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Abstract 

 

The formation of functional blood vessels in engineered or ischemic tissues 

remains a significant scientific and clinical hurdle.  Cell delivery, scaffold design, and 

growth factor delivery have been investigated to support neovascularization.  This thesis 

focuses on a hybrid approach wherein cells are seeded within a biosynthetic scaffold.  

Our approach is motivated by the relatively poor performance of cells alone; cell 

engraftment is minimal (10%) in scaffold-free approaches.  Natural and synthetic 

materials have been utilized to improve engraftment, but the biosynthetic scaffold 

presented here offers unique advantages to overcome limitations of natural materials 

and offers tunability of matrix properties and biological response. 

A PEG hydrogel platform was adapted to investigate the roles of network 

crosslinking density and susceptibility to proteolysis on vascularization.  Four-arm PEG 

vinyl sulfone (PEGVS) was polymerized by Michael-type addition with reactive cysteine 

groups on a slowly degraded matrix metalloprotease (MMP) susceptible peptide, 

GPQG↓IWGQ, or a peptide that is cleaved more rapidly, VPMS↓MRGG.  Vascular 

networks formed in vitro from encapsulated endothelial cells and supportive stromal 

fibroblasts.  Morphogenesis was robust to changes in cross-linking peptide identity, but 

significantly attenuated in more crosslinked gels.  All gel types supported the de novo 

formation of perfused vasculature from transplanted cells in subcutaneous implants in 



 

xiii 
 

vivo; however, unlike the in vitro findings, vascularization was not decreased in the 

more cross-linked gels. 

A mouse model of hindlimb ischemia was used to further assess the ability of 

PEG hydrogels to support revascularization in a model relevant for clinical translation.  

Cell-laden PEG hydrogel precursors and fibrin controls were delivered to SCID mice 

after femoral artery ligation.  PEG hydrogels supported the formation of perfused 

vasculature irrespective of crosslinking-peptide identity.  Hydrogel delivery improved 

reperfusion to the ischemic limb.  Substantial loss of gel mechanical integrity and vessel 

regression were evident in fibrin gels, but not in PEG gels, 2 weeks post-implantation, 

suggesting PEG hydrogels are superior to fibrin with regards to vessel persistence.  In 

sum, these findings demonstrate that structurally stable biomimetic PEG-based 

hydrogels direct vascularization in ischemic tissues via cell transplantation and hold 

promise in tissue regeneration and therapeutic angiogenesis.  
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Chapter 1  

 

Introduction 

 

1.1 Therapeutic Angiogenesis for Cardiovascular Disease 

 Cardiovascular disease (CVD) is the leading cause of mortality in the United 

States and globally, accounting for 25 and 30% of all deaths, respectively [1, 2].  

Currently, approximately 1 in 3 Americans suffer from some form of CVD [3].  

Additionally, in the US, the costs associated with CVD surpassed $300 billion in 2010 

[4], and they are forecasted to double to over $600 billion by 2015 [4].  Despite 

improvements in therapeutic interventions for CVD patients, there is a persistent need 

for novel cardiovascular therapies and approaches to minimize costly interventions. 

Atherosclerosis, the deposition of cholesterol and fibrous tissue into plaques on 

the interior of blood vessel walls, is a hallmark of chronic cardiovascular diseases such 

as coronary heart disease (CHD) and peripheral artery disease (PAD) [5, 6] (Figure 1-

1B).  In these conditions, chronic vascular insufficiency results in tissue ischemia and 

causes substantial mortality and morbidity in the form of tissue loss and diminished 

quality of life.  In the 15.4 million Americans with CHD [4], atherosclerotic plaques 

develop in the coronary arteries, lead to vessel clogging, and often rupture, initiating 
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acute cardiovascular events.  PAD is etiologically similar to CHD, but atherosclerosis 

and resulting complications occur in the extremities.    PAD spans a spectrum in 

severity [7].  Some patients only suffer intermittent claudication, i.e. pain upon exertion, 

while others experience rest pain and tissue loss [8].  The latter patients are grouped 

into a separate condition, termed critical limb ischemia (CLI) based on the advanced 

disease stage.  As of 2010, over 1 million Americans suffered from CLI [9], and 10-12 

million suffered from PAD [7, 10] with the potential to progress to CLI.  Current 

interventions for early-stage patients include lifestyle modification or pharmaceuticals 

[11].  These approaches are plagued by poor patient compliance and often do not 

adequately address disease etiology.   Additionally, once PAD has progressed to CLI, 

lifestyle interventions are often insufficient to restore function to the ischemic tissue and 

endovascular approaches and  

 

Figure 1-1. Cardiovascular disease in the United States.. Leading U.S. causes of death, 2010. Data from 
the National Vital Statistics System, CDC. B. Deposition of atherosclerotic plaques in peripheral 
vasculature leads to PAD and CLI.  Adapted with permission [1]. 

invasive surgery are the standards of care [8].  However, surgical approaches suffer 

from limitations: certain patients are not candidates for these procedures, due to co-
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morbidities [8, 11-13] and these procedures only improve perfusion through specific, 

major vessels.  Within one year of diagnosis, 30 percent of CLI patients require limb 

amputation [14]. 

As such, substantial research has focused on the development of angiogenic 

therapies to treat the underlying ischemia.  Gene or trophic factor delivery has been 

demonstrated to aid in re-perfusion in phase I and II trials [15], however these 

approaches do not fully recapitulate the complex milieu of soluble effectors secreted by 

cells.  An alternate approach, which has not been as thoroughly vetted in the clinic, is to 

re-vascularize ischemic tissue via the delivery of vascular progenitor cells [16].  This 

approach has been somewhat successful; however, unresolved hurdles, cell source and 

cell survival post-implantation, for example, limit their adoption clinically. 

 

1.2 Tissue Engineering and Current Limitations 

 End-stage organ failure is a notable cause of death in the United States, and 

organ transplantation is the current standard of care for these patients.  Donated organs 

are sourced from living or deceased donors in accordance with stringent ethical and 

medical guidelines.  There is a consistent and growing gap between the number of 

patients waiting for organs and those available.  In 1991, 68% of patients on the waiting 

list received organs [17].  As of 2013, this number dropped to 24% of patients on the 

waiting list [17], highlighting the critical need for alternate approaches to generate 

functional replacement tissues.  Additionally, data suggests time spent on the waiting 

list can adversely affect clinical outcomes.  For example, the graft survival rate following 
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kidney transplantation is significantly attenuated in patients who spent longer on the 

organ waiting list [18]. 

 Tissue engineering holds the potential to alleviate the organ gap through the 

development of hybrid biological substitutes that restore, maintain, or enhance tissue 

function [19].  Engineered tissues may be fabricated from autologous cells, mitigating 

the need for the suppression immunotherapies required following transplantation of 

donated organs.  Nonetheless, in the 25 years since the field emerged, relatively few 

engineered tissues have reached the clinic.  Vascularization is a key limiting challenge.  

Most cells in the body reside within 100-200 μm of a blood vessel [20]; at this distance 

diffusion is effective in delivering nutrients and oxygen to the tissue.  Thus, extensive 

blood vessel networks are required for the creation of thick, metabolically active organs 

such as the heart, liver, or kidneys [21].  Current tissue engineering successes are 

confined to thin or avascular tissues [20].  Several approaches to vascularized 

engineered tissues have been utilized, and there is substantial overlap with the cell-

based approaches utilized for therapeutic vascularization. 

 

1.3 Vascularization in Development and Adult Physiology 

  The vascular system consists of an interconnected network of arteries, 

capillaries, and veins which sustain tissue viability via the delivery of oxygen and 

nutrients.  The structure of these vessels corresponds to their function.  Each class of 

vessel consists of an endothelial cell layer subtended by supportive periendothelial 

layers of varying complexity [22].  Capillaries are the most numerous [23] and are 

comprised of an endothelial cell layer circumscribed by supportive pericytes embedded 



 

5 
 

in a type IV collagen and laminin-rich basement membrane.  The wall structure and 

relatively large surface area facilitate oxygen and nutrient transport to surrounding 

tissue [24].  Arteries have a more complex wall structure, with three specialized layers: 

the intima, media and adventitia, each separated by elastic lamina [23].  The smooth 

muscle cell-rich media and elastic lamina enable arteries to withstand high pressures 

and facilitate the transport of blood to smaller arterioles and capillaries [23, 25].  Veins 

consist of the same basic layers as arteries, but are thinner and less muscular.  Here, 

again, function follows from structure: veins are exposed to lower pressures than 

arteries [25], and thus require less muscular subendothelial layers.  The formation of a 

complex, highly specialized vascular network of arteries, capillaries, and veins is 

primarily controlled by developmental programs.  Nonetheless, vascularization is 

additionally relevant in physiological and pathological processes in the adult organism. 

Vascularization is highly regulated in adult organisms.  To wit, disturbance of the 

complex equilibrium can trigger pathologies associated with either excessive 

vascularization, including cancer, inflammatory disorders, and several diseases of the 

eye [26].  By contrast, inadequate vascularization is seen in patients with ischemic 

diseases such as PAD and CHD.  To understand these pathologies, it is critical to 

consider the mechanisms via which blood vessels form.  Vascularization occurs through 

vasculogenesis, angiogenesis, or arteriogenesis [11, 26-28].  Vasculogenesis is 

typically considered to occur primarily in embryonic development, and refers to the 

organization of endothelial and hematopoietic progenitor cells into a primitive vascular 

plexus [11, 26, 28].  In contrast, in the adult, blood vessel growth occurs via either 

angiogenesis or arteriogenesis [26, 28].  In this work, I primarily focus on the latter two, 
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as my approach aims to address adult pathologies characterized by insufficient 

vascularization. 

Angiogenesis is the sprouting of new vessels from pre-existing vasculature, and 

is evident both in development and the adult organism.  In the adult, angiogenesis 

occurs during inflammation or wound healing and within tumors.  This highly complex 

process is regulated by a series of spatially and temporally-defined stimuli which include 

soluble growth factors and cytokines [11, 25, 26, 29], signals presented by the 

extracellular matrix (ECM) [25, 30, 31], and interactions between endothelial and 

stromal or immune cells [29].  Prototypical sprouting angiogenesis in vivo is initiated 

with the release of numerous soluble pro-angiogenic signals, including factors such as 

VEGF, VEGF-C, ANG-2, FGFs, and others [11, 26], by inflammatory or tumor cells and 

in response to hypoxia.  Pericytes then detach from the basement membrane, a 

specialized extracellular matrix rich in type IV collagen that subtends endothelial cells.  

Endothelial cell migration through the basement membrane and type I collagen-

containing interstitial matrix is facilitated by a class of proteolytic enzymes termed matrix 

metalloproteases (MMPs) [32].  These migrating endothelial cells differentiate into tip 

and stalk cells, with respective roles to guide the direction of sprouting and to proliferate 

[11, 32] to form tubules.  These tubules undergo maturation, a process encompassing 

lumen formation, basement membrane deposition, and pericytic stabilization [25, 32].  

Numerous factors, including PDGF, TGF-β, and SDF-1α, are involved in pericyte 

recruitment and vessel stabilization. 

Controlled proteolysis is critical through this entire process.  Matrix degradation is 

required for migration and tubulogenesis (particularly, MT1-MMP is integral to this 
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process [33-35]), but excessive proteolysis leaves insufficient ECM to mechanically 

support the growing vasculature [36].  In addition to the role of proteases in degrading 

the basement membrane and interstitial matrix, they are critical to the release of growth 

factors sequestered within the ECM [25, 30, 31]. 

Arteriogenesis is a distinct process, and comprises the remodeling of pre-existing 

arterioles into large diameter arteries in response to increased blood flow [28, 37, 38].  

In contrast to angiogenesis, ischemia and hypoxia are not driving forces in 

arteriogenesis.  For instance, in animal models of femoral artery ligation (FAL), ischemia 

is evident in the lower leg and foot, yet collateralization is only evident in the upper leg 

muscles, which are not ischemic [37].  Instead, collateral vessel growth primarily occurs 

within normoxic tissues [37].   

In the presence of arterial occlusion or stenosis, small arterioles that connect 

side branches proximal and distal to the area of reduced flow experience increased 

blood flow [39, 40].  Fluid shear stress (FSS) and circumferential wall stress (CWS) are 

increased in these arterioles [39].  In response to the changing shear stress, the 

endothelium is activated to produce cytokines, and recruits monocytes that release a 

milieu of additional cytokines, growth factors, and proteases [37, 39].  Other 

inflammatory cells- mast cells and T cells- also secrete pro-arteriogenic compounds 

[39].  SMCs are recruited to the remodeling arteriole and deposit new elastic lamina and 

rebuild the media and intima [39].  Tortuousity and a hallmark “corkscrew” appearance 

are characteristic of collateral vessels remodeled via arteriogenesis [39, 41]. 

As of yet, this section discusses angiogenesis and arteriogenesis as distinct, 

compensatory mechanisms for ameliorating ischemic disease.  Recent studies, 
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however, suggest a more nuanced interplay exists between changes in flow to the distal 

capillary bed and in proximal arteries in an ischemic limb [38, 41, 42].  Reduced 

peripheral resistance may accompany angiogenesis in ischemic tissue, and thus 

potentiate blood flow through upstream collateral vessels.  As outlined above, increased 

flow through collateral arterioles is a key trigger for arteriogenesis and mediates 

changes in FSS and CWS [39].  Thus, changes in the distal capillary bed can modulate 

more substantive increases in flow proximal to ischemic tissue.  Based on these results, 

and on the importance of angiogenesis in comorbidities (e.g. diabetic ulcers) seen in 

patients, approaches to stimulate both angiogenesis and arteriogenesis should be 

considered relevant in the development of vascularization therapies.  

 

1.4 Approaches to Engineer Blood Vessels 

Several methods have been utilized to engineer vasculature for tissue engineering and 

therapeutic vascularization (Figure 1-2).  Generally, methods fall into two categories: 

those wherein vasculature is formed ex vivo and then implanted, and those that 

facilitate vascularization in vivo.  Both approaches aim to support rapid vascularization, 

which is critical to minimize necrosis at the interior of grafted tissues and to the 

restoration of function to ischemic host tissue.  To date, cell delivery, scaffold design, 

growth factor delivery, and directed 3D fabrication have been used to facilitate 

vascularization.   

Cell encapsulation in a scaffold, or delivery directly to a tissue of interest in vivo, 

results in the creation of vasculature that can restore flow to sites of ischemia and 
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Figure1-2. Approaches to engineer vasculature. Three major avenues involve the isolation of relevant 
vascular and support cells, the design of scaffold materials, and, finally, various microfabrication 
approaches which allow for superior spatial control in 3D.  Reproduced with permission [43]. 

sustain engineered tissue.  A variety of cell types have been demonstrated to support 

vascularization, including cells that can differentiate into blood vessels as well as cells 

that recruit host vasculature in vivo.  Endothelial cells from a variety of origins organize 

into vessel networks in vitro [44-47] and in vivo [48-53].  EC types used in these studies 

include human umbilical vein endothelial cells (HUVECs) [44, 47, 50, 52, 54-57], human 

microvascular endothelial cells (HMVECs) [46, 49, 53], endothelial progenitor cells 

(EPCs) [58-65], and ECs derived from induced pluripotent stem cells (iPSCs) [48, 51, 

66].  Despite the widespread use of a variety of ECs for these studies, debate remains 

regarding the clinical relevance of various EC sources.  In addition to cells that can 

directly organize into vasculature- i.e. ECs- pericyte-like support cells are critical to the 

formation of robust vascular networks.  These cells are recruited to vasculature formed 

in vivo, and additionally may be seeded into engineered tissues [57, 67] or delivered to 
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ischemic tissue to enhance vascularization [51, 68, 69].  Various studies have 

investigated mesenchymal stem cells (MSCs) [64, 69-71], adipose-derived stem cells 

(ASCs) [72], and embryonic [47, 56, 57, 67, 73, 74] and adult [75] fibroblasts to 

potentiate vascularization.  An in depth discussion of the role of various endothelial and 

support cells in vascularization can be found in chapter 2. 

Substantial research has focused on the development of materials that support 

vascularization.  Primarily, these efforts are motivated by the poor cell retention upon 

engraftment; >90% die rapidly when transplanted without a material carrier [11].  

Studies from our lab and others have illustrated the efficacy of natural materials such as 

fibrin [70, 75-79], collagen [65, 79], and Matrigel [80] in facilitating vascularization.  

Additionally, composite matrices of fibrin and collagen have been demonstrated to 

support vascular network formation [71, 81].  Nonetheless, concerns remain regarding 

the purity, variability, and poorly defined composition of natural materials [82], which 

prompt efforts to develop pro-angiogenic synthetic materials.  Ostensibly, these 

materials allow more careful tuning of matrix-presented cues in order to facilitate robust 

vascularization.  Scaffolds based on poly(ethylene glycol) (PEG) [83-90], poly(D,L-

lactide) (PLA) [91], poly(caprolactone) (PCL) [92], and alginate [93, 94] have been 

investigated as materials to facilitate vascularization from ECs in vitro and in vivo.  

Several variants of PEG-based systems support vascularization.  Here, we focus on 

peptide-functionalized PEG hydrogels.  In these systems, PEG is functionalized with an 

integrin-binding adhesive domain as well as with peptide sequences susceptible to 

cleavage by cell-derived MMPs or plasmin.  Cell invasion and vascularization in vitro 

are substantially improved in protease-degradable gels as compared to controls [85, 
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86].  Additionally, variants of these gels support the recruitment of host vasculature 

upon implantation with growth factors in vivo [85, 87, 95-98]. 

Growth factor delivery has also been explored as an approach to engineer 

vasculature for tissue engineering and therapeutic angiogenesis.  Several growth 

factors implicated in vascularization have been investigated for therapeutic 

vascularization, including VEGF-A, FGF-2, HGF, MCP-1, GM-CSF, PDGF-BB, and 

TGF-β [38].  Early pre-clinical studies of growth factors alone showed great promise to 

induce vascularization [38].  Based on these results, clinical trials were conducted.  

Despite promising results from initial, uncontrolled trials, the efficacy of growth factor 

delivery was not corroborated in the subsequent double-blind, randomized, controlled 

trials [99].  High rates of adverse events were documented for these trials, but these 

were comparable to those experienced in the baseline patient population [15], and thus, 

unlikely to result from the therapy itself.  Although clinical trial results were 

underwhelming, substantial interest remains in developing more physiologically relevant 

approaches to use growth factors to induce vascularization.  To date, growth factor 

therapies have utilized systemic delivery of a single factor or gene, which may limit 

efficacy [28].  Due to the complexity of spatial and temporal signals involved in 

mediating vascularization in vivo, recent research has re-focused on strategies to 

deliver factors locally, and with increased control.  As suggested by several studies 

highlighted above, one approach to facilitate this is combination therapies of growth 

factor delivery with cell delivery [16] and materials-based approaches to vascularization.  

The kinetics of delivery and spatial presentation of growth factors can be tuned with 

appropriate scaffolds [53].  In PEG based hydrogels for instance, growth factor delivery 
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facilitates the recruitment of host vasculature following implantation in vivo [86, 95, 98, 

100-102]. 

Finally, microfluidic approaches and other strategies allowing greater 3D control 

have been used to create organized vascular networks in pre-determined geometries.  

Microfluidics have been used to create spatially and temporally defined growth factor 

gradients[45, 46, 55], and have been used with natural and synthetic materials to create 

complex geometries for vascular applications [47, 73, 103].  The use of 3D printing [56] 

and modular microtissues [50] also show promise for the generation of vascular 

networks. 

Overall, substantial progress has been made in the past decades in engineering 

vasculature for applications in therapeutic angiogenesis and tissue regeneration.  

Nonetheless, the dearth of commercial products in this area emphasizes the continued 

need for optimized systems to allow for the facile creation of robust engineered vessels.  

This thesis presents a hybrid system, inspired by several approaches described above, 

wherein cells are delivered in a bioengineered hydrogel to facilitate vascularization. 

 

1.5 Hypothesis 

 We hypothesize that tailoring of the mechanical properties and degradation of a 

synthetic extracellular matrix mimetic will result in differing extents of vascularization.  

This hypothesis will be tested using a well-established in vitro model of vasculogenesis, 

and two in vivo models of vascularization. 

 

1.6 Specific Aims 
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 Aim 1: Construct and characterize PEG-based hydrogels with tailored 

proteolytic susceptibility and adhesive ligand density, and demonstrate their 

ability to support the adhesion, viability, and spreading of both endothelial cells 

(ECs) and normal human lung fibroblasts (NHLFs) in 3D.  Our hypothesis is that 

synthetic PEG hydrogels presenting a cell-adhesive peptide and with tailored 

mechanical properties will support the viability and spreading of encapsulated 

endothelial cells and fibroblasts. 

 

Aim 2: Using an established 3D in vitro model system, assess the ability of 

the PEG-based gels synthesized in aim 1 to support vasculogenesis from ECs 

and NHLFs. We hypothesize that the extent to which PEG-based hydrogels support 

vasculogenesis will depend on the proteolytic susceptibility of the hydrogels and on their 

mechanical properties. 

 

Aim 3:  Compare the neovascular response of PEG-based constructs 

containing ECs and NHLFs to that obtained with fibrin following implantation in a 

dorsal, subcutaneous location as well as intramuscularly in an ischemic 

hindlimb.  We hypothesize that vascular organization will be evident in PEG gels 

implanted both subcutaneously and in an ischemic limb.  Additionally, we anticipate the 

extent of vascularization of PEG hydrogels implanted in the model of hindlimb ischemia 

will be attenuated as compared to the fibrin gels. 

 

1.7 Translational Potential 



 

14 
 

 As mentioned previously, PAD and CLI result in morbidities of varying severity- 

from pain to tissue or limb loss- in approximately 10-12 million Americans [7].  

Additionally, these patients often suffer comorbidities that complicate treatment of the 

primary cardiovascular disease.  Specifically, PAD and CLI patients often also suffer 

from diabetes, and are at high risk for foot ulcers and gangrene, which further increase 

the risk of limb amputation [104-106]. 

The current standards of care- lifestyle interventions, pharmaceuticals, or 

surgery- are not effective in a subset of patients with advanced disease [8, 11].  This 

motivates the growth of therapeutic vascularization in pre-clinical and clinical research.  

Despite promising pre-clinical and early clinical results, many of the approaches to 

deliver genes or trophic factors to aid in reperfusion of ischemic tissue have not resulted 

in the restoration of function anticipated [99].  Less research, however, has investigated 

the delivery of cells for this purpose.  Several larger clinical trials are currently in 

progress to assess the efficacy of cell-delivery approaches [8, 107]. Despite the 

qualified success of these approaches in pre-clinical and early clinical studies, 

questions of cell source and survival post-implantation remain. 

To address these questions, we suggest the development of well-defined 

materials to enhance vascularization in vivo is of substantial clinical value.  Scaffolds 

may act to stimulate vascularization by both increasing cell survival, as well as via the 

presentation of pro-angiogenic signals that can be intentionally tethered in the matrix.  

The material we utilized- a PEG-based hydrogel- presents a minimum of biological 

signals to create a well-defined scaffold that may be used to induce vascularization in 

several in vitro and in vivo models of vascularization.  For distinct applications, the 
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scaffold presents the additional advantage of supporting chemical conjugation of other 

bioactive molecules.  This research project studies the role of hydrogel material 

properties and degradation, with the aim of moving towards an engineered scaffold 

which facilitates cell survival and organization into vasculature upon implantation into 

ischemic tissue.  These studies are of value for applications in therapeutic 

vascularization for CLI, PAD, and CHD, as well as for parenchymal tissue engineering. 

 

1.8 Overview 

 In this chapter, we have discussed the motivation for the project, as well as given 

a high-level overview of the current understanding of vascularization in physiology.  

Chapter 2 gives an in-depth review of the role of stromal or mesenchymal support cells 

in the creation of engineered vasculature in vitro and in vivo.  As briefly highlighted in 

this chapter, cell identity is critical in understanding the interplay between ECs and 

pericytes, as well as in translating research to clinically viable therapies for tissue 

engineering and ischemic disease.  Next, Chapter 3 presents the PEG hydrogel system 

utilized in this work, assessment of the system’s ability to support EC tubulogenesis in 

vitro and in a subcutaneous implant in vivo.  This Chapter wraps up specific aims 1 and 

2.  In Chapter 4, the formation of vasculature in PEG hydrogels is investigated in a 

physiologically relevant model of hindlimb ischemia.  This chapter examines a 

translational application of interest, and compares the PEG hydrogels to a well-

established natural material with respect to support of re-vascularization of the ischemic 

tissue.  Finally, the key findings of the thesis and translational implications are 
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summarized in Chapter 5.  Experimental procedures and data investigating the role of 

fibronectin on vascularization in PEG hydrogels can be found in the appendices. 
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Chapter 2  

 

Literature Review: Mesenchymal Support Cells in the 

Assembly of Functional Vessel Networks 

 

2.1 Introduction 

  The field of regenerative medicine has witnessed impressive advances over the 

past 25-30 years, progressing ever closer to the goal of translating engineered tissue 

constructs into human patients. However, despite an expanding literature documenting 

advances in biomaterials and stem cell biology, the two major factors limiting the clinical 

applicability of engineered tissues 20 years ago continue to present significant hurdles 

today: the ability to generate tissues that function equivalently to the native tissues they 

are intended to replace, and the ability to vascularize these tissues to sustain their 

metabolic demands.  With respect to the latter of these two hurdles, an improved 

fundamental understanding of the process of blood vessel assembly in development 

and disease is leading to new strategies to vascularize tissues. 

