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“The planet was known under the name of Harmakhis in Ancient Egypt, where it 

was also called Har decher, that is to say the Red One, because of its colour. The 
Chaldaeans gave it the name of Nergal — the Babylonian Mars, the great hero, the king 
of conflicts, the master of battles and the champion of the gods; and the planet was 
known on the banks of the Euphrates under the names of Allamou and Almou.  
 
The Greeks called it Ares (Mars), name of the God of War, and apparently it was also 
known sometimes as Hercules. Moreover, it was regarded as fiery and impetuous. 
Proclus Diadochus called it 'celestial fire', and added that it symbolised fire. The sign ♂ 
represents, so far as we know, the spear and shield.  
 
The Arabs, the Persians and the Turks named it Mirikh, which signifies a torch, iron, 
steel, and a long arrow thrown to a great distance. It was also known in Persia under the 
name of Bahram and Pahlavani Siphir, or the celestial warrior.  
 
Among the Indians Mars was called Angaraka (from angara, burning coal), and they 
also called it Lohitanga, the red body, from loliita, red, and anga, body. Its astrological 
influence was regarded as being essentially malign.” 
 
- The Planet Mars, E. M. Antoniadi.  
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Abstract 

A 3-dimensional kinetic particle simulation of the Martian hot coronae and upper atmosphere: 

mechanism, structure, variability, and atmospheric loss 

by 

Yuni Lee 

 

Advisor: Professor Michael Combi 

 

The evaluation of the global atmospheric structure, variation, and loss rate is key to a 

better understanding of the physics that drives the current state of the Martian atmosphere. The 

production of energetic particles in the Martian upper thermosphere and exosphere results in the 

formation of the hot coronae, where most of the escape of neutral atoms occurs. The 

characterization of this hot population becomes challenging and complicated, since Mars has a 

strongly coupled atmospheric system from the lower to upper atmospheres, which requires a 

description of the transition from the collision-dominated regime to the collisionless regime.  

This thesis presents results of the 3D study of the Martian hot atomic coronae by 

introducing the significantly improved kinetic particle model, AMPS, and by coupling with the 

thermosphere/ionosphere model for various Martian conditions. The first comprehensive 

investigations of the 3D hot carbon corona are carried out by using the coupled framework 

linking the Mars-AMPS and MTGCM codes for different solar cycle and seasonal cases. The 
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first coupling of the Mars-AMPS and M-GITM codes was completed for the hot oxygen corona 

study. The important source mechanisms described in simulations are analyzed by studying their 

dependencies on the local atmospheric variations. Utilizing the solar flux and orbital parameters, 

the solar cycle and seasonal variations are found to influence the hot coronae in different ways, 

requiring both two- or three-dimensional aspects of the macroscopic parameters from a local to 

global perspective. 

In this study of the hot carbon corona, the effects of the background atmosphere on the 

resulting hot carbon distribution have been examined by characterizing the local atmospheric 

structure and conditions. The spatial distributions of the parent molecule and ion of hot carbon 

are provided in comparison with the major thermospheric and ionospheric species. The oxygen 

distribution and the escape probability have been simulated for a wide range of the model 

parameters. The computed OI 1304Å brightness from our hot O corona shows both reasonable 

agreement and some discrepancies in comparisons with available observations. The current lack 

of data will be greatly alleviated by the in situ and remote measurements from the MAVEN 

mission. 
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Chapter I 

Introduction 

 

 It is always astonishing to discover where we are. Astronomical observational evidence 

and the advancement of supercomputing power have provided great tools for sophisticated 

modeling techniques to investigate the physics behind the evolution of the universe. Modern 

cosmology suggests that the origin of our universe from the Big Bang dates back about 13.7 

billion years, when all fundamental physical forces were united. The separation of the forces due 

to the rapid expansion and cooling of the universe seeded the structural evolution of the universe, 

which provided the basis for the formation of the first stars, galaxies, and planets. The birth of 

the solar system was around 4.6 billion years ago, during the process of the transformation to the 

present form of a highly complicated universe.  

 The accretion in the protosolar disk around the Sun sprouted the formation of the various 

planets, satellites, and small body objects in our solar system. The solar system (figure 1.1) 

consists of a star, the Sun, and eight planets with satellites orbiting around the Sun with many 

small solar system objects such as asteroids and comets. Depending on the material and physical 

condition around the planet formation sites at that time, the four inner planets – Mercury, Venus, 

the Earth, and Mars (in the order of the increasing distance from the Sun) – became the “rocky” 

or “terrestrial” planets, and the four outer planets – Jupiter, Saturn, Uranus, and Neptune – 

became the “giant” planets or the “gaseous” planets, located beyond the asteroid belt where 



	
  
2	
  

debris and small objects are populated like in the Kuiper belt and Oort cloud surrounding our 

solar system.  

The solar system is surrounded by an extensive region of space, the heliosphere, which is 

filled with the solar wind, the streams of plasma released constantly outward from the sun. The 

solar wind expands radially and blows against the interstellar medium, forming a bubble-like 

region. At the termination shock, the solar wind abruptly slows down to subsonic speed and 

eventually stops at the heliopause, the theoretical boundary of our solar system. On August 25, 

2012, it was reported that Voyager 1 became the first spacecraft to cross the heliopause and 

explore the interstellar medium. 

 

Figure 1.1. Solar system (not to scale) (Image courtesy of NASA/JPL). 
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Among the eight planets, Mars is known as the ‘red planet.’ Orbiting the Sun at a 

distance of about 1.5 AU (227,000,000 km or 141 million miles), this red planet is the fourth 

farthest away from the Sun and the second smallest planet in the solar system. Mars is about 4.5 

billion years old, about 40 million years younger than the Earth, and is a very unique planet for 

humans since the space exploration age has begun. This is largely due to the fact that Mars is the 

only planet in the solar system that has the closest habitable atmospheric condition, resembling 

that on the Earth. Mars also owns two small moons, Phobos and Deimos, while the Earth has one 

moon. Mars has a mass of about 6.4 × 1023 kg, only ~10% of the Earth, and its volume is about 

15% of the Earth volume. The size of Mars at the equator is about half of the Earth (~53% of the 

Earth’s Equatorial radius, 3396.2 km). Because of its lighter mass and smaller size, the surface 

gravity is only about 38% of that on the Earth, which is 3.71 m/s2. (So, you can easily move 

around a 220 lb treadmill by yourself on Mars). 

 

 

Figure 1.2. Mars. The fourth planet from the Sun and second smallest planet in the solar system. 
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 The present Mars is cold, dry, and hostile. The surface of Mars is desert, covered with red 

iron-rich soil and rocks. Due to the lack of an appreciable magnetic field, Mars has a very thin 

atmosphere (100 times thinner than the Earth’s atmosphere), composed predominantly of CO2. 

Mars’ orbit is the second most eccentric in the solar system, where a Mars year is about 687 

earth days and 669 sols. A Mars day lasts about 24 hours and 37 minutes, which is close to that 

of the earth. The current axial tilt of Mars, about 25.19°, is also similar to that of the Earth, 

resulting in seasons on Mars (figure 1.3). 

 

 

Figure 1.3 Diagram of different Martian orbital positions around the Sun. The axial tilt of the 
planet is about 25.19° instead of 24.9° indicated in the figure. 
 
 
 

The total atmospheric pressure is ~6 mbar, only ~0.6% of the Earth’s atmospheric 

pressure, and the partial pressure of water vapor in the atmosphere is about 10-3 mbar [Jakosky 

and Phillips, 2001]. The average atmospheric temperature is 220 – 230 K, >50 degrees below 
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zero Celsius globally. The surface temperature varies from region to region and from season to 

season. Measured by the Viking landers 1 and 2 at 1.5 m above the surface, the surface 

temperatures range from about -178 °F (-117 °C and 156K) to 1 °F (-17.2 °C and 256 K). The 

highest soil temperature estimated by Viking Orbiter was about 81 °F (27 °C and 300 K), and the 

lowest was about -225 °F (-143 °C and 130 K), at the winter polar cap region. 

 

 

Figure 1.4. Temperature and pressure variation in the Martian atmosphere as a function of 
altitude. (Image courtesy Pearson Education, Inc.). 
 
 
 
I.1. Past missions to Mars 

The majority of the presently available information about the Martian upper atmospheric 

structure and composition was gained by the measurements from the early Mars missions of 

Mariner 4 (flyby) [Kliore et al., 1965; Fjeldbo et al., 1966]; Mariner 6, 7 (flyby), and 9 (1st 

orbiter) [Strickland et al., 1972; Anderson and Hord, 1971; Anderson, 1974]; Viking 1 and 2 

(landers) [Hanson et al., 1977; Nier and McElroy, 1977]. In the 1990’s, our understanding about 
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the Mars’ atmospheres has significantly improved by measurements returned from the Mars 

Global Surveyor (MGS) [Acuña et al., 2008; Bougher et al., 1999; Keating et al., 1998] and 

Phobos-2 [Rosenbauer et al., 1990] missions.  

Aerobraking data from Mars Global Surveyor (MGS), Mars Odyssey, and Mars 

Reconnaissance Orbiter (MRO) allowed detailed analyses of the properties of the Martian upper 

atmosphere. Moreover, images with resolution higher than ever before were returned by Mars 

Odyssey, and Mars Express, an orbiter launched in 2003, observed the recent volcanism activity 

on Mars.  

 

I.2. Past modeling efforts 

Exploring the physical processes that affect the volatiles in Martian atmosphere will help 

provide a better understanding of the water and CO2 inventories on Mars [e.g., Carr, 1986; 

Pepin, 1994; Jakosky and Jones, 1997; McElroy, 1972]. Throughout the Martian history, the loss 

mechanisms and the escape rates of the Martian atmosphere have changed [Chassefiére et al., 

2007; Luhmann, 1992; Melosh and Vickery, 1989]. Observations from spacecraft and analyses of 

the Martian geomorphology suggest that the early Martian atmosphere was much warmer, 

wetter, and abundant in water and CO2 than the current atmospheric conditions [e.g., Chassefiére 

et al., 2007; Jakosky, 1991]. The current deficiency of water and CO2 in the current atmosphere 

raises questions as to the processes that led to the loss of volatiles and their subsequent fate. 

Among several possible processes, escape of heavy neutral species by nonthermal mechanisms is 

posited as a significant factor in the loss on the basis of the current volatile content. Heavy 

species, such as atomic O and C, can escape through these nonthermal mechanisms, resulting in 

the formation of hot coronae in the upper atmosphere of Mars.  
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A number of numerical approaches have been carried out to estimate the current global 

escape rate of hot heavy neutral species, in particular, O [Cipriani et al., 2007; Fox and Hać, 

1997b; Fox and Hać, 2009; Hodges, 2000; Hodges, 2002; Kim et al., 1998; Valeille et al., 2009a, 

2009b; Valeille et al., 2010a, 2010b; Yagi et al., 2012, Fox and Hać, 2014], C [Cipriani et al., 

2007; Fox, 2004; Fox and Bakalian, 2001; Fox and Hać, 1999; Nagy et al., 2001], and N 

[Bakalian, 2006; Fox, 1993; Fox and Hać, 1997a], which are important for understanding the 

inventory of water, CO2 and N2 in an evolutionary aspect. The list of past models and their 

estimates of atmospheric loss is in table 1.1. 

 

Models Atmospheric loss 
(a) Escape rate (s-1) / (b) Escape flux (cm-2 s-1) 

O ( (a) 1025 s-1) 
 

Hodges (2000)a  
Hodges (2002)b 
Krestyanikova and Shematovich (2005)c 
Krestyanikova and Shematovich (2005)d 
Krestyanikova and Shematovich (2005)e 
Krestyanikova and Shematovich (2006)f 
Krestyanikova and Shematovich (2006)g 
Cipriani et al. (2007) 
Chaufray et al. (2007) 
Valeille et al. (2009)h 
Fox and Hać (2009)i 
Fox and Hać (2009)j 
Yagi et al. (2012)k 

Fox and Hać (2014)l 

(a) 2.8 
(a) 4.4 
(a) 0.13 
(a) 9.9 
(a) 1.3 
(a) 0.33 
(a) 0.45 
(a) 2.1 
(a) 1.0 
(a) 6.0 
(a) 0.71 
(a) 14.4 
(a) 4.7 
(a) 0.65 
 

C ( (a) 1024 s-1; (b) 104 cm-2 s-1) 
 

Fox and Hać (1999)m  
Fox and Bakalian (2001)  
Nagy et al. (2001) 
Fox (2004)  
Cipriani et al. (2007)n 

(b) 0.19 
(b) 2.1 
(b) 5.3 
(b) 11.1 
(a) 0.00046 
 
 



	
  
8	
  

N( (b) 105 cm-2 s-1) 
 

Fox (1993) 
Bakalian (2006) 

(b) 2.0 
(b) 3.03 

Table 1.1. Summary of the different neutral particle loss rates for various studies at low solar 
activity. 
 
a Mars-L case  
b Account for collisional quenching and excitation transfer of O(1D) and O(1S); day-only 
ionosphere case. 
c Isotropic solid sphere collisions. 
d Model A case; differential scattering cross section for elastic channels only. 
e Model B case; differential scattering cross section for elastic and inelastic channels; includes 
the excitation of rotational-vibrational levels of the CO2 molecule. 
f Model A case; elastic and inelastic channels; without quenching O-O and O-CO2 collisions; 
includes the excitation of rotational-vibrational levels of the CO2 molecule. 
g Model B case; elastic and inelastic channels; without quenching O-O and O-CO2 collisions. 
h Atmospheric input is the MTGCM (full 3D thermosphere/ionosphere model). 
i Eroded ionosphere and isotropic case; assumes that O escape flux at SZA 60° is average over 
the dayside. 
j Eroded ionosphere and forward scattering case; assumes that O escape flux at SZA 60° is the 
average over the dayside. 
k Four different seasons at average solar condition are considered. 
l Model 1, eroded. 
m Eroded ionosphere case.  
n Considers dissociative recombination of CO+ only as the source of hot carbon; uses Kim 
atmosphere [Kim et al., 1998].  
 
 
 
I.3. Current ongoing investigation 

Exosphere models have been significantly improved and have extensively investigated 

the source mechanisms of hot atomic species. However, the approaches so far to study the hot 

coronae in the atmosphere of Mars have been limited to one-dimensional numerical schemes 

and/or thermospheric inputs for fixed orbital positions. The processes that characterize the 

Martian upper thermosphere and exosphere occur deep within the thermosphere and ionosphere, 

where complicated local variations occur as an inevitable result of the pure 3D planetary 

influences. For example, asymmetries in the thermosphere/ionosphere structure, planetary 
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rotation, winter polar warming as well as interhemispheric dynamics [e.g., Bougher et al., 2000, 

2004, 2006, 2008, 2009, 2014a] have been successfully described. The upward propagating 

gravity waves and tides from the lower atmosphere modify the energy and momentum budgets in 

the upper atmosphere, changing the atmospheric circulation and horizontal distributions of 

atmospheric constituents. These dynamical effects have been neglected in the past 1D and 2D 

models. Consequently, the previous models may have over/underestimated the overall loss rate 

and density of hot species in the upper Martian atmosphere and hot corona. In order to overcome 

these limitations of the previous models, a global model with a self-consistent thermosphere-

ionosphere-exosphere description is required.  

A 3D simulation of the Martian hot corona and hot species in the thermosphere were 

performed by using our DSMC code [Tenishev et al., 2008] and the 3D Mars Thermosphere 

General Circulation Model (MTGCM) [Bougher et al., 2006, 2009]. The first application of this 

coupled framework was completed by a series of studies on the variation of the hot O corona 

with solar activities, seasons, and geologic times [Valeille et al., 2009a, 2009b, 2010a, 2010b]. 

These studies successfully finished the first fully 3D implementation of the DSMC code. 

Subsequently, our DSMC code, officially re-named the Adaptive Mesh Particle Simulator 

(AMPS)  [Tenishev et al., 2013], has been greatly improved in its numerical performance by 

incorporating the adaptive mesh refinement technique with cut cell methods, which utilizes a 

Cartesian coordinate system. This thesis started by implementing a new Mars’ exosphere model 

into AMPS. All the physics and model parameters are incorporated in the exosphere model to 

investigate the Martian upper atmosphere and exosphere using the DSMC method. 

 The AMPS code with the Martian exosphere model (Mars-AMPS) is used to explore hot 

carbon with a complete 3D description for the first time. This first comprehensive investigation 
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of the hot C corona is conducted for studying its source mechanisms and structure [Lee et al., 

2014a] for the case of the equinox and low solar activity condition. In this work, we have studied 

the effect of source mechanisms on the spatial distribution of hot carbon. The solar cycle and 

annual variabilities of the hot carbon corona have been studied for two solar activity cases (low 

and high) and three seasonal cases (aphelion, equinox, and perihelion) [Lee et al., 2014b]. The 

results of these works make up a significant part of this thesis and are described in Chapters 5 

and 6. 

