tive business model presented higher profit than the non-cooperative business model.

The cooperative model requires relatively lower EV performance than the sequential

one, even if the vehicle price is higher. For charging station attributes, the sequen-

tial model shows that operators cannot build enough charging stations and will offer
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higher charging fees than the cooperative model. This results showed that a balance

between EV performance and charging station infrastructure can effectively increase

the marketability of EVs. Moreover, while product-service design in Chapter IV

showed that the optimal decision sacrifices product profit to get more service profit,

the product-infrastructure design in Chapter V showed that the optimal decision sac-

rifices infrastructure profit to get more product profit. In both cases, the overall

combined profit is higher.

6.2 Contributions

The primary contribution of this dissertation is that we have integrated consumer

preferences on disparate (functional and non-functional) attributes into a single de-

mand model to resolve trade-offs between different design domain decisions. These

disparate attributes can be internal or external to the designing organization. First,

the dissertation has integrated disparate internal attributes preferences for a product

into a single demand model. Chapter III proposed a multidomain demand model to

incorporate aesthetic form preference into overall preference. This modeling allows

engineering designers and industrial designers to cooperate in consumer data-driven

new product design. The proposed demand model has a bi-level structure, but it

requires only a single survey and operates in real time so that the model can be used

with online crowdsourcing. Moreover, the proposed human computer interaction pro-

cess reflects the natural behavior of consumer choice where one sees product price

first and form next, or in reverse order.

Second, the dissertation has integrated disparate external attributes preferences

for a product into a single demand model. Chapter IV linked product demand and

service demand for cooperating between engineering designers and service designers.

The proposed demand model addressed the channel impact on product-service de-

mand, and found optimal channel decisions alongside product-service design. Chap-
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ter V integrated product preferences for coordinating decisions between engineering

designers and operations designers. The proposed demand model addressed how the

heterogeneous target consumers’ locations and the infrastructure deployment affect

new product adoption.

An additional contribution is that we extended the usage of DMS from the engi-

neering design problem to “business model” design problem. The dissertation pro-

posed an optimal business model decision making approach with product, service,

and infrastructure design considerations. This approach can be used not only for

a single producer but also for multiple producers in partnership in a cooperative

business model. Advantages of the cooperative business model compared to the non-

cooperative business model were demonstrated in Chapter V.

A practical contribution of the dissertation is the demonstration of the theory in

case studies such as automobile design, tablet & e-book designs, and EV and charging

station location designs. The simulation-based results can give a practical insight to

a decision maker in each design domain, and different market scenarios can be tested.

6.3 Limitation and Future Work

There are several limitations and avenues for future work for this dissertation.

In Chapter III, it is difficult to cover the entirety of the design space with paramet-

ric design variables, although product representations used in the proposed conjoint

survey should be controlled parametrically. Parametric shape models can present

modest changes in shape from the base shape, but this may not be applicable to

big design changes. Next, active learning with respect to a large number of design

variables entails ever greater computational costs, even if advanced machine learning

techniques can reduce computational costs compared to HB. Since we use responses of

former subjects for active learning, the computational burden becomes greater when

we have survey responses from many subjects. Moreover, ideally we need to test a
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wider variety of machine learning algorithms. Here we used SVM , but this may not

be the best methodology for this sort of preference modeling. The proposed bi-level

adaptive structure can be fruitfully deployed in conjunction with a variety of machine

learning algorithms.

In Chapter IV, the framework should be tested in different product classes and

contractual contexts, to determine its general applicability and robustness through-

out product-service systems. Moreover, the proposed framework can be extended

to product or service family design, although this will require detailed knowledge of

consumer preference heterogeneity, which can in theory be assessed using pre-market

forecasting methods.

In Chapter V, a government policy model can be integrated in the proposed

framework to explore quantitatively how government incentives and regulations can

affect market decisions.

