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ABSTRACT

Large-scale real-space Kohn-Sham density functional theory calculations using
adaptive finite-element discretization

by

Phani Motamarri

Chair: Vikram Gavini

Past few decades have seen an increasingly important role played by quantum me-

chanical calculations based on Kohn-Sham density functional theory (DFT) in the

investigation of wide variety of materials properties. However, large-scale DFT cal-

culations are computationally very demanding and hence have been primarily as-

sociated with either plane-wave basis or atomic-orbital basis sets, imposing severe

restrictions on the permissible boundary conditions and the type of materials sys-

tems simulated. Furthermore, these basis sets exhibit poor parallel scalability. On

the other hand, finite-element (FE) discretization of Kohn-Sham DFT, among the

real-space techniques is versatile and is amenable for unstructured coarse-graining,

allows for consideration of complex geometries and boundary conditions, and is scal-

able on parallel computing platforms. However, the inherent shortcomings in the

use of finite-element discretization for DFT have made it less attractive for large

scale calculations restricting the materials system sizes to few hundreds of electrons.

This thesis tries to address the inherent shortcomings and presents the development

of new computationally efficient and robust parallel algorithms to enable large-scale
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DFT calculations using finite-element basis (DFT-FE). The proposed DFT-FE en-

abled for the first time, simulation of electronic structure of materials systems as large

as 7000 atoms (∼ 14000 valence electrons) using finite-element basis.

The key ideas in the development of DFT-FE include (i) an adaptive higher-

order spectral finite-element based self-consistent framework which can handle all-

electron and pseudopotential calculations with complex boundary conditions on a

single footing, (ii) a subspace projection method using higher-order spectral finite-

element discretization to reduce the computational complexity of DFT calculations

while treating metallic and insulating materials in a single framework and (iii) a

configurational force approach to efficiently compute forces on atoms to find the

geometry of a given materials system in the most stable state.

The numerical investigations conducted with DFT-FE on representative bench-

mark examples show that computational efficiency of finite-element basis is competing

with commercial codes using plane-wave basis (smooth pseudopotential calculations),

and compares well with atomic-orbital basis (all-electron calculations with singular

potentials) and show excellent parallel scalability. Furthermore, the benchmark stud-

ies involving pseudopotential calculations on metallic aluminum nano-clusters (up

to 3500 atoms) and on insulating alkane chains (up to 7000 atoms) as well as all-

electron calculations on semi-conducting silicon nano-clusters (up to 4000 electrons),

reveal that the proposed subspace projection algorithm exhibits subquadratic-scaling

behavior with system size along with accuracies commensurate with chemical accu-

racy. Significant computational savings have been realized with ∼ 10 fold speedups

observed for the largest systems with respect to previous reference calculations.
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CHAPTER I

Introduction

Electronic structure calculations have played a significant role in predicting var-

ious aspects of materials behavior over the past few decades. The success stories of

electronic structure calculations range from the accurate prediction of phase trans-

formations in a wide range of materials to providing various insights into mechanical,

electronic, magnetic, and optical properties of materials and compounds. In partic-

ular, the Kohn-Sham approach to density functional theory (DFT) [2] has made

quantum-mechanically informed calculations on ground-state materials properties

computationally tractable, and has provided many important insights into a wide

range of materials properties.

The Kohn-Sham approach to DFT is based on the key result of Hohenberg &

Kohn [3] that the ground-state properties of a materials system can be described by a

functional of electron density. Though, the existence of an energy functional has been

established by the Hohenberg-Kohn result, its functional form is not known to date.

The work of Kohn & Sham [2] addressed this challenge in an approximate sense, and

has laid the foundations for the practical application of DFT to materials systems by

reducing the many-body problem of interacting electrons into an equivalent problem

of non-interacting electrons in an effective mean field that is governed by the electron

density. This effective single-electron description is exact in principle for ground-
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state properties, but is formulated in terms of an unknown exchange-correlation term

that includes the quantum-mechanical interactions between electrons. This exchange-

correlation term is approximated using various models—commonly modeled as an

explicit functional of electron density—and these models have been shown to predict

a wide range of materials properties across various materials systems.

Despite the reduced computational complexity of Kohn-Sham approach in com-

parison to the original many-body Schrödinger problem, simulations of large-scale

material systems with DFT are still computationally very demanding and has been

historically associated with the computation of bulk properties of materials using

plane-wave basis. Plane-wave basis provides an efficient computation of the electro-

static interactions arising in Kohn-Sham DFT naturally through Fourier transforms.

Further, the plane-wave basis provides variational convergence in the ground-state

energy with exponential convergence rates. However, one often encounters the need

for understanding materials properties influenced by defects–vacancies, dopants, dis-

locations, interfaces, free surfaces–in small concentrations which can potentially gen-

erate long range fields that are often incompatible with periodic boundary conditions.

Furthermore, the plane-wave basis provides a uniform spatial resolution which can

be inefficient in the investigation of materials systems involving large nano-clusters,

amorphous materials etc., or materials properties which require all-electron calcu-

lations, where higher basis resolution is often required in some spatial regions and

a coarser resolution suffices elsewhere. Moreover, the plane-wave basis is non-local

in real space, which significantly affects the scalability of computations on parallel

computing platforms. On the other hand, atomic-orbital-type basis sets [4, 5, 6]

have been been widely used for studying materials systems such as molecules and

clusters. However, these basis sets are well suited only for isolated systems and

cannot handle arbitrary boundary conditions. Furthermore, using these basis func-

tions, it is difficult to achieve a systematic basis-set convergence for all materials
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systems. Due to the non-locality of these basis functions the efficiency of paral-

lel scalability on a large number of processors is also affected. Thus, the develop-

ment of systematically improvable and scalable real-space techniques for electronic

structure calculations has received significant attention over the past decade, and

we refer to [7, 8, 9, 10, 11, 12, 13, 14] and references therein for a comprehensive

overview. Among the real-space techniques, the finite-element basis presents some key

advantages—it is amenable to unstructured coarse-graining, allows for consideration

of complex geometries and boundary conditions, and is scalable on parallel computing

platforms. We refer to [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30],

and references therein, for a comprehensive overview of the past efforts in developing

real-space electronic structure calculations based on a finite-element discretization.

However, the inherent shortcomings in the use of finite-element discretization for

Kohn-Sham DFT have made it less attractive for large scale calculations and the

largest materials system simulated using finite-elements is less than few hundreds

of electrons. The central theme of this thesis focuses on the development of new

computationally efficient and robust finite-element based parallel algorithms to enable

large-scale Kohn-Sham DFT calculations. We subsequently demonstrate these meth-

ods to simulate materials systems as large as 7000 atoms(∼14000 electrons) for the

first time ever using finite-element basis. Further, the new computational techniques

developed as a part of this thesis can be readily extended to study crucial aspects of

energetics of defects in materials with long range fields which is beyond the scope of

existing DFT codes and thereby help in devising better macroscopic material models.

While the finite-element basis is more versatile than the plane-wave basis [15, 19],

prior investigations have shown that linear finite-elements require a large number of

basis functions—of the order of 100, 000 basis functions per atom—to achieve chem-

ical accuracy in electronic structure calculations (cf. e.g. [23, 31]), and this compares

very poorly with plane-wave basis or other real-space basis functions. However, the
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use of higher-order elements increases the per basis-function computational cost due

to the need for higher-order accurate numerical quadrature rules. Furthermore, the

bandwidth of the matrix increases cubically with the order of the finite-element, which

in turn increases the computational cost of matrix-vector products. In addition, since

a finite-element basis is non-orthogonal, the discretization of the Kohn-Sham DFT

problem results in a generalized eigenvalue problem, which is more expensive to solve

in comparison to a standard eigenvalue problem resulting from using an orthogo-

nal basis (for e.g. plane-wave basis). Thus, the computational efficiency afforded

by using a finite-element basis in electronic structure calculations, and its relative

performance compared to plane-wave basis and atomic-orbital-type basis functions

(for e.g Gaussian basis), has remained an open question to date and forms the sub-

ject of the first part of my thesis. To this end, we develop: (i) a unified real-space

self-consistent framework which can handle all-electron and pseudopotential calcula-

tions with both non-periodic and periodic boundary conditions on a similar footing

(ii) an a priori mesh adaption technique to construct a close to optimal finite-element

discretization of the problem; (iii) an efficient solution strategy for solving the dis-

crete eigenvalue problem by using higher-order spectral finite-elements (6th order) in

conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique

for computing the occupied eigenspace. We subsequently study the numerical aspects

of the finite-element discretization of the formulation, investigate the computational

efficiency afforded by higher-order finite-elements, and compare the performance of

the finite-element basis with plane-wave and Gaussian basis on representative bench-

mark problems. Our studies show that staggering computational savings of the order

of 1000-fold can be realized by using higher-order finite-element discretization, in

comparison to linear finite-elements used previously in the literature. A comparative

study of the computational efficiency of the proposed higher-order spectral finite-

element discretization show that the performance of finite-element basis is compet-
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ing with commercial codes using plane-wave discretization for non-periodic calcula-

tions involving smooth potentials (pseudo-potentials) where valence electrons are only

treated, and Gaussian basis for all-electron calculations involving singular potentials.

Furthermore, we demonstrate the capability of the proposed approach by comput-

ing the electronic structure of an aluminum nano-cluster containing 1688 atoms with

Kohn-Sham DFT using modest computational resources. Good scalability of the

implementation up to a few hundred processors is also demonstrated.

However, we note that the self-consistent approach to DFT formulated in the first

part of this thesis scales as O(M N2) where M denotes the number of basis func-

tions and N denotes the system size (number of atoms or number of electrons in the

system). As M ∝ N , the algorithm scales as O(N3) asymptotically, thus limiting

accessible systems to a few thousand atoms. Infact, this computational cost becomes

prohibitively expensive as the system size becomes larger with M being high in the

context of grid-based methods like finite-element discretizations. Numerous efforts

have been focused in the literature to reduce the computational complexity and to

have improved-scaling behavior for DFT calculations. A comprehensive review of

these methods has been provided by Göedecker [32], and more recently by Bowler

and Miyazaki [33]. Majority of these methods, which rely on the locality of the

Wannier functions or the exponential decay of the density matrix in real-space, have

been demonstrated to work well for insulating systems, exhibiting linear-scaling with

system size. However, for metallic systems, due to the slower decay of the density

matrix, the computational complexity of these approaches can deviate significantly,

in practice, from linear-scaling. The Fermi-operator expansion method [34, 35, 32],

which is equally applicable to both insulating and metallic systems, computes the

finite-temperature density-matrix through a Chebyshev polynomial approximation of

the Fermi distribution function (also referred to as Fermi function) of the Kohn-Sham

Hamiltonian. The accuracy of such an expansion depends on the smearing parameter
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(σ = kBT ) in the Fermi distribution and the width of the eigenspectrum (∆E) of

the discretized Hamiltonian. In fact, the number of polynomial terms required to

achieve a prescribed accuracy [35] is O(∆E
σ

). Though numerous recent efforts have

focused towards developing alternate approximations to the Fermi function, or ap-

proximations to its spectral representation which aim to reduce the number of terms

used in the expansion to approximate the Fermi function, a major drawback with

these methods is that they are not efficient for local real-space basis functions like

finite-elements, where, typically, more refined discretizations are needed for chemi-

cal accuracy resulting in very large width of the eigenspectrum of the finite-element

discretized Hamiltonian. A reduced-scaling technique which is well-suited for finite-

element discretizations that treats both metallic and insulating systems on a similar

footing has not been attempted before and forms the subject of the second part of

my thesis. To this end, we borrow localization ideas from Garcia et. al. [36] and

develop a sub-quadratic scaling subspace projection technique which is equally ap-

plicable to pseudopotential and all-electron calculations. The main ideas used in our

approach are: (i) employ Chebyshev filtered subspace iteration to compute the oc-

cupied eigenspace; (ii) employ a localization procedure to generate non-orthogonal

localized wavefunctions spanning the Chebyshev filtered subspace; (iii) use adaptive

tolerances to truncate the wavefunctions, with looser tolerances being employed in

initial self-consisted field (SCF) iterations and progressively tightening as the SCF

iteration approaches convergence, and (iv) employ Fermi-operator expansion in terms

of the projected Hamiltonian expressed in the non-orthogonal localized basis to com-

pute the density matrix, electron density and band energy. We subsequently demon-

strate the accuracy, efficiency and scaling of the proposed approach on benchmark

systems involving pseudopotential calculations on metallic aluminum nano-clusters

up to 3430 atoms and on insulating alkane chains up to 7052 atoms, as well as all-

electron calculations on semi-conducting silicon nano-clusters up to 3920 electrons.
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The benchmark studies revealed that accuracies commensurate with chemical accu-

racy can be obtained with the proposed method, and a subquadratic-scaling with

system size was observed for the range of materials systems studied. In particular,

for the alkane chains—representing an insulating material—close to linear-scaling is

observed, whereas, for aluminum nano-clusters—representing a metallic material—

the scaling is observed to be O(N1.46). For all-electron calculations on silicon nano-

clusters, the scaling with the number of electrons is computed to be O(N1.75). In

all the benchmark systems, significant computational savings have been realized with

the proposed approach, with ∼ 10−fold speedups observed for the largest systems

with respect to previous reference calculations.

An important aspect of electronic structure calculations using DFT is the efficient

computation of forces on atoms to find the geometry of a given materials system in the

most stable state and this forms the subject of the third part of this thesis. A crucial

step to evaluate forces on atoms in most DFT codes is to use Hellmann-Feynman

theorem [37] which relates the derivatives of the total energy with respect to position

of atoms to the expectation value of the derivative of the Hamiltonian with respect to

position of atoms. However these atomic forces are usually corrected for incomplete-

basis-set error, non-self-consistency error which are not accounted in the atomic forces

evaluated using the Hellmann-Feynman theorem. The incomplete-basis-set error [38,

39, 40] often arises when finite number of basis functions are used to represent the

electronic wavefunction which is the case in any numerical calculations and these

basis functions themselves depend on nuclear positions in a given materials system.

The non self-consistency error [40, 41] arises due to the difference between the self-

consistent(“exact”) potential and its non-self-consistent (approximate) counterpart

which is usually non-zero for any self-consistent DFT calculation performed on any

finite numerical precision computer. Furthermore, Hellmann-Feynman theorem fails

to capture stress in the cell as it produces zero force for any affine deformation of
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the system and this Pulay stress contributions are explicitly accounted later in the

DFT calculations [42, 43]. The real-space finite-element formulation proposed in

this thesis has atomic nuclei coincident with finite-element nodes and must account

for all the three errors discussed above when evaluating the forces using Hellmann-

Feynman theorem and hence needs a careful treatment. In this thesis we adopt

an alternate route and propose the use of configurational force (Eshelby) approach

for efficient computation of forces on atoms in Kohn-Sham DFT calculations and

derive the relevant expressions in a more general setting by using the non-orthogonal

formulation of Kohn-Sham DFT. We note that the proposed Eshelby formulation

for atomic relaxations provides a unified framework that captures atomic forces due

to Hellmann-Feynman theorem, incomplete-basis-sets and non-self-consistency, and

furthermore accounts for elastic stresses on periodic-cells on a single footing.

The remainder of this thesis is organized as follows. Chapter 2 provides an

overview of the electronic-structure theories. Chapter 3 describes the real-space

self-consistent formulation of the Kohn-Sham DFT problem and subsequently dis-

cusses the computational aspects of the proposed adaptive higher-order spectral finite-

element discretization of the problem. This chapter further shows that the perfor-

mance of the proposed approach is competing with plane-wave basis for pseudopoten-

tial calculation and compares to Gaussian basis for all-electron calculations. Chapter

4 describes the subspace projection technique built on the formulation described in

Chapter 3 and demonstrates the subquadratic scaling behavior of the proposed algo-

rithm on representative benchmark examples involving large-scale DFT simulations.

Chapter 5 develops the Eshelby form of forces using the real-space non-orthogonal

Kohn-Sham DFT formulation to perform atomic relaxations in a finite-element based

setting. Finally we conclude in Chapter 6 with a short discussion and consider the

scope for future work.
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CHAPTER II

Electronic structure theories

2.1 The many-body Schrödinger equation

The most fundamental governing equation for conducting quantum mechanically

informed calculations of materials properties involves the computation of electronic-

wavefunctions by solving the time-independent Schrödinger equation [44] which as-

sumes the form of an eigenvalue problem given by

HΨ = EΨ, (2.1)

H = −1

2

Ne∑
i=1

∇2
i −

1

2

Na∑
I=1

1

mI

∇2
I −

Ne∑
i=1

Na∑
I=1

ZI
|ri −RI |

+
1

2

Ne∑
i,j=1
i6=j

1

|ri − rj|

+
1

2

Na∑
I,J=1
I 6=J

ZIZJ
|RI −RJ |

Ψ = Ψ(x1,x2, · · · ,xNe ,R1,R2, · · · ,RNa) (2.2)

where the operator H is the sum of operators for the total kinetic energy of Ne elec-

trons, kinetic energy of Na nuclei, electrostatic interaction energy between electrons

and nuclei and the repulsive energy of the nuclei and further the operator H acts on

Ψ, the many body electronic wavefunction. If ri ∈ R3 denotes the spatial coordinate

of ith electron and si denotes the spin of ith electron then xi = (ri, si) and RI ∈ R3
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represents the nuclear position of I th nuclei. Further, the electronic wavefunction Ψ

has a functional dependence on xi and RI and is antisymmetric in (x1,x2, · · ·xNe) i.e

Ψ changes sign if any pair of coordinates xi and xj are interchanged. In other words

Ψ(x1, · · · ,xi, · · ·xj · · ·xNe ,R1, · · · ,RNa) = −Ψ(x1, · · · ,xj, · · ·xi · · ·xNe ,R1, · · · ,RNa).

2.1.1 Born-Oppenheimer approximation:

When we rewrite equation (2.1) as an eigenvalue problem to compute the ground-

state electronic energy for a given configuration of nuclei R = {RI} neglecting the

effect of motion of nuclei (c.f equation (2.3)), we are making the so called Born-

Oppenheimer approximation (c.f [45]). This approximation requires that the total

energy of the system is a unique function of positions of the nuclei, independent of

their velocities or history. Hence for a given positions of nuclei, the ground state

energy of the materials system can be computed by solving the following equation for

its lowest energy eigenvalue:

HeΨe = EeΨe (2.3)

where

He = −1

2

Ne∑
i=1

∇2
i + V (r1, · · · , rNe ,R1, · · · ,RNa) (2.4)

with

V (r1, · · · rNe ,R1, · · · ,RNa) =
Ne∑
i=1

Vext(ri,R) + Vee(r1, · · · , rNe) + Vnn(R1, · · · ,RNa)

Ψe = Ψe(x1,x2, · · ·xNe) (2.5)

where

Vext(r,R) = −
Na∑
I=1

ZI
|r−RI |
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Vee(r1, · · · , rNe) =
1

2

Ne∑
i,j=1
i6=j

1

|ri − rj|

Vnn(R1, · · · ,RNa) =
1

2

Na∑
I,J=1
I 6=J

ZIZJ
|RI −RJ |

Since Vnn is a fixed constant which depends on the given positions of nuclei R = {RI},

the eigenvalue problem (2.3) can be solved without Vnn, however it needs to be added

to compute the ground-state energy E0
e under Born-Oppenheimer approximation.

Further, the wavefunction Ψe is anti-symmetric for electronic degrees of freedom and

can be scaled by any constant since it is the solution of the eigenvalue problem (2.3).

The scaling constant by convention is chosen such that the wavefunction Ψe is nor-

malized to unity. ∫
|Ψe|2 dx1 dx2 · · · dxNe = 1. (2.6)

Hence the expression for the density of electrons at a position r1 is given by the

marginal probability distribution:

ρ(r1) = N

∫
|Ψe|2 ds1 dx2 · · · dxNe (2.7)

The expectation values of the operators corresponding to the kinetic energy and

the electrostatic interaction energy between electrons and nuclei of the Hamiltonian

He in equation (2.3) can be computed to be kinetic energy T , electron-electron in-

teraction energy Eee and the electron-nuclei interaction energy EeZ in the following

way:

T =

∫
Ψ∗e

(
−1

2

∑
i

∇2
i

)
Ψe dx1 · · · dxNe (2.8)

Eee =

∫
Ψ∗e

(
1

2

∑
i

′∑
j

1

|ri − rj|

)
Ψe dx1 · · · dxNe (2.9)
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EeZ =

∫
Ψ∗e

(∑
i

∑
I

−ZI
|ri −RI |

)
Ψe dx1 · · · dxNe =

∫
Ψ∗e

(
−
∑
i

Vext(ri,R)

)
Ψe dx1 · · · dxNe

(2.10)

Using the expression for electron density in equation (2.7), we have

EeZ =
∑
i

∫
1

Ne

ρ(ri)Vext(ri,R) dri =

∫
ρ(r)Vext(r,R) dr (2.11)

The above expression is clearly the classical electrostatic interaction energy between

the electrons and the nuclei of a given materials system.

It is to be noted that the eigenvalue problem (2.3) admits a variational problem

with the functional defined to be the expectation value of He

E(Ψe) = 〈Ψe|He |Ψe〉 (2.12)

and hence the variational problem to compute the ground-state materials properties

is given by

E0
e = inf

Ψe
E(Ψe) (2.13)

subject to the following normalization and antisymmetry constraints:

∫
|Ψe|2 dx1 dx2 · · · dxNe = 1,

Ψe(x1, · · · ,xi, · · ·xj · · ·xNe) = −Ψe(x1, · · · ,xj, · · ·xi · · ·xNe).

It is worthwhile to note from equation (2.5) that the many-body electronic wave-

function Ψe maps a vector in R3Ne to C and belongs to an infinite-dimensional physical

Hilbert space H on (R3Ne). This translates into huge computational complexity in

solving the eigenvalue problem (2.3) which makes ab-initio computation of ground-

state materials properties almost impossible. In otherwords, one needs to diagonalize
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a matrix of astronomical dimension I3Ne × I3Ne where I denotes the number of inter-

vals corresponding to the discretization of the real line and Ne denotes the number

of electrons in the materials system and this problem is computationally intractable.

Hence approximate methods of quantum mechanics which can explain the main fea-

tures of the complex atomic systems with less computation are highly desirable [46]

and these methods have been developed over a period of last 50 years and are often

termed as electronic structure theories in the literature. Here we discuss the most

widely used theories namely Hartree-Fock method and the density-functional theory.

We use the Dirac notation bra 〈.| and ket |.〉 to represent abstract vectors henceforth

in this thesis.

2.2 Hartree-Fock method

The Hartree-Fock approximation [47] assumes that electrons in a given materials

system interact with each other only through a mean-field potential created by other

electrons and the nuclei and thus does not account for electron-correlations. Here the

many-body wavefunction Ψe is approximated as a Slater determinant which obeys

the anti-symmetric nature of the many-body electronic wavefunction.

Ψe(x1, · · · ,xNe) ≈ ΨHF(x1, · · · ,xNe) =
1√
Ne!

det



ψ1(x1) ψ1(x2) · · · ψ1(xNe)

ψ2(x1) ψ2(x2) · · · ψ2(xNe)

. . . .

. . . .

ψNe(x1) ψNe(x2) · · · ψNe(xNe)


(2.14)
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where {ψ1, · · · , ψNe} is assumed to be set of orthonormal single-particle wavefunc-

tions: ∫
ψ∗i (x)ψj(x) dx = δij. (2.15)

The Slater-determinant approximation of Ψe reduces the wavefunction in H(R3Ne)

to Ne single-particle wavefunctions belonging to H(R3) thus making the electronic-

structure problem computationally tractable. Now substituting Ψe from (2.14) in (2.12)

we obtain the Hartree-Fock functional:

EHF({ψi}) = 〈ΨHF|He |ΨHF〉 =
Ne∑
i=1

Hi +
1

2

Ne∑
i,j=1

(Jij −Kij) (2.16)

where

Hi =

∫
ψ∗i (x)

[
−1

2
∇2 + Vext(r,R)

]
ψi(x) dx (2.17)

Jij =

∫ ∫
ψi(x)ψ∗i (x)

1

|r− r′|
ψ∗j (x

′)ψj(x
′) dx dx′ (2.18)

Kij =

∫ ∫
ψ∗i (x)ψj(x)

1

|r− r′|
ψi(x

′)ψ∗j (x
′) dx dx′ (2.19)

Here Jij and Kij are called Coulomb integrals and exchange integrals respectively.

Further Jii = Kii in the above equations. Hence the variational problem in Hartree-

Fock approximation is given by:

inf
{ψi}

EHF({ψi}) (2.20)

subject to the orthonormality constraint (2.15). The Euler-Lagrange equations of

the functional in (2.20) give rise to Fock differential equations and is solved self-

consistently for the ground-state properties. Further the electron density is computed
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using the following expression after the self-consistency is achieved:

ρ(r) =
Ne∑
i=1

|ψi(x)|2 (2.21)

It is clear from the variational structure of the Hartree-Fock problem that the

ground-state energy of a materials system computed from the Hartree-Fock approx-

imation provides an upper bound to the actual ground-state energy of the system.

Though the Hartree-Fock approximation makes electronic-structure calculations com-

putationally tractable, this method does not account for electron-correlation energy.

Hence, the development of more accurate and reliable electronic structure methods

has been the focus over the past few decades. One of the refined electronic-structure

theories which is a generalization of the Hartree-Fock approximation is the “multi-

configuration” approach. Here, the variational structure (2.12) is exploited and the

many-body wavefunction is approximated as a linear combination of a number of

Slater-determinants and it is shown that the space spanned by the basis of Slater de-

terminants is dense in the complete Hilbert space thus reproducing the exact quantum

mechanical equations [48, 49]. Another method which has gained immense popular-

ity over the course of last few decades is the density-functional theory of Hohenberg,

Kohn and Sham [50, 44]) which expresses the ground-state properties of a materials

system just by a functional of electron density. Density functional theory has played

a significant role in providing many important insights into a wide range of materials

properties for a long time and is known for its accuracy, reliability and feasibility of

electronic structure calculations. We discuss Density-functional theory in the next

section.
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2.3 Density-functional theory

Density-functional theory is based on a remarkable result of Hohenberg and Kohn [3,

2] which states that there is a one-to-one correspondence between the ground-state

electronic wave-function Ψe of a quantum mechanical system with N interacting elec-

trons and the ground-state electron density. Infact, Hohenberg and Kohn showed

that ground-state electron density is uniquely determined by the external potential of

an electronic system provided the ground-state is nondegenerate. Since the external

potential determines the entire electronic system, the ground state wavefunction and

hence the ground state energy is uniquely determined by the ground-state electron

density. This powerful result reduces the many-body Schrödinger problem of inter-

acting electrons into an equivalent problem of non-interacting electrons in an effective

mean field that is governed by electron density. We now show that the ground-state

properties of materials depend only on electron density, following the Levy-Lieb con-

strained search approach [51]:

2.3.1 Existence of a functional of density

The variational statement (2.12) makes it obvious that the energy of the materials

system is always greater than or equal to its ground-state energy. Denoting the

ground-state energy by E0
e , we have

〈Ψe|He |Ψe〉 ≥ E0
e . (2.22)

Substituting equations (2.4) and (2.5) in (2.22), we get the following:

〈
Ψe

∣∣∣∣∣T +
1

2

∑
i

′∑
j

1

|ri − rj|

∣∣∣∣∣Ψe

〉
+

∫
ρ(r)Vext(r,R) dr ≥ E0

e (2.23)
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The first term in equation (2.23) which includes the kinetic energy of interacting elec-

trons and the electron-electron interactions depends on the electronic wave-function

whereas the second term which denotes the interaction of the external-field with the

electrons in the system is independent of the electronic wave-function and depends

only on electron density. The equality in (2.22) holds when the wavefunction Ψe is the

exact ground-state wavefunction and ρ is the exact ground state density. Now, the

dependence of the first term on the wavefunction is removed by defining a functional:

F (ρ) = min
Ψe→ρ

〈
Ψe

∣∣∣∣∣T +
1

2

∑
i

′∑
j

1

|ri − rj|

∣∣∣∣∣Ψe

〉
(2.24)

where Ψe → ρ indicates the minimization over all possible anti-symmetric wavefunc-

tions Ψe which generates a particular electron density ρ. Thus it follows that the

ground-state energy and hence the ground-state materials properties depend only on

electron density. The ground-state energy is given by

E0
e = min

ρ∈K

(
F (ρ) +

∫
ρ(r)Vext(r,R) dr

)
+

1

2

Na∑
I=1

Na∑
J=1
J 6=I

ZIZJ
|RI −RJ |

(2.25)

where the last term in the above equation is the electrostatic repulsive energy be-

tween the nuclei which is independent of the electron density ρ. We also remark

that the space of minimization of the electron density K consists of ρ(r) which are

non-negative, continuous and normalized. Further, any such ρ(r) is obtained from

an antisymmetric wavefunction Ψe describing Ne electrons given by equation (2.7)

(because of the constraint Ψe → ρ in (2.24)). Such a density ρ(r) is termed as ‘N -

representable’. In addition, the anti-symmetric wavefunction giving rise to ρ(r) may

be the solution of the Schrödinger equation for the above N -electron system moving

in an external potential. Such a density ρ(r) is termed as ‘v-representable’. Hence

the space of minimization % consists of both v -representable and N -representable
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densities ρ(r). So far, the existence of unique functional of electron density F (ρ) is

discussed but a prescription to exactly evaluate of F (ρ) is an open-question and is

even more harder problem than the original variational problem (2.12). However, a

practical method to compute F (ρ) is proposed by Kohn and Sham [2] which lies at

the heart of Kohn-Sham DFT and is discussed below:

2.3.2 The Kohn-Sham approach

An important step taken by Kohn and Sham [2] is to make use of the properties

of a reference system of non-interacting electrons with density ρ to write the function

F (ρ) as

F (ρ) = Ts(ρ) + EH(ρ) + Exc(ρ) (2.26)

The first term in the expression for F (ρ) denotes the kinetic energy of a non-

interacting system of Ne electrons denoted by Ts(ρ) and the second term denotes

the classical electrostatic energy between the electrons denoted by EH(ρ) while the

third term Exc(ρ) denotes the exchange and correlation energy. The error made by

approximating the kinetic energy and electron-electron interaction energy of the in-

teracting electrons with the kinetic energy Ts(ρ) and classical electrostatic Hartree

energy EH(ρ) of the reference system of non-interacting electrons is lumped into the

exchange-correlation energy Exc(ρ) which is amenable to rather good approxima-

tions [2].

Hence the Kohn-Sham functional of electron density is given by

EKS(ρ) = Ts(ρ) + EH(ρ) + Exc(ρ) + EeZ(ρ) + EZZ (2.27)
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where

EeZ(ρ) =

∫
ρ(r)Vext(r,R) dr (2.28)

EZZ =
1

2

Na∑
I,J=1
I 6=J

ZIZJ
|RI −RJ |

(2.29)

We note that the equation (2.27) is just a reformulation of the functional in (2.25)

when exact Exc is known and hence EKS equals E0
e at the ground-state. The ground

state is infact obtained by rendering the Kohn-Sham functional EKS(ρ) stationary

with respect to ρ subject to the constraint that the total number of electrons is Ne.

Hence

δEKS

δρ
=

δ

δρ
[Ts(ρ) + EH(ρ) + Exc(ρ) + EeZ(ρ) + EZZ] = µ (2.30)

=⇒ δTs

δρ
+ VH(ρ) + Vxc(ρ) + Vext(ρ) = µ (2.31)

where µ denotes the Lagrange multiplier associated with the constraint.

Kohn and Sham noticed that the solution of equation (2.31) for ground state

electron density is identical to that of the equation for the ground state electron

density of a reference system of non-interacting electrons in an effective potential Veff

i.e.

δTs

δρ
+ Veff(ρ) = µ (2.32)

with

Veff(ρ) = VH(ρ) + Vxc(ρ) + Vext(ρ) (2.33)

In principle, equation (2.32) involves solving the Schrödinger equation associated with

a non-interacting system consisting of Ne electrons in an effective mean field,

(
−1

2
∇2 + Veff(ρ)

)
ψn(x) = εnψn(x) (2.34)
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and from its solutions ψn(x), one can compute the kinetic energy just as in Hartree-

Fock theory

Ts =
Ne∑
i=1

∫
ψ∗n(x)

(
−1

2
∇2

)
ψn(x) dx (2.35)

and the electron density is computed using

ρ(r) =
Ne∑
i=1

|ψi(x)|2 (2.36)

The above single-particle Schrödinger equations are known as the Kohn-Sham equa-

tions. The formulation presented so far does not involve any approximation so far.

However this is only true if the exact functional form of Exc(ρ) is known. This

exchange-correlation term is approximated using various models—commonly mod-

eled as an explicit functional of electron density—and these models have been shown

to predict a wide range of materials properties across various materials systems.

The popular form of exchange-correlation energy functional is the local-density

approximation (LDA) [52]

Exc(ρ) =

∫
εxc(ρ(r)) dr (2.37)

where εxc(ρ(r)) is a local functional of ρ which is to be modeled. The most widely

used model is that of homogeneous free electron gas. Further, local density gradients

can also be used to improve the exchange-correlation approximations which are often

referred to as generalized gradient approximations (GGA) [53, 54, 52].