Another significant part of this thesis is the revision of the hot oxygen model previously 

implemented by Valeille et al. [2009a, 2009b]. The basic physics of the Martian hot corona is 

enhanced and successfully incorporated into AMPS with a new thermosphere/ionosphere model, 

Mars Global Ionosphere Thermosphere Model (M-GITM) [Bougher et al., 2014b].  This new hot 

oxygen model has been used in preparation for the new Mars mission, MAVEN, for which a 

model library is being constructed using Mars-AMPS for a complete model parameter study of 

hot O and intercomparison with other models.	
  Some model parameters, such as cross sections for 

collision pairs, were found to be significant for determining the structure and the loss of the 

atmosphere. For instance, the collisions between hot and cold neutrals in the upper atmosphere is 

crucial for estimation of the atmospheric loss. The description of the collisions must be carefully 

handled by considering realistic scattering schemes and up-to-date collision cross sections.  

Replacing the MTGCM,, output from the newly improved thermosphere and ionosphere 

model, M-GITM [Bougher et al., 2014b], is incorporated into the AMPS code. M-GITM 

overcomes the previous limitation in the MGCM-MTGCM framework and models the whole 

Martian thermosphere and ionosphere from the surface to the upper atmosphere. The explicit 

treatment of the vertical momentum equation provides a more precise description of the localized 



	
  
11	
  

physics. Furthermore, the extended input domain range from M-GITM allows Mars-AMPS to 

capture more of the lower atmospheric features, such as the ionospheric peak of O2
+. 

For the hot O study described in this thesis, M-GITM was used to calculate the 

distribution of the gas in the thermosphere for a total of 12 cases, which corresponds to the 

combination of three solar activity levels and four seasons by utilizing the solar flux and orbital 

position parameters. The coupled framework of Mars-AMPS and M-GITM is able to simulate 

the  structure of the hot corona with the selective set of model parameters. Using the combination 

of different solar activity and seasonal cases, the solar cycle and annual variabilities of the hot O 

corona and their correlation can be also investigated using the M-GITM 

thermosphere/ionosphere at different solar activity and seasons. Taking advantage of 3D 

simulations, the hot O corona simulation is performed for computing OI 1304Å brightness to 

compare with the measurement taken by the ALICE instrument onboard Rosetta [Feldman et al., 

2011]. The brightness has been estimated for different solar conditions and seasons for 

examining the variation. The simulated 12 cases of the hot O corona are successfully coupled 

into the Multifluid–Magnetohydrodynamics (MF-MHD) plasma model [Dong et al., 2014a; 

Dong et al., 2014b], where the initial investigation of the one-way coupling is currently 

completed. The AMPS code is underway for integration into the Space Weather Modeling 

Framework (SWMF) [Tóth et al., 2012], which allows the two-way coupling between AMPS and 

M-GITM by exchanging information simultaneously during the simulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

In this thesis, a 3D global approach of modeling is presented using a one-way coupling 

strategy linking the 3D kinetic particle simulator and 3D atmospheric models to investigate the 

mechanisms, structure, and variabilities of the hot neutral coronae and its loss rates. The 

appropriate model parameters are extensively tested and chosen to improve the description of the 
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hot corona. A full 3D study of the exosphere provides a detailed description of the Martian upper 

atmosphere and a better understanding of the Martian hot atomic coronae. The 3D MTGCM and 

M-GITM provide all the necessary background thermospheric/ionospheric parameters as inputs 

to the 3D Mars-AMPS code. Thus, the combination of the 3D thermosphere/ionosphere 

(MTGCM and M-GITM) and 3D Mars’ exosphere kinetic particle model (Mars-AMPS) 

framework provides a self-consistent evaluation of the Martian hot coronae.  

For both hot C and hot O, the resulting spatial distribution of hot species shows the 

effects that the background temperatures and global atmospheric circulation have on 

thermospheric/ionospheric constituents. The local production rate and local thermalization rate 

operate as the main source and loss of hot atoms, which are strongly dependent on the model 

parameters. The estimated C loss rates from the first fully 3D investigation of hot C range from 

about 5.2 × 1023 s-1 to 57.1 × 1023 s-1 for the aphelion and solar low case to perihelion and solar 

high case, showing reasonable agreement with some of the previously published model results.  

The hot O study has been greatly improved by adopting more realistic description of the collision 

between hot O and cold O and by including additional thermospheric species in the background 

atmosphere. The revised global escape rates of hot O now show good agreement with other 

model results, which are estimated to range from about 1.14 × 1025 s-1 to 5.18 × 1025 s-1.  

 

I.4. Outline of thesis 

 This first chapter provides the reviews of the past missions to Mars and past modeling 

efforts for the Martian hot corona and introduces current ongoing research along with the 

motivation of this thesis. Several important analytical classical models are reviewed in chapter 2. 

As a connection to the mechanisms for hot particles, the descriptions and example of the 
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collisions between hot particles and ambient atmosphere are given in the rest of the chapter. The 

descriptions of two atmospheric models are given in chapter 3, followed by the detailed 

description of the kinetic particle simulator. The main assumptions and methods are discussed in 

the last section. The mechanisms for producing hot atomic species in the Martian upper 

atmosphere are presented in chapter 4. Chapter 5 and 6 present the first comprehensive 

investigation on mechanisms and structure of the hot carbon corona and its solar cycle and 

seasonal variation. The descriptions of the two atmospheric models used in this thesis are 

presented in chapter 7, along with the improvements in the new model. The detailed study on the 

effects of model parameters on the hot O corona is given in chapter 8 with the newly improved 

hot O corona investigation with M-GITM and comparison with the ALICE/Rosetta 

measurements. The remaining topics that need to be studied utilizing the coupled framework are 

introduced in chapter 9 as the next step from the end of this thesis, and this thesis concludes in 

chapter 10. 
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Chapter II 

Analytical models and collisions 

In the classical models of the planetary atmosphere, the exospheric densities were 

computed by assuming a critical level, a spherically-symmetric, uniform atmosphere over the 

globe, and no planetary rotation. The analytical models for the planetary exosphere and corona 

have been extensively developed by taking various effects into account. More realistic 

simulations became possible by applying Monte Carlo methods. In this chapter, several 

analytical models will be reviewed. Some of their calculations will be used to predict the thermal 

O densities in the exosphere and will be compared with the results from the current sophisticated 

atmospheric model (M-GITM). In connection with our kinetic particle simulator, important 

collision mechanisms will be reviewed followed by the detailed analysis of Ohot-Ocold collisions.  

 

II.1. Analytical (classical) models for the planetary exosphere 

 The density and pressure of planetary atmospheres decrease exponentially with 

increasing altitude. While the lower atmosphere is dominated by rigorous mixing process (about 

0 – 35 km altitude in the Martian atmosphere), the upper atmosphere is characterized by a 

transition from the well-mixed and relatively dense atmosphere to the diffusing and rarefied 

atmosphere. Extending from the upper thermosphere to exosphere, the planetary corona (the 

planetary hot neutral corona) is a region in which atmospheric species may travel large distances 
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along their ballistic trajectory, undergoing very infrequent collisions with other local atmospheric 

species, or escape to space.  

The kinetics and chemistry of hot atoms or molecules in the upper atmosphere and the 

hot corona region determine the overall shape and structure of the planetary corona. The hot 

population (suprathermal population) in the hot corona is produced deep in the thermosphere via 

a number of source mechanisms. Heavy neutral species, such as O, C, and N, can form this hot 

corona only from nonthermal mechanisms. The shape of the hot corona formed by these hot 

populations has a spheroid shape that is elongated toward North and South Pole. In the hot 

corona, the particles may fall back toward the planet, due to the lack of energy to overcome the 

planet’s gravitational attraction, or may escape the planet’s atmosphere by attaining energy 

exceeding the escape energy.  

Nascent particles produced from nonthermal mechanisms in the thermosphere can 

encounter numerous collisions with other atmospheric constituents. Some of them can reach a 

level of altitude, at which the scale height of the atmosphere becomes about the same as the 

mean free path. Classical models defined this level of altitude as the ‘exobase,’ a theoretical 

abrupt boundary between a collision-dominated regime, the thermosphere, and a collisionless 

regime, the exosphere or hot corona. In the region above this exobase, the exosphere, the density 

of the atmosphere is so low that particles move along their ballistic trajectories in the planet’s 

gravitational field without any interaction with ambient atmosphere. The Knudsen number, Kn, 

the ratio between the mean free path and the scale height of the atmosphere, theoretically 

determines the altitude of the exobase, where Kn ~ 1. Analytical classical models of the Martian 

atmosphere assume that collisions above the exobase are entirely absent and treat the distribution 
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of atmospheric constituents below the exobase as a complete Maxwellian velocity distribution, 

which is a highly collisional region [e.g., Öpik and Singer, 1959; Chamberlain, 1963].   

The classical models of the planetary hot corona [e.g., Öpik and Singer, 1959, 1961; 

Chamberlain, 1963; Hagenbuch and Hartle, 1969] developed a theory for a simple exosphere 

model with spherical symmetry. The simplest classical model had a non-rotating uniform 

atmosphere over the globe with a collisionless region above a critical level, which is designated 

within the model. The exospheric density of the specific species was computed by integrating the 

velocity distribution of the species at the critical level below which the atmosphere remains 

highly collisional. These simple models were improved by extending to 2D and 3D and taking 

into account various planetary effects, such as a non-uniform atmosphere, planetary rotation, and 

transitional domain. In following sections, previous classical models are described and revisited 

by comparing the exospheric oxygen densities calculated from the models’ application to the 

Martian atmosphere.  

 

II.1.1. Simple model 

 Before the advent of computing power, classical theoretical models were developed to 

estimate density in the planetary exosphere and coronae. Classical models [e.g., Öpik and Singer, 

1959; Herring and Kyle, 1961] computed exospheric neutral density distributions using various 

assumptions. The simplest type of classical model was derived by utilizing the idealized physical 

conditions. The main assumption for the idealized conditions is a sharp transition level, the 

“critical level,” below which the gas velocity distribution is a complete isotropic Maxwellian 

distribution and above there are no collisions. The complete collisionless assumption is used for 

the region above the base of the exosphere, since the collisions between constituents are 
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extremely infrequent. Öpik and Singer [1959] assumed that the particles at the base of the 

exosphere are distributed according to a truncated Maxwellian distribution, where there are 

particles with velocities exceeding the escape speed. The modeled atmosphere (1-dimension) 

was assumed to have no latitudinal / longitudinal and diurnal effects, no rotation, and a 

spherically symmetric structure over the globe; there is no azimuthal bulk motion. 

 Many theoretical studies [e.g., Chamberlain, 1963; Herring and Kyle, 1961] have 

estimated the exospheric densities by directly using Liouville’s theorem. This is a fundamental 

theorem that describes the conservation of particle distribution function in phase space in 

Hamiltonian mechanics. According to this theorem, the density and momentum distributions of 

particles, 𝑓(𝒓,𝝂), remains constant along the dynamical trajectories of particles, which can be 

expressed as, 

𝑓 𝒓,𝝂 = 𝑓 𝒓𝒄,𝝂𝒄 .      (2.1) 

In this formulation, 𝑓 𝒓,𝝂  represents the velocity distribution function where a particle has the 

speed 𝒗 at radial position 𝒓. The same particle posses the speed 𝝂𝒄 at the critical level, 𝒓𝒄, which 

is basically a radial position on the base of the exosphere. From the conservation of energy and 

angular momentum, one can obtain the following relations, 

𝜈!! − 𝜈! =
!!"
!!

1− 𝑦 = 2𝑔 𝑟! 𝑟! 1− 𝑦 ,     (2.2) 

𝜈 = 𝜈!! −
!!"
!!

1− 𝑦 ,      (2.3) 

! !"#!
!

= 𝜈! sin𝜃! ,      (2.4) 

where M, G, and 𝑔 𝑟!  are the mass of the planet, the gravitational constant, and the gravitational 

acceleration at the critical level, respectively. 𝜃 and 𝜃!, the traveled angle, are measured from the 

radius vector at the position of a particle, and 𝑦 = 𝑟!/𝑟 (figure 2.1). 
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Figure 2.1. Illustration of the geometry of a particle moving from a position rC at the critical 
level (exobase) to a position r in the exosphere. This diagram is the reproduction of figure 1 in 
Kim and Son [2000] with appropriate labels for this study. 
 
 
 
 Following the derivation by Herring and Kyle [1961], the Martian exospheric oxygen 

density is numerically computed. Herring and Kyle [1961]’s formulation is based on Liouville’s 

theorem. They calculated the density of particles traveled from the base of the exosphere and 

integrated the density profiles to obtain the depth of the exosphere. The spatial density is found 

to be, 
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𝜌 𝑟 = 𝑦! 𝑓 𝑹,𝝂𝟎
𝜈!! cos𝜃! sin𝜃!𝑑𝜃!𝑑𝜈!

𝜈!! 1− 𝑦! sin! 𝜃! − 2𝑀𝐺𝑅 1− 𝑦
   . 

                (2.5)  

Equation 2.5 (equation 6 in Herring and Kyle [1961]’s study) shows the integral that 

calculates the spatial density, 𝜌 𝑟 , is equal to the equation 12 in the study of Öpik and Singer 

[1959] if 𝑓 𝒓𝒄,𝝂𝒄  is replaced by a truncated Maxwellian distribution. For the Martian 

exospheric oxygen, the thermal oxygen density at 200 km from M-GITM is chosen for the 

density of oxygen at the critical level. Since the model formulation is based on the assumption of 

a one-dimensional isotropic atmosphere, the chosen critical level density is extracted at solar 

zenith angle (SZA) of 60° on the equator, where the density at this location can serve as an 

average over the dayside atmosphere.  

 

II.1.2. Chamberlain model  

 A model developed by Chamberlain [1963] classified the exospheric density by three 

types: (a) ballistic orbits, (b) satellite orbits, and (c) escaping orbits. The Chamberlain model also 

assumes the idealized physical condition as in previous simple models and examines the particle 

trajectory to investigate the exospheric density precisely. The term planetary corona was first 

used by this model to specifically represent the portion of a planetary atmosphere above the 

critical level. The critical level was also treated importantly to describe the altitude at which 

collisions vanish.  

 Important mechanics considered for the spatial and momentum distribution of particles is 

addressed in Liouville’s theorem. The distribution function of particles at any height is expressed 

by the Hamiltonian, 
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𝑓 𝑟,𝑝! ,𝑃! =
𝑁!𝑒!(!!!!)𝑒!!!

!/!!"!!𝑒!!!!/!!"!!!!

(2𝜋𝑀𝑘𝑇!)!/!
, 

   (2.6) 

where 𝑟 is distance measured from the center of the planet, and 𝑝! and 𝑃! are the radial and 

angular component of momentum, respectively. The subscription C indicates the corresponding 

values at the critical level. 𝑇 and  𝜆 are the neutral temperature and the gravitational potential 

energy, 𝐺𝑀𝑚/𝑘𝑇𝑟  (M = the planetary mass; m = the atomic mass), respectively. After 

performing the integration over all phase space for equation 2.6, the density 𝑁(𝑟) is expressed by 

introducing a partition function, 𝜁 𝜆 , 

𝑁 𝑟 = 𝑁!𝑒! !!!! 𝜁 𝜆 .    (2.7) 

 This partition function is used to describe the specific orbit of particles in the absence of 

collisions in the planetary exosphere, where the total partition function is addressed as, 

𝜁 = 𝜁!"# + 𝜁!"# + 𝜁!"# .    (2.8) 

 𝜁!"# describes the particles with ballistic orbits, which travel from the critical level in 

their elliptic orbits and fall back to the base of the exosphere. The expression of 𝜁!"# is, 

𝜁!"# =
2
𝜋!/! 𝛾

3
2 , 𝜆 −

(𝜆!! − 𝜆!)!/!

𝜆!
𝑒!!!𝛾

3
2 , 𝜆 − 𝜓! , 

  (2.9) 

where 

𝜓! =
!!

!!!!
,      (2.10) 

and 𝛾 is the incomplete Γ function, which is given by, 

𝛾 𝛼, 𝑥 ≡ 𝑦!!!𝑒!!𝑑𝑦!
! .                                        (2.11) 
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 Also, 𝜁!"# represents the satellite orbits of particles that remain only in the satellite orbits, 

and it is given by, 

𝜁!"# =
2
𝜋!/!

(𝜆!! − 𝜆!)!/!

𝜆!
𝑒!!!𝛾

3
2 , 𝜆 − 𝜓! . 

(2.12) 

The satellite orbits are not often considered in the theoretical estimation due to the 

assumption of complete absence of collisions above the critical level (i.e., particles never 

intersect the critical level). 

Lastly, 𝜁!"# describes the particles that escape from the boundary of the exosphere, 

𝜁!"# =
1
𝜋!/! Γ  

3
2 −   𝛾

3
2 , 𝜆 −

𝜆!! − 𝜆!
!
!

𝜆!
𝑒!!! Γ  

3
2 − 𝛾

3
2 , 𝜆 − 𝜓! , 

 (2.13) 

where Γ(α) ≡ γ(α,∞) is the complete Γ function. 