Blood vessels are responsible for the convective delivery of oxygen, nutrients, 

and other large macromolecules, as well as immune cells, to all tissues in the human 
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body.  Vessels form primarily via two morphogenetic programs: vasculogenesis and 

angiogenesis (Figure 2-1).  Vasculogenesis involves the de novo assembly of vessels 

from progenitor cells, and primarily occurs in development.  Angiogenesis involves the 

sprouting and growth of new capillaries from existing vessels into a previously avascular 

tissue.  Both are complex and dynamic processes that depend on the interplay of 

soluble factors and insoluble cues from the extracellular matrix (ECM) [1]. Fundamental 

studies of these processes have led to the identification of numerous pro-angiogenic 

factors, the delivery of which has been explored to promote the development of new 

blood vessels to restore blood supply to ischemic tissue. However, clinical trials relying 

on bolus injection of individual factors have been disappointing [2], perhaps due to the 

limited half-life of most protein growth factors, the lack of temporal and spatial control 

over growth factor release, and the inability of single factors to properly regulate 

neovascularization [3, 4]. Newer strategies involving sustained delivery of pro-

angiogenic factors or genes from biodegradable scaffolds to overcome protein stability 

issues [5-8], as well as delivery of multiple pro-angiogenic factors in a time-dependent 

fashion to mimic the process of natural vessel development [4, 9], have been shown to 

induce formation of vascular networks. However even combinations of multiple factors 

may not fully recapitulate the complex mileiu of pro-angiogenic signals presented to 

cells in vivo. 

Cell-based therapies have also been explored to more completely mimic the 

cascade of signals needed to promote stable vasculogenesis. These approaches  

involve delivering (an) appropriate cell type(s) that can directly differentiate into capillary 

structures or provide a physiologic mixture of pro-angiogenic cues to accelerate the 
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Figure 2-1. Formation of new blood vessels and the role of pericytes.  A. Angiogenesis is the process by 
which new blood vessels sprout from preexisting blood vessels. Pericytes (red) are key players from the 
beginning. Dissociation of the pericytes from the vessel wall coincides with EC activation, followed by 
degradation of the vascular basement membrane. The ECs then migrate into the surrounding interstitial 
ECM, proliferate, and organize into immature vessels. Nascent vessels are stabilized via the deposition of 
basement membrane and association of pericytes with these tubules. B. In development, ECs originate 
from angioblasts or hemangioblasts in the embryo, while pericytes are derived from mesenchymal stem 
cells or neural crest cells. These two populations of cells then cooperate to form a primitive vascular 
plexus via a process known as vasculogenesis. Many tissue engineering approaches to vascularization 
have attempted to recreate this process either by prevascularizing a scaffold or via the direct injection of 
the cells within a carrier matrix. Networks formed via this method have been demonstrated to inosculate 
with host vasculature following implantation in vivo. C. Mature vasculature is characterized by the 
presence of a basement membrane and a pericyte coat surrounding the endothelial cell tubule. (Adapted 
from Bergers, G. and Song, S. 2005. The role of pericytes in blood-vessel formation and maintenance. 
Neuro Oncol, 7, 452–64, with permission from Oxford University Press.). 

recruitment of host vessels. A variety of cell types have been shown to form new 

capillary networks and/or induce collateral blood vessel development in vivo [10-13]. In 

addition, cells have been implanted using scaffold materials and extracellular matrix 

proteins to improve cell retention and engraftment [14, 15]. However, delivery of 

endothelial cells (ECs) alone within a scaffold has led to mixed results, with some 

reports of leaky unstable vessels [16]. There is now general consensus that co-delivery 
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of an appropriate supporting cell type can stabilize nascent capillaries [17], and that 

these cells are essential for the formation of mature and functional vessel networks [18].  

Despite the consensus regarding this paradigm, the choice of which cells to co-deliver 

with ECs remains an open question. This chapter will focus primarily on the use of 

mesenchymal support cells, and discuss key studies that document their potential roles 

in vascular assembly.   

 

2.2 Initial Vascular Engineering Approaches Focused on 

Endothelial Cell Delivery 

Early cell-based approaches to vascularize tissues in vivo concentrated primarily 

on the implantation of ECs without a supportive cell type, and yielded variable success. 

One of the first studies to report the formation of functional vasculature in vivo used 

genetically modified human umbilical vein endothelial cells (HUVECs) and assessed 

their ability to assemble into vascular structures in a subcutaneous mouse model [19]. 

HUVECs over-expressing Bcl-2 (to enhance their survival) supported the formation of a 

dense vascular network in collagen-fibronectin gels, while wild-type HUVECs did not. 

Host erythrocytes were found within the HUVEC-derived vessels, indicating their 

functional perfusion.  Furthermore, mouse-derived mural cells positive for smooth 

muscle α-actin (αSMA) associated with the nascent vasculature within the implant 

region only in constructs containing Bcl-2 transduced HUVECs. While the use of viral 

gene delivery approaches to over-express Bcl-2 and enhance EC survival upon 

implantation presents translational limitations, there is no doubt that this study spawned 

greater interest in cell transplantation approaches to promote vascularization. 
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Another study from about the same time showed that functional new vasculature 

can also be created by seeding human dermal microvascular endothelial cells 

(HDMECs) in PLLA/Matrigel scaffolds and subsequently implanting these tissue 

constructs in subcutaneous pockets in SCID mice [20]. Host erythrocytes were found to 

perfuse the implant vasculature within 7 to 10 days, indicating functional inosculation 

with host vessels. However, association of mouse-derived cells positive for αSMA with 

the HDMEC tubules did not occur until 21 days post-implantation; after 4 weeks, some 

HDMECs apoptosed, presumably due to the lack of perivascular support from mural 

cells. This apoptosis could be partially overcome by over-expressing Bcl-2 in the 

HDMECs, which also led to increased vessel density in the constructs. Collectively, 

these results suggest that delivery of ECs alone can lead to the formation of functional 

blood vessels, but the stability of these vessel networks depends on the survival of the 

ECs.   

 

2.3 Pericytes Support the Formation and Maturation of Capillary 

Blood Vessels 

 In the body, supporting cells of mesenchymal origin known as pericytes (also 

termed Rouget cells or mural cells) closely encircle endothelial cells in capillaries and 

microvessels and are believed to be responsible for stabilizing capillary blood vessels 

(Figure 2-1C) [21].  Pericytes are generally described as perivascular cells embedded 

within the basement membrane of microvasculature where they closely associate with 

endothelial cells [22]. While no single marker identifies all pericytes, common markers 

include αSMA, desmin, neuron-glial antigen 2 (NG-2), platelet-derived growth factor 
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receptor (PDGF)-β, aminopeptidase A & N, and RGS5 [22]. Not all pericytes display 

these markers, and their expression patterns change with the tissue and stage of 

development. This ambiguity has confounded a unifying and consistent definition of a 

pericyte.  

 Despite this ambiguity in their identity, the general consensus from two decades 

of research is that pericytic stabilization of EC lined vessel structures is critical both in 

development as well as in physiological and pathological processes in the adult 

organism [23]. Pericytes associate with EC tubules in vivo and this association 

modulates pruning of the vasculature, vessel permeability, and basement membrane 

deposition [24], suggesting that their predominant function is to mediate vascular 

stabilization and maturation.  A number of recent studies utilizing in vitro co-cultures of 

bovine retinal pericytes and ECs in 3D collagen gels have revealed important new 

mechanistic insights regarding the reciprocal interactions between these two cell types.  

In one such study, ECs were shown to remodel existing ECM and create guidance 

tunnels that served as conduits for the recruitment and motility of pericytes [25]. These 

recruited pericytes then induced ECs to produce basement membrane components 

involved in extracellular matrix (ECM) crosslinking, including fibronectin, nidogen-1/2, 

perlecan, and laminin. Pericytes also induced ECs to upregulate integrins capable of 

binding to the basement membrane, including α5β1, α3β1, α6β1, and α1β1. Inhibiting these 

integrins, disrupting fibronectin assembly, or suppressing pericyte TIMP-3 expression all 

decreased basement membrane deposition and led to pathological, increased lumenal 

diameter [25]. Furthermore, the recruitment of the pericytes to the nascent vasculature 

has been shown to result from EC-derived platelet-derived growth factor (PDGF)–BB 
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and heparin-binding EGF-like growth factor (HB-EGF); disrupting these signals in quail 

embryogenesis results in vascular pathologies that may have relevance for human 

congenital abnormalities as well [26]. However, because of the still ambiguous definition 

of a pericyte, many investigators have utilized a variety of different supporting 

mesenchymal cell types capable of supporting capillary morphogenesis. A great deal of 

mechanistic information about their ability to regulate angiogenesis has now been 

documented in the literature.  Although the remainder of this chapter will primarily focus 

on the use of mesenchymal stem cells (MSCs) as perivascular support cells, we will 

also briefly discuss insights from studies that have utilized fibroblasts or vascular 

smooth muscle cells to compare and contrast the mechanistic similarities and 

differences. 

 

2.4 Mesenchymal Stem/Stromal/Support Cells (MSCs) 

 Mesenchyme refers to a type of undifferentiated loose connective tissue derived 

from the mesoderm during development. The term stroma is used almost 

interchangeably with mesenchyme, though strictly speaking stroma refers to the 

supportive framework of adult tissues in which functional (parenchymal) cells reside, 

and mesenchyme is used more often in a developmental context.  Regardless, 

mesenchymal stem cells (MSCs) are a population of adult tissue-derived adherent cells 

that were first discovered in the bone marrow by Friedenstein, et al., who described 

them as “osteogenic stem cells” [27].  These cells were initially identified based on their 

ability to form clonal adherent colonies of fibroblastic cells (“colony forming unit-

fibroblast”), and later shown to possess the capacity to differentiate into bone, cartilage, 
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and fat [28].  This latter capability is why they were initially dubbed “stem” cells by 

Caplan [29]. MSCs from bone marrow and a variety of other adult tissues are already 

the focus of numerous human clinical trials [30, 31], and have shown enormous promise 

in preclinical studies to facilitate bone regeneration [32], promote tissue 

neovascularization [11, 33, 34], and reduce inflammation [35].  Much of their therapeutic 

benefit seems to be related to their trophic effects, i.e. through the secretion of 

numerous growth factors [35], and thus many in the literature now refer to them as 

mesenchymal stromal cells, marrow stromal cells, or (more recently) “medicinal 

signaling cells” [29]. 

 MSCs reside within a perivascular niche in vivo and can support vascular stability 

and development. In vivo [36], MSCs have been identified in multiple human organs and 

tissues, including bone marrow, skeletal muscle, pancreas, placenta, white adipose 

tissue, and others (Figure 2-2) [21]. In each of these tissues, MSCs reside next to 

capillaries larger than 10 µm in diameter and arterioles ranging from 10-100 µm in 

diameter [21]. Further studies suggest that the perivascular niche for MSCs may aid in 

their ability to home to sites of stroke [37] and cancer [38] and to produce paracrine 

effectors [39]. In response to injury, MSCs localize to the injured tissue and produce 

factors that destabilize existing vessels, promote angiogenesis, and contribute to the 

maturation and stabilization of nascent capillaries [40]. Despite the increasing evidence 

that all MSCs may in fact be pericytes, their exact location(s) and function(s) in vivo 

remain open questions [36]. Nevertheless, both in vitro and in vivo studies of MSCs and 

ECs have revealed promising clues as to their roles in vascular support. 
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Figure 2-2. Perivascular cells natively express MSC markers.  The stromal vascular fraction isolated from 
human white adipose tissue was stained simultaneously with antibodies to perivascular cells and MSCs 
and analyzed by flow cytometry. Cells negative for CD45, CD56, and CD34 and high for CD146 
expression were gated (A) and analyzed for coexpression of CD44 (B), CD73 (C), CD90 (D), and CD105 
(E). Clear histograms in B-E represent control cells incubated with unrelated isotype-matched antibodies. 
F-H. Frozen sections of human white adipose tissue were costained with antibodies to CD34 (green) or 
von Willebrand factor (vWF, green) to reveal endothelial cells (green arrows) and either CD44 (red, [F]) or 
CD90 (red, [G]). Pericytes lining small blood vessels express both CD44 (F) and CD90 ([G], main) (red 
arrows). Pericytes surrounding capillaries also strongly express CD90 ([G], inset ×1000) (red arrow). (H) 
Frozen sections of adult human muscle were costained with antibodies to CD144 (red) to reveal 
endothelial cells (red arrows) and CD73 (green). Pericytes lining the small blood vessel express CD73 
([H], ×600, green arrows). (Adapted from Cell Stem Cell, 3, Crisan, M. et al., A perivascular origin for 
mesenchymal stem cells in multiple human organs, 301–13. Copyright 2008, with permission from 
Elsevier.) 

2.4.1 Angiogenic Factors Secreted by MSCs 

 To induce angiogenesis, MSCs secrete numerous soluble factors that modulate 

the behavior of normally quiescent ECs. Of note are the factors: VEGF, IGF-1, PlGF, 
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MCP-1, bFGF, and IL-6 [40]. VEGF (Vascular Endothelial Growth Factor) is a crucial 

promoter of angiogenesis, and the most widely studied of the pro-angiogenic growth 

factors. Through binding to its receptor tyrosine kinase, VEGFR-2, VEGF is able to 

trigger signaling cascades that induce endothelial tubulogenesis. Further, VEGF 

induces tip cell migration and proliferation of ECs, while through NOTCH activation it 

leads to down regulation of VEGFR-2 on stalk cells thereby providing spatial regulation 

of angiogenesis [41]. Levels of VEGF also modulate vascular permeability, with higher 

levels leading to fenestrations and leaky vessels [41, 42]. VEGF receptors can also be 

activated by PlGF (Placental Growth Factor) which binds to and activates VEGF-R1.  

Further, PlGF enhances the effects of VEGF in promoting angiogenesis [43]. However, 

it is not normally found in adult tissues, but rather is found in ischemic tissues and is 

associated with pathological recruitment of vasculature [43]. 

 Other factors capable of modulating the proliferation of ECs include IGF-1 

(Insulin-like Growth Factor)-1 that binds to its corresponding receptor, IGF1R, which is 

highly expressed on microvascular endothelial cells [44]. IGF-1 plays a key role in the 

formation of new vasculature in adult tissues [45] and is found on proliferating 

endothelial cells. While an overabundance of IGF-1 is often implicated in 

tumorogenesis.  Inadequate IGF-1 has been associated with diabetic retinopathy and 

impaired dermal wound healing [46]. IL-6 (interleukin 6) has also been implicated in 

angiogenic effects, mediated through binding to its corresponding receptor IL-6R on 

ECs to activate ERK1/2 and STAT pathways, thereby inducing proliferation, migration 

and tube formation. Although this factor acts in a dose-dependent manner, ECs have a 
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high threshold for IL-6 and require high levels of the factor, suggesting it largely has a 

localized role [47]. 

 bFGF (basic Fibroblast Growth Factor) was the first pro-angiogenic factor 

identified and promotes vascular stability [48]. It binds with high affinity to heparin 

sulfate proteoglycans, facilitating subsequent binding to its associated cell-surface 

receptor FGFR. bFGF is crucial to vascular maintenance and may serve as a trophic 

factor for ECs [48]. Finally, MCP-1/CCL2 (monocyte chemotactic protein-1, also known 

as CCL2) binds to CCR2 on ECs and can induce migration and angiogenic invasion in 

vitro. The addition of MCP-1 increases angiogenic invasion in vivo, but knockouts of 

MCP-1 or CCR2 form normal vasculature suggesting only a modulatory role [49]. 

Presumably, these key angiogenic factors (VEGF, IGF-1, PlGF, MCP-1, bFGF, 

and IL-6) represent a major component of MSCs ability to modulate vascular assembly. 

While this collection of MSC-derived or pro-angiogenic factors is not exhaustive, these 

six factors provide a means by which MSCs can drive the proliferation, migration, and 

organization of ECs towards the production of vasculature. 

 

2.4.2 Hypoxia-Induced Activation of MSCs 

 Soluble factors play central roles in the inducement of vasculature in a hypoxic 

environment. These factors provide a means for MSCs to communicate over a distance 

to recruit ECs for re-vascularization. The loss of vasculature leads to a hypoxic 

environment within a tissue, and re-vascularization approaches have investigated 

hypoxia as a cue for the recruitment of vasculature. Microarray analysis of 2232 genes 

revealed changes in MSC gene expression during hypoxic culture, with notable 
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changes in the levels of VEGF, IGF, HGF, and other factors implicated in angiogenesis 

[50]. In comparison to mononuclear cells, which upregulate inflammatory and 

chemotactic genes, MSCs responded to hypoxia through genes involved in 

development, morphogenesis, cell adhesion, and proliferation [50]. 

 A separate study evaluated secretion of VEGF, HGF, and TGF-β from MSCs 

derived from adipose tissue. It was found that only secretion of VEG-F increased 

significantly under hypoxia. Further, conditioned media from these hypoxic MSCs 

increased EC proliferation and decreased apoptosis [51]. A later study assessed the 

molecular pathways activated in EC by conditioned medium from MSC cultured under 

hypoxic conditions. The medium decreases hypoxic EC apoptosis, increases survival, 

and increases tube formation and has higher levels of pro-angiogenic factors IL-6 and 

MCP-1 in addition to VEG-F. These were shown to activate the PI3K-Akt pathway in EC 

which regulates apoptosis. Blocking this pathway with inhibitors of PI3KT or expression 

of dominant negative genes for PI3K attenuated the pro-angiogneic effect.  While IL-6 

promoted angiogenesis in a dose-dependent manner and activated the ERK1/2 

pathway, inhibition of this pathway did not attenuate angiogenesis, suggesting that 

these factors promote angiogenesis via the PI3K pathway [52].    

 In response to hypoxic stress, MSCs have been shown to upregulate the 

expression of hypoxia inducible factor-1α (HIF-1α), which drives increased expression 

of VEGFR1 [53]. This increased the migration response of MSC to VEGF, and provides 

a feedback mechanism wherein MSC not only secrete VEGF but are also more 

sensitive to VEGF gradients, thereby enabling MSCs to efficiently home to hypoxic 

regions. In addition to immediate responses to hypoxia, MSCs can also be 
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preconditioned to a hypoxic environment. This was found to drives changes in the Wnt 

signaling pathway, which is responsible for self-renewal and morphogenesis in stem 

cells. Preconditioned MSCs were more potent at restoring vasculature to an ischemic 

limb in vivo [54], highlighting the role of hypoxia in inducing the production of factors that 

reduce cell death and promote re-vascularization.  

 

2.4.3 Interactions with the Extracellular Matrix 

 Although soluble cues from MSCs can signal ECs to initiate angiogenesis, 

insoluble cues from the ECM- both chemical and mechanical- can also influence MSCs 

and their pro-angiogenic capacity [55].  Chemical cues modulating interactions between 

MSCs and the endothelial basement membrane are likely to be important, consistent 

with published evidence for other adult stem cell populations that can interact with the 

vasculature [56].  It has previously been reported that the recruitment of pericytes 

stimulates EC basement membrane assembly [25], and that MSCs utilize the α6β1 

integrin to bind to it [57]. Whether this adhesive mechanism influences the secretion of 

pro-angiogenic cues from the MSCs or not remains to be seen, but that seems to be a 

plausible hypothesis given the evidence in the literature.   

 The intrinsic mechanical properties of the ECM are also known to affect cell 

phenotypes in general [58], and MSC behavior specifically [59].  A 2009 study by 

Mammoto, et al. showed that ECs modulate the expression of their VEGF receptor 

(VEGF-R2) in response to the elastic properties of their substrate, and that this 

mechanism is critical in ECM-based control of angiogenesis [60].  Another study 

investigated the secretome of MSCs cultured on soft versus rigid substrates. By 



 

36 
 

monitoring the levels of >90 angiogenic proteins, they found that MSC secrete higher 

levels of IL-8, uPA and VEGF on stiff substrates as opposed to soft substrates [61].  

 Externally-applied mechanical forces provide an additional means to influence 

the pro-angiogenic potential of MSCs. In one study, MSCs cultured in a fibrin gel 

compressed in a bioreactor responded to mechanical loading by changing the profile of 

secreted growth factors [62]. Application of conditioned medium from compressed 

MSCs to ECs enhanced 2D tubulogenesis and 3D spheroid sprouting assays via a 

mechanism that depends on FGF and VEGF receptor activation in ECs. Analysis of the 

MSC-conditioned media revealed increased soluble MMP-2, TGFβ1, and bFGF, but not 

VEGF, as a result of the mechanical stimulation [62]. In a later study, the same group 

demonstrated that cyclic strain disrupted endothelial organization on 2D Matrigel 

assays, with elevated levels of VEGF and unchanged levels of MMP-2 and -9 in 

response to stretching [63]. By repeating the assay with the addition of conditioned 

media from MSCs cultivated in similarly dynamic mechanical conditions, paracrine 

stimuli were shown to increase network lengths, but not to alter the negative effect of 

cyclic stretching [63]. Collectively, these findings suggest that changes in MSCs in 

response to altered mechanical stimuli may influence their abilities to induce 

angiogenesis. 

 

2.4.4 Stromal Cell Control of ECM Remodeling 

 ECs must break through their basement membrane and invade the surrounding 

interstitial matrix to sprout a new blood vessel. Essential to this process is proteolytic 

remodeling of the extracellular matrix (ECM). It is now well-established that capillary 
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invasion in type I collagen matrices depends critically on membrane-bound MMP14 

(also known as MT1-MMP) [64, 65], while invasion of the provisional clot (composed 

primarily of the plasma protein fibrinogen in its cleaved form, fibrin) present in wounds, 

sites of inflammation, and tumors may depend less on MMPs and more on the serine 

proteases that comprise the plasminogen activator (PA)/plasmin axis [66, 67]. However, 

in more complex tissue explant cultures, capillary invasion in fibrin matrices proceeds 

independent of the PA/plasmin axis and relies instead on MT-MMP activity [68]. These 

results imply that in addition to the ECM, stromal cell types have the potential to bias the 

proteases utilized by ECs to undergo capillary morphogenesis. 

 Research from our own laboratory has utilized a 3D angiogenic model in which 

ECs invade a fibrin clot in co-culture with stromal cells to investigate the influence of 

stromal cell identity on ECM remodeling [69].  When MSCs from the bone marrow were 

used as the stromal cell type, we found that ECM proteolysis during angiogenesis 

requires MMPs, and that new sprout formation was almost completely inhibited in the 

presence of small molecule inhibitors of MMPs [70].  By contrast, when fibroblasts were 

used as the supporting cell type, angiogenic sprouting could only be inhibited when both 

plasmin-mediated and MMP-mediated fibrinolysis were blocked, suggesting a 

proteolytic plasticity dictated by the identity of the supporting cells [70].  When adipose-

derived MSCs (ASCs) were used instead, angiogenic sprouting could be achieved when 

either MMPs or plasmin were inhibited individually, but not when both proteolytic axes 

were inhibited simultaneously [71].  In this fashion, angiogenesis induced by ASCs 

mirrored that induced by fibroblasts, despite their similar multipotency to bone marrow-

derived MSCs. Furthermore, both fibroblasts and ASCs produced higher levels of HGF 
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and TNFα while inducing EC to upregulate urokinase plasminogen activator (uPA) when 

compared to co-cultures containing ECs and MSCs from bone marrow [71]. A more 

definitive study used RNA interference to demonstrate that ECs require MT1-MMP, but 

not MMP-2 or MMP-9, to form new sprouts in the presence of bone marrow-derived 

MSCs in a fibrin matrix [72]. These data suggest that the mechanism(s) by which ECs 

form new vessel networks depend(s) not only on the ECs and the matrix, but also on 

the identity of supporting stromal cells present in the interstitial matrix.  

 Several studies now also suggest that pericytes regulate the expression of MT1-

MMP in endothelial tips cells at the leading ends of sprouting capillaries. Among these, 

Lafleur, et al. used co-cultures of ECs with smooth muscle cells or pericytes to first 

show that the perivascular support cells regulate the activity of MT1-MMP and 

subsequent MMP-2 activation in ECs via the secretion of tissue inhibitor of 

metalloproteinase-2 (TIMP-2) [73]. Saunders, et al. then showed that EC-pericyte 

interactions in 3D collagen gels induced TIMP-3 expression by the pericytes and TIMP-

2 expression by the ECs [74], while Yana, et al. showed that the mural cells limit the 

expression of MT1-MMP to endothelial tip cells by restricting its expression in stalk cells 

[75].  By controlling the specification of ECs into tip cells and stalk cells via local control 

of proteolysis, these mechanisms can potentially explain one possible way in which 

pericytes stabilize nascent capillaries. 