Exc(ρ) =

∫
εxc(ρ(r),∇ρ(r)) dr (2.38)

Hybrid exchange-correlation functionals [55] have also been used in the recent past

which involves using the one-body wavefunctions in the exchange term and are found

to be better approximations in predicting accurate band-gaps of semi-metals and
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semi-conductor materials. Finally under the approximation for exchange-correlation

energy, the problem of computing the ground-state electron density for a given po-

sition of nuclei R in Kohn-Sham DFT involves minimizing the Kohn-Sham energy

functional EKS({ψi},R) with respect to single particle wavefunctions {ψi} and the

functional is given by:

EKS({ψi},R) =
Ne∑
i=1

∫
ψ∗i (x)

(
−1

2
∇2

)
ψi(x) dx +

∫
ρ(r)Vext(r,R) dr + Exc(ρ)

+
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ +

1

2

Na∑
I=1

Na∑
J=1
J 6=I

ZIZJ
|RI −RJ |

(2.39)

subject to the following orthonormal constraints given by

∫
ψi(x)ψj(x) dx = δij (2.40)

and the electron density is computed using ρ(r) =
∑Ne

i=1 |ψi(x)|2. We note that the

Kohn-Sham energy functional presented above treats all-electrons explicitly and is

often referred to as all-electron calculation. However, the tightly bound core electrons

close to the nucleus of an atom may not influence the chemical bonding, and may not

play a significant role in governing many material properties. Hence, it is a common

practice to adopt the pseudopotential approach [56], where only the wavefunctions

for the valence electrons are computed in response to the pseudopotential providing

the effective electrostatic potential of the nucleus and core electrons.

2.3.3 Kohn-Sham eigenvalue problem

We now discuss the equivalence of the DFT variational and eigenvalue problems

in this subsection in greater detail. Using Lagrange multipliers λij to enforce the

orthonormality constraints in equation (2.40) , we obtain the following functional to
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be minimized:

Econs({ψi},R,Λ) = EKS({ψi},R)−
Ne∑
i=1

Ne∑
j=1

λij

(∫
ψ∗i (x)ψj(x) dx− δij

)
(2.41)

and Λ = (Λij)1≤i,j≤Ne is Ne×Ne matrix with entries λij. Rendering Econs stationary,

with respect to ψi(x) and λij, we obtain the following equations

(
−1

2
∇2 + Veff(ρ,R)

)
ψi(x) =

Ne∑
j=1

λijψj(x) (2.42)

(
−1

2
∇2 + Veff(ρ,R)

)
ψ∗i (x) =

Ne∑
j=1

λjiψ
∗
j (x) (2.43)∫

ψ∗i (x)ψj(x) dx = δij (2.44)

where

Veff(ρ,R) = Vext(ρ,R) +
δEH(ρ)

δρ
+
δExc(ρ)

δρ
. (2.45)

Taking the complex conjugate of (2.42), then subtracting it from (2.43), we obtain

the relation
Ne∑
j=1

(λij − λ∗ij)ψj(x) = 0 (2.46)

Since the ψj are linearly independent it follows that λij = λ∗ij, proving that the matrix

Λ is indeed Hermitian. Expressing equation (2.42) in matrix form we get

HΨ = ΨΛ , H = −1

2
∇2 + Veff(ρ,R) , Ψ = [ψ1(x) ψ2(x) · · ·ψNe(x)] (2.47)

Since the matrix Λ is Hermitian, there exists an unitary matrixQ such that Λ̂ = Q∗ΛQ

where Λ̂ is a real diagonal matrix. Further, we subject the wavefunctions to an

unitary transformation with Q i.e Ψ̂ = ΨQ. Since unitary transformations are

norm-conserving, the electron density remains invariant, hence H remains invariant.
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Using the above relations, Equation (2.47) can be rewritten as

HΨ̂ = Ψ̂Λ̂ (2.48)

The above equation is nothing but an eigenvalue problem of the form

Hψ̂i = εiψ̂i, i = 1, 2....Ne (2.49)

where εi is the diagonal element of Λ̂ matrix and ψ̂i(x) are said to be canonical

wavefunctions. Dropping the hat notation for the canonical wavefunctions, the Kohn-

Sham variational problem is equivalent to solving the following eigenvalue problem

for smallest Ne eigenvalues:

(
−1

2
∇2 + Veff(ρ,R)

)
ψi = εi ψi, i = 1, 2....Ne (2.50)

and the choice of one over the other is strictly a matter of convenience. Further, the

electron density in terms of the canonical wavefunctions is given by

ρ(r) =
Ne∑
i=1

f(εi, µ)|ψi(x)|2 , (2.51)

where f(εi, µ) is the orbital occupancy function, whose range lies in the interval

[0, 1], and µ represents the Fermi-energy. In ground-state calculations, the orbital

occupancy function f(ε, µ) is given by the Heaviside function

f(ε, µ) =


1 if ε < µ,

0 otherwise .

(2.52)

The Fermi-energy µ is computed from the constraint on the total number of electrons

in the system
∫
ρ(r) dr =

∑
i f(εi, µ) = Ne . Further, the kinetic energy of the non-

23



interacting electrons Ts can be written using the orbital occupancy factor and the

Kohn-Sham eigenvalues in the following way:

Ts({ψi}) =
Ne∑
i=1

∫
ψ∗i (x)

(
−1

2
∇2

)
ψi(x) dx =

Ne∑
i=1

f(εi, µ)εi−
∫
Veff(r) ρ(r) dr (2.53)

In the case of a periodic crystal, the effective potential Veff has the periodicity of

the lattice and the solutions of the Kohn-Sham eigenvalue problem are given by the

Bloch theorem [57]. For periodic systems, it is computationally efficient to compute

the Bloch solutions directly. The formulation in (2.50) represents a nonlinear eigen-

value problem which has to be solved self-consistently, and forms the major part of

discussion in the subsequent chapters.

We remark that the above discussion of density functional theory inherently as-

sumes absolute zero temperature. Extensions to finite temperatures (c.f [50]) is pos-

sible by introducing the Helmholtz free energy F = EKS − T S where EKS is the

ground-state energy obtained in Kohn-Sham DFT by introducing the finite tempera-

ture T while S denotes the entropy. The orbital occupancy function f(ε, µ) can now

take the fractional values between 0 and 1 as defined by the Fermi-Dirac distribution

given by

f(ε, µ) =
1

1 + exp
(
ε−µ
σ

) , (2.54)

where σ = kB T , kB, being the Boltzmann constant. The entropy is given by the

following expression:

S = −kB
∑
i

[f(εi, µ) log f(εi, µ) + (1− f(εi, µ) log(1− f(εi, µ)))] (2.55)

24



CHAPTER III

Real-space finite-element formulation of

Kohn-Sham density functional theory

The enormous computational effort associated with Kohn-Sham DFT calcula-

tions has restricted investigations on material system sizes ranging from hundreds

to a maximum of thousand atoms and hence has been primarily associated with the

computation of bulk properties of materials using plane-wave basis[58, 59, 60]. How-

ever, plane-waves restrict simulation domains to periodic boundary conditions that

are not suited for most material systems containing defects, nano-clusters, amor-

phous materials and so on. On the other hand, there are atomic-orbital-type ba-

sis sets [4, 5, 6] which are well suited only for isolated systems and cannot handle

arbitrary boundary conditions. The efficiency of parallel scalability is significantly

affected in both the cases due to nonlocality of basis functions. Thus, there has

been an increasing thrust on systematically improvable and scalable real-space tech-

niques [7, 8, 9, 10, 11, 12, 13, 14] for electronic-structure calculations over the past

decade. The finite-element (FE) discretization of Kohn-Sham DFT, among the real-

space techniques presents some key advantages–it is amenable to unstructured coarse-

graining, allows for consideration of complex geometries and boundary conditions,

and is scalable on parallel computing platforms. Thus, there has been an increasing

thrust on systematically improvable and scalable real-space techniques for electronic-
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structure calculations over the past decade. The finite-element (FE) discretization of

Kohn-Sham DFT [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], among

the real-space techniques presents some key advantages–it is amenable to unstruc-

tured coarse-graining, allows for consideration of complex geometries and boundary

conditions, and is scalable on parallel computing platforms.

While the finite-element basis is more versatile than the plane-wave basis [15, 19],

it is not without its shortcomings. Prior investigations have shown that linear finite-

elements require a large number of basis functions—of the order of 100, 000 basis

functions per atom—to achieve chemical accuracy in electronic structure calcula-

tions (cf. e.g. [23, 31]), and this compares very poorly with plane-wave basis or

other real-space basis functions. It has been demonstrated that higher-order finite-

element discretizations can alleviate this degree of freedom disadvantage of linear

finite-elements in electronic structure calculations [24, 31, 61]. However, the use of

higher-order elements increases the per basis-function computational cost due to the

need for higher-order accurate numerical quadrature rules. Furthermore, the band-

width of the matrix increases cubically with the order of the finite-element, which in

turn increases the computational cost of matrix-vector products. In addition, since

a finite-element basis is non-orthogonal, the discretization of the Kohn-Sham DFT

problem results in a generalized eigenvalue problem, which is more expensive to solve

in comparison to a standard eigenvalue problem resulting from using an orthogonal

basis (for e.g. plane-wave basis). Thus, the computational efficiency afforded by using

a finite-element basis in electronic structure calculations, and its relative performance

compared to plane-wave basis and atomic-orbital-type basis functions (for e.g Gaus-

sian basis), has remained an open question to date. Hence, in the present work,

we conduct a numerical investigation on the Kohn-Sham DFT problem and attempt

to establish the computational efficiency afforded by higher-order finite-element dis-

cretizations in electronic structure calculations. To this end, we develop: (i) a unified
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self-consistent formulation which can handle all-electron and pseudopotential calcula-

tions in a non-periodic and periodic setting on a similar footing (ii) an a priori mesh

adaption technique to construct a close to optimal finite-element discretization of the

problem; (iii) an efficient solution strategy for solving the discrete eigenvalue prob-

lem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature,

and a Chebyshev acceleration technique for computing the occupied eigenspace. We

subsequently study the numerical aspects of the finite-element discretization of the

formulation, investigate the computational efficiency afforded by higher-order finite-

elements, and compare the performance of the finite-element basis with plane-wave

and Gaussian basis on benchmark problems.

The a priori mesh adaption technique proposed in this chapter is based on the

ideas in [62, 63], and closely follows the recent development of the mesh adaption tech-

nique for orbital-free DFT [64]. This is based on minimizing the discretization error in

the ground-state energy, subject to a fixed number of elements in the finite-element

mesh. To this end, we first develop an estimate for the finite-element discretiza-

tion error in the Kohn-Sham ground-state energy as a function of the characteristic

mesh-size distribution, h(r), and the exact ground-state electronic fields comprising

of wavefunctions and electrostatic potential. We subsequently determine the optimal

mesh distribution for the chosen representative solution by determining the h(r) that

minimizes the discretization error. The resulting expressions for the optimal mesh

distribution are in terms of the degree of the interpolating polynomial and the exact

solution fields of the Kohn-Sham DFT problem. Since the exact solution fields are

a priori unknown, we use the asymptotic behavior of the atomic wavefunctions [65]

away from the nuclei to determine the coarse-graining rates for the finite-element

meshes used in our numerical study. Though the resulting finite-element meshes are

not necessarily optimal near the vicinity of the nuclei, the mesh coarsening rate away

from the nuclei provides an efficient way of resolving the vacuum in non-periodic
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calculations.

We next implement an efficient solution strategy for solving the finite-element

discretized eigenvalue problem, which is crucial before assessing the computational

efficiency of the basis. We note that the non-orthogonality of the finite-element basis

results in a discrete generalized eigenvalue problem, which is computationally more

expensive than the standard eigenvalue problem that results from using an orthogonal

basis like plane-waves. We address this issue by employing a spectral finite-element

discretization and Gauss-Lobatto quadrature rules to evaluate the integrals which re-

sults in a diagonal overlap matrix, and allows for a trivial transformation to a standard

eigenvalue problem. Further, we use the Chebyshev acceleration technique for stan-

dard eigenvalue problems to efficiently compute the occupied eigenspace (cf. e.g. [66]

in the context of electronic structure calculations). Our investigations suggest that the

use of spectral finite-elements and Gauss-Lobatto rules in conjunction with Chebyshev

acceleration techniques to compute the eigenspace gives a 10− 20 fold computational

advantage, even for modest materials system sizes, in comparison to traditional meth-

ods of solving the standard eigenvalue problem where the eigenvectors are computed

explicitly. Further, the proposed approach has been observed to provide a staggering

100− 200 fold computational advantage over the solution of a generalized eigenvalue

problem that does not take advantage of the spectral finite-element discretization

and Gauss-Lobatto quadrature rules. In our implementation, we use a self-consistent

field (SCF) iteration with Anderson mixing [67], and employ the finite-temperature

Fermi-Dirac smearing [58] to suppress the charge sloshing associated with degenerate

or close to degenerate eigenstates around the Fermi energy.

We next study various numerical aspects of the finite-element discretization of

the Kohn-Sham DFT problem on benchmark problems involving both all-electron

and pseudopotential calculation. Among pseudopotential calculations, we restrict

ourselves to local pseudopotentials as a convenient choice to demonstrate our ideas.
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We begin our investigation by examining the numerical rates of convergence of higher-

order finite-element discretizations of Kohn-Sham DFT. We remark here that opti-

mal rates of convergence have been demonstrated for quadratic hexahedral and cubic

serendipity elements in pseudopotential Kohn-Sham DFT calculations [21, 27], and

mathematically proved for Kohn-Sham DFT for the case of smooth pseudopoten-

tial external fields [68]. We also note that there have been several works on the

mathematical analysis of optimal rates of convergence for non-linear eigenvalue prob-

lems [69, 70, 71]. However, the mathematical analysis of optimal rates of convergence

of higher-order finite-element discretization of Kohn-Sham DFT problem involving

Coulomb-singular potentials is an open question to date, to the best of our knowl-

edge. In the present study, we compute the rates of convergence of the finite-element

discretization of Kohn-Sham DFT for a range of finite-elements including linear tetra-

hedral element, hexahedral spectral-elements of order two, four and six. Two sets of

benchmark problems are considered in this study: (i) all-electron calculations on

boron atom and methane molecule; (ii) local pseudopotential calculations on a non-

periodic barium cluster consisting of 2× 2× 2 body-centered cubic (BCC) unit cells

and a periodic face-centered cubic (FCC) calcium crystal. We note that our restric-

tion in the present study to local pseudopotentials for pseudopotential calculations

does not affect our conclusions on convergence rates, as demonstrated in [21, 27]

where non-local pseudopotentials were employed. In these benchmark studies, as

well as those to follow, the proposed a priori mesh adaption scheme is used to con-

struct the meshes. These studies show rates of convergence in energy of O(h2k) for

a finite-element whose degree of interpolation is k, which denote optimal rates of

convergence as demonstrated in [21, 68]. An interesting aspect of this study is that

optimal rates of convergence have been observed even for all-electron calculations in-

volving Coulomb-singular potentials, which, to the best of our knowledge, have not

been analyzed or reported heretofore for the Kohn-Sham problem. We note that,
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for Coulomb-singular potentials, in the context of orbital-free DFT optimal rates of

convergence have been demonstrated in [71] for k = 1, 2 and have been demonstrated

numerically for up to k = 4 in [64]. While the electrostatic interactions are common

for both Kohn-Sham DFT and orbital-free DFT, the Kohn-Sham problem presents a

more complex case as the approximation errors are governed by the entire occupied

eigenspace of the Kohn-Sham problem as opposed to just the lowest eigenstate in the

case of the orbital-free DFT problem.

We finally turn towards assessing the computational efficiency afforded by higher-

order finite-element discretizations in Kohn-Sham DFT calculations. To this end,

we use the same benchmark problems and measure the CPU-time for the solution of

the Kohn-Sham DFT problem to various relative accuracies for all the finite-elements

considered in the present study. We observe that higher-order elements can provide

a significant computational advantage in the regime of chemical accuracy. The com-

putational savings observed are about 1000-fold upon using higher-order elements in

comparison with a linear finite-element for both all-electron as well as local pseudopo-

tential calculations. We observe that a point of diminishing returns is reached at the

sixth-order for the benchmark systems we studied and for accuracies commensurate

with the chemical accuracy—i.e., no significant improvements in the computational

efficiency was observed beyond this point. The degree of freedom advantage of higher-

order finite-elements is nullified by the increasing per basis-function costs beyond this

point. To further assess the effectiveness of higher-order finite-elements, we conduct

local pseudopotential calculations on large aluminum clusters ranging from 3× 3× 3

to 5× 5× 5 FCC unit cells using the hexic spectral finite-element, and compare the

computational times with that of plane-wave basis discretization using the ABINIT

package [60]. We note that similar relative accuracies in the ground-state energies

are achieved using the hexic finite-element with a lower computational cost in com-

parison to the plane-wave basis. Furthermore, we compute the electronic structure
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of an aluminum cluster of 7 × 7 × 7 FCC unit cells, containing 1688 atoms, with

the finite-element basis using modest computational resources, which could not be

simulated in ABINIT due to huge memory requirements.

We also investigate the efficiency of higher-order elements in the case of all-electron

calculations on a larger materials systems and compare it with the Gaussian basis

using the GAUSSIAN package [72]. In this case, the benchmark systems considered

are a graphene sheet with 100 atoms and a tris (bipyridine) ruthenium complex with

61 atoms. We find that the solution times using the finite-element basis is larger

by a factor of around 10 in comparison to Gaussian basis and we attribute this

difference to the highly optimized Gaussian basis functions for specific atom types

that resulted in the far fewer basis functions required to achieve chemical accuracy.

While this difference in the performance can be offset by the better scalability of

finite-element discretization on parallel computing platforms, there is also much room

for further development and optimization in the finite-element discretization of the

Kohn-Sham DFT problem. Finally, we assess the parallel scalability of our numerical

implementation. We demonstrate the strong scaling up to 192 processors (limited

by our access to computing resources) with an efficiency of 91.4% using a 172 atom

aluminum cluster discretized with 3.91 million degrees of freedom as our benchmark

system.

The remainder of the chapter is organized as follows. Section 3.1 describes the

variational formulation of the Kohn-Sham DFT problem followed by a discussion

on the discrete Kohn-Sham DFT eigenvalue problem. Section 3.2 develops the error

estimates for the finite-element discretization of Kohn-Sham DFT, and uses these esti-

mates to present an a priori mesh adaption scheme. Section 3.3 describes our numer-

ical implementation of the self-consistent field iteration of the Kohn-Sham eigenvalue

problem, and, in particular, discusses the efficient methodologies developed to solve

the Kohn-Sham DFT problem using the finite-element basis. Section 3.4 presents a
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comprehensive numerical study demonstrating the computational efficiency afforded

by higher-order finite-element discretizations in electronic structure calculations, and

also provides a performance comparison of finite-element basis with plane-wave and

Gaussian basis. We finally conclude with a short discussion and summary of the

chapter in Section 3.5.

3.1 Formulation

3.1.1 Kohn-Sham saddle-point formulation

In this section, we recall the Kohn-Sham DFT energy functional from Chapter II

and present the saddle-point formulation arising out of the local reformulation of elec-

trostatic energy. We subsequently review the equivalent self-consistent formulation

of the Kohn-Sham eigenvalue problem, and present the discretization of the formu-

lation using a finite-element basis and discuss how the present formulation provides

a unified framework for both non-periodic, periodic, all-electron and psuedopotential

calculations.

We recall from chapter II, the spinless Kohn-Sham energy functional describing a

materials system consisting of Ne electrons and Na nuclei is given by

E(Ψ,R) = Ts(Ψ) + Exc(ρ) + EH(ρ) + Eext(ρ,R) + Ezz(R), (3.1)

where

ρ(r) =
Ne∑
i=1

|ψi(x)|2 (3.2)

represents the electron density. In the above expression, we denote the spatial coor-

dinate by r, whereas x = (r, s) includes both the spatial and spin degrees of freedom

with r = (x, y, z) = (r1, r2, r3). Further Ψ = {ψ1(x), ψ2(x), · · · , ψNe(x)} denotes

the vector of orthonormal single electron wavefunctions, where each wavefunction
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ψi ∈ X × {α, β} can in general be complex-valued, and comprises of a spatial part

belonging to a suitable function space X (elaborated subsequently) and a spin state

denoted by α(s) or β(s). We further denote by R = {R1,R2, · · ·RNa} the collection

of all nuclear positions. The first term in the Kohn-Sham energy functional in (3.1),

Ts({Ψ}), denotes the kinetic energy of non-interacting electrons and is given by

Ts(Ψ) =
Ne∑
i=1

∫
ψ∗i (x)

(
−1

2
∇2

)
ψi(x) dx , (3.3)

where ψ∗i denotes the complex conjugate of ψi. Exc in the energy functional denotes

the exchange-correlation energy which includes the quantum-mechanical many body

interactions. In the present work, we model the exchange-correlation energy using

the local density approximation (LDA) [73, 74] represented as

Exc(ρ) =

∫
εxc(ρ)ρ(r) dr , (3.4)

where εxc(ρ) = εx(ρ) + εc(ρ), and

εx(ρ) = −3

4

(
3

π

)1/3

ρ1/3(r) , (3.5)

εc(ρ) =


γ

(1+β1
√

(rs)+β2rs)
rs ≥ 1,

A log rs +B + C rs log rs +D rs rs < 1,

(3.6)

and rs = (3/4πρ)1/3. Specifically, we use the Ceperley and Alder constants as given

in [74]. We remark that we have restricted the present formulation and study to LDA

exchange-correlation functionals solely for the sake of clarity, and the formulation can

be trivially extended (cf. e.g. [25]) to local spin density approximation (LSDA) and

generalized gradient approximation (GGA) exchange-correlation functionals.

The electrostatic interaction energies in the Kohn-Sham energy functional in (3.1)
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are given by

EH(ρ) =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ , (3.7)

Eext(ρ,R) =

∫
ρ(r)Vext(r,R) dr =

∑
J

∫
ρ(r)VJ(r,RJ) dr , (3.8)

Ezz =
1

2

∑
I,J 6=I

ZIZJ
|RI −RJ |

, (3.9)

where EH is the Hartree energy representing the classical electrostatic interaction

energy between electrons, Eext is the interaction energy between electrons and the

external potential induced by the nuclear charges given by Vext =
∑

J VJ(r,RJ) with

VJ denoting the potential (singular Coulomb potential) contribution from the J th

nucleus, and Ezz denotes the repulsive energy between nuclei with ZI denoting the

charge on the I th nucleus. We note that in a non-periodic setting, representing a

finite atomic system, all the integrals in equations (3.3)-(3.8) are over R3 and the

summations in (3.8)-(3.9) include all the atoms I and J in the system. In the case

of an infinite periodic crystal, all the integrals over r in equations (3.3)-(3.8) extend

over the unit cell, whereas the integrals over r′ extend in R3. Similarly, in (3.8)-(3.9)

the summation over I is on the atoms in the unit cell, and summation over J extends

over all lattice sites. We note that, in the context of periodic problems, the above

expressions assume a single k-point (Γ−point) sampling. The computation of the

electron density and kinetic energy in (3.2) and (3.3) for multiple k-point sampling

involves an additional quadrature over the k-points in the Brillouin zone (cf. e.g [57]).

The electrostatic interaction terms as expressed in equations (3.7)-(3.9) are non-

local in real-space, and, for this reason, evaluation of electrostatic energy is the com-

putationally expensive part of the calculation. Following the approach in [75, 25], the

electrostatic interaction energy can be reformulated as a local variational problem

in electrostatic potential by observing that 1
|r| is the Green’s function of the Laplace

operator. To this end, we represent the nuclear charge distribution by b(r,R) =
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Na∑
I=1

bI(r,RI) = −
Na∑
I=1

ZI δ̃RI
(r), where ZI δ̃RI

(r) represents a bounded smooth charge

distribution centered at RI , corresponding to the regularization of a point charge

having a support in a small ball around RI with charge ZI . The nuclear repulsion

energy can subsequently be represented as

Ezz(R) =
1

2

∫ ∫
b(r,R)b(r′,R)

|r− r′|
dr dr′ − Eself. (3.10)

where

Eself =
1

2

Na∑
I=1

∫ ∫
bI(r,RI)bI(r,RI)

|r− r′|
dr dr′ (3.11)

We remark that, the first term in the equation (3.10) differs from the expression

in equation (3.9) by the self-energy of the nuclei Eself, which is an inconsequential

constant depending only on the nuclear charge distribution. Subsequently, the elec-

trostatic interaction energy, up to a constant self-energy, is given by the following

variational problem:

1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ +

∫
ρ(r)Vext(r) dr +

1

2

∫ ∫
b(r,R)b(r′,R)

|r− r′|
dr dr′

= − inf
ϕ∈Y

{
1

8π

∫
|∇ϕ(r)|2 dr−

∫
(ρ(r) + b(r,R))ϕ(r) dr

}
, (3.12)

where ϕ(r) denotes the trial function for the total electrostatic potential due to the

electron density and the nuclear charge distribution and Y is a suitable function space

discussed subsequently. Similarly the computation of self-energy in equation (3.11) is

reformulated as a local-variational problem in self-potentials ν = {ν1(r), ν2(r), · · · }

associated with Na nuclei:
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Eself = Eself(ν,R) = sup
ν∈V

( Na∑
I=1

[
− 1

8π

∫
ΩI

|∇νI(r)|2 dr +

∫
ΩI

bI(r)νI(r) dr

+
1

8π

∫
∂ΩI

ν̄I(r)(∇ν̄I(r).n) dΓI

])
(3.13)

where ν̄I(r) denotes the boundary condition ZI
|r−RI |

applied on the boundary dΓI of

the domain ΩI on which νI(r) is computed and V = {V1, · · · ,VNa} is the set of appro-

priate function spaces discussed subsequently. Using the above local reformulations

of electrostatic interactions, the Kohn-Sham energy functional (3.1) can be rewritten

as

E(Ψ,R) = sup
ϕ∈Y

inf
ν∈V

L(ϕ,ν,Ψ,R) , (3.14)

where

L(ϕ,ν,Ψ,R) = Ts(Ψ) + Exc(ρ)− 1

8π

∫
|∇ϕ(r)|2 dr +

∫
(ρ(r) + b(r,R))ϕ(r) dr

+
Na∑
I=1

[ 1

8π

∫
ΩI

|∇νI(r)|2 dr−
∫
ΩI

bI(r)νI(r) dr− 1

8π

∫
∂ΩI

ν̄I(r)(∇ν̄I(r).n) dΓI

]
.

(3.15)

Subsequently, the problem of determining the ground-state energy and electron den-

sity for given positions of nuclei can be expressed as the following variational problem:

inf
Ψ∈X

E(Ψ,R) , (3.16)

where X =
{
Ψ | 〈ψi, ψj〉X×{α,β} = δij

}
with 〈 , 〉X×{α,β} denoting the inner product de-

fined on X×{α, β}. X denotes a suitable function space that guarantees the existence

of minimizers. We note that bounded domains are used in numerical computations,

which in non-periodic calculations corresponds to a large enough domain containing
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the compact support of the wavefunctions and in periodic calculations correspond to

the supercell. We denote such an appropriate bounded domain, subsequently, by Ω.

For formulations on bounded domains, X = Y = H1
0 (Ω) in the case of non-periodic

problems and X = Y = H1
per(Ω) in the case of periodic problems are appropriate

function spaces which guarantee existence of solutions (cf. e.g. [25]). Further we

also note that the appropriate functional space for the self-potential νI(r) is given by

VI = H1(ΩI). Mathematical analysis of the Kohn-Sham DFT problem proving the

existence of solutions in the more general case of R3 (X = H1(R3)) has recently been

reported [76].

3.1.2 Kohn-Sham self-consistent formulation

The stationarity condition corresponding to the Kohn-Sham variational problem

is equivalent to solving the non-linear Kohn-Sham eigenvalue problem given by:

Hψi = εiψi, (3.17)

where

H =

(
−1

2
∇2 + Veff(ρ,R)

)
(3.18)

is a Hermitian operator with eigenvalues εi, and the corresponding orthonormal eigen-

functions ψi(r) denote the spatial part of canonical wavefunctions. As discussed in

Chapter II, the electron density in terms of the spatial part of canonical wavefunctions

is computed using

ρ(r) = 2
∑
i

f(εi, µ)|ψi(r)|2 , (3.19)

where the factor 2 in the above equation represents the case of spin independent

system where each orbital is occupied by two electrons. The effective single-electron
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potential in equation (3.18), Veff(ρ,R), in (3.18) is given by

Veff(ρ,R) = ϕ(r,R) +
δExc

δρ
= ϕ(r,R) + Vxc(ρ) (3.20)

where ϕ(r,R) is the total electrostatic potential comprising of both Hartree poten-

tial and nuclear potential contribution which is computed through the solution of a

Poisson equation

− 1

4π
∇2ϕ(r,R) = ρ(r) + b(r,R) .

However in the case of a pseudopotential approach where only the wavefunctions for

the valence electrons are computed, b(r,R) corresponds to the regularization of a

point charge having a support in a small ball around RI with valence charge ZI .

Further, the single-electron potential Veff(ρ,R) in (3.18) now consists of an effective

electrostatic potential of the nucleus and core electrons and is often defined by an

operator

VPS = Vloc + Vnl , (3.21)

where Vloc is the local part of the pseudopotential operator and Vnl is the non-local

part of the operator. If we use the norm-conserving Troullier-Martins pseudopo-

tential [77] in the Kleinman-Bylander form [78], the action of these operators on a

Kohn-Sham wavefunction in the real-space is given by

Vloc(r,R)ψ(r) =
Na∑
J=1

V J
loc(r−RJ)ψ(r) , (3.22)

Vnl(r,R)ψ(r) =
Na∑
J=1

∑
lm

CJ
lmV

J
lmζ

J
lm(r−RJ)∆V J

l (r−RJ) , (3.23)
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where

∆V J
l (r−RJ) = V J

l (r−RJ)− V J
loc(r−RJ) ,

CJ
lm =

∫
ζJlm(r−RJ)∆V J

l (r−RJ)ψ(r) dx ,

1

V J
lm

=

∫
ζJlm(r−RJ)∆V J

l (r−RJ)ζJlm(r−RJ) dx .

In the above, V J
l (r − RJ) denotes the pseudopotential component of the atom J

corresponding to the azimuthal quantum number l, V J
loc(r−RJ) is the corresponding

local potential, and ζJlm(r−RJ) is the corresponding single-atom pseudo-wavefunction

with azimuthal quantum number l and magnetic quantum number m. Hence the

single-electron potential Veff(ρ,R) in (3.18) in the case of pseudopotential approach

is given by

Veff(ρ,R) = ϕ(r,R) + Vxc(ρ) + Vloc(R) + Vnl(R)−
Na∑
J=1

νJ(r) (3.24)

Finally, the system of equations corresponding to the Kohn-Sham eigenvalue problem

is given by

(
−1

2
∇2 + Veff(ρ,R)

)
ψi = εiψi, (3.25a)

2
∑
i

f(εi, µ) = Ne; ρ(r) = 2
∑
i=1

f(εi, µ)|ψi(r)|2, (3.25b)

− 1

4π
∇2ϕ(r,R) = ρ(r) + b(r,R); − 1

4π
∇2νI(r,R) = bI(r,R). (3.25c)

which have to be solved with appropriate boundary conditions based on the problem

under consideration. In the case of a periodic crystal, the effective potential Veff has

the periodicity of the lattice and the solutions of the Kohn-Sham eigenvalue problem

are given by the Bloch theorem [57]. Thus, for periodic systems, it is computationally

efficient to compute the Bloch solutions directly and further the sum over the atoms
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in equations (3.22) and (3.24) runs over all the atoms in the crystal. The formu-

lation in (3.25a) represents a nonlinear eigenvalue problem which has to be solved

self-consistently and is subsequently discussed in section 3.3. Upon self-consistently

solving (3.25a), the ground-state energy of the materials system in our real space

formulation is computed using

E0
tot = Eband +

∫
(εxc(ρ)− Vxc(ρ)) ρ dr +

1

2

∫
(b(r,R)− ρ(r))ϕ(r,R) dr

− 1

2

Na∑
J=1

∫
ΩI

bI(r)νI(r) dr (3.26)

where Eband, denotes the band energy, is given by

Eband = 2
∑
i

f(εi, µ)εi . (3.27)

We note that the expression for the computation of ground-state energy given in

equation (3.26) can be used for both all-electron and pseudopotential calculations.

The domain of integration in (3.26) corresponds to a large enough domain containing

the compact support of the wavefunctions in the case of non-periodic calculations

while in the case of periodic calculations, E0
tot represents the energy per periodic

unit-cell and hence the domain of integration corresponds to a periodic unit-cell. The

energy per periodic unit-cell computed using the expression in (3.26) involves Eband

and the electron density ρ(r) which inturn involves an integral over the Brillouin zone

and is usually evaluated using an additional quadrature rule over the k-points in the

Brillouin zone (cf. e.g [57]). Next we turn to the discrete formulation of the above

Kohn-Sham eigenvalue problem.
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3.1.3 Discrete Kohn-Sham problem

If VM
h represents the finite-dimensional space with dimension M , the finite-element

approximation of the various field variables (spatial part of the wavefunctions and the

electrostatic potential) in the Kohn-Sham eigenvalue problem (3.25a) are given by

ψhi (r) =
M∑
j=1

Nj(r)ψji , (3.28)

ϕh(r) =
M∑
j=1

Nj(r)ϕj , (3.29)

where Nj : 1 ≤ j ≤M denote the basis of VM
h . Subsequently, the discrete eigenvalue

problem corresponding to (3.25a) is given by

HΨ̃ i = εhi MΨ̃ i , (3.30)

where Hjk denotes the discrete Hamiltonian matrix, Mjk denotes the overlap matrix

(or commonly referred to as the mass matrix in finite-element literature), and εhi

denotes ith eigenvalue corresponding to the eigenvector Ψ̃ i. The expression for the

discrete Hamiltonian matrix Hjk for a non-periodic problem with X = Y = H1
0 (Ω) as

well as a periodic problem on a supercell with X = Y = H1
per(Ω) is given by

Hjk = Hloc
jk + Hnl

jk , (3.31)

where

Hloc
jk =

1

2

∫
∇Nj(r).∇Nk(r) dr +

∫
V h

eff,loc(r,R)Nj(r)Nk(r) dr . (3.32)

We refer to [21] for the expression of Hjk in the case of a periodic problem on a

unit-cell using the Bloch theorem. Note that in (3.32), V h
eff,loc denotes the local part
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of the effective single-electron potential computed in the finite-element basis (the

discretized effective single-electron potential). In the case of all-electron calculations,

V h
eff,loc = V h

xc + ϕh with ϕh denoting the discretized all-electron total elecrostatic

potential comprising of external Coulomb potential from all nuclei and the Hartree

potential from all-electron density while in the case of pseudopotential calculations,

V h
eff,loc = ϕh + V h

xc + V h
loc −

∑Na
J=1 ν

h
J , where V h

loc denotes the discretized local part of

the pseudopotential (cf. equations (3.22) and (3.24)). Here ϕh denotes the discretized

total electrostatic potential comprising of external Coulomb potential from all nuclei

with valence charge and the Hartree potential from the valence electron density and νhJ

denotes the discretized self-potential arising out of the J th nuclear charge. As noted

in the set of equations (3.25a) to (3.25c), ϕh and νhJ are computed as solutions of the

Poisson’s equation in the finite-element basis. In the case of all-electron calculations,

the term Hnl
jk in (3.31) is zero, while in the case of pseudopotential calculations it is

given by

Hnl
jk =

Na∑
J=1

∑
lm

CJ
lm,jV

J
lmC

J
lm,k , (3.33)

where

CJ
lm,j =

∫
ζJlm(r−RJ)∆V J

l (r−RJ)Nj(r) dr . (3.34)

Finally, the matrix elements of the overlap matrix M are given by

Mjk =

∫
Nj(r)Nk(r) dr. (3.35)

We note that the matrices Hloc and M are sparse as the finite-element basis functions

are local in real space and have a compact support (a finite region where the function

is non-zero and zero elsewhere). Further, the vectors CJ
lm,j in Hnl are also sparse since

both ζJlm(r−RJ) and ∆V J
l (r−RJ) have a compact support, thus rendering a sparse

structure to the discrete Hamiltonian H.