Figure 2.1 shows the estimated spatial densities of the Martian exospheric oxygen, as 

computed by performing the integration in the Herring and Kyle [1961] and Chamberlain [1963] 

models. Given the density of SZA 60° thermal O at an altitude of 200 km from M-GITM at 

autumnal equinox and solar low activity, the Chamberlain model estimates the O density that 

matches with the M-GITM O density for an altitude range of 200 km – 500 km, where the result 

by Herring and Kyle model shows some deviation from the others. 
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Figure 2.2. Thermal O densities estimated by using Chamberlain [1963] model (green) and 
Herring and Kyle [1961] model (blue). Thermal O density extracted at SZA 60° (equatorial east) 
at autumnal equinox and solar low activity condition modeled by M-GITM (red) is plotted 
together for comparison purpose. 
 
 
 
II.1.3. Addition of the planetary rotation 

Planetary exosphere models became more sophisticated and capable of implementing 

more realistic descriptions. The simplest form of the classical models dramatically improved on 

the description of the mechanics in the exosphere by considering various effects: rotation of the 

model atmosphere below the base of the exosphere at constant angular velocity (i.e., the planet + 

atmosphere below the critical level) [Hagenbuch and Hartle, 1969; Hartle, 1971; Kim and Son, 

2000], non-uniform atmospheric structure (2D and 3D) [Vidal-Madjar and Bertaux, 1972], non-
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uniform exobase condition [Vidal-Madjar and Bertaux, 1972], and thermospheric winds [Hartle 

and Mayr, 1976]. Today, increases in computing power and resources make it possible to use the 

Monte Carlo method, which is the numerical approach most widely used for the planetary corona 

simulations. 

 

II.2. Collision mechanisms 

 Collisions are key kinematics in the planetary thermosphere and exosphere. Immediately 

after the production, a hot particle moves through the ambient atmosphere and can exchange 

momentum and energy with other atmospheric particles in collisions. Depending on the 

conservation of kinetic energy, the type of a collision can be either elastic or inelastic. An elastic 

collision is defined as a collision in which the mass, momentum, and kinetic energy of the 

encountering particles are conserved. In contrast, some kinetic energy is turned into other forms 

of energy in an elastic collision, such as vibrational energy. 

 In the Mars’ thermosphere and ionosphere, a nascent hot particle, such as hot O and C, 

collides with the major neutral atmospheric species, such as CO2, O, CO, and N2. As well as the 

source mechanisms, the most significant and fundamental process for the formation of the hot 

corona is collisions between hot particles and the neutral atmosphere. A hot atom or molecule 

can (1) be thermalized by the transfer of the energy to its collision partner, becoming a part of 

thermospheric constituent, or having very small probability to escape; (2) knock out a particle 

from the background atmosphere and make a secondary hot particle; or (3) maintain its energy 

above the escape energy and manage to escape to space. In the exosphere models, the collision 

model and its parameters are carefully chosen and examined by adopting the latest available 

cross sections to describe the energy and momentum transfer between hot particles and the 
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neutral atmosphere as realistic as possible. However, the description of nascent hot particle 

collisions is premature because of the lack of accurate data on the collisions. 

 The typical relative collision energy of the hot particles is about on the order of a few 

electron volts, which is considered as a relatively low collision energy. This low energy collision 

dominantly leads to an elastic collision. Among various collision schemes used by different 

exosphere models, the following subsections investigate “hard sphere” isotropic scattering and 

forward scattering differential collision cross sections for hot O and C atoms with the local 

background species. 

 

II.2.1. Scattering  

If two particles are considered as a projectile and a target, a projectile is a newly 

produced hot atom from its source mechanism, and a target is a local neutral background atom or 

molecule. The schematics of the collision geometry in the laboratory frame and the center-of-

mass frame are shown in figures 2.2 and 2.3. A projectile and a target, which are a hot atom and 

a cold neutral background atom (or a molecule), are labeled with subscripts 1 and 2, respectively. 

The masses of hot and cold particles, 1 and 2, are denoted as m1 and m2, while the velocities are 

denoted as 𝝂! and 𝝂!, and the primed quantities indicate post-collision status. 

 

II.2.1.1. Center-of-mass frame (CM frame) 

The center-of-mass frame (hereafter, the CM frame) is an inertial frame of reference in 

which the origin of the system is situated at the center of mass, 𝒓!". The CM frame is a 

convenient reference of frame for the computation of a collision system between two particles. 

The CM system moves with the respect to the laboratory frame, and the center of mass is located 
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at the origin of the CM frame. In the CM frame, the center of mass, by definition, is at rest, and 

the center of mass velocity is zero. Figure 2.2 shows a diagram of two atoms, resembling two 

billiard balls with radius of R1 and R2 – for the case of Ohot-Ocold collisions, R1 = R2.  

 

 

Figure 2.3. Diagrams of the projectile and target before and after the collision in the center of 
mass frame. 
 
 
 

The total momentum in the CM frame before and after collision are equal to zero. 

According to the conservation of momentum, 

𝑷!,!" + 𝑷!,!" = 𝑚!𝒗! +𝑚!𝒗! = 0 = 𝑷!"!,!" ,    (2.14) 

where the momentum before the collision for each particle are equal in magnitude but in 

opposite in sign. Obviously, after the collision, the sum of the momenta also vanish to zero at all 

times, 

𝑷!,!"! + 𝑷!,!"! = 𝑚!𝒗!! cos𝜃 +𝑚!𝒗!! cos𝜃 = 0 = 𝑷!"!,!"! .   (2.15) 
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 In the CM frame, the distinction between a projectile and a target is not necessary, and 

both particles approach each other. The total energies of the system before and after the collision 

are also conserved, 

𝑷!,!"
!

!!!
+ 𝑷!,!"

!

!!!
= 𝑷!,!"

!"

!!!
+ 𝑷!,!"

!"

!!!
= !!

!
,                            (2.16) 

 

II.2.1.2. Laboratory frame (Lab frame; planetocentric frame) 

If the target species (cold atom or molecule) is assumed to be at rest in the laboratory 

frame, the collision occurs when the projectile species (hot atom) moves toward the target 

species with velocity of, 𝝂!, as shown in diagrams in figure 2.3. 

 

Figure 2.4. Diagrams of the projectile and target before and after the collision in the laboratory 
frame. 
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In the laboratory frame, the center of mass of two particles moves with the center of mass 

velocity 𝑽!", which is given by, 

𝑽!"       =
𝑚!𝝂!!

!!!

𝑚!
!
!!!

=
𝑚!𝝂!

𝑚! +𝑚!
, 

       (2.17) 

= 𝝂!
𝑀!

𝑚!
, 

Where 𝑀! is the reduced mass of the pair of colliding particles and expressed as, 

𝑀! =
!!!!
!!!!!

.         (2.18) 

For example, for Ohot-Ocold collisions, the reduced mass, 𝑀!, becomes a half of the mass 

of O. The center-of-mass vector is defined as, 

𝒓!" = !!𝒓!!
!!!

!!
!
!!!

= !!𝒓!!!!𝒓!
!!!!!

.     (2.19) 

Assuming the collision in two dimensions, the energy and linear momentum (in x- and y-

directions) in the system are conserved during the collision,  

!!!!!

!
= !!!!!"

!
+ !!!!!"

!
,      (2.20) 

𝑚𝑣! =   𝑚𝑣!! cos𝜃! +𝑚𝑣!! cos𝜃!,     (2.21) 

0 =   𝑚𝑣!! sin𝜃! −𝑚𝑣!! sin𝜃!.          (2.22) 

Knowing the initial velocity of the projectile,  𝑣!, and the corresponding scattering angles 

of the particles, these three independent equations enable to obtain the final velocities of the pair 

particles, 

𝑣!!" = 𝑣!! 1− !!!!

!!!!
cos! 𝜃! ,           (2.23) 

𝑣!! = 2𝑣!
!!
!!
cos𝜃!.              (2.24) 
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Lastly, the deflection angle of the target particle is given by, 

𝜃! = cos!!(!!!!  !!!
! !"#!!

!!!!
).        (2.25) 

 In three dimensions, post-collision velocities of the particles require two angles, 𝜃 and φ, 

to be specified.  

 

II.2.1.3. Energy and momentum transfer 

 The momentum transfer rate or energy diffusion rate is the rate of momentum transferred 

from a particle to a particle when a projectile collides with a target. The change of momentum in 

the center-of-mass frame is, 

△ 𝒑 = 𝑚𝒗(1− cos𝜃),     (2.26) 

where △ 𝒑 is the net momentum change, and 𝜃 is polar scattering angle. Since the momentum 

change is heavily weighted in the backward direction (𝜃  = 180°), the energy diffusion is more 

favorable in backward scattering. This momentum transfer and energy diffusion are adequately 

described by a scattering cross section called momentum transfer cross section, 𝜎!, 

                                        𝜎! =
(Total  momentum  transferred  per  second)

(Unit  incident  momentum  flux) ,

= A  cross  section  for  the  momentum  transfer  rate, 

   (2.27) 

which is expressed in terms of the differential cross section.  

𝜎! = (1− cos𝜃)
𝑑𝜎
𝑑Ω 𝜃,𝜙 𝑑Ω, 

= 2𝜋 (1− cos𝜃) !"
!!

𝜃 𝑑𝜃,                                           (2.28) 
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where 𝜃 denotes the scattering angle; and  !"
!!
(𝜃,𝜙), the differential scattering cross section, is 

the fraction of particles scattered into an element of solid angle, 𝑑Ω = sin𝜃𝑑𝜃𝑑𝜙, in (𝜃,𝜙) 

direction per unit time. The fractional loss of momentum during a collision is described by the 

term (1− cos𝜃) in the collision integral above, which is in the direction of the pre-collision and 

is dependent on the scattering angle. Use of this momentum transfer cross section allows detailed 

analyses of various types of scattering collisions. In the following sections, two types of elastic 

collision: isotropic scattering hard sphere collision, and forward scattering differential cross 

section, are investigated and compared. 

 

II.2.2. Scattering schemes 

II.2.2.1 Isotropic hard sphere scattering scheme 

 The hard sphere isotropic scattering scheme is an idealized collision model for two 

encountering atoms or molecules. In an isotropic hard sphere collision, the probability of a 

particle scattered into solid angle, 𝑑Ω, is isotropically the same in the center-of-mass frame. The 

isotropic hard sphere collision scheme is employed to describe a collision between a hot O or hot 

C atom with a radius of Rhot and a cold background species, the neutral background atmospheric 

species, with a radius of Rcold.  

 In the situation of a hard sphere collision, the scattering is isotropic, and the collision 

cross section is independent of the scattering angle, 𝜃. The total collision cross section, 𝜎!, for 

the hard sphere collision scheme is defined as,  

𝜎! =
!"
!!
𝑑Ω.            (2.29) 

 Since !"
!!

 is independent of 𝜃 for the isotropic scattering case, the momentum transfer 

cross section, 𝜎!, is then, 
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𝜎! = 𝜎! .      (2.30) 

 

II.2.2.2. Forward scattering differential cross sections 

 “Forward scattering” is a more realistic description of the scattering model of collisions 

between a hot atom and a cold background species. In this scheme, a particle after a collision is 

likely to be scattered into small angles, the forward direction with respect to the pre-collision 

direction of the projectile, resulting in a high peak in the distribution of differential scattering 

cross sections or angular differential cross section, !"
!!
(𝜃,𝜙). The momentum transfer cross 

section considerably differs from the total scattering cross section, 𝜎!, since the scattering is 

highly anisotropic. In our calculations, we use the angular differential cross section computed by 

Kharchenko et al. [2000] for collisions of Ohot-Ocold with the collision energy of 3 eV (figure 

2.4).   

The total scattering cross section is an integration of the differential cross section over 

solid angle, 

𝜎! =
!"
!!

𝜃,𝜙 𝑑Ω,      (2.31) 

where !!
!!

 is dependent on the scattering angle. The scattering is assumed to be isotropic in 

azimuthal direction. The momentum transfer cross section in the forward scattering scheme then,  

𝜎! = (1− cos𝜃) !"
!!

𝜃,𝜙 𝑑Ω,            (2.32) 

where the term, (1− cos𝜃), represents the loss of momentum with respect to the pre-collision 

momentum in the center-of-mass frame.  
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Figure 2.5. Differential cross section of elastic collisions of O atoms at different collision 
energies (0.03eV, 0.3eV, and 3eV). This is figure 3 in Kharchenko et al. [2000]. 
 
 
 

The computed 𝜎! for the scattering with a huge cross section in the forward direction is 

always smaller than the total cross section (i.e., 𝜎! < 𝜎! ). Conversely, 𝜎! > 𝜎!  for the 

backward scattering. 

 On Mars, other collision partners, such as O, CO2, CO, and N2, are considered in model 

simulations as background neutral species that undergo collisions with a newly produced hot O 

or hot C atom. Presently, the exact differential scattering cross sections are not available for 

other collision cases (i.e., collisions between a hot atom and other cold neutrals other than O). It 

is certainly important to have accurate angular differential cross section distributions for 

collisions between various cold neutrals for more realistic description of the mechanisms in the 

Martian hot corona.  
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II.2.3. Ohot-Ocold Collision 

 In the upper atmosphere of Mars, two hot O atoms are produced mostly from dissociative 

recombination of O2
+ via five different exothermic channels. The newly-born O atoms share the 

excessive energy obtained from the corresponding channel and become nascent hot O atoms 

(more details on the source mechanism are in chapter 4). Ohot participates in collisions with 

thermal (cold) atoms and molecules. The most frequent collision partners among all the 

thermospheric species are the major neutrals, which are thermal oxygen and carbon dioxide, Ocold 

and CO2,cold. The collisions with these two species must be included in the model for the hot O, 

since Ohot-Ocold and Ohot-CO2,cold collisions play an important role in determination of 

thermalization and the local neutral heating in the ambient atmosphere and the structure of the 

Martian hot O corona. It is, thus, crucial to examine and understand these collisions in detail to 

model the hot O corona accurately.  

The models for the Martian hot O corona have adapted several different schemes for 

describing the collisions between a hot atom and a thermospheric species. A majority of models 

have used the isotropic scattering approximation by treating the collision as hard sphere 

collision. To describe the collisions more realistically, a collision model would need differential 

scattering information. A recent study by Kharchenko et al. [2000] have analyzed the differential 

scattering cross section for Ohot-Ocold collisions that have been considered in recent hot O 

simulations [Fox and Hać, 2009; Fox and Hać, 2014]. 

Particularly, this section focuses on Ohot-Ocold collisions to investigate difference in 

mechanisms resulted from different types of collision schemes. All other collision pairs and the 

effects of using two different collision schemes on the hot O corona are discussed in the study of 
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the hot O corona later in chapter 8. This section compares the effect that the cross sections and 

energy and momentum transfer during collisions have on the thermalization of hot O.  

Figure 2.5 shows both the hard sphere cross section and the angular differential cross 

section for Ohot-Ocold collisions with collision energy of 3 eV, computed by Kharchenko et al. 

[2000]. The differential cross section in angle for the hard sphere scheme (green line) is constant 

over all scattering angles, representing isotropic scattering. Integration is performed to calculate 

the total cross section for the forward scattering scheme (blue line), which shows the highly 

peaked scattering in the forward direction (in small angles). 

 

Figure 2.6. Angular differential scattering cross sections for hard sphere collision and forward 
scattering schemes. Kharchenko et al. [2000]. 
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The cross sections for the momentum transfer rate during a collision are shown in figure 

2.6 for both scattering schemes. In both scattering schemes, all scattering in the angles smaller 

than about 40° participate in only a small momentum transfer. With increasing scattering angle, 

the isotropic hard sphere scattering produces a significant transfer of momentum to the scattering 

center, and the momentum transfer cross section decreases in the angles larger than ~120°. For 

the forward scattering scheme, differential momentum transfer cross section shows only a 

relatively small variation, nearly isotropic, over the scattering angles. 

 

 

Figure 2.7. Angular differential momentum transfer cross sections for hard sphere collision and 
forward scattering schemes. 
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 As shown in table 2.1, the computed total collision cross section for the forward 

scattering collision is a factor of ~2 larger than that for the isotropic scattering collision. 

However, momentum transfer is much smaller in forward scattering collision. Consequently, the 

isotropic scattering scheme describes a more effective momentum and energy transfer to the 

collision partner (thermospheric constituent), which indicates a more active thermalization of hot 

oxygen. In spite of the larger collision cross section, the momentum and energy transfer in the 

forward scattering scheme is not as efficient as in the isotropic scattering scheme, resulting in a 

relatively low thermalization of hot oxygen via Ohot-Ocold collisions. 

 

𝜎 (cm2) Isotropic scattering Forward scattering 
Total collision cross section 

(𝜎!) 
 

3.0 × 10-15 cm2 6.4 × 10-15 cm2 

Total momentum transfer 
cross section (𝜎!) 

3.0 × 10-15 cm2 8.5 × 10-16 cm2 

 
Table 2.1. The computed total collision cross sections, 𝜎!, and total momentum transfer cross 
section, 𝜎!, for the isotropic scattering and forward scattering schemes. 
 
 
 
 Since the cross sections for collisions and momentum transfer are known, it is important 

to discuss the energy distribution of O before and after the collisions. In order to investigate 

further the difference in the energy loss processes, the energy distributions are normalized to 

show probability density, computed as a function of altitude (100 km – 500 km). This probability 

density describes the relative likelihood for a nascent O to have a certain amount of energy. 

