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ABSTRACT

Distributed learning, prediction and detection in probabilistic graphs

by

Zhaoshi Meng

Co-Chairs: Alfred O. Hero III and XuanLong Nguyen

Critical to high-dimensional statistical estimation is to exploit the structure in the

data distribution. Probabilistic graphical models provide an efficient framework for

representing complex joint distributions of random variables through their conditional

dependency graph, and can be adapted to many high-dimensional machine learning

applications.

This dissertation develops the probabilistic graphical modeling technique for three

statistical estimation problems arising in real-world applications: distributed and

parallel learning in networks, missing-value prediction in recommender systems, and

emerging topic detection in text corpora. The common theme behind all proposed

methods is a combination of parsimonious representation of uncertainties in the data,

optimization surrogate that leads to computationally efficient algorithms, and funda-

mental limits of estimation performance in high dimension.

More specifically, the dissertation makes the following theoretical contributions:

xi



(1) We propose a distributed and parallel framework for learning the parameters

in Gaussian graphical models that is free of iterative global message passing.

The proposed distributed estimator is shown to be asymptotically consistent,

improve with increasing local neighborhood sizes, and have a high-dimensional

error rate comparable to that of the centralized maximum likelihood estimator.

(2) We present a family of latent variable Gaussian graphical models whose marginal

precision matrix has a “low-rank plus sparse” structure. Under mild conditions,

we analyze the high-dimensional parameter error bounds for learning this family

of models using regularized maximum likelihood estimation.

(3) We consider a hypothesis testing framework for detecting emerging topics in

topic models, and propose a novel surrogate test statistic for the standard like-

lihood ratio. By leveraging the theory of empirical processes, we prove asymp-

totic consistency for the proposed test and provide guarantees of the detection

performance.
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CHAPTER 1

Introduction

Recent advances in information technology have transformed the data generation and

acquisition landscape, resulting in diverse and high volumes of data. Examples include

measurements of various sensing devices (such as ubiquitous sensors, smartphones,

and agents in a social network), behavioral data from users of large-scale Internet

services such as recommendation systems, and digital publication media.

Analyzing and deriving insights from such data sets has emerged as a topic of

great interest to researchers in both academia and industry. While great effort has

been devoted to improving the data processing capability, the statistical aspects of

the problems are often less studied in practice. One of the fundamental problems

is that of statistical estimation, i.e., to recover or extract distributional characteris-

tics from observations, which is often the first step towards statistical inference tasks

such as prediction and detection. Unfortunately, the increasing data dimensions pose

tremendous challenges for statistical estimation. For instance, modern high-resolution

imaging systems typically generate samples from millions of highly correlated pixel

variables. Similarly, an online recommender system (such as the movie streaming

platform Netflix, or the E-commerce website Amazon.com) often has hundreds of mil-

lions of users and even more products for recommendation. The estimation problem

at such scale requires a judicious choice of model, scalable computational techniques,

and deep understanding of its statistical efficiency with respect to the number of

1



observations.

This dissertation addresses these three aspects of modeling, computation, and per-

formance in the context of statistical estimation under the framework of probabilistic

graphical modeling. Three broad types of applications are discussed, namely dis-

tributed and parallel estimation in networks, missing-value prediction in recommender

systems, and emerging topic detection in text corpora. The theory and algorithms

developed in this dissertation also apply to other related problems. For each of the

three applications, we propose probabilistic graphical modeling that is adapted to the

structure of the problem, and provide both algorithmic, experimental and theoreti-

cal analysis. The common theme behind all proposed methods is a combination of

parsimonious representation of uncertainties in the data, optimization surrogate that

leads to computationally efficient algorithms, and fundamental limits of estimation

performance in high dimension.

1.1 Overview of probabilistic graphical models

One of the most recent and fruitful directions in high-dimensional statistical estima-

tion is the use of regularization that promotes simple and low-dimensional structures.

Examples abound in machine learning, statistics, and signal processing, including

sparse regression models, low-rank matrix factorization models, and their variants

and combinations. These methods essentially impose sparsity (i.e., a small number

of non-zero parameters) in a certain transformed domain.

Probabilistic graphical modeling (PGM) is a principled framework for compactly

modeling high-dimensional distributions through the conditional dependency graph

among the variables (Lauritzen, 1996; Wainwright & Jordan, 2008; Koller & Fried-

man, 2009). In PGM, each node often represents a random variable (could be either

observed or latent), and an edge denotes the corresponding conditional dependence,

2



(a) The Abilene network and an
undirected graphical model

α	  

m

n 
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ϕk 

θi 

wi,j 

α

… 
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… 
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n n n 

θ1 θ2 θm 

w1,j w2,j wi,j 

ϕ1 ϕ2 ϕK 

(b) The LDA model (the “plate” and a partially unrolled
representation)

Figure 1.1: Examples of two probabilistic graphical models: (a) a Markov random
field for the traffic flows in the computer network Abilene, and (b) a hierarchical
Bayesian network, the latent Dirichlet allocation model, for text documents. In (a),
each node of the graphical model represents the traffic flows in a loop of the physical
connectivity graph of Abilene. In (b), the ”plate” (left) and a partially unrolled
(right) representation are shown, where the shaded nodes denote the observed words
in the documents and the unshaded nodes denote latent and shared variables and
parameters (see text for details).

i.e., the statistical dependence between two random variables conditioning on all re-

maining variables. This conditional dependency graph is often assumed to be sparse,

which leads to a low-dimensional yet still richly structured representation. Note that

two variables could be conditionally independent but marginally dependent, due to

their mutual dependence with other variables. This phenomenon implies that the set

of conditional dependencies is a more parsimonious representation of the distribu-

tion than the set of (marginal) dependencies. Such modeling efficiency and flexibility

makes PGM especially suitable to high-dimensional distributions.