It is now desirable to transform the generalized eigenvalue problem (3.30) into a
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standard eigenvalue problem for which a wide range of efficient solution procedures

can be employed. Since the matrix M is positive definite symmetric, there exists a

unique positive definite symmetric square root of M, and is denoted by M1/2. Hence,

the following holds true:

HΨ̂ i = εhi MΨ̂ i

⇒ HΨ̂ i = εhi M
1/2M1/2Ψ̂ i

⇒ H̃Ψ̃ i = εhi Ψ̃ i , (3.36)

where

Ψ̃ i = M1/2Ψ̂ i

H̃ = M−1/2HM−1/2 .

We note that H̃ is a Hermitian matrix, and (3.36) represents a standard Hermitian

eigenvalue problem. The actual eigenvectors are recovered by the transformation

Ψ̂ i = M−1/2Ψ̃ i.

Furthermore, we note that the transformation to a standard eigenvalue prob-

lem (3.36) is computationally advantageous if the matrix M−1/2 can be evaluated

with modest computational cost and the matrix H̃ has the same sparsity structure as

the matrix H. This is immediately possible by using a spectral finite-element basis

which is discussed in detail in the subsequent section. The convergence of finite-

element approximation for the Kohn-Sham DFT model was shown in [25] using the

notion of Γ−convergence. We also refer to the recent numerical analysis carried out

on finite dimensional discretization of Kohn-Sham models [68], which also provides

the rates of convergence of the approximation for pseudopotential calculations. We

remark that in the present work we use the same finite-element discretization for
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both electronic wavefunctions and electrostatic potential, as is evident from equa-

tions (3.28)-(3.29). Since the electrostatic potential has similar discretization errors

as compared to the electronic wavefunctions and since the Kohn-Sham DFT prob-

lem is a saddle-point problem in electronic wavefunctions and electrostatic potential

(see equations (3.14)-(3.16), also cf. [25]) the convergence of the finite-element dis-

cretization error is non-variational in general. We note, however, that by using a

more refined discretization (h-refinement) or by using a higher-order polynomial (p-

refinement) as in [30] for the discretization of electrostatic fields in comparison to

the discretization of electronic wavefunctions, this drawback can be mitigated. Next,

we derive the optimal coarse-graining rates for the finite-element meshes using the

solution fields in the Kohn-Sham DFT problem.

3.2 A-priori mesh adaption

We propose an a priori mesh adaption scheme in the spirit of [63, 62] by minimiz-

ing the error involved in the finite-element approximation of the Kohn-Sham DFT

problem for a fixed number of elements in the mesh. The proposed approach closely

follows the a priori mesh adaption scheme developed in the context of orbital-free

DFT [64]. In what follows, we first derive a formal bound on the energy error |E−Eh|

as a function of the characteristic mesh-size h, and the distribution of electronic fields

(wavefunctions and electrostatic potential). We note that, in a recent study, error es-

timates for a generic finite dimensional approximation of the Kohn-Sham model have

been derived [68]. However, the forms of these estimates are not useful for developing

mesh-adaption schemes as the study primarily focused on proving the convergence

of the finite-dimensional approximation and determining the convergence rates. We

first present the derivation of an error bound in terms of the canonical wavefunctions

and the electrostatic potential, and subsequently develop an a priori mesh adaption

scheme based on this error bound.
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3.2.1 Estimate of energy error

In the present section and those to follow, we demonstrate our ideas on a system

with no spin-polarization consisting of Ne = 2N electrons for the sake of simplicity

and notational clarity. Let (Ψ̄
h

= {ψ̄h1 , ψ̄h2 · · · ψ̄hN} , ϕ̄h , ε̄h = {ε̄h1 , ε̄h2 · · · ε̄hN}) and

(Ψ̄ = {ψ̄1 , ψ̄2 · · · ψ̄N}, ϕ̄ , ε̄ = {ε̄1 , ε̄2 · · · ε̄N}) represent the solutions (spatial part

of canonical wavefunctions, electrostatic potential, eigenvalues) of the discrete finite-

element problem (3.30) and the continuous problem described in (3.25a)- (3.25c)

respectively. In the following derivation and henceforth in this article, we consider all

wavefunctions to be real-valued and orthonormal. We note that it is always possible

to construct real-valued orthonormal wavefunctions for both non-periodic problems

as well as periodic problems on the supercell. The wavefunctions are complex-valued

for periodic problems on a unit-cell (with multiple k-points using the Bloch theorem),

and the following approach is still valid, but results in more elaborate expressions for

the error bounds. Using the local reformulation of electrostatic interactions in the

Kohn-Sham energy functional (equations (3.14)-(3.15)), the ground-state energy in

the discrete and the continuous problem can be expressed as:

Eh(Ψ̄
h
, ϕ̄h) = 2

N∑
i=1

∫
Ω

1

2
|∇ψ̄hi |2 dr+

∫
Ω

F (ρ(Ψ̄
h
)) dr− 1

8π

∫
Ω

|∇ϕ̄h|2 dr+

∫
Ω

(ρ(Ψ̄
h
) + b)ϕ̄h dr ,

(3.37)

E(Ψ̄, ϕ̄) = 2
N∑
i=1

∫
Ω

1

2
|∇ψ̄i|2 dr+

∫
Ω

F (ρ(Ψ̄)) dr− 1

8π

∫
Ω

|∇ϕ̄|2 dr+

∫
Ω

(ρ(Ψ̄) + b)ϕ̄ dr ,

(3.38)

where

F (ρ) = εxc(ρ)ρ .

Proposition III.1. In the neighborhood of (Ψ̄, ϕ̄ , ε̄), the finite-element approxima-

tion error in the ground-state energy can be bounded as follows:
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|Eh − E| ≤ 2
N∑
i=1

[1

2

∫
Ω

|∇δψi|2 dr +

∣∣∣∣∣∣ ε̄i
∫
Ω

(δψi)
2 dr

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
Ω

F ′(ρ(Ψ̄))(δψi)
2 dr

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
Ω

(δψi)
2ϕ̄ dr

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
∫
Ω

ψ̄i δψi δϕ dr

∣∣∣∣∣∣
]

+
1

8π

∫
Ω

|∇δϕ|2 dr

+ 8

∣∣∣∣∣∣
∫
Ω

F ′′(ρ(Ψ̄))

(∑
i

ψ̄iδψi

)2

dr

∣∣∣∣∣∣ .

(3.39)

Proof. We first expand Eh(Ψ̄
h
, ϕ̄h) about the solution of the continuous problem, i.e

Ψ̄
h

= Ψ̄ + δΨ and ϕ̄h = ϕ̄+ δϕ, and we get

Eh(Ψ̄ + δΨ, ϕ̄+ δϕ) = 2
N∑
i=1

∫
Ω

1

2
|∇(ψ̄i + δψi)|2 dr +

∫
Ω

F
(
ρ(Ψ̄ + δΨ)

)
dr

− 1

8π

∫
Ω

|∇(ϕ̄+ δϕ)|2 dr +

∫
Ω

(
ρ(Ψ̄ + δΨ) + b

)
(ϕ̄+ δϕ) dr ,

which can then be simplified, using the Taylor series expansion, to

Eh(Ψ̄
h
, ϕ̄h) = 2

N∑
i=1

∫
Ω

1

2
(|∇ψ̄i|2 + |∇δψi|2 + 2∇ψ̄i · ∇δψi) dr +

∫
Ω

F (ρ(Ψ̄)) dr

+ 4
N∑
i=1

∫
Ω

F ′(ρ(Ψ̄))ψ̄i δψi dr + 8

∫
Ω

F ′′(ρ(Ψ̄))

(
N∑
i=1

ψ̄i δψi

)2

dr + 2
N∑
i=1

∫
Ω

F ′(ρ(Ψ̄))(δψi)
2 dr

− 1

8π

∫
Ω

(
|∇ϕ̄|2 + |∇δϕ|2 + 2∇ϕ̄ · ∇δϕ

)
dr +

∫
Ω

(ρ(Ψ̄) + b)ϕ̄ dr + 4
N∑
i=1

∫
Ω

ψ̄i δψi ϕ̄ dr

+

∫
Ω

[
(ρ(Ψ̄) + b)δϕ + 2

N∑
i=1

(δψi)
2ϕ̄ + 4

N∑
i=1

ψ̄i δψi δϕ

]
dr +O(δψ3

i , δψ
2
i δϕ) .

(3.40)
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We note that (Ψ̄, ϕ̄ , ε̄) satisfy Euler-Lagrange equations for each i = 1, . . . , N ,

1

2

∫
Ω

∇ψ̄i · ∇δψi dr +

∫
Ω

F ′(ρ(Ψ̄))ψ̄i δψi dr +

∫
Ω

ψ̄i δψi ϕ̄ dr = ε̄i

∫
Ω

ψ̄i δψi dr ,

(3.41a)

− 1

4π

∫
Ω

∇ϕ̄ · ∇δϕ dr +

∫
Ω

(ρ(Ψ̄) + b)δϕ dr = 0 . (3.41b)

Using (3.40) and the Euler-Lagrange equations (3.41), we get

Eh − E = 2
N∑
i=1

∫
Ω

[
1

2
|∇δψi|2 + 2 ε̄i ψ̄i δψi + F ′(ρ(Ψ̄))(δψi)

2

]
dr

+ 8

∫
Ω

F ′′(ρ(Ψ̄))

(
N∑
i=1

ψ̄iδψi

)2

dr− 1

8π

∫
Ω

|∇δϕ|2 dr

+ 2
N∑
i=1

∫
Ω

(δψi)
2ϕ̄ dr + 2

∫
Ω

ψ̄i δψi δϕ dr

+O(δψ3
i , δψ

2
i δϕ) .

(3.42)

The orthonormality constraint functional in the discrete form is given by

c(Ψh) =

∫
Ω

ψhi ψ
h
j dr− δij , (3.43)

and upon expanding about the solution Ψ̄, we get

c(Ψ̄
h
) =

∫
Ω

(ψ̄i + δψi)(ψ̄j + δψj) dr− δij (3.44)

=

∫
Ω

[
ψ̄iψ̄j + δψiψ̄j + δψjψ̄i + δψiδψj

]
dr− δij . (3.45)

Using ∫
Ω

ψ̄iψ̄j dr = δij , (3.46)
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and c(Ψ̄
h
) = 0 in (3.45), we get for i = j

2

∫
Ω

ψ̄iδψi dr = −
∫
Ω

(δψi)
2 dr i = 1, 2, . . . , N . (3.47)

Using equations (3.42) and (3.47), we arrive at the following error bound in energy

|Eh − E| ≤ 2
N∑
i=1

[1

2

∫
Ω

|∇δψi|2 dr +

∣∣∣∣∣∣ ε̄i
∫
Ω

(δψi)
2 dr

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
Ω

F ′(ρ(Ψ̄))(δψi)
2 dr

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
Ω

(δψi)
2ϕ̄ dr

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
∫
Ω

ψ̄i δψi δϕ dr

∣∣∣∣∣∣
]

+
1

8π

∫
Ω

|∇δϕ|2 dr

+ 8

∣∣∣∣∣∣
∫
Ω

F ′′(ρ(Ψ̄))

(∑
i

ψ̄iδψi

)2

dr

∣∣∣∣∣∣ .

Proposition III.2. The finite-element approximation error in proposition III.1 ex-

pressed in terms of the approximation errors in electronic wave-functions and elec-

trostatic potential is given by

|Eh − E| ≤ C

(∑
i

‖ ψ̄i − ψ̄hi ‖2
1,Ω +|ϕ̄− ϕ̄h|21,Ω +

∑
i

‖ ψ̄i − ψ̄hi ‖0,Ω‖ ϕ̄− ϕ̄h ‖1,Ω

)
(3.48)

Proof. We use the following norms: | · |1,Ω represents the semi-norm in H1 space,

‖ · ‖1,Ω denotes the H1 norm, ‖ · ‖0,Ω and ‖ · ‖0,p,Ω denote the standard L2 and Lp

norms respectively. All the constants to appear in the following estimates are positive

and bounded. Firstly, we note that

∑
i

1

2

∫
Ω

|∇δψi|2 dr ≤ C1

∑
i

|ψ̄i − ψ̄hi |21,Ω , (3.49)
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∑
i

|ε̄i|
∫
Ω

(δψi)
2 dr =

∑
i

|ε̄i|
∫
Ω

(ψ̄i − ψ̄hi )2 dr ≤ C2

∑
i

‖ ψ̄i − ψ̄hi ‖2
0,Ω . (3.50)

Using Cauchy-Schwartz and Sobolev inequalities, we arrive at the following estimate

∑
i

∣∣∣∣∣∣
∫
Ω

F ′(ρ(Ψ̄))(δψi)
2 dr

∣∣∣∣∣∣ ≤
∑
i

∫
Ω

∣∣F ′(ρ(Ψ̄))(ψ̄i − ψ̄hi )2
∣∣ dr

≤ C3

∑
i

‖ F ′(ρ(Ψ̄)) ‖0,Ω‖ (ψ̄i − ψ̄hi )2 ‖0,Ω

= C3

∑
i

‖ F ′(ρ(Ψ̄)) ‖0,Ω‖ ψ̄i − ψ̄hi ‖2
0,4,Ω

≤ C̄3

∑
i

‖ ψ̄i − ψ̄hi ‖2
1,Ω . (3.51)

Further, we note

1

8π

∫
Ω

|∇(ϕ̄− ϕ̄h)|2 dr ≤ C4|ϕ̄− ϕ̄h|21,Ω . (3.52)

Using Cauchy-Schwartz and Sobolev inequalities we arrive at

∑
i

∣∣∣∣∣∣
∫
Ω

(δψi)
2ϕ̄ dr

∣∣∣∣∣∣ ≤
∑
i

∫
Ω

∣∣(ψ̄i − ψ̄hi )2 ϕ̄
∣∣ dr ≤∑

i

‖ ϕ̄ ‖0,Ω‖ (ψ̄i − ψ̄hi )2 ‖0,Ω

≤ C5

∑
i

‖ ψ̄i − ψ̄hi ‖2
0,4,Ω

≤ C̄5

∑
i

‖ ψ̄i − ψ̄hi ‖2
1,Ω . (3.53)

Also, we note that

∑
i

∣∣∣∣∣∣
∫
Ω

ψ̄i δψi δϕ dr

∣∣∣∣∣∣ ≤
∑
i

∫
Ω

∣∣ψ̄i(ψ̄i − ψ̄hi )(ϕ̄− ϕ̄h)
∣∣ dr

≤
∑
i

‖ ψ̄i ‖0,6,Ω‖ ψ̄i − ψ̄hi ‖0,Ω‖ ϕ̄− ϕ̄h ‖0,3,Ω

≤
∑
i

C6 ‖ ψ̄i − ψ̄hi ‖0,Ω‖ ϕ̄− ϕ̄h ‖1,Ω , (3.54)
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where we made use of the generalized Hölder inequality in the first step and Sobolev

inequality in the next. Finally, we use Cauchy-Schwartz inequality to arrive at

∣∣∣∣∣∣
∫
Ω

F ′′(ρ(Ψ̄))

(∑
i

ψ̄iδψi

)2

dr

∣∣∣∣∣∣ ≤
∫
Ω

∣∣F ′′(ρ(Ψ̄))
∣∣(∑

i

∣∣ψ̄i∣∣2)(∑
i

|δψi|2
)
dr

(3.55)

=
∑
i

∫
Ω

∣∣F ′′(ρ(Ψ̄))ρ(Ψ̄)(δψi)
2
∣∣ dr (3.56)

≤ C7

∑
i

‖ ψ̄i − ψ̄hi ‖2
0,Ω . (3.57)

Using the bounds derived above, it follows that

|Eh − E| ≤ C

(∑
i

‖ ψ̄i − ψ̄hi ‖2
1,Ω +|ϕ̄− ϕ̄h|21,Ω +

∑
i

‖ ψ̄i − ψ̄hi ‖0,Ω‖ ϕ̄− ϕ̄h ‖1,Ω

)
(3.58)

We now bound the finite-element discretization error with interpolation errors,

which in turn can be bounded with the finite-element mesh size h. This requires

a careful analysis in the case of Kohn-Sham DFT and has been discussed in [68].

Using the results from the proof of Theorem 4.3 in [68], we bound the estimates in

equation (3.58) using the following inequalities (cf. [79])

|ψ̄i − ψ̄hi |1,Ω ≤ C̄0|ψ̄i − ψIi |1,Ω ≤ C̃0

∑
e

hke |ψ̄i|k+1,Ωe , (3.59a)

‖ ψ̄i − ψ̄hi ‖0,Ω≤ C̄1 ‖ ψ̄i − ψIi ‖0,Ω≤ C̃1

∑
e

hk+1
e |ψ̄i|k+1,Ωe , (3.59b)

|ϕ̄− ϕ̄h|1,Ω ≤ C̄2|ϕ̄− ϕI |1,Ω ≤ C̃2

∑
e

hke |ϕ̄|k+1,Ωe , (3.59c)

‖ ϕ̄− ϕ̄h ‖0,Ω≤ C̄2 ‖ ϕ̄− ϕI ‖0,Ω≤ C̃3

∑
e

hk+1
e |ϕ̄|k+1,Ωe , (3.59d)

where k is the order of the polynomial interpolation, and e denotes an element in the
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regular family of finite-elements [79] with mesh-size he covering a domain Ωe. Using

the above estimates, the error estimate to O(h2k+1) is given by

|Eh − E| ≤ C
∑
e

h2k
e

[∑
i

|ψ̄i|2k+1,Ωe + |ϕ̄|2k+1,Ωe

]
. (3.60)

3.2.2 Optimal coarse-graining rate

Following the approach in [63], we seek to determine the optimal mesh-size dis-

tribution by minimizing the approximation error in energy for a fixed number of

elements. Using the definition of the semi-norms, we rewrite equation (3.60) as

|Eh − E| ≤ C
NE∑
e=1

[
h2k
e

∫
Ωe

[∑
i

|Dk+1ψ̄i(r)|2 + |Dk+1ϕ̄(r)|2
]
dr
]
, (3.61)

where NE denotes the total number of elements in the finite-element triangulation,

and Dk+1 denotes the (k+1)th derivative of any function. An element size distribution

function h(r) is introduced so that the target element size is defined at all points r

in Ω, and we get

|Eh − E| ≤ C
NE∑
e=1

∫
Ωe

[
h2k
e

[∑
i

|Dk+1ψ̄i(r)|2 + |Dk+1ϕ̄(r)|2
]
dr
]

(3.62)

≤ C ′
∫
Ω

h2k(r)
[∑

i

|Dk+1ψ̄i(r)|2 + |Dk+1ϕ̄(r)|2
]
dr . (3.63)

Further, the number of elements in the mesh is in the order of

NE ∝
∫
Ω

dr

h3(r)
. (3.64)

The optimal mesh-size distribution is then determined by the following variational

problem which minimizes the approximation error in energy subject to a fixed number
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of elements:

min
h

∫
Ω

{
h2k(r)

[∑
i

|Dk+1ψ̄i(r)|2 + |Dk+1ϕ̄(r)|2
]}

dr subject to :

∫
Ω

dr

h3(r)
= NE .

(3.65)

The Euler-Lagrange equation associated with the above problem is given by

2kh2k−1(r)
[∑

i

|Dk+1ψ̄i(r)|2 + |Dk+1ϕ̄(r)|2
]
− 3η

h4(r)
= 0 , (3.66)

where η is the Lagrange multiplier associated with the constraint. Thus, we obtain

the following distribution

h(r) = A
(∑

i

|Dk+1ψ̄i(r)|2 + |Dk+1ϕ̄(r)|2
)−1/(2k+3)

, (3.67)

where the constant A is computed from the constraint that the total number of

elements in the finite-element discretization is NE.

The coarse-graining rate derived in equation (3.67) has been employed to construct

the finite-element meshes by using the a priori knowledge of the asymptotic solutions

of ψ̄i(r) and ϕ̄(r) for different kinds of problems we study in the subsequent sections.

3.3 Numerical implementation

We now turn to the numerical implementation of the discrete formulation of the

Kohn-Sham eigenvalue problem described in Section 3.1. We first discuss the higher-

order finite-elements used in our study with specific focus on spectral finite-elements,

which are important in developing an efficient numerical solution procedure.
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3.3.1 Higher-order finite-element discretizations

Linear finite-element basis has been extensively employed for a wide variety of

applications in engineering involving complex geometries and moderate levels of accu-

racy. On the other hand, much higher levels of accuracy (chemical accuracy) is desired

in electronic structure computations of materials properties. To achieve the desired

chemical accuracy, a linear finite-element basis is computationally inefficient since it

requires a large number of basis functions per atom [31, 23]. Hence, we investigate if

higher-order finite-element basis functions can possibly be used to efficiently achieve

the desired chemical accuracy. To this end, we employ in our study C0 basis functions

comprising of linear tetrahedral element (TET4) and spectral hexahedral elements up

to degree eight (HEX27, HEX125SPECT, HEX343SPECT, HEX729SPECT). The

numbers following the words ‘TET’ and ‘HEX’ denote the number of nodes in the

element, and the suffix ‘SPECT’ denotes that the element is a spectral finite-element.

We note that spectral finite-elements [80, 81] have been employed in a previous work

in electronic structure calculations [61], but the computational efficiency afforded by

these elements has not been thoroughly studied. We first briefly discuss spectral

finite-elements (also referred to as spectral-elements) employed in the present work

and the role they play in improving the computational efficiency of the Kohn-Sham

DFT eigenvalue problem.

3.3.2 Spectral finite-element basis

The spectral-element basis functions employed in the present work are constructed

as Lagrange polynomials interpolated through an optimal distribution of nodes cor-

responding to the roots of derivatives of Legendre polynomials, unlike conventional

finite-elements which use equispaced nodes in an element. Such a distribution does

not have nodes on the boundaries of an element, and hence it is common to ap-

pend nodes on the element boundaries which guarantees C0 basis functions. These
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set of nodes are usually referred to as Gauss-Lobatto-Legendre points. Furthermore,

we note that conventional finite-elements result in a poorly conditioned discretized

problem for a high order of interpolation, whereas spectral-elements provide better

conditioning [81]. The improved conditioning of the spectral-element basis was ob-

served to provide a 2-3 fold computational advantage over conventional finite-elements

in a recent benchmark study [64] conducted to assess the computational efficiency of

higher-order elements in the solution of the orbital-free DFT problem.

A significant advantage of the aforementioned spectral-elements is realized when

we conjoin their use with specialized Gaussian quadrature rules that have quadrature

points coincident with the nodes of the spectral-element, which in the present case

corresponds to the Gauss-Lobatto-Legendre (GLL) quadrature rule [82]. Importantly,

the use of such a quadrature rule will result in a diagonal overlap matrix (mass matrix)

M. To elaborate, consider the elemental mass matrix Me given by

∫
Ωe

Ni(r)Nj(r) dr =

1∫
−1

1∫
−1

1∫
−1

Ni(ξ, η, ζ)Nj(ξ, η, ζ) det(Je) dξ dη dζ (3.68)

=

nq∑
p,q,r=0

wp,q,rNi(ξp, ηq, ζr)Nj(ξp, ηq, ζr) det(Je) (3.69)

where (ξ, η, ζ) represents the barycentric coordinates, Je represents the elemental ja-

cobian matrix of an element Ωe, and nq denotes the number of quadrature points in

each dimension in a tensor product quadrature rule. Since the quadrature points are

coincident with nodal points, the above expression is non-zero only if i = j, thus re-

sulting in a diagonal elemental mass matrix and subsequently a diagonal global mass

matrix. A diagonal mass matrix makes the transformation of the generalized Kohn-

Sham eigenvalue problem (3.30) to a symmetric standard eigenvalue problem (3.36)

trivial. As discussed and demonstrated subsequently, the transformation to a stan-

dard eigenvalue problem allows us to use efficient solution procedures to compute the
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eigenspace in the self-consistent field iteration. We note that, while the use of the

GLL quadrature rule is important in efficiently transforming the generalized eigen-

value problem to a standard eigenvalue problem, this quadrature rule is less accurate

in comparison to Gauss quadrature rules. An n point Gauss-Lobatto rule can inte-

grate polynomials exactly up to degree 2n − 3, while an n point Gauss quadrature

rule can integrate polynomials exactly up to degree 2n−1. Thus, in the present work,

we use the GLL quadrature rule only in the evaluation of the overlap matrix, while

using the more accurate Gauss quadrature rule to evaluate the discrete Hamiltonian

matrix H. The accuracy and sufficiency of this reduced-order GLL quadrature for

the evaluation of overlap matrix is demonstrated in the Appendix C.

3.3.3 Self-consistent field iteration

As noted in Section 3.1, the Kohn-Sham eigenvalue problem represents a nonlinear

eigenvalue problem and must be solved self-consistently to compute the ground-state

electron density and energy. We use computationally efficient schemes to evaluate

the occupied eigenspace of the Kohn-Sham Hamiltonian (discussed below) in con-

junction with finite temperature Fermi-Dirac distribution and charge density mixing

to develop an efficient and robust solution scheme for the self-consistent field iteration

of Kohn-Sham problem. Algorithm 1 depicts the typical steps involved in the self-

consistent field (SCF) iteration. An initial guess of the electron density field is used

to start the computation. A reasonable choice of such an initial guess is the super-

position of atomic charge densities, and is used in the present study unless otherwise

mentioned. The input charge density (ρhin(r)) to a self-consistent iteration is used

to compute the total electrostatic potential ϕ(r,R) by solving the following discrete

Poisson equation using a preconditioned conjugate gradient method provided by the
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Algorithm 1 Self Consistent Field Iteration

1. Provide initial guess for electron density ρh0(r) on the finite-element mesh. This
will be the input electron density for the first self-consistent iteration (ρhin(r) =
ρh0(r)).

2. Compute the total electrostatic potential ϕh(r,R) and the self potential for each
nuclei νhI (r) by solving the respective discrete Poisson equations with appropriate
boundary conditions.

3. Compute the effective potential, Veff(ρhin,R) using equation (3.20) or (3.24) based
on type of the simulation (all-electron or pseudopotential).
4. Solve for the occupied subspace spanned by the eigenfunctions ψhi (r), i =
1, 2 · · ·N corresponding to N (N > Ne/2) smallest eigenvalues of the Kohn-Sham
eigenvalue problem (3.30).

5. Calculate the fractional occupancy factors (fi) using the Fermi-Dirac distribution
(Section (3.3.3.2))

6. Compute the new output charge densities ρhout from the eigenfunctions:

ρhout(r) = 2
∑
i

f(εi, εF )|ψhi (r)|2, (3.70)

7. If ||ρhout(r) − ρhin(r)|| ≤ tolerance, stop; Else, compute new ρhin using a mixing
scheme (Section 3.3.3.3) and go to step 2.

PETSc [83] package using a Jacobi preconditioner

M∑
k=1

[ 1

4π

∫
Ω

∇Nj(r) .∇Nk(r) dr
]
ϕk =

∫
Ω

(
ρhin(r) + b(r,R)

)
Nj(r) dr . (3.71)

Subsequently, the effective potential Veff is evaluated to set up the discrete Kohn-

Sham eigenvalue problem (3.30). We now discuss the different strategies we have

investigated to compute the occupied eigenspace of the Kohn-Sham Hamiltonian H,

and their relative merits.

3.3.3.1 Solver strategies for finding the occupied eigenspace

We examined two different solution strategies to compute the occupied subspace:

(i) explicit computation of eigenvectors at every self-consistent field iteration; (ii) A
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Chebyshev filtering approach.

Explicit computation of eigenvectors: We first discuss the methods examined

in the present work that involve an explicit computation of eigenvectors at a given

self-consistent iteration. We recall that the discrete Kohn-Sham eigenvalue problem

is a generalized Hermitian eigenvalue problem (GHEP) (3.30). As mentioned previ-

ously, by using the GLL quadrature rules for the evaluation of the overlap matrix

M, which results in a diagonal overlap matrix, the generalized eigenvalue problem

can be trivially transformed into a standard Hermitian eigenvalue problem (SHEP).

We have explored both approaches in the present work, i.e. (i) solving the general-

ized eigenvalue problem employing conventional Gauss quadrature rules; (ii) solving

the transformed standard eigenvalue problem by using GLL quadrature rules in the

computation of overlap matrix.

We have employed the Jacobi-Davidson (JD) method [84] to solve the GHEP. The

JD method falls into the category of iterative orthogonal projection methods where

the matrix is orthogonally projected into a lower dimensional subspace and one seeks

an approximate eigenpair of the original problem in the subspace. The basic idea in JD

method is to arrive at better approximations to eigenpairs by a systematic expansion

of the subspace realized by solving a “Jacobi-Davidson correction equation” that

involves the solution of a linear system. In the present work, a Jacobi preconditioner

has been employed in the solution of the correction equation. The correction equation

is solved only approximately, and this approximate solution is used for the expansion

of the subspace. Though the JD method has significant advantages in computing

the interior eigenvalues and closely spaced eigenvalues, we found the JD method to

be computationally expensive for systems involving the computation of eigenvectors

greater than 50, due to the increase in the number of times the correction equation

is solved.
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On the other hand, we employed the Krylov-Schur (KS) method [85] for solving

the SHEP. In practice, one could also use the JD method to solve the SHEP, but,

as previously mentioned, the JD method is expensive to solve systems involving few

hundreds of electrons and beyond. The KS method can be viewed as an improvement

over traditional Krylov subspace methods such as Arnoldi and Lanczos methods [86,

87]. The KS method is based on Krylov-Schur decomposition where the Hessenberg

matrix has the Schur form. The key idea of the KS method is to iteratively construct

the Krylov-subspace using Arnoldi iteration and subsequently filter the unwanted

spectrum from the Krylov-Schur decomposition. This results in a robust restarting

scheme with faster convergence in most cases.

We now demonstrate the computational efficiency realized by solving the discrete

Kohn-Sham eigenvalue problem as a transformed SHEP in comparison to GHEP. To

this end, we consider an all-electron simulation of a graphene sheet containing 16

atoms with 96 electrons (Ne = 96) and a local pseudopotential simulation (cf. sec-

tion 3.4.1.2 for details on the pseudopotentials employed) of 3× 3× 3 face-centered-

cubic aluminum nano-cluster containing 172 atoms with 516 electrons (Ne = 516)

as benchmark systems. The relative error in the ground-state energy for the finite-

element mesh used in the case of graphene is around 1.2 × 10−5 ( 0.0004 Ha/atom)

while it is around 3.6× 10−6 ( 0.0002 eV/atom) in the case of aluminum cluster. The

reference ground-state energy is obtained using the commercial code GAUSSIAN in

the case of the all-electron simulation of the graphene system, while it is obtained

using the convergence study presented in Section 3.4 for the aluminum cluster. Ta-

ble 3.1 shows the computational time taken for the first SCF iteration in each of the

above cases. All the times reported in the present work represent the total CPU

times. The Jacobi-Davidson method for GHEP and Krylov-Schur method for SHEP

provided by the SLEPc package [88] have been employed in the present study. We

remark that, in employing the Jacobi-Davidson method, eigenvectors from the pre-
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Table 3.1: Comparison of Generalized vs Standard eigenvalue problems.

Element Type DOFs Problem Type Ne Time (GHEP) Time (SHEP)

HEX125SPECT 1,368,801 graphene 96 1786 CPU-hrs 150 CPU-hrs

HEX343SPECT 2,808,385 Al 3× 3× 3 cluster 516 2084 CPU-hrs 80 CPU-hrs

vious SCF iterations have been supplied as input approximations for the subsequent

SCF iteration. The Krylov-Schur method, on the other hand, allows for one only

vector to be supplied as the input approximation to a given SCF iteration. Hence,

the eigenvector corresponding to smallest eigenvalue from the previous SCF iteration

has been supplied as the input approximation for the subsequent SCF iteration. It is

interesting to note that a 10-fold speedup is realized by transforming the Kohn-Sham

eigenvalue problem to a SHEP in the case of graphene, while a 25-fold speedup was

obtained in the case of aluminum cluster. We note that a similar observation was

recently reported in [27] where the GHEP was transformed to SHEP via the mass-

lumping approximation. Further, other simulations conducted as part of the present

study suggest that this speedup increases with increasing system size.