 

2.4.5 Differentiation of MSCs to SMCs Supports Vascular Stability 

 After recruitment of ECs, MSCs begin to display vascular smooth muscle cell 

(SMC) markers and take on a new role in the maintenance of EC structures. In vitro, 
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MSCs can be induced to differentiate directly into SMCs by exposure to transforming 

growth factor beta (TGF-β). TGF-β acts by induction of Jagged 1 (JAG1), a ligand for 

Notch and causes MSCs to express SMC markers such as αSMA, calponin 1, and 

myocardin. Additionally, the direct activation of the Notch signaling pathway induced 

differentiation of MSCs to SMCs [76]. Further, ECs express the Notch ligand delta-like-4 

(DLL4) and are themselves modulated by Notch signaling, providing a means for 

reciprocal interaction between ECs and SMCs [77].  

 Another means of driving MSC differentiation towards an SMC is through 

interactions with ECs.  Using 10T½ cells (a mouse multipotent cell line widely used as a 

model mural cell type), Hirschi, et al. controlled their interactions with ECs in vitro using 

a co-culture system in which the two cell types could interact directly through cell-cell 

junctions or indirectly through soluble, paracrine factors [78]. When plated in adjacent 

agarose wells to permit only soluble communication, the 10T½ cells migrated towards 

the ECs mediated by PDGF-BB, while the ECs produced TGF-β that induced the 

10T½s to express several SMC markers (i.e., SM-myosin, SM22α, and calponin) [78]. In 

the absence of heterotypic cell-cell contacts, the ECs were found to secrete PDGF-B 

that increased 10T½ cell proliferation. However, co-culture with direct cell-cell contact 

decreased proliferation of both cell types independent of TGF-β and PDGF [79].  

In another study, direct contact co-culture between ECs and 10T½s was shown 

to upregulate SM22α to a greater extent than direct TGF-β treatment alone [80]. 

Likewise, in a transwell co-culture system, MSCs were shown to migrate in response to 

PDGF signaling from ECs [81]. When placed in direct contact with the ECs, the MSCs 

upregulated the SMC marker myocardin, that could not be induced in separated co-
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cultures or by TGF-β alone. Together, these studies suggest that ECs utilize soluble 

cues to induce MSC proliferation and migration towards EC; once the MSCs come into 

contact with the ECs, they terminate proliferation and differentiate to the SMC lineage.  

 

2.5 Stimulation of Capillary Morphogenesis by Other Supporting 

Cell Types 

 Up to this point, this chapter has focused primarily on the use of MSCs with 

multilineage potential as a source of stromal cells capable of supporting the formation of 

vascular networks.  However, valuable mechanistic insights have been achieved 

through the use of other terminally differentiated mesenchymal cell types, most notably 

fibroblasts and smooth muscle cells [82, 83]. The use of fibroblasts is justified based on 

their known roles in wound healing, and the argument that nearly every tissue in the 

body contains resident fibroblasts that are likely to influence vessel morphogenesis.  

Like MSCs, fibroblasts can occupy a perivascular location proximal to blood vessels, 

both in vitro and in vivo, and attain some characteristics of pericytes (Figure 2-3) [82].  A 

justification for using SMCs is also clear, given their roles in maintaining vessel tone and 

contractility in arterioles and arteries, and the fact that pericytes are widely considered 

to be primitive SMCs.  Early studies focused on the development of model systems to 

study the paracrine induction of angiogenic sprouting by fibroblasts [84, 85].  Hughes 

and colleagues have published extensively on the control of angiogenic sprouting by 

fibroblasts [86-89].  This group has recently and exhaustively investigated the 
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“secretome” of fibroblasts for factors that enhance the angiogenic activity of ECs, 

 

Figure 2-3. MSCs and fibroblasts both stimulate ECs to form mature capillary networks in model 3D 
cultures.  MSCs (A,B) or fibroblasts (C,D) interspersed throughout fibrin ECMs in the presence of 
mCherry-transduced ECs induce capillary formation and occupy perivascular locations (white arrows in A 
and C). Cultures containing mCherry-transduced ECs and either MSCs (B) or fibroblasts (D) were fixed 
and IF stained for pericyte markers α SMA (aqua) and NG2 (white). Both MSCs and fibroblasts expressed 
α SMA, but only the MSCs expressed NG2. Nuclei (DAPI) are visible in the blue channel. In panels A and 
C, scale = 25 μm; in panels B and D, scale = 50 μm. (Adapted from Experimental Cell Research, 316, 
Ghajar, C. M. et al., Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic 
mechanisms, 813–25. Copyright 2010, with permission from Elsevier.) 

and demonstrated the role of high fibronectin and hepatocyte growth factor (HGF) [90].  

 To further understand the influence of stromal fibroblasts on capillary formation, 

Newman et al. performed a series of experiments to determine the relative importance 

of fibroblast-derived soluble factors and insoluble factors [91]. They identified a cocktail 

of soluble factors- angiopoietin-1, angiogenin, HGF, transforming growth factor-α (TGF-

α), and tumor necrosis factor (TNF)- that could induce sprouting, but not lumen 

development, in the absence of stromal support cells. Further studies revealed that the 
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addition of fibroblast-conditioned medium restored the lumenogenesis.  The authors 

showed that five genes expressed in fibroblasts - collagen I, procollagen C 

endopeptidase enhancer 1, secreted protein acidic and rich in cysteine (SPARC), 

transforming growth factor-β-induced protein IG-h3, and insulin growth factor-binding 

protein 7 (IGFBP7) – were necessary for lumen formation. When purified collagen I, 

SPARC and IGFBP7 were added back to cultures containing fibroblasts deficient in the 

production of these proteins, lumen formation was recovered and the matrix became 

stiffer [91].  This loss-of-function/gain-of-function approach provides some of the most 

compelling mechanistic evidence to date to explain how supporting fibroblasts regulate 

the formation of vascular network, and is consistent with a prior study implicating ECM 

deposition in neovascularization [92]. It remains to be seen if multipotent MSCs or fully 

committed SMCs facilitate capillary growth and development via the same mechanisms 

as fibroblasts, but it seems likely that at least some of the mechanisms will be 

conserved. 

 

2.6 Delivery of Stromal Cells with ECs Enhances Vessel 

Formation and Stability In Vivo 

2.6.1 Terminally-differentiated adult cells 

 In the past 10 years, a number of studies have focused on the potential of 

terminally-differentiated adult cell types, particular the afore-mentioned fibroblasts and 

SMCs, to promote vessel formation and stabilization upon implantation in vivo. Building 

on the numerous contributions in the literature demonstrating the ability of fibroblasts to 

support angiogenic sprouting in vitro (discussed above), a 2009 study by Chen, et al. 
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demonstrated that pre-formed vessel networks assembled in fibrin gels from HUVECs 

and normal human lung fibroblasts (NHLFs) in vitro prior to implantation in vivo could 

successfully inosculate with host vessels and become perfused with red blood cells [93]. 

Increased EC proliferation and perfusion was dependent on the presence of NHLFs. A 

subsequent study comparing endothelial progenitor cells (EPCs) with HUVECs 

demonstrated that pre-vascularized constructs containing an order of magnitude higher 

density of NHLFs (2 million/mL) yielded more mature vessels that inosculated with host 

vessels 2-3 days more quickly than those with a lower density of support cells (0.2 

million/mL) [94]. 

 Smooth muscle cells (SMCs), commonly found in vivo in the medial layer of 

larger diameter vessels, are another adult cell type that has been used in several 

studies to support implanted endothelial networks. In one study, human saphenous vein 

SMCs (HSVSMCs) were shown to promote vascularization when encapsulated in 

Matrigel constructs with umbilical cord blood-derived EPCs or adult peripheral blood-

derived EPCs (termed cb- and adult-EPCs, respectively) and then implanted 

subcutaneously in nude mice [95]. Vessel density depended on EPC source, as seen 

from sections stained for hCD31 and αSMA. Constructs containing EPCs alone did not 

vascularize, a finding consistent with prior work from others [96]. Robust αSMA staining 

was seen both around vessel lumens as well as throughout the Matrigel in implants with 

SMCs, suggesting that a percentage of these cells co-localize with the EPC-derived 

vasculature [95].   

 Human aortic SMCs (HASMCs) have also been shown to accelerate vessel 

formation in vivo when co-implanted with Bcl-2-transduced HUVECs within a 3D PGA-
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collagen-fibronectin scaffold in a SCID mouse model [97]. Grafts incorporating both 

HUVECs and HASMCs had more αSMA positive cells associated with the vasculature 

compared to grafts containing either cell type alone at all time points. By 60 days, grafts 

incorporating both cell types had vessels of significantly larger caliber than grafts 

containing either cell type alone [97]. Similar observations have been reported with 

Matrigel-enriched PLLA scaffolds containing human microvascular endothelial cells 

(HMVECs) and human pulmonary artery SMCs (hPASMCs) implanted subcutaneously 

in NOD/SCID mice [98]. Co-localization of structures staining positive for hCD31 and 

αSMA increased from 7 to 21 days post-implantation in constructs containing both cell 

types, suggesting SMCs assume a perivascular location over time. Fluorescence 

angiography using systemically injected FITC-labeled lectin demonstrated perfusion of 

implant vasculature and successful inosculation with host vessels. SMC association 

with the vascular network was confirmed by multiphoton fluorescence microscopy with 

labeled SMCs and UEA-1 stained human microvessels.  

 Collectively, these studies demonstrate that delivering fibroblasts or SMCs with 

ECs is more effective than ECs alone at creating stable vasculature capable of 

inosculating with host-derived vessels over time, supporting the general consensus that 

co-delivery of a supporting cell type can yield better results. However, the feasibility of 

acquiring fibroblasts from the lung or SMCs from the walls of large vessels may limit the 

clinical translatability of these cells types, which thus motivates investigation of alternate 

stromal cell sources. Furthermore, new evidence (discussed below) suggests that 

fibroblasts may not regulate vessel quality and quantity to the same degree as other 

populations of supporting cells, perhaps because they are not truly bona fide pericytes. 
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2.6.2 Multipotent Cells Enhance Vessel Network Functionality In Vivo 

 Endothelial cells have the capacity to support formation of functional, mature 

vasculature in vivo when co-delivered with human embryonic stem cells (hESCs) and 

mesenchymal stem cells derived from either cord blood, bone marrow, or adipose tissue 

[16]. This area of research has prompted significant interest, as stem cells from various 

sources function as pericytes in vivo [99]. Additionally, they may be a more clinically 

viable option for therapeutic vascularization as many of these cell types can be derived 

autologously [100] and easily manipulated in vitro [101]. 

 One of the earliest and most influential studies to use a supporting mesenchymal 

cell type to drive the formation of functional vasculature in vivo involved the co-

implantation of HUVECs with mouse embryonic fibroblasts, termed 10T½s, in a 

fibronectin-collagen gel in a SCID mouse cranial window [102]. Vasculature in 

constructs containing HUVECs alone regressed within 60 days, likely due to delays in 

the recruitment of mouse-derived mural cells. In contrast, vasculature formed via the co-

delivery approach was functional for up to one year, a result that was hypothesized to 

result from the pericytic support. Several metrics were used to assess functionality. 

Fluorescent dextran was delivered systemically to mice, allowing visual confirmation via 

intravital microscopy of the inosculation of implant vasculature with host-derived 

vessels. Engineered vessels were more permeable than quiescent vasculature, but less 

permeable than tumor vasculature. Further, like native vasculature, the implant's 

vessels responded to the vasoconstrictor endothelin-1. Overall, this study demonstrated 
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that the addition of stromal cells improved vessel functionality, and highlighted the 

importance of pericytic support for engineering vasculature in vivo. 

 In a later paper, the same investigators compared the ability of umbilical cord 

blood (CB)-derived and peripheral blood (PB)-derived EPCs to form functional, long-

lasting vasculature when combined with 10T½s in vivo [96]. In addition to the metrics of 

functionality used in their previous work, red blood cell velocity and leukocyte rolling in 

response to cytokine stimulation were monitored. Vasculature derived from PB-EPCs 

underwent regression within 3 weeks, regardless of the presence of 10T½s, while the 

stability of the vasculature derived from the CB-EPCs was dependent on the presence 

of 10T½s, a result which highlights the importance of pairing appropriate endothelial 

and stromal cell sources to develop engineered vascular networks. 

 Numerous studies have also explored combinations of bone marrow-derived 

MSCs with ECs in vascularization strategies. In one such study, HUVECs were co-

encapsulated with MSCs in a collagen-fibronectin gel and implanted into SCID mice in a 

cranial window [101]. The resultant engineered vasculature was stable and perfused for 

>130 days in vivo. In this work, both 10T½s and MSCs were used as support cells to 

assess the ability of each to support vascular development. While both cell types 

supported vascular networks of comparable length, it was not clear if both supporting 

cell types yielded vasculature with similar functional properties in vivo. Nevertheless, in 

constructs containing MSCs, systemically administered dextran localized to the lumens 

of the engineered vessel networks, demonstrating functional inosculation with host 

vessels. Further, MSCs localized to a periendothelial location and expressed αSMA, 

SM22α, and desmin. Furthermore, the nascent vessels circumscribed by the MSCs 
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were capable of vasoconstriction in response to endothelin-1. Taken together, these 

data suggest MSCs differentiate into perivascular cells. Contrary to reports from other 

research groups [103], the MSCs contributed to vascularization in vivo, but did not 

directly differentiate into ECs. 

 Recent work from another leading team investigated the pericytic capacity of 

mesenchymal progenitor cells (MPCs) derived from bone marrow or umbilical cord 

blood [100].  It is unclear if these cells are similar to MSCs used by other investigators 

or not, since there are no consensus markers to prospectively isolate progenitors from 

the bone marrow.  Regardless, like MSCs, these MPCs appeared to act like pericytes 

when combined with cord blood-derived EPCs in Matrigel and subsequently implanted 

subcutaneously in immunocompromised mice [100]. Vascularization was apparent 

using both bone marrow and umbilical cord MPC sources one week after implantation, 

and was maintained for more than four weeks in vivo, as evidenced by the perfusion of 

vasculature with host erythrocytes. Additionally, αSMA and hCD31 staining confirmed 

that EPCs remained on the lumenal side of the tubule while the MPCs assumed a 

periendothelial location consistent with pericytes. Perfusion through the implant was 

assessed using a bioluminescent assay, in which luciferin delivered via intraperitoneal 

injection was detected in samples containing luciferase-expressing EPCs and unlabeled 

MPCs, but not in those samples containing EPCs alone. These data suggest 

inosculation with host vasculature depends on the presence of stromal cells, which 

corroborates previous data suggesting that functional perfusion is compromised in the 

absence of mesenchymal support cells [93, 95, 97, 102]. 
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 In an approach that distinguishes itself from the use of adult stem cells, vascular 

progenitor cells were isolated from human embryoid bodies and differentiated into 

endothelial-like (EL) or smooth muscle-like (SML) cells [104]. Subsequent 

transplantation of either EL cells alone or a combination of EL and SML cells in a 

Matrigel scaffold into nude mice resulted in microvessel formation. Microvessel density 

did not differ substantially between the EL only and EL and SML-containing scaffolds, 

which deviates somewhat from previous studies that emphasize co-delivery for robust 

vascularization. However, these data are confounded by the use of heterogeneous cell 

populations and ill-defined assessment of the functionality of the luminal structures that 

were quantified to determine vessel density. 

 ASCs are seen as a particularly attractive clinical source for vascular therapies 

since they can be easily harvested in large numbers from liposuction procedures [99]. 

ASCs associate with capillaries in vivo and have been demonstrated to assume a 

pericytic role both in vitro and in vivo [99]. In one important study, collagen constructs 

containing EPCs and ASCs, alone and in combination, were implanted into NOD-SCID 

mice [105]. The density of perfused vessels increased in constructs containing both 

EPCs and ASCs with multi-layered structures found more frequently in implants 

containing both cell types. To investigate other clinical applications, the constructs were 

implanted with either pancreatic islets or adipocytes and the organization of the 

parenchymal cells into neo-organs was demonstrated [105. 

 

2.6.3 Comparing the Vasculature Formed with Distinct Mesenchymal Support Cells 
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 Thus far, the studies reviewed provide strong support for the proposition that co-

delivery of a supporting mesenchymal cell type with ECs can yield stable vascular 

networks that inosculate with host vessels.  However, the choice of stromal cell type has 

varied widely over these studies, and have included MSCs from bone marrow, adipose 

tissue, cord blood, as well as fibroblasts (from human lung) and both venous and 

arterial SMCs. It is clear that despite the consensus that delivery of two cell types is 

better than one in terms of building vasculature, there is still no consensus as to which 

population of mesenchymal support cells will be the “winner” in terms of a viable clinical 

strategy. 

 Recent work from our own laboratory aimed to partially address this issue. 

Building prior in vitro observations, and the pioneering work of other investigative teams 

highlighted earlier in this chapter, we set out to systematically compare the functionality 

of vasculature formed in vivo using various mesenchymal support cells [16]. In our 

study, HUVECs suspended in fibrin were injected subcutaneously with one of three 

stromal cell types: NHLFs, bone marrow-derived MSCs, or adipose-derived MSCs 

(ASCs). The formation of vasculature was monitored over 14 days via laser Doppler 

perfusion imaging and standard histological assessments, while vessel 'leakiness' was 

assessed using a modified dextran tracer assay. Previous studies assayed for tracer in 

the lumens of engineered vessels, but we also quantified the fraction of dye outside the 

capillary lumen as a metric of permeability. As expected, vessels formed via delivery of 

ECs alone were of a fairly poor quality and showed signs of leakiness via the presence 

of fluorescent dextran in the interstitial matrix (Figure 2-4).  Interestingly, despite the fact 

that the EC-NHLF implants yielded the highest vessel density, the vessels generated 
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from this combination of cells were also of a rather poor quality.  By contrast, vessels 

formed via co-delivery of ECs with MSCs from either the bone marrow or adipose tissue 

exhibited decreased vessel leakiness (Figure 2-4) and increased expression of mature 

smooth muscle markers. These data suggest that the multipotent stromal cells yield 

vasculature of superior quality because they may differentiate into pericytes and 

eventually into SMCs. 

 

Figure 2-4. Coinjection of ECs with MSCs yields neovasculature with superior functional properties.  SCID 
mice bearing implants containing only (A) ECs, (B) ECs + fibroblasts, or (C) ECs + MSCs were subjected 
to tail vein injections of a 70-kDa Texas Red–dextran (red) tracer to visualize inosculation and 
characterize vessel leakiness. Tissues were counterstained with antihuman CD31 antibodies (green) to 
verify the human origins of the vessels. The red tracer was found in the interstitial matrix outside of the 
new vessels when ECs were delivered alone (A) or with fibroblasts (B), but was contained within the 
vessels formed from ECs + MSCs (C). Scale bars = 20 μm. (Adapted from Grainger, S. J. et al. 2013. 
Stromal cell identity influences the in vivo functionality of engineered capillary networks formed by co-
delivery of endothelial cells and stromal cells. Tissue Engineering. Part A, 19, 1209–22, with permission 

from Mary Ann Liebert, Inc.) 

 In translational therapies, it will be critical to determine the appropriate 

combination of cells and matrix that optimizes the re-vascularization of ischemic tissues. 

While the studies presented are pivotal in reaching this end, gaps in the current data 

highlight the need for additional work in the field. In particular, vascular elements do not 

exist in isolation within the body, but rather function in concert with parenchymal tissues. 

As a result, there is significant interest in studying vascularization in the presence of 

other tissues. 



 

51 
 

 

2.7 Vascularization in the Context of Complex Engineered 

Tissues 

 Vascularization is of substantial clinical value for cardiovascular therapies and is 

a key step in the formation of large, complex engineered tissues. Towards that goal, 

researchers seeking to create tissue constructs with complex functions have begun to 

combine parenchymal cells with vascular and stromal cells to facilitate construct 

vascularization. One such demonstration of this approach created vascularized skeletal 

muscle in vitro by combining myoblasts, mouse embryonic fibroblasts (MEFs), and 

HUVECs in an oriented PLLA-PLGA scaffold, which was then implanted in SCID mice in 

vivo [106]. Human CD31 and vWF staining of histological sections confirmed the human 

origin of implant vasculature. Additionally, fluorescent lectin was administered 

systemically and localized to the lumen of construct vasculature, suggesting the 

successful inosculation of host and implant tissue. Both vascularization and 

differentiation of muscle tissue were shown to be optimal in constructs combining all 

three cell types. 

 A similar combination strategy has also been utilized to create vascularized 

cardiac tissue constructs, formed from hESC-derived cardiomyocyes, human umbilical 

vein and hESC-derived ECs, and MEFs [107]. Vessel number, contractile force, 

collagen content, and β-myosin heavy chain (β-MHC) positive cells increased in 

constructs containing all three cell types as compared with constructs composed of 

cardiomyocytes alone. Constructs lacking the vascular element did not display 
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physiologically appropriate active contraction, electrical pacing, and mechanical 

properties, suggesting the pro-vascular milieu facilitates both vascular and cardiac 

development.  Although many challenges remain, these two examples demonstrate that 

successful vascularization of engineered tissues requires not only the ECs, but also a 

supporting stromal cell type that serves as a stabilizing pericyte-like population. 

 

2.8 Conclusions and Future Directions 

 Consensus within the research community suggests that the vascularization of 

engineered constructs is significantly enhanced when endothelial cells are not delivered 

alone, but rather, in combination with mesenchymal support cells. This finding has been 

confirmed across several murine models as well as with various mesenchymal support 

cells. Nevertheless, the most appropriate choice of mesenchymal support cell for 

eventual therapeutic applications remains unclear due both to concerns about cell 

sourcing and to the current gaps in understanding regarding the manner in which vessel 

quality and function vary with the identity of the support cells. Though the data remain 

incomplete, multiple studies suggest that multipotent mesenchymal stem cells from 

various sources provide vascular support in a manner similar to native pericytes. 

Further research is needed to justify the choice of cells for any eventual cell therapy to 

treat ischemic diseases or for the creation of robust engineered tissues, and to 

accelerate the translation of these research cell-based approaches to the clinic. 
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Chapter 3  

 

Protease-Sensitive PEG Hydrogels Regulate 

Vascularization In Vitro and In Vivo 

 

3.1 Introduction 

  Recapitulating angiogenesis in vitro and in vivo is of critical interest to the fields 

of tissue engineering and therapeutic angiogenesis.  Current successes in tissue 

engineering are significantly limited by the inability to generate functional vasculature, 

which is necessary because diffusion is insufficient to meet the metabolic demands of 

larger tissues.  Engineering vasculature is also of interest for the treatment of ischemic 

diseases, such as peripheral artery disease (PAD), a cause of significant morbidity in 

the United States in the form of critical limb ischemia (CLI) and other related conditions 

[1]. 

 To address the need for vascularization, several cell-based approaches have 

been pursued.  One promising approach to therapeutic vascularization involves the co-

delivery of endothelial cells (ECs) with supportive stromal cells in a biomaterial system 

that supports neovascularization in vivo [2-4]. Natural hydrogel materials, such as fibrin, 
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collagen, and Matrigel, have been widely used in this approach by our laboratory [2, 5-

8] and others [4, 9-13] as they are well known to support angiogenesis and 

vasculogenesis.  However, such natural materials have inherent limitations, including 

variability associated with the original source and processing approaches, the potential 

for immunogenicity, and undefined biological functionalities [14].  Consequently, many 

investigators have alternatively pursued the use of synthetic materials as cell delivery 

substrates [14-17].  Such materials have their own advantages and disadvantages, but 

it is the general consensus that a blank slate material upon which key biological 

functionalities can be conferred (i.e. via peptide conjugation) offers the potential for 

enhanced control over cell function.  Furthermore, this level of control is essential to 

better define the multiple roles of the extracellular matrix (ECM) on vascularization.  

 Peptide-functionalized poly(ethylene glycol) (PEG) hydrogel systems have been 

widely exploited to investigate the role of distinct biological signals in modulating cell 

invasion and in complex processes, such as vascularization, in vitro [18-29].  In these 

systems, PEG is typically functionalized with peptide sequences susceptible to cleavage 

by cell-derived matrix metalloproteases (MMPs) and with RGD, a minimal integrin-

binding domain isolated from fibronectin that has been ubiquitously tethered to a variety 

of biomaterials to render them adhesive [14].  Ideally, these systems should undergo 

degradation at a rate that promotes the rapid formation of stable vasculature.  To this 

end, tuning of the material platform is required to achieve sufficiently rapid cell 

migration, proliferation, and organization into tubular structures without compromising 

the patency or functionality of the resulting vasculature. The majority of early studies in 

this area utilized a MMP-cleavable peptide composed of a collagen-derived cleavage 
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sequence, GPQG↓IWGQ (cleavage site indicated by↓), with flanking regions on either 

side to facilitate crosslinking via thiol or amine chemistries.  Cell invasion and 

vascularization were improved in these gels when compared to non-degradable controls 

[22, 26, 29].  More recent studies have used MMP-cleavable peptides that are cleaved 

with faster kinetics for studies of cell migration and vascularization in vitro with 

promising results [21, 25, 30, 31].  Others have tuned the mechanical properties of the 

construct to indirectly alter the extent of proteolysis needed to support robust 

vascularization [25, 26].  This technique has experienced some success, but, perhaps 

due to microstructural differences in materials with similar bulk properties, the optimal 

mechanical regime has been found to differ substantially among constructs with 

differing PEG chemistries.  As a whole, these prior studies suggest functionalized PEG 

gels are a viable option to support vascularization, thereby warranting further study. 

