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ABSTRACT 

 

 

Protein kinases are key mediators of cellular signal transduction and are heavily 

studied drug targets.  Greater than 99% of reported kinase inhibitors act through the same 

mechanism of competing for binding to the highly conserved ATP pocket.  Although 

ATP-competitive inhibitors have experienced clinical success, the disadvantages 

associated with them has resulted in significant interest in the discovery of inhibitors that 

target regions outside of the ATP binding pocket, such as the protein substrate binding 

site.  However, the identification of compounds that can inhibit the kinase-substrate 

protein-protein interaction has proven challenging, especially for small molecules. To 

address this problem, we developed screening methodology that can identify small 

molecule substrate-competitive inhibitors using the tyrosine kinase c-Src as a model 

system. 

Studies began with the preparation of a library of peptidic inhibitors to evaluate 

tyrosine pharmacophores and generate probes for a competitive binding assay.  No 

peptides with potency suitable for probe development were identified, however important 

structure activity relationships were gleaned for tyrosine pharmacophores.  In a second 

study, a substrate activity screening (SAS) method for tyrosine kinases was developed.  

Using an assay that monitors ADP production, the first small molecule substrates for any 

protein kinase were identified.  By applying knowledge gained from the previous 

pharmacophore study, a small molecule substrate (KM = 122 μM) was then successfully 

converted into a substrate-competitive, ATP-noncompetitive inhibitor (Ki = 16 μM).  The 

lead inhibitor has improved selectivity compared to an ATP-competitive inhibitor 

commonly used as a c-Src probe, and has cellular efficacy similar to FDA approved 

ATP-competitive kinase inhibitors (SK-BR-3 GI50 = 14 μM).  This SAS method is the 

only general screening technique for the selective identification of substrate-competitive 

kinase inhibitors and should be applicable to any tyrosine kinase of interest.  In a final 
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study, substrates identified through SAS were applied to the design of nonpeptidic 

bisubstrate inhibitors.  As a whole, the work presented has demonstrated the importance 

of retaining hydrogen bonding interactions made by the substrate hydroxyl group in order 

to generate potent inhibitors.  Results from this work should advance the discovery of 

new small molecule substrate-competitive inhibitors through both screening and rational 

design.  
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CHAPTER I 

Discovery of Small Molecule Substrate-Competitive Inhibitors of Protein 

Kinases: Screening Approaches and Challenges 

 

Abstract 

Protein kinases are important mediators of cellular communication and attractive 

drug targets for many diseases.  Although success has been achieved with developing 

ATP-competitive kinase inhibitors, the disadvantages of ATP-competitive inhibitors has 

led to an increased interest in targeting sites outside of the ATP binding pocket.  Kinase 

inhibitors with substrate-competitive, ATP-noncompetitive binding modes are promising 

due to the possibility of increased selectivity and better agreement between biochemical 

and in vivo potency.  However, the difficulty of identifying these types of inhibitors using 

high throughput screens has resulted in significantly fewer small molecule substrate-

competitive inhibitors being reported.  This review examines reported screening 

approaches that can identify small molecule substrate-competitive kinase inhibitors, 

including biased activity assays, competitive binding assays, and NMR screening with 

ATP-competitive probes, and discusses the challenges when utilizing these methods. 

 

Introduction 

Protein kinases catalyze the transfer of the gamma-phosphate of ATP to a serine, 

threonine, or tyrosine residue of a substrate protein or peptide.  The human kinome 

includes 518 kinases and accounts for nearly 2% of the human genome.
1
  It is estimated 

that collectively the 518 human kinases can phosphorylate up to one-third of intracellular 

proteins to generate up to 20,000 distinct phosphoproteins.
2
  Phosphorylation of a 

substrate protein by a protein kinase is an important signal transduction mechanism 

within the cell and can yield diverse responses, including activation or deactivation of an 

enzyme, recruitment of adaptor proteins, and changes in cellular localization.
3-6

  Through 
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their involvement in many critical signaling pathways, kinases control processes such as 

cell growth, apoptosis, motility, angiogenesis, metabolism, and inflammation.
7-12

 

 

 

 

Figure 1.1.  Crystal structure of the catalytic domain of Lck (PDB 1QPC).  Highlighted 

are the N-terminal lobe (bright green), the C-terminal lobe (bright blue), the hinge region 

(orange), the phosphate binding loop (olive), the activation loop (dark blue), and the 

gatekeeper residue (red). 

 

 

Illustrated in Figure 1.1 is the conserved structure of the kinase catalytic domain 

which consists of N-terminal and C-terminal lobes connected by a short loop termed the 

hinge region.
13-14

  The smaller N-terminal lobe is composed of five anti-parallel β strands 

and one α helix, and the larger C-terminal lobe is composed of eight α helices and four β 

strands.  The region between the N-terminal and C-terminal lobes and the hinge region 

forms a deep hydrophobic cleft that contains the ATP-binding site.  ATP makes several 

key hydrogen bonds to the backbone of the hinge region which facilitate binding within 

the pocket.  Additionally, the phosphate binding loop forms the ceiling of the ATP 

binding site and clamps down over the phosphate groups to orient them for catalysis.  The 

protein substrate binding site is located within the C-terminal lobe.  Also located in the C-
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terminal lobe is the activation loop.  Many kinases are phosphorylated within this loop, 

which then undergoes a conformational change to activate the kinase and allow access to 

the substrate binding site.  In addition to the catalytic domain, kinases may contain other 

regulatory domains which vary across the kinome and have diverse roles including 

modulating catalytic activity, recruiting substrates, controlling localization, and serving 

as scaffolding sites for other proteins.
15-17

 

Due to the key roles of kinases in critical signaling pathways, the dysregulation of 

kinase activity has been linked to over 400 diseases including many cancers, autoimmune 

disorders, inflammation, and diabetes.
18-20

  As a result, kinases are highly studied drug 

targets and constitute the largest drug target class after GPCRs.
21

  The first kinase 

inhibitor received FDA approval in 2001, and currently over 20 kinase inhibitors have 

been approved, mostly for use in oncology.  Although there are two binding sites within 

the catalytic domain of kinases, greater than 99% of reported kinase inhibitors, including 

all of the currently approved kinase-targeting drugs for oncology, inhibit kinase activity 

via competition for the ATP binding site.
22

  The heavy focus on ATP-competitive 

inhibitors can be largely attributed to the relative ease with which these inhibitors were 

identified, initially through the design of adenosine analogues and later using techniques 

such as high throughput screening (HTS) and structure based drug design.  The success 

of these approaches is directly related to the well-defined structure of the ATP binding 

pocket, which makes it well-suited for binding small molecules.
13

  Conversely, the 

substrate binding site is a shallow, open surface in order to facilitate the kinase-substrate 

protein-protein interaction.
23

  The differences between these two binding sites are 

demonstrated in Figure 1.2, which shows the structures of the tyrosine kinase IRK and 

the serine/threonine kinase Akt crystalized with ATP mimics bound to the ATP binding 

pocket and peptidic ligands bound to the substrate site.  In both structures, the ATP 

mimic nestles deeply into the ATP cleft; in contrast, the peptide substrate mimic sits in a 

much shallower, solvent exposed cleft. 
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Figure 1.2. Comparison of the ATP and substrate binding sites for (A) the tyrosine 

kinase IRK (PDB 1IR3) and (B) the serine/threonine kinase Akt (PBD 1O6K).  ATP-

competitive ligands are shown in green and substrate-competitive ligands are shown in 

orange.   

 

 

Although many ATP-competitive kinase inhibitors have been described and several 

have proved successful in the clinic, there are drawbacks to these inhibitors that should 

be considered.  First, the kinase ATP pocket is highly conserved across the kinome 

leading to poor selectivity of most ATP-competitive kinase inhibitors.
24-26

  Off-target 

binding can result in additional toxicity of these compounds in the clinic and also 

prevents the use of most ATP-competitive inhibitors as biological probes.  In addition to 
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selectivity concerns, ATP-competitive inhibitors must contend with intracellular ATP 

levels that are typically in the millimolar range, while the ATP KM values for most 

kinases are in the low micromolar range.  As a result of this, there is usually poor 

agreement between biochemical and cellular potency for ATP-competitive inhibitors, and 

a high affinity compound (typically nanomolar to picomolar) is required in order to see 

activity in vivo.
24, 27

  Finally, the rapid and common development of ATP pocket 

mutations, such as mutations of the “gatekeeper” residue that regulates access to a back 

hydrophobic pocket within the ATP site, confer resistance to ATP-competitive 

inhibitors.
28-29

  Due to these considerations, increased attention has been placed on 

developing inhibitors that target the protein substrate binding site.  Unlike the ATP 

binding site, the substrate binding site is less conserved between different kinases, thus 

offering the chance for improved selectivity.  Additionally, because kinase substrates are 

typically present at or below their KM value in vivo, a high biochemical affinity is not 

always required to yield in vivo activity.
30

   

Despite the potential benefits and the considerable effort put towards identifying 

substrate-competitive inhibitors, thus far their development has seen only limited success.  

The majority of reported substrate-competitive inhibitors are peptides which were either 

rationally designed from peptidic substrates or discovered from screens of combinatorial 

libraries generated using one-bead-one-compound techniques or phage display.
31-33

  Due 

to their peptidic nature, these inhibitors typically have poor cellular permeability and 

stability, and these features make them undesirable for use as biological probes or 

therapeutics.  While the development of small molecule substrate-competitive inhibitors 

would address the problems associated with the peptidic inhibitors, the discovery of such 

inhibitors has proved incredibly challenging.  As discussed, traditional HTS approaches 

have rarely yielded substrate-competitive inhibitors.  This is a consequence of the lack of 

a well-defined pocket in the substrate site, as well as the fact that HTS libraries are often 

highly biased towards small, flat, heterocyclic molecules that are more likely to function 

as ATP-mimics than as peptidomimetics.
34

     

In the last decade, reports of small molecule ATP-noncompetitive inhibitors (both 

substrate-competitive inhibitors and allosteric inhibitors) have increased.  These 

inhibitors have been identified using a wide variety of methods ranging from high 
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throughput screens to rational design and virtual screening.  Although approaches 

utilizing structural data have been successful in identifying substrate-competitive 

inhibitors for several kinases, these methods are not readily applicable to any target of 

interest.  Currently less than 15 kinases have been crystalized with a ligand bound to the 

substrate site, and over 300 kinases have no structural data available.
35

  As new drug 

targets continue to be discovered from the greater than 50% of the kinome that is largely 

uncharacterized,  screening methods that do not require structural data and can be widely 

utilized will continue to be important drug discovery tools.
36-37

  This review will survey 

screening approaches that can be applied across the kinome for the discovery of 

substrate-competitive inhibitors, with a focus on the identification of small molecule 

inhibitors.  The benefits and challenges inherent to each of these methods will also be 

discussed. 

 

Activity Based Biochemical Screens 

 Activity based assays have long been the first choice for kinase inhibitor HTS.
38

   

As discussed, these approaches have traditionally been more likely to discover ATP 

competitive inhibitors, and the identification of substrate-competitive inhibitors from an 

activity based HTS was usually serendipitous.  However, several groups have recently 

reported activity-based screens in which the assay conditions were modified to promote 

the identification of ATP-noncompetitive inhibitors.  This was generally accomplished by 

encouraging formation of the enzyme-ATP complex, which was predicted to favor the 

binding of ATP-noncompetitive ligands and discourage the binding of weak and modest 

ATP-competitive inhibitors (Scheme 1.1).  While this approach aims to reduce the 

number of ATP-competitive hits, it can also bias towards the identification of highly 

potent ATP-competitive inhibitors. 

 Liu and colleagues reported a biased activity assay for the identification of ATP-

noncompetitive inhibitors of LRRK2.
39

  Knowledge of the kinetic mechanism and the 

kinetic parameters for LRRK2, coupled with mechanistic simulations, enabled 

determination of initial concentrations of ATP and PLK-peptide substrate which would 

bias towards formation of the enzyme-ATP complex.  A time resolved Forster resonance 

energy transfer (TR-FRET) assay performed under these conditions was used quantify 
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phosphorylation of the PLK-peptide substrate in the presence of potential inhibitors.  

From a screen of 63,400 compounds, 21 hits with IC50 <10 μM were identified. The lead 

compound from the screen is an allosteric inhibitor, as analysis of its effects on the ATP 

and substrate kinetic parameters suggested that it is noncompetitive with both ATP and 

peptide substrate.  

 

 

 

Scheme 1.1.  Biased activity assays use high concentrations of ATP to encourage 

formation of the ATP-bound state.  This discourages the binding of weak to moderate 

ATP-competitive inhibitors.   

 

 

 A similar approach was taken by Lo and coworkers to screen for ATP-

noncompetitive inhibitors of CDK4.
40

  It was predicted that increasing the concentration 

of ATP in the assay to 12-fold above its apparent KM value would bias towards the 

enzyme-ATP complex.  As mentioned earlier, because the assay format also would allow 

for highly potent ATP-competitive inhibitors to be identified, the IC50 values for initial 

hits were determined at ATP concentrations equal to KM and 12-fold greater than KM.  

From a screen of 250,000 compounds, three compounds were identified with potencies 

that were relatively insensitive to ATP concentration, suggesting that they are ATP-

noncompetitive inhibitors.  Additional analysis of the most potent hit (IC50 = 2.4 μM) in 

the presence of increasing concentrations of substrate demonstrated that potency was also 

insensitive to substrate concentration.  Surprisingly, although the lead compound appears 
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to be an allosteric inhibitor of CDK4, it was found to be an ATP-competitive of the 

tyrosine kinase Lck.   

 Our lab has also modified the conditions of an activity-based assay to favor the 

discovery of ATP-noncompetitive inhibitors of c-Src by increasing the concentration of 

ATP.
41

  In one screen, the ATP concentration was increased to 10-fold above its KM value 

and fragment libraries were screened.  Although several hits were identified, the lead 

compound was found to be an ATP-competitive inhibitor.  We then tried to further bias 

the assay conditions by increasing the ATP concentration to 50-fold higher than KM and 

screening against the c-Src T338M gatekeeper mutant.  Because gatekeeper mutations are 

known to cause resistance to ATP-competitive inhibitors, we hypothesized that this 

would also favor the discovery of ATP-noncompetitive inhibitors.  Several hits were 

identified from this screen, and Lineweaver-Burk analysis suggests that the lead inhibitor 

is ATP-noncompetitive and substrate-noncompetitive.    

 These examples highlight that although activity based assays can be biased 

towards identifying ATP-noncompetitive inhibitors, the discovery of substrate-

competitive inhibitors from such assays remains elusive.  Assay conditions that favor the 

identification of substrate-competitive inhibitors will also favor the identification of 

allosteric inhibitors that bind at neither the ATP nor the substrate sites.  Additionally, 

while these modifications discourage ligands with weak to moderate affinity for the ATP 

site, they can also promote the identification of potent ATP-competitive inhibitors.  As a 

result of this, further analysis of each hit will be required in order to determine the 

binding mode.  Overall, it appears that assays monitoring enzyme inhibition will continue 

to be a poor choice for the identification of substrate-competitive kinase inhibitors. 

 In contrast to assays which monitor inhibition of enzymatic activity, the Ellman 

lab has developed a screening approach termed substrate activity screening (SAS) that 

instead identifies molecules that serve as substrates of an enzyme.
42-47

  The identified 

substrates can then be optimized and later converted into inhibitors by replacement of the 

reactive functionality.  A benefit of the SAS method is that because it identifies substrates 

of an enzyme the hits which are converted into inhibitors should inherently be substrate-

competitive inhibitors. The Ellman lab has previously described SAS methodology for 

several proteases and phosphatases, and a group from Novartis recently reported the 
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application of SAS to the discovery of peptidic substrate-competitive inhibitors of c-

Src.
48

  In the SAS method for kinases, optimized peptidic substrates of c-Src were 

identified, and then the reactive tyrosine residue was modified to prevent the 

phosphotransfer reaction, thereby converting the substrate into an inhibitor.  The 

described SAS method is similar to the approach that was previously applied to the 

discovery of peptidic substrate-competitive inhibitors, in which the phosphorylatable 

residue in a known peptidic substrate was replaced to generate a peptidic inhibitor.  As it 

currently stands, the SAS method will not be widely useful for the development of 

substrate-competitive kinase inhibitors since the peptidic nature of the inhibitors will 

limit their use as a biological probes and potential therapeutics; however, the 

development of a non-peptidic SAS method for kinases would enable the identification of 

small molecule substrate-competitive inhibitors. 

 

Competitive Binding Screens 

Although activity-based screens generally have not identified substrate-

competitive kinase inhibitors, binding assays appear better poised for success.  Binding 

assays can be used to either directly detect binding of a ligand to the target, or to 

indirectly detect binding through competitive displacement of a probe.  Direct binding 

assays using surface plasmon resonanace (SPR) and affinity selection mass spectrometry 

(ASMS) have been used to discover ATP-noncompetitive ligands for kinase targets; 

however, these methods are non-biased and ligands can bind to all exposed sites on the 

protein.
49-51

  As such, these screens are similar to activity based screens in that they will 

be far more likely to identify ATP-competitive ligands, and extensive additional analysis 

is required to determine the binding mode of each hit.  In contrast, using a competitive-

binding assay will allow for identifying ligands that bind to a specific site on the target.  

A general scheme demonstrating how competitive binding assays can be used to identify 

substrate-competitive inhibitors is shown in Scheme 1.2.  These assays rely on the net 

displacement of a probe to measure ligand binding, and therefore using a substrate-

competitive probe should enable the exclusive identification of substrate-competitive 

inhibitors.  The net displacement of the probe from the target can be evaluated by 

multiple methods, including fluorescence-based techniques such as fluorescence 
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polarization (FP) and Forster resonance energy transfer (FRET) and biophysical 

techniques such as SPR. 

 

 

 

Scheme 1.2.  Competitive binding assays can be used to identify substrate-competitive 

inhibitors via net displacement of a substrate-competitive probe.  Substrate-

noncompetitive ligands will not displace the probe.   

 

 

Stebbins and colleagues have reported using a  time resolved fluorescence (TRF) 

assay to screen a 30,000 member library for small molecule, substrate-competitive 

inhibitors of JNK.
52

  This screen used a dissociation enhanced lanthanide fluoro-immuno 

assay (DELFIA) platform to evaluate compounds for their ability to disrupt the 

interaction between JNK and a peptidic probe based on JNK-interacting protein 1 (biotin-

(CH2)6-KRPKRPTTLNLF, 1.1).  Probe 1.1 was immobilized via a streptavidin-biotin 

interaction, and dissociation of the GST-JNK and probe complex was evaluated using an 

anti-GST europium antibody.  The lead compound identified from the screen was 

confirmed to inhibit JNK activity (IC50 = 280 nM), and Lineweaver-Burk analysis 

demonstrated that it is competitive with the JNK substrate ATF2.  Further evidence that 

the lead inhibitor binds to the JIP1 interaction site was provided through modeling, 

mutagenesis, and NMR studies. 

Interestingly, fluorescently labeled substrate peptide analogues that could be used 

in competitive binding assays to identify substrate-competitive inhibitors have been 

developed but were not used for this purpose.  For example, Saldanha and coworkers 

used a substrate-competitive probe in a ligand-regulated competition (LiReC) screen to 

identify compounds that modulate the interactions between the catalytic and regulatory 
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domains of PKA, and Tsuganezawa and colleagues used substrate-competitive probes in 

a fluorescent correlation spectroscopy (FCS) assay to identify ATP-competitive inhibitors 

of Pim-1 that also make interactions with residues known to be important for substrate 

binding.
53-54

  While these probes could be used in FP, FRET, or FCS screens for 

substrate-competitive inhibitors of PKA or Pim-1, this application has not been reported.  

The limited development of competitive-binding screens using substrate-

competitive probes, despite their promise for identifying exclusively substrate-

competitive inhibitors, may be a direct result of the assay design requirements.
55

  Ideally, 

the substrate-competitive probe used should have high affinity for the target in order to 

ensure that a high fraction of the probe is bound without requiring large quantities of 

enzyme.  Most reported substrate-competitive ligands are peptides with modest affinity 

that do not fulfill this requirement.  One way to address the modest potency of many 

substrate-competitive ligands is to develop bisubstrate ligands.
56

  These compounds 

contain a substrate-competitive ligand (usually a peptide) linked to an ATP-competitive 

ligand.  The bisubstrate compound usually has greatly increased potency relative to the 

peptide alone, which makes them more amenable for use as probes.  As illustrated in 

Scheme 1.3, bisubstrate probes will be displaced by both substrate-competitive and ATP-

competitive inhibitors.  There have been several reports of the use of bisubstrate probes 

in the development of competitive-binding assays for kinase targets that can identify and 

characterize both ATP-competitive and substrate-competitive inhibitors (Scheme 1.4).   

 

 

 

Scheme 1.3.  In competitive binding assays using bisubstrate probes, both substrate-

competitive and ATP-competitive ligands will displace the probe. 
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Scheme 1.4.  Bisubstrate probes for competitive binding assays. 

 

 

 The Uri group has developed several bisubstrate inhibitors, termed ARCs, by 

linking adenosine to arginine rich peptides, and they have begun using these ARCs as 

probes to develop competitive binding assays.  A SPR competitive-binding assay for the 

determination of the affinities of ATP-competitive and substrate-competitive ligands of 
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PKA was developed by immobilizing an ARC via a streptavidin-biotin complex.
57

  The 

immobilized probe 1.2 had excellent affinity for PKA (Kd = 16 nM), and the SPR assay 

was able to detect displacement of the bisubstrate probe by the binding of ATP-

competitive inhibitors, other ARCs, and protein substrates of PKA.  The Kd values for the 

known inhibitors characterized with this assay were in good agreement with reported 

values.   

The same group has also developed an FP method utilizing a bisubstrate probe 

based on an ARC for the characterization of ligands of PKA and ROCK.
58

  The FP probe 

1.3 was generated by labeling the N-terminus of the peptidic portion of the ARC with the 

fluorescent tag TAMRA.  The probe had excellent affinity for PKA (Kd = 480 pM), and 

displacement of the probe from PKA was observed with ATP-competitive inhibitors, 

other ARCs, and protein substrates of PKA.  The probe is also reported to be a ligand for 

ROCK (Kd = 3.6 nM), but displacement of the probe by a substrate-competitive ligand 

for ROCK was not evaluated.  In both cases, the Kd values for inhibitors obtained using 

the FP assay were in good agreement with literature reports. 

 Our lab has also developed a bisubstrate TR-FRET tracer that can identify 

substrate-competitive inhibitors.
59

  A bisubstrate inhibitor of c-Src, composed of an 

analogue of the ATP-competitive inhibitor PP2 and an optimal c-Src peptide ligand, was 

fluorescently labeled with Cy5 at the N-terminal of the peptide to generate tracer 1.4.  

Similar to what was seen with the ARC probes, this probe has excellent affinity for c-Src 

with Kd = 6 nM.  In a TR-FRET assay with c-Src, displacement of the tracer by known 

ATP-competitive and substrate-competitive ligands could be detected, and the Kd values 

obtained for the ligands using this assay were in good agreement with literature values.   

These examples demonstrate that a variety of competitive binding assay formats 

can be used with bisubstrate probes to recognize substrate-competitive ligands, but thus 

far screens for substrate-competitive inhibitors using these methods have not been 

reported. Although bisubstrate probes hold promise for the identification of substrate-

competitive inhibitors, a complication of using bisubstrate probes instead of purely 

substrate-competitive probes is that ATP-competitive inhibitors will be identified as well.  

Therefore, a counter screen against an ATP-competitive probe should be performed to 

rule out compounds which displace the bisubstrate probe by competing for binding to the 
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ATP site.  A further complication that could arise during counter screening is that recent 

work by Lebakken and coworkers has shown that ligands binding outside the ATP site, 

including substrate-competitive inhibitors, can sometimes displace ATP-competitive TR-

FRET tracers by causing perturbations within the ATP binding pocket.
60

  This raises the 

possibility that substrate-competitive inhibitors identified from a competitive binding 

assay using a bisubstrate probe may be ruled out as ATP-competitive inhibitors during 

counter screening.  Due to these issues, the use of a substrate-competitive probe instead 

of a bisubstrate probe would be preferable when available.   

A remaining issue with both substrate-competitive and bisubstrate probes is that 

they are not likely to bind to a large number of kinases due to the less conserved nature of 

the substrate binding site.  This means that while in general competitive binding assays 

could be applied to any kinase of interest, a single probe cannot be used for all (or even 

most) kinases and new probes will need to be developed in order to access different 

subsets of targets.  This will be most challenging for new kinase targets; however, while 

the development of substrate-competitive probes may not be initially feasible for new 

targets since high potency substrate-competitive ligands will likely not yet be known, a 

bisubstrate approach may be possible.  Many services offering broad kinase inhibitor 

profiling screens include kinases whose functions are currently unknown in their panels, 

and published datasets of kinase inhibitor selectivity show that a potent ATP-competitive 

inhibitor can be identified for most kinases.  This data could aid in the development of 

bisubstrate probes for competitive-binding assays with new targets. 

 

NMR Screening 

NMR screening has become a popular screening method due to its ability to 

detect even weakly binding fragments, but while NMR screens against kinase targets 

have been successful in identifying ATP-competitive fragments, the propensity of the 

ligands to bind within the better defined ATP-pocket has stalled the discovery of 

substrate-competitive inhibitors.
61

  Recently, however, some success in identify ATP-

noncompetitive ligands has been achieved by utilizing paramagnetic spin-labeled ATP-

competitive probes (Scheme 1.5).  In these experiments, NMR spectra of a compound 

with the kinase of interest are obtained both in the presence and in the absence of the 
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spin-labeled probe.  The spin-label will increase the relaxation time of nearby protons, 

and thus compounds which bind simultaneously near the probe can be identified by 

observing a paramagnetic relaxation enhancement (PRE) in the NMR spectrum.
62

  When 

using an ATP-competitive spin-labeled probe, other ATP-competitive ligands will not be 

identified since these compounds cannot bind at the same time as the probe.  The probes 

are sensitive to ligands binding up to 25 Å away from the spin label, a distance which 

includes the substrate binding site (Figure 1.3). 

 

 

 

Figure 1.3.  Crystal structure of IRK bound to an ATP analogue (green) and a peptidic 

substrate mimic (orange), with residues within 20 Å of the ATP binding site highlighted 

in cyan (PDB 1IR3). 

 

 

In 2005, McCoy and coworkers reported the use of manganese-chelated ATP as a 

paramagnetic probe for identifying ATP-noncompetitive ligands.
63

  The authors 

demonstrated that the probe could detect the binding of a known ATP-noncompetitive 

inhibitor of MEK1, but no new ligands were reported.  Although this probe should bind 

to any kinase of interest, ATP (and therefore the probe) has micromolar affinity for many 

kinases.  Due to the modest affinity, a large excess of the probe may be required in order 



16 

 

saturate the kinase and obtain the maximum signal, but this could also result in 

nonspecific binding of probe.  Furthermore, Mn
2+

 can also bind nonspecifically to 

proteins.  To ensure that only ligands binding within 25 Å of the ATP binding site are 

identified, it is noted that the probe should have good affinity (low micromolar to 

nanomolar), and if the buffer used contains manganese the concentration of Mn
2+

 should 

be less than 100 µM. 

 

 

 

Scheme 1.5.  Spin-labeled ATP-competitive probes for NMR screening. 

 

 

At the same time, Jahnke and coworkers reported the TEMPO-labeled adenine 

analogue 1.5.
64

  While an example NMR spectrum for the identification of an ATP-

noncompetitive ligand (ligand and kinase not disclosed) and recommendations for 

confirming hits are outlined, no new ligands were reported.  The close structural 

resemblance of probe 1.5 to ATP should allow it to bind to most kinases.  However, 

similar the ATP-manganese chelate probe, the interaction between probe 1.5 and many 

kinases will be weak, and a large quantity of the probe may be required.  As mentioned 

previously, this can lead to nonspecific binding, and, in fact, the authors report that the 

probe does bind nonspecifically to some kinases. 

To remedy the low affinity and nonspecific binding of previous probes, research 

groups have begun modifying potent ATP-competitive inhibitors with spin labels.  Moy 

and coworkers have developed the spin-labeled probe 1.6 based on an ATP-competitive 

inhibitor that was reported to bind potently to several kinases.
65

  Profiling of probe 1.6 
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against a panel of nineteen kinases showed that it bound eight kinases with an IC50 value 

less than 40 nM.  However, of the other eleven kinases examine nine had IC50 > 50 µM, 

suggesting that 1.6 cannot be widely applied to any kinase of interest.  The ability of 1.6 

to identify compounds binding outside the ATP pocket was confirmed by detecting the 

binding of a previously reported weak substrate-competitive c-Src inhibitor.  While a full 

scale screen was not reported using this probe, the authors were able to identify the 

binding of the fragment N-phenylanthranilic acid to Lck.  The binding site for this 

fragment has not been conclusively determined, but the weak PRE signal and modeling 

of the probe in complex with Lck predicted that it binds in a pocket adjacent to the ATP 

binding site and the substrate binding site. 