Chebyshev filtering: We now examine the alternate approach of Chebyshev filter-

ing proposed in [66], which is designed to iteratively compute the occupied eigenspace

at every SCF iteration. We note that the Chebyshev filtering approach is only valid

for standard eigenvalue problems. To this end, we use the aforementioned approach

to convert the GHEP to a SHEP by employing the GLL quadrature rules in comput-

ing the overlap matrix, and remark that the use of spectral elements in conjunction

with the GLL quadrature is crucial in using the Chebyshev filtering technique to solve

the Kohn-Sham eigenvalue problem in a finite-element basis. The Chebyshev filter-

ing approach is based on a subspace iteration technique, where an initial subspace is

acted upon by a Chebyshev filter constructed from the Kohn-Sham Hamiltonian that

transforms the subspace to the occupied eigenspace.

In the present work, at any given SCF iteration, we begin with the initial subspace
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V formed from the eigenvectors of the previous SCF iteration. We note that, as is

the case with all subspace iteration techniques, we choose the dimension of the sub-

space V , N , to be larger than the number of filled ground-state orbitals. Typically,

we choose N ∼ Ne
2

+ 20. This is also necessary to employ the finite temperature

Fermi-Dirac smearing, discussed in Section 3.3.3.2, to stabilize the SCF iterations in

materials systems that have very small band-gaps or have degenerate states at the

Fermi energy. As proposed in [66], the Chebyshev filter is constructed from a shifted

and scaled Hamiltonian, H = c1H̃ + c2, where H̃ is the transformed Hamiltonian

in the SHEP (cf. equation (3.36)). The constants c1 and c2 which correspond to

the scaling and shifting are determined such that the unwanted eigen-spectrum is

mapped into [−1, 1] and the wanted spectrum into (−∞,−1). In order to compute

these constants, we need estimates of the upper bounds of the wanted and unwanted

spectrums. The upper bound of the unwanted spectrum, which corresponds to the

largest eigenvalue of H̃, can be obtained inexpensively by using a small number of

iterations of the Lanczos algorithm. The upper bound of the wanted spectrum is cho-

sen as largest Rayleigh quotient of H̃ in the space V from the previous SCF iteration.

Subsequently, the degree-m Chebyshev filter, pm(H), which magnifies the spectrum

of H in (−∞,−1)—the wanted eigen-spectrum of H̃—transforms the initial subspace

V to the occupied eigenspace of H̃. The degree of the Chebyshev filter is chosen

such that the obtained space is a close approximation of the occupied space. We note

that the action of the Chebyshev filter on V can be performed recursively, similar

to the recursive construction of the Chebyshev polynomials [89]. After obtaining the

occupied eigenspace, we orthogonalize the basis functions, and subsequently project

H̃ into the eigenspace to compute the eigenvalues that are used in the Fermi-Dirac

smearing discussed in the next subsection.

We remark that the degree of the polynomial required for the Chebyshev filter

depends on the separation between eigenvalues of H in (−∞,−1), which in turn
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depends on: (i) the ratio between the wanted and unwanted eigenspectrums of H̃;

(ii) the separation between the eigenvalues in the wanted spectrum of H̃. The size of

the unwanted spectrum is primarily governed by the largest eigenvalue of H̃, which,

in turn, is related to the finite-element discretization—increases with decrease in the

element-size of the finite-element mesh. In general, all-electron calculations require

locally refined meshes near the nuclei as they involve Coulomb-singular potential fields

and highly oscillatory core wavefunctions. Hence, a very high degree of Chebyshev

polynomial—of the order of 102 − 103 for the problems studied in this work—needs

to be employed to effectively filter the unwanted spectrum. On the other hand,

simulations performed on systems with smooth pseudopotential required Chebyshev

polynomial degrees between 10 to 50 for the range of problems studied in the present

work. Further, qualitatively speaking, a larger degree Chebyshev filter is required for

larger systems as the separation between eigenvalues in the wanted spectrum of H̃

reduces with increasing number of electrons.

We now compare the computational times (cf. table 3.2) taken for a single SCF

iteration solved using an eigenvalue solver based on Krylov-Schur method and the

Chebyshev filter using the aforementioned benchmark problems comprising of a 16-

atom graphene sheet and 172-atom aluminum cluster. We use a Chebyshev polyno-

mial of degree 800 for the graphene all-electron calculation and a polynomial degree

of 12 for aluminum cluster pseudopotential calculation respectively. As is evident

from the results, we clearly see a factor of 12 speedup that is obtained in the case of

graphene, and a factor of around 6 speedup that is obtained in the case of aluminum

cluster. The speedup obtained was even greater for larger materials systems.

Table 3.2: Comparison of Standard eigenvalue problem vs Chebyshev filtered subspace
iteration (ChFSI).

Element Type DOFs Problem Type N Time (SHEP) Time (ChFSI)

HEX125SPECT 1,368,801 graphene 96 150 CPU-hrs 12.5 CPU-hrs

HEX343SPECT 2,808,385 Al 3× 3× 3 cluster 512 80 CPU-hrs 13 CPU-hrs
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The use of spectral finite-elements in conjunction with Chebyshev filtered sub-

space iteration presents an efficient and robust approach to solve the Kohn-Sham

problem using the finite-element basis. Thus, for subsequent simulations reported in

the present work that use hexahedral elements, we employ the Krylov-Schur method

for the first SCF iteration to generate a good initial subspace and use the Chebyshev

filtering approach for all subsequent iterations to compute the occupied eigenspace.

However, for simulations that use tetrahedral elements, we solve the GHEP using

Jacobi-Davidson method as a transformation to SHEP is non-trivial and involves the

inversion of overlap matrix using iterative techniques.

3.3.3.2 Finite temperature smearing: Fermi-Dirac distribution

For materials systems with very small band gaps or those with degenerate energy

levels at the Fermi energy, the SCF iteration may exhibit charge sloshing—a phe-

nomenon where large deviations in spatial charge distribution are observed between

SCF iterations with different degenerate (or close to degenerate) levels being occu-

pied in different SCF iterations. In such a scenario, the SCF exhibits convergence

in the ground-state energy, but not in the spatial electron density. As discussed in

Chapter II, it is common in electronic structure calculations to introduce an orbital

occupancy function [58] allowing fractional occupancies based on the energy levels

and a smearing function to remove charge sloshing in SCF iterations. A common

choice for the smearing function is the finite temperature Fermi-Dirac distribution,

and the orbital occupancy factor fi corresponding to an energy level εi is given by

fi ≡ f(εi, εF ) =
1

1 + exp( εi−εF
σ

)
, (3.72)

where the smearing factor σ = kBT with kB denoting the Boltzmann constant and T

denoting the temperature in Kelvin. In the above expression, εF denotes the Fermi
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energy, which is computed from the constraint on the total number of electrons given

by
∑

i 2fi = Ne. We note that the convergence of ground-state energy is quadratic

in the smearing parameter σ [58].

3.3.3.3 Mixing scheme:

The convergence of the SCF iteration is crucially dependent on the mixing scheme,

and many past works in the development of electronic structure methods have focused

on this aspect [90, 67, 91, 92, 93]. In the present work, we employ an n-stage Anderson

mixing scheme [67], which is briefly described below for the sake of completeness. Let

ρh
(n)

in (r) and ρh
(n)

out (r) represent the input and output electron densities of the nth self-

consistent iteration. The input to the (n+ 1)th self-consistent iteration, ρh
(n+1)

in (r), is

computed as follows

ρh
(n+1)

in = γmix ρ̄
h
out + (1− γmix) ρ̄hin (3.73)

where

ρ̄hin(out) = cn ρ
h(n)

in(out) +
n−1∑
k=1

ck ρ
h(n−k)

in(out) (3.74)

and the sum of all the constants ci is equal to one, i.e.,

c1 + c2 + c3 + · · ·+ cn = 1 . (3.75)

Using the above constraint, equation (3.74) can be written as

ρ̄hin(out) = ρh
(n)

in(out) +
n−1∑
k=1

ck

(
ρh

(n−k)

in(out) − ρh
(n)

in(out)

)
. (3.76)

Denoting F = ρhout − ρhin, the above equation can be written as

F̄ = F (n) +
n−1∑
k=1

ck
(
F (n−k) − F (n)

)
. (3.77)
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The unknown constants c1 to cn−1 are determined by minimizing R = ||F̄ ||22 = ||ρ̄hin−

ρ̄hout||22, which amounts to solving the following system of (n − 1) linear equations

given by:

n−1∑
k=1

(
F (n) − F (n−m), F (n) − F (n−k)

)
ck =

(
F (n) − F (n−m), F (n)

)
m = 1 · · ·n− 1

(3.78)

where the notation (F,G) stands for the L2 inner product between functions F (r)

and G(r) and is given by

(F,G) =

∫
F (r)G(r) dr . (3.79)

The value of the parameter γmix in equation (3.73) is chosen to be 0.5 in the present

work. All the integrals involved in the linear system (3.78) are evaluated using Gauss

quadrature rules, and the values of ρh
(n)

in(out)(r) are stored as quadrature point values

after every nth self consistent iteration. In all the simulations conducted in the present

work, the Anderson mixing scheme is used with full history.

3.4 Numerical results

3.4.1 Rates of convergence

We begin with the examination of convergence rates of the finite-element approx-

imation using a sequence of meshes with decreasing mesh sizes for various polyno-

mial orders of interpolation. The benchmark problems used in this study, include:

(i) all-electron calculations performed on boron atom and methane molecule, which

represent non-periodic problems with a Coulomb-singular nuclear potential; (ii) lo-

cal pseudopotential calculations performed on a barium cluster that represents a

non-periodic problem with a smooth external potential, and a bulk calculation of

face-centered-cubic (FCC) calcium crystal. In the case of all-electron calculations,
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the nuclear charges are treated as point charges on the nodes of the finite-element

triangulation and the discretization provides a regularization for the electrostatic po-

tential. We note that the self-energy of the nuclei in this case is mesh-dependent

and diverges upon mesh refinement. Thus, the self energy is also computed on the

same mesh that is used to compute the total electrostatic potential, which ensures

that the divergent components of the variational problem on the right hand side of

equation (3.12) and the self energy exactly cancel owing to the linearity of the Poisson

equation (cf. Appendix A for a detailed discussion).

We conduct the convergence study by adopting the following procedure. Using

the a priori knowledge of the asymptotic solutions of the atomic wavefunctions [65],

we determine the coarsening rate from equation (3.67) which is used to construct the

coarsest mesh. Though the computed coarsening rates use the far-field asymptotic

solutions instead of the exact ground-state wavefunctions that are a priori unknown,

the obtained meshes nevertheless provide a systematic way for the discretization of

vacuum in non-periodic calculations as opposed to using an arbitrary coarse-graining

rate or uniform discretization. In the case of periodic pseudopotential calculations, a

finite-element discretization with a uniform mesh-size is used. A uniform subdivision

of the initial coarse-mesh is carried out to generate a sequence of refined meshes, which

represents a systematic refinement of the finite-element approximation space. The

ground-state energies from the discrete formulation, Eh, obtained from the sequence

of meshes constructed using the HEX125SPECT element and containing Ne elements

are used to obtain a least squares fit of the form

|Eh − E0| = C(1/NE)2k/3 , (3.80)

to determine the constants E0, C and k. The obtained value of E0, which represents

the extrapolated continuum ground-state energy computed using the HEX125SPECT

65



element, is used as the reference energy to compute the relative error |Eh−E0|
|E0| in

the convergence study of various orders of finite-elements reported in subsequent

subsections.

3.4.1.1 All-electron calculations

We first begin with all-electron calculations by studying two examples: (i) boron

atom (ii) methane molecule.

Boron atom: This is one of the simplest systems displaying the full complexity of

an all-electron calculation. For the present case, we use a Chebyshev filter of order

500 to compute the occupied eigenspace. As discussed in Section 3.3.3.2, we use a

finite-temperature smearing to avoid instability in the SCF iteration due to charge

sloshing from the degenerate states at the Fermi energy. A smearing factor σ =

0.0003168 Ha (T=100K) is used in the present study. The simulation domain used is

a spherical domain of radius 20 a.u. with Dirichlet boundary conditions employed on

electronic wavefunctions and total electrostatic potential. We first determine the mesh

coarse-graining rate by noting that the asymptotic decay of atomic wavefunctions is

exponential, and an upper bound to this decay under the Hartree-Fock approximation

is given by [65]

ψ(r) ∼ exp
[
−
√

2 ε̃ r
]

for r →∞ , (3.81)

where −ε̃ denotes the energy of the highest occupied atomic/molecular orbital. While

the above estimate has been derived for the Hartree-Fock formulation, it nevertheless

provides a good approximation to the asymptotic decay of wavefunctions computed

using the Kohn-Sham formulation. We use the aforementioned estimate, though not

optimal, for all the wavefunctions in the atomic system, and adopt this approach for
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all systems considered subsequently. Hence, in equation (3.67), we consider ψ̄i to be

ψ̄(r) =

√
ξ3

π
exp
[
−ξ r

]
where ξ =

√
2 ε̃ . (3.82)

The electrostatic potential governed by the Poisson equation with a total charge

density being equal to the sum of 5ψ̄2(r) and −5δ(r) is given by

ϕ̄(r) = −5 exp (−2ξ r)

(
ξ +

1

r

)
. (3.83)

Using the above equations, the mesh coarse-graining rate from equation (3.67) is given

by

h(r) = A

 5

π
ξ2k+5 exp (−2 ξ r) + 25 exp (−4 ξ r)

[
ξk+22k+1 +

k+1∑
n=0

(
k + 1

n

)
2nξn(k + 1− n)!

rk−n+2

]2−1/(2k+3)

.

(3.84)

Since ε̃ in the above equation is unknown a priori, the value of ε̃h determined on a

coarse mesh is used in the above equation to obtain h(r) away from the atom. The

finite-elements around the boron atom has been subdivided to get local refinement

near the boron atom. We now perform the numerical convergence study with tetra-

hedral and hexahedral spectral elements up to eighth order using this coarse-graining

rate, and the results are shown in figure 3.1. The value of E0 computed from equa-

tion (3.80) is −24.3431910234 Ha, which is used to compute the relative errors in

the energies. The ground-state energy computed by performing an all-electron cal-

culation using APE (Atomic Pseudopotential Engine) software [94] is found to be

−24.34319112 Ha.

We observe that all the elements studied show close to optimal rates of conver-

gence, O(h2k), where k is the degree of the polynomial. An interesting point to note

is that, although the governing equations are non-linear in nature and the nuclear po-

tential approaches a Coulomb-singular solution upon mesh refinement, optimal rates
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of convergence are obtained. Recent mathematical analysis [68] shows that the finite-

element approximation for the Kohn-Sham DFT problem does provide optimal rates

of convergence for pseudopotential calculations. To the best of our knowledge, math-

ematical analysis of higher-order finite-element approximations of the Kohn-Sham

DFT problem with Coulomb-singular nuclear potentials is still an open problem.

We note that, in the case of linear finite-elements, a large number of elements are

required to even achieve modest relative errors. In fact, close to five million linear

TET4 elements are required for a single boron atom to obtain a relative error of 10−2,

while relative errors up to 10−4 are achieved with just few hundreds of HEX125SPECT

and HEX343SPECT elements, and even higher accuracies are achieved with a few

thousands of these elements.

Methane molecule: The next example we study is methane with a C-H bond

length of 2.07846 a.u. and a C-H-C tetrahedral angle of 109.4712◦. For the present

case, we use a Chebyshev filter of order 500 to compute the occupied eigenspace, and

a smearing factor σ = 0.0003168 Ha (T=100K) for the Fermi-Dirac smearing. The

simulation domain used is a cubical domain of side 50 a.u. with Dirichlet boundary

conditions employed on electronic wavefunctions and total electrostatic potential. As

in the case of boron atom, the finite-element mesh for this molecule is constructed

to be locally refined around the atomic sites, while coarse-graining away. A uniform

mesh is first constructed near the methane molecule and the finite-elements around

each nuclei are then subdivided to obtain local refinements around each nuclei. The

mesh coarsening rate in the outer region is determined numerically by employing the

asymptotic solution of the far-field electronic fields, estimated as a superposition of

single atom far-field asymptotic fields, in equation (3.67). To this end, asymptotic
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behavior of the atomic wavefunctions in carbon atom (ψ̄C(r)) is chosen to be

ψ̄C(r) =

√
ξ3

π
exp
[
−ξ r

]
where ξ =

√
2 ε̃ , (3.85)

where ε̃ (negative of the eigenvalue of the highest occupied eigenstate) is determined

from a coarse mesh calculation of single carbon atom. The corresponding electrostatic

potential is governed by the Poisson equation, with total charge density being equal

to the sum of 6|ψ̄C(r)|2 and −6δ(r), and is given by

ϕ̄(r) = −6 exp (−2ξ r)

(
ξ +

1

r

)
. (3.86)

In the case of hydrogen atom, the analytical solution is given by

ψ̄H(r) =

√
1

π
exp
[
− r
]
, (3.87)

and the corresponding electrostatic potential is given by

ϕ̄(r) = − exp (−2 r)

(
1 +

1

r

)
. (3.88)

We now perform the numerical convergence study with both tetrahedral and hexa-

hedral elements with the meshes constructed as explained before. Figure 3.2 shows

the convergence results for the various elements, and figure 3.3 shows the isocontours

of electron density for methane molecule. The value of E0 computed from equa-

tion (3.80), the reference ground-state energy per atom of the methane molecule which

is used to compute the relative errors in the energies, is found to be −8.023988150 Ha.

The ground-state energy per atom computed using the GAUSSIAN package [72] with

polarization consistent 4 DFT basis set (pc-4) is found to be −8.0239855633 Ha. As

in the case of boron atom, we obtain close to optimal convergence rates, and sig-
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nificantly higher relative accuracies in ground-state energies are observed by using

higher-order elements.

3.4.1.2 Local Pseudopotential calculations

We now turn to pseudopotential calculations in multi-electron systems. A pseu-

dopotential constitutes the effective potential of the nucleus and core electrons ex-

perienced by the valence electrons. Pseudopotentials are constructed such that the

wavefunctions of valence electrons outside the core and their corresponding eigenval-

ues are close to those computed using all-electron calculations. We note that, in the

present work, we have restricted our investigation to local pseudopotential calcula-

tions as the present focus of this work is the demonstration of the computational effi-

ciency afforded by adaptive higher-order finite-element discretizations. We note that

the use of non-local pseudopotentials—for instance, the Troullier Martins pseudopo-

tential in the Kleinman-Bylander form [78]—results in an additional sparse matrix in

the discrete Hamiltonian whose sparsity is dependent on the extent of the non-local

projectors. We expect that the consideration of non-local pseudopotentials will only

have a marginal effect on the demonstrated performance of the algorithms and the

scalability results, and a careful study of this aspect will be undertaken in our future

investigations. In the present work, we use the local evanescent core pseudopoten-

tial [95] as a model pseudopotential to demonstrate our ideas. This pseudopotential

has the following form

V I
ion = − Z

Rc

(
1

y
(1− (1 + βy)e−αy)− Ae−y

)
, (3.89)

where Z denotes the number of valence electrons and y = |r − RI |/Rc. The core

decay length Rc and α ≥ 0 are atom-dependent constants [95]. The constants β and
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Figure 3.1: Convergence rates for the finite-element approximation of boron atom.
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Figure 3.2: Convergence rates for the finite-element approximation of methane molecule.
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A are evaluated by the following relations:

β =
α3 − 2α

4(α2 − 1)
, A =

1

2
α2 − αβ. (3.90)

Barium cluster: The first local pseudopotential calculation we present is a barium

2× 2× 2 body-centered cubic (BCC) cluster with a lattice parameter of 9.5 a.u.. A

Chebyshev filter of order 16 is employed to compute the occupied eigenspace, and a

smearing factor σ = 0.000634 Ha (T=200K) is used for the Fermi-Dirac smearing.

The simulation domain used is a cubical domain of side 100 a.u. with Dirichlet bound-

ary conditions employed on electronic wavefunctions and total electrostatic potential.

The finite-element mesh for this molecule is constructed to be uniform in the cluster

region where barium atoms are present, while coarse-graining away. The mesh coars-

ening rate in the vacuum is determined numerically by employing the asymptotic

solution of the far-field electronic fields, estimated as a superposition of single atom

far-field asymptotic fields, in equation (3.67). To this end, asymptotic behavior of

the atomic wavefunctions in barium atom (ψ̄(r)) is chosen to be

ψ̄(r) =

√
ξ3

π
exp
[
−ξ r

]
where ξ =

√
2 ε̃ , (3.91)

where ε̃ (negative of the eigenvalue of the highest occupied eigenstate) is estimated

from a coarse mesh calculation. The corresponding electrostatic potential is deter-

mined by the Poisson equation, with total charge density being equal to the sum of

2ψ̄2(r) and −2δ(r), and is given by

ϕ̄(r) = −2 exp (−2ξ r)

(
ξ +

1

r

)
. (3.92)

The numerical convergence study is conducted with both tetrahedral and hexahedral

elements. Figure 3.5 shows the rates of convergence for the various elements consid-
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Figure 3.3: Electron density contours of
methane molecule.

Figure 3.4: Electron density contours of
barium 2× 2× 2 BCC cluster.

ered that are close to optimal rates of convergence and figure 3.4 show the relevant

electron-density contours. The value of E0 computed from equation (3.80), the ref-

erence ground-state energy per atom which is used to compute the relative errors

in the energies, is found to be −0.6386307998 Ha. The energy per atom obtained

with plane-wave basis using ABINIT with a cutoff energy 30 Ha and cell-size 80 a.u.

is −0.638627743 Ha. The main observation that distinguishes this study from the

all-electron study is that all orders of interpolation provide much greater accuracies

for the local pseudopotential calculations in comparison to all-electron calculations.

Linear basis functions are able to approximate the ground-state energies up to rela-

tive errors of 10−3, whereas relative errors of 10−6 can be achieved with higher-order

elements with polynomial degrees of four and above.

Perfect crystal with periodic boundary conditions: The next example con-

sidered is that of a perfect calcium face-centered cubic (FCC) crystal with lattice

constant 10.55 a.u.. Bloch theorem [57] is used in the simulation with 10 k-points

(high symmetry) to sample the first Brillouin zone, which represents a quadrature

rule of order 2 [96]. The eigenspace is computed using the Krylov-Schur method,

and a smearing parameter of 0.003168 Ha (T=1000K) is used in these simulations.

Figure 3.6 shows the rates of convergence for the various higher-order finite-elements
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Figure 3.5: Convergence rates for the finite-element approximation of barium cluster.
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Figure 3.6: Convergence rates for the finite-element approximation of bulk FCC calcium.
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considered in the present work. The value of E0 computed from equation (3.80),

the reference bulk energy per atom, is computed to be −0.729027041 Ha. The bulk

energy per atom obtained using ABINIT with a cutoff energy of 40 Ha is found to

be −0.72902775 Ha. We note that the results are qualitatively similar to the local

pseudopotential calculations carried on barium cluster.

3.4.2 Computational cost

We now examine the key aspect of computational efficiency afforded by the use

of higher-order finite-element approximations in the Kohn-Sham DFT problem. As

seen from the results in Section 3.4.1, higher-order finite-element discretizations pro-

vide significantly higher accuracies with far fewer elements in comparison to linear

finite-elements. However, the use of higher-order elements increases the per-element

computational cost due to an increase in the number of nodes per element, which also

results in an increase in the bandwidth of the Hamiltonian matrix. Further, higher-

order elements require a higher-order accurate quadrature rule, which again increases

the per-element computational cost. Thus, in order to unambiguously determine the

computational efficiency afforded by higher-order finite-element discretizations, we

measured the CPU-time taken for the simulations conducted on the aforementioned

benchmark problems for a wide range of meshes providing different relative accura-

cies. All the simulations are conducted using meshes with the coarse-graining rates

determined by the approach outlined in Section 3.2.2. All the numerical simulations

reported in this work are conducted using a parallel implementation of the code based

on MPI(message-passing interface), and are executed on a parallel computing clus-

ter with the following specifications: dual-socket six-core Intel Core I7 CPU nodes

with 12 total processors (cores) per node, 48 GB memory per node, and 40 Gbps

Infiniband networking between all nodes for fast MPI communication. The various

benchmark calculations were executed using 1 to 12 processors, while the results for
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the larger problems discussed subsequently were executed on 48 to 96 processors. It

was verified (see Section 3.4.3) that our implementation scales linearly on this parallel

computing platform for the range of processors used, and hence the total CPU-times

reported for the calculation are close to the wall-clock time on a single processor. The

number of processors used to conduct ABINIT and GAUSSIAN simulations for the

comparative studies, discussed subsequently, are carefully chosen to ensure scalability

of these codes, and are typically less than 20 processors.

3.4.2.1 Benchmark systems

We first consider the benchmark systems comprising of boron atom, methane

molecule, barium cluster and bulk calcium crystal. The mesh coarsening rates for

these benchmark systems derived in Section 3.4.1 are employed in the present study.

The number of elements are varied to obtain finite-element approximations with vary-

ing accuracies that target relative energy errors in the range of 10−1 − 10−7. We em-

ploy the same numerical algorithms and algorithmic parameters—order of Chebyshev

filter, finite-temperature smearing parameter—as discussed in Section 3.4.1 for the

present study. The total CPU-time is measured for each of these simulations on the

series of meshes constructed for varying finite-element interpolations and normalized

with the longest time in the series of simulations for a given material system. The

relative error in ground-state energy is then plotted against this normalized CPU-

time. Figures 3.7, 3.8, 3.9 and 3.10 show these results for boron, methane molecule,

barium cluster and bulk calcium crystal, respectively.

Our results show that the computational efficiency of higher-order interpolations

improves as the desired accuracy of the computations increases, in particular for

errors commensurate with chemical accuracy—order of 1 meV per atom error for

pseudopotential calculations and 1 mHa per atom error for all-electron calculations.

We note that a thousand-fold computational advantage is obtained with higher-order
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elements over linear TET4 element even for modest accuracies corresponding to rela-

tive errors of 10−2. For relative errors of 10−3, quadratic HEX27 element performance

is similar to other finite-elements with quartic interpolation and beyond, and some-

times marginally better. However, all higher-order elements significantly outperform

linear TET4 element. Considering relative errors of 10−5, quartic HEX125SPECT

element performs better in comparison to quadratic HEX27 element almost by a

factor of 10, while hexic HEX343SPECT element is computationally more efficient

than HEX125SPECT element by a factor greater than three and this factor improves

further for lower relative errors. The octic HEX729SPECT element performs only

marginally better than the hexic element for relative errors lower than 10−5. Com-

paring the results across different materials systems, we observe that the performance

of lower-order elements is inferior in the case of all-electron systems in comparison

to systems with smooth local pseudopotentials. For instance, at a relative error of

10−2, the solution time using TET4 is more than three orders of magnitude larger

than HEX343SPECT for the case of methane molecule. However, the solution time is

three orders of magnitude larger for TET4 over HEX343SPECT for the case barium

cluster at a relative error of 10−3.

In summary, for chemical accuracies, the computational efficiency improves sig-

nificantly with the order of the element up to sixth-order, with diminishing returns

beyond. Further, the relative performance of higher-order elements with respect to

linear TET4 element in the case of all-electron calculations is significantly better in

comparison to local pseudopotential calculations. Lastly, qualitatively speaking, the

sequence of graphs of relative error vs. normalized CPU-time for the various elements

tend towards increasing accuracy and computational efficiency with increasing order

of finite-element interpolation. However, we note that, for the systems studied, the

point of diminishing returns in terms of computational efficiency of higher-order ele-

ments for relative errors commensurate with chemical accuracy is around sixth-order.
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As demonstrated in Appendix B , the primary reason for the diminishing returns is

the increase in the cost of computing the Hamiltonian matrix which also increasingly

dominates the total time with increasing order of the element.

3.4.2.2 Large materials systems

In this section, we further investigate the computational efficiency afforded by

higher-order finite-elements by considering larger material systems involving both

local pseudopotential and all-electron calculations. As a part of this investigation,

we demonstrate the effectiveness of the higher-order finite-elements by comparing the

solution times of calculations with local pseudopotentials against plane-wave basis set

and solution times of all-electron calculations against a Gaussian basis set providing

similar relative accuracy in the ground-state energy. The systems chosen as a part of

this study are aluminum clusters containing 3× 3× 3, 5× 5× 5, 7× 7× 7 FCC unit

cells for the case of pseudopotential calculations. A graphene sheet containing 100

atoms and a coordination complex, tris (bipyridine) ruthenium, containing 61 atoms

are chosen in the case of all-electron calculations.

Local pseudopotential calculations: The pseudopotential calculations on alu-

minum clusters are conducted using the evanescent core pseudopotential [95]. All

the simulations in the case studies involving local pseudopotentials use superposition

of single-atom electron densities as the initial guess for the electron density in the

first SCF iteration. We used the Krylov-Schur iteration for solving the eigenvalue

problem in the first SCF iteration and used Chebyshev filtered subspace iteration for

the subsequent SCF iterations. The order of Chebyshev filters used for the 3× 3× 3,

5 × 5 × 5 and 7 × 7 × 7 aluminum clusters are 12, 30 and 50 respectively. All

simulations are conducted using a finite temperature Fermi-Dirac smearing param-

eter of 0.0003168 Ha (T=100K). In order to conduct a one-to-one comparison, the
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Figure 3.7: Computational efficiency of various orders of finite-element approximations.
Case study: boron atom.
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Figure 3.8: Computational efficiency of various orders of finite-element approximations.
Case study: methane molecule.
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Figure 3.9: Computational efficiency of various orders of finite-element approximations.
Case study: barium 2× 2× 2 BCC cluster.
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Figure 3.10: Computational efficiency of various orders of finite-element approximations.
Case study: bulk calcium FCC crystal.
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plane-wave simulations are also conducted using the same pseudopotential and finite

temperature Fermi-Dirac smearing used in the finite-element simulations.

Aluminum 3× 3× 3 cluster: We first consider an aluminum cluster contain-

ing 3× 3× 3 FCC unit cells with a lattice spacing of 7.45 a.u.. The system comprises

of 172 atoms with 516 electrons. The finite-element mesh for this calculation is

chosen to be uniform in the cluster region containing aluminum atoms, while coarse-

graining away. The mesh coarsening rate in the vacuum is determined numerically

by employing the asymptotic solution of the far-field electronic fields, estimated as

a superposition of single atom far-field asymptotic fields, in equation (3.67). To this

end, the asymptotic behavior of atomic wavefunctions in an aluminum atom (ψ̄(r))

is chosen to be

ψ̄(r) =

√
ξ3

π
exp
[
−ξ r

]
where ξ =

√
3 ε̃ , (3.93)

where ε̃ (negative of the eigenvalue of the highest occupied eigenstate) is determined

from a single aluminum atom coarse mesh calculation. The corresponding total elec-

trostatic potential, governed by the Poisson equation with total charge density being

equal to the sum of 3ψ̄2(r) and −3δ(r), is given by

ϕ̄(r) = −3 exp (−2ξ r)

(
ξ +

1

r

)
. (3.94)

Table 3.3: Convergence with finite-element basis for a 3× 3× 3 FCC
aluminum cluster using HEX125SPECT element.

Degrees of freedom Energy per atom (eV) Relative error

184, 145 -54.1076597 3.4 ×10−2

1, 453, 089 -56.0076146 1.8 ×10−4

11, 546, 177 -56.01788889 1.3 ×10−6

We obtain the converged value of the ground-state energy by following the proce-

dure outlined in Section 3.4.1. We use a sequence of increasingly refined HEX125SPECT
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finite-element meshes on a cubic simulation domain of side 400 a.u., and compute the

ground-state energy Eh for these meshes which are tabulated in Table 3.3. Using the

extrapolation procedure discussed in Section 3.4.1 (equation (3.80)), we compute the

reference ground-state energy (energy per atom) to be E0 = −56.0179603 eV . The

relative errors reported in Table 3.3 are with respect to this reference energy, and

this reference energy will be used to compute the relative errors for all subsequent

finite-element and plane-wave basis simulations for this material system.

Table 3.4: Comparison of higher-order finite-element (FE) basis with plane-wave basis
for a 3× 3× 3 FCC aluminum cluster.

Type of basis set Energy (eV)
per atom

Abs. error (eV)
per atom

Rel. error Time (CPU-hrs)

Plane-wave basis (cut-off
30 Ha; cell-size of 60 a.u.;
847, 348 plane waves)

-56.0181429 0.00018 3.3 ×10−6 646

FE basis (HEX343SPECT;
2, 808, 385 nodes; domain
size: 200 a.u.)

-56.0177597 0.0002 3.6 ×10−6 371

In order to assess the performance of higher-order finite-elements on this material

system, we conduct the finite-element simulation with a mesh containing HEX343SPECT

elements and compare the computational CPU-time against a plane-wave basis code

ABINIT [60] solved to a similar relative accuracy in the ground-state energy with

respect to reference value E0 obtained above. The finite-element simulation has been

performed on a cubic domain size of 200 a.u. with a mesh coarsening rate away from

the cluster of atoms as determined using equations (3.67), (3.93), (3.94). The resulting

mesh contains 12, 800 HEX343SPECT elements with 2, 808, 385 nodes. The plane-

wave basis simulation has been performed by using a cell-size of 60 a.u. and a cut-off

energy of 30 Ha with one k-point to obtain the ground-state energy of similar rela-

tive accuracy( 0.0002 eV/atom) as the finite-element simulation. The computational

times for the finite-element basis and the plane-wave basis for the full self-consistent

solution are tabulated in Table 3.4. These results demonstrate that the performance
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of higher-order finite-element discretization is comparable, in fact better by a two-

fold factor, to the plane-wave basis for this material system. Figure 3.11 shows the

electron density contours on the mid-plane of the 3 × 3 × 3 aluminum cluster from

the finite-element simulation.