Immediate future work is about integrating all models presented in this disserta-

tion into a holistic design framework with engineering, marketing, operations, public

policy and industrial design considerations. For example, we may extend the DMS

framework for EV market in Chapter V as shown in Fig 6.1. Table 6.2 presents the

nomenclature for this framework. Each discipline has a local optimization problem,

and the system level optimization problem is stated as follows.

maxX̄ ΠEV + ΠCS = (PEV − CEV )DEV + (PCS − CEC)DCS − CCS (6.1)

with respect to

X̄ = [XEV ,Xform,XCS, PEV , PCS, SEV , SCS, Stax] (6.2)
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Figure 6.1: Future DMS framework

subject to

lb ≤ X ≤ ub

gEV (AEV ) ≤ 0

SEV + SCS + Stax ≤ ub

(6.3)

where

XEV = [BEV ,MEV , GEV ]

XCS = [LCS, NCS]

AEV = [AEVrange , AEVmpge , AEVspeed
, AEVaccel

]

(6.4)

[DEV , DCS] = fdemand(PEV , PCS, Stax,AEV ,FEV ,CSCS)

FEV = fform(Xform)

AEV = fEV (XEV ,FEV )

CVCS = fCS(XCS, AEVrange)

(6.5)

• Objective Eq. (6.1): Maximize overall profit from EVs and charging stations.

• Design decisions Eq. (6.2): EV design XEV , vehicle form Xform, charging station

(CS) design XCS, EV price PEV , charging fee PCS, government subsidies S for
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EV, CS, and consumer’s tax cut.

• Constraints Eq. (6.3): Design variables X have lower and upper bounds; EV

attributes AEV have inequality constraints gEV to satisfy current market stan-

dards; and government subsidies, SEV , SCS, and Stax, cannot exceed budget.

• Variables and responses Eq. (6.4): EV design variables XEV include battery

design variables BEV , motor design variables MEV , and gear ratio GEV . CS

design variables XCS include CS locations LCS and the number of CS NCS. EV

attributes AEV include range, MPGe, top speed, and acceleration.

• Multidisciplinary functions Eq. (6.5): In demand model fdemand, demand D of

EV and CS are predicted based on EV price PEV , charging fee PCS, tax cut

Stax, EV attributes AEV , EV form Xform, and CS coverage CVCS; in vehicle

form model fform, EV form FEV is generated by form design variables Xform;

in EV design model fEV , EV attributes AEV are simulated based on EV design

variables XEV and EV form FEV ; and in CS location network model fCS, CS

coverage CVCS for target locations is obtained based on CS design variables

XCS and EV range AEVrange .

In summary, this future work will offer an integrated decision making framework

for EV market systems considering engineering (EV design), operation (CS loca-

tion network), industrial design (vehicle form design), marketing and HCI (market

demand), and public policy (government support plan). This framework can help

manufacturers, operators, consumers, and policy makers to understand the relation-

ship among each other in EV market systems. Then, the proposed framework makes

it possible to identify optimal balance among the design decisions from different dis-

ciplines when they are coupled and have trade-offs. In addition, we will analyze

sensitivities of the solution by varying input parameters and assumptions.
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Table 6.2: Nomenclature for future DMS framework
Type Decision Variables Responses of

Models

Others

Vehicle Form

(Industrial Deisgn)

Xform: Form

design variables

FEV : Vehicle form

Electric Vehicle (EV)

(Engineering Design)

XEV : EV design

variables

AEV : EV

attributes

CEV : EV

manufacturing cost

BEV : Battery

design variables

AEVrange : Range

MEV : Motor

design variables

AEVmpge
: Miles per

gallon gasoline

equivalent

GEV : Gear ratio AEVspeed
: Top

speed

AEVaccel
:

Acceleration

Charging Station (CS)

(Operations Design)

XCS : CS design

variables

CSCS : CS

coverage of each

location

CCS : CS operation

cost

LCS : CS locations CEC : Electric cost

NCS : Number of

CS

Demand (Marketing)
PEV : EV price DEV : EV demand

PCS : Charging fee DCS : CS demand

Govenment Support

(Public Policy)

SEV : EV subsidy

SCS : CS subsidy

Stax: Tax cut

134



APPENDICES

135



APPENDIX A

Survey Data

136



Table A.1: Demographic data for subjects in Chapter III (1/3)

Question Choice
Model

1

Model

2

Model

3

What is your

gender?

Male 51 45 46

Female 49 55 54

Total 100 100 100

What is your age?

15 - 24 yrs 3 2 6

25 - 34 yrs 9 10 18

35 - 44 yrs 16 23 22

45 - 54 yrs 25 22 20

55 - 64 yrs 27 32 16

65 - 74 yrs 16 8 16

75 - 84 yrs 4 3 1

More than 84 yrs 0 0 1

Total 100 100 100

How would you

classify yourself?