Two most commonly studied PGM methods are Markov random fields (MRF)

and Bayesian networks (see Figure. 1.1 for illustrations). Markov random fields are

often used for modeling random variables that are spatially correlated, for example,

pixel values in an images or a video, or sensory signals in a sensor network. The

common fundamental assumption is that the statistical dependence between two spa-
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tially separated random variables is likely to be weaker than that of two spatially

connected variables. In practice this assumption is often found to be a reasonable

approximation, therefore MRF has been successfully applied to many applications.

In Figure 1.1(a) we show an example for using MRF to model the traffic flows in

a computer network, in which the graphical model is constructed from the physical

connectivity graph of the computer network. We refer the readers to Wainwright &

Jordan (2008); Koller & Friedman (2009) for more examples.

The graph associated with a MRF is often an undirected graph, representing

a certain symmetric relation (such as conditional dependence) between the nodes.

Bayesian networks, on the other hand, use directed and often “hierarchical” graphs

to represent the asymmetric relations between nodes, which could represent either

observed or latent variables. The introduction of latent variables is a crucial part of

creating a sparse representation, since the observed variables are otherwise densely

connected. Another advantage of introducing latent variables that are connected

to many observed variables is to allow for the sharing of statistical strength in the

inference. In Figure 1.1(b), a hierarchical Bayesian network, called latent Dirichlet

allocation (LDA) model is shown. The LDA model is widely used for modeling col-

lection of text documents, where each leaf node represents a word, and all words in

the same document share a parent node which represent certain (latent) document-

specific characteristics. All these document-level nodes, again, share a parent node

which captures certain corpus-level features. The “plate” notation is an efficient

representation of this sharing of variables or parameters, as shown in Figure 1.1(b),

where each box denotes multiple repetitions of the same structure in the “unrolled”

network.

Given a graphical model with known structure and parameters, the classical task

is to infer for the marginal distribution of a subset of random variables (or their con-

ditional distribution conditioning on some evidence). For small or loop-free graphs
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(such as tree-structured MRF or simple Bayesian networks), this inference can be done

through sequential marginalization. However, for loopy graphs, an exact marginal

inference is in general intractable even for graphs with moderate size, due to the

exponentially increasing computational complexity. A distributed message passing

algorithm (also known as belief propagation) has been developed for approximate

inference in loopy graphs, which makes PGM especially appealing to large and decen-

tralized systems. For Bayesian networks, when exact inference is intractable, methods

such as the variational inference and Markov Chain Monte Carlo sampling techniques

are often used for approximate inference. For more details on the inference of PGM,

we refer the readers again to Wainwright & Jordan (2008); Koller & Friedman (2009).

1.2 Dissertation outline and contributions

This dissertation focuses on three problems related to PGM.

1.2.1 Distributed estimation in Gaussian graphical models

In the first part of the dissertation, we consider distributed estimation in PGM, fo-

cusing on the Gaussian MRF model, also known as the Gaussian graphical model.

This general problem is motivated by real-world applications, where the data is col-

lected from networks of decentralized sensing devices and agents (see Figure 1.2 for an

illustration). Due to the spatial correlations among the sensing devices, the joint dis-

tribution of the collected data often contains certain structure that can be naturally

captured by MRF. Statistical estimation is often performed in a centralized frame-

work (Figure 1.2(a)), in which all the data samples are collected at a fusion center

for the estimation. Unfortunately, for large network applications, this approach is

often constrained by limited computational capability of local devices and limited

communication bandwidth. The huge volume of data generated by large networks
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Fusion Center 
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Agents 

(a) The centralized estimation framework

Sensing Devices/
Agents 

(b) The distributed estimation framework

Figure 1.2: Illustration of the centralized and distributed estimation frameworks for
data collected from networks.

creates computational challenges even for the fusion center. A distributed estimation

framework (Figure 1.2(b)), on the other hand, utilizes in-network and local compu-

tation, and hence is advantageous in many aspects. It often requires negligible or no

communication with the fusion center, which significantly reduces the communica-

tion cost by lowering bandwidth requirements. The computational cost for localized

estimation may also be significantly reduced. The key to designing statistical esti-

mation algorithms in a distributed framework is to find a good tradeoff between the

computational complexity and the statistical accuracy achieved by the system.

In Chapter 2, we consider the problem of estimating parameters in a Gaussian

MRF from data samples, which is a prerequisite for performing statistical inference
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using the MRF. Since the classical global maximum likelihood estimation is central-

ized, we propose a general distributed framework for parameter estimation, in which

local parameter estimates are obtained by maximizing the marginal likelihoods of

local neighborhoods. Due to the non-convexity of this problem, we propose to solve

a convex surrogate. The local estimates are then combined into a global estimate

without any iterative message-passing between neighborhoods. For this proposed es-

timator, we derive asymptotic properties such as consistency and monotonicity of

the variance (in terms of local neighborhood sizes) under Gaussian distribution as-

sumption. Further high-dimensional analysis also provides a convergence rate for

its estimation error, which is comparable to the global maximum likelihood estima-

tor that requires centralized computation. This asymptotic analysis establishes the

statistical efficiency of the proposed estimator. Since there is no need for message

passing, the proposed estimation framework is naturally distributed and paralleliz-

able, making it well adapted to decentralized and large-scale problems. We illustrate

the performance of our proposed estimator in both synthetic and real-world data sets.