To bias screening towards identifying substrate-competitive ligands, Vazquez and 

coworkers used structural data to develop probe 1.7 for JNK.
66

  Probe 1.7 is based on a 

known ATP-competitive inhibitor and was designed so that the TEMPO spin label would 

sit at the edge of the JIP1 interaction site.  Because the PRE is proportional to the 

distance between the probe and the proton, ligands binding to the JIP1 interaction site 

would experience the stronger PRE than ligands further away outside of the JIP1 

interaction site.  The probe was able to identify the binding of two peptides based on 

JIP1, and the binding orientation of each ligand was deduced from the differences in the 

PRE for each residue in the peptide.  The affinity of one of these peptides was too weak 

for it to be identified as an inhibitor using an activity-based assay, which demonstrates 

the power of NMR screening for detecting even weakly binding ligands.  Probe 1.7 was 

also used by Stebbins and coworkers to confirm that their small molecule substrate-

competitive JNK inhibitor identified from a competitive binding assay bound to the JIP1 

interaction site.
52

  Although this probe has not yet been used to identify small molecule 

ligands, this strategy of situating the spin-label at the edge of the substrate-binding site 

should enable better identification of substrate-competitive ligands over allosteric 

ligands.   

Large screens utilizing spin-labeled ATP-competitive probes have not yet been 

reported, and it is important to remember that these probes will identify any ligand that 

binds within 25 Å of the spin-label.  As such, they will not exclusively identify substrate-

competitive inhibitors, and after a screen using one of these probes additional 
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experiments may be required to determine if the ligand binds to the substrate site or an 

allosteric site.   This could be minimized by carefully designing the probe so that it places 

the spin label as close as possible to the substrate-binding site, but this will require 

structural data. 

Similar to competitive binding assays, the affinity and selectivity of the spin-

labeled probes will also complicate their use.  Probes based on ATP or adenine will bind 

to most if not all kinases, but their weak affinity and nonspecific binding will limit their 

use.  Conversely, designing probes based on potent ATP-competitive inhibitors such as 

1.6 and 1.7 will minimize nonspecific binding, but these probes will not bind to the full 

kinome.  This means that the development of new probes will be required for some 

targets of interest, but as discussed previously selectivity datasets show that potent ATP-

competitive inhibitors can be found for most kinases, even kinases whose functions are 

currently unknown.   

 

Conclusions 

 Despite the interest in using small molecule substrate-competitive kinase 

inhibitors as biological probes and therapeutics, only a small fraction of reported kinase 

inhibitors fall into this category.  This can largely be attributed to the fact that 

traditionally HTS monitoring inhibition of enzyme activity were used to discover kinase 

inhibitors, and these screens are highly biased towards the identification of ATP-

competitive inhibitors.  Recently, however, reports of the discovery of ATP-

noncompetitive inhibitors identified using a variety of approaches has increased.  

Although some of these approaches required structural data and are not readily applicable 

to all targets, other approaches including biased activity assays, competitive binding 

assays, and NMR screening using ATP-competitive probes can be even when there is 

only limited knowledge about the target to begin with.  These approaches will continue to 

be useful tools for the continuing discovery of new substrate-competitive kinase 

inhibitors.   

When considering using one of these methods for a screen to identify small 

molecule substrate-competitive kinase inhibitors, there are advantages and disadvantages 

that should be carefully taken into account.  Biased activity assays may facilitate the use 
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of assays that are already established in-house, but the conditions can also select for the 

identification of potent ATP-competitive inhibitors as well as allosteric inhibitors.  NMR 

screening using ATP-competitive paramagnetic probes eliminates the identification of 

ATP-competitive compounds, but may still identify allosteric ligands.  If structural data is 

available, this can aid in developing a probe with the spin-label positioned near the 

substrate binding site, which can bias towards the identification of substrate-competitive 

inhibitors.  A direct binding assay monitoring net displacement of a substrate-competitive 

probe should enable the exclusive identification of substrate-competitive inhibitors; 

however, the development of such probes has been hindered by the modest potency of 

most substrate-competitive ligands.  While bisubstrate probes overcome this obstacle, 

additional screening will be required to eliminate hits that displaced the probe due to 

competition at the ATP site.  An additional complication for methods utilizing probes is 

that although these methods can be applied to any kinase, a single probe is not likely to 

bind potently to the entire kinome, and therefore the development of a new probe may be 

required in order to screen the target of interest. 

Overall, these methods will aid in the identification of new small molecule 

substrate-competitive inhibitors, but their shortcomings demonstrate that there is still a 

continuing need to improve current screening methods as well as develop new methods.  

Ideally, a screening method would not require structural knowledge of the target, would 

not require the development of multiple probes for different targets, and would 

exclusively identify substrate-competitive inhibitors.  A screening method such as this 

would be of great value for advancing the discovery of new substrate-competitive 

inhibitors, especially because a significant portion of the kinome remains unexplored. 
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CHAPTER II 

Peptidic Inhibitors of c-Src Kinase for Pharmacophore Identification 

 

Abstract 

This study evaluated three libraries of peptides to (1) identify new tyrosine 

pharmacophores for c-Src kinase and (2) discover potent peptidic inhibitors of c-Src that 

could be used in fluorescence polarization assay development.  While several 

pharmacophores have been reported for peptidic tyrosine kinase inhibitors, an extensive 

study of tyrosine pharmacophores including substitutions at the ortho, meta, and para 

positions of phenylalanine has never been conducted.  Peptides based on known c-Src 

and c-Abl substrates with the structure Ac-AIXAA-NH2 were prepared and evaluated as 

c-Src inhibitors.  Although no potent inhibitors were identified, analysis of this library 

demonstrates that both an increase in hydrophobic surface area and a decrease in the 

electron density within the phenylalanine ring are necessary for c-Src inhibition.  

Additionally, three peptides reported in the literature to be potent inhibitors of c-Src were 

evaluated and found to be generally poor inhibitors in our hands.  Overall, no peptides 

were identified with suitable potency for use as FP probes, highlighting the difficulty in 

developing highly potent peptidic inhibitors. 

 

Introduction 

Many of the first reported substrate-competitive protein kinase inhibitors were 

peptidic inhibitors.
1-2

  While combinatorial libraries have been used to screen large 

peptides inhibitor libraries, most peptidic inhibitors are based on known kinase substrates 

which were modified to generate peptidic inhibitors.  Early inhibitors replaced the 

phosphorylatable residue with phenylalanine (for tyrosine kinase substrates) or alanine 

(for serine/threonine kinase substrates), but these inhibitors often suffered from poor 

potency. This has prompted the examination of other pharmacophores, with the largest 

focus on tyrosine pharmacophores.
3-10

  The most extensive examination of 
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pharmacophores for tyrosine kinases was performed by Niu and Lawrence who evaluated 

20 peptides with para-substituted phenethylamines as c-Src inhibitors.
9
  However, 

despite identifying several pharmacophores with modest improvement over 

phenylalanine, the corresponding peptides still have poor potency.  

The aim of the current study was to identify new tyrosine pharmacophores for c-Src 

using a library of peptidic inhibitors.  Any potent peptidic inhibitors discovered could 

then be fluorescently labeled and used in the development of a fluorescence polarization 

(FP) competitive binding assay to screen for small molecule substrate-competitive 

inhibitors of c-Src.  In addition to generating peptidic probes, we hypothesized that newly 

identified pharmacophores could also be applied later to the design of small molecule 

substrate-competitive inhibitors (see Chapter III).  While Niu and Lawrence examined 

20 pharmacophores for c-Src, their study was limited to only para-substituted 

pharmacophores (with the exception of pentafluorophenylalanine).
9
  We wanted to 

examine additional substitutions at the para position, as well as meta and ortho 

substitutions that could potentially be combined in order to increase potency.  Herein is 

reported the design and evaluation of a library of peptides containing diverse tyrosine 

replacements as inhibitors of c-Src. 

We chose to use the eukaryotic protein tyrosine kinase c-Src as a model kinase in 

all of the studies presented in this dissertation as it is well characterized, expresses well in 

E. coli, and is a validated target in multiple cancers.
11-14

  c-Src is composed of a catalytic 

domain, which has the characteristic kinase fold and contains the kinase active site, and 

two regulatory domains (SH2 and SH3), which modulate kinase activity and have 

scaffolding roles.
15

  All three domains of c-Src have been targeted for inhibitor 

development, although most focus has been placed on the ATP binding site.
16-18

  

Throughout this work, the selectivity of inhibitors for c-Src over c-Abl kinase will be 

used as a selectivity benchmark.  Although it is not a member of the Src family, c-Abl 

shares 68% similarity with c-Src across the catalytic domain, and this high similarity has 

made the development of c-Src inhibitors that do not also inhibit c-Abl challenging.
19-20

   

 The peptide library was designed around known c-Src and c-Abl substrates.  

Peptides based on the v-Src autophosphorylation site with the structure LIEDAXYAARG 

(where X is varied) have been shown to be substrates for c-Src and c-Abl.
21

  The 
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synthetic peptide (EAIYAAPFAKKK) has also been shown to be an optimal substrate for 

c-Abl.
22

  On the basis of the shared elements of these peptides near the reactive tyrosine 

(-AXYAA-), we hypothesized that the truncated sequence Ac-AIYAA-NH2 (2.1) would 

be a substrate for both c-Src and c-Abl.  This peptide would serve as the starting point for 

the design of the library would enable us to determine if the pharmacophores increased 

the selectivity for c-Src over c-Abl. 

Ac-AIYAA-NH2 (2.1) was evaluated as a substrate of c-Src and c-Abl using a 

nucleoside disphosphate kinase (NDPK) coupled assay.
23

  This assay utilizes NDPK that 

has been labeled with an environmentally sensitive coumarin fluorophore near the active 

site.  As shown in Scheme 2.1, ADP is generated as a byproduct of kinase activity and is 

bound by the fluorescently-labeled, phosphorylated NDPK (NDPK-P).  Transfer of the 

phosphate group from NDPK-P to ADP changes the local environment around the 

fluorophore and results in decreased fluorescence.  Thus, the amount of kinase activity 

can be extrapolated from the change in fluorescence intensity.  

 

 

 

Scheme 2.1.  A nucleoside disphosphate kinase (NDPK) coupled assay was used for the 

analysis of kinase substrates. 

 

 

The truncated sequence Ac-AIYAA-NH2 (2.1) was found to have KM = 57 μM for 

c-Src and KM = 97 μM for c-Abl (data provided by Dr. Sonali Kurup).  It should be noted, 

however, that it has previously been shown that KM values for kinase substrates greatly 
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overestimates the affinity of the peptide for the substrate binding site (KM < Kd), and thus 

the Kd values for this peptide with c-Src and c-Abl are likely in the mid-micromolar 

range.
24-25

  Using peptide 2.1 as a starting point, two peptide libraries were designed for 

evaluation as c-Src and c-Abl inhibitors (Scheme 2.2).  In the first library, the reactive 

tyrosine residue was replaced with other natural amino acids, including D-amino acids.  

In the second library, the reactive tyrosine was replaced with substituted phenylalanine 

residues.  All peptides were prepared using standard Fmoc-based solid phase peptide 

synthesis methods and purified by reverse phase HPLC.
26

 

 

 

 

Scheme 2.2.  A library of peptides was prepared based on the c-Src and c-Abl substrate 

peptide 2.1.  The library had the general structure Ac-AIXAA-NH2, where X was natural 

amino acids and substituted phenylalanine derivatives.  

 

 

Evaluation of Peptides with Natural Amino Acid Pharmacophores 

 The peptidic inhibitors in this study were evaluated using a previously reported 

continuous fluorescence assay utilizing a fluorescent peptide substrate reporter.
27

  In this 

assay, a peptide substrate is modified to include a pyrene fluorophore at the Y+2 position.  

As shown in Scheme 2.3, a π-stacking interaction between the tyrosine side chain and 

pyrene results in low fluorescence at 405 nm.  However, when the tyrosine residue is 

phosphorylated by a kinase this stacking interaction is disrupted and pyrene fluorescence 
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at 405 nm is increased.  By measuring the increase in fluorescence over time the amount 

of kinase activity can be determined.  The reporter peptide Ac-EEEIYGE(Dap-

pyrene)EA-NH2 was used in the evaluation of the peptidic inhibitors against both c-Src 

and c-Abl.  This assay was preferred over the NDPK coupled assay used for substrate 

analysis because it enables direct observation of kinase activity and requires fewer 

materials.   

 

 

 

Scheme 2.3.  A continuous fluorescence-based assay utilizing a fluorescent peptide 

substrate reporter (Ac-EEEIYGE(Dap-pyrene)EA-NH2) was used to evaluate c-Src and c-

Abl inhibition.    

 

 

 The Ki values for the first peptide library are shown in Table 2.1.  The substrate 

peptide 2.1 was not able to effectively prevent the phosphorylation of the pyrene reporter 

peptide (Ki > 1000 μM).  Changing the stereochemistry of the peptide did not increase 

binding and gave poor inhibitors (Ki > 1000 μM) as was seen with the D-tyrosine peptide 

(2.2) and the retro-inverse peptide (2.3).  Removal of the hydroxyl group to give the 

phenylalanine peptide (2.4) or removal of the phenol to give the alanine peptide (2.5) also 

yielded poor inhibitors (Ki > 1000 μM).  This is consistent with previous literature reports 

and was not unexpected since the tyrosine hydroxyl group is thought to make important 

hydrogen bonding interactions within the substrate binding site.
28

  The loss of these 

hydrogen bond interactions coupled with the fact that the inhibitors are based on a 
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substrate with likely modest affinity results in the poor potency observed for these 

inhibitors. 

 

 

Table 2.1.  Peptides with the general structure Ac-AIXAA-NH2, where X is a natural 

amino acid, were evaluated for c-Src and c-Abl inhibition using the pyrene assay. 

  Ki (M) 

 Ac-AI(X)AA-NH2, X = c-Src c-Abl 

2.1 Tyr >1000 NT
a
 

2.2 D-Tyr >1000 >1000 

2.3 D-Tyr, retro-inverso peptide >1000 NT 

2.4 Phe 950 ± 55 >500 

2.5 Ala >1000 >1000 

2.6 Trp >1000  >1000 

2.7 His 218 ± 44 >1000 
a
 Not tested 

 

 

We also explored replacing tyrosine with other aromatic amino acids.  Both 

peptides 2.6 and 2.7 contain amines that could mimic the hydrogen bonding of the 

tyrosine phenol.  We found that the tryptophan peptide (2.6) was a poor inhibitor (Ki > 

1000 μM) and the histidine peptide (2.7) had Ki = 218 μM.  This suggests that the 

tyrosine may bind in a smaller pocket which does not accommodate binding of the larger 

tryptophan indole ring.  Conversely, the histidine imidazole ring is closer in size to the 

tyrosine phenol, and therefore it can fit in the tyrosine binding site and possibly retain 

some of the hydrogen bonding interactions made by the tyrosine phenol.  Interestingly, 

the histidine peptide also showed selectivity for c-Src over c-Abl.  Although the histidine 

peptide was the most potent inhibitor found in the first library, it was not potent enough 

for use in future assay development.  Ideally, a low micromolar or nanomolar probe is 

required for a fluorescence polarization assay in order to avoid the use of large 

(micromolar) quantities of enzyme.
29
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Evaluation of Peptides with Substituted Phenylalanine Pharmacophores 

 Although no inhibitors with low micromolar potency were found in the first 

library, it was hypothesized that substituted phenylalanine residues could make additional 

interactions within the substrate binding pocket to give more potent inhibitors.  While 

previous studies have examined a small number of para-substituted phenylalanine 

derivatives as c-Src inhibitors, pharmacophores mono-substituted at the ortho or meta 

positions have not been explored.  In addition to identifying more potent peptidic 

inhibitors, substituted phenylalanine pharmacophores could later be applied to the design 

of small molecule substrate-competitive inhibitors.  A library of forty peptides containing 

substituted phenylalanine derivatives in place of the reactive tyrosine residue was 

evaluated using the pyrene peptide assay and the results are summarized in Table 2.2. 

Of the ortho-substituted peptides (2.8-2.12), the best inhibitor was the ortho-

fluoro peptide (2.11) with Ki = 433 μM.  The increase in potency relative to the 

phenylalanine peptide (2.4) may be due to the increased hydrophobic surface area making 

greater interactions with a hydrophobic pocket.
30

  This pocket is likely small, as potency 

decreases as the hydrophobic substituent increases in size with the ortho-methyl peptide 

(2.8) having Ki > 500 μM, the ortho-chloro peptide (2.12) having Ki = 845 μM, and the 

ortho-trifluoromethyl peptide (2.9) having Ki > 1000 μM.  When the meta-substituted 

peptides (2.13-2.17) were evaluated none were found to be potent inhibitors of c-Src (all 

Ki > 1000 μM), suggesting that no additional interactions can be made with the substrate 

pocket at this location.  To our knowledge, this is the first study to explore tyrosine 

pharmacophores mono-substituted at the ortho and meta positions.  Although no 

beneficial substitutions at the meta position were identified, analysis of ortho 

substitutions suggests an ortho-fluorine substituent could be combined with an optimal 

para substituent to increase c-Src inhibitory potency. 
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Table 2.2.  Peptides with the general structure Ac-AIXAA-NH2, where X is a substituted 

phenylalanine derivative, were evaluated for c-Src and c-Abl inhibition using the pyrene 

assay. 

  Ki (M) 
 Ac-AI(X)AA-NH2, X = c-Src c-Abl 

2.8 2-CH3 Phe >500 >1000 

2.9 2-CF3 Phe >1000 NT
a
 

2.10 2-OCH3 Phe >1000 NT 

2.11 2-F Phe 433 ± 48 >1000 

2.12 2-Cl Phe 845 ± 186 >1000 

2.13 3-CH3 Phe >1000 NT 

2.14 3-CF3 Phe >1000 NT 

2.15 3-OCH3 Phe >1000 NT 

2.16 3-F Phe >1000 NT 

2.17 3-Cl Phe >1000 NT 

2.18 4-CH3 Phe >500 >1000 

2.19 4-CF3 Phe 862 ± 159 >1000 

2.20 4-OCH3 Phe >1000 NT 

2.21 4-OCH2CH3 Phe >1000 NT 

2.22 4-OCHCH2 Phe >1000 NT 

2.23 4-OPh Phe >1000 NT 

2.24 4-OBn Phe 783 ± 156 >1000 

2.25 4-Bz Phe 429 ± 91 >1000 

2.26 4-CO2H Phe >1000 NT 

2.27 4-CN Phe >1000 NT 

2.28 4-N3 Phe 831 ± 199 >1000 

2.29 4-NH2 Phe >1000 NT 

2.30 4-CH2NH2 Phe >1000 NT 

2.31 4-SO2NH2 Phe >1000 NT 

2.32 4-guanido Phe >1000 NT 

2.33 4-F Phe >500 NT 

2.34 4-Cl Phe 446 ± 70 >1000 

2.35 4-Br Phe 392 ± 97 >500 

2.36 4-I Phe 242 ± 31 827 ± 81 

2.37 4-NO2 Phe >1000 NT 

2.38 3,4-OCH3 Phe >1000 NT 

2.39 3-NO2, 4-OAc Phe 789 ± 102 >1000 

2.40 3,4-F Phe 379 ± 68 >500 

2.41 3,5-F Phe 545 ± 37 912 ± 267 

2.42 3,4,5-F Phe >1000 NT 

2.43 2,3,4,5,6-F Phe 205 ± 56 >250 

2.44 1-naphthyl Ala >1000 NT 

2.45 2-naphthyl Ala >1000 NT 

2.46 4-Ph Phe >1000 NT 

2.47 3-pyridyl Ala >1000 NT 

    
a
 Not tested 
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Analysis of the para-substituted peptides revealed some trends that had not been 

previously observed in smaller para-substituted libraries.  Similar to previous studies, we 

found that the para-methyl, para-trifluoromethyl, and para-methoxy peptides (2.18-2.20) 

were weak inhibitors of c-Src.
4, 9

  We also evaluated para-ethoxy (2.21) and para-

allyloxy (2.22) peptides and found that consistent with our results for the para-methoxy 

peptide (2.20) these peptides were also poor c-Src inhibitors (Ki > 1000 μM).  

Additionally, previously unexplored aryl ethers (2.23 and 2.24) were examined since 

these could provide additional opportunities for functionalization to improve potency.  

Like the alkyl ethers, the aryl ethers were also found to be weak c-Src inhibitors.  The 

small increase in potency relative to phenylalanine observed with the para-benzyloxy 

peptide (2.24, Ki = 783 μM) is likely due to the benzyl ring beginning to reach the edge of 

the ATP pocket and making weak interactions there.  A related peptide with para-

benzoylphenylalanine (2.25) was one of the better peptides in the library (Ki = 429 μM), 

but it should be noted that this could be due to covalent inactivation of the enzyme.  

Para-benzoylphenylalanine is often used as a photoaffinity label and is activated at 

approximately 350 nm.
31

  The pyrene reporter peptide assay used to evaluate the peptidic 

inhibitors uses an excitation wavelength of 340 nm.  A para-carboxy substituted 

phenylalanine (2.26), which we hypothesized could possibly retain interactions made by 

the tyrosine hydroxyl group, was a poor inhibitor of c-Src (Ki > 1000 μM).  Finally, a 

para-cyano peptide (2.27) did not inhibit c-Src (Ki > 1000 μM), and a para-azido peptide 

(2.28) showed only weak inhibition (Ki = 831 μM).     

While our results for para-alkyl and para-ether substituents were in good 

agreement with previous studies, we did see discrepancies with other pharmacophores 

that have been described by Niu and Lawrence.
9
  While our results agree with their report 

that substitutions containing primary amines (2.29 and 2.30) are poor c-Src inhibitors, we 

found that para-sulfonamide (2.31) and para-guanido (2.32) peptides were also poor 

inhibitors of c-Src (Ki > 1000 μM), despite being previously reported as two of their best 

pharmacophores for c-Src.  Furthermore, Niu and Lawrence’s pharmacophore evaluation 

showed that peptides with para-halogen substituted phenylalanines were worse inhibitors 

of c-Src compared to phenylalanine.
9
  We observed the opposite trend and found inhibitor 

potency increased with increasing halogen size (2.33-2.36).  The para-fluoro peptide 
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(2.34) was a poor inhibitor of c-Src (Ki > 500 μM), but the para-iodo peptide (2.36) was 

one of the most potent peptides with Ki = 242 μM.  Although some of our results differ 

from previous reports, these peptides are in good agreement with the long held belief that 

the area surrounding the tyrosine binding site is largely hydrophobic.  

In addition to examining monosubstituted phenylalanine analogues, we also 

evaluated phenylalanine analogues with multiple substituents.  Overall, the best results 

were observed when the phenylalanine derivative contained multiple fluorines.  Peptides 

di-substituted with non-halogen groups (2.38 and 2.39) were poor inhibitors of c-Src, but 

peptides di-substituted with fluorine (2.40 and 2.41) were modest inhibitors (Ki = 379 μM 

and Ki = 549 μM, respectively).  It is interesting that the 3,5-difluoro peptide (2.41) was a 

modest inhibitor, since all of the peptides in the meta mono-substituted library were poor 

inhibitors.  Furthermore, the fluorine tri-substituted peptide (2.42) was not an inhibitor of 

c-Src (Ki > 1000 μM), but the pentafluoro peptide (2.43) was the most potent peptide in 

the library (Ki = 205 μM).  The pentafluorophenylalanine pharmacophore was previously 

evaluated by Niu and Lawrence and also generated one of the best peptides in their 

library.
9
 

Finally, we evaluated adding rings to phenylalanine (2.44-2.46) as this could give 

further opportunities for optimization by functionalizing the additional rings.   

Unfortunately, none of the modifications were found to increase c-Src potency (Ki > 1000 

μM).  The 1-naphthylalanine (2.44) and 2-naphthylalanine (2.45) peptides are in good 

agreement with data from the tryptophan peptide and the ortho and meta substituted 

peptides, and the poor potency of these peptides confirms that the tyrosine binding site 

cannot accommodate larger substituents at the ortho and meta positions.  However, it was 

surprising that the para-phenyl peptide (2.46) was not an inhibitor of c-Src since peptides 

with large para-halogen substituents (2.35 and 2.36) were among the best peptides in the 

library, suggesting that there is room at the para position to accommodate a phenyl ring.  

Combined with the data from the ether substituted peptides and the multiply fluorine-

substituted peptides, it appears that both an increase in hydrophobic surface area and a 

decrease in the electron density within the phenylalanine ring are needed for increased 

potency relative to phenylalanine.  This hypothesis is supported by the 3-pyridylalanine 
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peptide (2.47).  Although this is an electron poor ring system, it does not have increased 

hydrophobic surface area and thus is a poor inhibitor (Ki > 1000 μM). 

 Fifteen of the peptides, including all of the peptides found to be c-Src inhibitors 

with Ki < 1000 μM, were also evaluated with c-Abl (Table 2.2).  In general, none of the 

peptides tested were found to be potent inhibitors of c-Abl, and all of the peptides tested 

were less potent against c-Abl compared to c-Src.  Only peptides containing halogen 

substitutions (2.35 and 2.36) had c-Abl Ki < 1000 μM, and no peptides with ortho or meta 

mono-substitution had c-Abl Ki < 1000 μM.  Low solubility prevented the accurate 

evaluation of the pentafluorophenylalanine pharmacophore (2.43) with c-Abl.  As was 

seen with c-Src, the results suggest that the area surrounding the tyrosine binding site is 

largely hydrophobic.  Unfortunately, it is difficult to make comparisons and define what 

characteristics contribute to selectivity for c-Src over c-Abl because we do not know the 

Kd values for the starting peptide substrate and we could not accurately measure the Ki 

value for the phenylalanine peptide with c-Abl.  The difference in pharmacophore 

potency between c-Src and c-Abl could be due to the substituents on the tyrosine 

pharmacophore making different interactions with the two binding sites, or could be due 

to the peptide scaffold having disparate affinity for c-Src versus c-Abl. 

 

Evaluation of Literature Peptides 

Although no peptides in the two libraries were found to have the desired low 

micromolar potency, several linear peptides have been reported in the literature as c-Src 

inhibitors with low micromolar to nanomolar potencies (Scheme 2.4).  The peptide 

MIYKYYF (2.48) was developed by Kamath and coworkers based on the substrate 

peptide YIYGSFK and was reported to have c-Src IC50 = 6 μM in a radiometric assay.
32

  

Kumar and coworkers used the same c-Src substrate as a starting point and reported the 

peptide Ac-CIYK(4-NO2 Phe)Y (2.49), which is the most potent linear peptidic inhibitor 

of c-Src reported with IC50 = 0.53 μM in a radiometric assay.
33

  Finally, Hah and 

coworkers explored adding groups to both the N-terminus and an amino acid side chain 

within the optimal c-Src substrate EEEIYGEFEA-NH2 to develop the peptide (Ba)-

EEEIFGEF(Dap-Hna)-NH(CH2)2SH (2.50).
34

  This peptide had c-Src IC50 = 2 μM in an 

ELISA-based assay. 
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Scheme 2.4.  Structures of reported potent peptidic inhibitors of c-Src (2.48-2.50) and 

two analogues (2.51 and 2.52). 
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The poor potency of our peptide library caused us to question the veracity of these 

reported inhibitors, especially considering that two of the inhibitors do not modify the 

reactive hydroxyl group and peptide 2.50 replaces the reactive tyrosine with 

phenylalanine.  We decided to re-evaluate these peptides using the pyrene peptide assay 

to confirm their reported potencies.  If these literature peptides were still potent inhibitors 

in our assay they could be fluorescently-labeled and used in future assay development.  

Peptides 2.48, 2.49, and 2.51 (prepared as an analogue of peptide 2.50 for synthetic ease) 

were prepared and evaluated in the pyrene peptide assay. 

 

 

Table 2.3.  Comparison of reported IC50 values for peptidic inhibitors of c-Src with 

values obtained using the pyrene assay.   

 
Reported c-Src IC50 

(μM) 

Pyrene Peptide Assay 

c-Src Ki (μM) 

Substrate Used in Assay 

for Reported Value 

2.48 6 >1000  YIYGSFK 

2.49 0.53 >1000  polE4Y 

2.50 1.9 ± 0.3 NT
a
 

 biotinyl-(aminohexanoic 

acid)2-AEEEIYGEF-NH2 

2.51 NA
b
 70 ± 16 NA 

2.52 NA 49 (n = 2) NA 
a 
Not tested 

b
 Not applicable, analogue prepared for current study 

 

 

 The results from analysis of the literature peptides are shown in Table 2.3.  

Overall, poor agreement was observed between our assay and the reported IC50 values.  