African-American 5 6 8

Caucasian 89 79 77

Native American 3 1 2

Hispanic/Latino 1 5 6

Asian-American 2 4 4

Other 0 5 3

Total 100 100 100

Where is your

home located?

Metropolitan city 13 10 13

Suburban community of a larger city 44 35 41

Small town or rural city 37 45 42

Farming area 6 10 4

Total 100 100 100

Please indicate the

highest level of

education you have

completed.

Grade school 0 0 1

Some high school 4 5 5

High school graduate 12 23 13

Some trade school 2 5 2

Trade school graduate 7 9 5

Some community college 11 15 10

Graduate with two-year degree 13 7 11

Some university 5 12 14

Graduate with bachelor’s degree 25 15 18

Some postgraduate study 6 1 4

Postgraduate degree 15 8 16

Other 0 0 1

Total 100 100 100
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Table A.2: Demographic data for subjects in Chapter III (2/3)

Question Choice
Model

1

Model

2

Model

3

Which one of the

following best

describes your

current

occupation?

Armed services 0 1 1

Senior executive 2 0 3

Mid-level manager 8 2 8

Entry-level professional 4 2 2

Owner, Self-employed 10 11 10

Clerical 8 3 4

Technician 0 4 1

Police, Postal, Fire 2 3 4

Sales 3 2 5

Teacher, Educator 2 2 5

Professional, Specialty 11 3 8

Farming, Forestry, Fishing 0 1 1

Service worker (food, cleaning) 3 0 2

Precision production, Craftsworker 0 3 1

Driver, Machine operator 2 1 1

Fabricator, Laborer 0 2 1

Student 2 6 4

Homemaker 12 19 15

Retired 25 28 15

Other 6 7 9

Total 100 100 100

Please check your

approximate total

annual household

income from all

sources (before

taxes).

$15,000 or less 5 9 7

$15,001 - $20,000 5 7 5

$20,001 - $25,000 5 7 3

$25,001 - $30,000 8 9 7

$30,001 - $35,000 7 6 8

$35,001 - $40,000 7 5 9

$40,001 - $45,000 5 4 5

$45,001 - $50,000 10 13 7

$50,001 - $55,000 5 2 3

$55,001 - $65,000 4 6 4

$65,001 - $75,000 3 9 8

$75,001 - $85,000 7 9 8

$85,001 - $100,000 6 4 6

$100,001 - $125,000 7 3 2

$125,001 - $150,000 9 2 7

$150,001 - $200,000 3 0 2

$200,001 - $300,000 2 1 1

$300,001 - $400,000 0 0 1

Over $400,000 0 0 0

Prefer not to answer 2 4 7

Total 100 100 100
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Table A.3: Demographic data for subjects in Chapter III (3/3)

Question Choice
Model

1

Model

2

Model

3

Please indicate

your marital

status.

Married 57 51 57

Single, never married 24 22 27

Divorced, widowed, separated 19 27 16

Total 100 100 100

How many family

members do you

have? (Including

yourself)

1 21 18 21

2 31 34 34

3 15 17 13

4 16 15 18

5 8 6 10

6 2 2 2

7 1 5 1

8 1 0 0

9 1 0 0

More than 9 4 3 1

Total 100 100 100

How many children

do you have?

0 46 35 35

1 10 15 19

2 24 20 27

3 12 16 14

4 4 6 4

5 2 4 0

6 2 3 0

7 0 0 0

8 0 0 1

More than 8 0 1 0

Total 100 100 100

Is your spouse

employed?

Yes 35 41 42

No 29 13 22

I don’t have a spouse 36 46 36

Total 100 100 100
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Table A.4: 20 best-seller prices in Chapter IV (Gilbert , 2012)
No E-book title (author) E-book price ($)