In Chapter 3, we focus on directed Gaussian graphical models, and introduce a dis-

tributed algorithm for performing principal component analysis (PCA) to estimate a

low-dimensional subspace. Note that the graphical model structure characterizes the

conditional dependencies arise in the data distribution, the low-dimensional subspace

we are interested in often captures other application-specific aspects of the data, such

as partially hidden latent effects. By leveraging structured sparsity in the Cholesky

factor of the inverse covariance matrix, our proposed algorithm estimates the global

principal subspace through local computation and message passing. At the core of this

algorithm is a distributed matrix-vector multiplier, which is shown to coincide with

a Cholesky-parameterized sum-product algorithm specialized to exploit the structure

of the problem. We illustrate the estimation efficiency and the reduced computation

and communication complexities of the proposed algorithm on both synthetic and
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Figure 1.3: Missing-value prediction in recommender systems.

real-world network data sets. In particular, in the real-world problem, we propose

two statistical directed graphical models based on the flow routing pattern of a com-

puter network, and demonstrate the computational advantages using the proposed

algorithm.

1.2.2 Learning latent variable Gaussian graphical models

with application to recommender systems

In Chapter 4, we consider learning Gaussian graphical models with latent variables.

This problem is also motivated by real-world applications. In particular, we focus

on the missing-value prediction problem, also known as collaborative filtering, in

recommender systems (Figure 1.3).

In recommender systems, available is an incomplete data sample matrix where

each element denotes the rating score that a user gives to an item. For example, we

consider rating movies in a database. The goal is to predict the unobserved or missing

ratings based on the observed ones. Fundamental to missing-value prediction is to

choose and learn a model that governs the joint distribution of the rating variables. In

this chapter, we propose to use latent variable Gaussian graphical models (LVGGM).

See Figure 1.4 for an illustration. Specifically, we introduce latent variables to model

certain global factors that affect a large portion of the movie ratings (such as the

movie genres). Conditioning on these latent factors, the conditional distribution of
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Figure 1.4: Illustration of the latent variable Gaussian graphical model for movie rat-
ings. The marginal inverse covariance matrix of the rating variables has a “low-rank
plus sparse” decomposition, corresponding to certain “global” and “local” effects,
respectively.

the (observed) movie rating variables is captured by a sparse graphical model. Unlike

standard sparse Gaussian graphical models that do not incorporate latent variables,

our proposed model does not have a sparse marginal inverse covariance matrix for

the observed variables. Instead, due to the property of Gaussian distribution, it can

be shown to have a “low-rank plus sparse” decomposition, which allows for efficient

learning as described below.

In practice, the number of items in a recommender system could be large. There-

fore, following Chandrasekaran et al. (2012), we consider regularized maximum like-

lihood estimation as a convex surrogate for learning the marginal inverses covariance

matrix of the LVGGM. Furthermore, by leveraging some recent advances in high-

dimensional asymptotic statistics, we derive the parameter learning error bounds

and sample complexity for the proposed LVGGM estimator under mild conditions in

high-dimensional setting. These results provide insights valuable to understanding the

statistical accuracy and efficiency of the proposed algorithm. The developed theory is

validated by numerical simulation on synthetic data, and the superior missing-value

prediction performance of LVGGM is illustrated through experiments on a real-world
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movie rating data set.

1.2.3 Detecting emerging topics in topic models

In Chapter 5, we consider the problem of detecting emerging topics in text document

corpora, which are modeled by one specific type of topic model, the latent Dirichlet

allocation (LDA) model.

Topic detection has many practical real-world applications, such as discovering

breaking news from online articles, and identifying anomalous activities from social

or behavioral data. Built upon the LDA model, we propose a hypothesis testing

framework for detecting emerging topics in a new text corpus (see Figure 1.5 for

illustrations). Under the null hypothesis, the testing corpus is assumed to be gen-

erated from the old LDA model learned from the historical data, while under the

alternative hypothesis, the documents are assumed to be generated from a new LDA

model whose topic collection consists of the old and some emerging ones. The test is

performed through calculating a certain test statistic followed by thresholding it to

achieve a particular level of false positive error control.

For the proposed hypothesis test, the standard generalized likelihood-ratio test is

computational expensive and lacks theoretical guarantees. We propose a surrogate

test which estimates a low-dimensional LDA model and calculates certain geometric

distance between the estimated and old “topic polytopes” (the convex hull of the topic

vectors ) for the thresholding decision. By exploiting the concentration behavior of

the empirical processes, we establish asymptotic consistency of the proposed surrogate

test. Under certain additional conditions, we further show a set of exponential bounds

for the detection errors. The theory is validated through numerical simulations on

synthetic data. The performance guarantees provide confidence for using the proposed

surrogate test for detecting emerging topics.
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Figure 1.5: Illustrations of the emerging topic detection problem: the graphical model
representation (left) and the proposed hypothesis testing framework based on topic
polytopes (right).