Figure 2.7a and figure 2.8a show the energy distribution of nascent O in 3D and 2D, where the 

color contour indicates the probability density of the particles. The nascent O is produced from 

dissociative recombination of O2
+, and O obtains its energy from the exothermicities of the 
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channels in the source reaction (more details in chapter 4). The peaks in the distribution of the 

nascent O energies become broadened at high altitudes (> ~240 km) with increasing ion 

temperature.  

This energy distribution is used to compute the initial energy of the particle in the 

isotropic and forward scattering cases. The isotropic scattering scheme uniformly distributes 

scattering angles, which allows the efficient thermalization of colliding atoms. The energy 

distribution shown in figures 2.7b and 2.7c and figures 2.8b and 2.8c represent the energy 

distribution of the particles after one collision event, with the initial energy given from the source 

reaction. The isotropic scattering case is shown in figure 2.7b and figure 2.8b in 3D and 2D. The 

post-collision energy of O is completely different from the initial energy distribution. Most of O 

the atoms after the collision have an energy below the escape energy (indicated by a solid white 

vertical), and only a few O atoms maintain their energy near or above the escape energy. 

Contrarily, in the energy spectrum that results from using the forward scattering scheme, there is 

a high probability density of the population of particles remaining in the energy range ~1.5 eV – 

2.5 eV, where the two high peaks in the initial energy distribution are located. The populated 

area becomes broadened at high altitudes.  
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(a) 

    

(b) 
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(c) 

Figure 2.8. 3-dimensional altitude variation of the energy distributions of particles (a) before 
collisions and (b) after collisions assuming isotropic scattering and (c) forward scattering. The 
color contours indicate the probability density for particles in energy bins.  
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(a) 

 

(b)       (c) 

Figure 2.9. 2-dimensional altitude variation of the energy distributions of particles (a) before 
collisions and after collisions assuming (b) isotropic scattering and (c) forward scattering. The 
color contours indicate the probability density for particles in each energy bin. The white solid 
vertical line corresponds to the escape energy (~1.97 eV). 
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The extracted energy spectra from the pre- and two post-collision energy distributions are 

shown in figure 2.9. Under the isotropic scattering assumption, the nascent O energy effectively 

lost its energy via the collision and scattered into the full range of the angles around the particle. 

The high peak of the isotropic scattering spectrum describes the large energy loss after the 

collision and the high probability of thermalization of O atoms. On the other hand, a strong peak 

in the forward scattering spectrum indicates the highly probable chance for the O atom to remain 

with its initial energy by scattering into forward direction. Therefore, the collision with the 

isotropic scattering assumption provides a higher probability for O atoms to lose its energy and 

momentum and become thermalized than that with the forward scattering assumption. In reality, 

a hot O atom undergoes numerous collisions with the background particles including O, CO2, 

CO, and N2, and these collisions modify the energy distribution of O. The typical cross sections 

of hard sphere isotropic scattering used in simulations are a factor of 2 or 3 smaller than that of 

the forward scattering. This would tend to reduce the aforementioned large difference in the 

results after the initial collision, since fewer of the isotropic scattering collisions would occur 

given the original population of hot O.   
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Figure 2.10. Spectra of nascent O energy from the dissociative recombination reaction (blue) 
and post-collision O energy resulted from using the isotropic scheme (green) and forward 
scattering scheme (blue) at an altitude of 200 km. 
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Chapter III 

Models and framework 

 This chapter presents two thermosphere/ionosphere models and our kinetic particle 

simulator. The thermosphere/ionosphere models are employed in the kinetic particle simulator 

for the simulation of the Martian hot atomic coronae. The model description sections are 

followed by the detailed description of the coupled framework. 

 

III.1. Thermosphere/ionosphere models 

III.1.1. Mars Thermosphere General Circulation Model (MTGCM) 

The Mars Thermosphere General Circulation Model (MTGCM) is a 3D finite difference 

primitive equation (thermodynamic, eastward momentum, northward momentum, composition, 

hydrostatic, and continuity equations; see also Bougher et al. [1988, 1990]) model that self-

consistently solves for time-dependent neutral temperatures, neutral-ion densities, and three 

component neutral winds over the globe [Bougher et al., 1999, 2000, 2002, 2004, 2006, 2009]. 

Above the 1.32 𝜇bar level (33 pressure level), corresponding to an altitude range of about 70 – 

300 km for solar maximum conditions, prognostic equation fields for the major neutral species 

(CO!, CO, N!, and O), selected minor neutral species (Ar, He, and O!), and photochemically 

produced ions (e.g., O!!, CO!
!, O  

!, CO  
! and NO  

! below 180 - 200 km) are simulated on a 5° 

latitude and 5° longitude grid resolution. The MTGCM has log-pressure vertical coordinate with 

0.5 scale height spacing. The important feedback of simulated O atoms upon CO! cooling rates 
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is captured by implementing a fast Non-Local Thermodynamic Equilibrium (non-LTE) 15-µm 

cooling scheme with corresponding near-IR heating rates [e.g., Bougher et al., 2006; López-

Valverde et al., 1998]. The F10.7 index (solar EUV/UV flux variation), the heliocentric distance, 

and solar declination, key parameters for Martian seasons and solar cycle variations can be 

adjusted to customize MTGCM cases for different purposes of study.   

 The MTGCM is currently an upward-coupling model that is driven from below by the 

NASA Ames Mars General Circulation Model (MGCM) code [e.g., Haberle et al., 1999] at the 

1.32 𝜇bar level. At this pressure level, key variables, such as zonal and meridional winds, 

temperatures, and geopotential heights, are passed upward (only) from the MGCM crossing the 

lower boundary of the MTGCM on a 2-minute time step. This one-way coupling provides a 

realistic description of the Martian lower atmosphere to the MTGCM by including the 

continuous effects of upward propagating migrating and nonmigrating tides and the seasonal 

effects of the expansion and contraction of the lower atmosphere. Various applications of this 

coupled MGCM-MTGCM framework have successfully (1) reproduced observed thermospheric 

polar warming features [Bougher et al., 2006, 2008], (2) derived exospheric temperatures 

[Bougher et al, 2000, 2009], (3) reproduced measured nightside mesopause temperatures 

[McDunn et al. 2010], and (4) reproduced measured longitude variations of the thermosphere 

and ionosphere density structure [e.g., Bougher et al. 2004]. The MTGCM can, thus, provide a 

realistic simulation of the Martian upper atmosphere structure. 

 

III.1.2. Mars Global Ionosphere Thermosphere Model (M-GITM) 

 The Mars Global Ionosphere Thermosphere Model (M-GITM) [Bougher et al., 2014b] is 

a newly developed Mars thermosphere and ionosphere model.  This new single framework of the 
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whole Martian atmosphere allows overcoming the limitation in descriptions of dynamical 

coupling processes liking the lower and upper atmospheres in the coupled MGCM-MTGCM 

framework. The new M-GITM model is developed based on the Earth GITM code that is a 3D 

spherical model for terrestrial thermosphere and ionosphere system. M-GITM simulates the 

Mars’ atmosphere from the surface to the exosphere, the whole atmosphere from ~ 0 km to 250 

km, where the formulations and subroutines have largely been taken from the NASA Ames’ 

Mars General Circulation Model and NCAR MTGCM codes. 

 M-GITM is also a self-consistent finite difference primitive model, which solves for 

time-dependent neutral temperatures (ion and electron temperatures are based upon Viking 

measurements), neutral and ion densities, and three components of neutral global winds. The M-

GITM code simulates key neutral species (CO2, CO, O, N2, O2, and Ar at present, and N(4S), 

N(2D), NO, He, and H2 in the future) and key photochemical ion species (O+, O2
+, CO2

+, N2
+, 

and NO+), solving fluid equations in a 3D spherical coordinate system. Typical simulations are 

conducted on a 5° × 5° latitude and longitude horizontal grid with a constant 2.5 km vertical 

altitude resolution (about 0.25 scale height spacing). For the atmosphere below an altitude of ~ 

80 km, a “stretched” vertical grid is used to capture the variable terrain. A state-of-the-art 

radiation (RT) code from the MGCM is incorporated into M-GITM to provide solar heating, 

seasonally variable aerosol heating, and CO2 15-µ cooling scheme in the LTE region of the 

Martian lower atmosphere (0 km – 80 km). For the upper atmosphere (~80 km – 250 km), an 

existing fast NLTE CO2 15-µ cooling and a correction for NLTE near-IR heating rates (~80 km – 

120 km) are implemented into M-GITM [e.g., Lopez-Valverde et al., 1998; Bougher et al., 2006; 

Bougher et al., 2014b]. The M-GITM model simulation can be run for different combinations of 
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Martian seasons and solar conditions by varying parameters for various orbital position, solar 

cycle, and dust conditions.  

 The M-GITM code is unique by its relaxation of the assumption of hydrostatic 

equilibrium and separation of the vertical and horizontal fields. Like in the GITM code, M-

GITM solves the Navier-Stokes equation in the radial direction independently from the 

horizontal directions (detailed descriptions of the coupled Navier-Stokes equations are provided 

by Bell et al. [2010] and Ridley et al. [2006]). The relaxed hydrostatic equilibrium assumption, 

non-hydrostatic atmosphere, allows each neutral species to have its own self-consistent vertical 

continuity and momentum equations. The present M-GITM model describes a photochemical 

ionosphere only, but the ionospheric transport will be included in the future.  

 

III.2. Kinetic particle simulator – Adaptive Mesh Particle Simulator (AMPS) 

Unlike the Earth’s atmosphere, the Martian atmosphere is tenuous and has a low surface 

pressure of about 6 mbar; this is likely due to both to Mars’ lower gravity (small size and mass) 

and the absence of a permanent magnetic field since an early epoch of the solar system [Acuña et 

al., 1998; Smith et al., 1965]. Especially, in the upper atmosphere, the exponential decrease of 

density with increasing altitude reaches a point where energy transitions are no longer dominated 

by collisions, deviating from local thermodynamic equilibrium (LTE), and so numerical 

modeling of this region is challenging [Combi, 1996]. This region is a rarefied multispecies gas 

flow regime under non-thermodynamic equilibrium conditions, which can be appropriately 

described by the Boltzmann collision integral equation, 

!!!
!"
+ 𝒗𝒔 ∙ ∇𝑓! + 𝒂𝒔 ∙ ∇𝒗𝑓! =

!!!
!"
= [𝑓!∗𝑓!∗ − 𝑓!𝑓!]

!!
! 𝑔!"𝜎!"𝑑Ω𝑑𝒗𝒑

  
!! ,   (3.1) 
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where 𝑓! ≡ 𝑓!(𝑡,𝒙,𝒗𝒔) denotes the phase space distribution function of species of type ‘𝑠,’ the 

asterisk represents the post-collision state, 𝒙 is the spatial coordinate, 𝒗𝒔 is the velocity, 𝒂𝒔 is the 

acceleration, Ω is the solid angle, 𝜎!" is the total collision cross section between species s and p, 

and 𝑔!! ≡ |𝒗𝒔 − 𝒗𝒑|. The Boltzmann equation is an integro-differential equation, which contains 

the collisional integral and describes the evolution of the distribution function of macroscopic 

characteristics.  

The collisional integration usually makes solving the Boltzmann equation intractable 

either analytically or numerically; thus, a numerical and kinetic particle approach that does not 

require the formulation of an integro-differential equation is needed. The standard method for 

solving the Boltzmann equation in cases like this has been developed using the Direct Simulation 

Monte Carlo (DSMC) [Bird, 1994] method. As a key feature, the DSMC method separates the 

translational motion of species from the intermolecular interaction, allowing a description of a 

much wider relaxation scheme than the Boltzmann equation does. During the relaxation stage, 

the velocity coordinates of collision partners from the same cell can be changed due to a chosen 

probabilistic relaxation model.  

The Monte Carlo method allows development of the numerical algorithm that is based on 

a simulation of the relaxation process of the distribution function in a rarefied gas. The Monte 

Carlo scheme is generally described by a Markov chain, a discrete-time process, which assumes 

that the future behavior only depends on the present. As a continuous-time version, the Markov 

process [Hochstim, 1969] is used to describe the evolution of the distribution function, 𝑓(𝑣, 𝑡), 

which is represented in the integral from, 

𝑓 𝒗, 𝑡 + ∆𝑡 = 𝑓 𝒗− ∆𝒗, 𝑡 𝑃 𝒗− ∆𝒗,∆𝒗 𝑑 ∆𝒗 ,   (3.2) 

together with the normalization, 
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𝑃 𝒗,∆𝒗 𝑑 ∆𝒗 = 1.    (3.3) 

The function evolves as the probability, 𝑃 𝒗,∆𝒗 , for the velocity of 𝑣 of a particle at 

time 𝑡 converges to the velocity of 𝒗+ ∆𝒗 at time 𝑡 + ∆𝑡, without being affected by the previous 

history.  

This Monte Carlo simulation computes an averaged value of macroscopic functions, 

including density, velocity, and flux, over defined regions of the phase space using the standard 

kinetic theory definitions. Since a probabilistic relaxation scheme is based on collisions; the total 

collision frequency, 𝝂, is a key quantity.  𝝂 can be defined from the Boltzmann collision integral 

as 

𝝂 = !
!

𝜔 𝝂𝒊𝝂𝒋 → 𝝂𝒊!𝝂𝒋! 𝑑!𝝂𝒊𝑑!𝝂𝒋 =
!
!

𝜎!(𝑔!")𝑔!"!!!!!! ,   (3.4) 

where 𝜎! 𝑔!"  is the total collision cross section, 𝑔!" is the relative speed between species 𝑖 and 𝑗, 

and 𝜔 is the total momentum cross section. The summation is performed over 𝑁(𝑁 − 1)/2 

possible pairs for collisions. The post-collision velocities are computed in accordance with the 

laws of conservation of mass, momentum, and energy in every intermolecular interaction.  

The DSMC method separates the translational motion of species from the intermolecular 

and uses a Markov chain scheme to describe the evolution of the velocity distribution function. 

The total collision frequency is a key quantity in the development of the relaxation scheme of the 

model. The probabilistic relaxation scheme is based on a representative sampling of actual 

intermolecular collisions. The post-collision velocities are computed in accordance with the laws 

of the conservation of mass, momentum, and energy in every interaction. The Monte Carlo 

simulation then computes an averaged value of macroscopic functions, including density, 

velocity, and flux, over defined regions of phase space using the usual definitions from standard 

kinetic theory. 
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Using the DSMC method allows incorporation of complex physical processes without a 

significant complication of the numerical procedure. The DSMC approach has been used in other 

applications, such as the investigations of the cometary coma and the upper atmospheres of other 

planets; examples are found in Combi [1996], Crifo et al. [2005], Markelov et al. [2006], and 

Tenishev et al. [2008, 2011, 2013].  

A state-of-the-art 3D DSMC simulator, the University of Michigan Adaptive Mesh 

Particle Simulator (AMPS) code [Tenishev et al., 2008, 2013] was first coded for solving the 

Boltzmann equation of the gas flow in the coma of a comet [Tenishev et al., 2008]. AMPS is 

developed within the frame of the DSMC method, which employs a stochastic solver for both the 

linear and nonlinear Boltzmann equations. As a standard numerical method today, the DSMC 

method can represent the collisional dynamics of a finite number of model particles in a rarefied 

gas flow regime, such as Mars upper atmosphere. In place of solving the intractable Boltzmann 

equation, AMPS simulates the ensemble of model particles and captures the physics of the 

distribution of the gas species in the tenuous upper atmospheres, where the transitions from a 

local thermodynamic equilibrium (LTE) region to a non-LTE region occur. The cell size of the 

computational domain varies by the lower and upper limit of the cell sizes, which are pre-

determined in the initialization process.  

Utilizing the technique of the Adaptive Mesh Refinement (AMR) [Berger and Colella, 

1989], which will be discussed in the next section, the cell size is the smallest only where the 

important production of hot particles and the interaction between nascent hot particles and 

background atmosphere take place. The nominal cell size is about 80 km at the bottom of the 

computational domain, and the maximum cell size is determined by the designated upper 

boundary of the domain. In general, the simulation scheme does not require the limitation of the 
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characteristic size of computational cells, since the simulation is rather closely related to the 

spatial distribution, gradient, and collision frequencies of the local background densities. The cell 

size matters only for averaging the macroscopic parameters and can be as large as 80 km at the 

bottom of the domain without affecting the overall computation. For the purpose of sampling the 

macroscopic parameters, a special treatment is discussed, which is applied on the mesh in the 

next section. The typical size of the domain can be set as small as about 2-3 Mars radii, which 

allows the reduction of computational time and resources to compute escape rates of neutral 

particles without underestimating the escape. The local time step is determined by the ratio 

between the smallest characteristic cell size and the upper limit of the hot carbon speed. 

Typically, the simulation runs fast enough with a local time step of about 2 seconds. This local 

time step is set large enough for the code to recognize a model particle in the same cell for at 

least a few iterations during the simulation. 
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III.2.1. 3D Adaptive Mesh Refinement (AMR) and auxiliary mesh 

 

  (a)      (b) 

Figure 3.1. (a) The 3D computational domain (cubic cells, blue) and overlaid spherical auxiliary 
mesh (pink), (b) a sectional view of the region of interest. 
 