 Despite this focus on elucidating the role of matrix mechanics and degradation in 

vitro, few studies have focused on translating these findings in vivo to further motivate 

the design of pro-angiogenic materials.  Additionally, many of the materials utilized for 

investigations in vitro are less suitable for use in vivo, due to the requirement for light 

(UV or visible) to initiate polymerization.  To date, in vivo studies of vascularization in 

PEG-peptide constructs have focused on controlled delivery of VEGF to facilitate the 

ingrowth of host vessels into gels incorporating the slowly degradable GPQG↓IWGQ 

peptide [26, 28, 32, 33]. While PEG-based materials have shown significant potential in 

the context of this cell-mediated release paradigm [34], comparatively few studies have 

demonstrated the utility of PEG hydrogels as suitable matrices to direct the 

vascularization of transplanted cells in vivo. 
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 The goal of this work was to investigate the roles of gel mechanical properties 

and susceptibility to proteolysis in vascular morphogenesis in vitro and in vivo, thereby 

bridging the gap between in vitro mechanistic studies and translation-focused in vivo 

applications.  We fabricated PEG hydrogels via Michael-type addition of PEG 

macromers and cysteine-containing MMP-sensitive and adhesive peptides, and then 

characterized their ability to support vascularization from endothelial cells and stromal 

fibroblasts.  Two MMP-sensitive peptides were used for crosslinking, GPQG↓IWGQ 

(slow degradation) and VPMS↓MRGG (more rapid degradation [21]).  RGD was used 

as an adhesive moiety to facilitate cell attachment to the PEG gels.  Materials were 

characterized and subsequently investigated for their capacity to support vascular 

morphogenesis over a period of two weeks in vitro and in subcutaneous pockets on the 

dorsal flank of SCID mice in vivo. 

 

3.2 Methods 

3.2.1 Cell Isolation and Culture 

 Human umbilical vein endothelial cells (HUVECs, henceforth referred to as ECs) 

were harvested from fresh umbilical cords according to a previously established 

protocol [35].  ECs were cultured in supplemented Endothelial Growth Medium (EGM-2, 

Lonza, Walkersville, MD) at 37oC and 5% CO2 and used at passage 3.  Normal human 

lung fibroblasts (NHLFs, Lonza) were cultured in M199 (Invitrogen Corporation, 

Carlsbad, CA) with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin 

(Mediatech, Manassas, VA), and 0.5% gentamicin (Invitrogen) at 37oC and 5% CO2 and 
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used prior to passage 15.  Cells were cultured in monolayers until reaching 80% 

confluency and passaged with 0.05% trypsin-EDTA (Invitrogen). 

 

3.2.2 PEG Hydrogel Formation 

 Hydrogels were formed via a Michael-type addition reaction of 4-arm PEG vinyl 

sulfone (henceforth termed PEG-VS) (20 kDa, JenKem USA, Allen, TX) with a 

combination of thiol-containing adhesive and protease-sensitive peptides by modifying a 

published protocol [36].  To prepare the gels, PEG-VS was dissolved in HEPES (50 

mM, pH 8.4, supplemented with growth factors from endothelial medium bullet kit) at the 

appropriate concentration to produce gels of 3.5% or 5% (w/v) total solids content.  The 

adhesive peptide (CGRGDS, Genscript, Piscataway, NJ) was added to the PEG 

solution at 10 μg/ml in HEPES to yield a final adhesive site density upon gelation of 500 

μM and the solution was reacted 30 minutes at room temperature.  Following 

conjugation of RGD, bis-cysteine-containing crosslinking peptides were added in 

HEPES such that -SH and -VS groups were present at a 1:1 molar ratio.  Gels were 

polymerized with 1 of 2 peptides, Ac-GCRD-GPQG↓IWGQ-DRCG-NH2 or Ac-GCRD-

VPMS↓MRGG-DRCG-NH2 (cleavage site indicated by↓).  After mixing, precursor 

solutions (3.5% PEG-G, 5% PEG-G, 3,5% PEG-V, and 5% PEG-V) were polymerized 

for 1 hour at 37oC in Teflon molds for rheology experiments or in sterile 1-ml syringes 

with the needle end cut off for all other experiments [37].  After polymerization gels were 

transferred to medium or PBS, as appropriate.  All gels were formed under aseptic 

conditions from precursors that were filtered through a 0.22 um syringe filter. 
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3.2.2 Mechanical Characterization of PEG Gels 

 Bulk mechanical properties were characterized via parallel plate rheology on pre-

swollen gels.  Following polymerization in Teflon molds, 100 μl gels were swollen 

overnight in PBS at 37oC.  Measurements were obtained on an AR G2 rheometer (TA 

Instruments, New Castle, DE) equipped with a Peltier stage and an 8 mm geometry.  

Both surfaces were coated with P800 sandpaper (3M, St. Paul, MN) and the gap was 

adjusted to apply a constant 0.1 N force to prevent slip during measurement.  For each 

gel, a 5 minute time sweep was followed by a frequency sweep from 0.1 to 10 Hz at 5% 

strain and then a strain sweep from 0.1 to 50% at 1 Hz.  Reported shear storage 

modulus (G’) values are the average over the linear viscoelastic region of the frequency 

sweep. 

 The equilibrium volumetric swelling ratio was also obtained for each gel type.  

Cell-free gels 50 μl in volume were polymerized in cut off syringes, as described above, 

and swollen at 37oC in PBS for 48 hours.  At this point, each gel was weighed, frozen, 

and lyophilized, to give values for the wet and dry weight of each gel.  The volumetric 

swelling ratio was calculated from the mass swelling ratio according to a previously 

described method [38]: 

𝑄 = 1 +
𝜌𝑝𝑜𝑙𝑦𝑚𝑒𝑟

𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡
(𝑞 − 1) 

where q is the mass swelling ratio (wet weight/final dry weight), ρpolymer is the polymer 

density (1.07 g/ml for PEG), and ρsolvent is the density of the buffer (~1 g/ml). 

 Cell-mediated bulk hydrogel degradation was assessed by monitoring the 

swelling ratio of 50 μl gels containing 106 ECs/ml and 106 NHLFs/ml.  Gels were 
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cultured at 37oC and 5% CO2 up to 14 days.  The swelling ratio was determined as for 

gels without cells. 

 

3.2.3 Dextran Release from PEG Gels 

 The bulk transport of dextran through the hydrogels was quantified as described 

previously [39] to probe the relative ease of diffusion of macromolecular species through 

different hydrogel formulations.  Acellular hydrogels were prepared under aseptic 

conditions with 5 μg of 70 kDa Texas red-conjugated dextran (Life Technologies) 

incorporated in each 50 μl gel.  Hydrogels were incubated in sterile PBS at 37oC and 

the supernatant was aseptically collected and replaced with fresh PBS at 1, 3, 6, 12, 24, 

and 72 hours after polymerization.  After 72 hours, gels were digested with 40 IU 

collagenase (Worthington Biochemical, Lakewood, NJ) in PBS to release any remaining 

dextran.  The supernatants from each time point and the degraded gels were measured 

with a Fluoroskan Ascent FL (Thermo Scientific) plate reader at Ex:560/Em:620.  The 

mass of dextran in each sample was determined by comparison to a standard curve of 

dextran in PBS. 

 

3.2.4 Vasculogenesis Assay in PEG Hydrogels 

 ECs were fluorescently labeled via retroviral transduction with a gene encoding 

mCherry (Clonteck, Mountain View, CA) as previously described [5].  Lipofectamine 

2000 (Life Technologies) was used to transfect Phoenix Ampho cells (Orbigen, San 

Diego, CA) with a plasmid encoding for mCherry.  Viral supernatant was collected after 

48 hours, passed through a 0.45 μm syringe filter and supplemented with 5 μg/ml 
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Polybrene (EMD Millipore, Billerica, MA) prior to incubation with EC for 6 hours.  The 

medium was changed to EGM-2 and cells were cultured overnight.  Transduction was 

repeated via another round of viral infection the following day, and the ECs were then 

grown to confluence and used directly in the vasculogenesis assay.  Constructs were 

polymerized in 50 μl aliquots using cut off syringes.  Cell mixtures in a 1:1 ratio of ECs 

and NHLFs were added for a total of 105 cells/gel.  Following polymerization, cell-

seeded constructs were cultured in fully supplemented EGM-2 in a 12-well plate with 

the media changed every other day.  At 7 and 14 days post-fabrication, gels from each 

condition were washed several times with PBS and then fixed with formalin prior to 

imaging.  Low magnification fluorescent images were obtained of vessel network 

formation in each gel.  Each gel was imaged at 5 locations in the interior of the gel using 

an Olympus IX81 spinning disk confocal microscope (Olympus, Center Valley, PA) with 

a Hammamatsu (Bridgewater, NJ) camera.  Average total network length was 

determined as described previously [40] for each condition using the automated 

Angiogenesis Module in Metamorph Premier Software (Molecular Devices Inc., 

Sunnyvale, CA). 

To monitor the effect of inhibition of MMP or plasmin-mediated degradation on 

organization into vascular networks, a subset of experiments was conducted with a 

broad-spectrum MMP inhibitor, GM6001, in DMSO or the serine protease inhibitor 

aprotinin, added to both the gel precursor solution and the culture medium.  As a 

control, additional constructs were treated with the vehicle alone (DMSO).   GM6001 

(EMD Chemicals, San Diego, CA) was added at 10 μM and aprotinin (Sigma) was 

added at 2.2 μM, as used in previous work from our lab[6].  Inhibitors were replenished 
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with each media change.  At 7 days post-fabrication, gels were fixed then imaged at low 

magnification. 

 

3.2.5 PEG Hydrogel Implantation in SCID Mice and Laser Doppler Perfusion Imaging 

 All animal procedures were performed following a protocol approved by the 

University of Michigan Committee on Use and Care of Animals in accordance with NIH 

guidelines for the use of laboratory animals.  Male 6-8-week old C.B.-17/SCID mice 

(Taconic Labs, Hudson, NY) were used for all experiments.  Anesthetic/analgesic 

cocktail of 95 mg/kg ketamine (MWI Vet, Boise, ID), 9.5 mg/kg xylazine (MWI Vet, 

Boise, ID), and 0.059 mg/kg buprenorphine (Bedford Laboratories, Bedford, OH) was 

delivered to each mouse via intraperitoneal injection.  The dorsal flank of each mouse 

was cleared of fur by shaving followed by the application of a depilatory agent (Nair, 

Fisher Scientific, Pittsburgh, PA).  The region was then sterilized with betadine (Thermo 

Fisher Scientific, Fremont, CA) and wiped down with an alcohol pad.  Implants were 

prepared as described above; PEG was mixed with RGD before administering the drug 

cocktail to mice to ensure a 30 minute incubation time elapsed before polymerization of 

the gels.  Prior to initiation of the procedure, cell mixtures in a 1:1 ratio of ECs:NHLFs 

were prepared and aliquoted to yield a total of 3 million cells per injection sample (300 

μl total volume, or 10 million total cells/ml).  As prior studies from our lab using fibrin [41] 

and from others using PEG-VS gels without VEGF [32] have illustrated that minimal 

vascularization is seen in acellular controls, all implants contained cells and gel 

conditions alone were varied.  Just prior to implantation, the bis-cysteine peptide in 

HEPES was combined with the PEG+RGD solution, the medium was aspirated from the 
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top of the cell pellet, and the cells were resuspended in the gel precursor.  Solutions 

were immediately injected subcutaneously on the dorsal flank of the mouse, with two 

implants placed per animal.  Animals were kept stationary for 5 minutes to allow for 

implant gelation and then subjected to laser Doppler perfusion imaging (LDPI, Perimed 

AB, Sweden).  Each mouse was imaged in triplicate.  Mice were then placed in fresh 

cages for recovery.  At days 4, 7, and 14, mice were anesthetized with the cocktail 

described above and then subjected again to LDPI.  Surgeons were not blinded to the 

experimental conditions. 

 

3.2.6 Dextran Tracer Injection and Implant Removal 

 Implants were retrieved after 7 or 14 days following systemic administration of a 

functionality-defining tracer, as described in previous work from our laboratory [41].  

Briefly, a 70 kDa Texas Red-conjugated dextran (λex/em of 595/615 nm, Invitrogen) 

was used to assess inosculation of the transplanted cells within the implant with host 

vessels.  Following LDPI at each retrieval time point, each mouse was placed in a 

restraint device and 200 μl of a 5 mg/ml dextran solution in PBS was injected via the tail 

vein.  After injection, mice were moved to fresh cages and the tracer was allowed to 

circulate systemically for 10 minutes.  Animals were then euthanized and the implants 

were surgically excised. 

 

3.2.7 Implant Processing and Histology 

 All explants were fixed 1 hour in 4% PFA and then moved to 0.4% PFA 

overnight.  Following fixation, samples were rinsed several times in cold PBS and then 
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transferred to a sterile solution of 30% sucrose in PBS for 48 hours at 4oC.  At this time, 

explants were transferred to a mixture containing 2 parts 30% sucrose in PBS and 1 

part OCT embedding compound (Andwin Scientific, Schaumburg, IL) for another 24 

hours at 4oC.  Explants were then transferred to 100% OCT and kept another 24 hours 

at 4oC.  Each sample was then finally embedded in 100% OCT in a disposable plastic 

mold (Fisher Scientific, Pittsburgh, PA) and flash frozen on the surface of liquid 

nitrogen.  Frozen sections were generated from each sample by the histology core at 

the University of Michigan School of Dentistry. 

 Sections were stained for human CD31 using both immunohistochemistry (IHC) 

and immunofluorescence (IF).  After staining, sections were imaged using an Olympus 

IX81 spinning disk confocal microscope with a DP2-Twain (Olympus) color camera for 

visualizing IHC stained slides and a Hammamatsu camera for visualizing fluorescent-

stained sections. 

 For IHC staining, tissues were warmed at room temperature and rinsed with 

PBS.  Sections were incubated with 0.05% trypsin-EDTA for 10 minutes at 37oC for 

antigen retrieval and washed with DI water then TBS-T.  Sections were blocked 5 

minutes using a peroxidase blocking solution (Dako EnVision System-HRP (DAB) kit, 

Dako, Carpinteria, CA).  Primary antibody (human anti-mouse CD31, Dako) was diluted 

1:50 in TBS-T and applied to slides.  Following incubation overnight at 4oC, slides were 

treated for 30 minutes with the HRP-conjugated anti-mouse secondary antibody 

provided in the kit.  Prior to imaging, slides were mounted with xylene mounting medium 

(Fisher Scientific) and a #1 coverslip.  One set of sections was imaged without any 
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counterstain; the remaining sections were counterstained with hematoxylin and eosin 

and then imaged. 

 For IF staining, slides were warmed for 20 minutes then rinsed three times with 

PBS.  Sections were blocked with 5% goat serum in PBS to eliminate non-specific 

protein binding.  The primary antibody (human CD31, Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA) was diluted 1:50 in 5% goat serum and added to samples for an 

overnight incubation at 4oC.  The unbound antibody was removed at the end of the 

incubation with three washes with PBS.  The secondary antibody (Alexa Fluor 488 goat 

anti-rabbit, Invitrogen) was added to tissues at a 1:100 dilution and tissues were 

incubated 30 minutes at room temperature.  The unbound antibody was removed by 

three additional washes with PBS.  Slides were then mounted with VectaShield (Vector 

Labs, Burlingame, CA) and covered with a #1 glass coverslip prior to imaging.  

Representative images were chosen for each condition. 

 Using sections stained with hCD31 via IHC, the number of blood vessels derived 

from transplanted human cells were quantified manually.  Structures were considered 

blood vessels if they exhibited a rim of positive hCD31 stain and a hollow lumen.  The 

average number of vessels per field of view in each section was determined by 

averaging the values obtained by two independent evaluators for at least 5 images per 

animal taken at 40x. 

 

3.2.8 Statistics 

 All statistical analyses were performed using GraphPad Prism (GraphPad 

Software, La Jolla, CA).  Data are from n ≥ 3 and are reported as mean ± SEM.  
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Analyses were performed with one or two-way ANOVA followed by Bonferroni ‘s 

multiple comparison post-tests.  Statistical significance was assumed when p < 0.05. 

 

3.3 Results 

3.3.1 Gelation and Mechanical Characterization 

 PEG-based hydrogels were prepared by reacting PEG-VS with cysteine-

containing adhesive peptides and bis-cysteine containing cross-linking peptides (see 

schematic in Figure 3-1A).  One of two different cross-linking peptides were used: 

GPQG↓IWGQ (henceforth abbreviated as PEG-G) or VPMS↓MRGG (PEG-V).  Gelation 

occurred within 5 minutes and crosslinking was complete within 1 hour, as assessed 

with shear rheology (data not shown).  Mechanical characterization of pre-swollen gels 

composed of 3.5 and 5% w/v and each degradable peptide via shear rheology revealed 

that the storage modulus (G’) did not vary as a function of the crosslinking peptide used, 

but increased significantly with increasing gel solids content (Figure 3-1B).  

Measurement of the volumetric swelling ratio for each gel type indicated that the 3.5% 

gels swelled significantly more than 5% gels (Figure 3-1C).  Extent of swelling did not 

significantly differ between PEG-G and PEG-V gels. 

 In addition, because gels that undergo bulk degradation exhibit increases in 

swelling ratio over the course of degradation [19], the swelling ratio with cells was also 

obtained to assess the role of cell-mediated degradation in remodeling of the gel 

networks crosslinked with each peptide (Figure 3-1D).  At day 1, swelling ratio values 

for each condition matched those obtained for gels without cells.  Over the course of 2 

weeks, statistically significant changes in swelling ratio were observed for PEG-V, but 
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not PEG-G gels.  Constructs without cells did not undergo significant changes in 

swelling over the course of 14 days (data not shown), suggesting that proteolysis, and 

not hydrolysis, mediates the observed effects.    

 

 

Figure 3-1 Formation and mechanical characterization of PEG hydrogels..  A. Hydrogels were formed via 
Michael-type addition of cysteine-containing RGD and MMP-degradable peptides (GCRD-GPQG↓IWGQ-
DRCG and GCRD-VPMS↓MRGG-DRCG, cleavage at ↓) with 4-arm PEG vinyl sulfone.  Gels are 
susceptible to MMP-mediated degradation but not hydrolysis. B. Hydrogels were polymerized, swollen, 
and their mechanical properties tested via shear rheology.  All gels tested contained 500 μM RGD. 
*Significantly different from 3.5%G. 

#
Significantly different from 3.5%V. p < 0.05, one-way ANOVA 

followed by Bonferroni post-tests. C. Volumetric swelling ratios of equilibrated acellular gels.  
*Significantly different from 3.5%G. 

#
Significantly different from 3.5%V. p < 0.05, one-way ANOVA 

followed by Bonferroni post-tests. D. Swelling ratio of hydrogels containing cells changed significantly 
(indicated with *) from Day 1 to 14 in 3.5% and 5% V gels. p < 0.05, two-way ANOVA followed by 

Bonferroni post-tests. 
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3.3.2 Dextran Release from PEG Hydrogels 

Cumulative release profiles of fluorescent dextran were generated for each hydrogel, 

and the data were normalized to the total mass of dextran entrapped (Figure 3-2A).  

Experimental data were fit to the following equation, corresponding to a first-order 

exponential approximation[39] of Fickian diffusion through a planar slab[42], using non-

linear least squares regression: 

𝑀 = 𝑀𝑜 + (𝑀𝑓 −𝑀𝑜)[1 − 𝑒−𝐾𝑡]     (2) 

The equation modeled the release data for 3.5% PEG-G, 5% PEG-G, 3.5% PEG-V, and 

5% PEG-V gels (R2: 0.91, 0.89, 0.80, 0.85, respectively).  From these data, the rate 

constant, K, was calculated for all hydrogel formulations, and a sum-of-squares F-test  

 

 

Figure 3-2 Dextran release from PEG gels.  A. To assess bulk transport within the hydrogels, the release 
of 70 kDa Texas red-conjugated dextran entrapped within polymerized gels was measured over 72 hours.  
B. Rate constants, K, were determined by fitting release profiles to a first-order exponential 
approximation.  No significant differences were found across gel formulations. p > 0.05, sum-of-squares 

F-test. 
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demonstrated no significant differences between release rates across gel formulation 

(Figure 3-2B).   

 

3.3.3 Vascularization of PEG Gels In Vitro 

 Co-encapsulation of ECs and NHLFs in PEG-peptide hydrogels resulted in the 

formation of primitive capillary-like networks in all conditions over a period of 2 weeks  

 

Figure 3-3. Vasculogenesis in vitro was monitored in PEG hydrogels of different w/v% and cross-linked 
with either of two degradable peptides.. A. mCherry tagged ECs co-encapsulated with unlabeled 
fibroblasts organized into vascular networks in gels, and were imaged after 7 or 14 days (scale bars = 
200 μm).  B. Quantification of the total lengths of the vessel networks showed that the extent of 
vascularization was significantly higher in lower w/v% gels and slightly increased at later time points in 
PEG-V gels. Significant differences were found via 1-way ANOVA followed by Bonferroni post-tests and 
are indicated according to the following symbols: * compared to 5% PEG-G at 7 days, # compared to 5% 
PEG-V at 7 days, ^ compared to 5% PEG-G at 14 days, and % compared to 5% PEG-V at 14 days, p < 
0.05. 
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(Figure 3-3A).  Labeling ECs with the mCherry gene facilitated visualization of network 

formation and quantification using the Angiogenesis Module in Metamorph.  The extent 

of vascularization, as measured by total network length, differed significantly based on  

gel identity (Figure 3-3B).  Lower w/v% gels supported more robust vascularization in 

PEG-G and PEG-V gels.  Network length at day 7 was comparable between PEG-G 

and PEG-V gels at matching w/v%. By day 14, PEG-V gels appeared to support   

 

Figure 3-4.  Vasculogenesis with protease inhibitors.. . Vasculogenesis was monitored in vitro in gels of 
different w/v% and crosslinking peptides in untreated control gels and in the presence of 10 μM GM6001, 
DMSO, or 2.2 μM aprotinin in gels and culture media.  mCherry tagged-ECs co-encapsulated with 
unlabeled fibroblasts organized into vascular networks in control gels and in gels containing DMSO or 
aprotinin, but not in gels containing GM6001.  Constructs were fixed and imaged after 7 days (scale bars 
= 200 μm) 
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increased vascularization compared to day 7 values and to PEG-G gels.  Upon 

statistical analysis, however, differences between days 7 and 14 and between matched 

PEG-G and PEG-V gels were not significant.  

EC tubule formation was attenuated in the presence of the broad-spectrum MMP 

inhibitor, GM6001 (Figure 3-4).  ECs remained round and did not organize into tubules 

in the presence of GM6001 in all gel formulations tested, regardless of peptide identity 

or hydrogel w/v%. By contrast, the addition of either a DMSO vehicle or the serine  

protease inhibitor aprotinin had no significant effects. 

 

3.3.4 Non-Invasive Perfusion Measurement of PEG Hydrogels Implanted In Vivo 

 PEG hydrogels containing ECs and NHLFs were injected subcutaneously on the 

dorsal flank of SCID mice and the vascularization by the implanted cells and 

subsequent inosculation with the host were monitored over 14 days.  LDPI was used to 

monitor perfusion through the implant non-invasively.  Measurements were performed 

immediately after implant placement and then again at 4, 7, and 14 days after 

implantation (Figure 3-5).  For all conditions, perfusion qualitatively increased over the 

course of the experiment.  LDPI data suggest the rate of implant perfusion differs as a 

function of peptide identity, with significant increases in perfusion seen between 0 and 4 

days for PEG-V gels only.  In contrast, PEG-G gels appear to undergo less pronounced 

and slower changes in perfusion, particularly between 0 and 4 days, as assessed by 

LDPI.   

 

3.3.5 Histological Analysis of Harvested Tissues  
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Figure 3-5. Laser Doppler perfusion imaging was used to non-invasively quantify blood flow after 
subcutaneous injection of gel constructs.. .(A) Upper images show implant location on mouse.  Lower 
images are LDPI heat maps indicating degree of perfusion. (B) Quantification of relative perfusion shows 
differences between gel constructs. Statistically significant effects for both day and gel composition were 
found by 2-way ANOVA. Statistically significant increases in perfusion were observed from days 0 to 4 for 
3.5% PEG-V (*) and 5% PEG-V (#). p < 0.05 2-way ANOVA followed by Bonferroni post-tests. 
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Upon retrieval from the subcutaneous space, the implanted PEG-based 

constructs exhibited visible redness, suggesting that implants anastomosed with to the 

host vasculature within 7 days in vivo (Figure 3-6).   