Amazon B&N iBook Google

1 The Help (Kathrynn Stockett) 9.99 9.99 9.99 12.99

2 The Hunger Games (Suzanne Collins) 5.00 8.99 None 5.00

3 Water for Elephants (Sara Gruen) 6.73 6.73 9.99 5.99

4
The Girl Who Played With Fire (Stieg

Larsson)
9.99 9.99 9.99 9.99

5 Inheritance (Christopher Paolini) 13.99 13.99 13.99 13.99

6 The Son Of Neptune (Rick Riordan) 9.99 10.00 11.99 11.99

7 The Litigators (John Grisham) 9.99 9.99 9.99 9.99

8 A Game of Thrones (George R.R. Martin) 8.99 8.99 8.99 8.99

9 The Confession (John Grisham) 9.99 9.99 9.99 9.99

10 The Best of Me (Nicholas Sparks) 9.99 9.99 9.99 9.99

11 Smokin’ Seventeen (Janet Evanovich) 8.99 8.99 8.99 8.99

12 Bossypants (Tina Fey) 12.99 12.99 12.99 12.99

13 11/22/63 (Stephen King) 9.99 9.99 9.99 9.99

14 Cutting for Stone (Abraham Verghese) 9.99 9.99 9.99 9.99

15 The Throne of Fire (Rick Riordan) 7.99 7.99 9.99 10.99

16 Room (Emma Donoghue) 9.99 9.99 9.99 9.99

17 The 17 Day Diet (Dr. Mike Moreno) 12.99 12.99 12.99 12.99

18 Something Borrowed (Emily Giffin) 7.99 7.99 7.99 7.99

19 The Lincoln Lawyer (Michael Connelly) 7.99 7.99 7.99 7.99

20 Sarah’s Key (Tatiana de Rosnay) 11.99 11.99 11.99 11.99
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Part-worths of Conjoint Analysis
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Table B.1: Part-worths of product attributes in Chapter III
Attributes Mean STD

Form importance 5.92 1.52

Price

$23K 0.00 0.00

$25K -0.10 0.61

$26K -0.20 1.08

$29K -0.80 1.34

$31K -1.38 1.77

MPG (city/highway)

23/27 0.00 0.00

23/29 0.22 0.52

24/30 0.31 0.91

25/31 0.65 0.93

26/32 0.77 1.31
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Table B.2: Part-worths of product attributes in Chapter IV

Attributes Levels Mean STD Importance

Compatible

e-books

Amazon -0.86 1.16

30.5%

B&N -3.12 0.92

iBook -3.10 1.41

GooglePlay -2.60 1.01

Amazon, B&N 1.03 0.90

Amazon, iBook 0.97 0.88

Amazon, GooglePlay 1.11 0.97

B&N, iBook -1.28 1.11

B&N, GooglePlay -1.06 0.83

iBook, GooglePlay -1.22 1.23

Amazon, B&N, iBook 2.33 0.87

Amazon, B&N, GooglePlay 2.30 0.97

Amazon, iBook, GooglePlay 2.05 0.89

B&N, iBook, GooglePlay 0.33 1.14

Amazon, B&N, iBook, GooglePlay 3.12 0.89

Tablet brand

Kindle 0.62 1.76

19.3%
Nook -0.91 1.39

iPad 0.91 2.39

Nexus -0.62 1.60

Tablet price

$129 3.41 3.25

28.2%

$199 2.31 1.82

$299 0.32 0.89

$399 -1.98 1.98

$499 -4.06 2.85

Display size

7” -0.48 0.83

9.8%

7.9” -0.13 0.74

8.9” 0.04 0.63

9.7” 0.10 0.84

10” 0.48 0.77

Storage

8GB -1.77 1.40

12.2%

16GB -0.54 0.88

32GB 0.37 0.48

64GB 0.78 0.76

128GB 1.16 1.15

None -1.72 3.78
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Table B.3: Part-worths of service attributes in Chapter IV
Attributes Levels Mean STD Importance

E-book

market

Amazon 1.33 2.26

42.6%
B&N -0.65 1.31

iBook -0.41 1.41

GooglePlay -0.27 1.56

E-book price

(best-seller)

$8.99 3.63 3.86

39.5%
$9.99 1.20 1.07

$10.99 -1.92 2.10

$11.99 -2.91 2.77

Easy to shop
By app 1.61 2.43

17.9%
By web-based store

outside app
-1.61 2.43

None -3.33 3.07
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Table B.4: Part-worths of EV and charging station attributes in Chapter V
Attributes Levels Mean STD Importance