 
 
 Modeling a large number of particles with realistic reactions and interactions in time- and 

region-dependent gas systems requires high computational cost. Prior to this work, the 

unstructured mesh of tetrahedral cells [Valeille et al., 2009a, 2009b, 2010a, 2010b] method 

determined the local values at the points on the mesh, which is generated at the beginning of the 

simulation with fixed spacing. This approach had the advantage of a fine radial resolution (e.g., 

about one half to one third of the local scale height in the transitional domain) capturing steep 

density gradients with altitude. However, to cover the critical details in the atmosphere, a 

simulation on this mesh demanded too much in computing time and resources, and even with this 

high resolution, the computation on the mesh could not guarantee satisfactory accuracy over the 

whole domain. 
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The model methodology now utilizes the technique of the Adaptive Mesh Refinement 

(AMR) [Berger and Colella, 1989], which is computationally efficient for realistic simulations 

of the atmosphere of Mars. This current mesh algorithm is capable of an appropriate description 

of the regions in the atmosphere with important features by minimizing the use of computational 

resources. Since a finer mesh is placed over a base coarse mesh covering the whole domain, the 

local enhancement of mesh resolution effectively handles the regions of interest with the local 

time step and cell size. At present, the use of this mesh drastically reduces the computation time 

and resources and increases the accuracy of the simulation. 

The physical situation that needs to be modeled involves sharp density gradients in the 

lower altitude region (about 80 – 200 km). The macroscopic parameters, such as production rate 

and density, are difficult to sample and visualize in these regions since the cell is not small 

enough to capture the rate of change. For example, the density of CO!  has an abrupt inflection 

point at around 140 km altitude and an exponential decrease after its peak density at an altitude 

of about 210 km (for the low solar activity case). The production rate of hot oxygen has a sharp 

radial gradient deep in the thermosphere. To sample these local features accurately, one can 

increase the resolution of the mesh in the lower altitude region. However, it is too costly in 

computation to increase the resolution of the cubic cell mesh just for a sampling purpose. The 

other solution, which has been applied in the mesh, is that an auxiliary mesh is overlaid, a 

spherical coordinate mesh, on the Cartesian coordinate mesh (figure 3.1; mesh in pink). In 3D, 

the overlapping mesh is like a shallow sphere centered at the origin of the simulation. This 

auxiliary mesh resembles the previous mesh [Valeille et al., 2009a, 2009b, 2010a, 2010b], but it 

is a simple spherical mesh that permits taking the advantage of the fine radial resolution when 

sample macroscopic parameters are needed from the computational domain. The thickness of the 
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shell, which can be adjusted manually, is the range of the region of interest. This auxiliary mesh 

is used only for sampling purpose and not a part of the computational domain. 

 

III.3. Coupling and framework 

 In this thesis, the 3D MTGCM and M-GITM simulate the exact Martian seasonal and 

solar cycle conditions considered, utilizing solar longitude (Ls) and solar EUV flux (F10.7) 

parameters. The densities of thermosphere-ionosphere species (O, CO, CO2, N2, CO+ (only 

MTGCM), O2
+, and e-), temperatures (Tn, Ti, and Te), and three-component neutral winds (zonal, 

meridional, and vertical winds) are compiled in the MTGCM and M-GITM codes in the frame of 

AMPS to be used as the necessary parameters for the production of hot carbon and hot oxygen 

and for the background atmosphere. As an atmospheric input, these thermosphere/ionosphere 

parameters are pre-calculated by the MTGCM (from 135 km to 200 km) and M-GITM (from 

~100 km to ~300 km), and supplied to Mars-AMPS, achieving a one-way coupling between the 

MTGCM/M-GITM and Mars-AMPS codes. Above the input boundary (i.e., 200 km and 300 km 

altitude for the MTGCM and M-GITM, respectively), the Mars-AMPS code extrapolates the 

density profiles using the local density scale height. It is safe to use this realistic extrapolation 

scheme to estimate the density beyond the upper boundary of the atmospheric inputs, since the 

important production of hot carbon and gradients occur within the input domain.  

The contribution from the atmosphere below the lower boundary of the input domain is 

assumed to be negligible to the result. The exception is the production of hot C atoms in the 

dissociative recombination of CO+, where CO+ density could not be extrapolated as is done for 

the densities of other background species. However, the computed peak production rate of the 

dissociative recombination of CO+ is still located below an altitude of 200 km because the 
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reaction is also dependent on the electron temperature and electron density, which vary 

significantly with altitude. The detailed description of the special treatment for CO+ density is 

discussed in chapter 5.  

The extrapolation scheme was used in the previous works by Valeille et al. [2009a, 2009b, 

2010a, 2010b]. As mentioned in those previous works, the background atmosphere, which 

consists of the MTGCM inputs and the extrapolation, are in good agreement with the 

observations from the Viking Landers [Hanson et al., 1977; Nier and McElroy, 1977], Mars 

Global Surveyor (MGS) [Withers et al., 2008; Withers and Mendillo, 2005], and Mars Express 

(MEX) [Morgan et al., 2008]. 

 The AMPS code considers a particle in the domain to be a hot atom when it satisfies the 

local velocity criterion, Vmodel particle > Vthreshold. For computational purposes, this work sets 

Vthreshold to either twice the local thermal speed or the local escape speed. As noted by Valeille et 

al. [2010a], setting Vthreshold to twice the local thermal speed results in a hot population that is 

less than the hottest 1% of the Maxwellian distribution of thermospheric population. This setting 

is validated by Valeille et al. [2010a] as a best estimated Vthreshold, ensuring a clear separation 

between the hot and cold populations. Separately, Vthreshold can be set to the local escape speed 

for the purpose of reducing resources and computational time without underestimating the 

escaping hot atoms. Vthreshold is one of the key parameters in the simulation of the Martian hot 

corona, which is set to slightly different values for other models. For example, Yagi et al. [2012] 

set an energy cut-off for their model particles to 1/15 of the escaping energy of hot species. This 

setting allows consideration of about 2% of the hottest end of the Maxwellian distribution of 

thermal population as nonthermal (hot) population.  
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AMPS is a DSMC model that runs in a test-particle Monte Carlo mode for the Martian 

hot atomic corona calculations. AMPS has been used in full DSMC mode for the simulation of 

cometary coma [e.g., Tenishev et al., 2008; Fougere et al., 2013]. The motion of each hot 

particle is influenced by the gravitational field of Mars and affected by the collisions with 

background species on its way to escape to space or to become part of the cold population (i.e., 

thermospheric population). The only collision case that is considered in the simulation is the 

collisions between hot species and background species. For example, the collisions between hot 

carbon atoms can be also possible. However, due to relatively low density of hot carbon, the 

collision frequency of Chot-Chot is much smaller than that of Chot-background species (O and 

CO2). The Chot-Ocold collision frequency is on the order of 10-3 s-1 near an altitude of 200 km, and 

the upper limit of the Chot-Chot collision frequency is estimated to be on the order of 10-8 s-1. 

Thus, the collisions between hot carbon atoms are safely disregarded, since their effect is 

negligible. Along the same lines, the Ohot-Ohot collision is also not considered in the study of hot 

oxygen corona, due to the relatively low collision frequency. 

All scatterings occurring between a nascent hot carbon and background species in the 

simulation are assumed to be elastic hard sphere collisions (isotropic scattering). Both Chot-Ocold 

and Chot-CO2, cold collision cross sections are approximated to be 3 × 10-15 cm2. Other current 

studies might suggest different cross sections and angular scattering models, such as an 

integrated cross section (i.e., a forward scattering collision scheme). For hot oxygen, a few 

studies [e.g., Krestyanikova and Shematovich, 2005; Fox and Hać, 2009; Fox and Hać, 2014] 

have examined the effects of employing differential scattering cross sections for Ohot-Ocold and 

Ohot-CO2, cold collisions. This thesis also presents the investigation that compares the effects of 

using different scattering approximations (isotropic and forward scattering) on hot oxygen 
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population. As in the case of the hot carbon study, the cross section of Ohot-Ocold collisions is also 

approximated to be 3 × 10-15 cm2. If a considerable reassessment is required for collisions, the 

overall result is expected to reflect the difference. For example, different collision frequencies 

resulting from using reassessed scattering models can affect the changes in the velocity 

distribution of nascent hot carbon and the total global escape rates. As has been done in other 

studies [e.g., Fox and Hać, 2009 – hot oxygen study], the effects of using different 

approximations for collisions on hot carbon escape should be investigated in the future and can 

easily be incorporated into AMPS without noticeable loss in computational efficiency.  

In the coupled MTGCM/M-GITM and Mars-AMPS framework, the exobase is not 

designated as a fixed altitude that separates the collision (thermosphere) and collisionless 

(exosphere) regimes. Instead, this study considers the full transitional domain, which extends 

from the altitude where a hot particle produced in this region has a high probability to be 

thermalized to where the collision frequency is very low. The assumption is that this transitional 

domain exists from 135 km to 300 km altitude and has been confirmed by Valeille et al. [2010a] 

by a range of different test runs for hot oxygen production. In this region, the collision frequency 

that Mars-AMPS computes during the simulation decreases by an order of magnitude, which is 

from about a few 10-1 s-1 to 10-2 s-1. 
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Chapter IV 

Source mechanisms of hot O and hot C 

 The inventory of CO2 and water on Mars is controlled mainly by the escape of C- and O-

containing neutral atoms, molecules, and ions. In particular, heavy neutral atomic species, such 

as C and O, may escape from the atmosphere of Mars by nonthermal mechanisms that produce 

hot atoms with energy of the escape energy.  In this chapter, major source mechanisms for hot C 

and hot O atoms, which are widely accepted by the majority of past modeling studies, are 

described. Other possible sources are also mentioned, but only the major source mechanisms are 

considered in the hot corona simulations in this thesis. 

  

IV.1. Hot C source mechanisms 

Carbon atoms are produced with enough energy to escape in the lower exosphere (around 

200 km), through a number of photochemical mechanisms, such as photoelectron impact 

dissociation of CO, photodissociative ionization of CO, and photoelectron impact dissociative 

ionization of CO+. Among these mechanisms, many of the previous studies have found that 

photodissociation of CO and dissociative recombination of CO!  are the two important 

mechanisms that can produce suprathermal carbon with energy in excess of the escape energy of 

a carbon atom. Nagy et al. [2001] also considered the collision of hot oxygen with cold, thermal 

carbon as a potentially important source, but it was found to have negligible effect for Mars. 

Various sources were investigated with a 1D-spherical model by Fox [2004] using the solar 
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fluxes that were characterized with enhanced soft X-ray and different EUV fluxes. Fox [2004] 

concluded that the most important source of escaping carbon is predicted to be photodissociation 

of CO, followed by electron impact dissociation of CO and dissociative recombination of CO!. 

While the main sources of hot carbon are not firmly agreed upon, this work assumes that 

photodissociation of CO and dissociative recombination of CO! are the two major sources of hot 

carbon in the Martian thermosphere. This assumption is based on the majority of the previous 

studies [Cipriani et al., 2007; Fox and Bakalian, 2001; Fox and Hać, 1999; Nagy et al., 2001]. 

Sputtering of the upper thermosphere by energetic pickup ions [Leblanc and Johnson, 2002] is 

also likely to be an important loss mechanism for atomic carbon, but including this in an 

equivalent full 3D description is beyond the scope of this study.   

 

IV.1.1. Photodissociation of CO  

The most prominent current source of escaping hot atomic carbon is expected to be 

photodissociation of CO, which is highly sensitive to the solar UV flux. It is assumed that, in the 

reaction, 

CO(Χ!Σ!)   + ℎ𝜈 → C( P)  
! + O( P)  

! ,     (4.1) 

the produced C and O are both in their ground state with the excess energies [Huebner et al., 

1992] distributed in accordance with the laws of conservation of momentum and energy. Studies 

of this reaction [e.g., Krupenie, 1965; Fox and Black, 1989; Torr et al., 1979] have shown that 

the threshold for the dissociation of CO(Χ!Σ!) to the ground states of C and O is at 𝜆 =1117.8 

Å . The dissociation occurs between 𝜆 =885   Å  and this threshold by line absorption. The 

photodissociation frequencies are adopted from Fox and Black [1989], which are 4.4  ×  10!!s!! 

and 1.21  ×  10!!  s!! for the low and high solar activity cases, respectively (scaled to 1 AU 



	
  
58	
  

heliocentric distance). These frequencies are scaled to the Martian heliocentric distance for Ls = 

180°. The attenuation of the solar flux by the atmosphere is not considered in this work since the 

photoabsorption cross sections for CO and CO2 are about 2 orders of magnitude smaller than the 

collision cross section between a nascent hot carbon and background species (σphotoabsorption ~10-17 

cm2 [Torr et al., 1979] for both CO and CO2; σcollision ~ 10-15 cm2). This implies that the altitude 

where the attenuation is important would be at lower altitudes, where the most of nascent hot 

carbon atoms are thermalized and have an extremely small probability to escape. 

  

IV.1.2. Dissociative recombination of CO! 

The dissociative recombination of CO! results in a number of energetic channels, 

CO!(Χ!Σ!, 𝜐 = 0)   + 𝑒 → C( P) + O( P) + 2.90 eV  
!

  

!
  [C1], 

CO!(Χ!Σ!, 𝜐 = 0)   + 𝑒 → C( D) + O( P) + 1.64 eV [C2]  
!

  

!
, 

                             CO!(Χ!Σ!, 𝜐 = 0)   + 𝑒 → C( P) + O( D) + 0.94 eV  
!   [C3]

  

!
,             (4.2) 

CO!(Χ!Σ!, 𝜐 = 0)   + 𝑒 → C( S) + O( P) + 0.22 eV [C4]  
!

  

!
, 

CO!(Χ!Σ!, 𝜐 = 0)   + 𝑒 → C( D) + O( D) - 0.33 eV [C5]  
!

  

!
. 

 CO+ is one of the minor heavy ions, which has been known as a nonnegligible source of 

hot O and hot C through the dissociative recombination mechanism in the Martian upper 

atmosphere. The CO+ ion is quite different from the O2
+ ion, the major ion in the ionosphere. O2

+ 

is a homonuclear diatomic molecular ion (e.g., N2
+) and has zero net dipole moment, since the 

symmetry never changes. The infrared transition from excited vibrational levels to the ground 

state is forbidden by the vibrational selection rule. Thus, O2
+ may be nonthermal in excited 
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vibrational levels according to the vibrational distribution. The vibrational distribution of O2
+ 

will be further discussed in the chapter for hot O study.  

 Unlike O2
+, CO+ is a heteronuclear diatomic molecular ion that owns a permanent dipole 

moment, which changes in magnitude as CO+ vibrates. CO+ in electronic and vibrational ground 

state has a sizable dipole moment of 2.77 D [Rosén et al., 1998], where the electric dipole 

moment is defined as charge times displacement in a CGS unit of D, the debye length. The 

radiative dipole-allowed transitions are more efficient for CO+, limiting the actual fraction of 

vibrationally excited ions [Fox and Hać, 1999]. Since the ion temperature in the upper 

atmosphere is high enough for the radiative relaxation of the excited CO+ ion, CO+ is expected to 

be fully relaxed to the ground electronic and vibrational states under most conditions in the 

ionosphere before it recombines with an electron. 

The energy released from the reaction depends on the exothermicity of the involved 

channel as shown in equation (4.2). The corresponding branching ratios for the channels have 

been measured by Rosén et al. [1998] at 0 eV relative energy between the CO! and the electron, 

which are 0.761, 0.145, 0.094, 0.0, respectively, from C1 to C4, with C5 being endothermic. The 

branching ratio is expected to vary with the center-of-mass collision energy. Rosén et al. [1998] 

carried out four different collision energy experiments to determine the final state distributions of 

the fragment from the dissociative recombination of CO+. As shown in table 4.1, the higher 

collision energies allow an endothermic channel at 0 eV collision energy to become an 

exothermic with an enthalpy change in the reaction.  

 

 

 



	
  
60	
  

Center-of-mass 
collision energy 

(eV) 
0 0.4 1.0 1.5 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  C( P) + O( P)  
!

  

!
 [C1] 76.1% 53% 39% 38% 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  C( D) + O( P)  
!

  

!
 [C2] 14.5% 34% 35% 35% 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  C( P) + O( D)  
!

  

!
 [C3] 9.4% 8% 15% 11% 

	
  	
  	
  	
  C( S) + O( P)  
!

  

!
 [C4] 0.0% 0% 5% 5% 

	
  	
  	
  C( D) + O( D)  
!

  

!
 [C5]  5% 6% 11% 

C( P) + O( S)  
!

  

!
    0% 

 
Table 4.1. The final state distribution for four different relative collision energies. This table is 
Table 1 in the study done by Rosén et al. [1998]. 
 
 
 

The center-of-mass relative collision energy is defined as the detuning energy, which is 

calculated with the relative velocity between a parent ion and electron. Figure 4.1 shows the 

computed distribution of detuning energy, 𝐸! =
!!!!"#!!"!#$%&'

!