Cryosections stained for human CD31 demonstrated that all four of the hydrogel 

compositions tested supported the transplanted human ECs (Figure 3-7A).  These 

human CD31-stained sections showed the presence of lumen-containing networks 

(arrows) containing host erythrocytes (inset), indicating the formation of a perfused 

vascular network from the transplanted human ECs for all gel formulations tested 

(Figure 3-7A). All implants contained a clearly delineated border between mouse tissue 

and the PEG gel, suggesting that the ingrowth of host connective tissue into these PEG 

gels is relatively slow.  However, local gel degradation and cell-mediated matrix 

deposition in the periphery of vessels, illustrated by the presence of eosinophilic matrix 

around hCD31-stained vasculature, was observed, particularly at day 14; the remainder 

of the gel persisted intact.   

 Qualitatively, differences in vasculature were observed across conditions.  

However, quantification of vessel density showed the extent of vascularization differed 

significantly only between 3.5% and 5% PEG-V implants harvested at 7 days (Figure 3-

7B).   Systemic administration of a fluorescent dextran tracer further confirmed 

inosculation of host vessels with those that form within the PEG gel implants.  Imaging 

of cryosectioned implants stained with hCD31 from tracer-injected animals revealed 

dextran-perfused vessels (red) lined with human CD31+ cells (green) in all gel types 

(Figure 3-8). 
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Figure 3-6. .Macroscopic images of implants harvested at days 7 and 14.  Visible redness within implants 
suggested implant vasculature inosculated with host vessels in all gel constructs after implantation. 
 

 

Figure 3-7.  Staining for human vessels.. A. IHC and H&E staining of cryosections from implants retrieved 
after 7 or 14 days in vivo. Sections were stained for human CD31, counterstained with H&E, and then 
imaged at 40x (scale bars = 50 μm).  Arrows point to representative hCD31-positive vessels.  B. Vessel 
density was quantified from stained sections and compared with a 2-way ANOVA followed by Bonferroni 
post-tests.  There was a significantly higher density of vessels in the 5% PEG-V gels compared to the 
3.5% PEG-V gels at 7 days. 
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3.4 Discussion 

 In this study, we demonstrated PEG hydrogels functionalized with adhesive and 

MMP-degradable peptides support the formation of vascular networks from 

encapsulated cells both in vitro and in vivo.  By varying the solids content of the 

hydrogels and the identity of the protease-sensitive cross-linking peptides, we 

investigated the respective roles of gel mechanical properties and the kinetics of 

proteolysis in vasculogenesis. Our investigation of dextran transport demonstrated no 

significant differences between gel formulations, suggesting limitations in the transport 

of nutrients or growth factors are not responsible for differences in vascular network 

formation in the in vitro model. Our in vitro results showed that increasing solids content 

to increase gel mechanical properties significantly attenuated vascular morphogenesis 

in 3D.  Nevertheless, the formation of vessel networks was quantitatively similar for the 

two different cross-linking peptides studied.  Our in vivo results showed that all gel 

formulations supported the formation of perfused vasculature from transplanted cells 

and vessel density was not attenuated in more highly crosslinked or in less degradable 

gels.  Collectively, these findings demonstrate that engineered biosynthetic hydrogels 

have translational potential to deliver cells that promote vascularization in engineered or 

ischemic tissues.      

 Prior studies have demonstrated the utility of PEG-based hydrogels for 3D cell 

cultures [16, 43-45] and as materials to direct tissue regeneration in vivo [19, 46].  

However, the number of reports in which this family of materials has been applied to 

fundamental studies of neovascularization remains relatively small.  Among these, most 
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Figure 3-8..  Red fluorescent 70-kDa dextran was administered systemically to mice prior to implant 
retrieval on day 7.  Following fixation and cryosectioning, tissues were stained for human CD31 (green) 
and imaged.  Red present within hCD31+ structures indicated inosculation of host and implant 
vasculature (scale bars = 25 μm). 
 

have focused on photopolymerizable PEG-diacrylate hydrogels, showing that 

proteolytically degradable variants support the assembly of microvascular networks in 

vitro [25, 26, 29, 47] and in vivo [26, 28], and support ingrowth of host vessels following 

release of VEGF [33].  Another recent study exploited PEG-norbornene as the base 

material, and encapsulated ECs in hydrogel arrays formed via photopolymerization [48].  

By contrast, gels formed via Michael-type addition reactions of cysteine-containing 

cross-linking peptides with PEG-vinyl sulfone have shown potential as delivery agents 

for VEGF that promote vascular in growth in vivo [32].  However, our study is the first, to 

our knowledge, demonstrating their ability to support vascular morphogenesis from 

encapsulated cells in vitro.  As a tool, this biomaterial platform is critical as a means to 

better define the instructive role of the microenvironment on the formation of vascular 

networks, and provides a system for defining additional cues to an initially bioinert 
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material in a way that should complement existing efforts to deconstruct natural 

materials (e.g., fibrin, collagen).  By varying the identity of the cross-linking peptides to 

alter the rates of proteolysis and tuning the solids content of the gels to alter the 

mechanical properties, we have investigated the impact of two key matrix cues on 

vascular morphogenesis both in vitro and in vivo.     

To alter gel degradation rates, we selected two peptides that are cleaved at 

different rates by several MMPs, although others recently reported on gels crosslinked 

by peptides with more specific susceptibilities [49].  GPQG↓IWGQ is based on a motif 

derived from type I collagen, and is cleaved by several MMPs that have been implicated 

in vascularization [36, 50].  VPMS↓MRGG was identified from a peptide library 

screening [51] and is degraded more quickly than GPQG↓IWGQ by MMPs 1 and 2 in 

solution and in gels [21].  Quantification of hydrogel swelling in the presence of cells 

revealed that PEG-V gels underwent significant changes in swelling behavior over 14 

days, which were not observed in PEG-G gels.  These data suggest the encapsulated 

ECs and fibroblasts more rapidly degrade PEG-V than PEG-G gels, in agreement with 

the published comparative rates of degradation of the two peptides by MMPs 1 and 2 

[21, 51].  Despite the measured differences in gel swelling in the presence of ECs and 

NHLFs, vascularization in PEG-V gels in vitro was not statistically higher than in PEG-G 

gels.  This may result from a delay between the onset of degradation and matrix 

vascularization, an idea corroborated by the qualitative increase in vascularization of 

PEG-V gels at later time points in vitro. Nonetheless, vascular network formation within 

these hydrogels was also verified to be MMP-dependent based on the observation that 

morphogenesis was attenuated in the presence of the broad-spectrum MMP inhibitor, 
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GM6001.  Fibroblast migration in similar gels has also been shown to depend on MMPs 

[22, 52], but our data demonstrate that MMPs are also required for vascularization. 

 In addition to proteolytic susceptibility, we altered gel solids content to investigate 

the roles of initial crosslink density and mechanical properties on vascularization. The 

swelling ratio and shear modulus of PEG-G and PEG-V gels at matched solids content 

did not differ.  This indicates that peptide identity did not modulate bulk network 

structure substantively, in agreement with another recent study [49].  Changing solids 

content, however, did significantly alter both shear modulus and swelling ratio, as 

expected, and influenced vessel formation in vitro.  Hydrogels with an initially high 

crosslink density (5 w/v% gels) supported vascular network formation to a significantly 

lower degree over 2 weeks in culture than those gels with a lower initial crosslink 

density (3.5 w/v% gels). This observed decrease is consistent with previous studies 

from our laboratory using PEG-collagen hydrogels [39], and from another study that 

showed crosslinking density attenuated radial sprouting from endothelial and smooth 

muscle cell spheroids encapsulated in PEGDA-derived hydrogels [25].  As a whole, 

these studies suggest initial crosslinking density is an important modulator of vascular 

morphogenesis, even in matrices that cells can remodel. 

 The results of our animal studies underscore the importance of characterizing 

angiogenic response both in vitro and in vivo, as constructs which minimally supported 

vascularization in vitro (e.g. 5 w/v% gels) underwent robust vascularization when 

implanted into subcutaneous locations.  In all PEG constructs, vessels formed from the 

transplanted human cells and inosculated with the host vasculature within a week of 

implantation. From LDPI, relative perfusion through the subcutaneous implants 
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increased rapidly in PEG-V gels in the 4 days following implantation, but was not 

sustained through the 14 day study.  In contrast, no significant increases in relative 

perfusion were observed for PEG-G gels.  However, the histological evidence 

suggested that vascularization occurs at quantitatively similar levels in both PEG-G and 

PEG-V gels over the 2 week observation period.  Furthermore, 5% PEG-V gels 

supported quantitatively higher levels of vascularization than 3.5% PEG-V gels at day 7, 

in contrast to the result from the in vitro studies.  This difference may be due to the 

proteolytic milieu in the two scenarios.  In vivo, proteases are secreted by a variety of 

cell types, including interstitial and inflammatory cells in addition to endothelial cells [53], 

while our in vitro model only accounts for the contribution of endothelial and stromal 

support cells.  These data demonstrate that the set of matrix cues determined to be 

optimal for vascular morphogenesis in vitro may be distinct from those necessary to 

maximize vascularization in vivo. 

 

3.5 Conclusion 

 The co-delivery of endothelial cells and NHLFs in PEG hydrogel constructs of 

varying degradability and mechanical properties resulted in the formation of vasculature 

in vitro and in vivo.  Overall, fewer differences were evident between gel conditions in 

vivo compared to in vitro, suggesting that the in vivo environment may be more 

permissive to vascularization.  This finding is of particular interest in designing therapies 

for clinical use, and underscores the limitations of in vitro systems to fully recapitulate 

the more clinically relevant in vivo environment.  Overall, we have demonstrated that an 

injectable, PEG-based synthetic material that polymerizes in situ is well-suited as a 
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vehicle for cell-based vascularization therapies and may represent a viable alternative 

to more invasive treatment options for ischemic diseases. 
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Chapter 4  

 

Biosynthetic PEG Hydrogels Support 

Revascularization of Ischemic Tissue 

 

4.1 Introduction 

Cardiovascular disease (CVD) is the leading cause of mortality in the United 

States and globally [1, 2].  The clinical manifestations of CVD vary, but several 

conditions, notably coronary heart disease (CHD) and peripheral artery disease (PAD), 

are characterized by poor tissue perfusion, resulting primarily from the deposition of 

atherosclerotic plaques on the interior of blood vessel walls [3, 4].  Currently, 

approximately 15.4 and 10-12 million Americans suffer from CHD and PAD, respectively 

[3, 5].  In these patients, chronic vascular insufficiency results in tissue ischemia and, in 

advanced stage disease, tissue loss and death. 

Despite ongoing improvements in therapeutic interventions for these patients, 

there is a persistent need for novel cardiovascular therapies and approaches to 

minimize costly interventions and improve efficacy for a broad patient population.  

Current therapies include lifestyle modification, pharmaceuticals, and surgical 
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approaches [3].  In late stage disease, the two former approaches are insufficient to 

address ischemia and co-morbidities restrict surgical options for many patients [6-9].  

Thus, substantial research has focused on the development of non-invasive vascular 

therapies to ameliorate the underlying ischemia [9-12].  The approaches utilized can be 

broken down into a few overarching categories: the delivery of genes or trophic factors, 

the delivery of cells, and/or the delivery of materials. 

Gene or trophic factor delivery aids in re-perfusion to ischemic tissue in animal 

models, and was vetted in early clinical trials [10].  Nonetheless, to date no therapy 

utilizing this approach has been approved by FDA, and randomized, controlled double-

blind trials have delivered mixed results regarding efficacy for these therapies [9, 13].  

Typically, growth factor therapies deliver one of several growth factors using 

recombinant proteins or viral vectors [9, 10].  Among the most commonly utilized factors 

are bFGF, FGF-1, HGF, and VEGF.  The complex spatial and temporal presentation of 

soluble effectors mediated by cells is not fully recreated in these approaches because 

they primarily rely on the action of a single growth factor [14, 15].  In vivo, angiogenesis 

depends on a complex interplay between various angiogenic mediators [6, 16-18], 

which cannot be effectively re-created with a single factor.  Additionally, the efficacy of 

growth factor delivery approaches often is stymied by poor retention and stability of the 

protein or vector upon delivery.  Thus, recent research has focused on alternate 

approaches, including the delivery of multiple growth factors [19], or simply the 

utilization of cells or a scaffold to the same end. 

Cell delivery is of particular interest, in part because in vitro studies [20] 

demonstrate the ability of cells to function as growth factor producers, effectively 
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rendering unnecessary the delivery of exogenous growth factors.  The delivery of 

vascular progenitor cells, in addition to other supportive cells, to revascularize tissue is 

of substantial research interest, but has not yet been vetted clinically [12].  Nonetheless, 

a wealth of pre-clinical data suggests cell delivery approaches- particularly those 

delivering cells directly to the site of ischemia- are effective at enhancing tissue 

perfusion recovery following ischemic insult [21-31].  Substantial variation exists 

regarding the cells used.  Some cell-based approaches rely on the delivery of co-

cultures of endothelial and support cells to facilitate vascularization [21], while others 

deliver single cell types or even minimally characterized, autologous mixed cell 

populations.  Several studies have demonstrated the delivery of endothelial cells can 

potentiate re-vascularization following ischemic insult [22-28].  In other studies, the 

delivery of adipose- or bone marrow-derived stem cells alone [29-32] improved function 

following induction of limb ischemia in a murine model.  Alternately, the infusion of 

minimally purified hematopoietic stem cell populations into ischemic tissue can enhance 

neovascularization [33, 34], despite poor characterization of the cells present within the 

infusion.  Nonetheless, several studies suggest individual cell types alone are not as 

effective in supporting vascularization as mixtures of cells containing both supportive 

cell types and endothelial cells [20, 21, 35-39].  These data motivate the co-culture 

approach utilized in this study. 

Materials development is likewise employed to potentiate revascularization in 

combination with either of the above strategies (i.e. growth factor delivery and/or cell 

delivery). The delivery of cells in a scaffold enhances cell engraftment [40].  Scaffolds 

may additionally be utilized to deliver relevant factors for vascularization in a controlled 
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manner [40-44].   Results from clinical trials of cell-based therapies suggest simple 

infusions have significant limitations, including massive cell death- approaching 90%- 

upon transplantation [28].  Poor cell engraftment is characteristic of cell therapies 

targeting a variety of tissues, and the delivery of cells within a scaffold improved graft 

survival across several tissues and applications, including transplantation of cells for 

regeneration of cardiac tissue [40, 41], the liver [42], or bone marrow [43].  These 

approaches enhanced both survival and function of the transplant, and highlight the 

potential of scaffolds to enhance response to cell-based therapies.  In the context of 

peripheral ischemia, studies have demonstrated recovery is enhanced when endothelial 

progenitor cells are delivered in conjunction with a variety of scaffolds, including 

collagen [45], modified-alginate [28], and polylactic-co-glycolic acid [46].   

Our approach to re-vascularize ischemic tissue was built on an extensive 

literature that led us to pursue a hybrid strategy involving the delivery of cells within a 

hydrogel.  Though natural materials support robust vascularization in several in vitro 

and in vivo models [36, 39, 47-53], they are highly variable, due to source and 

processing issues and raise concerns from the perspective of potential immunogenicity.  

Synthetic materials, instead present a different set of concerns; namely, they must be 

carefully tailored to present the appropriate biological signals to support cell processes 

such as adhesion, migration, proliferation, and, in the context of our work, vessel 

morphogenesis.  This study utilizes poly(ethylene glycol)-based hydrogels as a 

supportive matrix for therapeutic vascularization.  PEG hydrogels allow presentation of 

well-defined biological signals that can be tuned to match the translational application, 

are reproducible, and are generally considered to be biocompatible. 
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In the preceding chapter, we optimized a biosynthetic PEG hydrogel system for 

the encapsulation of endothelial and stromal cell co-cultures.  PEG hydrogels supported 

the formation of endothelial cell (EC) tubules upon encapsulation with support cells in 

vitro and perfused blood vessels from encapsulated cells delivered in a subcutaneous 

implant in vivo [54].  Despite the variety of matrices used for cell delivery in therapeutic 

vascularization, few researchers have used PEG-based scaffolds for this application.  

Studies have investigated the formation of vasculature from implanted cells in PEG gels 

[55, 56], and the recruitment of host vasculature [57].  While PEG hydrogels have been 

used to deliver VEGF to an ischemic limb [58], this class of scaffold has not been used 

as a cell delivery vehicle to ischemic tissue.   Thus, we chose to deliver endothelial and 

stromal cells within a biosynthetic PEG hydrogel to tissue rendered ischemic by femoral 

artery ligation (FAL).  FAL is a well-established model of hindlimb ischemia that is 

considered to approximate the clinical manifestations of PAD and CLI.  Further, to better 

assess the ability of the PEG hydrogels to support revascularization of the ischemic 

limb, we compared the response following FAL to that stimulated by a well-studied 

natural material: fibrin.  Fibrin is a naturally-occurring biopolymer that is found in the 

provisional matrix of healing wounds and is widely demonstrated to support 

vascularization [59].  Assessments of flow to the limb as a whole, as well as histological 

assessment of the implants were utilized to investigate the differential ability of the 

materials to support vascularization. 

 

4.2 Methods 

4.2.1 Cell Isolation and Culture 
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Human umbilical vein endothelial cells (HUVECs, or henceforth ECs) were 

isolated according to a previously described protocol [54].  ECs were cultured in 

supplemented endothelial growth medium (EGM-2, Lonza, Walkersville, MD) at 37C 

and 5% CO2 and were used at passage 3.  Normal human lung fibroblasts (NHLFs, 

Lonza) were cultured in M199 (Invitrogen Corporation, Carlsbad, CA) with 10% fetal 

bovine serum (FBS), 1% penicillin/streptomycin (Mediatech, Manassas, VA), and 0.5% 

gentamicin (Invitrogen) at 37C and 5% and used prior to passage 15.  Cells were 

cultured in monolayers until 80% confluent and then passaged with 0.05% trypsin-EDTA 

(Invitrogen). 

 

4.2.2 PEG and Fibrin Gel Preparation 

PEG and fibrin gels were formed according to previously established protocols [39, 54].  

PEG hydrogels were polymerized via Michael-type addition reaction of 4-arm PEG vinyl 

sulfone (PEG-VS; 20 kDa, JenKem USA, Allen, TX) with a combination of thiol-

containing adhesive and protease-sensitive peptides.  Briefly, PEG-VS in HEPES 

(50mM, pH 8.4, supplemented with growth factors from endothelial medium bullet kit) 

was combined with the adhesive peptide solution (10 μg μl-1 CGRGDS in HEPES, 

Genscript, Piscataway, NJ) to yield a final adhesive site density upon gelation of 500 μM 

and the solution was reacted 30 minutes at room temperature prior to addition of the 

crosslinking peptide.  Bis-cysteine-containing crosslinking peptides were added in 

HEPES to form gels with 3.5% (w/v) total solids content and a 1:1 molar ratio of –SH 

and –VS groups.  Gels were polymerized with one of two peptides, Ac-GCRD-

GPQG↓IWGQ-DRCG-NH2 (3.5% G gels) or Ac-GCRD-VPMS↓MRGG-DRCG-NH2 (3.5% 
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V gels) (Genscript, cleavage site indicated by↓). The two crosslinking peptides used -

GPQG↓IWGQ and VPMS↓MRGG- are degraded at different rates by proteases relevant 

to vascularization (Supplemental Figure 4) [54, 60].  Fibrin gels were prepared at 2.5 

mg/ml in serum-free EGM-2 with 5% FBS and 1 U/ml thrombin (Sigma).  The bulk 

mechanical properties of the PEG and fibrin gels were not matched.  Instead, the 

concentrations for each were chosen based on previous studies investigating 

vascularization in the materials.  PEG gels with 3.5% solids have been demonstrated to 

support vascularization [54] and the fibrinogen concentration used approximately 

matches that present in circulating blood and has been used in previous studies in our 

lab [61]. 

4.2.3 Assessment of Hydrogel Degradation Kinetics 

Hydrogel degradation kinetics were evaluated via incubation of gels with 

recombinant MMP2, as described in a previously published protocol [55].  Gel 

degradation was assessed by monitoring the change in wet weight upon incubation with 

recombinant MMP2 (enzyme purchased from EMD Millipore).  Hydrogels were prepared 

as described above and swollen overnight prior to incubation with the enzyme solution.  

The enzyme was prepared at 1 nM in degradation buffer (100 mM tricine, 200 mM 

NaCl, 10 mM CaCl2, 0.05% Brij 35 at pH 7.5) and 100 μl gels were incubated in 250 μl 

enzyme solution at 37C and 5% CO2, with fresh solution added daily. 

 

4.2.4 Induction of Ischemia and Implant Delivery 

All animal procedures were performed according to a protocol approved by the 

University of Michigan Committee on the Use and Care of Animals in accordance with 
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NIH guidelines for the use of laboratory animals.  Male six- to eight-week-old C.B.-

17/SCID mice (Taconic Labs, Hudson, NY) were used for all experiments.  Before the 

surgical procedures, animals were administered an anesthetic/analgesic cocktail of 95 

mg kg-1 ketamine (Fort Dodge Animal Health, Fort Dodge, IA), 9.5 mg kg-1 xylazine 

(Lloyd Laboratories, Shenandoah, IA), and 0.059 mg kg-1 buprenorphine (Reckitt 

Benckiser, Richmond, VA) via intraperitoneal injection.  Both hindlimbs of each mouse 

were cleared of fur by shaving and the use of a depilatory agent (Nair, Fisher Scientific, 

Pittsburgh, PA).  The region was then sterilized with betadine (Thermo Fisher Scientific, 

Fremont, CA) and wiped down with an alcohol pad.  After hair removal and disinfection, 

a skin incision was made over the femoral artery moving caudally from the inguinal 

ligament to the popliteal bifurcation and the connective tissue was dissected from the 

femoral artery.  The femoral artery and vein were then ligated with triple surgical knots 

using Ethicon 5-0 sutures (Ethicon, Somerville, NJ) immediately distal to the level of the 

profunda femoral artery and again just proximal to the bifurcation of the saphenous and 

popliteal arteries.  The superficial femoral was transected from the tissue between these 

ligation points.  Implants (n = 5) per condition were prepared as described above.  Prior 

to initiation of the procedure, mixtures of ECs and NHLFs in a 1:1 ratio were prepared 

and aliquoted to yield 10 million total cells/ml gel precursor solution.  Implants with a 

total volume of 300 μl were prepared with and without cells for 3 gel compositions- 

fibrin, 3.5% PEG-G, and 3.5% PEG-V- and delivered via intramuscular injection to 3 

locations spaced equally between the proximal and distal ligation sites.  Following 

injection, animals were kept stationary for 5 min to allow for implant gelation.  Surgeons 

were not blinded to the experimental conditions. 
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4.2.5 Laser Doppler Perfusion Imaging and Magnetic Resonance Angiography 

Animals were subjected to laser Doppler perfusion imaging (LDPI, Perimed AB, 

Sweden) immediately following induction of ischemia and again at days 4, 7, and 14.    

Each mouse was imaged in triplicate.  Mice were placed in fresh cages for recovery.  

For days 4, 7, and 14, mice were anesthetized with the cocktail described above prior to 

imaging via LDPI. Although the penetration depth of LDPI into tissue is minimal (1-2 

mm), others have demonstrated it is an effective proxy for more invasive methods of 

assessing tissue vascularity and LDPI data correlates to capillary density in several 

murine models of ischemic hindlimb [62, 63].  In the results, perfusion is reported as the 

ratio of the relative perfusion to the ischemic limb compared to the contralateral.  ROIs 

were selected to match anatomically from the ischemic to contralateral limb and to 

encompass the region distal to the site of ligation. 

All magnetic resonance imaging was performed at 7T using a 4-cm-inner 

diameter volume coil (Direct Drive console and Milipede radiofrequency coil, Agilent, 

Santa Clara, CA).  Animals were anesthetized and maintained on isoflurane in oxygen 

for the duration of imaging.  Body temperature was maintained at 37oC ± 0.2.  Imaging 

was performed 24 hours after femoral artery ligation to demonstrate the attenuation of 

flow to the femoral artery of the ipsilateral limb.  After a pilot scan to confirm positioning, 

mice underwent a 3D spoiled gradient echo sequence (flip angle = 30o, FOV = (3 cm)3, 

TR = 20 msec, TE = 3 msec, spectral width = 50 kHz, isotropic matrix of 128, NEX = 

2).  Total acquisition time was eleven minutes.  Data sets were zero-filled to 2563 and 

visualized by maximum intensity projection (MIP) in the coronal plane. 
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4.2.6 Dextran Tracer Injection and Implant Removal 

Implants were retrieved either 7 or 14 days after inducing ischemia following 

systemic administration of a labeled dextran.  Selectively permeable mature capillaries 

are impermeable to dextrans of molecular weight exceeding 65 kDa [59].  Thus, a 70 

kDa Texas Red-conjugated dextran (λex/em of 595/615 nm, Invitrogen) was chosen to 

administer to better assess the inosculation and permeability of engineered vessels 

within the implants.  The dextran molecule contains free lysines, which can be fixed in 

formalin, thus allowing the localization of the tracer to be visualized in histological 

sections.  Following LDPI at the retrieval time point, each mouse was placed in a 

restraint device and 200 μl of a 5 mg/ml dextran solution in PBS was injected via the tail 

vein.  After injection, mice were moved to fresh cages and the tracer was allowed to 

circulate systemically for 10 min prior to euthanasia.  Hindlimb muscle tissue between 

the ligation sites was dissected from the limb. 