Figure 3.11: Electron density contours of
3× 3× 3 FCC aluminum cluster.

Figure 3.12: Electron density contours of
5× 5× 5 FCC aluminum cluster.

Aluminum 5× 5× 5 cluster: We next consider an aluminum cluster contain-

ing 5× 5× 5 FCC unit cells with a lattice spacing of 7.45 a.u.. This material system

comprises of 666 atoms with 1998 electrons. The finite-element mesh is constructed

along similar lines as the 3× 3× 3 cluster, where a uniform mesh resolution is chosen

in the cluster region containing aluminum atoms and coarse-graining away into the

vacuum with a numerically determined coarsening rate as discussed earlier. As before,

we first obtain the reference ground-state energy by using a sequence of increasingly

refined HEX125SPECT finite-element meshes with a cubic simulation domain of side

800 a.u. and extrapolating the computed ground-state energies on these meshes (cf.

Table 3.5). The reference ground-state energy (energy per atom), thus determined,

is E0 = −56.0495071 eV .

We now assess the performance of higher-order finite-elements on this material

system in comparison to a plane-wave basis. The finite-element simulation in this
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Table 3.5: Convergence with finite-element basis for a 5× 5× 5
FCC cluster using HEX125SPECT element.

Degrees of freedom Energy per atom(eV) Relative error

394, 169 -54.8536312 2.1 ×10−2

3, 124, 593 -56.0425334 1.2 ×10−4

24, 883, 937 -56.0494500 1.01 ×10−6

case has been performed on a simulation domain size of 400 a.u. containing 36, 064

HEX343SPECT elements with 7, 875, 037 nodes. The plane-wave basis simulation

conducted using the ABINIT package has been performed on a cell-size of 80 a.u.

and a cut off energy of 30 Ha with one k-point to sample the Brillouin zone to obtain

the ground-state energy of similar accuracy with respect to the reference value E0

obtained above. The solution time for the finite-element basis and the plane-wave

basis are tabulated in Table 3.6, which shows that using higher-order finite-elements

one can achieve similar computational efficiencies as afforded by a plane-wave basis, at

least in the case of non-periodic calculations. Figure 3.12 shows the electron density

contours on the mid-plane of the 5 × 5 × 5 FCC cluster from the finite-element

simulation.

Table 3.6: Comparison of higher-order finite-element (FE) basis with plane-wave basis
sets for a 5× 5× 5 FCC aluminum cluster.

Type of basis set Energy (eV)
per atom

Abs. error (eV)
per atom

Rel. error Time (CPU-hrs)

Plane-wave basis (cut-off
30 Ha; cell-size of 80 a.u;
2, 009, 661 plane waves)

-56.0506841 0.0012 2.1 ×10−5 7307

FE basis ( HEX343SPECT;
7, 875, 037 nodes; domain
size: 400 a.u.)

-56.04906430 0.00044 7.9 ×10−6 6619

Aluminum 7× 7× 7 cluster: As a final example in our case study with local

pseudopotential calculations, we study an aluminum cluster containing 7×7×7 FCC

unit cells with a lattice spacing of 7.45 a.u. This material system comprises of 1688
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atoms with 5064 electrons. We only use the finite-element basis to simulate this

system as the plane-wave basis calculation was beyond reach for this material system

with the computational resources at our disposal. The finite-element simulation has

been performed on a cubic simulation domain with a side of 800 a.u.. The finite-

element mesh was constructed as described in the simulation of other aluminum

clusters, and comprised of 69, 984 HEX343SPECT elements with 15, 257, 197 nodes.

The computed energy per atom for this aluminum cluster is −56.06826762 eV , and

figure 3.13 shows the electron density contours on the mid-plane of the cluster.

Figure 3.13: Electron density contours of 7× 7× 7 FCC aluminum cluster.

All-electron calculations: We now demonstrate the performance of higher-order

finite-element discretization in the case of all-electron calculations, by considering a

graphene sheet and a transition metal complex, namely, tris (bipyridine) ruthenium as

our benchmark problems. In these calculations which employ HEX125SPECT finite-

element, the initial guess for electron-density in the first SCF iteration is computed by

interpolating the self-consistent solution obtained from a lower-order HEX27 finite-
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element mesh. The computational times reported for these calculations include the

time taken to generate the initial guess.

Graphene sheet: We begin with a graphene sheet containing 100 atoms (600

electrons) with a C-C bond length of 2.683412 a.u.. We first obtain a converged

value of the ground-state energy by conducting simulations using the GAUSSIAN

package [72] using the polarization consistent DFT basis sets (pc-n), which have

been demonstrated to provide a systematic convergence in Kohn-Sham DFT cal-

culations [97]. Since these basis sets are not directly available in the GAUSSIAN

package, we introduce them as an external basis set for conducting these simulations.

The ground-state energy value obtained for triple-zeta pc-3 basis set is taken as the

reference value (E0) in this study, which is computed to be E0 = −37.7619141 Ha

per atom. We note that we did not use the extrapolation procedure outlined in

Section 3.4.1, as it was computationally beyond reach with our resources.

We assess the performance of higher-order finite-elements on this material sys-

tem by comparing the computational CPU-time against the pc-2 basis set, which

provides similar relative accuracy in the ground-state energy with respect to the E0

determined above. The finite-element mesh for this problem is chosen to be uni-

form in the region containing carbon atoms with local refinement around each atom

while coarse-graining away into vacuum. The mesh coarsening rate in the vacuum

is determined numerically by employing the asymptotic solution of the far-field elec-

tronic fields, estimated as a superposition of single atom far-field asymptotic fields,

in equation (3.67). To this end, the asymptotic behavior of the atomic wavefunctions

in carbon atom (ψ̄(r)) is chosen to be as in equation (3.85). Since the GAUSSIAN

package does not account for partial occupancy of energy levels, we suppress the

Fermi-Dirac smearing in the finite-element simulations for the present case in or-

der to conduct a one-to-one comparison. A Chebyshev filter of order 500 is used in
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this simulation. The simulation domain used is a cubical domain of side 300 a.u.

with Dirichlet boundary conditions employed on electronic wavefunctions and total

electrostatic potential. Table 3.7 shows the relevant results of the simulation with

figure 3.14 showing the electron density contours of the graphene sheet. We remark

that the finite-element simulation with HEX125SPECT elements is around ten-fold

slower than the GAUSSIAN simulation with pc basis set.

Table 3.7: 100 atom graphene sheet (600 electrons).

Type of basis set Energy (Ha)
per atom

Abs. error (Ha)
per atom

Rel. error Time (CPU-hrs)

pc2 (Gaussian; 3, 000 basis
functions)

-37.757954 0.00396 1.06 ×10−4 666

FE basis (HEX125SPECT;
8, 004, 003 nodes)

-37.757382 0.00452 1.2 ×10−4 7461

Figure 3.14: Electron density contours of a graphene sheet containing 100 atoms.

Tris (bipyridine) ruthenium: We now demonstrate the performance of our

numerical algorithms on a compound involving a moderately heavy metal. We choose

Tris (bipyridine) ruthenium complex (TBR) as our benchmark problem, which be-

longs to the class of transition metal complexes that has attracted significant attention

because of its distinctive optical properties [98]. Though the prototype complex TBR

is extensively studied as a di-cation, we consider the charge neutral complex in this
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case study. The geometric structure of this compound was determined using the

geometry optimization option in the GAUSSIAN package. The resulting compound

consists of a central ruthenium atom bonded to nitrogen atoms (ligands) of the three

bipyridine rings as shown in Figure 3.15. The compound contains a total of 61 atoms

(290 electrons) comprising of 30 carbon atoms, 24 hydrogen atoms, 6 nitrogen atoms

and 1 ruthenium atom.

We conducted the simulations using GAUSSIAN package in the following manner.

Polarized consistent DFT basis sets provide a series of improved basis sets for carbon,

hydrogen and nitrogen atoms, but are not suited for the ruthenium atom. Hence, we

first conducted the GAUSSIAN simulation using the most refined polarized consistent

basis set namely pc-4 basis functions for carbon, hydrogen and nitrogen, and used

the polarized valence double zeta basis function designed for DFT (DZDFTO) for

ruthenium. However, the self-consistent iteration did not converge for this choice of

basis sets. Hence, we conducted the GAUSSIAN simulation with a coarser polarized

consistent quadruple zeta basis (pc-3) functions for carbon, hydrogen and nitrogen

atoms, and used the DZDFTO basis for ruthenium. The self-consistent iteration did

converge for this choice, and the ground-state energy and solution time for this case

are tabulated in Table 3.8.

We now assess the performance of higher-order finite-elements on this material

system. The finite-element mesh for this problem is chosen to be uniform in the

region where the molecule is present with local refinement around each atom while

coarse-graining away into the vacuum. The mesh coarsening rate in the vacuum

is determined numerically by employing the asymptotic solution of far-field asymp-

totic fields, estimated as a superposition of single atom far-field asymptotic fields

in equation 3.67. The finite-element simulation is conducted using HEX125SPECT

elements with a Chebyshev filter of order 500 and a Fermi-Dirac smearing parameter

of 0.00158 Ha (T=500K). The simulation domain used is a cubical domain of side
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200 a.u. with Dirichlet boundary conditions employed on electronic wavefunctions

and total electrostatic potential. Table 3.8 demonstrates the relevant results for the

finite-element simulation with figure 3.16 showing the electron-density contours. We

remark that the ground-state energy per atom obtained from finite-element simulation

differs by 0.00146 Ha in comparison with aforementioned GAUSSIAN simulation. As

observed in the case of graphene sheet, the finite-element simulation is ten-fold slower

than the GAUSSIAN simulation.

Table 3.8: Tris(bipyridine)ruthenium (290 electrons).

Type of basis set Energy (Ha) per atom Time (CPU-hrs)

pc3 (Gaussian; 3, 156 basis
functions)

-96.923328 311

FE basis (HEX125SPECT;
10, 054, 041 nodes)

-96.924636 3927

Figure 3.15: Schematic of Tris(bipyridine)
ruthenium complex.

Figure 3.16: Electron density contours of
Tris (bipyridine) ruthenium complex.

We note that the Gaussian basis sets employed in these benchmark studies are

highly optimized for specific material systems, which is reflected in the far fewer basis

functions required for the above calculations. We believe this is the main reason for

the superior performance of Gaussian basis. We also note that the computational
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time using finite-element basis functions can possibly be reduced significantly by

enriching the finite-element shape functions with single atom wavefunctions using

the partitions-of-unity approach [99, 100]. The degree of freedom advantage of the

partitions-of-unity approach for Kohn-Sham calculations has been first demonstrated

in [101], and presents a promising future direction for all-electron Kohn-Sham DFT

calculations.

3.4.3 Scalability of finite-element basis:

The parallel scalability of our numerical implementation is demonstrated in Fig-

ure 3.17. We study the strong scaling behavior by measuring the relative speedup

with increasing number of processors on a fixed problem of constant size, which is

chosen to be the aluminum 3×3×3 cluster discretized with HEX125SPECT elements

containing 3.91 million degrees of freedom. The speedup is measured relative to the

computational CPU-time taken on 2 processors, as a single processor run was beyond

reach due to memory limitations. It is evident from the figure, that the scaling is

almost linear. The relative speedup corresponding to 96-fold increase in the number

of processors is 87.82, which translates into an efficiency of 91.4%.

3.5 Summary

The prospect of using higher-order spectral finite-elements as basis functions, in

conjunction with the proposed solution strategies, for Kohn-Sham DFT electronic

structure calculations is indeed very promising. While finite-elements have the ad-

vantages of handling complex geometries and boundary conditions and exhibit good

scalability on massively parallel computing platforms, their use has been limited in

electronic structure calculations as their computational efficiency compared unfavor-

ably to plane-wave and Gaussian basis functions. The results presented in this chap-

ter shows that the use of higher-order discretizations can alleviate this problem, and
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Figure 3.17: Relative speedup as a function of the number of processors.

presents a useful direction for electronic structure calculations using finite-element dis-

cretization. Further, the computational cost in the case of all-electron calculations can

be further reduced by enriching the finite-element shape functions with single-atom

wavefunctions, and is a worthwhile subject for future investigation. The implications

of using higher-order spectral finite-element approximations in the development of a

reduced scaling Kohn-Sham DFT formulation is explored in Chapter IV.
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CHAPTER IV

Subquadratic-scaling subspace projection method

for Kohn-Sham density functional theory

The traditional self-consistent approach to solving the discretized nonlinear Kohn-

Sham eigenvalue problem involves the diagonalization of the Hamiltonian to obtain

orthonormal eigenvectors, the computational complexity of which typically scales as

O(M N2) where M denotes the number of basis functions and N denotes the system

size (number of atoms or number of electrons). This cost becomes prohibitively expen-

sive, approaching cubic-scaling, as the system size becomes larger. To this end, nu-

merous efforts have focused on either reducing the prefactor [66, 102] associated with

the computational cost of the Kohn-Sham DFT calculations or reducing the computa-

tional complexity to have improved-scaling behavior for DFT calculations. The latter

methods usually exploit locality in the wavefunctions [103] directly or indirectly, and

can be broadly categorized [32] into two types: one which calculate the single-electron

density matrix, and another which work with its representation in terms of localized

Wannier functions. The divide and conquer method [104, 105, 106], Fermi-operator

expansion [34, 107, 108, 35], density-matrix minimization [109, 110] approach belong

to the former category, whereas, the Fermi-operator projection method [111, 112] and

the orbital minimization approach [113, 114, 115, 36] belong to the latter category.

A comprehensive review of these methods has been provided by Göedecker [32], and
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more recently by Bowler and Miyazaki [33]. These methods, which rely on the lo-

cality of the Wannier functions or the exponential decay of the density matrix in

real-space, have been demonstrated to work well for insulating systems, exhibiting

linear-scaling with system size. However, for metallic systems, due to the slower

decay of the density matrix, the computational complexity of these approaches can

deviate significantly, in practice, from linear-scaling. Further, we note that, some

of the developed techniques [109, 111, 112, 36] assume the existence of a band-gap,

thus restricting these techniques solely to insulating systems. The Fermi-operator

expansion method [34, 35, 32], which is equally applicable to both insulating and

metallic systems, computes the finite-temperature density-matrix through a Cheby-

shev polynomial approximation of the Fermi distribution function (also referred to as

Fermi function) of the Kohn-Sham Hamiltonian. The accuracy of such an expansion

depends on the smearing parameter (σ = kBT ) in the Fermi distribution and the

width of the eigenspectrum (∆E) of the discretized Hamiltonian. In fact, the number

of polynomial terms required to achieve a prescribed accuracy [35] is O(∆E
σ

). Numer-

ous recent efforts [116, 117, 118, 119, 120] have focused towards developing alternate

approximations to the Fermi function, or approximations to its spectral representa-

tion [121]. A majority of these methods aim to reduce the number of terms used

in the expansion to approximate the Fermi function. However, a major drawback

with these methods is that they are not efficient for local real-space basis functions

like finite-elements, where, typically, more refined discretizations are needed. In a

recent study [1], it was observed that the width of the eigenspectrum of the finite-

element discretized Hamiltonian (using higher-order finite-elements) is O(103) Ha

for pseudopotential calculations, and O(105) Ha for all-electron calculations. In this

chapter, building on our earlier work [1] described in the previous chapter, we propose

a reduced-scaling subspace projection technique in the framework of spectral finite-

element discretization. To this end, we borrow localization ideas from Garcia et.
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al. [36] and develop a subspace iteration technique that treats both metallic and insu-

lating systems on a similar footing. Further, besides pseudopotential calculations, the

proposed technique is also applicable to all-electron calculations, as demonstrated in

our benchmark studies. The main ideas used in our approach are: (i) employ Cheby-

shev filtered subspace iteration to compute the occupied eigenspace; (ii) employ a

localization procedure to generate non-orthogonal localized wavefunctions spanning

the Chebyshev filtered subspace; (iii) use adaptive tolerances to truncate the wave-

functions, with looser tolerances being employed in initial self-consisted field (SCF)

iterations and progressively tightening as the SCF iteration approaches convergence,

and (iv) employ Fermi-operator expansion in terms of the projected Hamiltonian ex-

pressed in the non-orthogonal localized basis to compute the density matrix, electron

density and band energy.

We first present an abstract mathematical framework in which the projection of

the Hamiltonian into a subspace, corresponding to the occupied eigenspace, and the

associated density matrix are expressed in a non-orthogonal basis spanning the sub-

space. We then derive expressions for the computation of electron density, constraint

on the number of electrons and the band energy in terms of the projected Hamil-

tonian, which are subsequently used to formulate the subspace projection technique

within the framework of finite-element discretization. To this end, the Kohn-Sham

Hamiltonian and the corresponding wave-functions are represented in the Löwdin or-

thonormalized finite-element basis constructed using spectral finite-elements in con-

junction with Gauss-Lobatto-Legendre quadrature rules. The SCF iteration begins

with an initial subspace spanned by the localized single-atom wavefunctions, and a

Chebyshev filter is applied on this subspace to compute an approximation to the

occupied eigenspace. Next, we employ a localization procedure to construct non-

orthogonal localized wavefunctions spanning the Chebyshev filtered subspace. The

localized wavefunctions are then truncated using a truncation tolerance, below which
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the localized wavefunctions are set to zero. We note that the proposed approach of

providing a compact support for the wavefunctions by using a truncation tolerance

on the wavefunctions differs from commonly employed approach of using truncation

radius, and presents a more efficient approach as the localized wavefunctions may

not necessarily be spherically symmetric about the localization center. The Kohn-

Sham Hamiltonian is then projected into the localized basis, and a Fermi-operator

expansion in terms of the projected Hamiltonian is employed to compute the finite-

temperature density matrix and the electron density. If the truncated wavefunctions

are sufficiently sparse, the computational cost of each of the above steps is shown to

scale linearly with number of atoms.

The proposed approach is implemented in a parallel computing framework, and

the performance of the algorithm is investigated on representative benchmark atomic

systems involving metallic aluminum nano-clusters (pseudopotential calculations),

insulating alkane chains (pseudopotential calculations), and semi-conducting silicon

nano-clusters (all-electron calculations). The scaling behavior is assessed on these ma-

terials systems with varying system sizes up to 3430 atoms in the case of aluminum

nano-clusters, up to 7052 atoms in the case of alkane chains, and up to 3920 elec-

trons in the case of all-electron silicon nano-clusters. The scaling of the computational

time per SCF iteration with the system size is computed to be O(N1.46) for aluminum

nano-clusters, O(N1.18) for the alkane chains, and O(N1.75) for the all-electron silicon

nano-clusters. One factor contributing to the deviation from linearity is the use of

adaptive tolerances—using looser tolerances in the initial SCF iterations and progres-

sively tightening the tolerances as the SCF approaches convergence—which partially

sacrifices the scaling for good accuracy in the ground-state energies. We note that the

computed ground-state energies using the proposed approach are within 5 meV per

atom for pseudopotential calculations and are within 5 mHa per atom for all-electron

calculations with respect to the reference ground-state energies. Further, in our im-
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plementation, we switch from using sparse data-structures to dense data-structures

when the density fraction of the localized wavefunctions exceeds 2%, as the computa-

tional cost of using parallel sparse data-structures is observed to exceed that of dense

data-structures beyond this point. This is another factor contributing to the devi-

ation from linear-scaling as discussed in the Appendix D. Our results suggest that

significant computational savings can be realized using the proposed approach, where

∼ 10−fold speedups are obtained with respect to reference benchmark calculations

for the largest systems.

The remainder of the chapter is organized as follows. Section 4.1 briefly recalls

the real-space formulation of the Kohn-Sham DFT problem described in Chapter III,

followed by the presentation of the mathematical formulation of the subspace projec-

tion technique in an abstract setting. Section 4.2 describes the various steps involved

in the subspace projection technique within the framework of spectral finite-element

discretization. Section 4.3 presents the numerical study on three representative ma-

terials systems demonstrating the accuracy, computational efficiency and scaling of

our approach. We finally conclude with a summary and outlook in Section 4.4.

4.1 Mathematical Formulation

In this section, we first recall the system of equations corresponding to the Kohn-

Sham self-consistent formulation described in Chapter III and then discuss some

mathematical preliminaries in an abstract setting to present an expression for the

projection of the Hamiltonian operator into a subspace spanned by a non-orthogonal

basis. Subsequently, we derive the density matrix corresponding to the projected

Hamiltonian, and present the expressions for the computation of electron density,

constraint on the number of electrons and the band energy in terms of the pro-

jected Hamiltonian. This constitutes the mathematical formulation for the subspace

projection technique within the framework of spectral finite-element discretization,
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described in the next section.

We recall from Chapter III that the system of equations corresponding to the

self-consistent formulation of the Kohn-Sham eigenvalue problem are:

(
−1

2
∇2 + Veff(ρ,R)

)
ψi = εiψi, (4.1a)

2
∑
i

f(εi, µ) = Ne; ρ(r) = 2
N∑
i=1

f(εi, µ)|ψi(r)|2, (4.1b)

− 1

4π
∇2ϕ(r,R) = ρ(r) + b(r,R); − 1

4π
∇2νI(r,R) = bI(r,R). (4.1c)

where ψi(r) denotes the spatial part of canonical wavefunctions. In the case of all-

electron calculations, Veff(ρ,R) = ϕ(r,R) + Vxc(ρ) with ϕ denoting the total electro-

static potential comprising both Hartree and nuclear contributions and Vxc denoting

the exchange-correlation potential while the pseudopotential case has Veff(ρ,R) =

ϕ(r,R) + Vxc(ρ) + Vloc(R) + Vnl(R)−
∑Na

J=1 νJ(r). Here Vloc denotes the local part of

pseudopotential and Vnl denotes the nonlocal contribution of the pseudopotential and

further only the wavefunctions corresponding to the valence electrons are computed.

νI denotes the self-potential corresponding to the I th nuclei.

4.1.1 Projection of the Hamiltonian into a finite-dimensional subspace

If H denotes the Hermitian operator representing the Hamiltonian of interest

(c.f equation (4.1a)) defined on the infinite dimensional Hilbert space H equipped

with the inner product 〈.|.〉 and a norm ‖ . ‖ derived from the inner product and

VM
h ⊂ H denotes a finite-dimensional subspace of H with dimension M as defined

in Chapter III, then we define the projection operator into the subspace VM
h to be

Pq : H→ VM
h given by

Pq =
M∑
i=1

|qi〉 〈qi| . (4.2)
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where {|qi〉} denote an orthonormal basis for VM
h . In the present case, the represen-

tation of |qi〉 in the real space, 〈r| qi〉 = qi(r), denotes the Löwdin orthonormalized

finite-element basis employed in this study, as discussed subsequently in section 4.2.

The projection of the Hamiltonian into VM
h is given by PqH : VM

h → VM
h , or equiv-

alently PqHPq : H → VM
h . We denote the operator corresponding to the projected

Hamiltonian to be H̃ ≡ PqHPq, and the matrix corresponding to H̃ expressed in

{|qi〉} basis by H̃ with the matrix element given by H̃ij =
〈
qi

∣∣∣ H̃ ∣∣∣qj〉.

4.1.2 Reprojection into a non-orthogonal basis

We now consider a subspace VN ⊂ VM
h , which approximates the occupied eigenspace

of H̃ that can be computed, for instance, using a Chebyshev filtering approach [66, 1]

(discussed in chapter III). Let {|φα〉} represent a non-orthonormal basis which spans

VN . We denote by Pφ : VM
h → VN the projection operator into the space VN , and is

given by

Pφ =
N∑

α,β=1

|φα〉S−1
αβ 〈φβ| , (4.3)

where S denotes the overlap matrix with matrix elements Sαβ = 〈φα| φβ〉. We denote

the projection of H̃ into VN by Hφ, and is given by Hφ ≡ PφH̃Pφ : VM
h → VN .

Denoting the matrix corresponding to Hφ expressed in {|qi〉} basis to be Hq and

in {|φα〉} basis to be Hφ, we derive the expressions for the corresponding matrix

elements Hq
ij and Hφ

αβ using equations (4.2) and (4.3) as follows:

Hq
ij =

〈
qi
∣∣Hφ

∣∣qj〉 =
〈
qi

∣∣∣PφH̃Pφ ∣∣∣qj〉
=

N∑
α,β=1
γ,δ=1

〈qi| φα〉S−1
αβ

〈
φβ

∣∣∣ H̃ ∣∣∣φγ〉S−1
γδ 〈φδ| qj〉 . (4.4)

Since Pq is idempotent (PqPq = Pq), we note that H̃ = PqH̃Pq. Hence, equa-

tion (4.4) can be written as
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Hq
ij =

N∑
α,β=1
γ,δ=1

〈qi| φα〉S−1
αβ

〈
φβ

∣∣∣PqH̃Pq ∣∣∣φγ〉S−1
γδ 〈φδ| qj〉

=
N∑

α,β=1
γ,δ=1

M∑
k, l=1

φiα S
−1
αβ φ

∗
kβ H̃kl φlγ S

−1
γδ φ

∗
jδ , (4.5)

where φiα = 〈qi| φα〉 and φ∗kβ denotes the complex conjugate of φkβ. The above

equation can be conveniently recast in terms of matrices as:

Hq = ΦΦ+H̃ΦΦ+ (4.6)

where Φ denotes a matrix whose column vectors are the components of |φα〉 in |qi〉

basis, and Φ+ denotes the Moore-Penrose pseudo-inverse of Φ given by

Φ+ = S−1Φ† (4.7)

with Φ† denoting the conjugate transpose of the matrix Φ. We now derive the

expression for the matrix element corresponding to the operator Hφ expressed in the

non-orthonormal basis {|φα〉}:

Hφ
αβ =

N∑
γ=1

S−1
αγ

〈
φγ
∣∣Hφ

∣∣φβ〉 =
N∑
γ=1

S−1
αγ

〈
φγ

∣∣∣PφH̃Pφ ∣∣∣φβ〉
=

N∑
γ=1

S−1
αγ

〈
φγ

∣∣∣ H̃ ∣∣∣φβ〉 =
N∑
γ=1

S−1
αγ

〈
φγ

∣∣∣PqH̃Pq ∣∣∣φβ〉
=

N∑
γ=1

M∑
k, l=1

S−1
αγ 〈φγ| qk〉

〈
qk

∣∣∣ H̃ ∣∣∣ql〉 〈ql| φβ〉
=

N∑
γ=1

M∑
k, l=1

S−1
αγ φ

∗
kγ H̃kl φlβ . (4.8)
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Using matrices, the above equation (4.8) can be conveniently expressed as

Hφ = Φ+H̃Φ . (4.9)

We also note the following relation between Hφ and Hq using equations (4.6) and (4.9):

Hq = ΦHφΦ+ . (4.10)

4.1.3 Density Matrix

We now consider the single particle density operator (Γ ) corresponding to Hφ

given by

Γ =
N∑
i=1

f(εφi )
∣∣∣ψφi 〉〈ψφi ∣∣∣

= f(Hφ) , (4.11)

where εφi and
∣∣∣ψφi 〉 denote the eigenvalues and the corresponding eigenvectors of Hφ,

and we note that the relation Γ = f(Hφ) follows from the spectral decomposition of

the Hermitian operatorHφ. Denoting the matrix representation of Γ in {|qi〉} basis by

Γ, we have the following relation between the matrices Γ and Hq from equation (4.11):

Γ = f(Hq) . (4.12)

We now derive the expression for Γ in terms of the matrices Hφ and Φ. To this end,

we note that the function f(ε) represents the Fermi distribution (c.f equations (2.54)

and (3.72)), which is an analytic function. Hence, this admits a power series repre-

sentation given by

f(Hq) =
∞∑
k=0

ak (Hq)k . (4.13)
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Using equation (4.6) and the relation Φ+Φ = IN , where IN denotes an identity matrix

of dimension N , we have

Γ =
∞∑
k=0

ak (Hq)k =
∞∑
k=0

ak (ΦΦ+H̃ΦΦ+)k

=
∞∑
k=0

ak Φ(Φ+H̃Φ)kΦ+ = Φ

(
∞∑
k=0

ak(H
φ)k

)
Φ+

= Φf(Hφ)Φ+ . (4.14)

We note that the electron density ρ(r) is related to the diagonal of the density operator

Γ expressed in the real space, and is given by

ρ(r) = 2 〈r|Γ |r〉 = 2
M∑
i,j=1

Γij qi(r) qj(r) , (4.15)

where Γij denote the matrix elements of Γ. We note that factor 2 in the above equation

represents the case of a spin independent system, where each orbital is occupied by

two electrons. We now derive an expression for the constraint on the total number of

electrons i.e.
∫
ρ(r) dr = Ne . To this end, we have

∫
ρ(r) dr = 2

∫ M∑
i,j=1

Γij qi(r) qj(r) dr = 2
M∑
i=1

Γii ,

= 2 tr (Γ) = 2 tr
(
Φf(Hφ)Φ+

)
= 2 tr

(
f(Hφ)Φ+Φ

)
= 2 tr

(
f(Hφ)

)
. (4.16)

Hence, the constraint on the total number of electrons can be reformulated as

2 tr
(
f(Hφ)

)
= Ne . (4.17)
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Finally, the band-energy (Eb), which is required in the calculation of the ground-state

energy, is given by

Eb = 2 tr (Γ Hq) = 2 tr
(
Φf(Hφ)Φ+ΦHφΦ+

)
= 2 tr

(
Φf(Hφ)HφΦ+

)
= 2 tr

(
Φ+Φf(Hφ)Hφ

)
= 2 tr

(
f(Hφ)Hφ

)
. (4.18)

4.2 Subspace-projection algorithm using finite-element basis

In this section, we recall the finite-element discretization of the Kohn Sham eigen-

value problem from Chapter III, and subsequently present the subspace projection

algorithm used to reduce the computational complexity involved in the solution of

the Kohn-Sham problem.

4.2.1 Eigenvalue problem in orthonormalized FE basis

If VM
h represents the finite-dimensional subspace with dimension M and Nh

j : 1 ≤

j ≤ M denotes the non-orthogonal finite-element basis spanning VM
h , we recall from

previous chapter that the discretization of the Kohn-Sham eigenvalue problem (4.1a)

results in a generalized eigenvalue problem given by:

HΨ̂ i = εhi MΨ̂ i , (4.19)

where H denotes the discrete Hamiltonian matrix with matrix elements Hjk, M de-

notes the overlap matrix (or commonly referred to as the mass matrix in the finite-

element literature) with matrix elements Mjk, and εhi denotes the ith eigenvalue cor-

responding to the discrete eigenvector Ψ̂ i (see equations 3.31, 3.32, 3.33 and 3.35 in

Chapter III for the relevant expressions). As discussed in the previous chapter it is

convenient to transform the generalized eigenvalue problem in equation (4.19) to the
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following standard eigenvalue problem:

H̃Ψ̃ i = εhi Ψ̃ i (4.20)

where

Ψ̃ i = M1/2Ψ̂ i

H̃ = M−1/2HM−1/2 .

We note that H̃ is a Hermitian matrix, and (3.36) represents a standard Hermitian

eigenvalue problem. The actual eigenvectors are recovered by the transformation

Ψ̂ i = M−1/2Ψ̃ i. We remark that Ψ̃ i is a vector containing the expansion coefficients

of the discretized eigenfunction ψhi (r) expressed in Löwdin orthonormalized finite-

element basis qj(r) : 1 ≤ j ≤M spanning the finite-element space. We note the

following relation between qj(r) and Nj(r):

qj(r) =
M∑
k=1

M
−1/2
jk Nk(r) . (4.21)

Using a spectral finite-element basis in conjunction with Gauss-Lobatto-Legendre(GLL)

quadratures for the evaluation of integrals in the mass-matrix, an efficient and a scal-

able approach using adaptive higher-order spectral finite-element discretization of

the Kohn-Sham DFT problem has been proposed and discussed in Chapter III. In

the latter approach, the self-consistent field (SCF) iteration consists of employing a

Chebyshev filtering approach [66] to compute the occupied eigenspace of the spec-

tral finite-element discretized Hamiltonian H̃. The computational complexity of the

Chebyshev filtering scales as O(M N), where N denotes the number of eigenstates of

interest. Upon computing the approximate eigenspace, the Chebyshev filtered vectors

spanning the eigenspace are orthonormalized, and the projection of the Hamiltonian

103



into this orthonormal basis is computed. The computational complexity of this or-

thonormalization and projection scales as O(M N2). Finally, the projected Hamilto-

nian is diagonalized to compute the eigenvalues and eigenvectors, which, in turn, are

used in the computation of the electron density. The computational complexity of this

step scales as O(N3). Hence, the solution approach described in Chapter III, subse-

quently referred to as the Chebyshev filtered subspace iteration for the finite-element

basis (ChFSI-FE), scales as O(N3) asymptotically (as M ∝ N), thus limiting acces-

sible systems to a few thousand atoms. In order to address this significant limitation,

we build on our prior work to develop a subspace projection technique that reduces

the computational complexity of solving the Kohn-Sham problem. The proposed ap-

proach treats both insulating and metallic systems under a single framework, and

is applicable for both pseudopotential and all-electron calculations. The key ideas

involved in the method for a single self-consistent field (SCF) iteration are discussed

below.