Finally, in Chapter 6, I conclude the dissertation with a summary of the contribu-

tions and a discussion of future directions.
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CHAPTER 2

Distributed Parameter Estimation in

Graphical Models via Marginal

Likelihoods

In this chapter, we consider the problem of estimating the parameters of the inverse

covariance matrix, also known as the concentration or precision matrix, in Gaussian

graphical models.

Traditional centralized estimation often requires global inference of the covariance

matrix, which can be computationally intensive in large dimensions. Approximate

inference based on message-passing algorithms, on the other hand, can lead to unsta-

ble and biased estimation in loopy graphical models. In this chapter, we propose a

general distributed estimation framework based on a maximum marginal likelihood

(MML) approach. This approach computes local parameter estimates by maximizing

marginal likelihoods defined with respect to data collected from local neighborhoods.

Due to the non-convexity of the MML problem, we introduce and solve a convex

relaxation. The local estimates are then combined into a global estimate without the

need for iterative message-passing between neighborhoods. The proposed algorithm

is naturally parallelizable and computationally efficient, thereby making it suitable

for high-dimensional problems.

We provide asymptotic analyses for the proposed distributed estimator, which show
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that it is asymptotically consistent, improves monotonically as the local neighborhood

size increases, and has a high-dimensional error convergence rate that is comparable

to the centralized maximum likelihood estimation. Extensive numerical experiments

demonstrate the improved performance of the two-hop version of the proposed esti-

mator, which suffices to almost close the gap to the centralized maximum likelihood

estimator at a reduced computational cost.

2.1 Introduction

Graphical models provide a principled framework for compactly characterizing depen-

dencies among many random variables, represented as nodes in a network (Lauritzen,

1996; Wainwright & Jordan, 2008). Their sparse structure allows for efficient and dis-

tributed inference using message-passing algorithms such as loopy belief propagation

(LBP), which makes them especially well-suited to large networks, such as sensor,

social, and biological networks (Liu & Ihler, 2012; Wiesel & Hero, 2012; Meng et al.,

2012). Less well-studied, however, is the equally important task of distributed esti-

mation of the parameters of a graphical model from data. The goal of this work is to

develop and analyze distributed methods for model parameter estimation.

In this chapter we focus on Gaussian graphical models (GGM) with known graph

structure, i.e, the pattern of edges is known. Our approach can also be extended to

more general graphical models, including discrete distributions. For GGMs, parame-

ter estimation essentially reduces to (inverse) covariance estimation, and knowledge

of the edge pattern imposes sparsity constraints on the inverse covariance matrix, also

known as the concentration or precision matrix. While the resulting GGM maximum

likelihood (ML) parameter estimation problem is a convex optimization, solving it

exactly for generally structured networks using centralized algorithms as in Banerjee

et al. (2006); Dahl et al. (2008); Friedman et al. (2008) becomes impractical in large
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real-world networks where data collection and computational resources are limited.

A natural approach toward distributed parameter estimation is to leverage meth-

ods for distributed marginal inference, such as LBP and its extensions. The idea is

to replace the objective function and its gradient in the ML estimation problem with

approximations that can be computed through iterative message-passing. However,

in many cases LBP may fail to converge or give good marginal estimates, and when

it does converge, the resulting parameter estimates may be biased (Malioutov et al.,

2006; Heinemann & Globerson, 2012).

Another direction for distributed estimation is to consider a surrogate objective

that decomposes into smaller problems that are locally parameterized. Then a dis-

tributed ML algorithm estimates the local parameters by processing local data with

limited message passing. Some recent efforts along this direction (Wiesel & Hero,

2012; Liu & Ihler, 2012) have considered a pseudo-likelihood framework for exponen-

tial family distributions.

In this chapter, we proposes a general framework for distributed estimation based

on marginal likelihoods, as contrasted with pseudo-likelihoods. Each node collects

data within its extended neighborhood and independently forms a local estimate by

maximizing a marginal likelihood. To deal with the non-convexity of the maximum

marginal likelihood (MML) estimation problem, we formulate a convex relaxation of

the problem. The resulting distributed estimator is computationally efficient, and

involves minimal message passing.

We analyze the mean squared error (MSE) of the proposed distributed estimator

in both the classical asymptotic regime (fixed number of parameters p and increas-

ing number of samples T → ∞), and also the high-dimensional regime where both

p and T increase to infinity (p, T → ∞). In the classical regime, the distributed

estimator is shown to be asymptotically consistent. Furthermore, the asymptotic

error improves monotonically as the local neighborhood size increases. In the high-
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dimensional regime, we show that under certain conditions and proper scaling between

p and T , the proposed estimator achieves a comparable statistical convergence rate

to the (more expensive) global ML estimator.

Our analytical results are supported by extensive numerical experiments on both

synthetic and real-world data sets. In particular, we show that two-hop local informa-

tion is sufficient for the proposed distributed estimator to match the performance of

the more expensive centralized ML estimator. The proposed estimator also improves

significantly upon existing distributed estimators (Liu & Ihler, 2012; Wiesel & Hero,

2012). In terms of computation, the complexity of our estimator increases at most

linearly with p in most cases and can be further reduced through parallelization. In

the case of a physical network implementation, the near-absence of message passing

and long-distance communication is also an advantage.