 

4.2.7 Implant Processing and Histology 

All tissues were fixed overnight at 4oC in Z-fix (Anatech, Battle Creek, MI).  

Following fixation, samples were rinsed thrice with cold PBS and then transferred to 

70% ethanol until histological processing. Samples were processed according to a 

standard procedure and embedded in paraffin.  Tissues were oriented to generate 

sections with the limb in cross section.  Sections (5 μm thick) were generated at regular 

intervals along the limb, to ensure sampling of implant volume was consistent across 



 

100 
 

the tissue harvested.  For all staining procedures, paraffin sections were rehydrated 

according to a standard protocol [38]. 

Sections were stained for human CD31, alpha-smooth muscle actin (α-SMA), 

and calponin using a standard immunohistochemical stain.  Briefly, following rehydration 

and antigen unmasking, sections were washed with TBS-T and then blocked 5 minutes 

with a peroxidase blocking solution (Dako EnVision System-HRP (DAB) kit, Dako, 

Carpinteria, CA).  Primary antibodies were diluted 1:50 in TBS-T and applied to slides.  

Following incubation overnight at 4oC, slides were incubated for 30 minutes at room 

temperature with the HRP-conjugated anti-mouse secondary antibody provided in the 

Dako kit.  Slides were dehydrated and mounted with xylene-based mounted medium 

(Fisher Scientific) prior to imaging. 

For lectin staining, samples were first rehydrated and steamed in an antigen 

unmasking solution (Dako, Carpinteria, CA).  Sections were then rinsed several times 

with PBS and then incubated for 45 minutes with either fluorescein-labeled Bandeiraea 

Simplicifolia I (BS-1) or Ulex Europaeus Agglutinin I (UEA-1) lectin (Vector Labs, 

Burlingame, CA).  BS-1 lectin is specific for mouse ECs and UEA-1 is specific for 

human ECs.  Slides were then rinsed in PBS, dehydrated, and mounted as described 

above. 

Using sections stained with hCD31 via IHC with no H&E counterstain, the 

number of blood vessels derived from human cells within the implant was quantified 

manually.  Images were taken at 20x in the interior of the implant and vessels were 

quantified for 10 images per animal by a blinded observer.  Blood vessels were included 
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in the quantification if they exhibited a border of hCD31+ cells and an unstained, hollow 

lumen. 

 

4.2.8 Statistics 

All statistical analyses were performed using GraphPad Prism (GraphPad 

Software, La Jolla, CA).  Data are from n = 5 and are reported as mean ± SEM.  

Statistical analyses consisted of a one or two-way ANOVA followed by post-tests 

implementing Bonferroni’s multiple comparison correction.  Statistical significance was 

assumed when p < 0.05.  

 

4.3 Results 

4.3.1 Hindlimb Ischemia Induced by Femoral Artery Ligation (FAL) 

Ischemia was induced by excising the segment of the femoral artery and vein 

bounded proximally by the deep femoral artery and distally by the bifurcation of the 

popliteal and saphenous arteries (Figure 4-1).  Mice were treated immediately after 

ischemic induction with the hydrogel constructs outlined above.  Gels composed of fibrin 

or PEG, 3.5% G or 3.5% V, were injected intramuscularly, with or without cells, after 

ligation.  Prior to recovery, mice underwent LDPI to non-invasively assess perfusion to 

the ischemic limb.  Following FAL, perfusion to the ischemic (ipsilateral) limb was 25% 

of perfusion to the unoperated, contralateral limb (Figure 4-2).  The extent of ischemia 

induced by FAL did not significantly vary across experimental conditions (Figure 4-2).  

Mice with a perfusion ratio of less than 0.075, or 7.5%, were excluded from the study to 

remain compliant with the endpoints regarding autoamputation stipulated in our UCUCA 
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Figure 4-1. A. Model of hindlimb ischemia.FAL schematic adapted with permission[7]. Hydrogel precursor 
was delivered intramuscularly with ECs and NHLFs or no cells to the ischemic limb of SCID mice 
following femoral artery ligation.  Gels were delivered at 3 sites (gray circles).  Ligation sites are indicated 
by *. EC, endothelial cells; NHLF, normal human lung fibroblast.  Fibrin controls (not depicted) were 
delivered in the same manner as PEG hydrogels. B. Magnetic resonance angiography confirms the 
ligation and excision of the femoral artery to render the ipsilateral limb ischemic. 

protocol.   

The attenuation of flow to the ischemic limb was corroborated by magnetic 

resonance angiography (MRA).  Mice were imaged 24 hours after surgery and flow to 

the superficial femoral artery in the ipsilateral limb was not evident (Figure 4-1). 

 

4.3.2 Delivery of Hydrogel Constructs Restores Perfusion to the Ischemic Limb 

Perfusion to the ischemic limb increased significantly in the two weeks following 

FAL and implant delivery across all experimental conditions (Figure 4-2).  Within four 

days of FAL, the LDPI ratio significantly increased in all animals except those containing 

acellular fibrin implants.  In these mice, significant reperfusion was evident by day 7.  

Fibrin implants with cells were notable for supporting increased perfusion one week 

after FAL compared to other gel constructs and compared to other time points. 
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Figure 4-2. Laser Doppler Perfusion imaging (LDPI) was used to non-invasively quantify blood perfusion 
after intramuscular delivery of gel constructs to ischemic limb. (A) Images represent LDPI heat maps 
demonstrating degree of perfusion to ischemic and contralateral limbs.  Images of acellular constructs not 
shown. B. Quantification of relative perfusion demonstrates differences between gel constructs.  
Statistically significant effects for both day and gel composition were found by 2-way ANOVA.  Perfusion 
increased significantly over 14 days in all constructs, and perfusion of limbs containing fibrin implants with 
cells was significantly increased compared to other implants at matched time points. * denotes 
significance compared to day 0 within experimental groups and ^ denotes significance compared to day 7 
within experimental groups. # indicates significance versus fibrin implants with cells at matched time 
points.  p < 0.05 2-way ANOVA followed by Bonferroni post-tests. 
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Figure 4-3. Laser Doppler Perfusion imaging (LDPI) was used to non-invasively quantify blood perfusion 
after femoral artery ligation in animals not treated with gel constructs. Perfusion increased significantly 
over 14 days.  p < 0.05 1-way ANOVA followed by Bonferroni post-tests. 

 

Perfusion through limbs treated with fibrin gels reached 120% one week after ligation, 

but this effect did not persist to the two week time point.  In contrast, other gel 

constructs did not support complete restoration of perfusion to the ischemic limb (values 

ranged from 60 and 80% compared to the contralateral limb), but perfusion did not drop 

at later time points in these gels.  By day 14, there were no statistical differences in 

reperfusion to the ischemic tissue in mice treated with fibrin gels and cells in 

comparison to other gel conditions.  No statistical differences in reperfusion were found 

based on crosslinking peptide identity in PEG hydrogels.  Acellular PEG gels supported 

reperfusion to a similar extent as PEG gels with cells.  Mice that underwent FAL without 

delivery of an implant or cells demonstrated some reperfusion, but values plateaued at 

approximately 50% (Figure 4-3). 

 

4.3.3 Implants are Remodeled and Support Capillary Formation 

Transplanted HUVECs organized into perfused vessels following delivery to the 

ischemic limb via injectable hydrogel constructs.  Paraffin sections stained for human  
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Figure 4-4. Section harvested from mice 1 and 2 weeks after FAL. A. hCD31 IHC and H&E staining of 
paraffin sections from implants retrieved after 7 or 14 days in vivo. All implants contain ECs and NHLFs.  
Acellular implants (not shown) were not hCD31+.  B. Slides stained with hCD31 but not counterstained to 
facilitate vessel quantification (all images 40x, scale bars= 50 μm). C. Quantification of hCD31+ vessels 
perfused with RBCs demonstrates differences between gel constructs.  Statistically significant effects for 
both day and gel composition were found by 2-way ANOVA.  Vessel density was not statistically different 
for PEG and fibrin gels at day 7, however, vessel density decreased significantly in fibrin gels at day 14. * 
denotes significance compared to day 14 within experimental groups and ^ denotes significance versus 
fibrin implants with cells at matched time points.  p < 0.05 2-way ANOVA followed by Bonferroni post-
tests. 
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Figure 4-5.  Red fluorescent 70 kDa dextran was administered systemically to mice prior to implant 
removal on day 7 or 14.  Paraffin embedded slides were stained for UEA-1 lectin (green) and imaged.  
Red present within UEA-1+ structures indicates inosculation of host and implant vasculature (scale bars = 
100 μm) 

CD31 and H&E demonstrate that vessels formed from human ECs and inosculated with 

host vasculature within one week of implantation in both fibrin and PEG constructs 

(Figure 4-4).  Not all vessels stained positive for human CD31 in fibrin implants (Figure 

4-4A, black arrow), indicating mouse vessels were present within the construct.  All 

vessels in the PEG implants stained positive for human CD31.  Host erythrocytes were 

evident in the lumens of vessels formed in the three hydrogel materials.  The 

insoculation of host vessels with implant vasculature was further confirmed by the 

presence of a systemically administered fluorescent dextran tracer in the lumens of  

neovessels formed in the implant (Figure 4-5).  Sections from tracer-injected animals 

were stained with fluorescein-tagged UEA-1 to identify human ECs.  Dextran-perfused 

vessels (red) in the implant region were circumscribed by human UEA-1+ cells (green).  

Qualitatively, differences in the vasculature between conditions were observed from  
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UEA-1 stained sections.  The presence of red signal in the interstitial space indicates 

extravascular leakage occurred in all implants with cells, particularly at the day 7 time 

point. 

As expected, histological sections from acellular implants demonstrated no 

positive staining for human CD31.  Additionally, PEG implants without cells remained 

almost entirely intact after 2 weeks in vivo and were not extensively remodeled via host 

ingrowth.  This histologic finding was corroborated by macroscopic images of acellular 

PEG implants (Figure 4-6), which remained nearly transparent with no evident vessels 

even after two weeks in vivo.  In contrast, implants delivered with cells had a pink hue 

and individual vessels were easily identified in the gels. 

 

Figure 4-6. Macroscopic images of selected implants demonstrates distinct differences in extent of 
remodeling of acellular PEG gels compared to those which delivered cells. 

 

The density of human-derived vessels in the ischemic limb was quantified 

manually from human CD31-stained sections without H&E counterstaining (Figure 4-

4B).  One week after FAL and implant delivery vessel density was comparable for the 
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three gel formulations (Figure 4-4C).  By the following week, vessel density had 

dropped significantly in animals treated with fibrin constructs and cells.  Vessel density 

did not drop from days 7 to 14 in PEG implants.  No significant differences were 

observed between the 3.5%G and 3.5%V hydrogels. 

 

4.3.4 Investment of Engineered Capillaries with Pericytes 

Pericytes associated with human-derived vessels within PEG and fibrin implants.  

Tissues were stained for α-SMA and calponin to probe the association of supportive 

pericytes with engineered vessels.  α-SMA is used extensively as a pericyte marker, 

while calponin is regarded to be more specific for mature smooth muscle[59].  IHC 

staining for α-SMA revealed some positive staining within implants harvested at days 7 

and 14 for all three gel types used to deliver human cells (Figure 4-7).  In the PEG gels 

α-SMA+ vessels were more evident at day 14.  For fibrin gels, substantial α-SMA 

staining was observed at day 7.  At day 14, despite significant regression of vessels in 

fibrin tissues (Figure 4-4C), those that persist stain positive for α- SMA.  No positive 

staining for human calponin was evident in any of the gel constructs (Figure 4-8). 

 

4.3.5 Perfused Vasculature Evident in Muscle Surrounding Implant 

Sections from dextran tracer-injected animals were stained with BS-1 lectin to 

identify mouse ECs and assess revascularization in the region around the implants.  

Perfused mouse EC-lined vessels were interspersed between muscle fibers in the 

region surrounding constructs with and without cells (Figure 4-9).  The regularity and 

distribution of vessels varied by implant condition.  BS-1+ structures were less uniformly 
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Figure 4-7.  IHC and H&E staining of paraffin sections from implants retrieved after 7 or 14 days in vivo. 
Sections were stained for α-SMA, counterstained with H&E, and then imaged at 40x (scale bars= 50 μm).  
All implants contain ECs and NHLFs.  Positive staining for α-SMA increases from day 7 to day 14, which  
suggests vessels undergo stabilization by pericytes during this period. 

 

 

Figure 4-8. IHC for human calponin and H&E staining of paraffin sections from implants with ECs and 
NHLFs retrieved after 7 or 14 days in vivo. All images are 10x (scale bars= 200 μm). Positive staining for 
human calponin is not evident in any gel constructs, suggesting implanted NHLFs do not function as 
mature smooth muscle.  By day 14, some vessels in PEG implants appear to have associated smooth 
muscle (black arrows).  The lack of positive staining for human calponin suggests these are host-derived. 
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Figure 4-9. Red fluorescent 70 kDa dextran was administered systemically to mice prior to implant 
removal on day 7 or 14. Paraffin embedded slides were stained for BS-1 lectin (green) and imaged (A, 
acellular gels; B, gels with ECs and NHLFs).  BS-1 lectin stains mouse endothelial cells, and allowed us 
to assess host vascularization in response to implant delivery and induction of ischemia. A. Mouse 
vasculature is evident within the muscle.  Irregular spacing of muscle and gaps between fibers suggest 
differential revascularization compared to muscle adjacent to gels delivering cells (see B). B. Most 
vessels within the muscle are BS-1+, while the majority of vessels in the implant are lined with human, not 
mouse endothelial cells (see Figure 5 as well) (scale bars = 100 μm). 
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Figure 4-10. H&E staining of paraffin sections from acellular (A) or cellular (B) implants retrieved after 7 or 
14 days in vivo. Sections were stained and then imaged at 20x (scale bars= 100 μm).  Acellular gels 
evidence increased inflammatory infiltrate in muscle around implant than gels with ECs and NHLFs, 
particularly at day 7. 
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distributed in acellular gels.  Host inflammatory and endothelial cells infiltrated the 

endomysium surrounding muscle fibers in tissues with acellular PEG gels.  This effect is 

strongly evident from BS-1 staining at day 7, and somewhat diminished by day 14.  The 

infiltration of muscle endomysium around acellular implants was further corroborated by 

H&E-stained sections (Figure 4-10).  Moreover, H&E staining demonstrates muscle 

fibers have centrally located, and not peripheral, nuclei at day 14.  The presence of 

central nuclei suggests the muscle is in the process of regeneration at this time, but has 

not yet normalized.  In muscle near implants with cells some infiltrate is evident, but the 

enlargement of the endomysium is not as pronounced (Figure 4-10).  Muscle adjacent 

to implants delivering cells was nearly uniformly perfused with host vessels in tissues 

harvested 7 and 14 days after implantation.  Muscle fibers were not separated by a thick 

layer of connective tissue in these tissues.   

 

4.4 Discussion 

In this work, a well-established murine model of hindlimb ischemia was utilized to 

investigate the ability of PEG-based hydrogels and fibrin to potentiate re-

vascularization.  Following induction of ischemia, injectable gels were used to deliver 

endothelial and stromal support cells intramuscularly with angiogenesis monitored in the 

ischemic limb for 2 weeks. 

Surgical ligation of the femoral artery is a well-established technique which 

mimics the chronic ischemia experienced in human patients with peripheral artery 

disease (PAD) and critical limb ischemia (CLI) [63].   With regards to the extent of 

ischemia induced by ligation, substantial variability is described in the literature.  This 
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variability likely results from both intrinsic mouse strain-dependent differences in 

endogenous re-vascularization upon induction of ischemia [64-67], as well as the use of 

different ligation sites by researchers [7, 8, 63].  We chose to utilize a ligation model 

wherein the femoral artery and vein are ligated immediately distal to the origin of the 

deep femoral and superior epigastric arteries and again proximal to the saphenous and 

popliteal bifurcation.  The artery and vein are then excised in this region.  This model 

results in minimal autoamputation compared to more severe models in which the deep 

femoral is ligated and is permissive to collateralization as the arteriole bed remains 

intact [7, 8].  With this model, perfusion drops to approximately 25% of the control limb 

immediately following ligation [63] and normalizes to between one and two thirds of 

baseline within 7 days of ligation [7, 8], even in the absence of therapeutic intervention.  

Our results corroborate previously published studies, with perfusion returning to 50% of 

the contralateral limb within 2 weeks of ligation.  This restoration of perfusion 

presumably results from a combination of angiogenesis in the ischemic tissues and 

arteriogenesis in the area upstream to the ligation.  Arteriogenesis, the remodeling of 

pre-existing arterioles into larger diameter arteries, occurs in response to changes in 

hemodynamic forces [15, 19, 68, 69] and may be particularly important to reperfuse 

tissues not treated with implants or cells.  Our study primarily aims to augment 

angiogenesis within the ischemic region, but the contribution of arteriogenesis, 

particularly in response to implant delivery is an area of interest that warrants further 

study. 

We utilized a hybrid strategy to restore perfusion to tissue following FAL, wherein 

endothelial and stromal cells were delivered within a biosynthetic PEG hydrogel or 
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fibrin.  Two variants of the PEG hydrogel were utilized, with differences in the relative 

susceptibility of the peptide crosslinker  to MMP-mediated degradation [54].  The 

response following FAL in animals implanted with PEG was compared to that stimulated 

by fibrin.  Differences in the density and distribution of vessels, as well as reperfusion to 

the ischemic tissue, were evident between conditions.  However, all gels delivering cells 

resulted in the formation of human CD31+ vessels with distinct lumens and, by day 14 

post-FAL, pericytic association with the nascent vessels.  An abnormal pericyte coat is 

associated with several pathologies, and association of pericytes with nascent vessels 

is considered to be critical for vessel stabilization as well as control of vascular 

permeability [59, 70].  PEG and fibrin gels evidenced vessels with well-circumscribed 

lumens staining positive for α-SMA.  Unfortunately, due to nonspecificity of the antibody 

used, no conclusions may be drawn regarding the origin of the pericytes.  Despite 

ubiquitous positive staining for α-SMA, no conditions stained positive for human 

calponin.  This corroborates results previously published in our lab[59], wherein 

subcutaneous fibrin implants containing ECs and fibroblasts did not express calponin.  

These data suggest that the fibroblasts cannot function as mature smooth muscle 

despite their association with capillaries and further remodeling of the nascent vessels 

by host smooth muscle may be necessary for maturation of these structures.  Indeed, 

some vessels in implants harvested at day 14 appear to be circumscribed by smooth 

muscle, suggesting host tissue may facilitate maturation of tubules formed from 

transplanted ECs.  The investment with pericytes of capillaries formed in the PEG gels 

suggests the material not only supports the formation of EC tubules, but also facilitates 
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stabilization of these vessels.  Further investigation is needed to assess the 

permeability and longer-term stability these vessels. 

As described above, fibrin and PEG constructs supplemented with cells 

supported vascularization to differing extents.  Fibrin supported enhanced 

vascularization at early time points, as assessed by both LDPI and histology, but did not 

outperform PEG constructs at later time points.  PEG hydrogels were structurally stable 

and showed minimal vessel regression.  Interestingly, this response was not modulated 

by tuning degradability of the crosslinking peptide (i.e. no significant differences were 

found between 3.5%G and 3.5%V constructs).  This result corroborates our prior work 

as well as other studies [54, 55].  Previously, we demonstrated endothelial cell 

tubulogenesis in vitro was highly dependent on PEG hydrogel mechanical properties, 

but not degradability [54].  Others have demonstrated that vascularization is not 

significantly enhanced in hydrogels containing MT1-MMP-sensitive peptides as 

compared to gels containing MMP2-sensitive peptides[55].  Overall, these data suggest 

PEG gels facilitate vascularization, but are sufficiently robust to persist in vivo for 

weeks. 

Intrinsic differences in peptide degradability may not be sufficiently pronounced 

to result in different functional response.  In fact, degradation by recombinant MMP2 did 

not significantly differ for 3.5%G and 3.5%V hydrogels (Figure 4-11).  Fibrin gels were 

degraded significantly more rapidly in this assay.  Fibrin gels support extensive 

vascularization early after implantation, but cannot sustain the vessels formed, perhaps 

due to rapid degradation.  A recent study suggested decelerating fibrin degradation can 

enhance vessel density in fibrin implants[71] which corroborates our hypothesis relating 



 

116 
 

vessel density to extent of material degradation.  Implications of this result are highly 

relevant to ongoing strategies to revascularize ischemic tissues, as these data hint at 

the value of a structurally stable material that can sustain neovessels beyond the first 

weeks following ischemic insult. 

Figure 4-11.  Fibrin gels are more rapidly degraded than 3.5%G or 3.5%V gels in the presence of 1 nM 
recombinant MMP2. 
 

Heretofore, we have primarily discussed implant vasculature in hydrogels 

delivering cells.  In the context of perfusion recovery, however, the acellular gels and 

the host response in tissues surrounding the implant merit discussion.  Surprisingly, 

perfusion of acellular gels, as measured by LDPI, was not attenuated compared to cell-

impregnated gels by 14 days after implantation.  These data suggest that, despite the 

lack of vasculature within the implant, compensatory mechanisms allow for reperfusion 

in response to the material alone.  In this regard, the muscle surrounding the acellular 

gels remains more heavily infiltrated at day 7 with immune cells and host stromal and 

endothelial cells. Reperfusion may be partially explained by the immune stimulus 
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presented by the gels and growth factors contained in the medium that we encapsulated 

within the gels.  Additionally, the process of arteriogenesis upstream of the implant site 

may be modulated by the gel construct, but this remains to be determined.  Indeed, it is 

worth noting that a previous study demonstrated that delivery of VEGF formulated for 

sustained release to a site distal in the ischemic limb modulated collateralization 

upstream [72].  The acellular implants appear to support revascularization to the 

ischemic tissue, yet we did not assess the muscle function or longer-term recovery in 

these animals, which could yield differences when compared to cellular implants. 

Taken together, our data suggest that PEG hydrogels hold potential as a cell 

delivery vehicle for therapeutic vascularization, but further studies are necessary to 

investigate the ability of these materials to support the regeneration of ischemic tissue.  

Additional work will also be needed to investigate the long-term functional recovery of 

the ischemic tissue, along with restoration of blood flow.  Additionally, young, healthy 

animals were used in this study and further investigation regarding the response in 

animals that better model patients with PAD and CLI is warranted.  Nonetheless, this 

study demonstrates PEG hydrogels support revascularization of ischemic tissue and 

merit further investigation for applications in therapeutic vascularization. 
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Chapter 5  

 

Conclusions and Future Directions 

 

5.1 Contributions of this Thesis 

  In this work, we have developed a biosynthetic, PEG-based hydrogel system 

which supports the formation of vasculature from encapsulated cells both in vitro and in 

vivo.  In comparison to fibrin, an extensively-studied natural material, PEG gels 

supported the formation of vasculature that persisted for weeks in vivo.  Three specific 

aims were formulated and executed to investigate the ability of the gel system to 

support vascularization. 

 

Aim 1: Construct and characterize PEG-based hydrogels with tailored proteolytic 

susceptibility and adhesive ligand density, and demonstrate their ability to 

support the adhesion, viability, and spreading of both endothelial cells (ECs) and 

normal human lung fibroblasts (NHLFs) in 3D. 
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We developed a robust PEG hydrogel platform that allowed tuning of construct 

mechanical properties via alterations in solids content and tuning of proteolytic 

degradability via alteration of the gel crosslinking peptide.  Gels were crosslinked with 2 

peptides that are cleaved with distinct kinetics by several MMPs: GPQG↓IWGQ (slow 

degradation) and VPMS↓MRGG (more rapid degradation).  The hydrogels supported 

adhesion, viability, and spreading of ECs and NHLFs. 

 

Aim 2: Using an established 3D in vitro model system, assess the ability of the 

PEG-based gels synthesized in aim 1 to support vasculogenesis from ECs and 

NHLFs. 

PEG hydrogels supported the formation of endothelial cell networks in vitro in co-culture 

with NHLFs.  Network formation was significantly attenuated in more highly crosslinked 

hydrogels (i.e., those containing higher weight fractions), but was not significantly 

altered by changing the degradability of the crosslinking peptide.  Nonetheless, MMP-

mediated degradation was required for vascularization in this system as inhibition with a 

broad-spectrum MMP inhibitor, but not the serine-protease inhibitor aprotinin, abrogated 

vessel formation. 

 

Aim 3:  Compare the neovascular response of PEG-based constructs containing 

ECs and NHLFs to that obtained with fibrin-based constructs following 

implantation in a dorsal, subcutaneous location as well as intramuscularly in an 

ischemic hindlimb. 
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Vessels formed from ECs transplanted with fibroblasts in all PEG implants in both in 

vivo models.  In the subcutaneous model, we determined high initial mechanical 

properties did not attenuate vascularization to the same extent as occurred in vitro.  All 

PEG gels supported neovascularization to some extent, and implant vessels 

inosculated with host circulation.  In the ischemic limb model, we demonstrated PEG 

hydrogels supported maintenance of vessel networks for more prolonged periods of 

time compared to fibrin gels, indicating that PEG hydrogels facilitate degradation to the 

extent required for vascularization, but have sufficient mechanical integrity after 2 weeks 

in vivo to maintain implant vasculature. 