Peptides 2.48 and 2.49 were not c-Src inhibitors in our hands.  Furthermore, although c-

Src inhibition was observed for analogue peptide 2.51 (Ki = 70 μM) it was significantly 

less potent than the literature peptide 2.50 (IC50 = 1.9 μM).
34

  It has previously been 

reported that c-Src inhibition by the peptide CIYKYY, which peptide 2.49 is an analogue 

of, is dependent on the peptide substrate used in the assay.
33

  A similar phenomenon 

could be occurring in our assay and may be responsible for the discrepancies from the 

literature values.  It is worth noting that the peptide substrate used in the reported analysis 

of peptide 2.50 is the most similar to the pyrene peptide substrate used in our assays, and 
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the best agreement with the literature value was seen with our analogue peptide 2.51.  

Because peptide 2.51 was the most potent inhibitor peptide identified from our studies, an 

AMCA-labeled derivative (2.52) was also evaluated and found to have Ki = 49 μM.  

Although a small increase in potency was observed relative to the parent peptide 2.51, 

peptide 2.52 is still not potent enough for the development of an FP assay. 

 

Conclusions 

 This study evaluated three libraries of peptides in order to identify new tyrosine 

pharmacophores for c-Src kinase and to discover potent peptidic inhibitors of c-Src that 

could be used in FP assay development.  Two libraries of peptides were prepared based 

on the c-Src and c-Abl substrate Ac-AIYAA-NH2, and the third library was composed of 

peptides (or analogues thereof) reported to be potent inhibitors of c-Src.   

 The initial library of peptides incorporating natural amino acid pharmacophores 

was in good agreement with previously reported trends.
1-2

  In general, poor inhibition was 

observed upon replacement of the reactive tyrosine residue.  Although the histidine 

peptide (2.7) showed improvement relative to the phenylalanine pharmacophore, only 

modest c-Src inhibition (Ki = 218 μM) was observed.  Due to the poor potency of these 

peptides, we then turned our attention towards identifying substituted phenylalanine 

pharmacophores.  

While peptidic inhibitors of c-Src using substituted phenylalanine pharmacophores 

have been previously reported, the pharmacophores were generally limited to those with 

para mono-substitutions.
4, 9

  In the current study we have expanded the substituents 

explored at the para position as well as the effects of substitutions at the ortho and meta 

positions.  Although no mono-substitutions at the meta position were found to increase 

potency, an ortho-fluorine group (2.11) increased potency and could later be combined 

with optimal para substituents to increase potency.  The best para substituents were 

halogens, and inhibitor potency increased with increasing halogen size.  The best c-Src 

inhibition was produced by pentafluoro-phenylalanine (2.43, Ki = 205 μM).  Because 

other substitutions that only increased hydrophobicity or only decreased electron density 

were poor inhibitors, we hypothesize that pharmacophores must both increase the 
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hydrophobic surface area and decrease the electron density within the phenylalanine ring 

in order to produce c-Src inhibition. 

Although pharmacophores that increased c-Src potency relative to phenylalanine 

were identified, none of the peptides had the desired low micromolar potency necessary 

for developing an FP probe.  This prompted us to re-examine three peptides reported in 

the literature to be potent inhibitors of c-Src.  In our hands, only one of these peptides 

(2.51) was a c-Src inhibitor, and it was found to be significantly less potent than reported 

(Ki = 70 μM).
34

  An AMCA-labeled analogue of this peptide (2.52) was also evaluated 

and found to have slightly increased potency, but was still at least one order of magnitude 

less potent than required for FP assay development. 

 Taken together, these peptide libraries have reaffirmed long-held beliefs about the 

substrate binding site as well as given new insight into the design of future 

pharmacophores.  It has long been thought that the tyrosine hydroxyl group makes 

important hydrogen bonding contacts within the substrate binding site.  Although peptidic 

substrates have been identified with low micromolar KM values, the Kd values for kinase 

substrates are thought to likely be in the low hundreds of micromolar range.  The loss of 

the hydrogen bonding contacts made by the tyrosine hydroxyl group would further 

decrease the binding affinity of peptidic inhibitors.  Combined with our pharmacophore 

analysis, this suggests that an ideal pharmacophore would maintain these hydrogen 

bonding contacts, have increased hydrophobic surface area, and have decreased electron 

density.  The development of such a pharmacophore may enable the design of peptidic 

inhibitors with the low micromolar potency required for FP assay development. 

 

Materials and Methods 

General Synthetic Methods 

Unless otherwise noted, all reagents were obtained via commercial sources and 

used without further purification.  Mass spectrometry (MS) was performed using a 

Waters MicromassZQ or MicromassLCT mass spectrometer.  High resolution mass 

spectrometry (HRMS) was carried out by the University of Michigan Mass Spectrometry 

Facility (J. Windak, director). 
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Synthesis of Ac-AIXAA-NH2 Peptides 

 

 

Scheme 2.5.  Fmoc-based solid phase peptide synthesis. 

 

General Solid Phase Peptide Synthesis Protocol.  Peptides were prepared on resin 

following standard procedures for Fmoc solid phase peptide synthesis.
26

  Fmoc-protected 

Rink amide resin (1 eq.) was swelled in NMP and deprotected by gently shaking in 20% 

piperidine in NMP for 20 minutes at room temperature.   The deprotection solution was 

drained and the resin was washed three times with NMP.  A solution containing the 

desired amino acid (5 eq.), HBTU (5 eq.), and DIEA (5 eq.) was added to the resin and 

the mixture was gently shaken at room temperature for 20 minutes.  The resin was 

drained and washed three times with NMP.  Iterative cycles of deprotection and amino 

acid coupling were repeated until the desired peptide sequence was completed, and then 

the N-terminus was acetylated following removal of the N-terminal protecting group.  An 

excess of CapMix A solution (10% acetic anhydride, 10% 2,6-lutidine, 80% THF) was 

added to the resin, and the mixture was gently shaken at room temperature for 20 

minutes.  The solution was drained and the resin was washed three times with NMP and 

three times with DCM.  The peptides were cleaved from the resin by treatment with a 

95% TFA, 2.5% TIPS, and 2.5% H2O solution.  The mixture was gently stirred for 1-2h 

at room temperature, and then the solution was drained and concentrated under reduced 
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pressure.  Peptides were purified by reverse phase HPLC using a 5 → 95% ACN in H2O 

(+0.1% TFA) gradient.  Assistance with peptide synthesis and purification was provided 

by Dr. Sonali Kurup and Chenxi Shen. 

 

Ac-AIYAA-NH2 (2.1).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H40N6O7, 571.2856; 

found 571.2848. 

Ac-AIyAA-NH2 (2.2).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H40N6O7, 571.2856; 

found 571.2848. 

Ac-aayia-NH2 (2.3).  MS-ESI (m/z): [M+Na]
+
 calcd for C26H40N6O7, 571.3; found 571.1. 

Ac-AIFAA-NH2 (2.4).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H40N6O6, 555.2907; 

found 555.2902. 

Ac-AIAAA-NH2 (2.5).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C20H36N6O6, 479.2594; 

found 479.2586.  

Ac-AIWAA-NH2 (2.6).  MS-ESI (m/z): [M+Na]
+
 calcd for C28H41N7O6, 594.3; found 

594.1. 

Ac-AIHAA-NH2 (2.7).  MS-ESI (m/z): [M+H]
+
 calcd for C23H38N8O6, 522.3; found 

521.2. 

Ac-AI(2-CH3 Phe)AA-NH2 (2.8).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H42N6O6, 

569.3064; found 569.3051. 

Ac-AI(2-CF3 Phe)AA-NH2 (2.9).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H39F3N6O6, 

623.2781; found 623.2786. 

Ac-AI(2-OCH3 Phe)AA-NH2 (2.10).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H42N6O7, 

585.3013; found 585.3022. 

Ac-AI(2-F Phe)AA-NH2 (2.11).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H39FN6O6, 

573.2813; found 573.2823. 

Ac-AI(2-Cl Phe)AA-NH2 (2.12).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H39ClN6O6, 

589.2517; found 589.2522. 

Ac-AI(3-CH3 Phe)AA-NH2 (2.13).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H42N6O6, 

569.3064; found 569.3059. 

Ac-AI(3-CF3 Phe)AA-NH2 (2.14).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H39F3N6O6, 

623.2781; found 623.2781. 
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Ac-AI(3-OCH3 Phe)AA-NH2 (2.15).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H42N6O7, 

585.3013; found 585.3021. 

Ac-AI(3-F Phe)AA-NH2 (2.16).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H39FN6O6, 

573.2813; found 573.2817. 

Ac-AI(3-Cl Phe)AA-NH2 (2.17).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H39ClN6O6, 

589.2517; found 589.2519. 

Ac-AI(4-CH3 Phe)AA-NH2 (2.18).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H42N6O6, 

569.3064; found 569.3053. 

Ac-AI(4-CF3 Phe)AA-NH2 (2.19).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H39F3N6O6, 

623.2781; found 623.2782. 

Ac-AI(4-OCH3 Phe)AA-NH2 (2.20).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H42N6O7, 

585.3013; found 585.3015. 

Ac-AI(4-OCH2CH3 Phe)AA-NH2 (2.21).  HRMS-ESI (m/z): [M+Na]
+
 calcd for 

C28H44N6O7, 599.3169; found 599.3167. 

Ac-AI(4-OCHCH2)AA-NH2 (2.22).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C28H42N6O7, 

611.3169; found 611.3193. 

Ac-AI(4-OPh Phe)AA-NH2 (2.23).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C32H44N6O7, 

647.3169; found 647.3162. 

Ac-AI(4-OBn Phe)AA-NH2 (2.24).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C33H46N6O7, 

661.3326; found 661.3333. 

Ac-AI(4-Bz Phe)AA-NH2 (2.25).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C33H44N6O7, 

659.3169; found 659.3159. 

Ac-AI(4-CO2H Phe)AA-NH2 (2.26).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H40N6O8, 

599.2805; found 599.2802. 

Ac-AI(4-CN Phe)AA-NH2 (2.27).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C27H39N7O6, 

580.2860; found 580.2858. 

Ac-AI(4-N3 Phe)AA-NH2 (2.28).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H39N9O6, 

596.2921; found 596.2932. 

Ac-AI(4-NH2 Phe)AA-NH2 (2.29).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H41N7O6, 

570.3016; found 570.3000. 
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Ac-AI(4-CH2NH2 Phe)AA-NH2 (2.30).  HRMS-ESI (m/z): [M+Na]
+
 calcd for 

C27H43N7O6, 584.3173; found 584.3163. 

Ac-AI(4-SO2NH2 Phe)AA-NH2 (2.31).  HRMS-ESI (m/z): [M+Na]
+
 calcd for 

C26H41N7O8S, 634.2635; found 634.2658. 

Ac-AI(4-guanido Phe)AA-NH2 (2.32).  HRMS-ESI (m/z): [M+Na]
+
 calcd for 

C27H43N9O6, 612.3234; found 612.3226. 

Ac-AI(4-F Phe)AA-NH2 (2.33).  HRMS-ESI (m/z): [M+ Na]
+
 calcd for C26H39FN6O6, 

573.2813; found 573.2809. 

Ac-AI(4-Cl Phe)AA-NH2 (2.34).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H39ClN6O6, 

589.2517; found 589.2518. 

Ac-AI(4-Br Phe)AA-NH2 (2.35).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H39BrN6O6, 

633.2012; found 633.2012. 

Ac-AI(4-I Phe)AA-NH2 (2.36).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H39IN6O6, 

681.1874; found 681.1874. 

Ac-AI(4-NO2 Phe)AA-NH2 (2.37).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H39N7O8, 

600.2758; found 600.2753. 

Ac-AI(3,4-OCH3 Phe)AA-NH2 (2.38).  HRMS-ESI (m/z): [M+Na]
+
 calcd for 

C28H44N6O8, 615.3118; found 615.3119. 

Ac-AI(3-NO2, 4-OAc Phe)AA-NH2 (2.39).  MS-ESI (m/z): [M+Na]
+
 calcd for 

C28H41N7O10, 658.3; found 658.0. 

Ac-AI(3,4-F Phe)AA-NH2 (2.40).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H38F2N6O6, 

591.2719; found 591.2722. 

Ac-AI(3,5-F Phe)AA-NH2 (2.41).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H38F2N6O6, 

591.2719; found 591.2719. 

Ac-AI(3,4,5-F Phe)AA-NH2 (2.42).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C26H37F3N6O6, 

609.2624; found 609.2623. 

Ac-AI(2,3,4,5,6-F Phe)AA-NH2 (2.43).  HRMS-ESI (m/z): [M+Na]
+
 calcd for 

C26H35F5N6O6, 645.2436; found 645.2430. 

Ac-AI(1-naphthyl Ala)AA-NH2 (2.44).  HRMS-ESI (m/z): [M+Na]
+
 calcd for 

C30H42N6O6, 605.3064; found 605.3084. 
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Ac-AI(2-naphthyl Ala)AA-NH2 (2.45).  HRMS-ESI (m/z): [M+Na]
+
 calcd for 

C30H42N6O6, 605.3064; found 605.3057. 

Ac-AI(4-Ph Phe)AA-NH2 (2.46).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C32H44N6O6, 

631.3220; found 631.3239. 

Ac-AI(3-pyridyl Ala)AA-NH2 (2.47).  HRMS-ESI (m/z): [M+Na]
+
 calcd for C25H39N7O6, 

556.260; found 556.2849.  

Synthesis of Literature Peptides 

MIYKYYF (2.48).  Peptide 2.48 was prepared as previously described.
32

  MS-ESI (m/z): 

[M+H]
+
 calcd for C53H70N8O11S, 1027.5; found 1027.1. 

Ac-CIYK(4-NO2 Phe)F (2.49).  Peptide 2.49 was prepared as previously described.
33

  

MS-ESI (m/z): [M+H]
+
 calcd for C44H58N8O12S, 923.4; found 923.0. 

 (Ba)-EEEIFGEF(Dap-Hna)-NH2 (2.51).  Peptide 2.51 was prepared as previously 

described using Rink amide resin in place of TentaGel resin.
34

  MS-ESI (m/z): [M+Na]
+
 

calcd for C66H76Cl6N12O24, 1655.3; found 1656.9. 

(AMCA)-EEEIFGEF(Dap-Hna)-NH2 (2.52).  Peptide 2.52 was prepared in the same 

manner as peptide 2.51 by replacing Ba (4-methoxy-3-nitrobenzoic acid) with AMCA.  

MS-ESI (m/z): [M+2Na]
2+

 calcd for C70H80Cl6N12O23, 857.2; found 856.3. 

General Biochemical Methods 

Black, opaque-bottom 96 well plates were used for fluorescence assays and were 

purchased from Nunc.  c-Src, c-Abl, and NDPK were expressed in E. coli using 

previously published procedures.
13

  IDCC-NDPK-P was prepared as previously 

described.
23

  Data was obtained using a Molecular Devices SpectraMax M5 plate reader.  

Curve fitting was performed using GraphPad Prism 4 software unless otherwise noted. 

Determination of Peptide Substrate 2.1 KM 

A coupled continuous fluorescence assay was used to determine KM for peptide 

substrate 2.1.
23

  Reaction volumes of 40 µL were used in 96-well plates.  To each well 

was added 4 μL of 10X buffer, 20 μL H2O, 2 μL of the substrate dilution (typically 20, 

10, 5, 2.5, 1.25, 0.625, and 0.313 mM in DMSO), 4 μL of IDCC-NDPK-P (12.5 μM), and 

4 μL of the appropriate kinase (1.2 μM for c-Src or 0.6 μM for c-Abl).  The contents were 

incubated for 5 minutes at room temperature, and then the kinase reaction was initiated 



44 

 

by the addition of 4 μL of ATP (1 mM in water) and reaction progress was immediately 

monitored at 475 nm (ex. 436 nm) for 10 minutes.  Reactions had final concentrations of 

100 μM ATP, 100mM Tris buffer (pH 8), 10 mM MgCl2, and 120 nM c-Src or 60 nM c-

Abl.  The initial rate data collected was used for determination of KM values, which were 

obtained directly from nonlinear regression of substrate-velocity curves.  The KM values 

for 2.1 were determined using at least 3 independent experiments which were averaged to 

give an average KM value ± standard deviation.  Data for peptide 2.1 was provided by Dr. 

Sonali Kurup. 

Determination of Inhibitor Ki 

A continuous fluorescence assay was used to determine Ki.
27

  Reaction volumes 

of 100 µL were used in 96-well plates. 85 µL of enzyme in buffer mix was added to each 

well followed by 2.5 µL of the appropriate inhibitor dilution (typically 40, 20, 10, 5, 2.5, 

1.25, 0.625, and 0.313 mM in DMSO) and 2.5 µL of a substrate peptide solution 

(“compound 3” as described in Wang et al., 1.8 mM in DMSO). The reaction was 

initiated with 10 µL of ATP (10 mM in water), and reaction progress was immediately 

monitored at 405 nm (ex. 340 nm) for 10 minutes.  Reactions had final concentrations of 

1 mM ATP, 45 µM “substrate 3” peptide, 100 µM Na3VO4, 100mM Tris buffer (pH 8), 

10 mM MgCl2, and 0.01% Triton X-100. c-Src kinase domain assays had a final 

concentration of 30 nM enzyme and c-Abl kinase domain assays had a final 

concentration of 300 nM enzyme.   

The initial rate data collected was used for determination of Ki values.  For Ki 

determination, the IC50 values were obtained directly from nonlinear regression of 

substrate-velocity curves in the presence of various concentrations of the inhibitor and 

converted to Ki values using the Cheng-Prusoff equation.  The KM values used for 

“substrate 3” were determined as described below (see “Determination of Peptide 

Substrate “Substrate 3” KM”).  The Ki value for each peptide was determined using at 

least 3 independent experiments which were averaged to give an average Ki value ± 

standard deviation.  For analytical data see Appendix A. 
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Determination of Peptide Substrate “Substrate 3” KM 

The previously described continuous fluorescence assay was used to determine 

KM for “substrate 3” described in Wang et al.
27

  Reaction volumes of 100 µL were used 

in 96-well plates. 85 µL of enzyme in buffer mix was added to each well followed by 2.5 

µL of the appropriate dilution of “substrate 3” (typically 20, 10, 5, 2.5, 1.25, 0.625, 0.31, 

0.16, 0.078, and 0 mM in DMSO) and 2.5 µL of DMSO. The reaction was initiated with 

10 µL of ATP (10 mM in water), and reaction progress was immediately monitored at 

405 nm (ex. 340 nm) for 10 minutes. Reactions had final concentrations of 1 mM ATP, 

100 µM Na3VO4, 100mM Tris buffer (pH 8), 10 mM MgCl2, and 0.01% Triton X-100. c-

Src reactions had a final concentration of 30 nM enzyme, and c-Abl reactions had a final 

concentration of 300 nM enzyme.  

The initial rate data collected was used for determination of KM values, which 

were obtained directly from nonlinear regression of substrate-velocity curves.  The 

“substrate 3” KM values were determined using at least 3 independent experiments which 

were averaged to give an average KM value ± standard deviation.  Representative 

substrate velocity curves for “substrate 3” with c-Src kinase domain and c-Abl kinase 

domain are shown in Appendix A. 
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CHAPTER III 

A Substrate Activity Screening Method for Tyrosine Kinases 

 

Abstract 

Despite the interest in substrate-competitive kinase inhibitors, few screening 

methods exist that can identify small molecule substrate-competitive inhibitors.  This 

chapter details the development of a substrate activity screening method for the 

identification of substrate-competitive tyrosine kinase inhibitors.  Using this 

methodology, we have identified the first small molecule substrate-competitive inhibitor 

of c-Src with activity in both biochemical and cellular assays.  Analysis of the lead 

compound in cellulo revealed that substrate-competitive inhibitors possess unique 

properties such as cellular potency equivalent to biochemical potency, an enhanced 

selectivity profile, and synergy with ATP-competitive inhibitors.  The described substrate 

activity screening methodology is the first general method that can exclusively identify 

small molecule substrate-competitive kinase inhibitors and should be applicable to any 

tyrosine kinase of interest. 

 

Introduction 

In spite of the interest in substrate-competitive kinase inhibitors, there are far fewer 

substrate-competitive inhibitors reported compared to ATP-competitive inhibitors, and 

the majority of substrate-competitive inhibitors are peptides.
1-3

  These inhibitors often 

have poor potency as well as poor permeability and stability due to their peptidic nature, 

and this makes them unsuitable for use in vivo.
4
  Even fewer small molecule substrate-

competitive inhibitors have been reported, a fact that is largely attributed to the difficulty 

associated with identifying substrate-competitive inhibitors from high throughput 

screens.
5-6

  Unlike the ATP binding site, which is located in a deep hydrophobic cleft, the 

substrate binding site is a shallow, solvent exposed surface that facilitates protein-protein 

interactions.  The differences in these two binding sites make the ATP site far more 
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amenable to the binding of small molecules, and as a result of this traditional high 

throughput screens rarely identify small molecule substrate-competitive inhibitors.  A 

limited number of screening methods have been reported that can identify substrate-

competitive inhibitors, but all of these methods suffer from significant drawbacks (see 

Chapter I).  Thus, we aimed to develop a general screening method that could be applied 

to any tyrosine kinase of interest for the discovery of small molecule substrate-

competitive inhibitors. 

Substrate activity screening (SAS) is a screening method pioneered by the Ellman 

lab that identifies substrates of an enzyme instead of inhibitors.
7
  The reactive portion of 

the identified substrate is then modified to convert the substrate into an inhibitor.  

Because the enzyme is not inhibited, SAS allows for the identification of even very 

weakly binding substrates due to enzyme turnover and subsequent signal amplification.  

Additionally, because substrate binding and product formation is monitored by the assay 

instead of enzyme inhibition false negatives from nonspecific interactions are eliminated.  

The Ellman lab has previously used SAS to discover small molecule inhibitors of several 

proteases and phosphatases.
7-12

  Although there are previous reports of peptide substrates 

converted into peptide inhibitors, nonpeptidic substrates have not been reported for any 

protein kinase.
13-17

 

 

 

 

Scheme 3.1.  Proposed SAS methodology for protein tyrosine kinases. 

 

 

We thought SAS would be an excellent strategy for the identification of small 

molecule substrate-competitive inhibitors of tyrosine kinases because small molecule 

substrates converted into inhibitors should inherently be substrate-competitive.  The 

proposed methodology is outlined in Scheme 3.1.  A library of small molecule phenols 

will serve as tyrosine surrogates and will be screened to identify compounds that can be 
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phosphorylated by a kinase.  The identified substrates will then be converted to inhibitor 

either by replacement of the reactive hydroxyl group or by modifying the reactivity of the 

hydroxyl group.  Finally, the inhibitor will be optimized to give a lead substrate-

competitive inhibitor.  For the development of SAS for tyrosine kinases, c-Src kinase was 

used as a model kinase.
18-19

 

 

Step 1: Identification of Small Molecule Substrates 

 The development of SAS for tyrosine kinases began with the identification of 

small molecule substrates of c-Src kinase.  We hypothesized that small molecules would 

be poor kinase substrates compared to peptidic substrates, meaning a highly sensitive 

assay would be needed to identify leads.  The ADP-Glo kinase assay was selected due to 

its ability to detect low levels of kinase activity, and to be run at high levels of ATP, 

which would discourage the small molecules from binding to the ATP pocket. As shown 

in Scheme 3.2, this multistep endpoint assay links kinase activity to luciferase activity.
20

  

First, the kinase reaction is performed, and if the small molecule is a substrate of the 

kinase then ADP will be produced as a byproduct of the kinase reaction.  After 

sequestration of the remaining unreacted ATP, the ADP byproduct is converted back to 

ATP which is then used to fuel a luciferase reaction.  The amount of luminescence can 

then be correlated to the amount of kinase activity.  In addition to having the required 

sensitivity for the identification of small molecule substrates, this assay enables the SAS 

methodology to be readily adapted to any tyrosine kinase of interest since ADP is the 

byproduct of all kinase reactions. 

 

 

 

Scheme 3.2. The ADP-Glo assay kit was used to evaluate small molecules as potential 

kinase substrates.  Image adapted from Promega.
20
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Scheme 3.3.  Small molecule substrates of c-Src kinase identified using the ADP-Glo 

sassay.  The compounds were also evaluated as substrates of Hck and c-Abl.  None of the 

compounds were found to be substrates for c-Abl (KM > 1 mM). 

 

 

A library of 88 diverse small molecule phenols was assembled to serve as tyrosine 

mimics (see Appendix B, Table B.1 for structures).  The known c-Src substrate peptide 

Ac-AIYAA-NH2 was also included in the screen as a positive control.
21

  The phenol 

library was initially screened at 100 μM in the presence of 1 mM ATP and 100 nM c-Src.  

The amount of ADP produced as a byproduct of kinase activity was evaluated using an 

ADP-Glo assay kit (assays performed by Michael Steffey).  In addition to the peptide 

substrate control, nine small molecule substrates of c-Src were identified that produced 

>2.5% ADP after a 30 minute reaction in the ADP-Glo screen (assays performed by 

Michael Steffey).  Percent ADP for all compounds screened can be found in Appendix B 

and the six most interesting substrates are shown in Scheme 3.3.  To confirm that the 

observed ADP formation was due to phosphorylation of the small molecule phenols one 

of the reactions was analyzed by reverse phase analytical HPLC.  As shown in Figure 

3.1, the phosphate of substrate 3.2 was unambiguously identified by comparison to a 

known standard, proving that the small molecules are phosphorylated by c-Src.  KM 

values were also obtained for the identified substrates and ranged from 15-522 μM.  This 
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data demonstrates that small molecules can serve as competent substrates for a protein 

kinase, and in fact, several of the small molecule substrates have KM values lower than 

that for the peptidic c-Src substrate Ac-AIYAA-NH2 (KM = 60 μM).  It is noteworthy that 

these are the first non-peptidic substrates reported for any protein kinase.   

 

 

 

Figure 3.1.  Analytical HPLC traces confirmed phosphorylation of a small molecule 

substrate by Src.  A) Trace of substrate 3.2, (B) trace of a known standard of the 

corresponding phosphate of substrate 3.2, and (C) trace of the reaction after incubating 

3.2 with c-Src and ATP. 
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From the identified small molecule c-Src substrates some initial SAR trends were 

observed.  Several of the substrates (3.1, 3.2, 3.4, 3.5 and 3.6) are bicyclic structures, 

although this is not surprising since these ring systems are privileged scaffolds that are 

known to have binding affinity for proteins.
22

  Additionally, most of the substrates 

contain a nitrogen at a position meta or para to the hydroxyl group.  This nitrogen can be 

a primary or secondary sp
3
 nitrogen or a sp

2
 nitrogen.  When comparing similar quinoline 

and naphthalene substrates 3.1 and 3.4 (KM = 52 μM and 522 μM, respectively) an order 

of magnitude decrease in potency is observed when the nitrogen is removed.  

Furthermore, while two diphenylamines isomers (3.2 and 3.5) were identified as 

substrates, a corresponding diphenylmethane scaffold (P-S58) was not identified as a 

substrate in the initial screen.  Taken together this suggests that the nitrogen may be 

making important interactions within the substrate binding site, likely by acting as a 

hydrogen bond acceptor for a nearby residue. 

To gain further insight to the selectivity of the substrate site KM values were 

determined for the c-Src substrates with the highly similar kinases Hck and c-Abl 

(Scheme 3.3 and Appendix B, Table B.2).  Hck is a member of the Src subfamily of 

protein tyrosine kinases and has 85% sequence similarity to c-Src across the kinase 

domain.
23

  c-Abl is not a member of the Src family but still has 70% sequence similarity 

to c-Src across the kinase domain, and the high degree of similarity between c-Src and c-

Abl has made it very difficult to design inhibitors of c-Src that do not also inhibit c-

Abl.
24-25

  All of the c-Src substrates tested were found to also be Hck substrates with 

similar potencies, and this result was expected since members of the same kinase 

subfamily share many similar substrates.  The best selectivity was observed with 

substrate 3.1 which was 2.4-fold selective for c-Src over Hck.  Interestingly, the 

selectivity is reversed in the corresponding 3.4 which is 3.1-fold selective for Hck over 

Src.  Promisingly, none of the c-Src substrates were found to be substrates for c-Abl (KM 

> 1000 μM).  This supports that despite having high overall similarity and nearly 

identical ATP binding sites homologous kinases have divergent substrate binding 

preferences.  It has previously been shown with peptidic substrates that c-Src and c-Abl 

have divergent substrate binding preferences, and these results demonstrate that these 

preferences hold even with small molecule substrates.   This also supports the hypothesis 
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that substrate-competitive kinase inhibitors will show increased selectivity relative to 

ATP-competitive inhibitors. 

 

Step 2: Conversion of Substrates to Inhibitors 

 After identifying small molecule substrates of c-Src, the next step was to convert 

the substrates into inhibitors.  This could be accomplished by either replacement of the 

reactive hydroxyl group or by altering the reactivity of the hydroxyl group.  A library of 

peptides based on the known c-Src substrate Ac-AIYAA-NH2 in which the reactive 

tyrosine was replaced by a nonphosphorylatable residue was prepared and evaluated for 

c-Src inhibition (see Chapter II).  All of the peptides were poor inhibitors (all Ki > 100 

μM) likely due to the loss of hydrogen bonding interactions made by the tyrosine 

hydroxyl group in the active site.  Because of the smaller size of the substrates and 

therefore limited interactions that could be made with the substrate binding site, it was 

hypothesized that retaining this hydrogen bonding interaction would be critical for the 

binding of small molecule inhibitors.  Therefore, modifications that would retain similar 

hydrogen bonding interactions while preventing phosphotransfer were explored. 