We emphasize that the problem we consider is different from covariance selec-

tion (Ravikumar et al., 2011; Rothman et al., 2008; Johnson et al., 2011; Friedman

et al., 2008), in which the graph topology is not known a priori and must be esti-

mated in addition to the parameters. To test our assumption of known graph struc-

ture, we also study the robustness of the proposed estimators against small model

(i.e. structure) mismatch. Both theoretical analysis and numerical results show that

the proposed distributed estimator is as robust as the centralized ML estimator.

The outline of the chapter is as follows. In Section 2.2, we give a brief review

of graphical models, centralized ML parameter estimation, and the difficulty of

parameter estimation using traditional marginal inference techniques. In Section

2.3, we propose a general approach to distributed estimation based on marginal

likelihoods. In Section 2.4, we provide extensive analysis of the convergence rates

and robustness of the proposed estimator. Section 2.5 discusses the computational

complexity and implementation advantages of the estimator. Numerical experiments

are presented in Section 2.6 and we conclude the chapter with a summary in Section
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2.7.

Notation for Chapter 2. Boldface upper case letters denote matrices and bold-

face lower case letters denote column vectors. Sets of single indices are denoted by

calligraphic upper case letters. The cardinality of a setA is denoted by |A| and the dif-

ference of two sets is denoted as A\B. Following common notation, AM,N represents

a submatrix of A with rows indexed byM and columns indexed by N . We also make

reference to irregular sets of index pairs such as the edge set E of a graph, for which

we use standard upper case letters. AE then refers to the vector of entries of A in-

dexed by E. The standard inner product between two symmetric matrices is denoted

as ⟨A,B⟩, i.e., ⟨A,B⟩ = trace(AB) =
∑

i,j Ai,jBi,j. We distinguish the following two

norms for matrices: the induced ℓ∞/ℓ∞ norm |||A|||∞ := maxi=1,...,p

∑p
j=1 |Ai,j|, and

the element-wise ℓ∞ norm ∥A∥∞ := maxi,j=1,...,p |Ai,j|. λmax(A) and λmin(A) denote

the maximum and minimum eigenvalues of matrix A, respectively.

2.2 Background

We begin by providing background on graphical models and their statistical inference.

We refer the reader to Lauritzen (1996); Wainwright & Jordan (2008) for a detailed

treatment.

2.2.1 Gaussian Graphical Models

Consider a p-dimensional random vector x following a graphical model with respect to

an undirected graph G = (V,E), where V = {1, . . . , p} is a set of nodes corresponding

to elements of x and E is a set of edges connecting nodes. The vector x satisfies

the Markov property with respect to G if for any pair of nonadjacent nodes in G, the

corresponding pair of variables in x are conditionally independent given the remaining
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variables.

If the vector x follows a multivariate Gaussian distribution, the corresponding

model is called a Gaussian graphical model (GGM). We assume without loss of gen-

erality that x has zero mean. Then the probability density function can be written

in canonical form in terms of the concentration matrix J as follows:

p(x;J) = (2π)−p/2(detJ)1/2 exp

(
−1

2
xTJx

)
. (2.1)

The Markov property manifests itself in a simple way through the sparsity pattern of

J:

Ji,j = 0 for all i ̸= j, (i, j) /∈ E. (2.2)

2.2.2 Maximum Likelihood Parameter Estimation for GGMs

Estimating the parameters of a graphical model from sample data is the first step

for many applications. For Gaussian graphical models this reduces to estimating the

non-zero elements of the concentration matrix J (including the diagonal elements).

Defining

Ẽ := E ∪ {(i, i)}pi=1 (2.3)

as the index set for these non-zero elements, the centralized global maximum likeli-

hood (GML) estimation problem can be formulated as (Lauritzen, 1996):

ĴGML = argmin
J

⟨Σ̂,J⟩ − log detJ

s.t. Jj,k = 0 ∀ (j, k) /∈ Ẽ

J ⪰ 0,

(2.4)
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where

Σ̂ =
1

T

T∑
t=1

x(t)x(t)T

is the sample covariance matrix and x(1), . . . ,x(T ) are i.i.d. samples of x.

The GML problem (2.4) is a convex log-determinant-regularized semidefinite pro-

gram (log det-SDP) with respect to JẼ and various gradient-based algorithms can

be applied to solve this problem, many of which have specialized implementations

on graphs, e.g. iterative proportional fitting (IPF) (Wainwright & Jordan, 2008),

chordally-embedded Newton’s method (Dahl et al., 2008), etc. The standard gradi-

ent descent algorithm for solving problem (2.4) has the following update rule at each

iteration:

Ĵ
(t+1)
i,j ← Ĵ

(t)
i,j − γ · ∇ℓ(Ĵ(t))i,j

=


Ĵ
(t)
i,j − γ ·

(
2Σ̂i,j − 2(Ĵ(t))−1

i,j

)
, i ̸= j

Ĵ
(t)
i,j − γ ·

(
Σ̂i,j − (Ĵ(t))−1

i,j

)
, i = j

(2.5)

where ℓ(J) is the GML objective function and ∇ℓ(J) denotes its gradient, γ is the

step-size, and we have used the facts ∂ log detX
∂Xi,j

= 2(X−1)i,j for i ̸= j and ∂ log detX
∂Xi,i

=

(X−1)i,i for symmetric matrices (Petersen et al., 2006). The obvious difficulty is

the global matrix inversion involved in computing the gradient at each step, whose

computational cost is cubic in the number of variables for generally structured models.