 

5.2 Discussion 

In aim 1, we developed and optimized the PEG hydrogel platform used in aims 2 

and 3.  To this end, PEG hydrogels were formed by Michael-type addition of multi-arm 

PEG vinyl sulfone and cysteine-containing MMP-degradable peptides.  Network 

mechanical properties and proteolytic sensitivity have been demonstrated to modulate 

EC morphogenesis in several material systems.  Thus, we tuned gel solids content and 

proteolyzable peptide identity to allow investigation of these parameters in our system.  

Gel shear modulus increased three fold in constructs with 5%, instead of 3.5% solids.  

Correspondingly, volumetric swelling ratio dropped in the more crosslinked hydrogels.  

After initial studies with PEG gels crosslinked with the more slowly degraded peptide, 

GPQG↓IWGQ, we fabricated hydrogels with the more rapidly degraded VPMS↓MRGG.  

Mechanical characterization demonstrated that the bulk mechanical properties of these 

gels at matched solids content do not differ.  However, peptide identity did significantly 
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modulate the rate at which these materials were remodeled by cells and by recombinant 

MMPs.  Early studies with our hydrogel system yielded low endothelial cell viability.  

After changing to a more supportive buffer system and pH we were able to increase 

viability of ECs.  NHLF viability was robust in all gel formulations tested.  The 

completion of these studies completed the first aim, and led us to concurrent 

investigation of the PEG gel platform in studies in vitro and in vivo. 

The second aim focused on assessing the ability of ECs to organize into vessel 

networks within PEG hydrogels in vitro.  Initial studies suggested that the addition of 

exogenous fibronectin may enhance network formation in an in vitro model of 

angiogenesis, but further investigation demonstrated this result was not statistically 

meaningful.   Thus, aim 2 focused primarily on demonstrating PEG gels support 

vasculogenesis of ECs encapsulated with NHLFs.  Tubule density was demonstrated to 

drop precipitously in more highly crosslinked gels.  Crosslinking peptide identity did not 

statistically modulate the extent of network formation.  Potentially, differences between 

the more and less degradable gels may be evident at longer time points.  Alternately, 

the differences in degradability may not be relevant in the context of the proteases used 

in vascularization within these materials.  Vascularization was demonstrated to be 

MMP-dependent.  Inhibition of MMPs, but not the plasminogen activators/plasmin 

proteolytic axis, diminished vascularization. 

Finally, in aim 3 we investigated the formation of vasculature from ECs implanted 

with NHLFs in the PEG hydrogels in dorsal subcutaneous implants and in an ischemic 

hindlimb.  For the subcutaneous model, PEG hydrogel precursor was prepared and 

then injected into a pocket created on the dorsal flank of immune-compromised mice.  
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Implant vascularization was monitored over time via non-invasive LDPI.  Histological 

assessments were used to further assess the extent of vascularization and vessel 

morphology across PEG gel conditions.  PEG hydrogels consistently supported the 

formation of vessels within the implant region, and the inosculation of these structures 

with the host circulation.  In the subcutaneous implants, increased gel solids content did 

not attenuate vessel density.  This contrasts the in vitro results, and hints at the 

differences in proteolytic milieu in the in vivo environment. 

Based on the minimal differences observed in vivo between constructs of 

different solids content, we investigated only 3.5% PEG gels in the ischemic hindlimb 

model of vascularization.  These studies were aimed at demonstrating the ability of PEG 

gels to support vascularization in a more physiologically relevant context.  The murine 

model of hindlimb ischemia mimics the attenuation in blood flow to the limb seen in 

patients with advanced PAD and CLI.  The hypoxic microenvironment and presence of 

necrotic muscle more closely recapitulates the clinically relevant scenario.  To execute 

these studies, we ligated and excised the femoral artery and vein in the region between 

the branching of the deep femoral artery and popliteal and saphenous arteries.  

Following femoral artery ligation, PEG constructs were delivered intramuscularly, with or 

without cells, and reperfusion of the limb was monitored.  All constructs supported 

reperfusion to some extent.  Notably, upon comparison with control fibrin implants, PEG 

implants supported more sustained revascularization.  Regression of vasculature was 

evident by 14 days post-FAL in fibrin, but not PEG constructs.  These data suggest the 

PEG gels hold promise for therapeutic vascularization, as they both support the 

formation of perfused vessels and remain mechanically intact for longer periods of time 
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upon implantation in vivo, which may be important to support long-lasting, mature 

vasculature. 

In all, the data presented in this thesis demonstrate that biosynthetic, MMP-

degradable PEG hydrogels are a promising material platform for the delivery of cells for 

therapeutic vascularization.  Additionally, the materials hold promise for tissue 

engineering, as they potentially can be modified to support the addition of parenchymal, 

as well as vascular, elements. 

 

5.2 Future Directions 

The results of this thesis suggest PEG gels hold potential for therapeutic 

angiogenesis and tissue engineering.  Our data open up several additional avenues of 

research.  Generally, future areas of interest can be split into two categories: those 

focused on mechanistic elucidation of how the PEG gels support vascularization and 

how they can be engineered to better support this process, and those focused on 

further characterizing the ability of the material to facilitate revascularization in a clinical 

context.  To a degree, these approaches will go hand-in-hand, as results from one area 

may motivate the second. 

There are several relevant future studies that would facilitate a better mechanistic 

understanding of the process of vascularization in these PEG gels.  In this work, we 

used PEG gels tethered with the minimally-required adhesive peptide for viability, RGD, 

and then crosslinked the constructs with MMP-sensitive crosslinking peptides.  Despite 

the success of these constructs at inducing vascularization in vitro and in vivo, we 

suggest this process may be enhanced by further optimization of the material platform, 
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and more thorough investigation of the role of proteolysis in mediating vascularization in 

the PEG gels. 

First, the adhesive motif utilized in the thesis has been ubiquitously used in PEG 

literature to facilitate cells adhesion, but may not be most relevant for re-creating a 

microenvironment similar to that encountered by ECs in vivo.  Our studies with 

fibronectin (see appendices) were aimed at assessing the importance of integrin-

mediated adhesion and signaling on the process of vascularization in the PEG 

constructs.  However, the results of these investigations are incomplete.  Fibronectin 

was incorporated non-covalently into the constructs.  This non-covalent method of 

incorporation may attenuate the ability of cells to generate traction and respond to 

binding motifs on the molecule may be attenuated.  Studies have demonstrated a role 

for fibronectin fibrillogenesis and the exposure of cryptic binding motifs on EC response 

in 3D, which may not be re-created in the soluble environment [1, 2].  In lieu of 

covalently linking fibronectin to the hydrogel, more simple strategies could be utilized to 

alter the adhesive milieu of the PEG gels.  PEG hydrogels with both the prototypical 

RGD motif, and the synergy domain from fibronectin, PHSRN, support increased 

proliferation in PEG gels[3].  Modulating our PEG scaffold to additionally include 

PHSRN would be experimentally facile, and be advantageous from a translational 

perspective, as peptides can be easily synthesized and do not suffer the same clinical 

concerns as naturally-derived proteins.  Another fibronectin-derived peptide motif, 

REDV, could be incorporated into the PEG scaffolds [4, 5].  Alternately, others have 

demonstrated the laminin-derived peptide YIGSR can be used in conjunction with RGD 

to enhance spreading on PEG gels [6-8].  The relative abundance of laminin in the 
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basement membrane underlying vessels in vivo gives this approach relevance from a 

physiological perspective. 

Moving away from the adhesive properties of the hydrogel construct, proteolytic 

susceptibility could be more carefully tailored and investigated.  The two peptides we 

used, GPQG↓IWGQ and VPMS↓MRGG, are degraded at different rates by several 

MMPs, but are not highly specific to particular members of the MMP family.  Thus, it 

may be of value to incorporate peptides more specific to the MMPs relevant in 

vascularization.  Others have published sequences that may facilitate this investigation 

[9].  As our studies suggest modifying peptide identity is minimally complex (as long as 

few hydrophobic residues are present) and that bulk mechanical properties do not 

change with alterations in the crosslinking peptide, this is a promising area of research.  

In these proposed hydrogel constructs, and in those described above, investigation of 

EC morphogenesis in vitro and in vivo are critical areas that need to be addressed. 

In the context of clinical applications, our results suggest PEG hydrogels hold 

promise for therapeutic vascularization.  However, our work to date suffers some 

limitations that merit additional investigation.  First, our animal model does not perfectly 

recapitulate the clinical condition it aims to model.  Young, healthy animals have been 

demonstrated to recover from ischemic insult more easily than animals that more 

closely match the patient demographic with PAD [10, 11].  Allowing mice to age may be 

prohibitively expensive, but using non-obese diabetic (NOD)-SCID mice merits 

consideration.  As these mice are immunodeficient, their use would facilitate analyses of 

human-derived cells in implants.  This strain has been extensively vetted as a model 

animal for diabetes and CVD research. 
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Additionally, though we have investigated revascularization of the ischemic 

tissue, we have not assessed the functional recovery of the muscle thoroughly, nor 

have we introduced any vascular challenges to the recovering mice.  Challenges to the 

new vasculature could include response to exercise, MRA after administration of the β1-

adrenergic agonist dobutamine, and measurement of muscle fiber contractile properties 

following ischemic induction and delivery of various PEG gels with cells [12].  

Permeability of the neovasculature also merits further investigation- this could be 

probed via additional MRA to look both at edema and tracer leakage into the ischemic 

tissue.  Alternately, vessel permeability could be assessed by monitoring the movement 

of a dye, for example Evans blue, into the extravascular space. 

The question of cell choice remains a concern in our studies.  Others have 

demonstrated fibroblasts may not be ideal to support the formation of functional, stable 

vessels.  Additionally, lung fibroblasts and umbilical vein endothelial cells are not a 

viable source of cells for clinical applications.  For further study, EPCs and AdSCs or 

MSCs could be delivered in PEG gels to the ischemic tissue instead of HUVECs and 

fibroblasts.  Moreover, studies could be conducted with immune-competent animals, 

either of a standard genetic background or ApoE knockouts, to deliver autologous 

AdSCs within PEG matrices. 

Finally, for clinical applications and tissue engineering, the introduction of more 

sophisticated biological signals into the PEG gels may be warranted.  Recombinant 

growth factors could be tethered into PEG construct- this has been demonstrated with 

VEGF [13, 14].  Potentially, factors could be introduced to not only facilitate 

vascularization, but also promote development of additional parenchymal tissue 
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elements in the PEG gels.  Lastly, covalent tethering may not be required to enhance 

cell response within PEG constructs.  For instance, others have shown soluble Tβ4 

entrapped in PEG gels improves EC adhesion and survival [15].  TGF-β encapsulation 

was demonstrated to have a similar effect in another study [13].  PEG gels could be 

loaded with GM-CSF for implantation in vivo, with or without cells, to enhance 

recruitment of host progenitors. 

Overall, PEG hydrogels show promise for application in tissue engineering and 

therapeutic vascularization.  Further studies will allow these approaches to be vetted 

more thoroughly, and aid in the clinical translation of the technology. 

 

5.4 References 

[1] Zhou X, Rowe RG, Hiraoka N, George JP, Wirtz D, Mosher DF, et al. Fibronectin 
fibrillogenesis regulates three-dimensional neovessel formation. Genes & development. 
2008;22:1231-43. 
[2] Barker TH. The role of ECM proteins and protein fragments in guiding cell behavior 
in regenerative medicine. Biomaterials. 2011;32:4211-4. 
[3] Benoit DS, Anseth KS. The effect on osteoblast function of colocalized RGD and 
PHSRN epitopes on PEG surfaces. Biomaterials. 2005;26:5209-20. 
[4] Hubbell JA, Massia SP, Desai NP, Drumheller PD. Endothelial Cell-Selective 
Materials for Tissue Engineering in the Vascular Graft via a New Receptor. Nature 
biotechnology. 1991;9:568-72. 
[5] Massia SP, Hubbell JA. Vascular Endothelial Cell Adhesion and Spreading 
Promoted by the Peptide REDV of the IIICS Region of Plasma Fibronectin is Mediated 
by Integrin Alpha4 Beta1. The Journal of biological chemistry. 1992;267:14019-26. 
[6] Boateng SY, Lateef SS, Mosley W, Hartman TJ, Hanley L, Russell B. RGD and 
YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and 
fibronectin but alter the physiology of neonatal cardiac myocytes. Am J Physiol Cell 
Physiol. 2005;288:C31-C8. 
[7] Choi WS, Bae JW, Joung YK, Park KD, Lee MH, Park JC, et al. Fabrication of 
Endothelial Cell-Specific Polyurethane Surfaces co-Immobilized with GRGDS and 
YIGSR Peptides. Macromolecular Research. 2009;17:458-63. 
[8] Fittkau MH, Zilla P, Bezuidenhout D, Lutolf MP, Human P, Hubbell JA, et al. The 
selective modulation of endothelial cell mobility on RGD peptide containing surfaces by 
YIGSR peptides. Biomaterials. 2005;26:167-74. 



 

133 
 

[9] Turk BE, Huang LL, Piro ET, Cantley LC. Determination of protease cleavage site 
motifs using mixture-based oriented peptide libraries. Nature biotechnology. 
2001;19:661-7. 
[10] Madeddu P, Emanueli C, Spillmann F, Meloni M, Bouby N, Richer C, et al. Murine 
models of myocardial and limb ischemia: diagnostic end-points and relevance to clinical 
problems. Vascular pharmacology. 2006;45:281-301. 
[11] Lotfi S, Patel AS, Mattock K, Egginton S, Smith A, Modarai B. Towards a more 
relevant hind limb model of muscle ischaemia. Atherosclerosis. 2013;227:1-8. 
[12] Faulkner JA, Brooks SV. Contractile Properties of Skeletal Muscles from Young, 
Adult, and Aged Mice. J Physiol. 1988;404:71-82. 
[13] Seliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA. MMP-2 sensitive, VEGF-
bearing bioactive hydrogels for promotion of vascular healing. 2003. 
[14] Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, et al. Cell-
demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for 
vascularized tissue growth. FASEB journal : official publication of the Federation of 
American Societies for Experimental Biology. 2003. 
[15] Kraehenbuehl TP, Ferreira LS, Zammaretti P, Hubbell JA, Langer R. Cell-
responsive hydrogel for encapsulation of vascular cells. Biomaterials. 2009;30:4318-24. 
 
 

 



 

134 
 

 

 

Appendix 1 : Synthesis of Multiarm PEG Vinyl Sulfone 

A1.1 Materials 

Glassware (see diagram for setup) 

Nomex lab coat 

Splash goggles 

Face mask 

Tubing 

2 rubber septa 

3 way valve with stopcock 

Stir plate 

Stir bar 

Buchner funnel 

Filter paper 

Desiccator with drierite 

Class D Fire Extinguisher (optional) 

Aluminum foil 

Ice bath 

4-1L flasks (or clean 1 repeatedly…) 

Vacuum flask 

Vacuum Dessicator 
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Lyophilizer 

Toluene 

Dichloromethane, anhydrous, dried over molecular sieves 

Diethyl ether 

Acetone 

Powdered Lime 

Argon 

PEG 

Divinyl sulfone 

Sodium Hydride 

 

A1.2 Notes 

Sodium hydride (NaH) is flammable, toxic, and corrosive.  It is water reactive and 

incompatible with acids, alcohols, and strong oxidizing agents.  During this reaction, 

always wear chemical splash goggles and a face shield.  Wear leather or Kevlar gloves 

beneath nitrile gloves and a fire-resistant (Nomex) lab coat.  Do not wear synthetic 

clothing.  Call 911 in case of emergency or OSEH HazMat (3-4568) if spill small.  Refer 

to SOP before performing experiment to go over procedures in case of spills or fires.  

Use class D fire extinguisher, not ABC.  See SOP for storage directions as well. 

 

A1.3 Protocol 
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1. Purchase powdered form of NaH.  Store in a dessicator filled with drierite.  After 

placing the NaH container in the dessicator evacuate the air and flush with argon.  

Check drierite regularly to see if still dry (changes color to purple when spent). 

2. Dry DCM in molecular sieves for 1 day prior to reaction.  Prepare 2 waste containers 

for pyrophoric material (the first containing dry waste, the second for liquid). 

3. When ready to start the experiment, clear the hood of all superfluous equipment and 

setup inert gas line: tubing goes from argon cylinder to 3-way stopcock.  From there, 

plastic tubing goes to the gas inlet arm of the reaction vessel (not attached yet) and 

the gas bubbler.  Keep the 3-way stopcock 8-12 inches above the reaction vessel.  

Set the stopcock with the middle arrow pointing downwards so flow goes to all 3 

lines when gas is turned on (but don’t turn on gas yet!).  Add 15 mm DCM to the 

bubbler. 

4. Clean glassware with soap and water, and rinse with ddH2O.  Rinse all glassware 

with acetone and dry using inert gas line. 

5. Make sure there is a stir bar in the dry 3-arm RB reaction flask, then weigh out PEG 

(4-arm PEG-OH 20kDa, 5g.) into the flask, making sure to get no PEG on the neck 

of the vessel.  Add 200 mL toluene to reaction vessel and start stirring.  Set up 

distillation apparatus and perform gas/vac cycle on reaction flask/distillation setup 2x 

(2 min each) then cap reaction vessel (both arms, don’t turn caps down though). 

6. Turn on argon inlet (set pressure at 10.5 psi) and allow gas to flow through vessel.  

Leave cap slightly ajar to flush for ~2 min, then close and allow gas to flow through 

bubbler.  Adjust the bubbler rate to 1 bubble/sec.  Turn Si bath heat up to 100oC (try 

with thermometer in Si bath not reaction vessel).  Once toluene starts to boil 
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vigorously turn on the water jacket.  Keep an eye on the bubbler (want ~1 

bubble/sec), the Si oil (want not to overflow), and the glass joints (want no vapor 

escaping).  Allow toluene to completely evaporate, remove Si bath, and allow 

reaction vessel and hot plate to cool (keep reaction vessel closed so under inert 

atmosphere). 

7. Once cool, lower reaction flask to just above stir plate, add 300 mL dry DCM (dried 

overnight over molecular sieves) to dissolve the PEG, and resume stirring.  After 

adding solvent recap the open arm and attach 1 side arm to the argon line. 

8. Again, establish inert atmosphere by doing the following: open regulator slowly and 

set argon pressure to 10.5 PSI.  The bubbler should start to bubble slowly as the 

argon slowly fills the entire tubing setup.  Remove the cap of the reaction vessel to 

displace any air.  After displacing all of the air, replace the cap.  Adjust the flow rate 

of argon gas to allow 1 bubble/sec from the bubbler (adjust the argon rate to 

maintain this bubbling rate throughout the experiment, keeping the pressure fixed at 

10.5 PSI). 

9. Cover reaction vessel in foil and allow PEG/DCM to stir ~10 min.  Check that PEG is 

completely dissolved before proceeding to addition of NaH. 

10. Rinse a scintillation vial with acetone and dry with inert gas line.  Open NaH 

container in hood and then move to balance for weighing. 

11. Bring the bottle of dry DCM, a pipette to the balance, and the scint vial to the 

balance with the NaH.  Weigh the NaH (0.1167g NaH) into the vial (never use > 1g 

in a reaction).  Note: there should be a 5-fold excess of NaH with respect to OH 



 

138 
 

groups.  Immediately add a small amount of dry DCM to the NaH.  Make sure to 

rinse off any residual NaH from the spatula while adding the DCM to the vial. 

12. Take the container of NaH and the vial of NaH/DCM back to the hood.  Flush the 

bag containing NaH with argon (just disconnect the gas line from the reaction vessel 

for a few seconds) and move the container of NaH back to the desiccators. 

13. Note: reaction vessel should be at room temperature at this point (on ice is also ok).  

Uncap one arm of the reaction vessel to allow for the introduction of the NaH slurry 

(due to the positive pressure being applied, opening the vessel for a short period of 

time will not allow for introduction of appreciable amounts of air).  Transfer the 

NaH/DCM slurry via glass pipette to reaction vessel, watching carefully for the 

evolution of gas and/or solvent boiling.  If either occurs, stop adding the NaH slurry 

until it calms down a bit, then resume.  Rinse vial containing slurry with a little more 

dry DCM and transfer this also to the reaction  (Don’t transfer to reaction vessel via 

cannula techniques, as the slurry can clog the cannula.)  Once vial is empty, place it 

and the glass pipette used to add the NaH/DCM in the back to the hood to allow any 

residue to react with moisture in the air or, alternatively, quench with MeOH or EtOH. 

14. After adding all the NaH restore the inert atmosphere to the reaction vessel (i.e. 

close top with cap).  Cover reaction vessel with foil, keep at room temp, and wait 45 

min-1 hr to allow for hydrogen evolution. 

15. Go back to balance and clean up, making sure no pyrophoric powder is on the 

balance, etc.  Bring the spatula used to measure out the NaH to the back of the 

hood where the vial and glass pipette are. 
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16. Dilute 9.8 mL divinyl sulfone (1 OH: 100 DVS) in 10 mL DCM (for a total of ~20 mL) 

and add this solution dropwise by syringe (ie. maintaining inert atmosphere) to 

reaction vessel.  Cover reaction vessel in foil and allow reaction to proceed 3 days 

under inert atmosphere with stirring. 

17. Place 4L container of ether in -20oC freezer 1d after starting reaction.  Also, remove 

glassware which contained NaH from back of hood and quench, clean, etc. 

18. At day 2 check on reaction completion by taking a small aliquot and performing a 

mini work-up (obviously stop earlier if mini work-up suggests reaction has reached 

completion): 

a. Use syringe to take small aliquot of reaction solution (10 mL, should contain 

~0.125g PEG) and filter off salts (using syringe filter) into a clean scint vial 

(washed, then rinsed with ddH2O and acetone). 

b. Dry sample by blasting with air or N2 for 5 min in scint vial to generate a very 

viscous solution. 

c. Precipitate viscous/concentrated solution into diethyl ether (scale down 

volume to 40 mL). 

d. Remove ether by centrifuging and decanting the solvent. 

e. Dry sample in vac oven (overnight) to remove remaining ether and run NMR. 

19. Once the reaction is complete, remove the reaction from inert atmosphere.  Add 278 

uL glacial (ie anhydrous) acetic acid to quench reaction (1 acetic acid: 1 NaH). 

20. Then filter the solution, turn off the vacuum, and remove the Buchner funnel.  The 

product we are interested in is the solution which has passed through the filter.  

(This solution, passed through the filter, should now be clear.)  Rinse the funnel with 
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water then acetone and place the used filter paper in the dry pyrophoric waste 

container.  Place a new piece of filter paper in the funnel for precipitation later. 

21. Then concentrate the filtrate down to ~10 mL by attaching to the vacuum line.  While 

doing this, prepare a stir plate with an ice bath for the flask containing ether to rest 

during precipitation. 

22. Once the PEG/DCM product is concentrated, remove 600 mL of ether from the 

freezer into a clean reaction flask, place a clean, dry stir bar inside, and add the 

concentrated solution dropwise into the ether, while stirring.  Once the flask that 

contained the concentrated product is empty wash it with ~20 mL DCM and pour this 

into the ether as well.  Wait ~5 min for crystallization while mixing (keep in ice bath!). 

23. In the meantime, check the flask for residual NaH and quench; then wash as with 

normal glassware. 

24. Place the Buchner funnel over the flask which contained the filtrate, apply vacuum 

and add the precipitate solution to the funnel.  Wash product on filter paper with 100 

mL additional diethyl ether.  Cover the funnel with foil and allow the precipitate to 

dry.  Take a sample of this product to run on NMR. 

25. While allowing precipitate to dry dissolve 5g NaCl in 200 mL ddH2O.  Then dissolve 

dried precipitate into this NaCl/ddH2O solution. 

26. Add 200 mL DCM to this solution and stir vigorously, then move quickly to 

separatory funnel.  (The PEG product should move to the organic phase, leaving 

behind impurities). 

27. Allow the layers to separate.  Then drain off the lower layer (this is DCM and 

contains the product we want to save!) into a 1L flask.  Keep the aqueous layer in 
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the sep funnel and repeat the extraction 2 more times with 200 mL DCM 

(2x200=400mL), keeping the organic/lower layer each time. 

28. Add sodium carbonate to organic/DCM layer while stirring until the drying agent 

stops clumping (indicating the solution is dry). 

29. Filter solution to remove water-saturated sodium carbonate (or decant to remove 

solids).  Then move DCM/PEG solution to 1L RB flask and reduce volume of 

solution to ~10 mL under vacuum with stirring. 

30. Precipitate this 10 mL solution into ~600 mL diethyl ether while stirring.  Rinse RB 

flask with a small aliquot of DCM and precipitate this rinse into the ether as well. 

31. Filter the ether/ppt solution under vacuum to recover the solid multi-arm PEG-VS.  

Dry the product overnight in the vacuum oven (NO HEAT).  Store the dry multi-arm 

PEG-VS under argon at -20C. 