Local path coverage

0% -2.80 2.16

27.2%

25% -0.78 0.92

50% 0.26 0.57

75% 1.27 1.06

100% 2.05 1.76

Charging fee

$0 0.73 0.76

13.7%

$2 0.45 0.45

$5 0.40 0.42

$8 -0.48 0.71

$10 -1.11 0.89

Vehicle price

$20K 2.56 2.13

32.0%

$30K 1.70 1.38

$40K 0.51 0.86

$50K -1.49 1.51

$60K -3.28 2.26

Range

70 miles -1.44 1.00

15.5%

120 miles -0.17 0.51

170 miles 0.10 0.46

220 miles 0.61 0.51

270 miles 0.91 0.83

Fuel efficiency

70 MPGe -0.29 0.29

3.8%

100 MPGe -0.05 0.19

130 MPGe 0.02 0.12

160 MPGe 0.11 0.20

190 MPGe 0.21 0.31

Top speed

70 mph -0.26 0.30

3.9%

85 mph -0.23 0.29

100 mph 0.04 0.16

115 mph 0.20 0.27

130 mph 0.26 0.32

Acceleration (0 to 60 mph)

8 sec 0.30 0.37

3.9%

13 sec 0.11 0.17

19 sec -0.09 0.14

25 sec -0.15 0.18

30 sec -0.18 0.21

None 0.61 3.31
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Michalek, J. J., P. Ebbes, F. Adigüzel, F. M. Feinberg, and P. Y. Papalambros (2011),
Enhancing marketing with engineering: Optimal product line design for heteroge-
neous markets, International Journal of Research in Marketing, 28 (1), 1–12.

Michelena, N., H. Park, and P. Y. Papalambros (2003), Convergence properties of
analytical target cascading, AIAA journal, 41 (5), 897–905.

Mill city press (2012), Setting an ebook price & understanding ebook royalties,
http://www.millcitypress.net.

Mont, O. (2002), Clarifying the concept of product–service system, Journal of cleaner
production, 10 (3), 237–245.

Moore, W. L., J. J. Louviere, and R. Verma (1999), Using conjoint analysis to help
design product platforms, Journal of product innovation management, 16 (1), 27–
39.

154



Morrow, W. R., M. Long, and E. F. MacDonald (2014a), Market-system design opti-
mization with consider-then-choose models, Journal of Mechanical Design, 136 (3),
031,003.

Morrow, W. R., J. Mineroff, and K. S. Whitefoot (2014b), Numerically stable de-
sign optimization with price competition, Journal of Mechanical Design, 136 (8),
081,002.

Netzer, O., et al. (2008), Beyond conjoint analysis: Advances in preference measure-
ment, Marketing Letters, 19 (3-4), 337–354.

Olewnik, A., and K. Lewis (2006), A decision support framework for flexible system
design, Journal of Engineering Design, 17 (1), 75–97.

Orme, B. (2009), The cbc/hb system for hierarchical bayes estimation version 5.0
technical paper, in Technical Paper Series, Sawtooth Software.

Orsborn, S., and J. Cagan (2009), Multiagent shape grammar implementation: auto-
matically generating form concepts according to a preference function, Journal of
Mechanical Design, 131 (12), 121,007.

Orsborn, S., J. Cagan, and P. Boatwright (2009), Quantifying aesthetic form prefer-
ence in a utility function, Journal of Mechanical Design, 131 (6), 061,001.

Pearre, N., W. Kempton, R. Guensler, and V. Elango (2011), Electric vehicles: How
much range is required for a days driving?, Transportation Research Part C: Emerg-
ing Technologies, 19 (6), 1171–1184.

Peterson, S., and J. Michalek (2012), Cost-effectiveness of plug-in hybrid electric
vehicle battery capacity and charging infrastructure investment for reducing us
gasoline consumption, Energy Policy, 52, 429–438.

Petiot, J.-F., and A. Dagher (2011), Preference-oriented form design: application to
cars headlights, International Journal on Interactive Design and Manufacturing
(IJIDeM), 5 (1), 17–27.

Pullman, M. E., and W. L. Moore (1999), Optimal service design: integrating mar-
keting and operations perspectives, International Journal of Service Industry Man-
agement, 10 (2), 239–261.

Rainie, L. e. a. (2012), The rise of e-reading, Technical re-
port, Pew Research Center’s Internet & American Life Project,
http://libraries.pewinternet.org/2012/04/04/the-rise-of-e-reading.

Reid, T. N., R. D. Gonzalez, and P. Y. Papalambros (2010), Quantification of per-
ceived environmental friendliness for vehicle silhouette design, Journal of mechan-
ical design, 132 (10), 101,010.