 

 

 

Scheme 3.4.  Conversion of a small molecule kinase substrate scaffold into kinase 

inhibitors.  Inhibitors were evaluated against c-Src, Hck, and c-Abl using the pyrene 

fluorescence assay. 

 

 

 Graves and coworkers have previously shown that incorporation of 

tetrafluorotyrosine in place of tyrosine converted a peptidic substrate of IRK into an IRK 

inhibitor.
17, 26

  This modification deactivates the tyrosine residue for phosphotransfer but 
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enables key interaction made by the hydroxyl group to be retained.  To test if this strategy 

could also be applied to small molecule inhibitors of c-Src a tetrafluorinated analogue of 

substrate 3.5 was prepared (Scheme 3.4).  Substrate 3.5 was chosen based on its potency 

and the synthetic feasibility of the fluorinated analogue as well as other analogues.  

Fluorinated inhibitor 3.7 was evaluated using the pyrene peptide fluorescence assay 

previously described (see Chapter II) and found to have Ki = 257 μM.
27

  It was further 

hypothesized that pyridine N-oxide and hydroxypyridine may also serve as 

nonphosphorylatable phenol mimics.  Inhibitors 3.8 and 3.9 were found to be less potent 

inhibitors of c-Src with Ki = 478 μM and Ki = 552 μM, respectively (Scheme 3.4).  The 

potency of the 3 pharmacophores examined are consistent with results from the library of 

peptidic inhibitors, where the best c-Src inhibition was observed with pharmacophores 

that both increased the hydrophobic surface area and decreased the electron density 

within the phenyl ring (see Chapter II).  When evaluated in the ADP Glo assay, 

inhibitors 3.8, 3.9, and 3.12 (an optimized analogue of 3.7) were not phosphorylated by c-

Src (assays performed by Michael Steffey). 

 

 

Table 3.1.  Comparison of IC50 values obtained under standard conditions to values 

obtained under low ATP conditions or high substrate conditions.  

 c-Src IC50 (μM) 

 

Standard Conditions 

(45 μM peptide 

substrate, 1 mM ATP) 

Low ATP Conditions 

(45 μM peptide 

substrate, 100 μM ATP) 

High Substrate Conditions 

(500 μM peptide substrate, 

1 mM ATP) 

3.7 436 ± 60 µM 253 ± 37 µM >2000 µM 

3.8 830 ± 143 µM 444 ± 59 µM 1520 ± 440 µM 

3.9 958 ± 16 µM 665 ± 97 µM 1742 ± 614 µM 

 

 

 To determine if conversion from substrate to inhibitor was changing the binding 

mode of the scaffold each inhibitor was evaluated under conditions where the 

concentration of either ATP or peptide substrate had been changed (Table 3.1).  The IC50 

value for each inhibitor decreased approximately 2-fold or less when the concentration of 

ATP was decreased tenfold from 1 mM to 100 μM.  Similarly, when the concentration of 
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peptide substrate was increased 10-fold from 45 μM to 500 μM the IC50 values of all 

three inhibitors decreased approximately 2-fold or greater.  Notably, although the potency 

of inhibitor 3.7 decreased 2-fold when ATP concentration was decreased, the IC50 

potency decreased ≥5-fold when peptide substrate was increased.  Taken together this 

suggested that the inhibitors were not binding exclusively to the ATP-binding site and 

that the inhibitors are substrate-competitive. 

 Additionally, the three inhibitors were evaluated against Hck and c-Abl to assess 

selectivity of the inhibitors (Scheme 3.4).  None of the inhibitors were potent inhibitors 

of c-Abl as would be expected since the starting scaffold was not a substrate for c-Abl.  

Unexpectedly, despite the similar KM values for substrate 3.5 with c-Src and Hck (KM = 

120 μM and 137 μM, respectively) the inhibitors show different potencies against Hck 

compared to c-Src.  The hydroxypyridine inhibitor 3.9 was the least potent inhibitor 

against c-Src but is the most potent inhibitor against Hck (Ki = 318 μM).  Additionally, 

although 3.8 and 3.9 have similar potencies for c-Src and Hck, inhibitor 3.7 is 3.9-fold 

selective for c-Src over Hck.  These data suggest that the optimal pharmacophore is likely 

different for each kinase.  While it will require additional compound synthesis, the 

divergent pharmacophore preference will afford the opportunity to refine the selectivity 

of an inhibitor. 

 

Step 3: Inhibitor Optimization 

The tetrafluorophenol 3.7 was chosen for further optimization based on its c-Src 

potency and selectivity, and a focused library of twelve analogues of inhibitor 3.7 was 

prepared and evaluated using the pyrene peptide fluorescence assay.  Three inhibitors 

were found to have improved potency relative to the parent compound (Scheme 3.5, see 

Appendix B for full library details).  Addition of an ortho-methyl group in inhibitor 3.10 

gave a 2.0-fold increase in potency (Ki = 127 μM) and addition of a para-phenyl group in 

inhibitor 3.11 gave a 3.2-fold increase in potency (Ki = 80 μM).  Remarkably, 

replacement of the phenyl ring with a 1-naphthyl ring improved potency to 16 μM, a 

16.1-fold increase.  The potency of 3.12 is on par with other small molecule protein-

protein interaction inhibitors.
28

  Inhibitor 3.12 was also evaluated against the full 

construct of c-Src containing its regulatory domains (c-Src 3D) and had Ki = 36 μM.  
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When tested with phosphorylated c-Src kinase domain (pY416) and c-Src kinase domain 

containing the gatekeeper T338M mutation, a modest decrease in potency was observed 

(Ki = 73 μM and 75 μM, respectively).  Because both phosphorylation at Y416 and the 

gatekeeper mutation render the kinase in the active form, the decreased potency of 3.12 

against these constructs suggests that it may be binding to an inactive conformation of the 

kinase. 

 

 

 

Scheme 3.5.  Optimized substrate-competitive inhibitors of c-Src kinase.  Compounds 

were evaluated against c-Src, Hck, and c-Abl using the pyrene fluorescence assay. 

 

 

 As was done previously, the three analogues were evaluated against Hck and c-

Abl to determine selectivity.  All three analogues saw improvements in selectivity for c-

Src over c-Abl relative to the parent compound, although a smaller increase in selectivity 

was observed with inhibitor 3.11 due to the >2-fold increase in Abl potency.  With Hck, 

3.10 and 3.12 show increased selectivity relative to the parent compound while 3.11 

shows decreased selectivity.  Like what was seen with c-Abl, the decrease in c-Src 

selectivity over Hck for 3.11 (1.9-fold selective) is due to an increase in Hck potency.  

Inhibitor 3.11 saw a 6.8-fold increase in potency for Hck while only increasing potency 

3.2-fold for c-Src.  The increase in potency for the biphenyl analogue with all three 

kinases is likely due to the fact that biphenyl is a privileged scaffold that is known to bind 

to a large number of proteins.  The 1-naphthyl analogue 3.12 showed the best selectivity 

overall, with 20.3-fold selectivity for c-Src over Hck and 66.6-fold selectivity for c-Src 
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over c-Abl.  Due to its superior potency and selectivity, inhibitor 3.12 was chosen as the 

lead inhibitor for further characterization. 

 While determining the selectivity of the lead inhibitor 3.12 across the kinome is 

desirable, current profiling methods cannot perform this analysis with substrate-

competitive inhibitors.  All commercially available profiling services measure selectivity 

by evaluating displacement of an ATP-competitive probe, and this will not occur with a 

substrate-competitive inhibitor.
29-30

  Profiling a substrate-competitive inhibitor against a 

wide panel of kinases would require developing assay conditions for each kinase tested, 

which is beyond the resources of our laboratory.  Due to these limitations, we instead 

chose to profile 3.12 against all of the Src family kinases.  These experiments would give 

additional insight into the selectivity of the lead compound since it is expected that 

substrate-competitive inhibitors will have the least selectivity against members of the 

same subfamily.  For comparison, the ATP-competitive inhibitor PP2 (Scheme 3.6) was 

also evaluated against the Src family kinases.  PP2 was reported as a c-Src selective 

inhibitor and is often used as a c-Src selective probe in cell biology experiments, 

although recent evidence shows that PP2 has poor selectivity across the kinome.
31-32

 

 

 

 

Scheme 3.6.  ATP-competitive inhibitors of c-Src.  

 

 

As seen in Table 3.2, inhibitor 3.12 has the best selectivity against Hck and has at 

least 3.2-fold selectivity against all of the Src family kinases.  Impressively, 3.12 has 5.1-

fold selectivity for c-Src over Yes despite the fact that Yes has 95% sequence similarity 
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and 90% sequence identity with c-Src over the kinase domain.
19

  Inhibitor 3.12 represents 

one of the most selective inhibitors for c-Src over Yes reported to date, and only one 

ATP-competitive inhibitor has been reported with better selectivity.
31, 33

  In contrast, poor 

selectivity is observed for the ATP-competitive inhibitor PP2 across the Src family. 

While PP2 also has the best selectivity against Hck, the selectivity is much lower (1.8-

fold).  Additionally, PP2 has equivalent or better potency with six members of the Src 

family (Yes, Frk, Lck, Fyn, Lyn, and Fgr) than with c-Src.  Overall, the average 

selectivity for inhibitor 3.12 across the Src family is 6.8, while the average selectivity for 

PP2 is 0.8.  This highlights the improved selectivity that can be achieved with substrate-

competitive inhibitors compared to ATP-competitive inhibitors, even against highly 

similar kinases. 

 

 

Table 3.2.  Inhibition of Src family kinases by inhibitor 3.12 and PP2 was determined 

using the pyrene fluorescence assay.  The selectivity for c-Src over each kinase is given 

in parentheses. 

 c-Src Ki (selectivity ratio) 

      3.12 PP2 

c-Src 16 μM 45 nM 

Hck 325 μM (20.3) 88 nM (2.0) 

Frk 83 μM (5.2) 20 nM (0.4) 

Yes 82 μM (5.1) 46 nM (1.0) 

Lck 63 μM (3.9) 9 nM (0.2) 

Fyn 61 μM (3.8) 20 nM (0.4) 

Lyn 60 μM (3.8) 16 nM (0.4) 

Blk 52 μM (3.3) 67 nM (1.5) 

Fgr 51 μM (3.2) 25 nM (0.6) 

Average Selectivity         6.1         0.8 

 

 

Binding Mode Analysis 

 Inhibitors identified from SAS should inherently be substrate-competitive 

inhibitors, however because multiple binding sites exist on the kinase extensive 

biochemical evaluation was carried out to confirm the binding mode of inhibitor 3.12.  
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Initially, the effect of varying ATP or peptide substrate concentration on the potency of 

3.12 (IC50 = 27 μM) was examined.  As expected, the IC50 value was independent of ATP 

concentration and decreasing the ATP concentration 10-fold to 100 μM did not 

significantly change the IC50 value (IC50 = 44 μM).  However, the IC50 value was highly 

sensitive to peptide substrate concentration, and a 10-fold increase in peptide substrate 

concentration resulted in a >20-fold decreased in the IC50 value (IC50 = 577 μM).   

 

 

 

Figure 3.2.  Lineweaver-Burk analysis of inhibitor 3.12.  Initial velocity was measured 

using the pyrene fluorescence assay in the presence of variable concentrations of 3.12.  

A) Double reciprocal plot of initial velocity vs. “substrate 3” concentration. B) Double 

reciprocal plot of initial velocity vs. ATP concentration. 

 

 

Lineweaver-Burk analysis was then performed to further confirm the binding 

mode (Figure 3.2).  A double reciprocal plot of initial velocity against peptide substrate 
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concentration in the presence of varying concentrations of inhibitor 3.12 clearly shows 

intersection on the Y-axis, indicating that inhibitor 3.12 is substrate-competitive.  

Conversely, a double reciprocal plot of initial velocity against ATP concentration in the 

presence of various concentrations of inhibitor 3.12 intersects on the X-axis, indicating 

that inhibitor 3.12 is ATP-noncompetitive.  Additionally, global fit analysis was 

performed to fit the KM and Vmax data for peptide substrate and ATP to competitive, 

noncompetitive, and uncompetitive models (see Appendix B).  The global fit analysis 

agreed with the Lineweaver-Burk analysis that inhibitor 3.12 is substrate-competitive (R
2
 

= 0.993) and ATP-noncompetitive (R
2
 = 0.999). 

 

 

 

Figure 3.3.  Induced fit docking of inhibitor 3.12 with c-Src.  A) Inhibitor 3.12 binds in 

the substrate binding site.  B) The model predicts a cation-π interaction between Arg388 

and 3.12. 

 

 

 To gain further insight into the binding mode of inhibitor 3.12, induced-fit 

docking was used to flexibly dock 3.12 into c-Src (modeling performed by Dr. Matthew 

Soellner).
34

  As shown in Figure 3.3, the inhibitor clearly binds in the substrate binding 

site, and a cation-π interaction is predicted between 3.12 and an arginine residue 

(Arg388) in the substrate binding site.  Because this arginine residue is replaced by an 

alanine in c-Abl and Arg365 in c-Abl replaces Ala390 in c-Src, inhibitor 3.12 was 

evaluated with a R388A/A390R c-Src mutant.  This mutant was found to be catalytically 

competent, and as predicted by the model inhibitor 3.12 was only a weak inhibitor of this 
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mutant (Ki = 184 μM).  Taken together, the biochemical and modeling data offers strong 

support that kinase inhibitors identified through SAS have the desired substrate-

competitive, ATP-noncompetitive binding mode. 

 

In Cellulo Evaluation 

 Inhibitor 3.12 was also evaluated in cellulo (assays performed by Michael Steffey 

and Eric Lachacz unless otherwise noted).  Initially, the inhibition of c-Src 

autophosphorylation was examined using an enzyme-linked immunosorbent assay 

(ELISA)-based assay (assays performed by Proquinase GmbH).  Inhibitor 3.12 prevented 

c-Src autophosphorylation in MEF cells with IC50 = 15 μM.  This is in excellent 

agreement with the biochemical potency (Ki = 16 µM) and proves that 3.12 is cell 

permeable.  This was compared to PP2, which despite having biochemical Ki = 45 nM 

has a c-Src autophosphorylation IC50 of 2.2 μM.
31

  This supports a long-standing 

hypothesis that unlike ATP-competitive inhibitors, which lose potency in vivo due to high 

intracellular ATP levels, substrate-competitive inhibitors will see less difference between 

biochemical and cellular potency due to kinase substrates being present at levels near or 

below their KM values.  The 44-fold decrease in potency that was observed here for PP2 

in cellulo is consistent with a cellular ATP concentration of approximately 5 mM. 

 Growth inhibition of cancer cell lines was also evaluated.  Inhibitor 3.12 

prevented the growth of SK-BR-3 breast cancer cells and HT-29 colorectal 

adenocarcinoma cells with GI50 = 15 μM and 37 μM, respectively.  Both of these cell 

lines have previously been shown to be c-Src growth dependent.
31, 35

  Despite its modest 

biochemical potency, inhibitor 3.12 is significantly more potent against these cell lines 

than PP2 (SK-BR-3 GI50 >100 µM and HT-29 GI50 = 48 µM).
31

  Notably, the SK-BR-3 

antiproliferative effects of 3.12 are similar to the most potent ATP-competitive c-Src 

inhibitors known, including the FDA-approved inhibitors dasatinib and bosutinib.
36-37

  

Additionally, inhibitor 3.12 did not significantly inhibit the growth of MCF7 and T47D 

breast cancer (GI50 > 100 μM).  MCF7 and T47D cells are c-Src growth independent, and 

thus the inability of 3.12 to prevent the growth of these cells suggests that 3.12 is still 

acting as a selective c-Src inhibitor in cellulo. 
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Figure 3.4.  Activation of (A) c-Src dependent and (B) c-Src independent signaling 

pathways in the presence of 3.12 and PP2 was evaluated in SK-BR-3 cells using an 

AlphaScreen assay. 

 

 

 To further probe the selectivity of inhibitor 3.12 in cellulo, the activation of c-Src 

dependent and independent signaling pathways was examined in SK-BR-3 cells using an 

AlphaScreen assay.  As seen in Figure 3.4, inhibitor 3.12 was able to decrease activation 

of the c-Src dependent Jnk and STAT3 pathways to levels similar to those observed in 

the presence of PP2, but it did not decrease the activation of the c-Src independent Akt 

and Erk pathways.
38-39

  In contrast, PP2 decreased all four signaling pathways.  Together 

with the cell growth inhibition studies these results offer strong evidence that 3.12 is 

highly selective for c-Src over other kinases. 
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Synergy Studies 

 As a final study, c-Src inhibition by combinations of inhibitor 3.12 and ATP-

competitive inhibitors was examined.  Because they share different binding sites, it is 

possible that substrate-competitive and ATP-competitive inhibitors could bind at the 

same time to give additive or even synergistic (hyper-additive) inhibition.  Synergy 

between two compounds binding to different sites on the same target has been shown in 

other systems such as antibiotics targeting the eubacterial large ribosomal subunit and 

inhibitors of HIV reverse transcriptase.
40-43

  Previous studies have also shown synergistic 

inhibition of cell growth when substrate-competitive or allosteric kinase inhibitors were 

dosed with an ATP-competitive kinase inhibitor, but because these studies were 

performed in cellulo using nonselective inhibitors the hyper-additivity observed could be 

due to inhibition of off-target kinases.
44-45

  As such, the current study was performed 

biochemically to ensure that any additive or synergistic effects were due exclusively to 

binding to c-Src. 

 

 

 

Figure 3.5.  Synergy studies of combinations of substrate-competitive inhibitor 3.12 with 

ATP-competitive inhibitors PP2 or PP5.  IC35 concentrations were dosed individually 

and in combination.  The red line indicates the predicted additivity of 3.12 + PP2.  

 

  

 The inhibition of c-Src in the presence of IC35 doses of inhibitor 3.12 with either 

PP2 or PP5 was evaluated using the pyrene peptide fluorescence assay.  PP2 and PP5 

are both pyrazolopyrimidine ATP-competitive inhibitors of c-Src that target the active 
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(DFG-in) and inactive (DFG-out) conformations, respectively.
32, 46

  The threshold for 

synergistic inhibition was calculated using the Bliss equation.
47

  As seen in Figure 3.5, 

inhibitor 3.12 shows synergistic inhibition of c-Src with both ATP-competitive inhibitors, 

although greater synergy is observed with PP5.  Taken together with the previously 

observed decrease in the potency of inhibitor 3.12 with pY416 c-Src and T338M c-Src, 

this suggests that inhibitor 3.12 prefers to bind to an inactive-type conformation.  As a 

control, combination of PP2 and PP5 was examined and only additivity was observed as 

expected for two compounds sharing the same binding site.  Overall, these results 

unambiguously demonstrate for the first time synergy between a substrate-competitive 

inhibitor and ATP-competitive inhibitors.     

 

Conclusions 

 The development of small molecule substrate-competitive kinase inhibitors has 

been impeded by the lack of general screening methods that can exclusively identify 

substrate-competitive inhibitors.  To develop a general screening method for the 

identification of substrate-competitive tyrosine kinase inhibitors, we have applied the 

SAS method developed by the Ellman lab to the tyrosine kinase c-Src.  Because SAS 

methods identify of substrates of an enzyme that are later converted into inhibitors, we 

hypothesized this method would be well suited for the discovery of substrate-competitive 

kinase inhibitors. 

Using an ADP detection assay, we have reported the first small molecule substrates 

of protein kinases.  By utilizing pharmacophore SAR gleaned from our peptidic inhibitor 

studies, we then successfully converted one of the small molecule c-Src substrates into a 

series of c-Src inhibitors.  Optimization of one of these inhibitors generated our lead 

inhibitor 3.12 with c-Src Ki = 16 μM.  Extensive kinetics analysis, modeling, and 

mutagenesis studies support that 3.12 has a substrate-competitive, ATP-noncompetitive 

binding mode as originally hypothesized.  In contrast to the ATP-competitive c-Src 

inhibitor PP2, the lead inhibitor 3.12 shows excellent selectivity against highly similar 

kinases.  Inhibitor 3.12 is over 66-fold selective for c-Src over c-Abl, and has an average 

selectivity of 6.1 across the Src family of kinases.  Additionally, inhibitor 3.12 is active in 

cellulo and inhibits the growth of c-Src dependent cancer cell lines with low micromolar 
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GI50 values comparable to some of the most potent FDA-approved ATP-competitive 

inhibitors.  Cellular evaluation of 3.12 also demonstrated the improved features of 

substrate-competitive inhibitors compared to ATP-competitive inhibitors in cellulo, 

including cellular potency that more closely resembles biochemical potency and 

improved selectivity.  Inhibitor 3.12 is one of only a few substrate-competitive kinase 

inhibitors with activity in both biochemical and cellular assays and is the only such 

inhibitor of c-Src.
14

  Finally, we have conclusively demonstrated for the first time that a 

substrate-competitive kinase inhibitor can be combined with ATP-competitive inhibitors 

to produce synergistic inhibition.   

Taken together, these results clearly demonstrate the potential of this SAS method 

for the discovery of small molecule substrate-competitive inhibitors that can serve as 

improved biological probes compared to ATP-competitive inhibitors.  While other 

methods have been reported for the discovery of substrate-competitive kinase inhibitors 

(see Chapter I), our SAS method is the only general screening method for the exclusive 

identification small molecule substrate-competitive kinase inhibitors.  By utilizing a 

screen that identifies ADP, the byproduct of any kinase reaction, the described SAS 

method should be applicable to any tyrosine kinase of interest.  Furthermore, the SAS 

method could likely be applied to other non-tyrosine kinases.  There is evidence that 

some serine/threonine kinases can also phosphorylate tyrosine, which could allow for the 

use of the method as outlined.
48-49

  Additionally, the method could potentially be 

modified for non-tyrosine kinases by altering the library composition and 

pharmacophores utilized.  We anticipate that our SAS method will enable the rapid 

discovery of substrate-competitive kinase inhibitors against additional targets which will 

serve as important biological probes for studying kinase activity or even potential 

therapeutics. 

 

Materials and Methods 

General Synthetic Methods 

Unless otherwise noted, all reagents were obtained via commercial sources and 

used without further purification. 
1
H, 

13
C, and 

19
F NMR spectra were measured with a 
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Varian MR400 or Inova 500 spectrometer. Mass spectrometry (HRMS) was carried out 

by the University of Michigan Mass Spectrometry Facility (J. Windak, director). 

Synthetic Protocols 

 

 

Scheme 3.7.  Synthesis of compound 3.7. 

 

2,3,5,6-tetrafluoro-4-(phenylamino)phenol (3.7).  Compound 3.7 was prepared in a 

manner similar to that described by Maiti and Buchwald.
50

  To an oven-dried 4 mL 

conical vial was added 4-bromo-2,3,5,6-tetrafluorophenol (123 mg, 0.5 mmol), aniline 

(55 µL, 0.6 mmol), sodium tert-butoxide (120 mg, 1.25 mmol), and BrettPhos 

palladacycle (0.8 mg, 0.001 mmol).  The vial was flushed with N2, then 1 mL anhydrous 

1,4-dioxane was added.  The reaction was stirred at 90 C for 3 h.  After cooling to RT, 

the reaction was poured into a 10% aqueous citric acid solution (30 mL) and extracted 

with EtOAc (4 x 20 mL).  The organic extracts were dried over MgSO4 and the solvent 

was removed under reduced pressure.  Purification by automated silica gel 

chromatography using a 6 → 60% EtOAc in hexanes gradient afforded 3.7 as a pale 

yellow crystalline solid (36 mg, 28% yield).  
1
H NMR (400 MHz, CDCl3) δ 7.28 – 7.14 

(m, 2H), 6.96 – 6.86 (m, 1H), 6.74 (m, 2H), 5.51 (s, 1H), 5.23 (s, 1H).  
19

F NMR (400 

MHz, CDCl3) δ -149.9 (dd, J = 23.7 Hz, 7.2 Hz, 2F), -163.8 (dd, J = 23.7 Hz, 7.2 Hz, 

2F).  HRMS-ESI (m/z): [M+H]
+
 calcd for C12H7F4NO, 258.0537; found 258.0533. 
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Scheme 3.8.  Synthesis of compound 3.8. 

 

N-phenylpyridin-4-amine (3.13).  To an oven-dried vial was added 4-aminopyridine (113 

mg, 1.2 mmol), bromobenzene (106 µL, 1.0 mmol), Cs2CO3 (814 mg, 2.5 mmol), 

Xantphos (58 mg, 0.1 mmol), and Pd2(dba)3 (46 mg, 0.05 mmol).  The vial was flushed 

with N2 for 5 min, then anhydrous 1,4-dioxane (4 mL) was added and the reaction was 

stirred at 95 C for 24 h.  The reaction was cooled to room temperature, diluted with H2O 

(30 mL), and extracted with EtOAc (3x20 mL).  The combined organic extracts were 

dried over MgSO4, filtered, and the solvent was removed under reduced pressure.  

Purification by automated silica gel chromatography using a 0 → 10% MeOH in DCM 

gradient afforded 3.13 as a light yellow solid (133 mg, 78% yield).  
1
H NMR (500 MHz, 

CDCl3) δ 8.28 – 8.23 (m, 2H), 7.39 – 7.31 (m, 2H), 7.21 – 7.08 (m, 3H), 6.83 – 6.77 (m, 

2H), 6.14 (s, 1H).  
13

C NMR (125 MHz, CDCl3) δ 150.83, 149.91, 139.50, 129.52, 

124.12, 121.63, 109.41.  HRMS-ESI (m/z): [M+H]
+
 calcd for C11H10N2, 171.0917; found 

171.0916. 

 

Tert-butylphenyl(pyridin-4-yl)carbamate (3.14).  In a 25 mL roundbottom flask, 3.13 

(100 mg, 0.59 mmol) was dissolved in 6 mL anhydrous THF.  TEA (160 µL, 1.2 mmol) 

was added followed by DMAP (0.7 mg, 0.006 mmol) and Boc2O (154 mg, 0.71 mmol).  

The reaction was stirred at room temperature overnight then at 65 C for 24 h.  The 
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reaction was cooled to room temperature, diluted with H2O (30 mL) and extracted with 

EtOAc (3x15 mL).  The combined organic extracts were dried over MgSO4, filtered, and 

the solvent was removed under reduced pressure.  Purification by automated silica gel 

chromatography using a 10 → 80% EtOAc in hexanes gradient afforded 3.14 as a white 

solid (52 mg, 32% yield).  
1
H NMR (500 MHz, CDCl3) δ 8.43 – 8.38 (m, 2H), 7.43 – 

7.35 (m, 2H), 7.35 – 7.27 (m, 1H), 7.18 – 7.10 (m, 4H), 1.42 (s, 9H).  
13

C NMR (125 

MHz, CDCl3) δ 152.83, 150.11, 150.04, 140.99, 129.38, 128.30, 127.42, 117.78, 82.30, 

28.04.  HRMS-ESI (m/z): [M+H]
+
 calcd for C16H18N2O2, 271.1441; found 271.1443. 

 

4-((tert-butoxycarbonyl)(phenyl)amino)pyridine 1-oxide (3.15).  3.14 (41 mg, 0.15 

mmol) was dissolved in 5 mL DCM then mCPBA (104 mg, 0.6 mmol) was added.  The 

reaction was stirred at room temperature for 20 h.  The reaction was diluted with 10 mL 

DCM and washed with 1 N NaOH (15 mL), and the organic layer was dried over 

MgSO4, filtered, and the solvent was removed under reduced pressure. Purification by 

automated silica gel chromatography using a 0 → 7% MeOH in DCM gradient afforded 

3.15 as a light yellow glass (38 mg, 89% yield).  
1
H NMR (500 MHz, CDCl3) δ 8.07 – 

8.00 (m, 2H), 7.45 – 7.37 (m, 2H), 7.37 – 7.30 (m, 1H), 7.20 – 7.11 (m, 4H), 1.40 (s, 9H).  

13
C NMR (125 MHz, CDCl3) δ 152.40, 141.55, 140.25, 138.70, 129.61, 127.98, 127.80, 

119.80, 82.82, 27.91.  HRMS-ESI (m/z): [M+H]
+
 calcd for C16H18N2O3, 287.1390; found 

287.1393. 

 

4-(phenylamino)pyridine 1-oxide (3.8).  In a dry 10 mL round bottom flask 3.15 (30 mg, 

0.10 mmol) was dissolved in 4 mL DCM then TFA (2 mmol) was added.  The reaction 

was stirred at reflux for 24 h, then the solvent was removed under reduced pressure.  