Given the expense of the matrix inversion in (2.5), an alternative is to consider

distributed message-passing algorithms, such as loopy belief propagation (LBP), an

iterative message-passing algorithm for inference of marginal distributions. When

applied to tree-structured graphs, LBP yields exact marginals. Unfortunately, this

does not hold for loopy graphs in general (Murphy et al., 1999). For Gaussian mod-

els, many sufficient conditions exist for Gaussian LBP to converge, such as diagonal

dominance, walk-summablility, pairwise normalizability, etc. (Malioutov et al., 2006).
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However, when these sufficient conditions do not hold, Gaussian LBP can be diver-

gent, or it may converge to degenerate, unnormalized marginal distributions. A recent

work by Pacheco & Sudderth (2012) uses the method of multipliers to improve the

convergence behavior of Gaussian LBP for some less ill-conditioned models. How-

ever, even if LBP converges, its final estimate is not guaranteed to be consistent. For

discrete graphical models, Heinemann & Globerson (2012) show that many models

are in principle not learnable through LBP, which implies that an estimator based

on LBP inference is inevitably biased for a subset of models. Similar drawbacks also

hold when using other approximate inference techniques, for example, tree-reweighted

BP (Wainwright, 2006). The above difficulties of parameter estimation using tradi-

tional marginal inference techniques motivate us to consider a different distributed

framework for parameter estimation, as introduced in the next section.

2.3 Distributed Estimation in GGMs

Our framework avoids the weakness of LBP and other message passing approaches

to distributed estimation of GGMs. The proposed distributed algorithm collects all

the data samples from within each neighborhood and computes a local parameter

estimate. A global estimate of the parameter (e.g. precision matrix J) is then formed

by combining these local estimates with a simple, single pass aggregation rule.

2.3.1 Marginal Likelihood Maximization

We consider estimating local parameters by maximizing marginal likelihood functions

in neighborhoods around each node. Define the index set for immediate neighbors of

node i as

Ii := {j | (i, j) ∈ E}, (2.6)
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Figure 2.1: Illustration of defined sets in the proposed local relaxation of MML. In (a)
and (b) we show two different graphs, in which the two-hop neighborhood N for node
i is indicated with dashed contours. The buffer set variables xB and the protected
set variables xP (excluding node i itself) are colored blue and red, respectively. For
the graph in (b), we illustrate the one-hop and two-hop local relaxations in (c). The
dashed red lines in (c) denote the fill-in edges due to relaxation.

and consider a neighborhood indexed by a set Ni containing at least the node i itself

and its immediate neighbors Ii. LetK denote the concentration matrix corresponding

to the marginal distribution over the variables {xj, j ∈ Ni} in the neighborhood, and

let Σ̂Ni,Ni
= 1

T

∑T
t=1 xNi

(t)xNi
(t)T be the marginal sample covariance matrix. The

maximum marginal likelihood (MML) estimation problem in neighborhood Ni can

be formulated as:

K̂i,MML = argmin
K,J

⟨Σ̂Ni,Ni
,K⟩ − log detK

s.t. K =
[(
J−1
)
Ni,Ni

]−1

,

Jj,k = 0 ∀ (j, k) /∈ Ẽ,

J ⪰ 0,

(2.7)

where the first constraint represents the marginalization relationship between K and

the global precision matrix J, and the second line of constraints reflects the global

sparsity constraints. We index the nodes in the MML problem (2.7) in the same way

as in the GML problem (2.4). (For example, if N1 = {1, 3, 6}, the rows and columns
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of K are indexed by {1, 3, 6} and not re-indexed to {1, 2, 3}.)

The difficulty with direct application of MML is that problem (2.7) is in general a

non-convex optimization with respect to K and J. The non-convexity arises from the

coupling of the nonlinear marginalization constraint linking K to J and the sparsity

constraints on J. As a surrogate, we derive next a convex relaxation of the MML

estimation problem.

2.3.2 Convex Relaxation of MML

We apply the Schur complement identity to the marginalization constraint in (2.7),

yielding

K = JN ,N − JN ,NC ·
[
JNC ,NC

]−1 · JNC ,N , (2.8)

where NC is the complementary set to N , and we have dropped the subscript i to

simplify notation. Define the buffer set B ⊂ N as the set of all variables in N that

have immediate neighbors in the complement NC ,

B := {j | j ∈ N and Ij ∩NC ̸= ∅}. (2.9)

The difference set between N and B is referred to as the protected set P := N\B.

The buffer and protected sets are illustrated in Figure 2.1(a) and 2.1(b). Due to the

Markov property, we have JP,NC = 0. Decomposing N into B and P then reveals the
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sparsity pattern of K using (2.8):

K = JN ,N −

 0

JB,NC

 [JNC ,NC

]−1
[
0, JNC ,B

]
,

= JN ,N −

 0 0

0 JB,NC

[
JNC ,NC

]−1
JNC ,B


and hence

KP,P = JP,P , KP,B = JP,B, (2.10)

KB,B = JB,B − JB,NC

[
JNC ,NC

]−1
JNC ,B. (2.11)

An important observation from (2.10) is that in the rows and columns indexed by

the protected set P , the sparsity pattern of JN ,N is entirely preserved and the local

parameters are equal to the global ones. On the other hand, the sparsity pattern in

the “buffer submatrix” KB,B is in general modified from JB,B due to the fill-in term,

i.e., the second term in (2.11).