!
, as a function of altitude using the 

electron and ion temperature profile from MTGCM for the low solar activity case at equinox. As 

expected, the collision energy rapidly increases with increasing altitude due to larger ion and 

electron temperatures. 
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    (a)       (b) 
   

Figure 4.1. (a) Distribution of the detuning energy, Ed, of parent ion and electron in dissociative 
recombination of CO+ reaction at an altitude of 150 km (blue) and 200 km (red), and (b) 
detuning energy distribution in 3D for the altitude range of 100 km – 500 km for low solar 
activity at autumnal equinox. 
 
 
 

The ion temperature does not exceed ~1000 K below an altitude of ~250 km, for instance, 

for the low solar activity case, the branching ratio variation from higher relative collision 

energies can be safely disregarded in the computation of dissociative recombination of CO+ (i.e., 

branching ratio is constant for all altitude range). Thus, this study considers only C1 - C4 at 0 eV 

relative collision energy as available exothermic channels for production of hot C. 
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Figure 4.2. Altitude profiles of the rate coefficients for dissociative recombination of CO+, 
computed for the equinox and low solar activity case at SZA 60°. 
 
 
 
 The rate coefficient chosen for this hot C study is, 

𝛼 T! = 2.75×10!! !""
!!

!.!!
c𝑚!s-1, 

which is derived from an experiment by Rosén et al. [1998]. Cloutier and Daniell [1979] also 

reported 𝛼 T!  = 6.47 × 10-7 (300/Te)0.53 cm3 s-1. Mitchell and Hus [1985] measured 𝛼 T!  = 2.0 

× 10-7 (300/Te)0.48 cm3 s-1 in the merged electron-ion beam experiment (MEIBEI). Figure 4.2 

shows the rate coefficients from these different groups. The largest rate coefficient is measured 

by Cloutier and Daniell [1979], which is more than twice larger than the one chosen for this 

study. This variation of the rate coefficients does not play an important role in the production of 

hot C. Since CO+ and electron are lost via dissociative recombination of CO+, the variation in the 

rate coefficients is adjusted with the change in the densities of CO+ and electron.  



	
  
63	
  

 

(a)      (b) 

 

(c)     (d)    (e) 

Figure 4.3. Energy distribution of the nascent hot C from dissociative recombination of CO+ in 
(a) 2D (the contour shows the probability density), (b) 3D, and 1D at altitudes of (c) 190 km, (d) 
240 km, and (e) 300 km. The vertical line in 1D plots indicates the escape energy of hot C (~1.48 
eV).  
 
 
 
 The energy distributions (velocity distribution) of nascent hot carbon atoms produced by 

dissociative recombination of CO+ are shown for different altitudes in figure 4.2. Figure 4.2a and 

4.2b visualize the changes in the structure of the energy distribution as a function of altitude. The 

peaks in figure 4.2 (c, d, e) correspond to the C1, C2, and C3 channels in dissociative 

recombination of CO+. The vertical line indicates the escape energy, ~1.48 eV, of a hot carbon 
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atom. CO+ density in the ionospheric description always peaks above ~200 km where the 

electron density decreases exponentially. The computed production rate peaks in the altitude 

region between 150 km - 180 km and decreases by about an order of magnitude near an altitude 

of 200 km. Because of the ionospheric peak height of CO+ density, the production of hot carbon 

is assumed to be still important in vicinity of an altitude of 200 km. Ion temperature increases as 

altitude increases, which results in the broadening of the peak as shown in figure 4.2 (c, d, e). As 

the probability density for the three available channels decreases with increasing altitude, the 

peaks are less distinctive and the average energy becomes larger.  

 

IV.1.3. Possible other sources of hot C  

 In addition to photodissociation of CO and dissociative recombination of CO+, as well as 

ion sputtering of the atmosphere discussed in chapter 5.3.5, a number of other nonthermal 

mechanisms have been reported as potential sources of hot C that may escape to space. The 

possible sources of hot C include [McElroy, 1977; Fox and Bakalian, 2001], 

 Photoelectron impact dissociation of CO, 

CO+ 𝑒∗ → C+ O+ 𝑒,                 (4.3) 

 Photoelectron impact dissociation of CO2, 

CO! + 𝑒∗ → C+ O! + 𝑒,     (4.4) 

                                                                          → C+ O+ O+ 𝑒,              (4.5) 

 Dissociative recombination of CO2
+, 

CO!! + 𝑒 → C+ O!,     (4.6) 

 Photodissociative ionization of CO, 

CO+ ℎ𝜈 → C+ O! + 𝑒,     (4.7) 
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 Photoelectron impact dissociative ionization, 

CO+ 𝑒∗ → C+ O! + 2𝑒,     (4.8) 

 Dissociative charge transfer reaction of O++ with CO, 

O!! + CO → C+ O! + O!.     (4.9) 

 Although all these processes are potential source mechanisms that produce escaping hot 

C, there is little information on the production of hot C from these processes. Moreover, except 

for the photoelectron impact dissociation of CO, these alternative potential mechanisms induce 

the escape of hot C about 1 – 3 orders of magnitudes less than the two source mechanisms 

assumed in this thesis (i.e., photodissociation of CO and dissociative recombination of CO+) 

[Fox and Bakalian, 2001]. In order to confirm the dominant source mechanisms for hot C, these 

various other source mechanisms need to be examined by our coupled framework. 

 

IV.2. Hot O source mechanisms 

IV.2.1. Dissociative recombination of O2
+ 

 At the current epoch, dissociative recombination of O2
+ is known as a main source of 

generating the Martian hot oxygen corona. O atoms are produced with an energy above that of 

the local ambient O atoms via five different exothermic channels,  

O!!(Χ!Π!, 𝜐 = 0)   + 𝑒 → O( P) + O( P) + 6.98 eV  
!

  

!
  [C1], 

O!!(Χ!Π!, 𝜐 = 0)   + 𝑒 → O( D) + O( P) + 5.02 eV [C2]  
!

  

!
, 

                                O!!(Χ!Π!, 𝜐 = 0)   + 𝑒 → O( S) + O( P) + 2.80 eV  
!   [C3]

  

!
,   (4.10) 

 O!!(Χ!Π!, 𝜐 = 0)   + 𝑒 → O( D) + O( D) + 3.05 eV [C4]  
!

  

!
, 

O!!(Χ!Π!, 𝜐 = 0)   + 𝑒 → O( D) + O( S) + 0.83 eV [C5]  
!

  

!
. 
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 The excess energies are available from energetically allowed channels in the reaction, 

which are valid for the ground state of the parent ion, O2
+. Due to conservation of momentum 

and energy, these excess energies are shared equally in the center of mass frame by the two 

nascent hot O atoms.  

 For ground state O2
+ ions and cold electrons with 0 eV relative collision energy, Kella et 

al. [1997] have measured the quantum yield for the final states of O atoms, which are found to be 

0.22, 0.42, 0.31, and 0.05 for the main branches, C1, C2, C4, and C5, respectively. As for 

dissociative recombination of CO+ that produces a hot carbon atom, the relative collision energy 

for dissociative recombination of O2
+ exhibits large peak at lower altitudes and decreases rapidly 

at higher altitudes. 

 

IV.2.2. Rate Coefficients 

 The measurements of the rate coefficient for dissociative recombination of O2
+ have been 

carried out by many studies. Hodges [2000] adopted the rate coefficient of 1.5 × 10-7 (300/Te)0.55 

cm3 s-1 for the dissociative recombination reaction. Peverall et al. [2005] performed experiments 

in a heavy ion storage ring (CRYRING) and, by averaging the dissociative recombination cross 

section, derived the rate coefficients of 𝛼 T!  = 2.4 × 10-7 (300/Te)0.70±0.01 cm3 s-1. Walls and 

Dunn [1974] found 𝛼 T!  = 1.9 × 10-7 (300/Te)0.66 cm3 s-1 for the electron temperature range of 

100 < Te < 2500 K in an ion-trap experiment. In this thesis, the rate coefficient reported by Mehr 

and Biondi [1969] is chosen following the majority of previous hot O investigation [e.g., 

Cipriani et al., 2007; Fox and Hać, 2009; Valeille et al., 2009a, 2009b; Valeille et al., 2010a], 

which is 𝛼 T!  = 1.95 × 10-7 (300/Te)0.7 cm3 s-1 for 300 < Te < 1200 K and 7.39 × 10-8 

(1200/Te)0.56 cm3 s-1 for 1200 < Te < 5000 K. 
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Figure 4.4. Altitude profiles of the rate coefficients for dissociative recombination of O2
+, 

computed for the equinox and low solar activity case at SZA 60°. 
 
 
 

As noted in section 4.1.2, the choice of the rate coefficient does not have a large effect on 

the result. Figure 4.4 shows the altitude profiles of the rate coefficients. Overall, the variation 

among the rate coefficient is small. At an altitude of ~200 km, this variation becomes even 

smaller and converges. The main loss mechanism of O2
+ is dissociative recombination of O2

+. 

Therefore, due to the photochemical equilibrium, the change in the rate coefficient is balanced by 

the change in the O2
+ density by the loss and production mechanisms [Fox and Hać, 2009].  
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IV.2.3. Vibrational distribution of O2
+ 

 As mentioned in a previous section (chapter 4.1.2; hot carbon source mechanism), O2
+, is 

a homonuclear diatomic ion with zero net dipole moment. In the lower thermosphere, the 

vibrational levels of O2
+ ions are in thermal distribution due to the high density of the 

background atmosphere. The infrequent-collision regime, the upper thermosphere, allows the 

nonthermal distribution of vibrational levels, where O2
+ ions are likely to remain in the levels in 

which they are produced. A more detailed investigation of the vibrational levels of O2
+ is 

described in the hot O study (chapter 8).  

 Most of O2
+ ions (~99%) in the Martian atmosphere are in their electronic and vibrational 

ground state, which is assumed for the hot O study in this thesis [Fox and Hać, 2009]. Utilizing 

this assumption, figure 4.3 displays the energy distribution of nascent O from the dissociative 

recombination reaction at several different altitudes. The overall altitude dependency of the 

distribution is also shown with the color contour representing the probability density. The 

nascent O produced in the lower atmosphere is highly affected by the exothermicities of the 

source reaction, whereas at the high altitudes the peaks in the spectra are broadened to wider 

range of energy, as in the case of dissociative recombination of CO+, due to the increasing ion 

temperature with increasing altitude [Fox and Hać, 2009]. 
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(a)      (b) 

 

(c)      (d) 

Figure 4.5. Energy distribution of nascent O computed from dissociative recombination of O2
+. 

(a) 2D view of O energy distribution as a function of altitude and energy spectra at altitudes of 
(b) 190km, (c) 240 km, and (d) 300 km. The dotted vertical line indicates the escape energy of O 
(~1.97 eV). 
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IV.2.4. Possible other sources of hot O  

IV.2.4.1. Dissociative recombination of CO! 

 The daughter species of dissociative recombination of CO!, CO! + 𝑒 → C∗ + O∗  (∆E =

−  0.33  eV− 2.90eV), are atomic carbon and oxygen as shown in equation 4.2. Although this 

reaction is heavily investigated in the hot C study, it is also a nonnegligible source of the Martian 

hot O corona. Depending on the mass of C and O, both of the nascent carbon and oxygen atoms 

can obtain energy to escape. The main branch among the exothermic channels in the reaction is 

the channel C1. C1 produces a carbon atom and oxygen atom in triplet P state.  

 

IV.2.4.2. Photodissociation of CO2 

 CO2 is the dominant constituent in the Martin thermosphere. The absorption of UV 

photons by CO2 is one of the important mechanisms on Mars, and the relatively simple structure 

of CO2 has enabled detailed investigation on both experiment and theory to be performed [e.g., 

Lawrence, 1972; Fox and Dalgarno, 1979; Stolow and Lee, 1992]. Photodissociation of CO2 has 

also been mentioned in some studies [e.g., Fox and Dalgarno, 1979; Hodges, 2002; Feldman et 

al. 2011] as a reaction that also produces hot O in the Martian atmosphere. Feldman et al.  

[2011] reported that an additional constraint on hot O model may come from the forbidden OI 

2972Å (1S-3P) line by both photodissociation of CO2 and dissociative recombination of O2
+, 

which is investigated by SPICAM UV limb data [Simon et al., 2009]. CO2 photodissociates into 

CO and O via two possible channels in the wavelength range 140 – 170 nm, 

CO! + 𝑣 → CO 𝛸!Σ! + O(!𝑃),     (4.11) 

            CO! + 𝑣 → CO 𝛸!Σ! + O(!𝐷),           (4.12) 
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where the main branch produces O(!𝐷) with excess energies of about 4.34 eV and 4.55 eV for 

the low and high solar activity cases, respectively. Figure 4.4, generated by Fox and Dalgarno 

[1979], shows the computed altitude profiles of the production rates of the major sources of 

O(!𝐷) on Mars. The dominant source is the dissociative recombination reaction, and the 

production rate of photodissociation of CO2 is lower by more than an order of magnitude at 

higher altitudes. 

 

 

Figure 4.6. The computed production rate altitude profiles of the major sources of O(!𝐷). This 
is the figure 11 in the study of Fox and Dalgarno [1979]. 
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Chapter V 

Hot carbon corona  

– Mechanisms and Structure for Low Solar Activity at Equinox 

 This chapter focuses on the general mechanisms and structure of the Martian hot carbon 

corona that is simulated at a fixed condition: equinox and low solar activity. The variations of the 

hot carbon corona at other solar and seasonal conditions are described in chapter 6. The features 

in the thermosphere and ionosphere, which are important for the production and thermalization 

of hot C, will be addressed and followed by investigation of the simulated hot C corona. The 

simulation results presented in this chapter have already appeared in the refereed journal article 

by Lee et al. [2014a]. 

 

V.1. Introduction to hot carbon corona investigation 

CO2 is the major neutral species in the thermosphere. Its inventory at Mars is constrained 

by either the escape of carbon as an atom or molecule, such as CO2, CO, or C, or C-containing 

ions [Fox and Hać, 1999], or the formation of carbonate mineral deposits to the crust by 

chemical interactions [Jakosky, 1991]. Among a number of escape mechanisms, only nonthermal 

processes can induce the creation of a carbon atom with energy above the escape energy of about 

1.48 eV. A carbon atom is considered to be "hot carbon" when the excessive energy from the 

source mechanisms is added to a nascent carbon atom. Depending on the availability of enough 
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energy to escape, the hot carbon in the corona may escape to space or fall back to the atmosphere 

by gravitational attraction after traveling along its ballistic trajectory.  

On Mars, the most important nonthermal reaction for the production of hot carbon is 

suggested to be photodissociation of CO [e.g., Fox, 2004; Fox and Bakalian, 2001, Nagy et al., 

2001]. Among several other potential source mechanisms, dissociative recombination of CO+ has 

been suggested as another nonnegligible source that must be considered in the computation of 

the total escape rate of hot carbon [e.g., Fox, 2004; Fox and Hać, 1999; Fox and Bakalian, 2001, 

Nagy et al., 2001]. 

Although the hot carbon corona at Venus has been observed by the UV spectrometer 

aboard the Pioneer Venus Orbiter [e.g., Paxton, 1985], the Martian hot carbon corona has not yet 

been observed. The new Mars Scout mission, Mars Atmosphere and Volatile EvolutioN 

(MAVEN), is presently on its way to Mars and is expected to expand our knowledge on the 

detailed structure of the Martian hot corona. For the atmospheric escape mechanisms, thorough 

numerical modeling has been developed for a better understanding of the atmospheric escape in 

both current and evolutionary aspects. However, most of the works have focused on the hot 

oxygen case [e.g., Cipriani et al., 2007; Fox and Hać, 1997b; Fox and Hać, 2009; Hodges, 2000; 

Kim et al., 1998; Valeille et al., 2009a, 2009b, 2010a, 2010b; Yagi et al., 2012]; only a few 

numerical approaches have been carried out for the hot carbon investigation [Cipriani et al., 

2007; Fox, 2004; Fox and Bakalian, 2001; Fox and Hać, 1999; Nagy et al., 2001], and none 

have looked into the inherent 3D nature of the hot carbon corona.  

Among many mechanisms, neutral species in the hot coronae can be ionized by photons, 

electron impacts or charge exchange reactions via the interactions between the upper atmosphere 

and the solar wind [e.g., Luhmann et al., 1992; Jakosky et al., 1994; Johnson, 1994; Leblanc and 
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Johnson, 2001]. First observed by the PHOBOS-2 spacecraft [Lundin et al., 1990, Verigin et al., 

1991], these heavy ions newly produced from the interaction of the solar wind with the 

exosphere can (1) be picked up by the convection fields of the solar wind plasma and directly 

lost to space or (2) reimpact the atmosphere and initiate the momentum transfer events, causing 

neutrals to escape from the hot coronae, known as sputtering [Luhmann and Kozyra, 1991]. This 

physics of the Mars-solar wind interaction has been successfully simulated and addressed by 

various models with unique techniques. Recent model studies have provided, for example, the 

upper limits to the outflow of heavy ions [Fox, 1997] and realistic descriptions of pickup O+ ion 

distributions around Mars using multispecies 3D MHD models [Liu et al., 1999, 2001; Ma et al., 

2004; Ma and Nagy, 2007; Fang et al., 2008]. Fang et al. [2013] have carried out case studies of 

pickup ion precipitation under various extreme solar wind conditions, and Curry et al. [2013] 

have extensively assessed the different source mechanisms of pickup ions. In the investigation of 

nonthermal atmospheric loss, these studies can serve as a significant tool for understanding the 

sputtering of hot O and hot C.    