32. Check product functionalization via NMR. 

 

A1.4 NMR Characterization 

1. Weigh 5 mg of product into a scintillation vial and dissolve in 0.6 ml of deuterated 

DMSO.  Transfer to 5mm NMR tube- the solvent should reach 3 fingers in height. 

2. Use the Gallium machine to acquire the NMR.  Login with UM uniqname and 

Kerberos password and open VNMRJ application 

3. Insert sample: ‘e’ to eject (or use eject button): turns on air, put spinner into top, 

place sample on air flow in spinner, and ‘i’ to insert (or button): turns off air, lowers 

sample 

4. Standard window  pick solvent (DMSO) (middle-bottom window) 
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5. Type ‘Setlock’ into command line.  This is a macro for lock parameters and shim, 

should see setup complete message 

6. On the lock window adjust power (can increase up to 4 units) and gain (amplify 

signal using gain after increasing power).  If you don’t automatically get lock (i.e. lock 

is below 20): turn lock off and perform lock scan.  Look for a step; if it is too low you 

will see a sinuosoidal pattern.  Use ‘setlock’ to restore defaults.  Once you have a 

step hit lock and the electronics will fine tune.  A good lock will show the status 

‘regulated’. 

7. Go to the shim window.  The shim represents currents around main field, you want a 

homogenous field, i.e. narrow lines.  To shim: ignore x and y, on 400 use z1, z2 and 

on 500 use z3, z2, z1, ignore z4, z5, z6.  Primarily use z1.  Keep clicking until the 

shim increases.  Want to max out at 100, then lower gain, and keep going until you 

find the max.  Alternately, you can do an automated shim using ‘gradient shim’. This 

runs 1-5 iterations and takes 30sec-1min.  Avoid using ‘find z0’ 

8. Go to the experiment pulldown tab and select nuclei.  Click start and then go back to 

standard and add sample information to the comments field. 

9. Go to the ‘acquire’ tab and choose the spectral window (-2 to 14) and number of 

scans (any multiple of 8).  Click the green ‘acquire’ button to generate spectra.  This 

should run the pro-tunes first.  After the first acquisition type ‘ga’ (autogain).  The 

bottom middle window will turn blue an count down.  When the green ‘idle’ note 

shows up the scan is done.  Review the data and type ‘svf’ to save if it looks good.   

To remove the spinner type ‘e’ to eject, retrieve sample, and place spinner next to 

keyboard.  Log out of linux  
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Appendix 2 : Characterization of Endothelial Cells and 

Fibroblasts Encapsulated in PEG Hydrogels 

 

A2.1 Introduction 

 The in vitro portion of the work outlined in Chapter 3 primarily focuses on the 

organization of ECs into tubule networks in a vasculogenesis assay.  Prior to completing 

these studies, we characterized cell behavior within the PEG gels using several other 

assays.  In the process of optimizing the gel formulations, we assessed the viability of 

ECs and fibroblasts.  Additionally, we monitored the response to MMP inhibition of 

fibroblasts encapsulated with ECs for the vasculogenesis assay in PEG gels. 

 

A2.2 Materials and Methods 

A2.2.1 Cell Isolation and culture 

 Human umbilical vein endothelial cells (HUVECs, or ECs) were harvested from 

fresh umbilical cords according to a previously established protocol [1].  ECs were 

cultured in supplemented Endothelial Growth Medium (EGM-2, Lonza, Walkersville, 

MD) at 37oC and 5% CO2 and used at passage 3.  Normal human lung fibroblasts 

(NHLFs, Lonza) were cultured in M199 (Invitrogen Corporation, Carlsbad, CA) with 10% 

fetal bovine serum (FBS), 1% penicillin/streptomycin (Mediatech, Manassas, VA), and 
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0.5% gentamicin (Invitrogen) at 37oC and 5% CO2 and used prior to passage 15.  Cells 

were cultured in monolayers until reaching 80% confluency and passaged with 0.05% 

trypsin-EDTA (Invitrogen). 

 

A2.2.2 PEG Hydrogel Formation 

 Hydrogels were formed via a Michael-type addition reaction of 4-arm PEG vinyl 

sulfone (henceforth termed PEG-VS) (20 kDa, JenKem USA, Allen, TX) with a 

combination of thiol-containing adhesive and protease-sensitive peptides by modifying a 

published protocol [2].  To prepare the gels, PEG-VS was dissolved in HEPES (50 mM, 

pH 8.4, supplemented with growth factors from endothelial medium bullet kit) at the 

appropriate concentration to produce gels of 3.5% or 5% (w/v) total solids content.  The 

adhesive peptide (CGRGDS, Genscript, Piscataway, NJ) was added to the PEG 

solution at 10 μg/ml in HEPES to yield a final adhesive site density upon gelation of 500 

μM and the solution was reacted 30 minutes at room temperature.  Following 

conjugation of RGD, bis-cysteine-containing crosslinking peptides were added in 

HEPES such that -SH and -VS groups were present at a 1:1 molar ratio.  Gels were 

polymerized with 1 of 2 peptides, Ac-GCRD-GPQG↓IWGQ-DRCG-NH2 or Ac-GCRD-

VPMS↓MRGG-DRCG-NH2 (cleavage site indicated by↓).  After mixing, precursor 

solutions were polymerized for 1 hour at 37oC in sterile 1-ml syringes with the needle 

end cut off [3].  After polymerization gels were transferred to medium, as appropriate.  

All gels were formed under aseptic conditions from precursors that were filtered through 

a 0.22 um syringe filter. 
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A2.2.3 EC and NHLF Viability in PEG Hydrogels 

 Hydrogels were formed as described above with either ECs or NHLFs, 

encapsulated at 1 million cells/ml.  After 7 days in culture, cells were stained with 

Calcein AM and Ethidium homodimer-1 using a kit from Invitrogen (LIVE/DEAD 

Viaibility/Cytotoxicity Kit for mammalian cells, Invitrogen).  The interior of each gel was 

imaged using an Olympus IX81 spinning disk confocal microscope (Olympus, Center 

Valley, PA) with a Hammamatsu (Bridgewater, NJ) camera. 

 

A2.2.4 Assessment of Cell Morphology in Vasculogenesis in the Presence of GM6001 

 Gel constructs (3.5%G, 5%G, 3.5%V, and 5%V; each with and without GM6001) 

were polymerized in 50 μl aliquots using cut off syringes.  A broad-spectrum MMP 

inhibitor, GM6001 (EMD Chemicals, San Diego, CA), was added at 10 μM, as in 

previous work from our lab[4].  Cell mixtures in a 1:1 ratio of ECs and NHLFs were 

added for a total of 105 cells/gel.  Following polymerization, cell-seeded constructs were 

cultured in fully supplemented EGM-2 in a 12-well plate with the media changed every 

other day.  Inhibitor was replenished with each media change.  At 7 days post-

fabrication, gels from each condition were washed several times with PBS and then 

fixed with formalin.  Following permeabilization and TBS-T washes, constructs were 

incubated 4 hours with rhodamine phalloidin to allow visualization of the actin 

cytoskeleton of encapsulated endothelial cells and fibroblasts.  Low magnification 

fluorescent images were obtained of vessel network formation in each gel. 

 

A2.3 Results and Discussion 



 

146 
 

A2.3.1 EC and NHLF Viability in PEG Hydrogels 

 EC and NHLF viability exceeds 80% in all PEG gel formulations (3.5%G, 5%G, 

3.5%V, 5%V), even after 7 days in culture post-polymerization (Figure A2-1 shows 5%G 

gels).  The viability studies confirmed that PEG hydrogels support viability of 

encapsulated ECs and fibroblasts.  Despite high viability, however, ECs remain rounded 

in 5% gels even after 7 days. 

 

Figure A 2-1. Cell viability in PEG gels. LIVE/DEAD staining on gels 7 days after encapsulation of NHLFs 
(A) or ECs (B).  Green indicates live cells, red are dead. Scale = 100 μm. 

 

A2.3.2 Morphology of Fibroblasts upon MMP Inhibition 

 Staining for the actin cytoskeleton of fibroblasts and ECs encapsulated in PEG 

hydrogels demonstrated notable differences between PEG hydrogels with and without 

the addition of GM6001 (Figure A2-2).  The phalloidin stain does not distinguish 

between ECs and NHLFs.  Nonetheless, it is clear that MMP inhibition eliminates NHLF 

spreading in the gel constructs.  Both endothelial cells and fibroblasts remain rounded in 

PEG gels incubated with GM6001; these results parallel the attenuation of 

vasculogenesis in GM6001-treated gels (Figure 3-4).  These data also demonstrate 
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that, despite minimal EC network formation, fibroblasts still spread in 5%G and 5%V 

gels that do not contain GM6001.  Thus, fibroblast morphology cannot predict the ability 

of the gel constructs to support vasculogenesis- fibroblasts spread in gels with 

increased solids content, but EC network formation is still attenuated. 

 

Figure A 2-2. Phalloidin staining of EC and NHLF co-cultures with and without MMP inhibition.  Both EC 
and fibroblast morphology is notably constrained in gels treated with GM6001. Scale = 200 μm. 
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Appendix 3 : Role of Exogenous Fibronectin in 

Modulating Vasculogenesis 

 

A3.1 Introduction 

 Translation of tissue engineering and therapeutic angiogenesis approaches to 

the clinic has been slow, in part due to significant technical hurdles in creating functional 

vascular networks.  Substantial research aims to understand angiogenesis and 

recapitulate the process in vitro and in vivo.  Several approaches have been utilized to 

this end, but in this study we investigate vasculogenesis in vitro in bioengineered PEG 

gels supplemented with fibronectin which deliver ECs and supportive fibroblasts.  

Several natural materials have been used to this end [1-10], but recent effort has 

focused on the development of proangiogenic synthetic materials.  These materials aim 

to bypass the several limitations of natural materials, including variability associated 

with material sourcing and processing, possible concerns regarding immunogenicity, 

and poorly defined biological functionality.  Nonetheless, these materials suffer from 

limitations as well, including concerns regarding the ability of small peptides to provide 

sufficient cues to direct cell behavior. 

In this work specifically, we investigate the ability of peptide-functionalized 

poly(ethylene glycol) (PEG) hydrogels, further modified with exogenous fibronectin, to 
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support vascular morphogenesis in vitro.  In our system, PEG is typically functionalized 

with RGD, a minimal integrin-binding domain derived from fibronectin, and then 

crosslinked with peptides susceptible to cleavage by cell-derived matrix 

metalloproteases.  RGD supports cell adhesion [11-14], but does not fully replicate the 

dynamic signaling triggered by native ECM proteins [15].  Beyond simple adhesive 

cues, the native ECM presents signals in the form of proteolytically-cleaved ECM 

fragments [16], matrix-tethered growth factors, and “cryptic” binding sites that are 

exposed in response to force-mediated changes in protein conformational states [17].  

By utilizing gels which contain both adhesive peptides and full ECM-derived proteins, 

we aim to assess the extent of vascular network formation in constructs containing and 

lacking adhesive signals relevant in physiology. 

Fibronectin was chosen for encapsulation into PEG hydrogels based on data 

demonstrating a role for fibronectin-binding integrins α5β1 and αvβ3 in the migration of 

endothelial cells during angiogenesis [18-21].  Specifically, the interaction of α5β1 with 

fibronectin facilitates cell migration; this response is potentiated by vascular endothelial 

growth factor (VEGF)-bound fibronectin [22, 23].  Despite the ubiquity of RGD on 

several ECM proteins, fibronectin’s RGD site interacts uniquely with the PHSRN 

synergy site to facilitate engagement of the α5β1 integrin [24, 25].  RGD and the synergy 

site both are typically required to support α5β1 coupling [15, 26-29].  The RGD motif 

alone, which is typically incorporated into synthetic biomaterials, does not possess the 

same nuanced bioactivity as intact fibronectin, binding αvβ3 primarily when displayed as 

a shorter peptide motif [30, 31].  This is highly relevant for biomaterial design for 

vascular engineering because, while not required in all contexts, α5β1 interactions with 
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fibronectin are critical for angiogenesis under certain conditions.  The importance of α5 

integrin [32] and fibronectin [33] are further evident from on the defects in vascular 

development seen in null mice, which lead to embryo deterioration within 10 or 11 days 

of gestation.  RGD alone may not adequately recapitulate native cell binding.  In this 

work, vasculogenesis is compared in hydrogels containing exogenous fibronectin and 

the RGD peptide and in gels containing RGD alone, to better assess the role of more 

nuanced cell binding cues. 

 

A3.2 Materials and Methods 

A3.2.1 Cell Isolation and culture 

 Human umbilical vein endothelial cells (HUVECs, or ECs) were harvested from 

fresh umbilical cords according to a previously established protocol [34].  ECs were 

cultured in supplemented Endothelial Growth Medium (EGM-2, Lonza, Walkersville, 

MD) at 37oC and 5% CO2 and used at passage 3.  Normal human lung fibroblasts 

(NHLFs, Lonza) were cultured in M199 (Invitrogen Corporation, Carlsbad, CA) with 10% 

fetal bovine serum (FBS), 1% penicillin/streptomycin (Mediatech, Manassas, VA), and 

0.5% gentamicin (Invitrogen) at 37oC and 5% CO2 and used prior to passage 15.  Cells 

were cultured in monolayers until reaching 80% confluency and passaged with 0.05% 

trypsin-EDTA (Invitrogen). 

 

A3.2.2 PEG Hydrogel Formation 

 Hydrogels were formed via a Michael-type addition reaction of 4-arm PEG vinyl 

sulfone (henceforth termed PEG-VS) (20 kDa, JenKem USA, Allen, TX) with a 
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combination of thiol-containing adhesive and protease-sensitive peptides by modifying a 

published protocol [35].  To prepare the gels, PEG-VS was dissolved in HEPES (50 

mM, pH 8.4, supplemented with growth factors from endothelial medium bullet kit) at the 

appropriate concentration to produce gels of 3.5% or 5% (w/v) total solids content.  The 

adhesive peptide (CGRGDS, Genscript, Piscataway, NJ) was added to the PEG 

solution at 10 μg/ml in HEPES to yield a final adhesive site density upon gelation of 500 

μM and the solution was reacted 30 minutes at room temperature.  Immediately prior to 

gelation, fibronectin was added to select precursor solutions to yield a final 

concentration of 90 μg/ml upon gelation.  Following conjugation of RGD and addition of 

fibronectin, bis-cysteine-containing crosslinking peptides were added in HEPES such 

that -SH and -VS groups were present at a 1:1 molar ratio.  Gels were polymerized with 

1 of 2 peptides, Ac-GCRD-GPQG↓IWGQ-DRCG-NH2 or Ac-GCRD-VPMS↓MRGG-

DRCG-NH2 (cleavage site indicated by↓).  After mixing, precursor solutions (3.5%G, 

5%G, 3.5%V, and 5%V, each tested with and without fibronectin) were polymerized for 

1 hour at 37oC in Teflon molds for rheology or in sterile 1-ml syringes with the needle 

end cut off for vasculogenesis [36].  After polymerization gels were transferred to PBS 

for rheology and medium for vasculogenesis.  All gels were formed under aseptic 

conditions from precursors that were filtered through a 0.22 um syringe filter. 

 

A3.2.3 Mechanical Characterization of PEG Gels 

 Bulk mechanical properties were characterized via parallel plate rheology on pre-

swollen gels.  Following polymerization in Teflon molds, 5% gels of 100 μl were swollen 

overnight in PBS at 37oC.  Measurements were obtained on an AR G2 rheometer (TA 
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Instruments, New Castle, DE) equipped with a Peltier stage and an 8 mm geometry.  

Both surfaces were coated with P800 sandpaper (3M, St. Paul, MN) and the gap was 

adjusted to apply a constant 0.1 N force to prevent slip during measurement.  For each 

gel, a 5 minute time sweep was followed by a frequency sweep from 0.1 to 10 Hz at 5% 

strain and then a strain sweep from 0.1 to 50% at 1 Hz.  Reported shear storage 

modulus (G’) values are the average over the linear viscoelastic region of the frequency 

sweep. 

 

A3.2.4 Vasculogenesis Assay in PEG Hydrogels 

 ECs were fluorescently labeled via retroviral transduction with a gene encoding 

mCherry (Clonteck, Mountain View, CA) as previously described [2].  Lipofectamine 

2000 (Life Technologies) was used to transfect Phoenix Ampho cells (Orbigen, San 

Diego, CA) with a plasmid encoding for mCherry.  Viral supernatant was collected after 

48 hours, passed through a 0.45 μm syringe filter and supplemented with 5 μg/ml 

Polybrene (EMD Millipore, Billerica, MA) prior to incubation with EC for 6 hours.  The 

medium was changed to EGM-2 and cells were cultured overnight.  Transduction was 

repeated via another round of viral infection the following day, and the ECs were then 

grown to confluence and used directly in the vasculogenesis assay.  Constructs 

(conditions outlined above) were polymerized in 50 μl aliquots using cut off syringes.  

Cell mixtures in a 1:1 ratio of ECs and NHLFs were added for a total of 105 cells/gel.  

Following polymerization, cell-seeded constructs were cultured in fully supplemented 

EGM-2 in a 12-well plate with the media changed every other day.  At 7 days post-

fabrication, gels from each condition were washed several times with PBS and then 
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fixed with formalin prior to imaging.  Low magnification fluorescent images were 

obtained of vessel network formation in each gel.  Each gel was imaged at 5 locations in 

the interior of the gel using an Olympus IX81 spinning disk confocal microscope 

(Olympus, Center Valley, PA) with a Hammamatsu (Bridgewater, NJ) camera.  Average 

total network length was determined as described previously [37] for each condition 

using the automated Angiogenesis Module in Metamorph Premier Software (Molecular 

Devices Inc., Sunnyvale, CA). 

 

A3.3 Results and Discussion 

 Bulk mechanical properties of gels containing and lacking fibronectin were not 

significantly different.  These data demonstrate the PEG hydrogel crosslinking was 

ostensibly equivalent in the presence of fibronectin compared to control gels.  Still, no 

data was collected to characterize the microstructure of the gel constructs, and the local 

environment experienced by cells in the different gel formulations is not necessarily 

equivalent. 

 

Figure A 3-1.  Bulk gel mechanical properties, as assessed by shear rheology, do not differ between 5% 
gels containing and lacking fibronectin. 

 The vasculogenesis assay was performed to assess whether the addition of 

adhesive signals presented in a more physiologic way modulated vascular organization.  
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The data demonstrate qualitative differences in network formation in the presence of 

fibronectin, but no statistically significant differences were found upon quantification.  

Soluble fibronectin is encapsulated within the gel, and not tethered to the matrix.  Thus, 

cells may not be able to generate traction or deform fibronectin on binding; in a 

physiologic context remodeling of soluble fibronectin into a fibrillar network modulates 

vascularization [38].  Nonetheless, at 7 day qualitative differences are seen in network 

formation between gels containing and lacking fibronectin.  Perhaps, at later time points 

statistically meaningful differences would be seen between these conditions. 

 

Figure A 3-2.  Network length with and without fibronectin.  Total network length (A) is not statistically 
different between gels treated with fibronectin and controls at day 7. Network length of gels with 
fibronectin is normalized to controls of the same w/v% and crosslinking peptide in B.  Qualitative 
differences suggest significant differences may be present at 14 or 21 day time points. 
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Figure A 3-3. Labeled ECs organize into vascular networks with and without fibronectin. Scale = 200 μm. 
See quantification in Figure A3-2. 
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Appendix 4 : Induction of Hindlimb Ischemia via 

Femoral Artery Ligation and Preliminary Data with 

Different Stromal Cells 

 

A4.1 Introduction 

 In Chapter 4 we demonstrate induction of ischemia in a mouse hindlimb via FAL 

and the reperfusion of the ischemic tissue via delivery of ECs and fibroblasts in PEG or 

fibrin gels.  In this section, we delineate the details of the surgical procedure and 

present preliminary data with different stromal cells in this model. 

 As discussed at length in Chapter 4, the extent of ischemia resulting from femoral 

artery ligation varies widely, depending both on the mouse strain [1-4] as well as ligation 

site [5-7].  Total loss of flow to the hindlimb results when the femoral artery is ligated 

and excised proximal to the bifurcation of the deep femoral.  In this model 

collateralization is attenuated due to removal of the pre-existing arteriole network.  

Additionally, necrosis of the toes and limb paralysis are more profound when the first 

ligation is placed proximally [8].  Additionally, T cell deficient mice undergo impaired 

recovery in response to FAL [9].  Our choice of the more distal model of hindlimb 

ischemia was motivated by poor results seen in even immune competent animals 

following proximal FAL, arguments regarding the superior physiologic relevance for 



 

159 
 

PAD of the distal model, and concerns regarding poor recovery following ischemia in 

the mice population we used- CB15/SCID mice- due to the lack of T and B cells in this 

strain.  Accordingly, the full procedure is outlined below. 

 Additionally, different stromal cells were explored in our pilot studies using the 

model of hindlimb ischemia. 

 

A4.2 Materials and Methods 

In all conditions, unilateral ligation of hindlimb blood vessels was performed and the 

unligated, contralateral limb served as a control.  See chapter 4 for the protocol 

overview; details can be found below.  Images are shown in Figure A4-1. 

 

Figure A 4-1.  Hindlimb ischemia induced in SCID mice via femoral artery ligation. 
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In our pilot studies, all animals were delivered fibrin gels.  All gels contained ECs, 

and the response in animals was determined for constructs delivering various stromal 

cells- specifically NHLFs and ASCs- with the ECs.  Cells were resuspended at 10 

million total cells/ml in gel precursors for implantation post-FAL. 

 

1. At the initiation of the surgical procedures, transfer mice to a biological safety 

cabinet. Perform all procedures in a sterile laminar flow hood. This area must be 

routinely cleaned and sprayed down with alcohol then wiped with an anti-bacterial 

disinfectant, prior to and after use.  

2. Use sterile gloves when performing animal surgery.  The surgeon must also wear a 

gown, booties, cap, and face mask during all procedures.  All instruments must be 

sterilized prior to surgery by autoclaving.  

3. Weigh mice and return to cages in animal room.  The remaining procedures will be 

performed for 1 mouse at a time. 

4. Anesthetize the mouse with ketamine plus xylazine applied via intraperitoneal 

injection. Administer prophylactic analgesia when dosing with the ketamine/xylaxine 

cocktail by addition 0.06 mg/kg buprenorphine to the drug cocktail. Apply ophthalmic 

ointment to the eyes of the mouse following administration of the anesthetic. Check 

the depth of anesthesia by monitoring the breathing rate and lack of withdrawal 

reflex after gently squeezing hind toes.  

5. After the animal is anesthetized, shave the entire hindlimb, apply Nair hair removal 

cream, wait 1 minute, and then remove the Nair with a soap solution. 
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6. Sterilize the entire surgical site prior to making an incision by 2 applications of 

betadine and then alcohol to the surgical site. 

7. Next, using surgical scissors and curved fine forceps, make an incision 5 mm in 

length through the dermis and the muscle layers starting from the level of the 

inguinal ligament.  Identify the deep femoral branch and ensure the incision reaches 

the saphenous-popliteal bifurcation distally. 

8. Dissect the connective sheath surrounding the muscle with spring scissors and fine 

forceps.  Carefully isolate the femoral artery and vein from the surrounding muscle at 

a location distal to the deep femoral branch, again use forceps and fine spring 

scissors. 

9. Use 5-0 Ethilon sutures to tie off the femoral artery and vein at 3 locations: 

immediately distal to the deep femoral, immediately distal to the first ligation, and 

just proximal to the saphenous-popliteal bifurcation.  Before proceeding with gel 

delivery, snip the femoral artery and vein segments between ligations 2 and 3.  

Flood the region with sterile saline to remove remaining blood or loose tissue and 

dab away excess fluid with sterile gauze. 

10. Prior to closing the surgical field, prepare the gel precursor solution, with cells as 

dictated by the experimental conditions.  Transfer the precursor to a syringe and 

quickly deliver intramuscularly to 3 locations equidistant along the ligated region. 

11. Wait 5 minutes for the solution to gel then close the surgical field and suture the 

wound.  Cover the sutures with Mastisol. 

12. Return the animal to a fresh cage for recovery.  Keep the mouse warm and hydrated 

and monitor during recovery.  To stabilize body temperature, keep the cage on a 
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heating pad during recovery from anesthesia.  Monitor animals until they show 

normal behavioral signs (i.e. feeding, drinking, grooming, mobile). 

A4.3 Results and Discussion 

 LDPI was used to assess reperfusion to the ischemic limb following delivery of 

fibrin gels with ECs and the stromal cells outlined above.  Our pilot studies suggested 

implants delivering ECs and NHLFs promote improved recovery following ischemic 

insult compared to gels delivering other or no stromal cells (Figure A4-2).  As discussed 

in Chapter 4, LDPI is not a perfect metric for revascularization and measures perfusion 

to a limited depth of tissue.  Further studies investigating the role of different stromal 

cells in modulating revascularization should be conducted to fully parse their role in 

recovery after ischemic insult. 

 

Figure A 4-2.  Restoration of perfusion to ischemic limb following delivery of endothelial cells in a fibrin 
gels with no stromal cells, or with NHLFs or AdSCs. 
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