Based on these observations, we now specify a relaxed set of constraints on the

marginal concentration matrix K. First denote the set of all local edges that are not

affected by the fill-in term in (2.11) as

EProt := Ẽ ∩ {{P × P} ∪ {P × B} ∪ {B × P}} , (2.12)

where the superscript stands for “protected”. We then add to EProt all index pairs

B×B that could potentially be affected by fill-in in (2.11), resulting in a relaxed edge

set R (see Figure 2.1(c) for illustrations):

R = EProt ∪ {B × B}. (2.13)
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In light of (2.10) and (2.11), any feasible marginal concentration matrix K for the

MML estimation problem (2.7) is guaranteed to be supported only on the set R.

Therefore we can relax the feasible set and formulate the following relaxation of (2.7)

at each node i, called the relaxed MML (RMML) problem:

K̂i,Relax = argmin
K

⟨Σ̂Ni,Ni
,K⟩ − log detK

s.t. Kj,k = 0 ∀ (j, k) /∈ R

K ⪰ 0.

(2.14)

The above RMML problem is a convex optimization with respect to K and has

the same form as the global MLE problem (2.4) but over matrices of much lower

dimension.

After solving the RMML estimation problems as surrogates to estimate local pa-

rameters, a global estimate of the concentration matrix can then be constructed by

extracting a subset of parameters from each local estimate and concatenating them.

Specifically, we extract the local parameter estimates indexed by

Li := {(j, k) ∈ Ẽ | j = i}, (2.15)

i.e., the non-zero entries in the ith row of J. We refer to the parameters indexed

by Li as the row parameters for node i. From (2.10), when there are no sampling

errors, i.e. T → ∞, the marginal and global concentration matrices are guaranteed

to share the same parameters in Li. Therefore our global estimate of J is formed by

concatenating local solutions of (2.14):

ĴRelax
Li

← K̂i,Relax
Li

, for i = 1, . . . , p. (2.16)

The proposed RMML framework is very general and applies to many possible
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choices of local neighborhoods, which include, e.g., nearest neighbors, second-order

nearest neighbors, or, in general, k-th order nearest neighbors of a node i. In the

following subsections, we consider one- and two-hop neighborhoods. The absence of

sampling errors is still assumed, i.e. T →∞.

2.3.3 Case I: One-hop Estimator

We first consider a first-order (i.e., one-hop) neighborhood consisting of node i and its

immediate neighbors Ii, i.e., Ni = {i} ∪ Ii. Generically in the worst case where the

immediate neighbors are all buffer nodes, we have Bi = Ii, and Pi = {i}. The fill-in

term in (2.11) affects the submatrix KIi,Ii , leaving only the first row and column

untouched. In this case, since i is by definition connected to all elements in Ii, the

relaxed edge set Ri defined in (2.13) includes all possible pairs (see leftmost graph of

Figure 2.1(c) for an illustration): R1hop
i = Ni ×Ni.

The solution to the relaxed MML problem (2.14) for the first-order neighborhood

is simply the inverse of the local sample covariance,

K̂i,1hop =
(
Σ̂Ni,Ni

)−1

. (2.17)

The global estimate is obtained by combining the local one-hop estimates as in (2.16).

In the one-hop case, the proposed relaxed MML estimator reduces to the LOC

estimator in Wiesel & Hero (2012). As shown in Wiesel & Hero (2012), this esti-

mator is also equivalent to the pseudolikelihood estimator (Liang & Jordan, 2008)

without symmetry constraints, and the covariance selection procedure in Friedman

et al. (2008) when the graph is known.
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2.3.4 Case II: Two-hop Estimator

We next consider a second-order neighborhood (two-hop), Ni that includes nodes that

are reachable from node i within two hops. In this setting, the worst-case protected

set is given by Pi = {i} ∪ Ii and the buffer set Bi = Ni\Pi consists of all nodes that

are exactly two hops away from the ith node. Hence Bi can be thought of as the set of

second-hop nodes. In the two-hop case, the protected edge set EProt includes not only

edges between node i and its immediate first-hop neighbors, but also edges between

first-hop neighbors and between first- and second-hop neighbors (see Figure 2.1(c) for

an illustration).

Unlike in the one-hop case, the two-hop problem (2.14) does not admit a general

closed-form solution. However, as mentioned before, Eq. (2.14) can be solved using

efficient algorithms for semidefinite programming. A global estimate is obtained as

before by combining row parameter estimates (2.16).

2.3.5 Symmetrization of RMML Estimator

When Σ̂ is estimated from finite sample sizes, the local estimates from the relaxed

MML problems are not perfectly consistent with each other. For example, ĴRelax
i,j ,

which comes from node i’s local estimate, may not agree with ĴRelax
j,i , which comes

from node j’s local estimate. Therefore the resulting global estimate ĴRelax in (2.16)

is not guaranteed to be symmetric.