4.2.2 Chebyshev filtered subspace iteration

We recall from Chapter III that Chebyshev filtered subspace iteration (ChFSI) [122]

belongs to the class of subspace iteration techniques that are generalizations of the

power method applied to a subspace. As the ground-state electron density, and sub-

sequently the ground-state energy, depends solely on the occupied eigenspace—the

vector space spanned by the eigenfunctions corresponding to the occupied states—

the ChFSI technique exploits the fast growth property of Chebyshev polynomial

in (−∞,−1) to magnify the relevant spectrum and thereby providing an efficient

approach for the solution of the Kohn-Sham eigenvalue problem. We refer to [66]

and [1](c.f Chapter III) for the application of this technique to electronic structure

calculations in the context of finite-difference and finite-element discretizations, re-

spectively. We also refer to [36] for a linear-scaling subspace iteration technique based
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on Chebyshev filtering for insulating systems. In the present work, we also adopt the

Chebyshev filtering procedure to find the occupied eigenspace at any given SCF iter-

ation. We start with an initial subspace VN
of dimension N (N > Ne/2) spanned by

the set of localized wavefunctions {ψ1(r), ψ2(r), · · · , ψN(r)} obtained from the previ-

ous SCF iteration (cf. section 4.2.3 for details on the construction of the localized

wavefunctions). We note that, here, and subsequently, all the electronic fields (wave-

functions and electron density) denote finite-element discretized fields, and we have

dropped the superscript h for notational simplicity. We denote by X the matrix whose

column vectors are the coefficients of expansion of these localized wavefunctions in

the Löwdin orthonormalized spectral finite-element basis (qj : 1 ≤ j ≤ M). The

Chebyshev filtered subspace iteration then proceeds as follows:

Construction of shifted and scaled Hamiltonian: The discretized Hamiltonian

H̃ is scaled and shifted to construct H̄ such that the unwanted (unoccupied) spectrum

of H̃ is mapped to [−1, 1] and the wanted (occupied) spectrum into (−∞,−1). Hence

H̄ =
1

e
(H̃− cI) where e =

b− a
2

c =
a+ b

2
. (4.22)

Here a and b denote the upper bound of the wanted and unwanted spectrum of H̃,

respectively. The upper bound b is obtained inexpensively using a small number of

Lanczos iterations [123] whose computational complexity scales as O(M). The upper

bound of the wanted spectrum is chosen as the largest Rayleigh quotient of H̃ in the

occupied eigenspace computed in the previous SCF iteration.

Construction of Chebyshev filter: In a given SCF iteration, the action of a

Chebyshev filter on X is given by

Y = Tm(H̄)X , (4.23)
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where Y denotes the matrix whose column vectors are the coefficients of expan-

sion of the Chebyshev filtered wavefunctions {ψf1 (r), ψf2 (r), · · · , ψfN(r)} expressed in

the Löwdin orthonormalized finite-element basis. We note that the subspace VN

spanned by these Chebyshev filtered wavefunctions is a close approximation to the

occupied eigenspace. In the above, the filter Tm(H̄) is constructed using a Chebyshev

polynomial Tm(x) of degree m, and the action of the filter on X can be recursively

computed [124] as

Tm(H̄)X =
[
2H̄Tm−1(H̄)− Tm−2(H̄)

]
X , (4.24)

with T0(H̄)X = X and T1(H̄)X = H̄X. It is evident from equation (4.24) that the

application of Chebyshev filter on X involves matrix-vector multiplications between

the discretized Hamiltonian H̃ and the vectors obtained during the course of recursive

iteration (4.24). Further, we note that the finite-element basis functions Nj : 1 ≤

j ≤ M are local. Hence, the discretized Hamiltonian H̃ expressed in the Löwdin

orthonormalized spectral finite-element basis qj : 1 ≤ j ≤ M is sparse, and has the

exact same sparsity as H if the matrix M is evaluated using the GLL quadrature.

Thus, if the vectors obtained during the process of recursive iteration of Chebyshev

filtering procedure are sparse, the computational complexity of the relevant matrix-

vector multiplications scales as O(M).

In practice, we exploit the locality of finite-element basis to construct the elemental-

matrices corresponding to Hloc (c.f equation (3.32)), i.e. the individual contributions

from each finite-element to Hloc, without explicitly assembling the global matrix. We

note that building these elemental-matrices scales as O(M). In the case of pseudopo-

tential calculations, we compute CJ
lm,j(c.f equation (3.33)) at the finite-element level

only for those elements in the compact support of ∆V J
l . Further, the vectors obtained

during the course of the recursive iteration (4.24) are truncated using a truncation tol-
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erance δc, below which the values are set to zero. The matrix-vector multiplications in

the Chebyshev filtering procedure are performed at the finite-element level only if the

vector has a non-zero value in the finite-element considered. This leads to the compu-

tation of only the non-trivial elemental matrix-vector products, thereby rendering the

computational complexity of the Chebyshev filtering procedure to O(M). The result-

ing element-level vectors are then assembled to form the global vectors Y. We choose

δc to be in the range of 10−4 to 10−14 in our subsequent numerical simulations (cf.

section 4.3) with looser tolerances being employed in the intial SCF iterations, where

the solution is far away from the ground-state solution, and, adaptively employing

tighter tolerances in later iterations as the SCF approaches convergence.

4.2.3 Localization and truncation

Various procedures have been employed in the literature to achieve linear-scaling

(cf. [33, 32] for a comprehensive review) for pseudopotential calculations, and the

use of localized functions spanning the occupied eigenspace (or an approximation

to this space) has been one of the ideas exploited in developing linear-scaling al-

gorithms for materials systems with a band-gap. In this regard, we remark that

Wannier functions [125, 126, 127, 128] have played an important role. In particu-

lar, the maximally localized Wannier functions [129] have been effectively used as an

orthogonal localized basis for Kohn-Sham DFT calculations, specifically in periodic

systems. However, techniques employing non-orthogonal localized functions have also

been proposed [130, 113, 114, 131], which have better localization properties than or-

thogonal functions. A discussion on general localization properties of bases spanning

the eigenspace is provided in [132] and [133]. In the present work, we adopt the

technique proposed in [36] to construct a localized basis for the subspace VN spanned

by Chebyshev filtered wavefunctions {ψf1 (r), ψf2 (r), · · · , ψfN(r)}. Here, the localized
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basis is obtained as

arg min
ψ∈VN ,||ψ||=1

∫
w(r)|ψ(r)|2 dr , (4.25)

where w(r) ≥ 0 is chosen to be a smooth weighting function |r−bI |2p, with p being a

positive integer and bI denoting a localization center. Such a choice of w(r) minimizes

the spread of the wavefunctions from a localization center, similar in spirit to the

construction of maximally localized Wannier functions [129]. In the present work,

we choose p to be 1 and bI to be an atom center RI . Let nI denote the number of

localized functions we desire to compute at every atom center RI . Also, letting

ψ(r) =
∑
i

αiψ
f
i (r) ∈ VN , (4.26)

the minimization problem (4.25) is equivalent to solving the following generalized

eigenvalue problem for the smallest nI eigenvalues

WIα = λSα , (4.27)

where

WI
ij =

∫
|r−RI |2 ψfi (r)ψfj (r) dr i, j = 1 · · ·N (4.28a)

Sij =

∫
ψfi (r)ψfj (r) dr . (4.28b)

In the present work, we choose nI to be equal to the number of occupied single-atom

orbitals corresponding to the I th atom. If
∑

I nI < N , then we randomly pick some

atoms to compute additional localized functions. We note that we can rewrite WI

in (4.28a) using matrix notation to be

WI = LTKIL , (4.29)
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where columns of the matrix L correspond to the nodal values of the wavefunctions

{ψf1 (r), ψf2 (r), · · · , ψfN(r)} obtained after Chebyshev filtering, and

KI
ij =

∫
|r−RI |2Ni(r)Nj(r) dr . (4.30)

We note that the computational complexity of computing the matrix WI for an atom

I scales as O(MN2) as the wavefunctions {ψf1 , ψ
f
2 , · · · , ψ

f
N} obtained after Chebyshev

filtering need not be sparse. Hence the total computational complexity for Na atoms

(Na ∝ N) in a given materials system scales as O(MN3). We propose the following

procedure in order to reduce the computational complexity to O(M). We first expand

KI in terms of atom I = 0 as follows:

KI
ij =

∫
|r−R0 + R0 −RI |2 Ni(r)Nj(r) dr

=

∫ [
|r−R0|2Ni(r)Nj(r) + |R0 −RI |2Ni(r)Nj(r)

+ 2 (r−R0) . (R0 −RI)Ni(r)Nj(r)
]
dr

= K0
ij + |R0 −RI |2 Mij + 2 (R0x −RIx)B

x
ij

+ 2 (R0y −RIy)B
y
ij + 2 (R0z −RIz)B

z
ij

where

K0
ij =

∫
|r−R0|2Ni(r)Nj(r) dr , (4.31a)

Mij =

∫
Ni(r)Nj(r) dr , (4.31b)

Bx
ij =

∫
(x−R0x)Ni(r)Nj(r) dr , (4.31c)

By
ij =

∫
(y −R0y)Ni(r)Nj(r) dr , (4.31d)

Bz
ij =

∫
(z −R0z)Ni(r)Nj(r) dr . (4.31e)
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We use Gauss-Lobatto-Legendre quadrature rules to evaluate each of the above inte-

grals which renders the matrices in (4.31) diagonal. Further, the matrix WI for any

atom I is constructed as a linear combination of five matrices, and is given by

WI = LTK0L + |R0 −RI |2LTML+

2 (R0x −RIx)L
TBxL + 2 (R0y −RIy)L

TByL+

2 (R0z −RIz)L
TBzL . (4.32)

We note that the five matrices LTK0L, LTML, LTBxL, LTByL and LTBzL are

independent of I, and can be computed a priori. Further, in order to reduce the

computational complexity of computing these five matrices, we introduce a truncation

tolerance δw > δc (δw ∼ 10−4−10−8) to truncate the Chebyshev filtered wavefunctions

used in the construction of matrices L and S. We note that this truncation in the

Chebyshev filtered wavefunctions is introduced only in the construction of L and

S, and not in other operations involving the Chebyshev filtered wavefunctions, in

particular, the linear combination in (4.26). Introducing the truncation δw renders a

sparse structure to both L and S, and thus the computation of WI for all the atoms

I = 1 · · ·Na scales as O(M). We note that the use of GLL quadrature rules in the

evaluation of matrix elements in (4.31), as well as, the use of truncation tolerance

δw in the construction of L and S introduces approximation errors in the solution of

the eigenvectors α in the generalized eigenvalue problem (4.27). However, we note

that these approximations errors do not alter the space VN spanned by the localized

wavefunctions (cf. equation (4.26)), as the vector space remains invariant under any

linear combination.

Using the eigenvectors α from the solution of the eigenvalue problem in (4.27) for

each atom I, and the linear combination in (4.26), the non-orthogonal localized wave-

functions are computed and are denoted by {φL1 (r), φL2 (r), · · · , φLN(r)} which span VN .
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In order to provide a compact support for these non-orthogonal localized wavefunc-

tions, we introduce a truncation tolerance δl, where the nodal values of these functions

that are below this tolerance are set to zero. We note that, upon truncating these

wavefunctions, the space spanned by these functions is only an approximation to VN ,

where the approximation error in the subspace depends on the choice of δl. As in

the case of δc, the truncation tolerance introduced during the Chebyshev filtering,

δl is also chosen adaptively with looser tolerances in the initial SCF iterations and

progressively employing tighter tolerances as the SCF approaches convergence (see

section 4.3 for details). We denote by ΦL the matrix whose column vectors are the

expansion coefficients of these compactly-supported non-orthogonal localized wave-

functions expressed in the Löwdin orthonormalized finite-element basis. We note that

the locality of the non-orthogonal wavefunctions φLi (r) : 1 ≤ i ≤ N renders sparsity

to the matrix ΦL.

4.2.4 Subspace projection in the non-orthogonal basis

We now discuss the steps involved in the subspace projection of the Hamiltonian

into the non-orthogonal localized basis represented by ΦL.

Computation of overlap matrix: The overlap matrix S resulting from the non-

orthogonal localized wavefunctions is given by

S = ΦT
LΦL . (4.33)

We note that the computational complexity of evaluating S scales as O(N) if ΦL is

a sparse matrix.

Computation of projected Hamiltonian: We recall from the discussion in sec-

tion 4.1 that the projection of the Hamiltonian into a non-orthogonal localized basis
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is given by

Hφ = S−1ΦT
LH̃ΦL . (4.34)

The above equation involves the inverse of the overlap matrix S−1, which can be

evaluated using scaled third-order Newton-Schulz iteration [134, 36]. If S and S−1are

exponentially localized, S−1 can be computed in O(N) complexity [135]. Since the

discretized Hamiltonian H̃ is sparse, and if the matrix ΦL is sparse with a bandwidth

independent of N , Hφ can be computed in O(N) complexity.

4.2.5 Electron density computation

The Fermi-operator expansion techniques [32, 33] have been widely adopted to

avoid explicit diagonalization of the discretized Hamiltonian in order to compute the

electron density. One of the widely used Fermi-operator expansion technique [107,

108], which works for both insulating as well as metallic systems, approximates the

Fermi distribution (cf. equation (2.54)) by means of a Chebyshev polynomial ex-

pansion. The accuracy of such an expansion depends on the smearing parameter in

the Fermi distribution, σ, and the width of the eigenspectrum (spectral width) of dis-

cretized Hamiltonian denoted by ∆E. In particular, the degree of polynomial required

to achieve a desired accuracy in the approximation [35] of the Fermi distribution is

O(∆E
σ

), and is O(
√

∆E) for a given σ and the occupied spectrum [136]. We also

note that numerous recent efforts have focused on developing alternate approxima-

tions to the Fermi distribution [116, 117, 119, 118, 120] with reduced computational

complexity.

One of the major challenges in employing the Fermi-operator expansion tech-

nique on a finite-element discretized Hamiltonian is the large spectral width of the

Hamiltonian—O(103) Ha for pseudopotential calculations and O(105) Ha for all-

electron calculations [1]—that deteriorates the accuracy of the Fermi-operator ex-

pansion. To circumvent this, we employ the Fermi-operator expansion in terms of
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the subspace projected Hamiltonian Hφ whose spectral width is commensurate with

that of the occupied eigenspectrum. We recall from equation (4.15) that the electron

density in terms of the density matrix is given by

ρ(r) = 2
M∑
i,j=1

Γijqi(r)qj(r) . (4.35)

Using equations (4.21) and (4.14) in the above equation, we have

ρ(r) = 2 NT (r) M−1/2 ΦL f(Hφ) Φ+
L M−1/2N (r)

= 2 NT (r) M−1/2 ΦL f(Hφ) S−1 ΦT
LM−1/2N (r) , (4.36)

where NT (r) = [N1(r) , N2(r) , N3(r), · · · , NM(r)] and

f(Hφ) =
1

1 + exp
(

Hφ−µI
σ

) (4.37)

with µ being the chemical potential and σ = kB T . We note that as the self-consistent

field iteration converges, f(Hφ) represents the finite-temperature density matrix ex-

pressed in the non-orthogonal localized basis. We remark that, for a jellium approxi-

mation (a simplified representation for a metallic system), it was shown that the finite-

temperature density operator exhibits an exponential decay in real-space [137, 138].

However, this remains an open question beyond the jellium approximation for metal-

lic systems. For an insulating system with a band-gap, the density operator, even

at zero temperature, has an exponential decay in real-space [32]. Assuming that the

density operator decays in real-space, and recalling that ΦL represents a localized

basis, we note that f(Hφ) will have a sparse structure with the extent of sparsity

depending on the decay properties of the density operator.

We use Chebyshev polynomial expansion to approximate f(Hφ), and compute

the electron density. To this end, we begin by scaling and shifting Hφ to obtain Hφ
s
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such that its spectrum lies in [−1, 1] and then f(Hφ) is approximated using a finite

number of Chebyshev polynomials [35] as

f(Hφ) =
R∑
n=0

an(σs, µs)Tn(Hφ
s ), (4.38)

where

Hφ
s =

Hφ − ε̄I
∆ε

; σs =
∆ε

σ
; µs =

µ− ε̄
∆ε

, (4.39)

∆ε =
εmax − εmin

2
; ε̄ =

εmax + εmin

2
, (4.40)

and

an(σs, µs) =
2− δn 0

π

1∫
−1

Tn(x)√
1− x2

1

1 + eσs(x−µs)
dx , (4.41)

where δij denotes the Kronecker delta. In the above, εmax and εmin denote the upper

and lower bounds for the spectrum of Hφ. Estimates for εmax and εmin are computed

using the Krylov-Schur method [85]. As Hφ is the projection of the Hamiltonian into

a localized basis, Hφ is a sparse matrix, and these estimates for the spectral width can

be computed in O(N) complexity. We also remark that if Hφ is sufficiently sparse,

f(Hφ) can be computed in O(N) complexity [35]. Further, we note that the degree R

of the Chebyshev expansion in equation (4.38) is proportional to the spectral width

∆E = εmax−εmin of Hφ. As discussed earlier, since Hφ is the projected Hamiltonian in

the space containing the occupied eigenstates and only a few unoccupied eigenstates,

the spectral width of Hφ is O(1) Ha for pseudopotential calculations and O(10) Ha for

all-electron calculations for low atomic numbers. Thus, the Fermi-operator expansion

can be computed efficiently and accurately using a Chebyshev polynomial expansion

of O(100) for pseudopotential calculations and O(1000) for all-electron calculations

for moderate temperatures (∼ 500K) used in the smearing parameter. The Fermi-

energy (µ), which is required in the computation of the Fermi-operator expansion for
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f(Hφ) and the electron density, is evaluated using the constraint in (4.17)

2 tr
(
f(Hφ)

)
= Ne , (4.42)

where Ne is the number of electrons in the given system. The above equation is

solved using the Newton-Raphson method [139] and an initial guess to the Newton-

Raphson method is computed using the bisection algorithm [139]. It is evident from

equation (4.38) that the dependence of the expansion on the Fermi-energy is only

in the coefficients of the expansion. Exploiting this fact, the Fermi-energy can be

efficiently computed using methods described in Baer et. al. [35], which scales as

O(N). To this end, the mth column of f(Hφ) is obtained by the application of the

expansion in (4.38) on a unit column vector vm containing all zeros except at the mth

position. Hence, [
f(Hφ)

]
m

=
R∑
n=0

an(σs, µs)v
m
n , (4.43)

where vmn = Tn(Hφ
s )vm denotes the mth column of Tn(Hφ

s ). We note that vmn can be

computed efficiently using the Chebyshev polynomial recursion given by

vm0 = vm

vm1 = Hφvm

vmn+1 = 2 Hφvmn − vmn−1 .

As the vectors vmn can be precomputed and stored, the evaluation of tr
(
f(Hφ)

)
for

every trial Fermi-energy results in a trivial computational cost.

Upon evaluating the Fermi energy, the band energy (Eb) can also be expressed in

terms of Hφ as

Eb = 2 tr
(
f(Hφ)Hφ

)
. (4.44)
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Finally, we note that the computational complexity of computing the electron density

at a quadrature point r is independent of the system size. This can be seen by

rewriting the expression (4.36) as

ρ(r) = 2 cT (r) f(Hφ) S−1 c(r) , (4.45)

where c(r) = ΦT
LM−1/2N (r) is a sparse vector if ΦL is sparse. As f(Hφ)S−1 can

be pre-computed a priori, the computation of ρ(r) is independent of the system

size. Since the total number of quadrature points scales linearly with system size,

computation of electron density for a given material system is O(M) complexity.

4.3 Results and discussion

In this section, we investigate the accuracy, performance, and scaling of the

proposed subspace projection technique. As benchmark systems, we consider non-

periodic three dimensional systems involving metallic, insulating and semi-conducting

materials systems. The benchmark metallic systems chosen for this study include alu-

minum nano-clusters of varying sizes, containing 3×3×3 (172 atoms), 5×5×5 (666

atoms), 7×7×7 (1688 atoms) and 9×9×9 (3430 atoms) face-centered-cubic (fcc) unit-

cells. The benchmark insulating systems chosen for this study include alkane chains

of varying lengths, containing 101, 302, 902, 2702 and 7058 atoms. Silicon nano-

clusters containing 1× 1× 1 (252 electrons), 2× 1× 1 (434 electrons), 2× 2× 1 (756

electrons), 2×2×2 (1330 electrons) and 3×3×3 (3920 electrons) diamond-cubic (dia)

unit-cells are chosen for the benchmark semi-conducting materials systems. Norm-

conserving Troullier-Martins pseudopotentials [77] have been employed in the case

of aluminum nano-clusters and alkane chains, whereas all-electron calculations have

been performed in the case of silicon nano-clusters. In all our simulations, we use the

n-stage Anderson [67] mixing scheme on the electron density in self-consistent field it-
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eration of the Kohn-Sham problem. Further, all the numerical simulations reported in

this section are conducted using a parallel implementation of the code based on MPI,

and are executed on a parallel computing cluster with the following specifications:

dual-socket eight-core Intel Core Sandybridge CPU nodes with 16 processors (cores)

per node, 64 GB memory per node, and 40 Gbps Infiniband networking between all

nodes for fast MPI communications.

As discussed in section 4.2, the linear-scaling of the proposed subspace projection

technique relies on the locality of the finite-element basis (qi : 1 ≤ i ≤ M) as well

as the localized wavefunctions (φLj : 1 ≤ j ≤ N), and subsequently, the sparsity of

the various matrices involved in our formulation (H̃,Hφ,ΦL,S,W
I). We recall that

the compact support of localized wavefunctions and the sparsity in various matrices

is achieved by introducing truncation tolerances δc (in Chebyshev filtering) and δl

(for localized wavefunctions). Further, as mentioned in section 4.2 , and elaborated

subsequently, the truncation tolerances are chosen adaptively with looser tolerances

being employed in the initial SCF iterations and progressively tightening these during

the course of the SCF convergence. As demonstrated in our benchmark studies, such

an adaptive tolerance provides significant computational efficiency while retaining the

accuracy of the solution to the Kohn-Sham DFT problem. We note that the sparsity

of various matrices is governed by the eigenspectrum of discrete Hamiltonian as well

as the values of the truncation tolerances employed, which changes with each SCF

iteration. In the present implementation of the subspace projection technique, we

employ efficient parallel data-structures provided by PETSc package [83], where nec-

essary, to represent various matrices and perform arithmetic operations between them.

We observe in our simulations that the operations involving sparse data-structures

provided by PETSc are efficient only when the fraction of non-zero entries (density

fraction) in the matrix is < 1− 2%. Beyond this density-fraction, the overhead cost

of using a sparse data-structure is prohibitively expensive, and it is more efficient to
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use dense data-structures. To maximize the computational efficiency, in the present

work, we employ sparse data-structures only when the density fraction is < 2%, be-

yond which we switch to dense data-structures. This is the main source of deviation

from linear-scaling, in practice, in the present implementation.

In order to assess the accuracy, performance and scaling of the proposed approach,

we use as reference the recently developed Chebyshev filtered subspace iteration for

the finite-element basis [1] (ChFSI-FE). The ChFSI-FE involves the projection of the

Hamiltonian into an orthogonal basis spanning the Chebyshev filtered space, and an

explicit computation of the eigenvalues and eigenvectors of the projected Hamiltonian

to estimate the electron density. It was demonstrated [1] that ChFSI-FE technique

with the use of higher-order finite-element discretization presents a computationally

efficient real-space approach for Kohn-Sham DFT calculations, which can handle

both pseudopotential and all-electron calculations. We also note that the accuracy of

ChFSI-FE was ascertained, on benchmark problems of varying sizes, using ABINIT

software [60] for pseudopotential calculations and GAUSSIAN software [72] for all-

electron calculations. In the present work, we use ChFSI-FE as our reference to assess

the accuracy and performance of the proposed approach.

4.3.1 Aluminum nano-clusters: Pseudopotential study

We consider aluminum nano-clusters formed from fcc unit cells with lattice

spacing of 7.45 a.u.. The norm-conserving Troullier-Martins pseudopotential in the

Kleinman-Bylander form [77, 78] is employed in these simulations. We consider the

3s and 3p components to compute the projector, while the 3d component is chosen to

be the local component of the pseudopotential. The pseudopotentials are generated

using the fhi98pp [140] software and the default cut-off radii are used for 3s, 3p and

3d components, which are 1.8 a.u., 2.0 a.u. and 2.15 a.u., respectively. In order to

choose finite-element meshes which provide a discretization error of less than 5 meV
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per atom for the various nano-clusters considered in the present study, we first obtain

the converged ground-state energy for the aluminum cluster containing 3× 3× 3 fcc

unit cells which comprises of 172 atoms with 516 electrons. To this end, we use a se-

quence of increasingly refined fourth-order spectral finite-element (HEX125SPECT)

meshes on a cubic simulation domain of side 400 a.u. employing Dirichlet boundary

conditions. Here, and subsequently, we use the a priori mesh adaption techniques

developed in Motamarri et. al [1] to construct the finite-element meshes, and refer

to this prior work for details. For these sequence of meshes, the ground-state energy

is computed using ChFSI-FE with a Chebyshev filter of degree 20 and employing a

Fermi smearing parameter of 0.00158 Ha (T=500K). The computed discrete ground-

state energies (Eh) for these meshes are tabulated in Table 4.1, where h denotes a

measure of the finite-element mesh-size. The extrapolation procedure proposed in

Motamarri et. al [1] allows us to estimate the ground-state energy in the limit as

h→ 0, denoted by E0. Using this extrapolation procedure, we computed the ground-

state energy per atom to be E0 = −56.6966935 eV . In order to ascertain the accuracy

of this extrapolated ground-state energy, we conducted a plane wave simulation with

ABINIT using a cell-size of 80 a.u. and an energy cut-off of 30 Ha with one k-point

(the most refined calculation possible within our memory limitations). In the case of

ABINIT, the ground-state energy per atom was found to be −56.6966719 eV , which

only differs from E0 by 0.02 meV .

Table 4.1: Convergence of the finite-element discretization (HEX125SPECT element) for
a 3× 3× 3 fcc aluminum cluster.

Degrees of Energy per atom Relative error

freedom (DoF) (eV)
∣∣Eh−E0

E0

∣∣
222, 553 -55.5622017 2.0 ×10−2

1, 760, 305 -56.6677104 5.1 ×10−4

14, 003, 809 -56.6966331 1.06 ×10−6
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We next choose a finite-element mesh with fifth-order spectral finite-elements

(HEX216SPECT) for the 3 × 3 × 3 aluminum nano-cluster, where the mesh-size is

chosen such that the discretization error, measured with respect to E0, is less than

5 meV per atom. Using the same characteristic mesh-size, which is expected to re-

sult in a similar discretization error, we construct the finite-element meshes for the

varying sizes of aluminum clusters containing 5× 5× 5 (666 atoms), 7× 7× 7 (1688

atoms) and 9×9×9 (3430 atoms) fcc unit-cells. Using a Chebyshev filter of degree 20

and a Fermi smearing parameter of 0.00158 Ha (T=500K), we compute the reference

ground-state energies using ChFSI-FE. These are tabulated in Table 4.2.

We next compute the ground-state energies using the proposed subspace projec-

tion algorithm (cf. section 4.2) with identical meshes and parameters (Chebyshev

filter degree, Fermi smearing parameter) employed in our reference calculations. The

polynomial degree R used in the Chebyshev expansion of the Fermi-function of the

projected Hamiltonian (4.38) is chosen to be 400. We recall that we use truncation

tolerances (δc, δl) to achieve compact support for the non-orthogonal localized wave-

functions (ΦL) and sparsity in the various matrices involved in our formulation. In

the initial SCF iterations we use looser truncation tolerances, and employ tighter tol-

erances as the self-consistent iteration proceeds towards convergence. In particular,

we choose δc = δl and vary the truncation tolerance as a function of the relative

change in the ground-state energy between two successive SCF iterations (δEr). The

specific choice of the truncation tolerance employed in the present study is

δc =


C1 if δEr ≥ 1,

C1(δEr)
p if 10−1.5 ≤ δEr < 1,

C2(δEr)
q otherwise .

(4.46)

Here, we use a truncation tolerance of C1 = 10−4 when δEr is greater than 1, then
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use a power law (cf. equation (4.46)), subsequently, with p = 2
3

and q = 3
2
. In order

to ensure continuity in δc, C2 is chosen to be 0.00178. We note that the choice of this

truncation tolerance is arbitrary, however, this form of the truncation tolerance has

provided robust convergence of the SCF for all benchmark calculations, where the

number of SCF iterations using the subspace projection approach is only marginally

(∼ 4− 5 iterations) greater than those using ChFSI-FE. In all our simulations, using

the proposed method as well as ChFSI-FE, the SCF is terminated when δEr < 10−7

for three successive iterations.

The ground-state energies computed using the proposed subspace projection al-

gorithm for the range of nano-clusters considered in this work are tabulated in Ta-

ble 4.2. The above results show that the proposed subspace projection technique

provides good accuracies in the ground-state energies, where the computed energies

are within 5 meV per atom of the reference energies computed using ChFSI-FE. The

computational times for the full SCF convergence for the range of nano-clusters are

plotted in figure 4.1 for the proposed method, as well as, the reference calculations

using ChFSI-FE. In this plot, the computational time denoted on the Y-axis is the

total computational CPU time in hours (CPU time = Number of cores × wall-clock

time in hours). These results show that the proposed approach is computationally ef-

ficient, compared to ChFSI-FE, for system sizes beyond 172 atoms. Further, we note

that the subspace projection technique provides a factor of ∼ 8.5 speedup for the

nano-cluster containing 3430 atoms. Using these computational times, we estimated

the scaling of the proposed approach and our reference calculations using ChFSI-FE

as a function of system size (number of atoms). The scaling for the proposed approach

is found to be approximately O(N1.66), while the scaling in the case of ChFSI-FE is

O(N2.37). The deviation from linear-scaling of the proposed method, in practice, is

primarily due to two factors. Firstly, we observe that the number of SCF iterations

increase with increasing system size. For instance, the number of SCF iterations in-
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Figure 4.1: Total computational times for the proposed method and ChFSI-FE. Case
study: Aluminum nano-clusters.
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Figure 4.2: Average computational times per SCF iteration for the proposed method and
ChFSI-FE. Case study: Aluminum nano-clusters.
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Figure 4.3: Electron density contours on the mid-plane of 9× 9× 9 fcc aluminum
nano-cluster.

crease from 45 SCF iterations for the 3 × 3 × 3 nano-cluster to 80 iterations for the

9 × 9 × 9 nano-cluster. This issue of increasing SCF iterations with system size can

potentially be mitigated using improved mixing schemes [141]. Figure 4.2 shows the

computational time per SCF iteration, and the scaling with system size is found to be

O(N1.46) for the proposed subspace projection method and O(N2.17) for ChFSI-FE.

The second factor which results in the deviation of the proposed subspace projection

approach from being linear-scaling is due to the use of dense data-structures when

the density fraction is above 2%. Although the use of dense data-structure affects

the overall scaling, it is still computationally efficient in comparison to using sparse

data-structures for density fractions greater than 2%. We refer to the Appendix D

for the scaling of various components of the subspace projection algorithm and a dis-

cussion. Figure 4.3 shows the electron density contours on the mid-plane of 9× 9× 9

nano-cluster computed using the proposed subspace projection technique.

123



Table 4.2: Ground-state energies per atom (eV) for the various sizes of aluminum
nano-clusters computed using the proposed subspace projection algorithm technique and

ChFSI-FE [1].

Cluster DoF Proposed Method ChFSI-FE

3x3x3 1, 107, 471 −56.694963 −56.6949697

5x5x5 4, 363, 621 −56.876491 −56.876518

7x7x7 11, 085, 371 −56.959021 −56.9623511

9x9x9 22, 520, 721 −57.010587 −57.0145334

4.3.2 Alkane chains: Pseudopotential study

We next consider three-dimensional alkane chains with individual repeating units

of CH2 with C-C and C-H bond lengths to be 2.91018 a.u. and 2.0598 a.u., respec-

tively. The H-C-H and C-C-C bond angles are taken to be 109.470. Norm-conserving

Troullier-Martins pseudopotential in the Kleinman-Bylander form [77, 78] has been

employed in these simulations. In the case of carbon, we consider the 2s component

to compute the projector in the Kleinman-Bylander form, while the 2p component

is chosen to be the local component of the pseudopotential. We consider the local

pseudopotential for hydrogen corresponding to the 1s component. The pseudopoten-

tials are generated using the software package fhi98PP [140] using the default cut-off

radii, which is 1.5 a.u. for both 2s and 2p components of carbon and 1.3 a.u. for the

1s component of hydrogen. In order to choose finite-element meshes with discretiza-

tion errors less than 5 meV per atom for various alkane chains, we first consider

the case of C33H68 containing 101 atoms with 200 valence electrons and obtain the

converged value of the ground-state energy. To this end, as in the case of aluminum

nano-clusters (cf. section 4.3.1), we use a sequence of increasingly refined fourth-order

spectral finite-elements (HEX125SPECT) on a cuboidal simulation domain of dimen-

sions 100 a.u.× 100 a.u.× 220 a.u.. For these sequence of meshes, the ground-state

energy Eh is computed using ChFSI-FE with a Chebyshev filter of degree 35 and em-
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ploying a Fermi smearing parameter of 0.00158 Ha (T=500K), and these results are

tabulated in Table 4.3. Using the extrapolation procedure described in Chapter III,

we find the reference ground-state energy per atom to be E0 = −61.44173873 eV .

Further, we also compared our reference ground-state energy with ABINIT using

a cuboidal simulation of size 40 a.u. × 40 a.u. × 160 a.u. and an energy cut-off of

30 Ha with one k-point (the most refined calculation possible within our memory

limitations). In the case of ABINIT, the ground-state energy per atom was found to

−61.44219366 eV , which differs from E0 by ∼ 0.4 meV .

Table 4.3: Convergence of the finite-element discretization for C33H68 using
HEX125SPECT element.

Deg. of freedom Energy per atom (eV) Relative error

391, 893 -61.31623538 2.0 ×10−3

3, 096, 585 -61.43711471 7.5 ×10−5

24, 621, 969 -61.44173469 5.01 ×10−8

We next choose a finite-element mesh with fifth-order spectral finite-elements

(HEX216SPECT) for C33H68, where the mesh-size is chosen such that the discretiza-

tion error, measured with respect to E0, is less than 5 meV per atom. Using the

same characteristic mesh-size which is expected to result in a similar discretization

error, we construct finite-element meshes for varying lengths of alkane chains, namely

C100H202 (302 atoms), C300H602 (902 atoms), C900H1802 (2702 atoms) and C2350H4702

(7052 atoms). Using a Chebyshev filter of degree 35 and a Fermi smearing parame-

ter of 0.00158 Ha (T=500K), we compute the reference ground-state energies using

ChFSI-FE for these systems, and are tabulated in Table 4.4.