A number of numerical approaches have been carried out to estimate the CO2 loss from 

the Martian atmosphere. Fox and Hać [1999] used 1D (spherical) Monte Carlo calculations to 

investigate the altitude-dependent velocity distributions of hot C produced from dissociative 

recombination of CO+ only. They used a fixed exobase for each solar activity case and studied 

the effect of using different upper atmosphere conditions. Fox and Bakalian [2001] calculated 

the escape fluxes by using the “exobase approximation” for various photochemical mechanisms 

and found that photodissociation of CO and dissociative recombination of CO+ are the dominant 

source mechanisms of hot C. Nagy et al. [2001] used the two-stream approach to describe the hot 

C corona, which was also a one-dimensional study that adopted the production rates from Fox 
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and Hać [1999]. Interestingly, Fox [2004] included dissociative recombination reaction of CO2
+ 

in their study and reported that the second most dominant source of hot C is electron impact 

dissociation of CO. Cipriani et al. [2007] used a 1D Monte Carlo test particle approach with the 

same thermospheric models as those of previous hot C studies. They reported a range of hot 

atom and molecule production and escape rates in the Martian upper atmosphere. Their reported 

escape rates of the hot C from dissociative recombination of CO+ are somewhat lower than 

previously published values.  

The Martian hot corona is formed from the upper thermosphere and ionosphere in which 

important mechanisms and dynamics take place. In order to model the Martian upper atmosphere 

self-consistently, a 3D global kinetic model is used to describe the physics of particle interaction 

and escape and a 3D thermosphere/ionosphere model to provide a description resolving the 

inherent limitations of the past 1D and 2D models. The model details, basic hot C corona 

structures, and resulting effects and advantages of a 3D atmosphere input have been discussed in 

the work of Lee et al. [2014a] to emphasize the need of inclusion of the thermosphere dynamics. 

Lee et al. [2014a] considered a fixed orbital position and solar cycle condition, the equinox and 

low solar activity case (EL), for the purpose of the rigorous investigation of the mechanisms in 

the upper atmosphere. 

 The Martian upper atmosphere and hot carbon corona are extensively described by a full 

3D study of the exosphere presented here. The 3D Mars Thermosphere General Circulation 

Model (MTGCM) [e.g. Bougher et al., 2006, 2009] provides all necessary 

thermospheric/ionospheric parameters as a set of inputs to the 3D kinetic particle simulator, 

AMPS [Tenishev et al., 2008]. The framework of the coupled Mars-AMPS and MTGCM codes 

is addressed in detail in Lee et al. [2014a] and Valeille et al. [2009a, 2009b]. The first coupling 
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of the 3D AMPS and MTGCM with the 3D exospheric model has been successfully done to 

study the hot oxygen corona [Valeille et al., 2009a, earlier version of the current model].   

 

V.2. Characterization of the sources of hot carbon  

V.2.1. Temperature and global winds 

 A strong coupling between the Mars lower and upper atmosphere has been confirmed by 

analysis of the aerobraking data from the Mars Global Surveyor (MGS) and Mars 2001 Odyssey 

(ODY) Accelerometer [Bell et al., 2007; Bougher et al., 1999, 2004, 2006; Forbes et al., 2002; 

Forget et al., 2009; Keating et al., 2003; Wilson, 2002; Withers et al., 2003]. Several physical 

processes also drive the solar cycle and seasonal variations of the Martian exospheric 

temperatures in the upper thermosphere and exosphere of Mars (at/above ~160 km). The dayside 

heat balance is primarily achieved by solar EUV-UV heating and molecular thermal conduction, 

with rather weak influence of CO2 15-µm cooling [Bougher et al., 1990, 1999, 2009, 2014a]. 

Mechanical adiabatic heating and cooling due to upwelling (dayside) and downwelling 

(nightside) motion from the global thermospheric circulation (including impact of tides and 

gravity waves) play a relatively important role in the thermospheric structure [Bougher et al., 

1990, 1999, 2000, 2009, 2014a]. 
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       (a) 

  

            (b)             (c) 

Figure 5.1. (a) Neutral temperatures (Tn) near 200 km and density profiles of (b) neutral and (c) 
ion background species for three different SZA along the equatorial east (0°, solid; 60°, dashed; 
80°, dotted) for the low solar and equinox case. Global wind magnitudes and directions are 
indicated as grey arrows. The highest temperature is ~270 – 280 K and shown in dark red. The 
contour shows the temperatures in units of K. In the profiles: CO (triangle), O (empty circle), 
CO2 (filled circle), CO+ (plus sign), O2

+ (triangle), and electron (filled circle). 
 
 
 

The background thermosphere and ionosphere are supplied by the MTGCM for 

corresponding solar activity and orbital position cases. According to this atmospheric input, the 

temperature of the Martian atmosphere increases slowly and becomes isothermal above ~160 - 
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200 km altitude (dependent on season), located near the bottom of the exosphere. The map of 

neutral temperature for the low solar activity and equinox case in figure 5.1a shows the high 

temperatures along the terminators and near the polar regions and the low temperatures in low 

and middle latitudes on the nightside. The highest temperature located near the North pole on the 

morning terminator is about 270 K, and the lowest temperature is about 110 K located near the 

anti-subsolar point and high latitudes on the southern hemisphere. The high latitude region and 

most of the dayside region are found to display the global average exospheric temperature of 

about 170 K. The Coriolis forces on the atmospheric circulation (as influenced by the planetary 

rotation) are evident; the zonal flow is minimum at the evening terminator and maximum at the 

morning terminator. Thermal lag, like that of Earth, appears as the offsets of peak temperatures 

from the subsolar point toward the mid-afternoon [e.g., Bougher et al. 1999, 2000]. The “heat 

island” is also shown (at about local time (LT) = 0200), which is due the convergence and 

adiabatic heating from subsiding flow by the modified thermospheric winds [Bougher et al., 

1990]. 

The input background atmosphere for this work consists of 3 neutral species (O, CO2, and 

CO) and 3 ionospheric species (e-, O2
+, and CO+). Their densities are provided from 135 km to 

200 km, as mentioned previously in the framework description (chapter 3). Altitude profiles of 

the densities of thermosphere and ionosphere species are presented in figure 5.1b and 5.1c, 

respectively, for several different solar zenith angles. The local variation of the background 

temperatures influences the distribution of the local background densities. As a result, the scale 

heights of the neutral and ion densities profiles become larger as solar zenith angle increases. 

This scale height variation is larger along a meridian than along the equator, due to the larger 
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temperature variation (about a factor of 1.5 between polar region and equator regions) for the 

equinox condition, the specific orbital position considered in this work. 

 

V.2.2. Background neutral atmosphere / CO density distribution comparison with O and 

CO2 

 The major neutral constituents in the upper Martian thermosphere and exosphere are O 

atoms and CO2 molecules. CO2 is the dominant neutral species in the lower thermosphere up to 

an altitude of about 180 - 220 km, depending on the solar activity. Because of the mass 

difference, the O density (having a larger scale height) surpasses the CO2 density and becomes 

the dominant species in the upper thermosphere. As shown in figure 5.2b, the maximum 

densities of CO2 are situated in middle latitude in the North on the evening terminator and at 

high latitude near the pole regions. The O density reaches its maximum on the nightside, from 

about midnight to LT = 0400 from low to middle latitude due to the strong convergence of the 

global wind system, whereas the minima are in the regions where the winds are weak or 

diverging (i.e., on the dayside from low to middle latitude, figure 5.2a). While the CO2 density is 

well distributed spatially in accordance with the neutral temperature distribution (i.e., the 

maxima and minima are in the locations of high and low temperatures, respectively), O atoms 

are more efficiently transported by the atmospheric circulation due to their relatively lighter mass 

compared with CO2. As shown in figure 5.2a and 5.2b, the spatial variation of the O density 

shows anticorrelation with that of the CO2 density since the O density tends to be more 

responsive to the global wind system than the background temperature. 

 

 



	
  
80	
  

 

                    

                                (a)                                                                        (b) 

                                           

                                              

        (c) 

Figure 5.2. (a) Thermal O, (b) thermal CO2, and (c) thermal CO density distributions for the low 
solar and equinox case near 200 km. The density is read as “(number on the contour) × 106 cm-3.” 
The maximum densities are ~ 210 × 106 cm-3, 880 × 106 cm-3, 47 × 106 cm-3 for O, CO2, and CO, 
respectively, and are shown in dark red. 
 
 
 
 Carbon monoxide is one of the major neutral molecules and an important source of hot 

carbon as it is photodissociated by solar EUV in the upper thermosphere. As shown in figure 

5.2c, the global distribution of CO exhibits features that reflect a mixture of the O and CO2 

distributions - more like CO2 since CO is heavier than O, but slightly lighter than CO2. The 
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maxima of the CO density coincide with those of the CO2 distribution (figure 5.2b) plus some of 

the O maxima locations (figure 5.2a) in middle latitudes on the nightside. The minima are also in 

the low temperature and the diverging wind regions. The altitude profile of the CO density 

(figure 5.1b) shows the variation of the local density scale height at different solar zenith angles. 

The local scale height of CO density varies more along a meridian than along the equator. The 

local background temperature varies by about a factor of 1.5 from the subsolar point to the 

region near the North Pole. The corresponding local scale height of CO increases by a factor of 

~1.3 as solar zenith angle increases. When the solar activity increases, the upper atmosphere 

absorbs more solar EUV flux and develops higher temperatures, stronger vertical winds, 

resulting in an expansion of thermosphere and enhancement of densities (i.e., increase of scale 

heights). More detailed study on this solar cycle and seasonal variability in the thermosphere and 

ionosphere is discussed in chapter 6 (also in the submitted journal article Lee et al. [2014b]).   

 

V.2.3. CO+ ionospheric peak and its distribution compared with O2
+ 

The major species in the Martian ionosphere, O2
+, is produced through photodissociation 

of the major neutral species, CO2, and charge exchange between CO2
+ and O. Valeille et al. 

[2009a] showed that the horizontal distribution of O2
+ density maxima are situated at the 

locations of CO2 density maxima, where the peak density is found deep in the dayside 

thermosphere. Like O2
+, CO+ is a molecular ion, which follows a similar distribution pattern and 

variations with the solar cycle and seasons. The production of CO+ is closely related to the 

densities of CO2, the major background species below ~200 km altitude, and CO. The main 

source reactions in the Martian ionosphere are photoionization of CO and photodissociative 

ionization of CO2, 
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                                   CO+ ℎ𝜈 → CO! + 𝑒,      (5.1) 

            CO! + ℎ𝜈 → CO! + O+ 𝑒.      (5.2) 

CO+ is also produced by electron impact ionization of CO and electron impact 

dissociative ionization of CO2. However, these last two reactions are not presently included in 

the MTGCM.  

The major loss reaction of CO+ ions is charge exchange between CO+ and CO2, 

        CO! + CO! → CO!! + CO,      (5.3) 

which is a fast reaction. Charge exchange with O is another loss mechanism that removes CO+ 

ions more effectively at higher altitude, where O is a major background species. As shown in the 

altitude profiles of the background densities from the input model (figure 5.1c), the major 

production of CO+ takes place where the parent molecules, CO and CO2, are abundant. At lower 

altitude regions, CO+ ions are produced from the main source reactions and removed dominantly 

by charge exchange with CO2. The CO+ density keeps increasing up to an altitude of ~180 km 

(for the equinox and solar minimum case), because the rate of the loss process by charge 

exchange between CO+ and CO2 decreases faster than the rate of the production by 

photoionization of CO, while the loss process by O is negligible. At higher altitudes, the 

production rate by CO photoionization decreases faster than the dominant loss process rate by O 

(charge exchange with O), resulting in the CO+ density decrease with altitude. The peak height 

of CO+ varies as solar zenith angle increases and as solar activity and orbital position changes. 

As mentioned earlier, for the low solar activity and equinox case, the peak height is generally 

located above 200 km altitude because the effect of loss mechanisms on the net CO+ density is 

minimized. Consequently, dissociative recombination of CO+ is a nonnegligible source of 

nonthermal escape of hot carbon in the upper thermosphere and exosphere of Mars. On the 
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dayside, the existence of the CO+ ionospheric peak in the upper thermosphere implies that the 

overall global escape rate of hot carbon resulting from dissociative recombination of CO+ is quite 

sensitive to the background conditions (i.e., Te, Tn, Ti, and n(CO+)) near/above ~200 km.  

 The MTGCM assumes photochemical equilibrium when solving for the ionosphere of 

Mars. Above an altitude of 200 km, the densities of all the ions are extrapolated in Mars-AMPS 

without considering ion transport. Ion transport at higher altitude strongly influences O+, the 

major ionospheric species above about 200 km. O2
+ as well as CO+ densities also diffuse by ion 

transport at higher altitude. The extrapolated CO+ density in the model already takes into account 

ion transport indirectly, since the referenced ion density profiles impose the upward velocity 

above an altitude where ion transport is important. 

Figures 5.3b and 5.3c show the horizontal distribution of electron and O2
+ densities near 

200 km. These spatial distribution patterns resemble the neutral temperature distribution pattern 

on the dayside only, while CO+ density pattern (figure 5.3a) shows the inverse relation. As for 

the altitude profile, the horizontal distribution of CO+ is also linked to that of the parent 

molecules, CO and CO2. The local CO+ ions are effectively removed by the fast charge exchange 

with CO2 and O. As a result, the spatial distribution of CO+ displays anticorrelation with O and 

CO2 distribution patterns.  
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  (a)                  (b) 

  

        

       (c) 

Figure 5.3. Density distributions near 200 km of (a) CO+, (b) electron, and (c) O2
+ for the low 

solar and equinox case. The density is read as “(number on the contour) × 103 cm-3.” The 
maximum densities are ~ 41 × 103 cm-3, 45 × 103 cm-3, 35 × 103 cm-3 for CO+, electron, and O2

+, 
respectively, and are shown in dark red. 
 
 
 

The production rate of hot carbon from dissociative recombination of CO+ is controlled 

by three factors: CO+ and electron densities and the dissociative recombination coefficient, 

which varies as 𝑇!!!.!!. Indeed, the hot carbon density peaks where the CO+ density maxima and 

electron temperature minima are located. The maximum and minimum electron densities are 
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situated approximately at high and low neutral temperature regions. This is an additional 

implication of the analysis of the MGS occultations by Bougher et al. [2001, 2004], which 

showed that electron density peak heights could be a proxy for the longitudinal variations of the 

underlying neutral atmospheric structure over the seasons. 

 

V.3. Model results and discussion 

The global distribution of hot carbon resulting from the two main source reactions, 

photodissociation of CO and dissociative recombination of CO+, is simulated. The coupled 3D 

Mars-AMPS and the 3D MTGCM codes provide a detailed description of the variations of the 

macroscopic parameters from a local to global perspective, which is essential for understanding 

the Martian hot exosphere more precisely and practically. As for the purpose of this work, the 

following discussion will investigate the different responses from the different source reactions 

and the spatial variation of the hot carbon corona for the specific solar condition and Mars 

season, low solar activity and equinox (F10.7 = 70; Ls = 180°). 

 

V.3.1 Effects of the 3D thermosphere/ionosphere  

As mentioned already, the hot carbon exosphere has been observed at Venus but not yet  

at Mars. Previous modeling efforts [e.g., Fox and Hać, 1999; Nagy et al., 2001] have estimated 

and simulated the global loss of carbon. However, the previous models have lacked the important 

influences of the thermospheric and ionospheric structures and their variability, which can only 

be described by the 3D features of the atmosphere. These 3D features include the planetary 

rotation, global scale dynamics, sharp gradients near the terminators, hemispheric asymmetries, 

and polar warming effects. Mars rotates at a speed that is comparable to the average 
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thermospheric wind speed (zonal and meridional winds), which is about 240 m/s. This speed is 

fast enough to enable the rotation to be as effective (to the same degree) as the thermospheric 

winds for impacting the hot particle motion in the upper atmosphere, the structure of hot density 

profiles and, in turn, the return flux of hot particles back to the thermosphere [Valeille et al., 

2009a]. As mentioned earlier in this chapter, the full 3D description of hot corona using 3D 

thermosphere/ionosphere inputs allows one to capture more realistic features resulting from the 

main source mechanisms and interactions between hot species and the Martian upper 

atmosphere.  

In addition to the effect of the planetary rotation and thermospheric winds, the spatial 

variation of hot carbon production is determined by the local thermospheric and ionospheric 

features. The production rate of hot carbon from photodissociation of CO follows the horizontal 

distribution of CO density. As mentioned, due to its slightly lighter mass (than that of CO2), the 

distribution of thermal CO molecules exhibits the characteristics of both CO2 and O, which are 

more responsive to the background temperature and the atmospheric circulation, respectively 

(section V.2.2, figure 5.2). In the same sense, different ionospheric asymmetries for the different 

ion species uniquely affect the spatial variations of the dissociative recombination of CO+ 

production rate (section V.2.3, figure 5.3). 
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      (a)                           (b) 

         

      (c)                            (d) 

Figure 5.4. Latitude/longitude variations of simulated hot C density near 200 km in units of log 
density (cm-3) produced from photodissociation of CO using 1D (a) and 3D (b) atmospheric 
inputs and from dissociative recombination of CO+ using 1D (c) and 3D (d) atmosphere inputs. 
 