155



Reid, T. N., B. D. Frischknecht, and P. Y. Papalambros (2012), Perceptual attributes
in product design: Fuel economy and silhouette-based perceived environmental
friendliness tradeoffs in automotive vehicle design, Journal of mechanical design,
134 (4), 041,006.

Reid, T. N., E. F. MacDonald, and P. Du (2013), Impact of product design represen-
tation on customer judgment, Journal of Mechanical Design, 135 (9), 091,008.

Ren, Y., and P. Y. Papalambros (2011), A design preference elicitation query as an
optimization process, Journal of Mechanical Design, 133 (11), 111,004.

Research, P. (), Tablet ownership 2013.

Resende, C. B., C. G. Heckmann, and J. J. Michalek (2012), Robust design for
profit maximization with aversion to downside risk from parametric uncertainty in
consumer choice models, Journal of Mechanical Design, 134 (10), 100,901.

Rossi, P., G. Allenby, and R. McCulloch (2005a), Bayesian statistics and marketing,
Wiley, Hoboken, NJ.

Rossi, P. E., and G. M. Allenby (2003), Bayesian statistics and marketing, Marketing
Science, 22 (3), 304–328.

Rossi, P. E., G. M. Allenby, and R. E. McCulloch (2005b), Bayesian statistics and
marketing, J. Wiley & Sons.

Roy, R., and D. Baxter (2009), Product-service systems, Journal of Engineering De-
sign, 20 (4), 327–328.

Schroeder, A., and T. Traber (2012), The economics of fast charging infrastructure
for electric vehicles, Energy Policy, 43, 136–144.

Settles, B. (2010), Active learning literature survey, University of Wisconsin, Madi-
son, 52, 55–66.

Shiau, C.-S., and J. Michalek (2007), A game-theoretic approach to finding market
equilibria for automotive design under environmental regulation, in ASME 2007
International Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, pp. 187–196, American Society of Mechanical
Engineers.

Shiau, C.-S., I. H. Tseng, A. W. Heutchy, and J. Michalek (2007), Design optimiza-
tion of a laptop computer using aggregate and mixed logit demand models with
consumer survey data, in ASME 2007 International Design Engineering Techni-
cal Conferences and Computers and Information in Engineering Conference, pp.
175–185, American Society of Mechanical Engineers.

Shiau, C.-S. N. (2010), Design Decision Making for Market Systems and Environ-
mental Policy with Vehicle Design Applications, Ph.D. Thesis, Department of Me-
chanical Engineering, Carnegie Mellon University, USA.

156



Shiau, C.-S. N., and J. J. Michalek (2009a), Optimal product design under price
competition, Journal of Mechanical Design, 131 (7), 071,003.

Shiau, C.-S. N., and J. J. Michalek (2009b), Should designers worry about market
systems?, Journal of Mechanical Design, 131 (1), 011,011.

Shiau, C.-S. N., J. J. Michalek, and C. T. Hendrickson (2009), A structural analysis of
vehicle design responses to corporate average fuel economy policy, Transportation
Research Part A: Policy and Practice, 43 (9), 814–828.

Simpson, A. (2006), Cost-benefit analysis of plug-in hybrid electric vehicle technology,
in 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium
and Exhibition, National Renewable Energy Laboratory.

Smart, J., and S. Schey (2012), Battery electric vehicle driving and charging be-
havior observed early in the ev project, SAE International Journal of Alternative
Powertrains, 1 (1), 27–33.

Sudhir, K. (2001), Structural analysis of manufacturer pricing in the presence of a
strategic retailer, Marketing Science, 20 (3), 244–264.

Swamy, S., S. Orsborn, J. Michalek, and J. Cagan (2007), Measurement of headlight
form preference using a choice based conjoint analysis, in ASME 2007 International
Design Engineering Technical Conferences and Computers and Information in En-
gineering Conference, pp. 197–206, American Society of Mechanical Engineers.

Sylcott, B., J. Cagan, and G. Tabibnia (2013a), Understanding consumer tradeoffs
between form and function through metaconjoint and cognitive neuroscience anal-
yses, Journal of Mechanical Design, 135 (10), 101,002.

Sylcott, B., J. J. Michalek, and J. Cagan (2013b), Towards understanding the role of
interaction effects in visual conjoint analysis, in ASME 2013 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, pp. V03AT03A012–V03AT03A012, American Society of Mechanical
Engineers.