The subspace projection algorithm is then used to compute the ground-state ener-

gies using identical meshes and parameters (Chebyshev filter degree, Fermi smearing

parameter) employed in our reference calculations. The polynomial degree R used in
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the Chebyshev expansion of the Fermi function of the projected Hamiltonian (4.38)

is chosen to be 400. Just as in the case of aluminum nano-clusters, we use adaptive

truncation tolerances (δc, δl). In particular, we choose δc = δl and use the specific

choice of truncation tolerance given in equation (4.46) with identical values of C1,

p and q as employed in the case of our previous benchmark calculations involving

aluminum nano-clusters. In all our simulations, using the proposed method as well as

ChFSI-FE, the SCF is terminated when δEr < 10−7 for three successive iterations.

Table 4.4: Comparison of ground-state energies (eV per atom) for various alkane chains.

Alkane Chain DoF Proposed Method ChFSI-FE

C33 H68 870, 656 −61.438671 −61.438680

C100 H202 2, 491, 616 −62.041530 −62.041532

C300 H602 7, 354, 496 −62.240148 −62.240277

C900 H1802 21, 943, 138 −62.303101 −62.303608

The ground-state energies computed using the proposed subspace projection al-

gorithm for different lengths of alkane chains considered in this work are tabulated

in Table 4.4. These results indicate that the proposed method provides good accu-

racies in the ground-state energies, where the computed energies are within 1 meV

per atom of the reference energies computed using ChFSI-FE. The computational

times for the full SCF convergence for varying lengths of alkane chains are plotted in

figure 4.4 for the proposed method, as well as, the reference calculations using ChFSI-

FE. These results indicate that the proposed approach is computationally efficient,

compared to ChFSI-FE, for system sizes beyond 101 atoms and provides a factor of

∼ 8 speedup for the alkane chain containing 2702 atoms. Using these computational

times, the estimated scaling for the proposed approach is found to be approximately

O(N1.33), while scaling in the case of ChFSI-FE is O(N2.13). The average computa-

tional time per SCF iteration is shown in figure 4.5, and the scaling with system size
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is found to be O(N1.18) for the proposed subspace projection method and O(N1.98)

for ChFSI-FE. We refer to the Appendix D for the scaling of various components

of the subspace projection algorithm and a discussion. We note that the proposed

subspace projection technique exhibits better scaling behavior for the alkane chains,

which is an insulating system, in comparison to the aluminum nano-clusters, which is

a metallic system. This is due to the better localization of the wavefunctions in the

insulating system in comparison to the metallic system (cf. Appendix D). Figure 4.6

shows the isocontours of electron density of the alkane chain containing 2702 atoms.

4.3.3 Silicon nano-clusters: All-electron study

We consider silicon nano-clusters comprising of diamond-cubic unit cells with a

lattice constant of 10.26 a.u. and conduct all-electron calculations to test the perfor-

mance of the subspace projection method. In order to choose finite-element meshes

which provide a discretization error of less than 5 mHa per atom for various nano-

clusters, we first obtain a converged value of the ground state energy by conducting

a very refined simulation using the GAUSSIAN package [72] on silicon nano-cluster

containing 1 × 1 × 1 unit-cell which comprises of 18 atoms with 252 electrons. To

this end, we employ the polarization consistent DFT basis sets (pc-n) and introduce

them as an external basis set in GAUSSIAN package. Using the most refined pc-4

basis set, the computed ground-state energy per atom (E0) is −288.3179669 Ha.

We next chose a finite-element mesh with fifth-order spectral finite-elements for

the 1×1×1 silicon nano-cluster, where the discretization error, measured with respect

to E0, is less than 3 mHa. Using the same characteristic mesh-size, we construct the

finite-element meshes for the varying sizes of silicon nano-clusters containing 1×1×1

(252 electrons), 2 × 1 × 1 (434 electrons), 2 × 2 × 1 (756 electrons), 2 × 2 × 2 (1330

electrons) and 3× 3× 3 (3920 electrons) diamond-cubic unit cells. The finite-element

mesh is locally refined near the nuclei since all-electron calculations involve highly
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Figure 4.4: Total computational times for the proposed method and ChFSI-FE. Case
study: Alkane chains.
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Figure 4.6: Electron density isocontours of C900H1802.

oscillatory wavefunctions near the nuclei. The order of the Chebyshev filter thus

required in these simulations is around 1000 to effectively filter out the unwanted

spectrum. Using a Chebyshev filter of degree 1000, and a Fermi smearing parameter

of 0.00475 Ha (T=1500K), we compute the reference ground-state energies using

ChFSI-FE which are tabulated in Table 4.5.

The subspace projection algorithm is then used to compute the ground-state en-

ergies with identical meshes and parameters employed in our reference calculations.

The polynomial degree R used in the Chebyshev expansion of the Fermi-operator of

the projected Hamiltonian (4.38) is chosen to be 1250 since the width of the occupied

spectrum is larger than that of a pseudopotential calculation. Just as in the case of

the previous benchmark calculations, we use adaptive truncation tolerances (δc, δl)

with δl = 104δc and vary δc as a function of relative change in the ground-state en-

ergy between two successive iterations (δEr). We use the specific choice of truncation

tolerance given in equation (4.46) with C1 = 10−11, p = 2/3 and q = 3/2. We note

that much tighter tolerances have been used for δc in comparison to pseudopotential

calculations in order to control the accumulation of truncation errors in applying a

very high degree Chebyshev filter. In all our simulations, using the proposed method

as well as ChFSI-FE, the SCF is terminated when δEr < 10−6 for three successive

iterations.

The ground-state energies computed using the proposed subspace projection algo-

rithm for varying sizes of silicon nano-clusters considered in this work are tabulated
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Figure 4.9: Electron density contours on the mid-plane of 3× 3× 3 silicon nano-cluster.

in Table 4.5. These results indicate that the proposed method provides good accu-

racies in the ground-state energies, where the computed energies are within 3 mHa

per atom of the reference energies computed using ChFSI-FE. The computational

times for the full SCF convergence for varying sizes of silicon nano-clusters are plot-

ted in figure 4.7 for the proposed method, as well as, the reference calculations using

ChFSI-FE. These results indicate that the proposed approach is computationally ef-

ficient, compared to ChFSI-FE, for system sizes beyond 18 atoms and provides a

factor of ∼ 3 speedup for the 3 × 3 × 3 nano-cluster containing 280 atoms. Using

these computational times, the estimated scaling for the proposed approach is found

to be approximately O(N1.85), while scaling in the case of ChFSI-FE is O(N2.21).

The average computational time per SCF iteration is shown in figure 4.8, and the

scaling is computed to be O(N1.75) for the proposed subspace projection method and

O(N2.11) for ChFSI-FE. The deterioration in the scaling for all-electron calculations

in comparison to pseudopotential calculations is due to tighter truncation tolerances

employed in order to control the accumulation of the truncation errors during the ap-

131



Table 4.5: Comparison of ground-state energies (Ha per atom) for various sizes of silicon
clusters.

Cluster DoF Proposed Method ChFSI-FE

1x1x1 5, 136, 901 −288.32016 −288.32046

2x1x1 9, 676, 481 −288.33380 −288.33411

2x2x1 16, 358, 791 −288.34715 −288.34791

2x2x2 27, 208, 731 −288.35985 −288.36140

3x3x3 79, 226, 681 −288.37132 −288.37341

plication of a very high degree Chebyshev filter. Nevertheless, the proposed approach

provides significant savings, which will increase with increasing system size. We refer

to the Appendix D for the scaling of various components of the subspace projection

algorithm in the case of all-electron calculations and a discussion. Figure 4.9 shows

the electron density contours on the mid-plane of 3 × 3 × 3 nano-cluster computed

using the proposed subspace projection technique.

4.4 Summary

The present chapter demonstrates a methodology to conduct large scale electronic

structure calculation using spectral finite-element discretizations at reduced scaling

and presents an important direction for electronic structure calculations employing

the finite-element basis. The computational efficiency as well as scaling in the case

of all-electron calculations can be further improved by using a finite-element basis

enriched with single-atom wavefunctions, or, alternately, the partitions-of-unity finite-

element approach [101] which forms an important future direction.
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CHAPTER V

Configurational force approach to atomic

relaxations using Kohn-Sham density functional

theory

We have so far considered the problem of computing the ground-state electron

density for a fixed set of atom positions in the previous chapters and now we turn

to the computation of forces on atoms. An important aspect of electronic structure

calculations using DFT is the efficient computation of forces on atoms to find the

geometry of a given materials system in the most stable state and this forms the

subject of the chapter. A crucial step to evaluate forces on atoms in most DFT codes

is to use Hellmann-Feynman (HF) theorem [37] which relates the derivatives of the

total energy with respect to position of atoms to the expectation value of the derivative

of the Hamiltonian with respect to position of atoms. However these atomic forces

are usually corrected for incomplete-basis-set error [38, 39, 40], non-self-consistency

error [40, 41] which are not accounted for, when using the HF theorem. Furthermore,

HF theorem fails to capture stress in a periodic-unit cell as it produces the zero force

for any affine deformation of the system and these Pulay stress contributions are later

explicitly accounted in the DFT calculations [42, 43]. The computation of atomic

forces within the framework of the real-space finite-element formulation proposed in
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this thesis must account for all the above three errors often unaccounted using HF

theorem and thus needs a careful approach. In this chapter, we propose the use of

configurational force (Eshelby) approach for efficient computation of atomic forces

and derive the relevant expressions for forces in a more general setting by using the

non-orthogonal formulation of Kohn-Sham DFT, taking into account the fractional

occupancies. We refer to [25] for computation of atomic forces in the restricted

case of orthogonal formulation of Kohn-Sham DFT. Though the Eshelby approach

of computing the atomic forces is relatively new in the context of Kohn-Sham DFT

calculations, the approach is based on ideas widely used in mechanics [142] following

Eshelby’s formulation of force on a defect [143]. We note that the proposed Eshelby

formulation for atomic relaxations provides a unified framework that captures atomic

forces due to Hellmann-Feynman theorem, incomplete-basis-sets and the non-self-

consistency, and furthermore accounts for elastic stresses on periodic unit-cells on a

single footing.

We first begin with the proof of the well-known Hellmann-Feynman theorem and

explain the origin of errors discussed previously and subsequently derive the expres-

sion for the configurational force in the context of the non-orthogonal formulation of

the Kohn-Sham DFT functional.

5.1 Hellmann-Feynman theorem

Using the expression for energy as the expectation value of the Hamiltonian He

from equation (2.12) of Chapter II, we evaluate the force acting on an atom I using

Hellmann-Feynman theorem [37] as:

f I = − ∂J

∂RI

= − ∂

∂RI

〈Ψe|He |Ψe〉 = −
〈

Ψe

∣∣∣∣ ∂He

∂RI

∣∣∣∣Ψe

〉
(5.1)
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and the proof uses that wavefunction Ψe is an eigenfunction of the Hamiltonian under

consideration and is normalized.

He |Ψe〉 = Ee |Ψe〉 (5.2)

〈Ψe| Ψe〉 = 1 =⇒ ∂

∂RI

〈Ψe| Ψe〉 = 0 (5.3)

Hellmann-Feynman theorem is easy to show by applying the derivative product rule

to the above expectation value of Hamiltonian viewed as a function of position of

atoms {RI}:

∂J

∂RI

= − ∂

∂RI

〈Ψe|He |Ψe〉

= −
[〈

∂Ψe

∂RI

∣∣∣∣He

∣∣∣∣Ψe

〉
+

〈
Ψe

∣∣∣∣He

∣∣∣∣∂Ψe

∂RI

〉
+

〈
Ψe

∣∣∣∣ ∂He

∂RI

∣∣∣∣Ψe

〉]
= −

[
Ee

〈
∂Ψe

∂RI

∣∣∣∣ Ψe

〉
+ Ee

〈
Ψe

∣∣∣∣ ∂Ψe

∂RI

〉
+

〈
Ψe

∣∣∣∣ ∂He

∂RI

∣∣∣∣Ψe

〉]
= −

[
Ee

∂

∂RI

〈Ψe| Ψe〉+

〈
Ψe

∣∣∣∣ ∂He

∂RI

∣∣∣∣Ψe

〉]
= −

〈
Ψe

∣∣∣∣ ∂He

∂RI

∣∣∣∣Ψe

〉
(5.4)

We proceed further and use Slater determinant to express Ψe to be 1/
√
N ! det{ψi}

of orbitals ψi with the one-particle Kohn-Sham approximation(c.f Chapter II) in

conjunction with the real space formulation described in equation 3.16 of Chapter III,

then the Hellmann-Feynman theorem simply results in the following expression for

the force on an atom f I :

f I = − ∂

∂RI

Na∑
K=1

∫
Ω

ZK δ̃(r−RK)ϕ(r) dr +
∂

∂RI

Na∑
K=1

∫
ΩK

ZK δ̃(r−RK)νK(r) dr (5.5)
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which can be simplified as:

f I =

∫
Ω

ZI
∂

∂r
δ̃(r−RI)ϕ(r) dr−

∫
ΩI

ZI
∂

∂r
δ̃(r−RI)νI(r) dr

= −
∫
Ω

ZI δ̃(r−RI)
∂

∂r
ϕ(r) dr +

∫
ΩI

ZI δ̃(r−RI)
∂

∂r
νI(r) dr

= −ZI∇ϕ(RI) + ZI∇νI(RI) (5.6)

However, the computation of atomic forces using equation (5.6) has significant draw-

backs. First we recall from the derivation in equation (5.4) that HF theorem assumes

the electronic wavefunction to be an exact eigenfunction (or stationary state wave-

function) of the particular Hamiltonian under consideration and is normalized to

unity and hence, the terms involving the variations of the wavefunctions with respect

to positions of atoms vanish. However this is true only if complete (infinite) basis-sets

are used to express the electronic wavefunctions ({ψi} after making the Kohn-Sham

approximation) which can never be true in any numerical calculation. The error re-

sulting from the incomplete basis-sets used to expand the electronic-wavefunctions is

referred to as incomplete basis-set error or the Pulay force [37] and often needs to

be explicitly accounted when the basis functions themselves depend on atomic po-

sitions (for e.g., atomic-orbital basis). Though this force does not arise in the case

of numerical calculations with basis functions independent of positions of atoms (like

for e.g., plane waves), the finite-element discretization presented in this thesis deals

with atomic nuclei coincident with finite-element nodes and hence has to account for

incomplete basis-set error when computing the atomic forces. Furthermore, the ex-

pression in (5.6) does not capture the stress in a periodic unit-cell as it produces zero

force for any affine deformation on the materials system, and fails to capture elastic

effects corresponding to the affine deformation on the crystal. We therefore employ

Eshelby approach of calculating the configurational force on the system which pro-
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vides us a single expression to capture HF forces, Pulay forces and the elastic stresses

on the crystal in the context of Kohn-Sham DFT.

5.2 Configurational force approach

We now consider a system with Na nuclei with position vectors denoted by R =

{R1,R2,R3, · · · }. Let {φi(r)} for i = 1 · · ·N with N > Ne/2 denote a non-orthogonal

basis functions spanning the occupied eigensubspace of the Kohn-Sham Hamiltonian

(c.f equation (3.25a)) with S denoting the overlap matrix associated with {φi(r)}

and Γφ be the corresponding density matrix expressed in the non-orthogonal basis

with matrix element Γφij. Further, let ϕ̄(x), ν̄ = {ν̄1(r) , ν̄2(r) , ν̄3(r), · · · } denote

the solutions of the Poisson problems given in equation (3.25c) and ρ(r) denote the

electron-density distribution, then the expression for Helmholtz free energy in terms

of the finite temperature counterpart of Kohn-Sham ground state energy(Eσ) and the

entropy term (Eent) is
F = EKS − Eent , (5.7)

with EKS = EKS({φi}, ϕ̄, ν̄,Γφij,R) ,

= Eb(Γφij, {φi},R) + Eveff(ρ,R) + Exc(ρ) + Eϕ̄(ρ,R) + Eν̄(R) , (5.8)

where Exc =

∫
Ω

F (ρ(r)) dr , (5.9a)

Eveff = −
∫
Ω

ρ(r)Veff(ρ(r),R) dr , (5.9b)

Sjk =

∫
Ω

φ∗j(r)φk(r) dr , ρ(r) = 2 Γφij S
−1
jk φ

∗
k(r)φi(r) (5.9c)

Eb = 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

(
−1

2
∇2 + Veff(ρ(r),R)

)
φi(r) dr , (5.9d)

Eϕ̄ = sup
ϕ

− 1

8π

∫
Ω

|∇ϕ(r)|2 dr +

∫
Ω

(ρ(r) + b(r,R))ϕ(r) dr

 , (5.9e)
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Eν̄ = inf
ν

( Na∑
I=1

[ 1

8π

∫
ΩI

|∇νI(r)|2 dr−
∫
ΩI

bI(r)νI(r) , dr− 1

8π

∫
∂ΩI

ν̄I(r)(∇ν̄I(r).n) dSI

])
(5.10a)

Eent = −2σ tr
[
Γφ ln Γφ + (I − Γφ) ln(I − Γφ)

]
. (5.10b)

σ in the above equation denotes the smearing parameter kB T as defined in equa-

tion (3.72). Further, summation from 1 to N is implied over the repeated indices

i, j, k in (5.9d) and we note the use of Einstein summation convention in the sub-

sequent equations to follow. We now use the Lagrange multiplier µ to enforce the

constraint on the number of electrons and the constrained energy functional Ec is

Ec = F − µ
[
2 tr(Γφ)−Ne

]
. (5.11)

A bijective mapping χε(r) is now defined for every point in space with the following

properties:

χε(r) : Ω→ Ω′, χ0 = I

r′ = χε(r) = r + εΥ(r)

d

dε
χε(r)

∣∣∣∣
ε=0

= Υ(r) (5.12)

The bijective map χε(r) defined above can be viewed as a perturbation created at

every material point r in space to a new point r′ along some direction Υ(r) related by

r′ = r+εΥ(r). However this mapping should preserve the nuclear charge distribution

and hence the mapping is constrained to rigid body motions on the compact support

of the nucleus, i.e. χε(r) = QI
εr + T I

ε for I = 1 · · ·Na in the compact support of

bI(r,R). Here QI
ε is unitary and QI

ε, T
I
ε are independent of r. Before deriving the
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expressions for configurational force, we first define the following identities:

d

dε

{
∂r′i
∂rj

} ∣∣∣∣
ε=0

=
∂Υi(r)

∂rj
,

d

dε

{
∂ri
∂r′j

} ∣∣∣∣
ε=0

= − ∂ri
∂r′k

(
d

dε

∂r′k
∂rl

)
∂rl
∂r′j

∣∣∣∣
ε=0

= −∂Υi(r)

∂rj
,

d

dε

{
det

(
∂x′i
∂xj

)} ∣∣∣∣
ε=0

=
d

dε

{
det

(
δij + ε

∂Υi(r)

∂xj

)} ∣∣∣∣
ε=0

=
d

dε

{
1 +

∂Υj(r)

∂xj
ε+O(ε2)

} ∣∣∣∣
ε=0

=
∂Υj(r)

∂rj
,

det

{
∂r′i
∂rj

} ∣∣∣∣
ε=0

= 1 ,
∂ri
∂r′j

∣∣∣∣
ε=0

= δij ,
∂r′i
∂rj

∣∣∣∣
ε=0

= δij . (5.13)

Due to the infinitesimal variations introduced by the mapping χε(r) , Ec is now

Ec = Ec(χε(r) ) ,

Ec(χε(r) ) = F(χε(r) )− µ
[
2 tr(Γ̃

φ
)−Ne

]
,

where Γ̃
φ

denotes the perturbed density matrix corresponding to infinitesimal vari-

ations introduced by the mapping χε(r) . We thus have F(χε(r) ) = EKS(χε(r) ) −

Eent(χε(r) ) with each term of EKS(χε(r) ) carefully treated below. Thus

Eb(χε(r) ) = 2

∫
Ω′

Γ̃φij S̃
−1
jk φ

∗
k(r
′)

(
−1

2
∇2

r′ + Veff(ρ(r′))

)
φi(r

′) dr′ . (5.14)

Transforming the integrals back onto Ω, we obtain in indicial notation

Eb(χε(r) ) = 2

∫
Ω

Γ̃φij S̃
−1
jk φ

∗
k(χε(r) )

(
−1

2
∇2

r′ + Veff(ρ(χε(r) ))

)
φi(χε(r) ) det

(
∂r′

∂r

)
dr .

We note that S̃−1
jk denotes the perturbed inverse overlap matrix corresponding to in-

finitesimal variations introduced by the mapping χε(r) and its functional dependence
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can be written as

S̃−1
jk = S̃−1

jk

(
χε(r) , det

(
∂r′

∂r

))
. (5.15)

The configurational force arising out of the term Eb is obtained by evaluating the

generalized directional derivative of Eb(χε(r) ) and is given by

d

dε
Eb(χε(r) )

∣∣∣∣
ε=0

= I1 + I2 + I3 + I4 + I5 , (5.16)

where

I1 = 2

∫
Ω

[
d

dε

(
Γ̃φij

)
S̃−1
jk φ

∗
k(χε(r) )

(
−1

2
∇2

r′ + Veff(ρ(χε(r) ))

)
φi(χε(r) ) det

(
∂r′

∂r

)] ∣∣∣∣∣
ε=0

dr ,

I2 = 2

∫
Ω

[
Γ̃φij

d

dε

(
S̃−1
jk

)
φ∗k(χε(r) )

(
−1

2
∇2

r′ + Veff(ρ(χε(r) ))

)
φi(χε(r) ) det

(
∂r′

∂r

)] ∣∣∣∣∣
ε=0

dr ,

I3 = 2

∫
Ω

[
Γ̃φij S̃

−1
jk

d

dε
(φ∗k(χε(r) ))

(
−1

2
∇2

r′ + Veff(ρ(χε(r) ))

)
φi(χε(r) ) det

(
∂r′

∂r

)] ∣∣∣∣∣
ε=0

dr ,

I4 = 2

∫
Ω

[
Γ̃φij S̃

−1
jk φ

∗
k(χε(r) )

d

dε

[(
−1

2
∇2

r′ + Veff(ρ(χε(r) ))

)
φi(χε(r) )

]
det

(
∂r′

∂r

)] ∣∣∣∣∣
ε=0

dr ,

I5 = 2

∫
Ω

[
Γ̃φij S̃

−1
jk φ

∗
k(χε(r) )

(
−1

2
∇2

r′ + Veff(ρ(χε(r) ))

)
φi(χε(r) )

d

dε

[
det

(
∂r′

∂r

)]] ∣∣∣∣∣
ε=0

dr .

(5.17)

Each term in the above set of equations can be simplified using the relations in (5.13).

To evaluate d
dε
S̃−1
jk in I2, consider the variational derivative of the relation S̃S̃

−1
= I

giving rise to

d

dε

(
S̃
)
S̃
−1

+ S̃
d

dε

(
S̃
−1
)

= 0 =⇒ d

dε
S̃
−1

= −S̃
−1
(
d

dε
S̃

)
S̃
−1
. (5.18)
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d

dε
S̃−1
jk

∣∣∣∣
ε=0

=

−S̃−1
jp

∫
Ω

(
d

dε

[
φ∗p(χε(r) )φq(χε(r) ) det

(
∂r′

∂r

)]
dr

)
S̃−1
qk

 ∣∣∣∣∣
ε=0

.

(5.19)

We further simplify the above using chain rule to get

d

dε
S̃−1
jk

∣∣∣∣
ε=0

= −S̃−1
jp

∣∣∣∣
ε=0

∫
Ω

d

dε

[
φ∗p(χε(r) )φq(χε(r) )

]∣∣∣∣
ε=0

dr S̃−1
qk

∣∣∣∣
ε=0

− S̃−1
jp

∣∣∣∣
ε=0

∫
Ω

(
φ∗p(r)φq(r)

∂Υs(r)

∂rs

)
dr S̃−1

qk

∣∣∣∣
ε=0

. (5.20)

Hence the expression for I2 can be simplified to be

I2 = 2

∫
Ω

Γφij
d

dε

(
S−1
jk (χε(r) )

) ∣∣∣∣
ε=0

φ∗k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r) dr

− 2

∫
Ω

Γφij S
−1
jp

∫
Ω

φp(r)φq(r)∇.Υ dr

S−1
qk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r) dr .

Consider the term I4 in which we evaluate the term

d

dε

[(
−1

2
∇2

r′φi(χε(r) ) + Veff(ρ(χε(r) ))φi(χε(r) )

)] ∣∣∣∣∣
ε=0

(5.21)

by first evaluating d
dε

(
−1

2
∇2

r′φi(χε(r) )
) ∣∣∣∣

ε=0

as

d

dε

(
−1

2

∂

∂r′p

(
∂φi(χε(r) )

∂r′p

)) ∣∣∣∣
ε=0

=
d

dε

(
−1

2

∂

∂rm

(
∂φi(χε(r) )

∂rl

∂rl
∂r′p

)
∂rm
∂r′p

) ∣∣∣∣
ε=0

=
d

dε

(
−1

2

∂

∂rp

(
∂φi(χε(r) )

∂rp

)) ∣∣∣∣
ε=0

+

(
∂2φi(r)

∂rm ∂rl

)
∂Υm(r)

∂rl
+

1

2

(
∂φi(r)

∂rl

)
∂2Υl

∂rp ∂rp
,
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using the expressions in (5.13) in conjunction with chain rules and product rules for

derivatives. Finally we have

d

dε

(
−1

2
∇2

r′φi(χε(r) )

) ∣∣∣∣
ε=0

=
d

dε

(
−1

2
∇2

rφi(χε(r) )

) ∣∣∣∣
ε=0

+ ∇(∇φi) : ∇Υ +
1

2
∇φi .∇2Υ .

Hence the expression for I4 can be simplified to be

I4 = 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
d

dε
[φi(χε(r) )]

∣∣∣∣
ε=0

dr

+ 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

d

dε
[Veff(ρ(χε(r) )]

∣∣∣∣
ε=0

φi(r) dr

+ 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

[
∇(∇φi) : ∇Υ +

1

2
∇φi .∇2Υ

]
dr . (5.22)

Using the relation between ρ(r) and {φir)} from (5.9c), we have

I4 = 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
d

dε
[φi(χε(r) )]

∣∣∣∣
ε=0

dr

+

∫
ρ(r)

d

dε
[Veff(ρ(χε(r) )]

∣∣∣∣
ε=0

dr + 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

[
∇(∇φi) : ∇Υ +

1

2
∇φi .∇2Υ

]
dr .

Using the relation

∇ .
[
φ∗k(r)∇ΥT ∇φi(r)

]
= φ∗k(r) [∇(∇φi) : ∇Υ] +φ∗k(r)

[
∇φi .∇2Υ

]
+∇Υ : (∇φi⊗∇φk) ,

the third term in I4 can be written as

2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

[
∇(∇φi) : ∇Υ +

1

2
∇φi .∇2Υ

]
dr

=

∫
Ω

Γφij S
−1
jk φ

∗
k(r) [∇(∇φi) : ∇Υ] dr +

∫
Ω

Γφij S
−1
jk ∇ .

[
φ∗k(r)∇ΥT ∇φi(r)

]
dr

−
∫
Ω

Γφij S
−1
jk [(∇φi ⊗∇φk) : ∇Υ] dr .
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Using the divergence theorem and setting the boundary terms involving wavefunctions

to zero, we have the final simplified expression for I4 to be

I4 = 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
d

dε
[φi(χε(r) )]

∣∣∣∣
ε=0

dr

+

∫
ρ(r)

d

dε
[Veff(ρ(χε(r) )]

∣∣∣∣
ε=0

dr +

∫
Ω

Γφij S
−1
jk φ

∗
k(r) [∇(∇φi) : ∇Υ] dr

−
∫
Ω

Γφij S
−1
jk [(∇φi ⊗∇φk) : ∇Υ] dr (5.23)

Finally I5 can be easily evaluated as

I5 = 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r) (I : ∇Υ) dr (5.24)

Collecting all the terms from I1 to I5, we can write the generalized directional deriva-

tive of Eb(χε(r) ) as

d

dε
Eb(χε(r) )

∣∣∣∣
ε=0

= J1 + J2 + J3 + J4 (5.25)

where

J1 = 2

∫
Ω

(
d

dε

(
Γ̃φij

) ∣∣∣∣
ε=0

S−1
jk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r)

)
dr

J2 = 2

∫
Ω

Γφij
d

dε

[
S−1
jk (χε(r) )

] ∣∣∣∣
ε=0

φ∗k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r) dr

+ 2

∫
Ω

Γφij S
−1
jk

d

dε
[φ∗k(χε(r) )]

∣∣∣∣
ε=0

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r) dr

+ 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
d

dε
[φi(χε(r) )]

∣∣∣∣
ε=0

dr
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J3 = − 2

∫
Ω

Γφij S
−1
jp

∫
Ω

φp(r)φq(r)∇.Υ dr

S−1
qk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r) dr

+

∫
Ω

Γφij S
−1
jk φ

∗
k(r) [∇(∇φi) : ∇Υ] dr−

∫
Ω

Γφij S
−1
jk [(∇φi ⊗∇φk) : ∇Υ] dr

+ 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r) (I : ∇Υ) dr

J4 =

∫
Ω

ρ(r)
d

dε
[Veff(ρ(χε(r) )]

∣∣∣∣
ε=0

dr

Using a similar procedure one can evaluate the generalized directional derivative of

Eveff(χε(r) ) to be

d

dε
Eveff(χε(r) )

∣∣∣∣
ε=0

= K1 +K2 +K3

where

K1 = −
∫
Ω

d

dε
ρ(χε(r) )

∣∣∣∣
ε=0

Veff(ρ(r)) dr

K2 = −
∫
Ω

ρ(r)
d

dε
[Veff(ρ(χε(r) )]

∣∣∣∣
ε=0

dr

K3 = −
∫
Ω

ρ(r)Veff(ρ(r)) (I : ∇Υ) dr

Similarly

d

dε
Exc(χε(r) )

∣∣∣∣
ε=0

= L1 + L2

where

L1 =

∫
Ω

d

dε
ρ(χε(r) )

∣∣∣∣
ε=0

Vxc(ρ(r)) dr

L2 =

∫
Ω

F (ρ(r))(I : ∇Υ) dr

We now consider the generalized directional derivatives of Eϕ̄(ρ,R) and Eν̄(R).
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To this end, we recall that the mapping χε(r) in the compact support of the nucleus

is restricted to rigid body motion and we have χε(r) = QI
εr + T I

ε for I = 1 · · ·Na in

the compact support of bI(r,R) with bI(r,R) = bI(|r−R|). Hence

b(|r′ −R′|) =
Na∑
I=1

ZI δ̃(|r′ −R′I |) =
Na∑
I=1

ZI δ̃(|QI
εr−QI

εRI |)

=
Na∑
I=1

ZI δ̃(|r−RI |) = b(|r−R|)

Also we note that in the regions where b 6= 0, we have Q0 = I, the identity matrix

and hence ∇ .Υ = tr

(
d
dε
Qε

∣∣∣∣
ε=0

)
= tr

(
− d
dε
QT
ε

∣∣∣∣
ε=0

)
=⇒ ∇ .Υ = 0. Using the

fact that (i) b(r,R) is independent of ε, (ii) ∇ .Υ = 0 in the region when b 6= 0 and

(iii) ϕ̄ satisfies the Euler-Lagrange equations in (3.25c), we have

d

dε
Eϕ̄(χε(r) )

∣∣∣∣∣
ε=0

= M1 +M2

where

M1 =

∫
Ω

(
− 1

8π
|∇ϕ̄|2 + ρϕ̄

)
(I : ∇Υ) dr +

1

4π

∫
Ω

(∇ϕ̄⊗∇ϕ̄) : ∇Υ dr

M2 =

∫
Ω

d

dε
ρ(χε(r) )

∣∣∣∣
ε=0

ϕ̄(r) dr

To compute the directional derivation of Eν̄ , we make an additional assumption that

the simulation domain is large enough to make the surface contributions to Eν̄ lower

order. Using the same procedure as above, we obtain

d

dε
Eν̄(χε(r) )

∣∣∣∣∣
ε=0

= N1

N1 =
Na∑
I=1

∫
ΩI

1

8π
|∇ν̄I |2(I : ∇Υ) dr− 1

4π

∫
ΩI

(
∇ν̄I ⊗∇ν̄I

)
: ∇Υ dr
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The directional derivative in the case of Eent is given by

d

dε
Eent

∣∣∣∣∣
ε=0

= −2σ tr

[
d

dε
Γ̃φ

∣∣∣∣
ε=0

ln

(
Γφ

I − Γφ

)]

Finally, the directional derivative of Ec(χε(r) ) is given by

d

dε
Ec(χε(r) )

∣∣∣∣
ε=0

=
d

dε
F(χε(r) )

∣∣∣∣
ε=0

− 2µ tr

(
d

dε
Γ̃φ

∣∣∣∣
ε=0

)

Collecting the directional derivatives of all the energy terms involved in Ec(χε(r) ):

d

dε
Ec(χε(r) )

∣∣∣∣
ε=0

=J1 + J2 + J3 + J4 +K1 +K2 +K3 + L1 + L2 +M1 +M2 +N1

+ 2σ tr

[
d

dε
Γ̃φ

∣∣∣∣
ε=0

ln

(
Γφ

I − Γφ

)]
− 2µ tr

(
d

dε
Γ̃φ

∣∣∣∣
ε=0

)
(5.26)

Now we make the following observations:

• Since {φi(r)} span the occupied eigensubspace of the Kohn-Sham Hamiltonian,

one can easily show that J2 = 0.