Purification by automated silica gel chromatography using a 0 → 7% MeOH in DCM 

gradient afforded 3.8 as a light brown solid (8 mg, 41% yield).  
1
H NMR (500 MHz, 

DMSO-d6) δ 9.08 (s, 1H), 8.01 – 7.95 (m, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.16 (d, J = 7.9 

Hz, 2H), 7.04 (t, J = 7.4 Hz, 1H), 6.98 – 6.91 (m, 2H).  
13

C NMR (125 MHz, DMSO-d6) 

δ 143.83, 140.00, 139.14, 129.54, 123.05, 119.99, 111.01.  HRMS-ESI (m/z): [M+H]
+
 

calcd for C11H10N2O, 187.0866; found 187.0866. 

 



70 

 

 

Scheme 3.9.  Synthesis of compound 3.9. 

 

5-(phenylamino)pyridin-2(1H)-one (3.9).  Compound 3.9 was prepared in a manner 

similar to that described by Maiti and Buchwald.
50

  To an oven-dried 4 mL conical vial 

was added bromobenzene (53 µL, 0.5 mmol), 5-amino-2-hydroxypyridine (66 mg, 0.6 

mmol), sodium tert-butoxide (120 mg, 1.25 mmol), and BrettPhos palladacycle (0.8 mg, 

0.001 mmol).  The vial was flushed with N2, then 1 mL anhydrous 1,4-dioxane was 

added.  The reaction was stirred at 90 C for 3 h.  After cooling to RT, the reaction was 

poured into water (30 mL) and extracted with EtOAc (3 x 15 mL).  The organic extracts 

were dried over MgSO4 and the solvent was removed under reduced pressure.  The crude 

product was dissolved in DMSO (2 mL) and purified by reverse-phase HPLC using a 5 

→ 95% acetonitrile in water gradient.  Lyophilization afforded 3.9 as a pale brown solid 

(30 mg, 32% yield).  
1
H NMR (400 MHz, DMSO-d6) δ 11.27 (s, 1H), 7.41 (s, 1H), 7.34 

(dd, J = 9.6, 3.0 Hz, 1H), 7.19 – 7.07 (m, 3H), 6.71 – 6.61 (m, 3H), 6.36 (dd, J = 9.5, 0.7 

Hz, 1H).  
13

C NMR (125 MHz, DMSO-d6) δ 159.89, 145.83, 139.90, 129.28, 127.54, 

124.89, 118.90, 118.46, 114.31.  HRMS-ESI (m/z): [M+H]
+
 calcd for C11H10N2O, 

187.0866; found 187.0865. 

 

 

Scheme 3.10.  Synthesis of compound 3.10. 
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2,3,5,6-tetrafluoro-4-(o-tolylamino)phenol (3.10).  Compound 3.10 was prepared in a 

manner similar to that described by Maiti and Buchwald.
50

  To an oven-dried 4 mL 

conical vial was added 4-bromo-2,3,5,6-tetrafluorophenol (123 mg, 0.5 mmol), o-

toluidine (64 µL, 0.6 mmol), sodium tert-butoxide (120 mg, 1.25 mmol), and BrettPhos 

palladacycle (0.8 mg, 0.001 mmol).  The vial was flushed with N2, then 1 mL anhydrous 

1,4-dioxane was added.  The reaction was stirred at 90 C for 18 h.  After cooling to RT, 

the reaction was poured into a 10% aqueous citric acid solution (15 mL) and extracted 

with EtOAc (3 x 10 mL).  The organic extracts were dried over MgSO4 and the solvent 

was removed under reduced pressure.  Purification by automated silica gel 

chromatography using a 6 → 50% EtOAc in hexanes gradient afforded 3.10 as purple 

crystalline solid (80 mg, 59% yield).  
1
H NMR (400 MHz, CDCl3) δ 7.20 – 7.03 (m, 2H), 

6.86 (td, J = 7.4, 1.2 Hz, 1H), 6.55 (dq, J = 8.1, 1.9 Hz, 1H), 4.95 (s, 1H), 2.31 (s, 3H).  

19
F NMR (400 MHz, CDCl3) δ -150.6 (dd, J = 22.6 Hz, 6.6 Hz, 2F), -163.8 (dd, J = 22.6 

Hz, 6.6 Hz, 2F).  HRMS-ESI (m/z): [M+H]
+
 calcd for C13H9F4NO, 272.0693; found 

272.0690. 

 

 

 

Scheme 3.11.  Synthesis of compound 3.11. 

 

4-([1,1'-biphenyl]-4-ylamino)-2,3,5,6-tetrafluorophenol (3.11).  Compound 3.11 was 

prepared in a manner similar to that described by Maiti and Buchwald.
50

  To an oven-

dried 4 mL conical vial was added 4-bromo-2,3,5,6-tetrafluorophenol (123 mg, 0.5 

mmol), [1,1'-biphenyl]-4-amine (102 mg, 0.6 mmol), sodium tert-butoxide (120 mg, 1.25 

mmol), and BrettPhos palladacycle (0.8 mg, 0.001 mmol).  The vial was flushed with N2, 

then 1 mL anhydrous 1,4-dioxane was added.  The reaction was stirred at 90 C for 18 h.  
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After cooling to RT, the reaction was poured into a 10% aqueous citric acid solution (15 

mL) and extracted with EtOAc (3 x 10 mL).  The organic extracts were dried over 

MgSO4 and the solvent was removed under reduced pressure.  Purification by automated 

silica gel chromatography using a 6 → 50% EtOAc in hexanes gradient afforded 3.11 as 

purple crystalline solid (105 mg, 63% yield).  
1
H NMR (500 MHz, CDCl3) δ 7.56 – 7.44 

(m, 4H), 7.43 – 7.35 (m, 2H), 7.32 – 7.22 (m, 1H), 6.84 – 6.77 (m, 2H), 5.76 (s, 1H), 5.31 

(s, 1H).  
19

F NMR (400 MHz, CDCl3) δ -149.8 (dd, J = 23.2 Hz, 7.6 Hz, 2F), -163.6 (dd, 

J = 23.2 Hz, 7.6 Hz, 2F).  HRMS-ESI (m/z): [M+H]
+
 calcd for C16H9F4NO, 308.0693; 

found 308.0689. 

 

 

 

Scheme 3.12.  Synthesis of compound 3.12. 

 

2,3,5,6-tetrafluoro-4-(naphthalen-1-ylamino)phenol (3.12).  Compound 3.12 was 

prepared in a manner similar to that described by Maiti and Buchwald.
50

  To an oven-

dried 4 mL conical vial was added 4-bromo-2,3,5,6-tetrafluorophenol (123 mg, 0.5 

mmol), naphthalen-1-amine (86 mg, 0.6 mmol), sodium tert-butoxide (120 mg, 1.25 

mmol), and BrettPhos palladacycle (0.8 mg, 0.001 mmol).  The vial was flushed with N2, 

then 1 mL anhydrous 1,4-dioxane was added.  The reaction was stirred at 90 C for 18 h.  

After cooling to RT, the reaction was poured into a 10% aqueous citric acid solution (15 

mL) and extracted with EtOAc (3 x 10 mL).  The organic extracts were dried over 

MgSO4 and the solvent was removed under reduced pressure.  The crude product was 

dissolved in DMSO (2 mL) and purified by reverse-phase HPLC using a 5 → 95% 

acetonitrile in water gradient.  Lyophilization afforded 3.12 as pale purple solid (12 mg, 

8% yield).  
1
H NMR (400 MHz, CDCl3) δ 8.05 (m, 1H), 7.89 – 7.80 (m, 1H), 7.58 – 7.45 
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(m, 3H), 7.36 – 7.21 (m, 2H), 6.73 – 6.65 (m, 1H), 5.65 (s, 1H).  
19

F NMR (400 MHz, 

CDCl3) δ -151.0 (dd, J = 23.0 Hz, 5.8 Hz, 2F), -163.5 (dd, J = 23.0 Hz, 5.8 Hz, 2F).  

HRMS-ESI (m/z): [M+H]
+
 calcd for C18H11F4NO, 334.0850; found 334.0848. 

Spectral Data for Compounds 

Spectral data (
1
H, 

13
C and 

19
F NMR) for compounds 3.7-3.15 is shown in 

Appendix B. 

Gas Chromatography Analysis of Compounds 

Gas chromatography was carried out using a Shimadzu GC 2010 containing a 

Shimadzu SHRX5 (crossbound 5% diphenyl–95% dimethyl polysiloxane; 15 m, 0.25 mm 

ID, 0.25μm df) column.  Traces for compounds 3.7-3.12 are shown in Appendix B. 

Biochemical Substrate Identification Assays 

Substrate identification assays were performed by Michael Steffey using an ADP-

Glo™ assay kit (Promega).  Compounds were solubilized in 100% DMSO to 0.2M then 

subsequently diluted into ADP-Glo Kinase buffer (40 mM Tris pH 7.5, 20 mM MgCl2, 

0.1 mg/mL bovine serum albumin) to a working stock concentration of 167 μM (1.7% 

DMSO).  3 μL of the compound solution was added to the wells of a 384-well 

PerkinElmer Optiplate followed by the addition of 2 μL of kinase/ATP mix (250 nM c-

Src, 250 μM ATP in ADP-Glo Kinase buffer).  The plate was then sealed and pulse-spun 

in a tabletop centrifuge for 10 seconds to thoroughly mix the well contents.  The final 

concentrations in the well were: 100 μM compound (1.0% DMSO), 100 nM c-Src, and 

100 μM ATP.  The peptide substrate (Ac-AIYAA-NH2) was used as a control substrate to 

verify kinase activity.
2
  Blank wells containing the reaction mixture without substrate 

were included as well.  The kinase reaction was allowed to proceed at room temperature 

for 30 minutes after which the reaction was stopped by the addition of 5 μL/well of ADP-

Glo Reagent (Promega).  The contents were mixed by centrifugation as above and an 

additional room temperature 40 minute incubation was followed per the Promega 

protocol. 10 μL/well of Kinase Detection Reagent (Promega) was added to each well, the 

plate was spun as described to mix the contents, and an additional 30 minute room 

temperature incubation was performed per the Promega protocol.  Luminescence was 

read in a Biotek Synergy 4 multimode plate reader and the percent ADP formed in the 
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well was calculated against a standard curve using a ratio of ATP/ADP as described in 

the Promega protocol under the same incubation conditions as the kinase reaction.  Each 

data point was determined with n ≥ 2 and the percent ADP formed is given as the mean ± 

standard error. 

The ATP/ADP calibration curve, structures for the phenol library, and percent 

ADP formed for each compound can be found in Appendix B.   

Determination of KM for Phenolic Substrates 

The KM values for the phenolic substrates were determined by Michael Steffey 

using an ADP-Glo™ assay kit (Promega). The compounds were supplied as 100% 

DMSO solutions at 200 mM and were diluted to 2.5 mM into ADP-Glo buffer (40 mM 

Tris, pH 7.5, 20 mM MgCl2, 0.1 mg/ml BSA, 0.1 mM Na3VO4, 0.01% Triton X-100). 1:1 

dilutions were done in ADP-Glo buffer containing 1.25% DMSO and 2 μl of the 

solutions (in triplicate) were then added to wells of a 384-well PerkinElmer Optiplate. 

The kinase and ATP solution was prepared in ADP-Glo buffer to 2.5X the final 

concentrations desired in the assay and 3 μl was added to the wells containing the 

compound. The final concentrations used in the assay were: ATP = 100 μM, Src and Hck 

= 30 nM, Abl = 150 nM. The solutions were mixed in the plate by a brief centrifugation 

and allowed to incubate for 30 minutes at room temperature. 5 μl of ADP-Glo Reagent 

was added to each well and mixed by a brief centrifugation to terminate the kinase 

reaction. The plate was then incubated an additional 40 minutes at room temperature. The 

luciferase signal was generated by adding 10 μl per well of Kinase Detection Reagent and 

mixing by a brief centrifugation and incubation for 30 minutes at room temperature. 

Luminescence was measured in a Biotek Synergy 4 multimode plate reader. ATP 

conversion was determined against a standard curve of ATP/ADP using the ADP-Glo 

workup conditions listed above.  KM values were obtained directly from nonlinear 

regression of substrate-velocity curves.  Curve fitting was done using Graphpad Prism 4 

software using nonlinear curve fitting parameters.  Each data point was determined in 

triplicate and is shown as the mean ± standard error. 

The KM curves for substrates P-S1 – P-S9 with c-Src kinase domain are shown in 

Appendix B.  Inhibitor 3.12 was also evaluated as a c-Src substrate and the KM curve is 
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shown in Appendix B.  KM curves for P-S1, P-S2, P-S5, and P-S8 with Hck kinase 

domain are also shown in Appendix B. 

HPLC Analysis of Substrate Phosphorylation 

The phosphorylation of phenol P-S2 by c-Src was monitored by analytical reverse 

phase HPLC (Zorbax Eclipse Plus C18 4.6 x 75 mm, 3.5 μm column) using an 

acetonitrile in water (+0.1% TFA) gradient (5% ACN for 3 min, then 5→70% ACN over 

10 min).  The enzymatic reaction had a final concentration 200 μM P-S2, 200 μM ATP, 6 

μM c-Src, 100 mM Tris buffer (pH 8), and 10 mM MgCl2.  The phosphate P-S2-phos 

was prepared as described by Soellner et al and used as a known standard for 

comparison.
3
  HPLC traces for P-S2, P-S2-phos, and P-S2 + ATP + Src are shown in 

Appendix B. 

General Biochemical Methods 

Black, opaque-bottom 96 well plates were used for fluorescence assays and were 

purchased from Nunc.  c-Src, c-Abl, Yes, and Hck were expressed in E. coli by Christel 

Fox and Frank Kwarcinski using previously published procedures.
51

  Chicken c-Src 

numbering is used unless otherwise noted.  Blk, Fgr, Frk, Fyn A, Lck, and Lyn A were 

purchased from SignalChem.  Data was obtained using a Molecular Devices SpectraMax 

M5 plate reader or Biotek Synergy 4 plate reader.  Curve fitting was performed using 

GraphPad Prism 4 software unless otherwise noted. 

Determination of Inhibitor Ki 

A continuous fluorescence assay was used to determine Ki.
27 

 Reaction volumes of 

100 µL were used in 96-well plates. 85 µL of enzyme in buffer mix was added to each 

well followed by 2.5 µL of the appropriate inhibitor dilution (typically 80, 40, 20, 10, 5, 

2.5, 1.25, 0.625 mM in DMSO) and 2.5 µL of a substrate peptide solution (“compound 3” 

as described in Wang et al., typically 1.8 mM in DMSO). The reaction was initiated with 

10 µL of ATP (10 mM in water), and reaction progress was immediately monitored at 

405 nm (ex. 340 nm) for 10 minutes.  Reactions had final concentrations of 1 mM ATP, 

100 µM Na3VO4, 100mM Tris buffer (pH 8), 10 mM MgCl2, and 0.01% Triton X-100. 

Final concentrations of enzyme and “substrate 3” for each kinase are as follows: c-Src 

kinase domain, 3 domain (3D) c-Src, phosphorylated (pY416) c-Src kinase domain, 
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double mutant R388A/A390R c-Src kinase domain, Hck kinase domain assays, and Yes 

kinase domain reactions had a final concentration of 30 nM enzyme and 45 µM peptide 

substrate. T338M c-Src kinase domain reactions had a final concentration of 30 nM 

enzyme and 20 µM peptide substrate. c-Abl kinase domain reactions had a final 

concentration of 120 nM enzyme and 120 µM peptide substrate.  3D Blk reactions had a 

final concentration of 30 nM enzyme and 85 µM peptide substrate.  3D Fgr reactions had 

a final concentration of 30 nM enzyme and 54 µM peptide substrate.  3D Frk reactions 

had a final concentration of 30 nM enzyme and 165 µM peptide substrate.  3D Fyn A 

reactions had a final concentration of 30 nM enzyme and 69 µM peptide substrate.  3D 

Lck reactions had a final concentration of 30 nM enzyme and 96 µM peptide substrate.  

3D Lyn A reactions had a final concentration of 30 nM enzyme and 140 µM peptide 

substrate.  The initial rate data collected was used for determination of Ki values.  For Ki 

determination, the IC50 values were obtained directly from nonlinear regression of 

substrate-velocity curves in the presence of various concentrations of the inhibitor and 

converted to Ki values using the Cheng-Prusoff equation.  The KM values used for 

“substrate 3” were obtained from Wang et al or were determined as described below (see 

“Determination of Peptide Substrate “Substrate 3” KM”).
27 

For biochemical evaluation of PP2, the protocol above was followed with 

modifications to the ATP concentration.  c-Src, Blk, Fgr, Frk, Fyn A, Lck, and Lyn A 

reactions had a final concentration of 300 µM ATP.  c-Abl and Hck reactions had a final 

concentration of 100 µM ATP, and Yes reactions had a final concentration of 500 µM 

ATP.  The KM values used for ATP were obtained from Carna Biosciences or were 

determined as described below (see “Determination of ATP KM”).
52

 

Each inhibitor Ki value was determined using at least 3 independent experiments 

(unless otherwise noted) which were averaged to give an average Ki value ± standard 

deviation.  A representative curve is shown in Appendix B for inhibitors 3.7-3.12 and 

PP2 with c-Src kinase domain, Hck kinase domain, and c-Abl kinase domain. For 

inhibitor 3.12 additional representative curves are shown in Appendix B for Yes kinase 

domain, 3 domain (3D) c-Src, phosphorylated (pY416) c-Src kinase domain, T338M c-

Src kinase domain, double mutant R388A/A390R c-Src kinase domain, 3D Blk, 3D Fgr, 

3D Frk, 3D Fyn A, 3D Lck, and 3D Lyn A.  For PP2, additional representative curves are 
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shown in Appendix B for Yes kinase domain, 3D Blk, 3D Fgr, 3D Frk, 3D Fyn A, 3D 

Lck, and 3D Lyn A. 

Determination of Peptide Substrate “Substrate 3” KM 

The previously described continuous fluorescence assay was used to determine 

KM for “substrate 3” described in Wang et al.
27 

 Reaction volumes of 100 µL were used in 

96-well plates. 85 µL of enzyme in buffer mix was added to each well followed by 2.5 

µL of the appropriate dilution of “substrate 3” (typically 20, 10, 5, 2.5, 1.25, 0.625, 0.31, 

0.16, 0.078, and 0 mM in DMSO) and 2.5 µL of DMSO. The reaction was initiated with 

10 µL of ATP (10 mM in water), and reaction progress was immediately monitored at 

405 nm (ex. 340 nm) for 10 minutes. Reactions had final concentrations of 1 mM ATP, 

100 µM Na3VO4, 100mM Tris buffer (pH 8), 10 mM MgCl2, and 0.01% Triton X-100. c-

Src, Hck, Yes, Blk, and Frk reactions had a final concentration of 30 nM enzyme, and c-

Abl reactions had a final concentration of 120 nM enzyme. The initial rate data collected 

was used for determination of KM values, which were obtained directly from nonlinear 

regression of substrate-velocity curves. 

The “substrate 3” KM values were determined using at least 3 independent 

experiments which were averaged to give an average KM value ± standard deviation.  A 

representative curve is shown in Appendix B for “substrate 3” with c-Src kinase domain, 

3-domain (3D) c-Src, phosphorylated (pY416) c-Src kinase domain, T338M c-Src kinase 

domain, double mutant R388A/A390R c-Src kinase domain, Hck kinase domain, Yes 

kinase domain, 3D Blk, 3D Frk, and c-Abl kinase domain.
7
  For “substrate 3” with Fgr, 

Fyn A, Lck, and Lyn A the KM values reported in Wang et al. were used.
5
   

Determination of ATP KM 

The previously described continuous fluorescence assay was used to determine 

KM for ATP described in Wang et al.
27 

 Reaction volumes of 100 µL were used in 96-well 

plates. 85 µL of enzyme in buffer mix was added to each well followed by 2.5 µL of 

“substrate 3” (1.8 mM in DMSO) and 2.5 µL of DMSO. The reaction was initiated with 

10 µL of ATP (typically 10, 5, 2.5, 1.25, 0.63, 0.31, 0.16, 0.078, 0.039, and 0 mM in 

water), and reaction progress was immediately monitored at 405 nm (ex. 340 nm) for 10 

minutes. Reactions had final concentrations of 45 µM “substrate 3”, 100 µM Na3VO4, 
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100mM Tris buffer (pH 8), 10 mM MgCl2, and 0.01% Triton X-100. c-Src, Hck, and Yes 

reactions had a final concentration of 30 nM enzyme, and c-Abl reactions had a final 

concentration of 120 nM enzyme. The initial rate data collected was used for 

determination of KM values, which were obtained directly from nonlinear regression of 

substrate-velocity curves. 

The ATP KM values were determined using at least 3 independent experiments 

which were averaged to give an average KM value ± standard deviation.  A representative 

curve is shown in Appendix B for ATP with c-Abl kinase domain, Hck kinase domain, 

and Yes kinase domain.  For analytical data for ATP with c-Src kinase domain see 

Kwarcinski et al.
53

  For ATP with Blk, Fgr, Frk, Fyn A, Lck, and Lyn A the KM values 

reported by Carna Biosciences were used.
52

 

Determination of Inhibitor IC50 at Variable ATP and Peptide Substrate Concentration 

The continuous fluorescence assay described previously was used to determine 

IC50 for inhibitors at higher “substrate 3” concentration and at lower ATP concentration 

with c-Src.
27

  For higher “substrate 3” conditions the reactions had final concentrations of 

30 nM c-Src, 500 µM “substrate 3”, 1 mM ATP, 100 µM Na3VO4, 100mM Tris buffer 

(pH 8), 10 mM MgCl2, and 0.01% Triton X-100.  For lower ATP conditions the reactions 

had final concentrations of 30 nM c-Src, 45 µM “substrate 3”, 100 µM ATP, 100 µM 

Na3VO4, 100mM Tris buffer (pH 8), 10 mM MgCl2, and 0.01% Triton X-100. The initial 

rate data collected was used for determination of IC50 values, which were obtained 

directly from nonlinear regression of substrate-velocity curves in the presence of various 

concentrations of the inhibitor.  The IC50 value for inhibitors under each set of conditions 

was determined using at least 3 independent experiments which were averaged to give an 

average IC50 ± standard deviation.  Representative curves for compound 3.12 under each 

set of conditions is shown in Appendix B. 

Lineweaver-Burk Analysis of Compound 3.12 

The continuous fluorescence assay previously described was used to determine 

initial velocities for ATP and “substrate 3” (as described in Wang et al) with c-Src in the 

presence of compound 3.12.
27
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For “substrate 3”, reaction volumes of 100 µL were used in 96-well plates. 85 µL 

of enzyme in buffer mix was added to each well followed by 2.5 µL of the appropriate 

dilution of “substrate 3” (typically 20, 10, 5, 2.5, 1.25, 0.625, 0.31, 0.16, 0.078, and 0 

mM in DMSO) and 2.5 µL of compound 3.12 (0.4, 1.2, or 2.4 mM in DMSO). The 

reaction was initiated with 10 µL of ATP (5 mM in water), and reaction progress was 

immediately monitored at 405 nm (ex. 340 nm) for 10 minutes. Reactions had final 

concentrations of 30 nM c-Src, 500 µM ATP, 100 µM Na3VO4, 100 mM Tris buffer (pH 

8), 10 mM MgCl2, and 0.01% Triton X-100.  The kinetic values (KM and Vmax) were 

obtained directly from nonlinear regression of substrate-velocity curves. 

For ATP, reaction volumes of 100 µL were used in 96-well plates. 85 µL of 

enzyme in buffer mix was added to each well followed by 10 µL of the appropriate 

dilution of ATP (typically 5, 2.5, 1.25, 0.625, 0.31, 0.16, 0.078, 0.039, 0.020, and 0 mM 

in water) and 2.5 µL of compound 3.12 (0.4, 1.2, or 2.4 mM in DMSO). The reaction was 

initiated with 2.5 µL of “substrate 3” (1.8 mM in DMSO), and reaction progress was 

immediately monitored at 405 nm (ex. 340 nm) for 10 minutes. Reactions had final 

concentrations of 30 nM c-Src, 45 µM “substrate 3”, 100 µM Na3VO4, 100 mM Tris 

buffer (pH 8), 10 mM MgCl2, and 0.01% Triton X-100.  The kinetic values (KM and 

Vmax) were obtained directly from nonlinear regression of substrate-velocity curves. 

The initial velocities for “substrate 3” or ATP in the presence of inhibitor 3.12 

were determined (n = 4), and the average velocities were used to generate substrate-

velocity curves.  Lineweaver-Burk plots were generated by plotting the reciprocal of the 

average initial rates as a function of 1/[“substrate 3”] or 1/[ATP] and performing linear 

regression.  Additionally, global fit analysis was performed using GraphPad Prism 5 for 

each data set to determine R
2
 for competitive, noncompetitive, and uncompetitive fits.  

The substrate-velocity curves for “substrate 3” and ATP are shown in Appendix B.  R
2
 

values from global fit analysis for “substrate 3” and ATP are also shown in Appendix B. 

Combination Studies of Compound 3.12 with PP2 and PP5 

Before proceeding with combination studies the IC35 values for compound 3.12, 

PP2, and PP5 were estimated from dose-response curves.  The previously described 

continuous fluorescence assay was used to obtain dose-response curves for 3.12, PP2, 

and PP5 with c-Src under the following final conditions: 30 nM c-Src, 45 µM “substrate 
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3”, 300 µM ATP, 100 µM Na3VO4, 100mM Tris buffer (pH 8), 10 mM MgCl2, and 

0.01% Triton X-100.
27

 The initial rate data collected was used for determination of IC50 

values, which were obtained directly from nonlinear regression of substrate-velocity 

curves in the presence of various concentrations of the inhibitor.  Each inhibitor IC50 

value was determined using at least 3 independent experiments which were averaged to 

give an average IC50 ± standard deviation.  A representative curve for each inhibitor 

under these conditions with c-Src is shown in Appendix B. 

To determine if additive or synergistic effects occurred when compound 3.12 was 

combined with ATP-competitive inhibitors, single point assays of the inhibitors at IC35 

(20 μM inhibitor 3.12, 100 nM PP2, and 50 nM PP5) were carried out under the 

conditions described above.  Initial velocity was measured for 3.12, PP2, and PP5 alone 

as well as for combinations of 12 + PP2, 12 + PP5, and PP2 + PP5.  The ratio of the 

initial velocity in the presence of inhibitor(s) and the initial velocity in the presence of no 

inhibitor (DMSO control) was used to calculate percent activity remaining, and percent 

inhibition was calculated as 100 - percent activity remaining.  The percent inhibition for 

each inhibitor or combination of inhibitors was determined using at least 6 independent 

experiments which were averaged to give an average percent inhibition ± standard 

deviation.  The predicted additivity was determined using the Bliss equation [predicted 

additivity = (eA + eB) – (eA * eB)].
47

 

Induced Fit Molecular Docking of Compound 3.12 

 Induced fit docking (IFD) was performed by Dr. Matthew Soellner.  The IFD 

workflow from the Schrödinger Suite Programs was used to flexibly dock compound 

3.12 into 4 c-Src structures (PDB IDs 1YI6, 1Y57, 2BDF, and 2SRC).
34

  Prime, also 

from the Schrödinger Suite Programs, was used to build in the activation loop of 2BDF 

using 3DQW as the template applying default parameters.  Default parameters were used 

for the IFD and the docking score/glide gscore along with visual inspection was used to 

determine if a binding pose was reasonable. 

Production of c-Src R388A/A390R Mutant 

 The c-Src R388A/A390R mutant was prepared by Christel Fox.  Chicken c-Src 

kinase domain in pET28a, modified with a TEV protease cleavable N-terminal 6x-His 
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tag, was prepared as previously reported.
51

  The desired mutations were added to this 

plasmid using iterative rounds of mutagenesis using the Agilent QuikChange II kit.  The 

plasmid was transformed by electroporation into Bl21DE3 electrocompetent cells 

containing YopH in pCDFDuet-1.  Cell growth, expression, and protein purification were 

performed using modified literature protocols for expression of wild-type c-Src kinase 

domain.
51

  

Inhibition of c-Src Autophosphorylation 

c-Src autophosphorylation assays were performed by ProQinase GmbH (Freiburg, 

Germany).  Murine embryonal fibroblast (MEF) cells were used that express a high level 

of exogenously introduced full-length Src.  The high Src expression level results in a 

constitutive tyrosine autophosphorylation of Src at Tyr416.  MEF‐SRC cells were plated 

in DMEM supplemented with 10% FCS in multiwell cell culture plates.  Compound 

incubation was done in serum-free medium.  Quantification of Src phosphorylation was 

assessed in 96‐well plates via ELISA using a phospho-Src specific antibody and a 

secondary detection antibody.  Raw data were converted into percent phosphorylation 

and the IC50 value was determined using nonlinear regression.  Each concentration had n 

= 2 data points.  The dose-response curve for compound 3.12 is shown in Appendix B.  

For analytical data for PP2, see Brandvold et al.
31

 

Cancer Cell Growth Inhibition Assays 

Growth inhibition assays were performed by Michael Steffey and Eric Lachacz.  