 
 

Figure 5.4 shows the hot carbon density distributions by two source reactions 

(photodissociation of CO and dissociative recombination of CO+) simulated with the atmosphere 

that is spherically symmetric over the dayside (1D, figure 5.4a and 5.4c) and full 3D atmospheric 

inputs (figure 5.4b and 5.4d). For the purpose of comparison between the effects of 1D and 3D 

atmospheric input, a column of atmosphere from the 3D atmospheric input at SZA 60° is 

extracted and distributed over the entire dayside. This particular column of the atmosphere is 
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chosen by assuming that the atmosphere at SZA 60° is the representative of the average over the 

dayside. Except for the small fluctuation of the density caused by the statistical noise in the 1D 

computation, the full 3D atmosphere input case evidently displays many important local features 

that the dayside-averaged case does not display.  

As expected, the hot carbon density produced by photodissociation of CO (figure 5.4b) is 

spatially distributed in a pattern that is similar to the thermal CO distribution. The hot carbon 

atom production is continued onto the nightside (over the polar regions) except in the regions of 

the planet’s shadow. Most of the escape happens on the dayside and is enhanced along the 

evening terminator, near the polar regions, and in middle and high latitudes on the morning 

terminator due to the subsiding atmospheric flow that impacts CO density.  

The hot carbon resulting from dissociative recombination of CO+ (figure 5.4d) is 

characterized by its local maximum escape located near the equator on the morning terminator, 

where the maxima of CO+ density and the minima of electron temperature are located. The 

overall spatial distribution is very different from that of the hot oxygen, which is produced by 

dissociative recombination of O2
+ (the major ion). 

 

V.3.2. Hot carbon density 

Hot carbon atoms are produced through various possible source mechanisms. As 

discussed in chapter 4, the majority of hot carbon is produced by photodissociation of CO. In this 

study, the next nonnegligible source is assumed to be dissociative recombination of CO+ in this 

study. The different source reactions contribute different features to the Martian hot carbon 

corona along with the inherent planetary physics (e.g., planetary rotation, orbital position).  
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Figure 5.5. Sun-Mars meridian plane view of hot C density with the Sun on the left from (a, 
upper left) photodissociation of CO and (b, upper right) dissociative recombination of CO+ and 
tail-to-Sun view of hot C density from (c, lower left) photodissociation of CO and (d, lower right) 
dissociative recombination of CO+ for the solar low and equinox case.. The contours show the 
hot C density (cm-3) in log scale.  
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One example of the characteristic features on the shape of hot corona related to the 

source reactions is shown in figure 5.5c and 5.5d. Unlike the near-symmetrical shape of hot 

corona (in tail-to-Sun view) in the photodissociation of CO case, dissociative recombination of 

CO+ case displays a pronounced density enhancement on the morning terminator.  

Figure 5.5 presents the hot carbon corona computed separately by each source reaction. It 

is logical to expect the overall shape of hot corona in the meridional plane to exhibit the 

nonaxisymmetric oblong shape. Since both source reactions are photochemical mechanisms, the 

density distributions from both reactions enhance globally over the dayside, decreasing 

exponentially with increasing distance from the planet. The sharp density gradients over the 

polar regions are shown where the hot density increases slightly near the terminators and 

decreases abruptly on the nightside. The production of hot carbon does not take place on the 

nightside, but the nightside hot population exists in the simulated results due to the hot carbon 

produced on the dayside, impacting the nightside and scattering back upward, or ‘bouncing’ as 

described by Valeille et al. [2009a]. The maximum hot carbon density produced by 

photodissociation of CO (figure 5.5a) on the dayside is ~3 × 102 cm-3 near the terminators. The 

density decreases by about an order of magnitude on the nightside. The dissociative 

recombination of CO+ case also has similar diurnal variation but with the density maximum of ~1 

× 101 cm-3 (figure 5.5b).   
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   (a) 

 

(b) 

Figure 5.6. Density profiles of hot C (solid) and the fraction of hot C that have their velocity 
larger than the local escape speed (filled circle, Vesc) resulting from (a) photodissociation of CO, 
and (b) and dissociative recombination of CO+ for different SZA (30° (solid), 60° (dash-dot-dot), 
and 85° (dotted)) for the solar low and equinox case. Hot C profiles are extracted North poleward 
(along the noon meridian) for the photodissociation of CO case, and along the equatorial west for 
the dissociative recombination of CO+ case. 
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The structure of the hot carbon density profile at lower altitudes is affected mostly by the 

thermospheric winds and planetary rotation. Figures 5.6a and 5.6b show the density profiles of 

the hot carbon produced from photodissociation of CO and dissociative recombination of CO+, 

respectively, for the different solar zenith angles. In each plot, the hot carbon density is 

calculated with two different settings for Vthreshold; twice the local thermal speed as usual and the 

local escape speed specifically to obtain the fraction of the total hot carbon population. The hot 

density from both source reactions peaks above ~270 km altitude for the low solar activity and 

equinox case. The peak altitude of the hot carbon density increases from about 250 km to 300 km 

as the solar zenith angle increases since the altitude of the source peaks (thermal CO and CO+) 

increases with solar zenith angle. The nascent hot carbon that exceeds the local escape speed is 

~10% of the local hot carbon population near the peak altitude of hot carbon density for both 

source reactions. 

Thermal atomic carbon is one of the minor neutral atoms in the Martian atmosphere. 

According to figure 5 in Fox [2004] (density profiles of the minor neutral species for the low 

solar activity model), the peak altitude of the thermal carbon density is at ~140 km altitude, and 

the density decreases to about 2 × 102 cm-3 at 400 km. Compared to the modeled hot carbon 

density, which peaks at around 250 - 300 km, the thermal C dominates the carbon population 

over hot C by more than about 2 orders of magnitude near 200 km. Since the 

thermosphere/ionosphere input model does not simulate thermal C, the thermal (cold) C profile 

is estimated by using the Chamberlain model [Chamberlain, 1963] (figure 5.7). As a parallel 

study of the total O density profile by Valeille et al. [2010a], figure 5.7 shows the altitude 

profiles of hot and cold C for the approximated transition region, where the C population makes 

transition from the cold to the hot dominated regimes. This transition region is considered to be 
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between 230 km – 900 km for the C population for the case considered in this work. The altitude 

of this region is expected to vary with solar activity or orbital position. The ratio of hot C to cold 

C densities is estimated to become over 1 above the altitude of about 550 km. Therefore, the total 

carbon population below about 500 km altitude is considered to be dominated by thermal C.  

 

 
 
Figure 5.7. Total C (solid) density profile for the solar low and equinox case. Density profiles of 
the hot C produced from photodissociation of CO (solid, square) and dissociative recombination 
of CO+ (dash-dot-dot, square) are extracted at SZA 60°. Thermal C (cold C) density profile 
(solid, triangle) is estimated by using the Chamberlain model. The cold C/hot C ratio is shown in 
black dash line. 
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 Figure 5.8 presents the escape flux computed for each source reaction at 3 Mars radii as a 

function of solar zenith angle. Although hot carbon production does not take place on the 

nightside, the effect of gravity and the ubiquitously cumulative collisional interaction in the 

transitional region result in the escape flux over the nightside (bouncing effect). 

 

 

Figure 5.8. Escape fluxes of hot C produced by two sources, photodissociation of CO (solid) and 
dissociative recombination of CO+ (dash-dot-dot), are calculated at different locations around the 
planet as a function of SZA at an altitude of 3 Mars radii. Computations have been done over the 
equatorial east (EQE, red), the North pole (NP, orange), and the South pole (SP, green).  
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Escape Flux 
(104 cm-2 s-1)a Solar Zenith Angle (SZA) 

 
 

Photodissociation 
of CO 

 
Dissociative 

recombination of 
CO+ 

30° 60° 90° 120° 150° 
 

6.63 
 

6.60 
 

5.56 
 

4.11 
 

2.64 

 
0.74 

 
0.68 

 
0.58 

 
0.40 

 
0.28 

Table 5.1. Escape fluxes of hot carbon from two sources at different solar zenith angles at an 
altitude of 3 Mars radii.  
 

a Fluxes are in 104 cm-2 s-1, computed over the equatorial east direction. 
 
 
 
 Three different extreme locations are chosen to compute the escape fluxes: equatorial 

eastward, North poleward (along the noon meridian), and South poleward (along the noon 

meridian). Since the local parameters are averaged over a larger area as the distance from the 

planet increases, the interhemispheric variation is negligible in the computation. The tabulated 

escape fluxes (table 5.1) with respect to SZA in 30-degree increments show that the diurnal 

difference is about a factor of 3.2 for both source reaction cases. The effect of photodissociation 

mechanisms on the escape flux is about an order of magnitude larger than that of dissociative 

recombination.  

The hot carbon corona is visualized in 3D in figure 5.9. The iso-surfaces at different 

altitudes exhibit the near-spherical shape of the distribution over the dayside and abrupt decrease 

over the terminators and nightside. The shape of iso-surface shows the lesser degree of the 

oblong appearance with the increasing distance from the planet. 
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Figure 5.9. 3D view of hot carbon corona with the Sun in the direction in which the orange 
arrow points. The white arrow points to the North pole of the planet. Three iso-surfaces represent 
the log density of hot carbon density surfaces both from photodissociation of CO and 
dissociative recombination of CO+. Iso-surfaces are at log10 (cm-3) = -0.5 (~0.3 cm-3), 0.2 (~1.6 
cm-3), and 1.2 (~15.8 cm-3). 
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Chapter VI 

Hot carbon corona  

– Solar cycle and seasonal variability 

 In order to study the variation of the hot carbon corona for different solar cycle and 

seasons, two solar activity (low and high solar activities) and three seasons (aphelion, equinox, 

and perihelion) are pre-simulated by the atmospheric model. This chapter addresses the 

variability of the upper atmosphere and exosphere that is relevant to the production and 

thermalization of hot C. The global escape rates of C and model comparison will follow.  

 

VI.1. Solar cycle and seasonal variability 

In this study, the solar cycle and seasonal variability of the hot carbon corona are first 

simulated with the MTGCM (yielding thermosphere and ionosphere fields), utilizing parameters 

specifically chosen for the Martian seasonal and solar cycle conditions. The two solar cycle cases 

considered are for low (F10.7 = 70) and high (F10.7 = 200) solar activity conditions. The seasons 

are represented by three different orbital positions of Mars: aphelion (L! = 70°), equinox 

(L! = 180°), and perihelion (L! = 250°) corresponding to summer, autumn, and winter in the 

northern hemisphere, respectively. The coupled MTGCM and Mars-AMPS simulations are 

categorized into five cases: perihelion solar low and high (PL and PH), equinox solar low and 

high (EL and EH), and aphelion solar low (AL). The solar cycle variability is effectively 

evaluated by a comparison between the solar low and high cases (EL and EH or PL and PH). 
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Since the aphelion case does not have a solar high condition, the seasonal variability is evaluated 

by a comparison of solar low cases, AL, EL and PL only.  These cases are the same as those 

explored by Valeille et al. [2009b] for the variation of the hot oxygen exosphere during the 

current epoch. 

 

VI.2. Description of background atmosphere  

VI.2.1. Temperature and wind variation 

 As the F10.7 index increases, the magnitude of the neutral temperature increases, but the 

horizontal distributions of the low and high temperature regions do not change, for example, as 

shown in the EH (figure 6.1c) and EL (figure 6.1b) cases. According to Bougher et al. [1990, 

1999, 2009], the Mars thermospheric circulation serves as an efficient thermostat that regulates 

the dayside temperature driven by solar EUV heating. Global winds play a vital role in 

modifying thermospheric temperature [Bougher et al., 2000]. Upwelling diverging winds 

adiabatically cool the dayside, and subsiding converging winds heat the nightside. This 

effectively redistributes the heat in the day-night flow, reducing the enhancement of the diurnal 

contrast. The larger contrast seen in the contour plots on the dayside implies the faster response 

of the dayside temperature to the advance of the solar cycle, which increases the temperature by 

about 80 – 100 K, while the nightside temperature increases by about 40 – 50 K.  

 Much more than on Earth, the Martian seasons are defined also by the change in 

heliocentric distance, due to its highly elliptical orbit as well as its rotational axial tilt. Over the 

course of the Martian year, the solar EUV flux reaching the top of the thermosphere varies by 

about ±22% according to the axial tilt of ~25° [Bougher et al., 1999].  As a result, the 

temperature and global circulation structures change significantly. The peak dayside (low SZA) 
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temperatures vary from about 180 K for the AL case (figure 6.1a) to about 230 K for the PL case 

(figure 6.1d). The high temperature regions are situated in the middle latitudes LT = 1000 for the 

AL case. For the EL case (figure 6.1b), the high temperature region expands to the morning and 

evening terminators and the high latitudes near the polar regions and emerges toward the 

southern hemisphere for the PL case with the highest temperatures located in the middle latitudes 

on both hemisphere. With the minimum solar flux and the largest heliocentric distance, the zonal 

and meridional wind gradients in the AL case are much weaker than those of the other seasons, 

due to the less pronounced day-night pressure gradient. As a consequence, diurnal temperature 

variation is about 80K for the AL case, while this variation is larger in the PL case, which it is 

about 120 K.  
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(a) 

 

(b)      (c) 

 

   (d)       (e)  

 

Figure 6.1. Neutral temperatures (Tn) for the (a) AL, (b) EL, (c) EH, (d) PL, and (e) PH cases. 
The effects of global circulation are indicated by the white streamlines. The contours show the 
temperatures in units of K. 
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VI.2.2. Neutral atmosphere variation / CO density distribution 

 CO2 is the major neutral species in the Martian thermosphere up to an altitude of between 

~180 – 220 km, depending on solar activity and season. As discussed in detail in Lee et al. 

[2014a] and in chapter 5, O becomes more responsive to the global atmospheric circulation than 

does CO2, resulting in an enhanced O population on the nightside, where the convergence and 

downwelling of the circulation occur. CO is an important neutral species that also exhibits 

density enhancement on the nightside (like the O density). However, in general, CO responds 

more closely to the local background temperature distribution (like the CO2 density).  These 

different global responses from different neutral species uniquely define their own horizontal 

distributions, which are important for the overall structure and shape of the thermosphere, 

ionosphere, and hot corona. 

Figure 6.2a shows the horizontal distributions of O, CO2, and CO for the EL and EH 

cases at an altitude near 200 km. The CO density is spatially distributed in a pattern that 

combines features of both the O and CO2 density distributions. For the low solar activity case, 

the maxima of the CO density are located near the polar regions on the morning terminator, 

while the minima are situated mostly on the nightside at low latitude region. When solar activity 

increases, the spatial distribution retains much the same pattern, but the whole thermosphere is 

enhanced by the solar EUV flux, resulting in an increase in the CO density of about a factor of 

2.1 – 3.1.  
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(b) 

Figure 6.2. Thermal O (top), CO2 (middle), and CO (bottom) density distributions for (a) the AL 
and PL cases, and (b) for the EL and EH cases. 
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 The seasonal influence is quite strong on the spatial distributions of the neutrals.  Two 

extreme cases, the AL and PL cases, for O and CO2 are shown in Figure 6.2b. For the AL case, 

the O concentration reaches a maximum at the south pole, which is the winter pole during 

aphelion, while the CO2 concentration has its maximum near the north pole. For the PL case, the 

O maximum is located near the north pole, the winter pole during perihelion, on the nightside, 

and the CO2 maximum is on the dayside near the south pole. These characteristic special 

distributions of O and CO2 also appear in the CO distribution pattern. The maxima and minima 

of CO2 and CO are correlated in most of the places over the seasons.  

 Figure 6.3 shows the seasonal variation of the O mixing ratio, O/(O+CO2). The white 

streamlines indicate the atmospheric circulation (global winds). The overall bulk flow of the 

atmosphere is the summer-to-winter interhemispheric flow during both perihelion and aphelion, 

with an upwelling vortex circulation toward the summer pole. This flow converges in the winter 

polar region on the nightside. The adiabatic heating from this subsiding flow is dominant during 

perihelion, due to the stronger meridional winds, which results in the Martian thermospheric 

winter polar warming [Bougher et al., 2006].  

 

 

 

 

 

 



	
  
105	
  

 

(a) 

 

(b) 

 

Figure 6.3. Thermal O mixing ratio, O/(O+CO2), for the (a) AL case and the (b) PH case. White 
streamlines indicate the global winds. 
 
 
 
VI.2.3. CO+ ionospheric peak and its distribution compared with O2

+ 

The CO+ ion distribution differs from that of the major ion, O2
+, in several ways. The 

CO+ ionospheric peak is located above an altitude of approximately 210 km and 240 km for low 

and high solar activity, respectively. Compared to the O2
+ peak height (~135 km), the CO+ 

density near its peak height is more sensitive to solar activity variation since the density peak is 

situated where the solar EUV radiation is more effectively absorbed by the background 