• The term J4 equals negative of K2 and hence J4 +K2 = 0.

• The terms L1 +M2 equals negative of K1 and hence K1 + L1 +M2 = 0.

• The term J1 along with the last two terms of equation (5.26) equals zero since

Γφ satisfies the Fermi-Dirac distribution in equation (4.37).

Hence the full configurational force for the Kohn-Sham DFT problem is given by

d

dε
Ec(χε(r) )

∣∣∣∣
ε=0

= J3 +K3 + L2 +M1 +N1 (5.27)
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J3 = − 2

∫
Ω

Γφij S
−1
jp

∫
Ω

φp(r)φq(r) (I : ∇Υ) dr

S−1
qk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r) dr

+

∫
Ω

Γφij S
−1
jk φ

∗
k(r) [∇(∇φi) : ∇Υ] dr−

∫
Ω

Γφij S
−1
jk [(∇φi ⊗∇φk) : ∇Υ] dr

+ 2

∫
Ω

Γφij S
−1
jk φ

∗
k(r)

(
−1

2
∇2

r + Veff(ρ(r))

)
φi(r) (I : ∇Υ) dr

K3 = −
∫
Ω

ρ(r)Veff(ρ(r)) (I : ∇Υ) dr ,

L2 =

∫
Ω

F (ρ(r))(I : ∇Υ) dr ,

M1 =

∫
Ω

(
− 1

8π
|∇ϕ̄|2 + ρϕ̄

)
(I : ∇Υ) dr +

1

4π

∫
Ω

(∇ϕ̄⊗∇ϕ̄) : ∇Υ dr ,

N1 =
Na∑
I=1

∫
ΩI

1

8π
|∇ν̄I |2(I : ∇Υ) dr− 1

4π

∫
ΩI

(
∇ν̄I ⊗∇ν̄I

)
: ∇Υ dr .

In any numerical calculation involving self-consistent field iteration (SCF), the

input electron-density ρin(r) for a given iteration is never exactly equal to the output

electron-density ρ(r) computed from the wavefunctions till self-consistency is achieved

to a very tight numerical tolerance. To this end, we note that K1 + L1 + M2 is not

exactly equal to zero and gives rise to non self-consistent force

FNSCF =

∫
Ω

d

dε
ρ(χε(r) )

∣∣∣∣
ε=0

(
Veff(ρ)− Veff(ρin)

)
dr , (5.28)

=

∫
Ω

(∇ρ(r) .Υ)
(
Veff(ρ)− Veff(ρin)

)
dr (5.29)

which is added to the force in equation (5.27). We also remark that the expression

in (5.27) accounts for the change in the volume of the crystal and can hence capture

the state of stress in a crystal. It will be zero only when the crystal is in equilibrium

and under no externally applied stress.

In a finite-element setting, when the space is discretized with M nodes, we have
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the discretized form of Υj(r) = Υk
jN

k(r) where Nk(r) is the real space shape function

of node k and Υk
j is the perturbation of node k in the jth direction. We obtain the

configurational force at node i of the discretization in the jth direction (f ij) by setting

Υi
j = 1 and 0 otherwise in equation (5.27) and the physical force at node i is the

negative of the Eshelbian gradient (−f ij). We note that this force contains both

Hellmann-Feynman force on the atoms along with the incomplete basis-set forces,

the latter primarily arising from the need to minimize the energy with respect to the

nodal configuration for a fixed number of nodes.
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CHAPTER VI

Conclusions

6.1 Summary

The present thesis developed new computationally efficient and robust finite-

element based methods (DFT-FE) in a manner that enable large-scale Kohn-Sham

DFT calculations on materials systems involving tens of thousands of electrons on

parallel computing architectures. The proposed DFT-FE exploits the adaptive na-

ture of the finite-element basis sets and enables both pseudopotential and all-electron

DFT calculations on complex geometries and boundary conditions on a single footing,

thus paving the way to study more complex systems, than possible heretofore.

The first part of the thesis (Chapter III) developed a real-space adaptive higher-

order spectral finite-element based self-consistent framework that enables all-electron,

pseudopotential calculations with complex boundary conditions on a single footing.

To this end, we first derived error estimates for the finite-element discretization error

in the ground-state energy in terms of the ground-state electronic fields (wavefunc-

tions and electrostatic potential) and characteristic mesh-size. These error estimates

and the a priori knowledge of the asymptotic solutions of far-field electronic fields

were used to construct mesh coarsening rates for the various benchmark problems

considered. Since the finite-element discretization of the Kohn-Sham problem results

in a generalized eigenvalue problem, which is computationally expensive to solve, we
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presented an approach to trivially transform this into a standard eigenvalue problem

by using spectral finite-elements in conjunction with the Gauss-Lobatto quadrature

rules that results in a diagonal overlap matrix. We subsequently examined two differ-

ent strategies to solve the Kohn-Sham problem: (i) explicit computation of eigenvec-

tors at every self-consistent field iteration; (ii) a Chebyshev filtering approach that

directly computes the occupied eigenspace. Our investigations suggest that the use

of spectral finite-elements and Gauss-Lobatto rules in conjunction with Chebyshev

acceleration techniques to compute the eigenspace gives a 10− 20 fold computational

advantage, even for modest materials system sizes, in comparison to traditional meth-

ods of solving the standard eigenvalue problem where the eigenvectors are computed

explicitly. Further, the proposed approach has been observed to provide a staggering

100− 200 fold computational advantage over the solution of a generalized eigenvalue

problem that does not take advantage of the spectral finite-element discretization and

Gauss-Lobatto quadrature rules. Using the derived error estimates and the a priori

knowledge of the asymptotic solutions of far-field electronic fields, we constructed

close to optimal finite-element meshes for the various benchmark problems, which

include all-electron calculations on systems comprising of boron atom and methane

molecule, and local pseudopotential calculations on barium cluster and bulk calcium

crystal. We employed the Chebyshev filtering approach on the transformed standard

eigenvalue problem in our numerical investigations to study the computational effi-

ciency of higher-order finite-element discretizations. To this end, we first investigated

the performance of higher-order elements by studying the convergence rates of linear

tetrahedral element and hexahedral spectral-elements up to sixth-order. In all the

benchmark problems considered, we observed close to optimal rates of convergence

for the finite-element approximation in the ground-state energy. Importantly, we note

that optimal rates of convergence were obtained for all orders of finite-element approx-

imations, considered in this work, even for all-electron Kohn-Sham DFT calculations
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with Coulomb-singular potentials, the mathematical analysis of which, to the best

of our knowledge, is an open question to date and has not been numerically demon-

strated elsewhere. We further investigated the computational efficiency afforded by

the use of higher-order finite-elements up to eighth-order spectral-elements. To this

end, we used the mesh coarsening rates determined from the proposed mesh adap-

tion scheme and studied the CPU time required to solve the benchmark problems.

Our results demonstrate that significant computational savings can be realized by

using higher-order elements. For instance, a staggering 1000−fold savings in terms

of CPU-time are realized by using sixth-order hexahedral spectral-element in com-

parison to linear tetrahedral element. We also note that the point of diminishing

returns in terms of computational efficiency was determined to be around sixth-order

for the benchmark systems we examined. The degree of freedom advantage of higher-

order finite-elements is nullified by the increasing per basis-function costs beyond this

point. To further assess the performance of higher-order finite-elements, we extended

our investigations to study large materials systems and compared the computational

CPU-time with commercially available plane-wave and Gaussian basis codes. We first

conducted simulations on aluminium clusters with local pseudopotential containing

172 atoms and 666 atoms using sixth-order spectral-element in our implementation, as

well as, the plane-wave basis in ABINIT package solved to a similar relative accuracy

in the ground-state energy. These studies showed that the computational CPU-time

required for the finite-element simulations is lesser in comparison to plane-wave basis

sets underscoring the fact that higher-order finite-elements can compete with plane-

waves, at least in non-periodic settings, when employed in conjunction with efficient

solution strategies. Furthermore, we were able to compute the electronic structure of

an aluminium cluster containing 1, 688 atoms by employing the sixth-order spectral-

element, which was not possible using ABINIT due to large memory requirements.

Next, we examined the computational efficiency in the case of all-electron calculations
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on a graphene sheet containing 100 atoms and tris (bipyridine) ruthenium complex

containing 61 atoms. The all-electron calculations were conducted using Gaussian

DFT basis sets and the fourth-order spectral-element basis, and we observed that the

computational time for the finite-element basis was 10−fold greater than the Gaus-

sian basis. Good scalability of the implementation up to a few hundred processors is

also demonstrated.

The second part of the thesis (Chapter IV) formulated a subspace projection tech-

nique in the framework of higher-order spectral finite-element discretization of the

Kohn-Sham DFT problem in order to reduce the computational complexity involved

in traditional solution approaches that compute the canonical orthonormal Kohn-

Sham eigenfunctions. The proposed approach provides a single unified framework to

handle both insulating and metallic materials system. Further, both pseudopotential

as well as all-electron calculations can be conducted using the proposed method-

ology. The development of the proposed approach involved bringing together four

main ideas. Firstly, we took advantage of the representation of Kohn-Sham Hamilto-

nian and the corresponding wave-functions in Löwdin orthonormalized finite-element

basis constructed using spectral finite-elements in conjunction with Gauss-Lobatto-

Legendre quadrature rules. The adaptive nature of the finite-element basis was cru-

cial for efficiently handling all-electron DFT calculations. Secondly, we employed the

Chebyshev filtering approach [66] to directly compute an approximation of the occu-

pied eigenspace in each SCF iteration. In this Chebyshev filtering step, we effectively

exploited the finite-element structure to conduct matrix-vector products, associated

with the action of the Chebyshev filter on a space of localized trial wavefunctions from

previous SCF iteration, in linear-scaling complexity. We subsequently employed the

localization procedure proposed by Garcia et al. [36] to compute atom-centered non-

orthogonal localized basis (localized wavefunctions) spanning the Chebyshev filtered

subspace. We employed an adaptive tolerance, where looser tolerances are used in
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initial iteration and progressively become tighter as the SCF approaches convergence,

to provide a compact support for the localized wavefunctions. The use of adaptive

tolerance provides strict control on the accuracy of the calculation, which is reflected

in our benchmark calculations. Finally, we computed the projection of the Hamil-

tonian into the non-orthogonal localized basis, and used the Fermi-operator expan-

sion [35] to compute the relevant quantities, including the finite-temperature density

matrix, electron density and the band energy. We note that as the Fermi-operator

expansion is computed in the projected subspace, the spectral width of the projected

Hamiltonian is bounded—O(1Ha) for pseudopotential calculations and O(10Ha) for

all-electron calculations—and can efficiently be computed for both pseudopotential

and all-electron calculations. We demonstrated from complexity estimates that, for

well-localized wavefunctions with a compact support, all operations in the proposed

algorithm are linear-scaling in complexity. The accuracy and performance of the pro-

posed method was investigated on three different materials system: (i) a series of

aluminum nano-clusters up to 3430 atoms representing a metallic system; (ii) a series

of alkane chains up to 7052 atoms representing an insulating system; (iii) a series

of silicon nano-clusters up to 3920 electrons representing a semiconducting system.

Pseudopotential calculations were conducted on aluminum nano-clusters and alkane

chains, whereas all-electron calculations were performed on silicon nano-clusters. In

all the cases, the proposed method provided ground-state energies that are in excel-

lent agreement with reference calculations, with accuracies commensurate with chem-

ical accuracy. From these benchmark calculations, the computational complexity of

the proposed approach was computed to be O(N1.46) for aluminum nano-clusters,

O(N1.18) for the alkane chains, and O(N1.75) for the all-electron silicon nano-clusters.

The deviation from linear-scaling, in practice, is due to the use of adaptive tolerances

with tighter tolerances in the later SCF iterations in order to ensure strict control

on the accuracy of the calculations. This affects the scaling due to reduced sparsity

153



in the localized wavefunctions. We further note that using the proposed approach

∼ 10−fold speedups were obtained with respect to reference benchmark calculations

for the largest systems.

The third part of the thesis (Chapter V) developed configurational force approach

for efficient computation of forces on atoms in Kohn-Sham DFT calculations. We de-

rived the relevant expressions in a more general setting by using the non-orthogonal

formulation of Kohn-Sham DFT, taking into account fractional occupancies via den-

sity matrix expressed in the non-orthogonal basis. We finally showed that the pro-

posed configurational force approach for atomic relaxations provides a unified frame-

work that captures atomic forces due to Hellmann-Feynman theorem, incomplete-

basis-sets and non-self-consistency, and furthermore accounts for elastic stresses on

periodic-cells on a single footing.

6.2 Future work and directions

The prospect of using higher-order spectral finite-elements as basis functions, in

conjunction with the proposed solution methods, for Kohn-Sham DFT electronic

structure calculations is indeed very promising. While finite-elements have the ad-

vantages of handling complex geometries and boundary conditions and exhibit good

scalability on massively parallel computing platforms, their use has been limited in

electronic structure calculations as their computational efficiency compared unfavor-

ably to plane-wave and Gaussian basis functions. However, the proposed DFT-FE

presents a useful direction for large-scale electronic structure calculations using finite-

element discretization, thus opening up the possibility of studying large range of

materials properties using DFT. However, this work leaves a number of interesting

challenges/problems which could be worthwhile subjects for future investigation.
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A posteriori mesh adaption: An a priori mesh-adaption technique was used to

construct a optimal finite-element discretization of the DFT problem in this thesis.

However, the error estimates derived in Chapter III can be modified in the spirit

of [63] to develop an a posteriori mesh adaption scheme. This might result in in-

creased computational efficiency of finite-element basis sets in simulations where a

priori knowledge of electronic fields and region of interest is lacking. Further, the

configurational force approach discussed in Chapter V can also be effectively used

for a posteriori mesh adaption since the configurational force is obtained from the

necessity of minimizing the energy with respect to the nodal configuration for a fixed

number of nodes.

Enriched finite-elements: The locally refined meshes employed in all-electron

calculations of the current work result in a very high upper bound of the spectrum

of the Kohn-Sham Hamiltonian (∼ O(105) Ha). This in turn demands a very high

degree of Chebyshev polynomial to filter the occupied eigen-subspace, thus increasing

its computational cost. One way to mitigate this issue is to explore the possibility

of enriching the classical finite-element basis functions with single-atom wavefunc-

tions obtained from a radial solution of the Kohn-Sham DFT problem. This can

potentially allow us to use coarse finite-element meshes with mesh size close to that

of a pseudopotential calculation thus improving the computational efficiency of all-

electron calculations. Further reduced scaling behavior might be possible in the case

of all-electron calculations by using enriched finite-elements.

Electronic structure in a bulk environment: An accurate understanding of the

energetics of an isolated defect core in its bulk or exploring the nature of quantum-

transport in an organic molecule in the presence of bulk electrodes in a nano-electronic

device requires simulating the electronic structure of a given materials system in

its bulk environment. The finite-element discretization readily offers this flexibility
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of handling arbitrary boundary conditions and is exploited in a recent study [144]

which is first of it kind, to quantify the dislocation core-energy solely from electronic-

structure using orbital-free DFT theory( a theory in which electron-density is explic-

itly computed). However, simulating the electronic structure of a materials system

in the presence of bulk environment in the context of Kohn-Sham DFT is not a

straightforward problem as it is formulated in terms of single-particle wavefunctions

and requires a careful approach. The ideas of localization and subspace projection

proposed in this thesis can play a crucial role in formulating a solution to the prob-

lem. Efforts to formulate an elegant approach to this problem can assist in studying

wide variety of problems in material science. These include estimating the dislocation

core-energy of transition metals, its dependence on macroscopic strain, computation

of Peierls barrier to dislocation glide, dislocation-solute interactions and their response

to external strains and many more.

Quasi-continuum approach to Kohn-Sham DFT: The development of coarse-

graining methodology for Kohn-Sham DFT along the lines of QC orbital-free DFT [145]

is a very important problem for future investigations which would then enable study

of defects generating long-range fields in transition metals, that are characterized by

strongly localized core effects. The non-orthogonal localized real space finite-element

formulation of Kohn-Sham DFT would be a natural starting point for developing

a coarse graining strategy for Kohn-Sham DFT and forms a very important future

research direction.

We also remark that incorporation of hybrid exchange correlation functionals into

the existing real space finite-element framework and extensions of the current real-

space finite-element formulation to time-dependent density functional theory would

be of obvious interest for future investigations.
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APPENDIX A

Discrete formulation of electrostatic interactions in

all-electron calculations

The electrostatic interaction energy in the discrete formulation is given by

Eh
electrostatic =

− 1

8π

∫
Ω

|∇ϕh(r)|2 dr +

∫
Ω

(ρh(r) + b(r))ϕh(r) dr

− Eh
self where

(A.1)

Eh
self =

1

2

Na∑
I=1

∫
Ω

ZIδ(r−RI)VhI (r) dr , (A.2)

where ϕh denotes the total electrostatic potential field, corresponding to the electron-

density ρh and nuclear charge distribution b(r), computed in the finite-element basis.

The nuclear potential corresponding to the I th nuclear charge, i.e ZIδ(r−RI), com-

puted in the finite-element basis is denoted by VhI . The nuclear charges located on

the nodes of the finite-element triangulation are treated as point charges and the

discreteness of the finite-element triangulation provides a regularization of the po-

tential fields. However, the self-energy of the nuclei in this case is mesh-dependent

and diverges upon mesh refinement. Thus, care must be taken to evaluate the total

electrostatic potential ϕh and the nuclear potentials VhI , I = 1, . . . Na on the same
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finite-element mesh. The electrostatic interaction energy in equation (A.1) can be

simplified to

Eh
electrostatic =

1

2

∫
Ω

ρ(r)ϕh(r) dr +
1

2

∫
Ω

b(r)ϕh(r) dr

︸ ︷︷ ︸
(a)

− 1

2

Na∑
I=1

∫
Ω

δ(r−RI)VhI (r) dr

︸ ︷︷ ︸
(b)

.

(A.3)

In the above expression, the first term on the righthand side contains the contribution

of electron-electron interaction energy and half contribution of the electron-nuclear

interaction energy. The term (a) contains the other half of the electron-nuclear inter-

action energy, nuclear-nuclear repulsion energy, and the self energy of the nuclei. The

term (b) represents the self energy of the nuclei. By evaluating all the electrostatic

potentials on the same finite-element mesh, the divergent self energy contribution in

term (a) equals the sum of separately evaluated divergent self-energy terms in (b)

owing to the linearity of the Poisson problem. The boundary conditions used for

the computation of the discrete potential fields are homogeneous Dirichlet boundary

conditions for total electrostatic potential (ϕh) and Dirichlet boundary conditions

with the prescribed Coulomb potential for nuclear potentials (VhI ), applied on a large

enough domain where the boundary conditions become realistic. The numerical re-

sults we present below show that the diverging components of self energy in terms

(a) and (b) indeed cancel. To this end, we present the case study of the electrostatic

interaction energy computed for a methane molecule with the geometry as described

in section 3.4 of Chapter III. The electron-density ρ(r) is chosen to be the superposi-

tion of the distributions computed from equation (3.85) with ξ equal to 0.83235 and

equation (3.87), and normalized to the number of electrons in the system. We choose

a sequence of refined meshes obtained by uniform subdivision of initial coarse mesh

with HEX27 and HEX125SPECTRAL elements. The results in tables (A.1) and (A.2)

show that while terms (a) and (b) diverge upon mesh refinement, the electrostatic en-
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ergy nevertheless converges suggesting the cancelation of divergent self energy terms.

Furthermore the convergence rates for the electrostatic energy is close to optimal [1].

The value of E0 obtained using the extrapolation procedure as discussed in section 3.4

of Chapter III and is found to be −23.79671760794.

Table A.1: Convergence of Eh
electrostatic for “HEX27” element

Degrees of Freedom Term (a) Term (b) Eh
electrostatic

13059 1637.011830893 1665.4003185717 -22.77175242597

96633 3641.626361382 3657.972341778 -23.7628285436

765,041 7299.84650294 7316.0488206578 -23.7936738766

6,090,465 14534.01973132 14550.219757955 -23.7964615239

48,608,705 29248.01834776 29264.218261189 -23.7966991925

Table A.2: Convergence of Eh
electrostatic for “HEX125SPECTRAL” element

Degrees of Freedom Term (a) Term (b) Eh
electrostatic

64841 1995.473107 2011.773736 -23.5282153593

510,993 4003.728396 4019.928861 -23.7965792134

4,058,657 8023.635544 8039.835447 -23.79670460619

32,355,393 16063.4709881 16079.670897 -23.79671759075
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APPENDIX B

Trade-offs in higher-order elements: Source of

diminishing returns with increasing order

We observed in section 3.4.2 of Chapter III that for relative errors commensurate

with chemical accuracies, the computational efficiency improves significantly with

the order of element up to sixth order, but with diminishing returns beyond this

for the benchmark problems considered. Here we identify the source of diminishing

returns on 2 × 2 × 2 barium cluster. To this end, we choose three finite-element

meshes containing HEX125SPECT, HEX343SPECT and HEX729SPECT elements

which give a relative discretization error in the ground-state energy of the order of

10−5. Table (B.1) shows the computational cost (measured in terms of CPU-mins)

incurred in building the Hamiltonian matrix and the matrix-vector multiplications

involved in a single SCF iteration.

Table B.1: Computational cost per iteration. Case study: Barium

Type of element Degrees of freedom Hamiltonian matrix
construction (t1 mins)

Matrix vector
multiplication
(t2 mins)

Total time
(t1 + t2 mins)

HEX125SPECT 667,873 18.83 15.03 33.86

HEX343SPECT 143,989 21.91 3.79 25.70

HEX729SPECT 41,825 25.99 1.64 27.63
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We observe from the table (B.1) that while there is significant reduction in the

number of basis functions with increasing polynomial degree to achieve the same

relative accuracy, there is no computational savings obtained by using octic element

over hexic element due to the increase in the computational cost involved in building

the Hamiltonian matrix which increasingly dominates the total time with increasing

order of the element. The cost of computing the Hamiltonian matrix depends on the

number of basis functions per element and the order of the quadrature rule, both of

which increase with increasing order and cannot be mitigated. However, we remark

that, for large enough systems (in terms of number of electrons) the orthogonalization

of the Chebyshev filtered vectors will become the dominant cost in a SCF iteration,

at which point the order of the polynomial beyond which diminishing returns will be

observed can move to a polynomial order beyond the sixth order. But, in the present

study, for the range of systems considered, this point has not been reached where the

orthogonalization step is the dominant cost in a SCF iteration.
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APPENDIX C

Accuracy of Gauss-Lobatto-Legendre quadrature

As presented in section 3.3 of Chapter III, employing the Gauss-Lobatto-Legendre

(GLL) quadrature—a reduced-order quadrature rule—for the overlap matrix corre-

sponding to spectral elements results in a standard eigenvalue problem which can

be very effectively solved using the Chebyshev filtering technique. Here, we present

the results from benchmark problems to establish the accuracy of this reduced-order

quadrature employed in the computation of the overlap matrix. To begin with, we

consider the Hydrogen atom which represents the simplest example in the all-electron

Kohn-Sham DFT problem. We consider a sequence of finite-element meshes on a

spherical domain of radius 20 a.u. employing HEX125SPECTRAL elements that are

uniform subdivisions of the coarsest mesh. The ground-state energies obtained by

employing the GLL quadrature rule for the overlap matrix are presented in table C.1,

which demonstrates the convergence of the ground-state energies. Further, close to

optimal rate of convergence of the ground-state energies is observed [1].

We subsequently used two benchmark problems—methane molecule (all-electron

calculation) and 2×2×2 barium cluster (local pseudopotential calculation)—to com-

pare the ground-state energies obtained by employing GLL quadrature rules for the

overlap matrix with those obtained by employing Gauss quadrature rules. For each of
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these benchmark systems, we considered a coarse and a relatively fine mesh discretiza-

tion for different orders of discretization. These results are tabulated in table C.2.

We note that the absolute difference in ground-state energies per atom between GLL

and Gauss quadrature (GQ) rules, for both the systems and for the different meshes

considered, is about an order of magnitude smaller than the discretization error (ref-

erence values in sections 5.1.1.2 and 5.1.2.1). These results demonstrate the accuracy

and sufficiency of GLL quadrate rules for the computation of the overlap matrix.

We further note a recent numerical analysis [146] which investigates the error in

the eigenspectrum of second-order linear differential operators due to discretization

and reduced-order quadrature. While this analysis was not the main objective of

this work, it comprises of results that presents a qualitative understanding of the

sufficiency of reduced-order quadrature rules for the Kohn-Sham DFT problem. The

results in figure A2 in [146] demonstrate that reduced-order quadratures introduce

errors in the higher-end of the spectrum, where C0 finite-elements are anyway no

longer accurate even with exact integration and result in spurious optical modes, but

are accurate for the lower-end of the eigenspectrum. The ground-state properties in

the Kohn-Sham DFT are solely governed by the lower-end of the eigenspectrum, which

provides a qualitative explanation for the observed accuracy of the GLL quadrature.

Table C.1: Computed ground-state energies of Hydrogen atom by employing GLL
quadrature rules for overlap matrix.

Degrees of freedom (DoF) Ground state energy (Ha)

17,713 -0.499894312878

140,257 -0.499999964823

1,117,634 -0.4999999999076

8,926,245 -0.50000000000912
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Figure C.1: Convergence of the finite-element approximation for Hydrogen atom
using GLL quadrature rule for overlap matrix.

Table C.2: Comparison between GLL rule and GQ rule

Type of System Element Type DoF Energy/atom (GLL) Energy/atom (GQ)

Methane HEX27 18,509 -7.9989600253Ha -8.0030290831 Ha

Methane HEX27 317,065 -8.0215895393Ha -8.0220114249 Ha

Methane HEX125SPECT 43,289 -8.0065360952 Ha -8.0044564654Ha

Methane HEX125SPECT 289,401 -8.0239636665 Ha -8.0239659379 Ha

Barium 2x2x2 cluster HEX27 175,101 -0.64013198302 Ha -0.6403673302 Ha

Barium 2x2x2 cluster HEX27 2,379,801 -0.63858359722 Ha -0.6385901453 Ha

Barium 2x2x2 cluster HEX343SPECT 57,121 -0.6373331092Ha -0.6374840072Ha

Barium 2x2x2 cluster HEX343SPECT 449,473 -0.6386270069 Ha -0.6386263119 Ha
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APPENDIX D

Scaling performance of individual components of

the subspace projection technique

Case study: Pseudopotential calculations

We report scaling of individual components of the proposed subspace projection

algorithm with system size for the benchmark calculations involving aluminum nano-

clusters and alkane chains reported in section 4.3. The average CPU-times per SCF

iteration of the various components involved in the proposed technique (cf. sec-

tion 4.2)—namely: a) Chebyshev filtered subspace iteration (ChFSI) b) Localization

procedure (Loc) c) Subspace projection in the non-orthogonal basis (SubProj) and d)

Electron-density computation (ElecDen)—have been recorded and are plotted against

number of atoms.

Aluminum nano-clusters: Figure D.1 shows the average computational CPU-

times per SCF iteration for individual components of the subspace projection tech-

nique in the case of aluminum nano-clusters. These results indicate a computational

complexity of O(N1.34) for the Chebyshev filtered subspace iteration, O(N1.91) for

the localization procedure, O(N1.93) for the subspace projection and O(N1.94) for the
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Figure D.1: Average computational times per SCF iteration for individual components of
the proposed method. Case Study: Aluminum nano-clusters.
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Figure D.2: Average computational times per SCF iteration for individual components
when sparse data-structures are active. Case Study: Aluminum nano-clusters.
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computation of electron-density. The deviation of the scaling behaviour from linearity

for the individual components of the algorithm is primarily due to the use of an adap-

tive tolerance (cf. equation (4.46)) to truncate the localized wavefunctions, which is

important to ensure the accuracy of the subspace projection technique. We recall

that looser truncation tolerances are employed in the initial SCF iterations with pro-

gressive tightening of the tolerances during the course of SCF convergence. We note

that the Chebyshev filtering procedure has the dominant computational cost, and

also exhibits better scaling in comparison to the other components of the subspace

projection algorithm. The better scaling behaviour of Chebyshev filtering procedure

can be attributed to the matrix-vector multiplications performed at the finite-element

level only if the relevant wave-functions have a non-zero value in the finite-element

considered (cf. Section 4.2.2). This allows us to naturally exploit the sparsity of the

wavefunctions at the finite-element level even with tight tolerances. The higher scal-

ing observed for the other components of the subspace projection algorithm is due to

the use of dense data-structures of PETSc when the density fraction of the relevant

matrices is above 2%, as sparse PETSc data-structures have been observed to be

efficient only when the density fraction is < 1 − 2%. Figure D.2 shows the average

computational CPU-times per SCF iteration when the sparse data-structures are ac-

tive. The results indicate a computational complexity of O(N1.20) for the localization

procedure, O(N1.32) for the subspace projection and O(N1.34) for the computation of

electron-density. We remark that the scaling exponents of these individual compo-

nents are closer to linearity when the sparse data-structures are active, but still deviate

from linearity. We attribute this deviation from linearity to the delocalized nature

of the wavefunctions for a metallic system. This delocalized nature of wavefunctions

results in a higher density fraction (lesser sparsity) of truncated wavefunctions (ΦL)

for any given truncation tolerance in comparison to the insulating alkane chains (see

discussion below on alkane chains). We also note that, as expected, the scaling of
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the individual components of the subspace projection technique (Loc, SubProj, Elec-

Den) is close to cubic-scaling (∼ O(N2.8)) when dense data-structures are employed.

Figure D.5 shows the variation of density fraction of ΦL with SCF iteration in the

case of aluminum nano-cluster (7x7x7 cluster with 1688 atoms) highlighting the SCF

iterations in which sparse data-structures are active. Figure D.6 shows the variation

of relative error in ground-state energy with SCF iteration for the same benchmark

problem.

Alkane Chains: Figure D.3 shows the average computational CPU-times per SCF

iteration for individual components of the subspace projection technique in the case

of alkane chains. These results indicate a computational complexity of O(N1.15) for

the Chebyshev filtered subspace iteration, O(N1.80) for the localization procedure,

O(N1.85) for the subspace projection and O(N1.91) for the computation of electron-

density. As in the case of aluminum clusters, the Chebyshev filtering procedure

comprises the dominant computational cost of the subspace projection algorithm,

and is almost linear-scaling for this system. The improved scaling of the Chebyshev

filtering procedure in comparison to aluminum nano-clusters can be attributed to

better localization of wavefunctions in the case of alkane chains, an insulating material

system. The higher scaling of other components of the subspace projection algorithm

is once again due to the use of dense data-structures of PETSc when density fraction

of the relevant matrices is above 2%, while sparse data-structures are employed only

when the density fraction is < 2%. Figure D.4 shows the average computational CPU-

times per SCF iteration when sparse data-structures are active. The results indicate

a computational complexity of O(N1.13) for the localization procedure, O(N1.25) for

the subspace projection and O(N1.29) for the computation of electron-density. We

remark that these scaling exponents are smaller in comparison to those of aluminum

nano-cluster (metallic nature) due to the localized nature of the wavefunctions, thus
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resulting in smaller density fractions (greater sparsity) of the truncated wavefunctions

(ΦL). Figure D.5 shows the variation of density fraction with SCF iteration in the

case of C900H1802 (2702 atoms) highlighting the SCF iterations in which sparse data-

structures are active. Figure D.6 shows the variation of relative error in ground-state

energy with SCF iterations for the same problem.

Case study: All-electron calculations

Silicon nano-clusters: Figure D.7 shows the average computational CPU-times

per SCF iteration for individual components of the subspace projection technique in

the case of all-electron calculations performed on silicon nano-clusters. These results

indicate a computational complexity of O(N1.74) for the Chebyshev filtered subspace

iteration, O(N2.72) for the localization procedure, O(N2.55) for the subspace projec-

tion and O(N2.51) for the computation of electron density. In comparison to the

pseudopotential calculations, the scaling of the individual components deviate signif-

icantly from linearity. The main reason for this significant deviation is due to the

tighter adaptive tolerances employed in all-electron calculations. These tighter tol-

erances were necessary to avoid error accumulations during the Chebyshev filtering

procedure as a very high order Chebyshev filter is needed in all-electron calculations to

filter the large unwanted spectrum. For these tighter tolerances, the density fractions

for the various relevant matrices were greater than 2% even during the initial SCF

iterations, which explains the observed close to cubic-scaling of the localization pro-

cedure, subspace projection, and computation of electron density. However, we note

that the significantly dominant cost for all-electron calculations is the Chebyshev fil-

tering step, which naturally exploits the sparsity in truncated wavefunctions, even for

high density fractions, by computing the matrix-vector products at the finite-element

level only if the relevant wave-functions have a non-zero value in the finite-element be-

ing considered (cf. Section 4.2.2). Thus, the overall scaling of the proposed technique
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Figure D.3: Average computational times per SCF iteration for individual components of
the proposed method. Case Study: Alkane chain.
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Figure D.7: Average computational times per SCF iteration for individual components of
the proposed method. Case Study: Silicon nano-clusters.

for all-electron calculations is determined by the scaling of the Chebyshev filtering

step, even for modestly sized systems. While, the performance of the proposed ap-

proach for all-electron calculations is not as good as the performance for pseudopoten-

tial calculations, the proposed approach does offer significant computational savings

(∼ 3 fold in comparison to ChFSI-FE for the silicon nano-cluster containing ∼ 4000

electrons). Further, we note that the need of a very high degree Chebyshev filter

for all-electron calculations can be mitigated by employing an enriched finite-element

basis, where the finite-element basis functions are enriched by numerically computed

single-atom wavefunctions, and this can potentially lead to better overall scaling of

the method for all-electron calculations.
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