SK-BR‐3 (ATCC
®

 HTB‐30
™

), MCF7 (ATCC
®

 HTB‐22
™

), T47D (ATCC
®

 HTB‐133
™

), 

and HT-29 (ATCC
®

 HTB‐38
™

) cells were grown and maintained using complete growth 

media (DMEM for SK-BR-3, MCF7, and T47D and McCoy’s 5a Modified Medium for 

HT-29, supplemented with 10% fetal bovine serum) in a 37 C, 5% CO2, humidified air 

incubator.  Cells were then plated into 96 well plates in complete growth media (100 

μL/well) at a concentration of 5000 cells per well and allowed to attach overnight.  The 

cells were dosed with compound at 1% DMSO in media then cultured for 72 hours prior 

to addition of 10 μL/well of Cell Proliferation Agent WST-1 (Roche) for SK-BR-3 and 

HT-29 cells.  The absorbance at 450 and 630 nm was read on a Biotek Synergy 4 

multimode reader after incubation for 1 h at 37C. Life Technologies CyQUANT direct 
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cell proliferation assay was used for MCF7 and T47D.  This general procedure was 

followed for all cell lines with the following differences: Prior to dosing the SK-BR-3 

cells the complete growth media was removed by aspiration and replaced with compound 

at 1% DMSO in base media, 0.5% fetal bovine serum, and 60 ng/mL epidermal growth 

factor in DMEM (100 μL/well).  HT-29, MCF7, and T47D cells were dosed by addition 

of 1 μL of 100X compound in 100% DMSO to complete growth media. 

The raw Δ(A450-A630) data were converted into percent of the average of the 

vehicle treated wells for each cell line and the IC50 value was determined using nonlinear 

regression.  The dose-response curve for each cell line with compound 3.12 is shown in 

Appendix B. 

Cell Signalling Assays 

 AlphaScreen SureFire assay kit (Perkin Elmers) was used to determine 

phosphorylation of Akt, JNK1/3, STAT3, and ERK1/2.  SK-BR-3 cells (ATCC) were 

plated in 96-well plates at a density of 1.0-2.0 x 10
4
 cells per well.  The cells were grown 

to 80-90% confluency prior to overnight serum starvation in DMEM, 0.1% BSA.  The 

serum free media was then removed and replaced with DMEM containing 10 μM 

compound 3.12 or PP2 in 1% DMSO.  The cells were incubated for 60 min prior to the 

addition of EGF (Sigma Aldrich).  After incubation, the media was removed and 50 μL 

AlphaScreen Lysis Buffer (Perkin Elmers) was added to each well.  The lysates were 

analyzed using the using the AlphaScreen SureFire assay kit according to the 

manufacturer’s protocol.  The average relative luminesce in the presence of each inhibitor 

(or vehicle) is shown (n = 3). 
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CHAPTER IV 

Progress Towards Non-Peptidic Bisubstrate Kinase Inhibitors 

 

Abstract 

Bisubstrate kinase inhibitors that target both the substrate and the ATP binding 

sites are highly sought after as they can combine the potency of ATP-competitive 

inhibitors with the selectivity of substrate-competitive inhibitors.  However, the peptidic 

nature of current bisubstrate inhibitors has limited their use as biological probes, and the 

limited number of reported small molecule ligands for kinase substrate sites has 

prevented the rational design of nonpeptidic bisubstrate inhibitors.  We have applied 

small molecule substrates identified through SAS in Chapter III to the design of 

nonpeptidic bisubstrate inhibitors.  Initial inhibitors which linked substrates to ATP-

competitive inhibitors through the location of the substrate hydroxyl group showed poor 

potency, likely due to loss of hydrogen bonding contacts in the substrate site.  A second 

generation of inhibitors that retained the substrate hydroxyl group showed increased 

potency.  The second generation inhibitors used an unoptimized substrate scaffold, and 

therefore it is predicted that future bisubstrate inhibitors that use optimized substrate 

scaffolds should have increased potency.  Results from this study will aid in the design of 

future bisubstrate inhibitors. 

 

Introduction 

Bivalent inhibitors link two inhibitors targeting unique binding sites on a kinase to 

generate a single molecule that can inhibit both binding sites at once.  Most bivalent 

kinase inhibitors link an ATP-competitive inhibitor to a ligand that binds outside of the 

ATP binding site, such as the substrate binding site or binding sites in regulatory 

domains.
1-3

  Bivalent inhibitors are a sought after class of kinase inhibitors because 

targeting two sites simultaneously enables combining the high potency of ATP-

competitive inhibitors with the increased selectivity of ligands binding outside the highly 
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conserved ATP pocket.  The potency of the bivalent inhibitors can be described as ΔG
º
AB 

= ΔG
i
A + ΔG

i
B + ΔG

s
, where the ΔG

i
 terms are the intrinsic binding energies of each 

piece of the bivalent inhibitor and ΔG
s
 is the “connection Gibbs energy”.

4
  Assuming 

ideal binding of both pieces, no negative cooperativity between the binding sites, and no 

negative binding effects due to the linker, binding potency greater than the sum of the 

individual pieces can be achieved due to a reduction in entropy described by ΔG
s
.  As a 

result of this, combining an ATP-competitive inhibitor with even a weak inhibitor of a 

second binding site can result in drastic increases in potency.  The potency of a bivalent 

inhibitor combined with the increased selectivity can drastically limit off-target effects, 

which makes bivalent inhibitors attractive for use as biological probes. 

Most reported bivalent inhibitors for kinases are bisubstrate inhibitors that 

simultaneously target the ATP and substrate binding sites.  The general strategy that has 

been previously employed for the design of bisubstrate inhibitors has been to covalently 

attach peptides to ATP or an ATP-competitive inhibitor.  However, the poor 

pharmacokinetic properties associated with most peptides and nucleotides limits the use 

of many of these compounds as effective probes in vivo.  In contrast, a bisubstrate 

inhibitor comprised of a non-nucleotide ATP-competitive inhibitor and a nonpeptidic 

substrate-competitive inhibitor should overcome these obstacles.  While there are now 

many ATP-competitive inhibitors that can be utilized, the limited knowledge of small 

molecule scaffolds that bind in the substrate site has complicated the development of 

nonpeptidic bisubstrate inhibitors.
5
  A small number of bisubstrate inhibitors have been 

described that use a single phenyl ring as a tyrosine pharmacophore for the substrate 

competitive portion; however, these inhibitors suffer from poor potency (micromolar).
6-8

  

Our lab has previously developed one of the most potent bisubstrate inhibitors of c-

Src reported to date.
9
  As shown in Scheme 4.1, bisubstrate inhibitor 4.1 combines an 

optimal c-Src substrate peptide sequence and an analogue of the ATP-competitive 

inhibitor PP2.  Inhibitor 4.1 showed excellent potency against c-Src (IC50 <5 nM, Kd = 

187 pM) and exceptional selectivity for c-Src over other kinases in a panel of over 200 

diverse kinases.  However, despite the favorable biochemical profile of 4.1 it showed no 

efficacy in cellulo, and an Arg9 tagged analogue was found to only weakly inhibit HT29 
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colon adenocarcinoma cell proliferation (GI50 = 36 μM).  This is likely a result of poor 

permeability due to the peptidic nature of the substrate-competitive portion.   

 

 

 

Scheme 4.1. A peptidic bisubstrate inhibitor of c-Src. 

 

 

Inhibitor 4.1 clearly illustrates how the poor pharmacokinetic properties of even the 

most potent peptidic bisubstrate inhibitors limit their application as biological probes.  To 

remedy the problems associated with current bisubstrate inhibitors, we aimed to develop 

nonpeptidic bisubstrate inhibitors using the small molecule c-Src substrates identified 

through SAS (see Chapter III) in place of peptidic substrates.
10

  We hypothesized that 

this would generate potent bisubstrate inhibitors with increased permeability compared to 

peptidic bisubstrate inhibitors. Furthermore, a kinase profiling service could be used to 

profile the nonpeptidic bisubstrate inhibitors against a broad panel of diverse kinases.  

This analysis would give us additional insight into the selectivity of the substrate 

scaffolds identified through SAS by comparing the selectivity of the bisubstrate inhibitors 
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to the selectivity of PP2.  Lead nonpeptidic bisubstrate inhibitors with high potency and 

selectivity could serve as useful biological probes for studying kinase activity.  

 A modular approach was used to design nonpeptidic bisubstrate inhibitors 

(Scheme 4.2).  Similar to the design strategy for peptidic bisubstrate inhibitors 4.1, an 

analogue of PP2 modified to contain a phenyl alkyne (PP2-alkyne) was used for the 

ATP-competitive portion.
11

  A small molecule substrate analogue (identified through 

SAS) modified to contain a primary amine was used for the substrate-competitive 

portion.  The substrate was coupled though the amine to an azido acid linker of variable 

length via an amide coupling.  Finally, a copper or ruthenium catalyzed click reaction 

was used to join the ATP-competitive portion and the linker via a 1,4-disubstitituted-

1,2,3-triazole or 1,5-disubstitituted-1,2,3-triazole, respectively.  This design strategy 

enabled the substrate scaffold, the linker length, and the triazole geometry to be easily 

modified for the generation of different libraries.   

 

 

 

Scheme 4.2. A modular approach for the preparation of nonpeptidic bisubstrate 

inhibitors.  
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Evaluation of First Generation Inhibitors 

We initially used the previously described pyrene peptide assay to evaluate two 

compounds with five methylene linkers similar to the peptidic bisubstrate inhibitor 4.1 

(Scheme 4.3).
12

  Both compounds 4.2 and 4.3 use an amine analogue of the 

diphenylamine scaffold 3.5 identified through SAS as the substrate competitive portion.  

Both the 1,4-trizole 4.2 and the 1,5-triazole 4.3 were found to be poor inhibitors of c-Src 

(IC50 > 250 μM).  We hypothesized that this could be due to the lower binding potency of 

the substrate-competitive portion used (KM = 122 μM).  The KM for kinase substrates 

overestimates binding affinity (KM < Kd), and this coupled with the loss of interactions 

made by the substrate hydroxyl group due to incorporation of the linker has likely 

resulted in a poor Kd for the substrate competitive portion.
13-15

  This led us to explore 

compounds which would utilize a more potent substrate-competitive fragment.  Two 

small libraries of compounds with the general structures shown in Scheme 4.4 were 

designed using an amine analogue of the optimized substrate-competitive inhibitor 3.12 

and evaluated in the pyrene peptide assay.   

 

 

 

Scheme 4.3. Nonpeptidic bisubstrate inhibitors containing a substrate scaffold identified 

through SAS.  

 

 

We initially explored linkage via a 1,4-triazole since these better resembled the 

peptidic bisubstrate inhibitor 4.1.  Inhibitor 4.4 used the same five methylene linker that 

was used in 4.1, but it showed only modest potency (IC50 = 75 μM).  We hypothesized 

that the small molecule substrates could be binding in a slightly different conformation 
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compared to the peptide in 4.1, so inhibitors with shorter and longer linkers were also 

prepared.  Compound 4.5 had poor potency (IC50 > 125 μM), but inhibitor 4.6, which had 

a shorter 3 methylene linker, had improved potency (IC50 = 4 μM).  However, despite the 

increased potency relative to the initial inhibitors, the potency of inhibitor 4.6 was still far 

lower than expected.  In fact, the bisubstrate inhibitors are less potent than both the ATP-

competitive inhibitor PP2 (IC50 = 80 nM) and the precursor used in the synthesis of the 

bisubstrate inhibitors, PP2-alkyne (IC50 = 1 μM).
11

  We expected the bisubstrate 

inhibitors to have sub-micromolar potency based on the potency of PP2 and PP2-alkyne. 

We next examined the inhibitors with 1,5-triazole linkages and the optimized 

substrate fragment (Scheme 4.4).  The inhibitors with a five methylene linker 4.7 and a 

six methylene linker 4.8 were both poor inhibitors of c-Src (IC50 > 125 μM).  Increasing 

the linker length to seven methylenes as in inhibitor 4.9 gave the best inhibition (IC50 = 1 

μM), and further increasing the length of the linker to eight carbons in inhibitor 4.10 

resulted in decreased potency (IC50 = 48 μM).  While inhibitor 4.9 was the most potent 

inhibitor evaluated, the potency was still worse than expected. 

 

 

 

Scheme 4.4. Nonpeptidic bisubstrate inhibitors containing an optimized substrate 

scaffold. 
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To gain more insight into the binding of the bisubstrate inhibitors, we also prepared 

and evaluated two analogues of 4.9 that used different substrate-competitive fragments 

(Scheme 4.5).  Inhibitor 4.11 used the unoptimized diphenylamine scaffold 3.5 (KM = 

122 μM), and as expected a decrease in potency was observed (IC50 = 53 μM).  We also 

examined an inhibitor that used a different small molecule c-Src substrate scaffold 

identified through SAS.  Compound 4.12 used an analogue of substrate 3.1 (KM = 52 

μM), which was one of the better small molecule substrates identified, and the potency of 

4.12 (IC50 = 2 μM) was similar to that observed with 4.9.  While no improvements in 

potency were observed, we were pleased to see that the potency of the bisubstrate 

inhibitors tracked well with the relative affinity of the substrate scaffolds.  This suggested 

that the substrate-competitive portion was binding similar to the substrates within the 

substrate binding site. 

 

 

 

Scheme 4.5. Analogues of the nonpeptidic bisubstrate inhibitor 4.9 containing the 

unoptimized diphenylamine scaffold and a quinoline scaffold identified through SAS. 

 

 

As a whole, the potencies of the bisubstrate inhibitors were much lower than the 

submicromolar potency we expected.  One reason for this could be that the linker makes 

unfavorable interactions with c-Src.  We found it unlikely that this was the sole reason for 

the low potency because these compounds contain the same linker used in the peptidic 

bisubstrate inhibitor 4.1, and inhibitor 4.1 saw a large increase in potency relative to the 

ATP-competitive and substrate-competitive portions alone. In order to better understand 
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the poor potency of the nonpeptidic bisubstrate inhibitors, the affinity of each part of the 

bisubstrate inhibitor 4.9 was evaluated using compounds 4.13 and 4.14, which separated 

4.9 into an ATP-competitive and substrate-competitive halves, respectively (Scheme 

4.6).  The ATP-competitive portion 4.13 had increased potency (IC50 = 272 nM) relative 

to the bisubstrate inhibitors and the precursor ATP-competitive fragment PP2-alkyne.  

This increase in potency was not due to interactions with the substrate binding site, as the 

IC50 value was found to be unaffected when the substrate peptide concentration was 

increased 10-fold (IC50 = 295 nM).  In contrast, the substrate competitive portion 4.14 

was found to be a very poor inhibitor of c-Src (IC50 > 250 μM).  This justifies why a large 

increase in potency was not seen with the nonpeptidic bisubstrate inhibitors.  Because the 

substrate fragments are attached to the linker through the location of the substrate 

hydroxyl group, the poor potency of the substrate-competitive fragment is likely due to 

the loss of hydrogen bonds between the substrate hydroxyl group and the substrate 

binding site. 

 

 

 

Scheme 4.6. The nonpeptidic bisubstrate inhibitor 4.9 separated into its ATP-competitive 

(4.13) and substrate-competitive (4.14) components. 

 

 

Taken together, these experiments raised the possibility that the substrate scaffold 

portion may not be binding in the substrate site as predicted.  To test this, inhibitor 4.9 

was evaluated under conditions where the pyrene peptide substrate concentration was 

increased to 500 μM and was found to have IC50 = 2 μM.  Despite a 10-fold increase in 

peptide substrate concentration, the IC50 value was identical the value obtained under the 
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standard assay conditions.  We saw two possible reasons for not observing a change in 

the IC50 value with increasing substrate concentration.  First, an effect on the IC50 may 

not be noticeable because the substrate fragment binds weakly (as demonstrated by 

compound 4.14) and does not contribute much to the overall potency of the bisubstrate 

inhibitor compared to the ATP-competitive portion.  Alternatively, the substrate 

fragments may bind outside of the substrate site, or may not bind to c-Src at all, once 

incorporated into the bisubstrate inhibitor.  The differences in potency observed for 

bisubstrate inhibitors 4.9, 4.11, and 4.12 that tracked with the differences in the relative 

affinities of the substrate scaffolds support that the substrate-competitive portion is 

binding weakly within the substrate binding site.  In either case, it is clear that alteration 

of the substrate hydroxyl group in order to provide a point of attachment for the linker 

was not well tolerated and resulted in a significant loss in substrate fragment binding.  

Performing Lineweaver-Burk analysis would likely clarify if the bisubstrate compounds 

are substrate-competitive; however, these experiments were not performed as they are 

resource and time intensive, and the compounds are unlikely to be utilized further due to 

their low potencies.  

 

Evaluation of Second Generation Inhibitors 

 While we were disappointed with the results from our initial inhibitors, the data 

are consistent with our previous studies that have shown that maintaining the hydrogen 

bonds formed by the substrate hydroxyl group are important for binding of small 

molecules to the substrate binding site.  As such, we hypothesized bisubstrate inhibitors 

that maintained the hydroxyl group within the substrate fragment would have better 

potency due to increased interactions within the substrate binding site.  To investigate 

this, nonpeptidic bisubstrate inhibitors using 2-aminophenol as the substrate-competitive 

fragment were prepared and evaluated using the pyrene peptide assay.  As shown in 

Scheme 4.7, the substrate portion was attached to the linker via an amide as was done 

previously, and a 1,4-disubstituted-1,2,3-triazole was used to join the ATP-competitive 

portion and the linker.  The 1,4-triazole was chosen because it was the linkage used in the 

peptidic bisubstrate inhibitor 4.1.  Since the linker was now attached to the “side” of the 

substrate instead of through the location of the substrate hydroxyl group, we 
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hypothesized that a longer linker would be necessary.  We initially examined compounds 

with 8 and 9 methylene linkers. 

 

 

 

Scheme 4.7. Nonpeptidic bisubstrate inhibitors which retain a hydroxyl group in the 

substrate scaffold.   

 

 

 Results from the evaluation of the second generation bisubstrate inhibitors were 

promising.  Both inhibitors 4.15 and 4.16 were nearly equivalent to the most potent 

compounds identified from the first generation inhibitors (IC50 = 5 μM and 4 μM, 

respectively).  It should be stressed that these second generation inhibitors used an 

unoptimized substrate scaffold.  In fact, 2-aminophenol was a poor substrate of c-Src 

when evaluated in the SAS study (see Appendix C, compound P-S42).  Thus, using an 

optimized c-Src substrate scaffold that retains its hydroxyl group as the substrate-

competitive fragment will likely further increase the potency of bisubstrate inhibitors.  

The results from these initial second generation inhibitors support that the poor potency 

observed with the first generation bisubstrate inhibitors was due to loss of important 

hydrogen bonds made by the substrate hydroxyl group.  This further highlights the 

importance of these contacts for potent binding of ligands to the substrate binding site. 

 

Conclusions 

Bisubstrate inhibitors that target both the substrate and the ATP binding sites are 

highly sought after as they can combine the potency of ATP-competitive inhibitors with 
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the selectivity of substrate-competitive inhibitors.  However, the lack of compounds 

which bind to the substrate site has limited the ability to design bisubstrate kinase 

inhibitors, and most reported bisubstrate inhibitors utilize peptides or a single phenyl ring 

as the substrate-competitive fragment.  To remedy the problems associated with current 

bisubstrate inhibitors, we aimed to develop nonpeptidic bisubstrate inhibitors by 

replacing the peptidic portion of a bisubstrate inhibitor previously developed in our lab 

with small molecule c-Src substrates identified through SAS.   

The initial library of inhibitors used substrate-competitive scaffolds which were 

attached to the ATP-competitive portion via an amide at the location of the reactive 

hydroxyl group.  Despite our expectations of submicromolar potency, the best inhibitor 

(4.9) was found to have only low micromolar potency (IC50 = 1 μM).  Further analysis of 

each “half” of inhibitor 4.9 showed that while the ATP-competitive portion was a 

nanomolar inhibitor of c-Src (4.13, IC50 = 272 nM), the substrate-competitive half was 

not a competent inhibitor (4.14, IC50 > 250 μM).  The data from the initial set of 

bisubstrate inhibitors are consistent with our previous studies which have shown that 

maintaining the hydrogen bonds formed by the substrate hydroxyl group is important for 

binding of small molecules to the substrate site.   

The importance of the hydroxyl group was supported by evaluation of two 

nonpeptidic bisubstrate inhibitors using 2-aminophenol as the substrate-competitive 

portion.  Despite using a poor substrate scaffold, the potencies of inhibitors 4.15 and 4.16 

(IC50 = 5 μM and 4 μM, respectively) were on par with the best inhibitors from the first 

library.  While the initial study supports that incorporation of the linker ortho to the 

hydroxyl group is tolerated in this example, it should be cautioned that this has not been 

extensively examined and may not hold for other scaffolds beyond this simple case.  

Additionally, many of the previously identified small molecule substrates do not already 

contain a handle for straight forward attachment of the linker at the ortho position, and 

altering the scaffolds to incorporate a linker at this position may alter how the substrate 

binds.  As such, evaluation of phenols that contain reactive handles at this position as c-

Src substrates may prove useful.  This SAR could potentially be combined with the 

previous SAR to generate optimal scaffolds for attachment to the linker. 
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Overall, while no potent nonpeptidic bisubstrate inhibitors were identified, we have 

gleaned important SAR that can be applied to the design of future bisubstrate inhibitors.  

In particular, we have once again seen that interactions made by the substrate hydroxyl 

group are critical for the binding of small molecules to the substrate site.  We anticipate 

that future nonpeptidic bisubstrate inhibitors that contain optimized substrate scaffolds 

which retain the substrate hydroxyl group will show increased potency, and these 

inhibitors may prove to be useful biological probes for studying kinase signaling. 

 

Materials and Methods 

General Synthetic Methods 

Unless otherwise noted, all reagents were obtained via commercial sources and 

used without further purification.  
1
H NMR spectra were measured with a Varian MR400 

or Inova 500 spectrometer.   

Synthetic Protocols 

 

Scheme 4.8.  Synthesis of compound 4.19. 

 

Tert-butyl (4-bromophenyl)carbamate (4.17).  In a 250 mL round bottom flask, p-

bromoaniline (2.0 g) was dissolved in 40 mL anhydrous CH2Cl2.  Boc anhydride (2.8 g) 
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was added followed by DIEA (2.0 mL).  The reaction was stirred at room temperature for 

24 h.  The reaction was washed with 10% aq. citric acid (1 x 30 mL) and the organic 

layer was dried over MgSO4, filtered, and concentrated under reduced pressure.  

Purification by automated silica gel chromatography using a linear 2 → 20% EtOAc in 

hexanes gradient yielded the product as a white crystalline solid (2.3 g, 74% yield).  
1
H 

NMR (500 MHz, Chloroform-d) δ 7.37 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 6.43 

(s, 1H), 1.49 (s, 9H). 

 

Tert-butyl (4-(naphthalen-1-ylamino)phenyl)carbamate (4.18).  Compound 4.18 was 

prepared following the method of Maiti and Buchwald.
16

  To an oven-dried 4 mL conical 

vial was added aryl bromide 4.17 (136 mg), 1-naphthylamine (86 mg), anhydrous sodium 

tert-butoxide (120 mg), and catalyst (0.8 mg).  The vial was flushed with N2, and then 2 

mL anhydrous dioxane was added.  The reaction was heated at 95 C for 16 h.  The 

reaction was cooled to room temperature, diluted with 20 mL H2O, and extracted with 

EtOAc (3 x 15 mL).  The combined organic extracts were washed with 10% aq. citric 

acid (1 x 30 mL), dried over MgSO4, filtered, and concentrated under reduced pressure.  

Purification by automated silica gel chromatography using a linear 5 → 40% EtOAc in 

hexanes gradient yielded the product as a purple crystalline solid (86 mg, 51% yield).  
1
H 

NMR (400 MHz, Chloroform-d) δ 8.01 – 7.94 (m, 1H), 7.87 – 7.79 (m, 1H), 7.52 – 7.40 

(m, 3H), 7.33 (t, J = 7.8 Hz, 1H), 7.28 – 7.18 (m, 2H), 7.02 – 6.94 (m, 3H), 6.34 (s, 1H), 

5.87 (s, 1H), 1.50 (s, 9H). 

 

N
1
-(naphthalen-1-yl)benzene-1,4-diamine (4.19).  In a 25 mL round bottom flask, the 

Boc-protected amine 4.18 (80 mg) was dissolved in 4.5 mL CH2Cl2.  Trifluoroacetic acid 

(0.5 mL) was added and the reaction was stirred at room temperature overnight.  The 

reaction was diluted with 10 mL H2O and the pH was adjusted to ~12 with 1 M NaOH.  

The reaction was extracted with CH2Cl2 (3 x 15 mL) and EtOAc (2 x 15 mL).  The 

combined organic extracts were dried over MgSO4, filtered, and concentrated under 

reduced pressure.  Purification by automated silica gel chromatography using a linear 12 

→ 100% EtOAc in hexanes gradient yielded the product as a brown crystalline solid (45 

mg, 84% yield).  
1
H NMR (400 MHz, Chloroform-d) δ 8.01 – 7.92 (m, 1H), 7.86 – 7.77 
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(m, 1H), 7.51 – 7.40 (m, 2H), 7.37 (d, J = 8.2 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.03 – 

6.93 (m, 3H), 6.73 – 6.64 (m, 2H), 5.81 (s, 1H), 3.60 (s, 2H). 

 

 

 

Scheme 4.9.  Synthesis of substrate scaffolds attached to an azide linker. 

 

General procedure for coupling of substrate scaffolds to azido acid linkers.  Azido acids 

were prepared as previously described.
17

  In an oven-dried round bottom flask under N2, 

the appropriate azido acid (1.0 eq) was dissolved in anhydrous CH2Cl2.  Oxalyl chloride 

(1.4 eq) was added followed by 1 drop of anhydrous DMF.  The reaction began to 

effervesce.  The reaction was stirred at room temperature for 15 minutes, and then the 

solvent was removed under reduced pressure.  The resulting oil was dissolved in 

anhydrous CH2Cl2 in a round bottom flask under N2.  The appropriate amine (1.0 eq) was 

dissolved in minimal anhydrous CH2Cl2 and was added to the reaction followed by DIEA 

(2.0 eq).  The reaction was stirred at room temperature under N2 for 24h.  The reaction 

was diluted with H2O and extracted three times with CH2Cl2.  The combined organic 

extracts were washed with 10% aqueous citric acid and brine.  The organic layer was 

dried over MgSO4, filtered, and the solvent was removed under reduced pressure.  The 

crude products were purified by automated silica gel chromatography.  An analogous 

methyl ester (n = 7) was prepared in a similar manner as described above using 

anhydrous methanol in place of the amine in step 2 (compound provided by Kristin Ko). 

 

6-azido-N-(4-(phenylamino)phenyl)hexanamide (4.20).  
1
H NMR (400 MHz, 

Chloroform-d) δ 7.38 (dd, J = 9.1, 2.9 Hz, 2H), 7.28 – 7.18 (m, 2H), 7.08 – 6.96 (m, 5H), 

6.89 (m, 1H), 5.63 (s, 1H), 3.32-3.25 (m, 2H), 2.38-2.30 (m, 2H), 1.80-1.70 (m, 2H), 

1.69-1.59 (m, 2H), 1.51 – 1.40 (m, 2H). 
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8-azido-N-(4-(phenylamino)phenyl)octanamide (4.21).  
1
H NMR (400 MHz, Chloroform-

d) δ 7.41 – 7.33 (m, 2H), 7.25 – 7.18 (m, 2H), 7.11 – 6.95 (m, 5H), 6.88 (t, J = 7.3 Hz, 

1H), 5.66 (s, 1H), 3.24 (t, J = 6.9 Hz, 2H), 2.36 – 2.28 (m, 2H), 1.76 – 1.67 (m, 2H), 

1.64-1.50 (m, 2H), 1.43-1.30 (m, 6H). 

 

4-azido-N-(4-(naphthalen-1-ylamino)phenyl)butanamide (4.22).  
1
H NMR (500 MHz, 

Chloroform-d) δ 8.75 (s, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.84 (t, J = 7.1 Hz, 2H), 7.60 – 

7.42 (m, 5H), 7.42 – 7.26 (m, 6H), 7.07 (s, 1H), 6.96 (dd, J = 8.7, 1.9 Hz, 4H), 5.93 (d, J 

= 23.7 Hz, 2H), 3.42 (t, J = 6.6 Hz, 2H), 2.47 – 2.40 (m, 2H), 2.04 – 1.97 (m, 2H). 

 

6-azido-N-(4-(naphthalen-1-ylamino)phenyl)hexanamide (4.23).  
1
H NMR (400 MHz, 

Chloroform-d) δ 8.01 – 7.94 (m, 1H), 7.87 – 7.81 (m, 1H), 7.54 – 7.42 (m, 3H), 7.40 – 

7.33 (m, 3H), 7.28 – 7.25 (m, 1H), 7.01 (s, 1H), 6.98 – 6.94 (m, 2H), 5.90 (s, 1H), 3.28 (t, 

J = 6.8 Hz, 2H), 2.34 (t, J = 7.4 Hz, 2H), 1.80 – 1.71 (m, 2H), 1.68-1.59 (m, 2H), 1.52 – 

1.41 (m, 2H). 