Tenner, S., S. Gunther, and W. Hofmann (2011), Loss minimization of electric drive
systems using a dc/dc converter and an optimized battery voltage in automotive
applications, in Vehicle Power and Propulsion Conference (VPPC), pp. 1–7, IEEE.

Tirole, J. (1988), The theory of industrial organization, MIT press.

Tosserams, S., L. Etman, P. Papalambros, and J. Rooda (2006), An augmented la-
grangian relaxation for analytical target cascading using the alternating direction
method of multipliers, Structural and Multidisciplinary Optimization, 31 (3), 176–
189.

Toubia, O., and L. Florès (2007), Adaptive idea screening using consumers, Marketing
Science, 26 (3), 342–360.

157



Toubia, O., D. I. Simester, J. R. Hauser, and E. Dahan (2003), Fast polyhedral
adaptive conjoint estimation, Marketing Science, 22 (3), 273–303.

Toubia, O., J. R. Hauser, and D. I. Simester (2004), Polyhedral methods for adaptive
choice-based conjoint analysis, Journal of Marketing Research, 41 (1), 116–131.

Toubia, O., T. Evgeniou, and J. Hauser (2007a), Oxford Handbook of Innovation,
chap. Optimization-Based and Machine-Learning Methods for Conjoint Analysis:
Estimation and Question Design, Springer, New York.

Toubia, O., J. Hauser, and R. Garcia (2007b), Probabilistic polyhedral methods for
adaptive choice-based conjoint analysis: Theory and application, Marketing Sci-
ence, 26 (5), 596–610.

Traut, E., C. Hendrickson, E. Klampfl, Y. Liu, and J. Michalek (2012), Optimal
design and allocation of electrified vehicles and dedicated charging infrastructure
for minimum life cycle greenhouse gas emissions and cost, Energy Policy, 51, 524–
534.

Tseng, I., J. Cagan, and K. Kotovsky (2012), Concurrent optimization of computa-
tionally learned stylistic form and functional goals, Journal of Mechanical Design,
134 (11), 111,006.

Tseng, I., J. Cagan, K. Kotovsky, and M. Wood (2013), Form function fidelity, Journal
of Mechanical Design, 135 (1), 011,006.

Upchurch, C., M. Kuby, and S. Lim (2009), A model for location of capacitated
alternative-fuel stations, Geographical Analysis, 41 (1), 85–106.

USATODAY (2013), http://www.usatoday.com.

Vapnik, V. N., and V. Vapnik (1998), Statistical learning theory, vol. 2, Wiley New
York.

Vardera, L. (2010), The Electric Vehicle Market in the USA, Market report, Finpro,
Stamford, CT.

Vasantha, G. V. A., R. Roy, A. Lelah, and D. Brissaud (2012), A review of product–
service systems design methodologies, Journal of Engineering Design, 23 (9), 635–
659.

Verma, R., G. M. Thompson, W. L. Moore, and J. J. Louviere (2001), Effective
design of products/services: An approach based on integration of marketing and
operations management decisions*, Decision Sciences, 32 (1), 165–194.

Wang, Z., S. Azarm, and P. Kannan (2011a), Strategic design decisions for uncertain
market systems using an agent based approach, Journal of Mechanical Design,
133 (4), 041,003.

158



Wang, Z., P. Kannan, and S. Azarm (2011b), Customer-driven optimal design for
convergence products, Journal of Mechanical Design, 133 (10), 101,010.

Wassenaar, H. J., and W. Chen (2003), An approach to decision-based design with dis-
crete choice analysis for demand modeling, Journal of Mechanical Design, 125 (3),
490–497.

Wassenaar, H. J., W. Chen, J. Cheng, and A. Sudjianto (2004), An integrated la-
tent variable choice modeling approach for enhancing product demand modeling,
in ASME 2004 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, pp. 373–382, American Society
of Mechanical Engineers.

Wassenaar, H. J., W. Chen, J. Cheng, and A. Sudjianto (2005), Enhancing discrete
choice demand modeling for decision-based design, Journal of Mechanical Design,
127 (4), 514–523.

Wikipedia (2014), Nissan leaf, http://en.wikipedia.org.

Williams, N., S. Azarm, and P. Kannan (2008), Engineering product design optimiza-
tion for retail channel acceptance, Journal of Mechanical Design, 130 (6), 061,402.

Young, A. (2014), Number of electric car fast charge stations,
http://www.ibtimes.com.

159