 

7-azido-N-(4-(naphthalen-1-ylamino)phenyl)heptanamide (4.24).  
1
H NMR (500 MHz, 

Chloroform-d) δ 7.98 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.54 – 7.41 (m, 3H), 

7.40 – 7.32 (m, 3H), 7.27 (d, J = 8.3 Hz, 1H), 7.04 (s, 1H), 6.96 (d, J = 8.6 Hz, 2H), 5.91 

(s, 1H), 3.25 (t, J = 6.9 Hz, 2H), 2.33 (t, J = 7.4 Hz, 2H), 1.76-1.70 (m, 2H), 1.63-1.59 

(m, 2H), 1.46 – 1.35 (m, 4H). 

 

8-azido-N-(4-(naphthalen-1-ylamino)phenyl)octanamide (4.14).  
1
H NMR (400 MHz, 

Chloroform-d) δ 7.99-7.95 (m, 1H), 7.85-7.82 (m, 1H), 7.55 – 7.40 (m, 3H), 7.42 – 7.31 

(m, 3H), 7.27 (d, 1H), 7.01 (s, 1H), 6.98 – 6.93 (m, 2H), 5.90 (s, 1H), 3.24 (t, J = 7.5 Hz, 

2H), 2.32 (t, J = 7.5 Hz, 2H), 1.75-1.68 (m, 2H), 1.63-1.55 (m, 2H), 1.42-1.33 (m, 6H). 

 

9-azido-N-(4-(naphthalen-1-ylamino)phenyl)nonanamide (4.25).  
1
H NMR (500 MHz, 

Chloroform-d) δ 7.98 (d, J = 7.9 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.54 – 7.41 (m, 3H), 

7.41 – 7.32 (m, 3H), 7.27 (d, J = 8.1 Hz, 1H), 7.02 (s, 1H), 6.96 (d, J = 8.2 Hz, 2H), 5.90 
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(s, 1H), 3.24 (t, J = 7.0 Hz, 2H), 2.32 (t, J = 7.5 Hz, 2H), 1.71 (t, J = 7.3 Hz, 2H), 1.40 – 

1.30 (m, 10H). 

 

 

Scheme 4.10.  Synthesis of phenol substrates attached to azido linkers. 

 

General procedure for coupling of 2-aminophenol to azido acid linkers.  Azido acids were 

prepared as previously described.
17

  In a scintillation vial, 2-aminophenol (1.0 eq), HATU 

(1.0 eq), and DIEA (1.0 eq) were dissolved in NMP and were stirred at room temperature 

for 15 min.  The appropriate azido acid (1.0 eq) was added and the reaction was stirred at 

65 C for 2 h.  The reaction was cooled to room temperature, diluted with EtOAc, and 

washed three times with H2O.  The organic layer was dried over MgSO4, filtered, and the 

solvent was removed under reduced pressure.  The crude products were purified by 

automated silica gel chromatography using a linear 6 → 50% EtOAc in hexanes gradient. 

 

9-azido-N-(2-hydroxyphenyl)nonanamide (4.26).  
1
H NMR (500 MHz, Chloroform-d) δ 

8.81 (s, 1H), 7.50 (s, 1H), 7.10 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 6.99 (ddd, J = 9.6, 8.0, 1.5 

Hz, 2H), 6.84 (td, J = 7.6, 1.5 Hz, 1H), 3.24 (t, J = 6.9 Hz, 2H), 2.43 (t, J = 7.5 Hz, 2H), 

1.73 (p, J = 7.5 Hz, 2H), 1.58 – 1.53 (m, 2H), 1.41 – 1.26 (m, 8H). 

 

10-azido-N-(2-hydroxyphenyl)decanamide (4.27).  
1
H NMR (500 MHz, Chloroform-d) δ 

8.80 (s, 1H), 7.42 (s, 1H), 7.10 (t, J = 7.6 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 

8.0 Hz, 1H), 6.84 (t, J = 7.5 Hz, 1H), 3.24 (t, J = 7.0 Hz, 2H), 2.44 (t, J = 7.5 Hz, 2H), 

1.72 (q, J = 7.1 Hz, 2H), 1.62 – 1.52 (m, 2H), 1.40 – 1.25 (m, 10H). 

 

 



103 

 

 

Scheme 4.11.  Synthesis of 1,4-disubstituted-1,2,3-triazoles. 

 

General synthesis of 1,4-disubstituted-1,2,3-triazoles.  PP2-alkyne was prepared 

following a published protocol.
11

  In an oven-dried flask under N2, PP2-alkyne (1.0 eq), 

the appropriate azide (1.0 eq), and CuI (0.1 eq) were dissolved in anhydrous DMF.  The 

reaction was stirred at room temperature or 60 C overnight.  The reaction was diluted 

with H2O and extracted with EtOAc.  The combined organic extracts were concentrated 

under reduced pressure.  The resulting residue was purified by reverse phase HPLC using 

a linear 30 → 90% ACN in H2O gradient. 

 

6-(4-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(phenylamino)phenyl)hexanamide (4.2).  
1
H NMR (400 MHz, 

DMSO-d6) δ 9.68 (s, 1H), 8.71 (s, 1H), 8.69 (t, J = 1.9 Hz, 1H), 8.40 (s, 1H), 8.27 – 8.20 

(m, 1H), 7.97 (s, 1H), 7.79 (d, J = 8.4 Hz, 3H), 7.68 – 7.58 (m, 3H), 7.42 (d, J = 8.8 Hz, 

2H), 7.16 (t, J = 7.9 Hz, 2H), 6.97 (m, 4H), 6.73 (t, J = 7.3 Hz, 1H), 4.43 (t, J = 7.0 Hz, 

2H), 2.26 (t, J = 7.3 Hz, 2H), 1.96 – 1.87 (m, 2H), 1.67-1.59 (m, 2H), 1.35-1.22 (m, 2H). 

 

6-(4-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(naphthalen-1-ylamino)phenyl)hexanamide (4.4).  
1
H NMR (500 

MHz, DMSO-d6) δ 9.70 (s, 1H), 8.71 (s, 1H), 8.69 (t, J = 2.0 Hz, 1H), 8.40 (s, 1H), 8.26 

– 8.20 (m, 1H), 8.17 (d, J = 8.2 Hz, 1H), 8.06 (s, 1H), 7.84 (dd, J = 7.9, 1.7 Hz, 1H), 7.82 

– 7.75 (m, 3H), 7.67 – 7.58 (m, 3H), 7.52 – 7.38 (m, 5H), 7.32 (t, J = 7.8 Hz, 1H), 7.15 

(d, J = 7.5 Hz, 1H), 7.00 (d, J = 8.9 Hz, 2H), 4.43 (t, J = 7.0 Hz, 2H), 2.27 (t, J = 7.3 Hz, 

2H), 1.95 – 1.88 (m, 2H), 1.67 – 1.60 (m, 2H), 1.34 – 1.27 (m, 2H). 



104 

 

7-(4-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(naphthalen-1-ylamino)phenyl)octanamide (4.5).  
1
H NMR (500 

MHz, DMSO-d6) δ 9.69 (s, 1H), 8.70 (s, 1H), 8.68 (t, J = 1.9 Hz, 1H), 8.40 (s, 1H), 8.23 

(dd, J = 8.2, 2.2 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 8.06 (s, 1H), 7.83 (d, J = 7.6 Hz, 1H), 

7.82-7.76 (m, 3H), 7.69 – 7.58 (m, 3H), 7.52 – 7.38 (m, 5H), 7.32 (t, J = 7.8 Hz, 1H), 

7.15 (d, J = 7.5 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 4.41 (t, J = 7.1 Hz, 2H), 2.25 (t, J = 7.4 

Hz, 2H), 1.92-1.84 (m, 2H), 1.60 – 1.53 (m, 2H), 1.37 – 1.26 (m, 6H). 

 

4-(4-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(naphthalen-1-ylamino)phenyl)butanamide (4.6). 
1
H NMR (500 

MHz, DMSO-d6) δ 9.78 (s, 1H), 8.72 (m, 2H), 8.41 (s, 1H), 8.24 (dd, J = 8.1, 2.2 Hz, 

1H), 8.17 (d, J = 8.1 Hz, 1H), 8.07 (s¸1H), 7.87 – 7.76 (m, 4H), 7.65-7.62 (m, 3H), 7.50-

7.41 (m, 5H), 7.32 (t, J = 7.8 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.02 (d, J = 8.6 Hz, 2H), 

4.50 (t, J = 6.9 Hz, 2H), 2.34 (t, J = 7.4 Hz, 2H), 2.20 (p, J = 7.2 Hz, 2H). 

 

9-(4-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(2-hydroxyphenyl)nonanamide (4.15).  
1
H NMR (500 MHz, 

DMSO-d6) δ 9.71 (s, 1H), 9.22 (s, 1H), 8.70 (s, 1H), 8.68 (t, J = 2.0 Hz, 1H), 8.40 (s, 

1H), 8.27 – 8.20 (m, 1H), 7.79 (dd, J = 8.7, 2.2 Hz, 3H), 7.67 – 7.59 (m, 4H), 6.91 (t, J = 

7.7 Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.73 (t, J = 7.6 Hz, 1H), 4.40 (t, J = 7.1 Hz, 2H), 

2.35 (t, J = 7.4 Hz, 2H), 1.87 (p, J = 7.1 Hz, 2H), 1.59 – 1.52 (m, 2H), 1.31 – 1.20 (m, 

8H). 

 

10-(4-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(2-hydroxyphenyl)decanamide (4.16).  
1
H NMR (500 MHz, DMSO-

d6) δ 9.22 (s, 1H), 8.70 (s, 1H), 8.68 (t, J = 1.7 Hz, 1H), 8.40 (s, 1H), 8.23 (dd, J = 8.2, 

2.2 Hz, 1H), 7.79 (d, J = 8.7, 3H), 7.67 – 7.60 (m, 4H), 6.91 (t, J = 7.7, 1H), 6.83 (d, J = 

8.0 Hz, 1H), 6.73 (t, J = 7.6 Hz, 1H), 4.40 (t, J = 7.1 Hz, 2H), 2.35 (t, J = 7.4 Hz, 2H), 

1.87 (p, J = 7.0 Hz, 2H), 1.55 (t, J = 7.3 Hz, 2H), 1.30-1.20 (m, 10H). 
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Scheme 4.12.  Synthesis of 1,5-disubstituted-1,2,3-triazoles. 

 

General synthesis of 1,5-disubstituted-1,2,3-triazoles.  PP2-alkyne was prepared 

following a published protocol.
11

  In a flame-dried flask under N2, PP2-alkyne (1.0 eq) 

and Cp*RuCl(COD) (0.1 eq) were dissolved anhydrous THF.  The appropriate azide (1.0 

eq) was added and the reaction was stirred at room temperature overnight.  The solvent 

was removed under reduced pressure.  The resulting residue was purified by reverse 

phase HPLC using a linear 30 → 90% ACN in H2O gradient. 

 

6-(5-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(phenylamino)phenyl)hexanamide (4.3).  
1
H NMR (500 MHz, 

DMSO-d6) δ 9.63 (s, 1H), 8.45 (s, 1H), 8.39 (s, 1H), 8.34 (dd, J = 8.1, 2.2 Hz, 2H), 7.98 

(s, 2H), 7.80 – 7.74 (m, 2H), 7.71 (t, J = 8.0 Hz, 2H), 7.65 – 7.57 (m, 2H), 7.53 (d, J = 

7.7 Hz, 1H), 7.40 (dd, J = 9.2, 3.0 Hz, 2H), 7.17 (t, J = 7.7 Hz, 2H), 6.97 (dd, J = 8.3, 5.2 

Hz, 4H), 6.73 (t, J = 7.3 Hz, 1H), 4.48 (t, J = 7.2 Hz, 2H), 2.17 (t, J = 7.4 Hz, 2H), 1.86 – 

1.79 (m, 2H), 1.56 – 1.47 (m, 2H), 1.30 – 1.20 (m, 2H). 

 

6-(5-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(naphthalen-1-ylamino)phenyl)hexanamide (4.7).  
1
H NMR (500 

MHz, DMSO-d6) δ 9.65 (s, 1H), 8.46 (s, 1H), 8.41 – 8.32 (m, 2H), 8.17 (d, J = 8.3 Hz, 

1H), 8.06 (s, 1H), 7.98 (s, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.2 Hz, 3H), 7.71 (t, 

J = 7.9 Hz, 1H), 7.62 (dd, J = 8.0, 5.5 Hz, 3H), 7.57 – 7.43 (m, 2H), 7.41 (d, J = 8.2 Hz, 

2H), 7.35-7.29 (m, 1H), 7.15 (d, J = 7.5 Hz, 1H), 7.00 (d, J = 8.4 Hz, 2H), 4.48 (t, J = 7.1 

Hz, 2H), 2.18 (t, J = 7.5 Hz, 2H), 1.85-1.78 (m, 2H), 1.57-1.48 (m, 2H), 1.30 – 1.25 (m, 

2H). 
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7-(5-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(naphthalen-1-ylamino)phenyl)heptanamide (4.8). 
1
H NMR (500 

MHz, DMSO-d6) δ 9.64 (s, 1H), 8.45 (t, J = 2.0 Hz, 1H), 8.39 (s, 1H), 8.35 (dd, J = 8.3, 

2.1 Hz, 1H), 8.17 (d, J = 8.3 Hz, 1H), 7.98 (s, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.77 (d, J = 

8.4 Hz, 2H), 7.72 (t, J = 8.0 Hz, 1H), 7.62 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 7.6 Hz, 1H), 

7.51 – 7.39 (m, 5H), 7.32 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 7.5 Hz, 1H), 7.00 (d, J = 8.8 

Hz, 2H), 4.47 (t, J = 7.2 Hz, 2H), 2.16 (t, J = 7.4 Hz, 2H), 1.83 – 1.76 (m, 2H), 1.49-1.44 

(m, 2H), 1.25-1.19 (m, 4H). 

 

7-(5-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(naphthalen-1-ylamino)phenyl)octanamide (4.9).  
1
H NMR (500 

MHz, DMSO-d6) δ 9.65 (s, 1H), 8.45 (t, J = 2.0 Hz, 1H), 8.38 (s, 1H), 8.36 (dd, J = 8.2, 

2.1 Hz, 1H), 8.18 (d, J = 8.1 Hz, 1H), 7.98 (s, 1H), 7.87 – 7.82 (m, 1H), 7.81 – 7.69 (m, 

3H), 7.62 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 7.7 Hz, 1H), 7.51-7.38 (m, 5H), 7.32 (t, J = 7.8 

Hz, 1H), 7.15 (d, J = 7.5 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 4.47 (t, J = 7.2 Hz, 2H), 2.17 

(t, J = 7.4 Hz, 2H), 1.82-1.74 (m, 2H), 1.49 – 1.42 (m, 2H), 1.28 – 1.18 (m, 6H). 

 

9-(5-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(naphthalen-1-ylamino)phenyl)nonanamide (4.10).  
1
H NMR 

(500 MHz, DMSO-d6) δ 9.65 (s, 1H), 8.46 (t, J = 2.0 Hz, 1H), 8.41 – 8.34 (m, 2H), 8.18 

(d, J = 8.3 Hz, 1H), 8.07 (s, 1H), 7.98 (s, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.81 – 7.72 (m, 

3H), 7.63 (m, 2H), 7.57 – 7.39 (m, 6H), 7.33 (t, J = 7.9 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 

7.02 (d, J = 8.8 Hz, 2H), 4.47 (t, J = 7.2 Hz, 2H), 2.18 (t, J = 7.5 Hz, 2H), 1.79 (p, J = 7.2 

Hz, 2H), 1.47 (t, J = 7.1 Hz, 2H), 1.17 (m, 8H). 

 

8-(5-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(4-(phenylamino)phenyl)octanamide (4.11).  
1
H NMR (500 MHz, 

DMSO-d6) δ 9.63 (s, 1H), 8.45 (s, 1H), 8.40 – 8.33 (m, 2H), 8.00 – 7.95 (m, 2H), 7.80 – 

7.69 (m, 3H), 7.62 (dd, J = 8.5, 2.1 Hz, 2H), 7.53 (d, J = 7.7 Hz, 1H), 7.44 – 7.38 (m, 

2H), 7.23 – 7.13 (m, 2H), 7.08 – 7.02 (m, 1H), 7.00 – 6.93 (m, 3H), 6.73 (t, J = 7.3 Hz, 
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1H), 4.46 (t, J = 7.1 Hz, 2H), 2.15 (t, J = 7.3 Hz, 2H), 1.81 – 1.74 (m, 2H), 1.48 – 1.40 

(m, 2H), 1.24 – 1.12 (m, 6H). 

 

8-(5-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-1H-

1,2,3-triazol-1-yl)-N-(quinolin-5-yl)octanamide (4.12).  
1
H NMR (500 MHz, DMSO-d6) 

δ 9.98 (s, 1H), 8.48 – 8.32 (m, 5H), 7.99 (s, 1H), 7.85 – 7.67 (m, 7H), 7.62 (d, J = 7.6 Hz, 

2H), 7.57 – 7.50 (m, 2H), 4.49 (t, J = 7.2 Hz, 2H), 3.03 – 2.97 (m, 2H), 2.43 – 2.35 (m, 

2H), 1.85 – 1.75 (m, 2H), 1.30 – 1.16 (m, 6H). 

 

Methyl 8-(5-(3-(4-amino-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-

1H-1,2,3-triazol-1-yl)octanoate (4.13).  
1
H NMR (500 MHz, DMSO-d6) δ 8.45 (s, 1H), 

8.38 (m, 2H), 7.98 (s, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.74 (t, J = 8.0 Hz, 1H), 7.64 (d, J = 

8.3 Hz, 2H), 7.54 (d, J = 7.7 Hz, 1H), 4.46 (t, J = 7.2 Hz, 2H), 3.52 (s, 3H), 2.15 (t, J = 

7.4 Hz, 2H), 1.79-1.74 (m, 2H), 1.39 – 1.32 (m, 2H), 1.23-1.08 (m, 6H). 

Spectral Data 

 Spectral data (
1
H NMR) for compounds 4.2 – 4.27 is shown in Appendix C. 

General Biochemical Methods 

Black, opaque-bottom 96 well plates were used for fluorescence assays and were 

purchased from Nunc.  c-Src was expressed by Christel Fox in E. coli using previously 

published procedures.
18

  Data was obtained using a Biotek Synergy 4 plate reader.  Curve 

fitting was performed using GraphPad Prism 4 software unless otherwise noted. 

Determination of Inhibitor IC50 

A previously reported continuous fluorescence assay was used to determine 

inhibitor IC50 values.
12 

 Reaction volumes of 100 µL were used in 96-well plates. 85 µL 

of enzyme in buffer mix was added to each well followed by 2.5 µL of the appropriate 

inhibitor dilution (typically 5000, 2500, 1250, 625, 313, 156, 78, and 39 μM in DMSO) 

and 2.5 µL of a substrate peptide solution (“compound 3” as described in Wang et al., 

typically 1.8 mM in DMSO). The reaction was initiated with 10 µL of ATP (1 mM in 

water), and reaction progress was immediately monitored at 405 nm (ex. 340 nm) for 10 

minutes.  Reactions had final concentrations of 30 nM c-Src, 45 μM “substrate 3”, 1 mM 
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ATP, 100 µM Na3VO4, 100mM Tris buffer (pH 8), 10 mM MgCl2, and 0.01% Triton X-

100.  To evaluate if inhibitors were substrate-competitive, the assay was carried out as 

described above with the final concentration of “substrate 3” increased to 500 μM. 

The initial rate data collected was used for determination of IC50 values.  The IC50 

values were obtained directly from nonlinear regression of substrate-velocity curves in 

the presence of various concentrations of the inhibitor.  The IC50 value for each inhibitor 

was determined using ≥3 independent experiments (unless otherwise noted) which were 

averaged to give an average IC50 value ± standard deviation.  For analytical data see 

Appendix C. 
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CHAPTER V 

Conclusions      

 

Abstract 

Studies presented in this dissertation have focused on the discovery of substrate-

competitive inhibitors of c-Src kinase, including peptidic inhibitors, small molecule 

inhibitors, and non-peptidic bisubstrate inhibitors.  Results from all three studies have 

stressed the importance of maintaining key hydrogen bonds formed by the tyrosine 

hydroxyl group within the substrate binding site.  Overall, these studies have added to our 

understanding of how to best discover substrate-competitive tyrosine kinase inhibitors 

through both screening and rational design.  This knowledge will enable the development 

of additional potent substrate-competitive inhibitors for c-Src and other kinases of 

interest. 

 

Discovery of Substrate-Competitive Kinase Inhibitors 

 Despite the interest in substrate-competitive inhibitors, greater than 99% of 

reported kinase inhibitors are ATP-competitive inhibitors.  This is largely due to the 

difficulty associated with identifying substrate-competitive inhibitors.  Compared to the 

ATP binding site, which is located in a deep hydrophobic cleft, the substrate-binding site 

is shallow and largely solvent exposed which makes it challenging to target with small 

molecules.  Furthermore, high throughput screening libraries are highly biased towards 

heterocyclic compounds that are more likely to act as ATP mimics.  Taken together, this 

has hindered the discovery of substrate-competitive inhibitors.   

Few methods have been reported that can reliably identify substrate-competitive 

inhibitors, and all of the methods suffer from significant flaws.  Peptidic substrate-

competitive inhibitors have been rationally designed by replacing the phosphorylated 

residue by nonphosphorylatable residues, and also have been discovered from screens of 

peptide libraries using phage display and one-bead-one-compound techniques.  However, 
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these inhibitors often have poor potency and poor pharmacokinetic properties which 

limits their use in vivo.  Recently, reports of the discovery of small molecule ATP-

noncompetitive inhibitors identified using a variety of approaches has increased.  Some 

of these approaches such as virtual screening or structure based drug design required 

structural data, and this will limit their application, especially to new or understudied 

targets.  Other methods such as biased activity assays, competitive binding assays, and 

NMR screens using ATP-competitive paramagnetic probes can be applied without 

requiring structural knowledge of the target, but these methods still have shortcomings.  

While biased competitive assays have the potential to identify substrate-competitive 

inhibitors, the conditions also favor the discovery of allosteric inhibitors or highly potent 

ATP-competitive inhibitors, and thus far no substrate-competitive inhibitors have been 

reported that were identified from a biased activity assay.  NMR screening using spin-

labeled ATP-competitive probes can identify substrate-competitive inhibitors, but these 

methods can also identify allosteric inhibitors.  Competitive binding assays using 

substrate-competitive probes currently hold the most promise for the exclusive 

identification of substrate-competitive inhibitors, but the modest affinity of most 

substrate-competitive ligands has prevent the development of the required probes.  Potent 

bisubstrate probes composed of ATP-competitive and substrate-competitive inhibitors 

address this issue; however, these probes will also identify ATP-competitive inhibitors, 

and thus a counter screen will be required. 

As a whole, there is still a great need for the development of new methods for the 

identification of small molecule substrate-competitive inhibitors.  The work presented in 

this dissertation aimed to remedy this problem by developing new methods 

methodologies for the discovery of small-molecule substrate-competitive tyrosine kinase 

inhibitors.  Substrate-competitive small molecules were also applied to the design of 

nonpeptidic bisubstrate inhibitors. 

 

Peptidic Inhibitors of c-Src Kinase for Pharmacophore Identification 

Work for this dissertation began with the development of peptidic inhibitors of c-

Src kinase.  The aim of the study was to identify new tyrosine pharmacophores for c-Src 

using a library of peptides.  We anticipated that potent peptidic inhibitors discovered 
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from this study could then be fluorescently labeled and used to develop a competitive 

binding fluorescence polarization assay to screen for small molecule substrate-

competitive inhibitors.  SAR for the tyrosine pharmacophores could also be applied later 

to the design of small molecule substate-competitive inhibitors. While peptidic inhibitors 

of c-Src with substituted phenylalanine pharmacophores have been previously reported, 

the study was limited to pharmacophores with para-substitutions (with the exception of 

pentafluorophenylalanine).
1
  We have expanded the substituents explored at the para 

position, as well as examined the effects of substitutions at the ortho and meta positions.  

We also evaluated natural amino acids other than phenylalanine or alanine as 

pharmacophores. 

In general, for two libraries of peptides based on the c-Src substrate Ac-AIYAA-

NH2, poor inhibition was observed upon replacement of the reactive tyrosine residue (all 

Ki ≥ 200 μM).  While no mono-substitutions at the meta position were found to increase 

potency, an ortho-fluorine group increased potency and could later be combined with 

optimal para substituents to increase potency.  The best para substituents were halogens, 

and inhibitor potency increased with increasing halogen size.  Potency also increased 

with increasing number of halogen substituents.  Because other non-halogen substitutions 

that increased hydrophobicity were poor inhibitors, we hypothesize pharmacophores must 

increase the hydrophobic surface area and decrease the electron density within the 

phenylalanine ring in order to produce c-Src inhibition. 

The poor potency of the Ac-AIXAA-NH2 library prompted us to also reexamine 

three peptides reported in the literature to be potent inhibitors of c-Src.
2-4

  Only peptide 

2.51 was found to be a c-Src inhibitor (Ki = 70 μM).  An AMCA-labeled analogue of this 

peptide (2.52) was evaluated as well, but it was still less potent than required for FP assay 

development (Ki = 49 μM). 

While no peptides potent enough for developing an FP screen were identified from 

these libraries, we did gain valuable insight into the SAR of tyrosine pharmacophores.  

Our results also support the long-held belief that the tyrosine hydroxyl group makes 

important hydrogen bonding contacts within the substrate binding site, and thus removal 

of this hydroxyl group greatly reduces potency.  Combined with our pharmacophore 

analysis, this suggests that an ideal pharmacophore would maintain these hydrogen 
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bonding contacts, have increased hydrophobic surface area, and have decreased electron 

density.  The development of such pharmacophores may enable the design of peptidic 

inhibitors with the low micromolar potency required for developing a substrate-

competitive FP probe. 

 

Substrate Activity Screening for Protein Tyrosine Kinases 

Although a competitive binding assay using a peptidic substrate-competitive c-Src 

ligand would be useful for the identification of substrate-competitive inhibitors of c-Src, 

the probe would not be widely applicable to any kinase and new probes would need to be 

developed for other kinases of interest.  Thus, we also wanted to develop general 

screening methodology that could be applied to any tyrosine kinase of interest to identify 

substrate-competitive inhibitors.  Substrate activity screening (SAS) is a screening 

method pioneered by the Ellman lab that identifies substrates of an enzyme instead of 

inhibitors.
5
  We thought SAS would be an excellent strategy for the identification of 

substrate-competitive inhibitors of tyrosine kinases because substrates converted into 

inhibitors should inherently be substrate-competitive.   

Using an ADP detection assay, we have reported the first small molecule substrates 

of a protein kinase.  Several of the small molecule substrates have KM values better than 

that of a known peptide substrate.  Using knowledge gained from the pharmacophore 

library and literature, one of the identified substrates (3.5, KM = 122 μM) was then 

successfully converted into an inhibitor of c-Src (3.7, Ki = 257 μM) by replacing the 

phenol with tetrafluorophenol.  Two previously unreported pharmacophores, pyridine N-

oxide and hydroxypyridine, were also evaluated but were found to be less potent and less 

selective than tetrafluorophenol.  Through a focused library of analogues, lead inhibitor 

3.12 (Ki = 16 μM) was identified.  Extensive kinetics analysis, modeling, and 

mutagenesis studies support that lead inhibitor 3.12 has a substrate-competitive, ATP-

noncompetitive binding mode as hypothesized.   

Biochemical evaluation showed that inhibitor 3.12 has greater than 66-fold 

selectivity against the highly similar non-Src family kinase c-Abl, as well as selectivity 

against other Src family kinases including Yes.  We have also conclusively demonstrated 
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for the first time that a substrate-competitive kinase inhibitor can be combined with ATP-

competitive inhibitors to produce synergistic inhibition of the target. 

The non-peptidic nature of 3.12 also enabled us to explore its activity in cellulo.  

Inhibitor 3.12 inhibits the growth of c-Src dependent cancer cell lines with low 

micromolar GI50 values that are comparable to the most potent ATP-competitive c-Src 

inhibitors known.  In contrast to the ATP-competitive c-Src inhibitor PP2, which is often 

used as a c-Src biological probe, 3.12 only inhibits the activation of c-Src dependent 

signaling pathways.  The biochemical and cellular evaluation of 3.12 clearly 

demonstrated the improved features of substrate-competitive inhibitors compared to 

ATP-competitive inhibitors.   

While other methods have been reported for the discovery of substrate-competitive 

kinase inhibitors, the SAS method described here is the only general screening method 

for the exclusive identification of small molecule substrate-competitive kinase inhibitors.  

Our SAS method should be applicable to any tyrosine kinase of interest, and could likely 

be modified for screening non-tyrosine kinases. 

 

Progress Towards Nonpeptidic Bisubstrate Kinase Inhibitors 

In addition to substrate-competitive kinase inhibitors, bisubstrate inhibitors that 

target both the substrate and the ATP binding sites are also highly sought after as they 

can combine the potency of ATP-competitive inhibitors with the selectivity of substrate-

competitive inhibitors.  However, the lack of compounds which bind to the substrate site 

has limited the ability to design bisubstrate kinase inhibitors.  Most reported bisubstrate 

inhibitors utilize peptides as the substrate-competitive fragment, and this has prevented 

their use as biological probes.  A small number of bisubstrate inhibitors which use a 

single phenyl ring as a tyrosine pharmacophore for the substrate competitive portion have 

been reported, but these bisubstrate inhibitors suffer from poor potency.  To remedy the 

problems associated with current bisubstrate inhibitors, we aimed to develop nonpeptidic 

bisubstrate inhibitors by replacing the peptidic portion of a bisubstrate inhibitor 

previously developed in our lab with small molecule c-Src substrates identified through 

SAS.   
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The initial library of inhibitors used substrate-competitive scaffolds identified from 

SAS that were attached to the ATP-competitive portion via an amide at the location of 

the reactive hydroxyl group.  While submicromolar potency was expected based on the 

potency of similar ATP-competitive inhibitors, the best inhibitors were found to have 

only low micromolar potency (4.9, IC50 = 1 μM).  Further analysis of each “half” of 

inhibitor 4.9 showed that while the ATP-competitive portion was a nanomolar inhibitor 

of c-Src (4.13, IC50 = 272 nM), the substrate-competitive half was not a competent 

inhibitor (4.14, IC50 > 250 μM).  We also found that the differences in potency for 

bisubstrate inhibitors utilizing different substrate-competitive portions tracked well with 

the differences in the relative affinities of the substrate-competitive scaffolds.  This 

supports that the substrate-competitive portion is binding weakly within the substrate 

binding site. 

The data from the initial set of bisubstrate inhibitors is consistent with our previous 

studies which have shown that maintaining the hydrogen bonds formed by the substrate 

hydroxyl group is important for binding of small molecules to the substrate site.  We then 

evaluated two inhibitors that contained a hydroxyl group in the substrate-competitive 

portion.  It was encouraging to see that despite using a poor substrate scaffold the 

potencies of inhibitors 4.15 (IC50 = 5 μM) and 4.16 (IC50 = 4 μM) were on par with the 

best inhibitors from the first library.  Because the first library used an optimized substrate 

scaffold, we anticipate that future bisubstrate inhibitors that use optimized substrate 

scaffolds which retain the substrate hydroxyl group will show increased potency.  

Although this study supports that incorporation of the linker ortho to the phenol is 

tolerated, one hurdle moving forward will be that the c-Src substrates previously 

identified do not already contain handles for attachment of the linker at the ortho 

position, and incorporating these handles may change how the substrates bind. 

 

Conclusions 

The studies presented in this dissertation have highlighted the difficulties facing the 

discovery of substrate-competitive kinase inhibitors, whether through the development of 

new screening methods or the rational design of inhibitors.  We initially sought to 

identify potent peptidic inhibitors of c-Src that could be used to develop a fluorescence 
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polarization assay to screen for small molecule substrate-competitive inhibitors.  

Although this assay could have proved useful for the identification of new substrate-

competitive c-Src inhibitors, the assay would not have been widely applicable to all 

kinases as the substrate site is not conserved across the kinome.  While the low similarity 

between kinase substrate sites enables substrate-competitive inhibitors to be more 

selective than ATP-competitive inhibitors, an additional consequence of this is that 

probes targeting the substrate site will only bind to a small subset of kinases.  This has 

complicated the development of new screening methods for substrate-competitive 

inhibitors since assays which rely on displacement of a probe bound to the substrate site 

will not be general.  Therefore, a general screening method that can be applied to many 

kinases will be more useful.  In contrast to other reported screening methods, the SAS 

method developed in this work is the only general screening method for the discovery of 

substrate-competitive tyrosine kinase inhibitors.  Because the SAS method relies on 

monitoring the production of ADP, which is a byproduct of all kinase reactions, the 

method can be applied to any tyrosine kinase of interest.  The method should also be 

applicable to dual specificity kinases, and modification of the screening library and 

pharmacophores may allow the method to be expanded to other kinases as well.  

In particular, our studies have stressed the importance of maintaining key hydrogen 

bonds formed by the tyrosine hydroxyl group within the substrate binding site.  It was 

clearly demonstrated throughout this work that loss of the hydrogen bonds formed with 

the substrate hydroxyl group negatively impacted inhibitor potency.  In the first study, we 

were unable to find any peptides with low micromolar c-Src potency despite examining 

nearly 50 pharmacophores.  Although the lack of potent inhibitors prevented us from 

using these peptides in the development of an FP assay to screen for small molecule 

substrate-competitive inhibitors, the SAR found in this study would prove useful for the 

conversion of small molecule c-Src substrates into inhibitors in the development of the 

SAS method for tyrosine kinases.  From the peptidic inhibitor SAR, we concluded an 

ideal pharmacophore should maintain the hydrogen bonding contacts formed by the 

tyrosine hydroxyl group, have increased hydrophobic surface area, and have decreased 

electron density.  We evaluated three pharmacophores which fit these criteria in the SAS 
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study and found that all three successfully converted the small molecule substrate into an 

inhibitor.  This served as key step in the development of the SAS method. 

The importance of the substrate hydroxyl group was also seen in the rational design 

of non-peptidic bisubstrate inhibitors.  No potent bisubstrate inhibitors were identified in 

the first library, which linked the substrate scaffold to the ATP-competitive portion at the 

location of the hydroxyl group.  Additionally, evaluation of the substrate-competitive 

“half” showed that it was a poor inhibitor of c-Src.  However, a second set of inhibitors 

that used an unoptimized substrate scaffold but retained the substrate hydroxyl group 

were found to have potency equivalent to the best inhibitors in the first library.  This 

further supports the importance of contacts made by the substrate hydroxyl group, and 

suggests that future non-peptidic bisubstrate inhibitors should maintain the substrate 

hydroxyl group. 

Overall, these studies have added to our knowledge of how to best discover 

substrate-competitive tyrosine kinase inhibitors through both screening and rational 

design.  We anticipate that the SAS method for tyrosine kinases will enable the discovery 

of substrate-competitive inhibitors for other kinases of interest.  Additionally, better 

understanding of tyrosine pharmacophores and the importance of the hydroxyl group for 

inhibitor potency will help guide the rational design of future peptidic and nonpeptidic 

substrate-competitive inhibitors as well as nonpeptidic bisubstrate inhibitors.  Improved 

inhibitors, especially small molecule substrate-competitive inhibitors and non-peptidic 

bisubstrate inhibitors, can serve as important biological tools for the study of kinase 

signaling and potential therapeutics.  
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Appendix A 

Analytical Data for Chapter II  
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Analytical Data for Determination of Ki for Peptidic Inhibitors 

 

Ac-AIXAA-NH2 Libraries: 

 

 

2.1 (X = Tyr, c-Src) Ki > 1000 μM   

 

 

 

 

 

2.2 (X = D-Tyr) c-Src Ki > 1000 μM 
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2.2 (X = D-Tyr) c-Abl Ki > 1000 μM   

  

 

 

 

2.3 (Ac-aaiya-NH2) c-Src Ki > 1000 μM 

 

 

 

 

 

2.4 (X = Phe) c-Src Ki = 950 ± 55 μM  
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2.4 (X = Phe) c-Abl Ki = >500 μM 

 

 

 

 

2.5 (X = Ala) c-Src Ki > 1000 μM   

 

 

 

 

2.5 (X = Ala) c-Abl Ki > 1000 μM 
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2.6 (X = Trp) c-Src Ki > 1000 μM   

  

 

 

 

2.6 (X = Trp) c-Abl Ki > 1000 μM 

 

 

 

 

 

2.7 (X = His) c-Src Ki = 172 ± 11 μM  
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2.7 (X = His) c-Abl Ki > 1000 μM 

 

 

 

 

 

2.8 (X = 2-CH3 Phe) c-Src Ki > 500 μM  

  

 

 

 

2.8 (X = 2-CH3 Phe) c-Abl Ki > 1000 μM 
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2.9 (X = 2-CF3 Phe) c-Src Ki > 1000 μM  

  

 

 

 

2.10 (X = 2-OCH3 Phe) c-Src Ki > 1000 μM 

 

 

 

 

 

2.11 (X = 2-F Phe) c-Src Ki = 433 ± 48 μM        
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2.11 (X = 2-F Phe) c-Abl Ki > 1000 μM 

 

 

 

 

 

2.12 (X = 2-Cl Phe) c-Src Ki = 845 ± 186 μM      

  

 

 

 

2.12 (X = 2-Cl Phe) c-Abl Ki > 1000 μM 
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2.13 (X = 3-CH3 Phe) c-Src Ki > 1000 μM     

  

 

 

 

2.14 (X = 3-CF3 Phe) c-Src Ki > 1000 μM 

 

 

 

 

 

2.15 (X = 3-OCH3 Phe) c-Src Ki > 1000 μM         
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2.16 (X = 3-F Phe) c-Src Ki > 1000 μM 

 

 

 

 

 

2.17 (X = 3-Cl Phe) c-Src Ki > 1000 μM  

  

 

 

 

   2.18 (X = 4-CH3 Phe) c-Src Ki > 500 μM 
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2.18 (X = 4-CH3 Phe) c-Abl Ki > 1000 μM     

  

 

 

 

 

2.19 (X = 4-CF3 Phe) c-Src Ki = 862 ± 159 μM 

 

 

 

 

2.19 (X = 4-CF3 Phe) c-Abl Ki > 1000 μM   
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2.20 (X = 4-OCH3 Phe) c-Src Ki > 1000 μM 

 

  

 

 

2.21 (X = 4-OCH2CH3 Phe) c-Src Ki > 1000 μM     

  

 

 

 

 

2.22 (X = 4-OCHCH2 Phe) c-Src Ki > 1000 μM 
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2.23 (X = 4-OPh Phe) c-Src Ki > 1000 μM     

  

 

 

 

2.24 (X = 4-OBn Phe) c-Src Ki = 783 ± 156 μM 

 

 

 

 

 

2.24 (X = 4-OBn Phe) c-Abl Ki > 1000 μM     

  



132 

 

2.25 (X = 4-Bz Phe) c-Src Ki = 429 ± 91 μM 

 

 

 

 

2.25 (X = 4-Bz Phe) c-Abl Ki > 1000 μM   

  

 

 

 

 

2.26 (X = 4-CO2H Phe) c-Src Ki > 1000 μM 
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2.27 (X = 4-CN Phe) c-Src Ki > 1000 μM     

  

 

 

 

2.28 (X = 4-N3 Phe) c-Src Ki = 831 ± 199 μM 

 

 

 

 

 

2.28 (X = 4-N3 Phe) c-Abl Ki > 1000 μM          
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2.29 (X = 4-NH2 Phe) c-Src Ki > 1000 μM 

 

 

 

 

2.30 (X = 4-CH2NH2 Phe) c-Src Ki > 1000 μM  

 

 

 

 

 

2.31 (X = 4-SO2NH2 Phe) c-Src Ki > 1000 μM 
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2.32 (X = 4-guanido Phe) c-Src Ki > 1000 μM 

 

 

 

 

 

2.33 (X = 4-F Phe) c-Src Ki > 1000 μM  

  

 

 

 

2.34 (X = 4-Cl Phe) c-Src Ki = 446 ± 70 μM 
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2.34 (X = 4-Cl Phe) c-Abl Ki > 1000 μM  

  

 

 

 

2.35 (X = 4-Br Phe) c-Src Ki = 392 ± 97 μM 

  

 

 

 

2.35 (X = 4-Br Phe) c-Abl Ki > 500 μM  
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2.36 (X = 4-I Phe) c-Src Ki = 242 ± 31 μM 

  

 

 

 

 

2.36 (X = 4-I Phe) c-Abl Ki = 827 ± 81 μM     

  

 

 

 

2.37 (X = 4-NO2 Phe) c-Src Ki > 1000 μM 
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2.38 (X = 3,4-OCH3 Phe) c-Src Ki > 1000 μM 

  

 

 

 

 

2.39 (X = 3-NO2, 4-OAc Phe) c-Src Ki > 789 ± 102 μM  

 

 

 

 

2.39 (X = 3-NO2, 4-OAc Phe) c-Abl Ki > 1000 μM 
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2.40 (X = 3,4-F Phe) c-Src Ki = 379 ± 68 μM       

  

 

 

 

 

2.40 (X = 3,4-F Phe) c-Abl Ki > 500 μM 

 

 

 

 

2.41 (X = 3,5-F Phe) c-Src Ki = 545 ± 37 μM  
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2.41 (X = 3,5-F Phe) c-Abl Ki = 912 ± 267 μM 

 

 

 

 

2.42 (X = 3,4,5-F Phe) c-Src Ki > 1000 μM   

 

 

 

 

 

2.43 (X = 2,3,4,5,6-F Phe) c-Src Ki = 205 ± 56 μM 
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2.43 (X = 2,3,4,5,6-F Phe) c-Abl Ki > 250 μM  

   

 

 

 

2.44 (X = 1-naphthyl Ala) c-Src Ki > 1000 μM  

  

 

 

 

 

2.45 (X = 2-naphthyl Ala) c-Src Ki > 1000 μM 
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2.46 (X = 4-Ph Phe) c-Src Ki > 1000 μM   

  

 

 

 

2.47 (X = 3-pyridyl Ala) c-Src Ki > 1000 μM 

 

 

 

Literature Peptides and Analogues: 

 

2.48 c-Src Ki > 1000 μM 
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2.49 c-Src Ki > 1000 μM    

  

 

 

 

2.51 c-Src Ki = 70 ± 16 μM   

  

 

 

 

2.52 c-Src Ki = 49 μM (n = 2) 
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Analytical Data for Determination of Peptide Substrate “Substrate 3” KM 

 

c-Src KM = 61 ± 4 µM    c-Abl KM = 90 ± 7 µM 
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Appendix B 

Analytical Data and Supplemental Information for Chapter III 
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Spectral Data for Compounds 3.7-3.12 
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Gas Chromatography Traces of Compounds 3.7-3.12 

 

 

 
 

Peak Retention Time Area % Area 

1 3.636 513.3 0.3 

2 7.550 1672609.0 99.7 

 

 

 

 
 

Peak Retention Time Area % Area 
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Peak Retention Time Area % Area 

1 7.826 3767.6 0.8 

2 8.311 18333.3 4.0 

3 8.929 440013.5 95.2 

 

 

 

 

 

 
 

Peak Retention Time Area % Area 

1 7.920 1454029.6 100.0 
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Peak Retention Time Area % Area 

1 6.927 1071.8 0.1 

2 9.672 1024.6 0.1 

3 12.546 789498.5 99.7 

 

 

 

 

 
 

Peak Retention Time Area % Area 

1 10.945 71352.0 100.0 
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Analytical Data and Supplemental Information for Biochemical Substrate 

Identification Assays 

 

 

 

Table B.1.  Evaluation of a library of small molecule phenols as substrates of c-Src. 

Name Structure % ADP (100 µM) 

 

Positive 

Control 

 

12.8 ± 5.2 (n=16) 

P-S1 

(3.1) 

 

7.6 ± 4.1 (n=3) 

P-S2 

(3.2) 

 

5.0 ± 3.4 (n=3) 
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P-S3 

(3.3) 

 

4.6 ± 4.8 (n=4) 

P-S4 

 

4.4 ± 6.2 (n=2) 

P-S5 

(3.4) 

 

4.3 ± 2.5 (n=3) 

P-S6 

 

3.6 ± 5.6 (n=4) 

P-S7 

 

2.8 ± 1.6 (n=2) 

P-S8 

(3.5) 

 

2.6 ± 4.8 (n=3) 

P-S9 

(3.6) 

 

2.5 ± 5.5 (n=4) 
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P-S10 

 

1.4 ± 2.6 (n=2) 

P-S11 

 

1.3 ± 1.7 (n=2) 

P-S12 

 

1.0 ± 4.1 (n=3) 

P-S13 

 

1.0 ± 0.2 (n=2) 

P-S14 

 

0.8 ± 2.3 (n=2) 

P-S15 

 

0.4 ± 1.5 (n=2) 

P-S16 

 

0.1 ± 0.7 (n=2) 
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P-S17 

 

0.0 ± 0.4 (n=2) 

P-S18 

 

-0.2 ± 0.2 (n=2) 

P-S19 

 

-0.2 ± 0.6 (n=2) 

P-S20 

 

-0.2 ± 0.6 (n=2) 

P-S21 

 

-0.2 ± 0.2 (n=2) 

P-S22 

 

-0.3 ± 0.3 (n=2) 

P-S23 

 

-0.4 ± 1.5 (n=2) 
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P-S24 

 

-0.4 ± 1.0 (n=2) 

P-S25 

 

-0.5 ± 1.0 (n=2) 

P-S26 

 

-0.6 ± 0.7 (n=2) 

P-S27 

 

-0.6 ± 0.2 (n=2) 

P-S28 

 

-0.7 ± 0.2 (n=2) 

P-S29 

 

-0.8 ± 1.1 (n=2) 

P-S30 

 

-0.9 ± 0.4 (n=2) 
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P-S31 

 

-0.9 ± 0.1 (n=2) 

P-S32 

 

-0.9 ± 0.5 (n=2) 

P-S33 

 

-1.0 ± 0.4 (n=2) 

P-S34 

 

-1.0 ± 1.6 (n=2) 

P-S35 

 

-1.0 ± 0.3 (n=2) 

P-S36 

 

-1.0 ± 1.0 (n=2) 

P-S37 

 

-1.1 ± 0.3 (n=2) 
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P-S38 

 

-1.1 ± 0.5 (n=2) 

P-S39 

 

-1.2 ± 1.3 (n=2) 

P-S40 

 

-1.2 ± 1.3 (n=2) 

P-S41 

 

-1.2 ± 0.5 (n=2) 

P-S42 

 

-1.3 ± 0.2 (n=2) 

P-S43 

 

-1.3 ± 1.3 (n=2) 

P-S44 

 

-1.3 ± 0.7 (n=2) 



165 
 

P-S45 

 

-1.3 ± 1.5 (n=2) 

P-S46 

 

-1.4 ± 0.3 (n=2) 

P-S47 

 

-1.4 ± 0.0 (n=2) 

P-S48 

 

-1.4 ± 0.5 (n=2) 

P-S49 

 

-1.4 ± 0.9 (n=2) 

P-S50 

 

-1.5 ± 0.2 (n=2) 

P-S51 

 

-1.6 ± 0.3 (n=4) 
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P-S52 

 

-1.6 ± 1.1 (n=2) 

P-S53 

 

-1.7 ± 0.7 (n=2) 

P-S54 

 

-1.9 ± 0.2 (n=2) 

P-S55 

 

-1.9 ± 0.5 (n=2) 

P-S56 

 

-1.9 ± 0.3 (n=2) 

P-S57 

 

-1.9 ± 1.3 (n=2) 

P-S58 

 

-2.0 ± 1.0 (n=2) 
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P-S59 

 

-2.0 ± 1.2 (n=2) 

P-S60 

 

-2.1 ± 0.8 (n=2) 

P-S61 

 

-2.2 ± 0.2 (n=2) 

P-S62 

 

-2.2 ± 0.4 (n=2) 

P-S63 

 

-2.3 ± 0.3 (n=2) 

P-S64 

 

-2.3 ± 0.8 (n=2) 

P-S65 

 

-2.4 ± 0.2 (n=2) 
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P-S66 

 

-2.5 ± 0.3 (n=2) 

P-S67 

 

-2.5 ± 0.4 (n=2) 

P-S68 

 

-2.6 ± 0.0 (n=2) 

P-S69 

 

-2.7 ± 0.7 (n=2) 

P-S70 

 

-2.6 ± 0.6 (n=2) 

P-S71 

 

-2.7 ± 0.2 (n=2) 

P-S72 

 

-2.7 ± 0.0 (n=2) 
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P-S73 

 

-2.7 ± 0.7 (n=2) 

P-S74 

 

-2.8 ± 0.6 (n=2) 

P-S75 

 

-2.8 ± 0.1 (n=2) 

P-S76 

 

-2.8 ± 1.3 (n=2) 

P-S77 

 

-2.8 ± 0.5 (n=2) 

P-S78 

 

-2.8 ± 0.6 (n=2) 

P-S79 

 

-2.9 ± 0.7 (n=2) 
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P-S80 

 

-2.9 ± 1.8 (n=2) 

P-S81 

 

-2.9 ± 0.6 (n=2) 

P-S82 

 

-3.0 ± 1.5 (n=2) 

P-S83 

 

-3.0 ± 0.6 (n=2) 

P-S84 

 

-3.1 ± 0.3 (n=2) 

P-S85 

 

-3.1 ± 0.3 (n=2) 

P-S86 

 

-3.1 ± 0.2 (n=2) 
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P-S87 

 

-3.3 ± 0.9 (n=2) 

P-S88 

 

-3.3 ± 0.8 (n=2) 

 

 

 

Analytical Data and Supplemental Information for Determination of KM for 

Phenolic Substrates 

 

Table B.2.  Kinetic parameters for phenolic substrates of c-Src.  Select compounds were 

also evaluated as substrates of Hck and c-Abl. 

Name Structure 
KM c-

Src 

Vmax c-

Src 

(%ADP) 

KM 

Hck 

KM 

c-

Abl 

Positive 

Control 

 

60 

µM 
29 ND

a
 ND 

P-S1 

(3.1) 

 

52 

µM 
15 

124 

µM  

>1 

mM 

P-S2 

(3.2) 

 

370 

µM 
6.5 

316 

µM 

>1 

mM 
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P-S3 

(3.3) 

 

15 

µM 
10 ND ND 

P-S4 

 

56 

µM 
3.2 

>1 

mM 

>1 

mM 

P-S5 

(3.4) 

 

522 

µM 
19 

169 

µM 

>1 

mM 

P-S6 

 

>10 

mM 
ND ND ND 

P-S7 

 

32 

µM 
2.5 

>1 

mM 

>1 

mM 

P-S8 

(3.5) 

 

120 

µM 
7.3 

137 

µM 

>1 

mM 

P-S9 

(3.6) 

 

33 

µM 
14 ND ND 
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3.12 

 

>1 

mM 
0 ND ND 

a
 Not determined 
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Analytical Data for Determination of Ki for Inhibitors 

 

 Structure c-Src Ki (µM) 

S4 

 

549 ± 57 

S5 

 

406 ± 67 

3.10 

 

127 ± 11 

S6 

 

229 ± 49 

S7 

 

399 ± 92 

S8 

 

443 ± 13 
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S9 

 

318 ± 16 

3.11 

 

80 ± 6 

S10 

 

257 ± 8 

3.12 

 

16 ± 1 
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c-Src Ki = 257 ± 28 µM   Hck Ki = 1015 ± 165 µM 
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c-Src Ki = 478 ± 82 µM   Hck Ki = 517 ± 32 µM 
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c-Src Ki = 552 ± 9 µM   Hck Ki = 318 ± 17 µM  
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c-Abl Ki = 1046 ± 176 µM      
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 c-Src Ki = 127 ± 11 µM   Hck Ki >1080 µM    
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 c-Abl Ki >1170 µM       
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c-Src Ki = 80 ± 6 µM    Hck Ki = 149 ± 6 µM  
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c-Abl Ki = 549 ± 138 µM 
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c-Src Ki = 16 ± 1 µM    Hck Ki = 325 ± 30 µM 
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c-Abl Ki =  1067 ± 385 µM   3D c-Src Ki = 36 ± 5 µM 
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 pY416 c-Src Ki = 73 ± 9 µM   T338M c-Src Ki = 75 ± 15 µM 
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R388A/A390R c-Src Ki = 184 ± 53 µM Yes Ki = 82 ± 16 µM 
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Blk Ki = 52 µM (n = 1)   Fgr Ki = 51 µM (n = 1) 
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Frk Ki = 83 µM (n = 1)   Fyn A Ki = 61 µM (n = 1) 
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Lck Ki = 63 µM (n = 1)   Lyn A Ki = 60 µM (n = 1) 
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c-Src Ki = 45 ± 1 nM    Hck Ki = 88 ± 5 nM 
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c-Abl Ki =  387 ± 17 nM   Yes Ki = 46 ± 11 nM 
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Blk Ki = 67 nM (n = 1)   Fgr Ki = 25 nM (n = 1) 
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Frk Ki = 20 nM (n = 1)   Fyn A Ki = 20 nM (n = 1) 
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Lck Ki = 9 nM (n = 1)    Lyn A Ki = 16 nM (n = 1) 
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Analytical Data for Determination of Peptide Substrate “Substrate 3” KM 

 

c-Src KM = 61 ± 4 µM    Hck KM = 53 ± 2 µM  
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c-Abl KM = 168 ± 19 µM                            R388A/A390R c-Src KM = 70 ± 17 µM  
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T338M c-Src KM = 26 ± 8 µM  3D c-Src KM = 64 ± 4 µM 
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 pY416 Src KM = 43 ± 3 µM   Yes KM = 62 ± 6 µM 
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 Blk KM = 85 µM (n = 1)   Frk KM = 165 µM (n = 1) 
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Analytical Data for Determination of ATP KM 

 

c-Abl KM = 37 ± 6 µM    Hck KM = 50 ± 3 µM 
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 Yes KM = 105 ± 21 µM 

 

 

 

Analytical Data for Determination of Inhibitor IC50 at Variable ATP and Peptide 

Substrate Concentration 

 

 

 
IC50 under standard 

conditions 

3.7 436 ± 60 µM 

3.8 830 ± 143 µM 

3.9 958 ± 16 µM 

3.12 27 ± 2 µM 
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3.8 with high “substrate 3” conditions              3.8 with low ATP conditions  

IC50 = 1520 ± 440 µM     IC50 = 444 ± 59 µM 

      
 

 

 

 

3.9 with high “substrate 3” conditions              3.9 with low ATP conditions  

IC50 = 1742 ± 614 µM        IC50 = 665 ± 97µM 

      
 

 

 

 

3.12 with high “substrate 3” conditions             3.12 with low ATP conditions  

IC50 = 557 ± 149 µM          IC50 = 44 ± 4 µM 
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Analytical Data for Lineweaver-Burk Analysis of Compound 3.12 

 

“Substrate 3” KM and Vmax at varied inhibitor concentrations: 
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Global fit data for “substrate 3” KM data: 

  R
2
 

competitive 0.993 

non-competitive 0.891 

uncompetitive 0.888 

 

 

 

ATP KM and Vmax at varied inhibitor concentrations: 
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Global fit data for ATP KM data:  

  R
2
 

competitive 0.897 

non-competitive 0.999 

uncompetitive 0.897 
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Analytical Data for Combination Studies of Compound 3.12 with PP2 and PP5 

 

Inhibitor 3.12 c-Src IC50 = 28 ± 14 µM  PP2 c-Src IC50 = 181 ± 6 nM 
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 PP5 c-Src IC50 = 98 ± 17 nM 
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Inhibitor(s) c-Src Inhibition 

(%) 

Predicted Additivity 

(% inhibition) 

100 nM PP2 34 ± 6 NA 

50 nM PP5 32 ± 8 NA 

20 µM 3.12 36 ± 10 NA 

100 nM PP2 + 50 nM PP5 50 ± 3 55 

100 nM PP2 + 20 µM 3.12 72 ± 6 58 

50 nM PP5 + 20 µM 3.12 88 ± 5 56 
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Analytical Data for Inhibition of c-Src Autophosphorylation 
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Analytical Data for Cancer Cell Growth Inhibition Assays 
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Appendix C 

Analytical Data for Chapter IV  
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Spectral Data (
1
H NMR) for Compounds 4.2-4.34 
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Analytical Data for Determination of IC50 for Bisubstrate Inhibitors 

 

 4.2 IC50 > 250 μM    4.3 IC50 > 250 μM 

  

 

 

4.4 c-Src IC50 = 75 ± 16 μM   4.5 c-Src IC50 > 125 μM 

  

 

 

4.6 IC50 = 4 ± 2 μM     4.7 IC50 > 125 μM 
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 4.8 IC50 > 125 μM    4.9 IC50 = 1.1 ± 0.4 μM 

  

 

 

 

 4.10 IC50 = 48 ± 14 μM   4.11 IC50 = 57 ± 8 μM 

  

 

 

 

 4.12 IC50 = 2.0 ± 0.2 μM   4.13 IC50 = 272 ± 53 nM 
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4.14 IC50 > 250 μM    4.15 IC50 = 5 ± 2 μM 

  

 

 

 4.16 IC50 = 4 ± 1 μM 

 

 

 

Analytical Data for Determination of IC50 for Inhibitors Under High “Substrate 3” 

Conditions 

 

 4.09 IC50 = 2.0 ± 0.1 μM   4.13 IC50 = 296 ± 1 nM 

  