A common way of addressing these discrepancies is to use iterative consensus

methods as in Wiesel & Hero (2012); Liu & Ihler (2012). In this work however, we

find that a single round of naive local averaging along edges is sufficient to ensure

convergence to the true parameters, and also to yield a good approximation to the
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global MLE. Specifically, the local average is given by

ĴRelax
i,j ← 1

2
(ĴRelax

i,j + ĴRelax
j,i ), (i, j) ∈ E, (2.18)

which is the only message passing required. This message passing is single pass, unlike

LBP which requires several iterations (if it converges at all). In the one-hop case, the

resulting symmetric estimator coincides with the AVE estimator proposed in Wiesel

& Hero (2012).

2.4 Analysis

2.4.1 Asymptotic Analysis: Classical Fixed-Dimensional

Regime

First we analyze the proposed distributed RMML estimator in the classical asymptotic

regime, where the number of variables p is fixed while the number of samples T

goes to infinity. Let J∗ and Σ∗ denote the true precision and covariance matrices,

respectively. The following theorem states the asymptotic consistency of the RMML

estimator ĴRelax and characterizes its asymptotic mean squared error:

Theorem 2.1 (Asymptotic MSE). The relaxed MML estimator ĴRelax is asymptoti-

cally consistent, and its mean squared (Frobenius) error satifies

T · E∥ĴRelax − J∗∥2F
T→∞−→

p∑
i=1

∑
j∈Li

[diag
(
F−1

i

)
]j, (2.19)

where T is the number of samples, diag(·) denotes the diagonal of a matrix, and Fi

is the Fisher information matrix of the relaxed MML problem in the ith neighbor-
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hood (2.14), which takes the following form:

(Fi)(m,n),(l,k) =


2Σ∗

m,l
2, m = n and l = k

2Σ∗
m,kΣ

∗
l,n, m = n, l ̸= k or m ̸= n, l = k

Σ∗
m,kΣ

∗
n,l, otherwise.

(2.20)

The above result can be derived by applying classical asymptotic theory (Van der

Vaart, 2000) to each local RMML problem (2.14), which is a well-defined M-estimation

problem. Then the asymptotic behavior of the global RMML estimate follows by

aggregation. The detailed proof of Theorem 2.1 is provided in Section 2.8.1.

While Theorem 2.1 ensures the consistency of RMML estimators with arbitrary lo-

cal neighborhoods (as long as the row parameters are included), the following theorem

guarantees that, in the asymptotic limit, larger neighborhoods always yield reduced

estimation variance:

Theorem 2.2 (Monotonicity of Asymptotic MSE). Let ĴRelax, k-hop be the RMML

estimate obtained from k-hop local neighborhoods. When the number of samples T →

∞, for k = 1, 2, . . ., we have

E∥ĴRelax, k-hop − J∗∥2F ≥ E∥ĴRelax, (k + 1)-hop − J∗∥2F (2.21)

≥ E∥ĴGML − J∗∥2F . (2.22)

While Theorem 2.2 is stated for Gaussian graphical models, it was first proven

for the case of discrete graphical models by Massam and Wang in Massam & Wang

(2013). As pointed out by Massam & Wang (2013), their proof can be easily extended

to the Gaussian case. For completeness, we include our own proof of Theorem 2.2 in

Section 2.8.2. The two proofs follow parallel lines of argument.

In Section 2.6, we present numerical results that verify Theorem 2.2 not only in
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the large-sample regime but also when the sample size T is comparable to or smaller

than p. In particular, it will be seen that the difference between k = 1 and k = 2

hops is most significant while the difference between k = 2 and the GML estimator

(and by extension k > 2 and GML) is much smaller.

2.4.2 Asymptotic Analysis: High-Dimensional Regime

Theorems 2.1 and 2.2 characterize the classical asymptotic behavior of the RMML

estimator. In this subsection we analyze the high-dimensional convergence rate of

the RMML estimator, which can be applied to settings where both the number of

variables p and the number of samples T increase to infinity, i.e. p, T → ∞. Such

problems arise in high-dimensional applications, and have attracted much attention

in modern statistics (Ravikumar et al., 2011; Friedman et al., 2008; Rothman et al.,

2008). We will show that under very mild conditions, the proposed RMML estimator

enjoys a sharp MSE convergence rate to the true parameter, which is almost the same

as the more expensive global ML estimator.

Similar to Rothman et al. (2008); Ravikumar et al. (2011), we first assume that

the maximum eigenvalue of J∗ is bounded from above:

λmax(J
∗) ≤ κ <∞. (2.23)

Recall that Ri defines the relaxed edge set in the ith local neighborhood. Let R denote

the maximum cardinality among all local relaxed edge sets, i.e.

R := max
i=1,...,p

|Ri|, (2.24)
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and let r denote the sum of the cardinalities of all local relaxed edge sets:

r :=

p∑
i=1

|Ri|. (2.25)

Also denote σ := maxi=1,...,pΣ
∗
i,i as the maximum variance.

The following theorem states an upper bound on the estimation error rate in the

high-dimensional regime.

Theorem 2.3 (High-dimensional MSE). Assume the number of samples T satisfies

T ≥ C2c1 log p, (2.26)

for c1 = 6400σ2/min2{ 1

9κ
√

R
, 40σ} and an arbitrary constant C ≥ 1. Then

∥ĴRelax − J∗∥F ≤ 720C · κ2σ
√
r log p

T
, (2.27)

with probability greater than 1− 4/p2(C
2−1).

Proof of Theorem 2.3 can be found in Section 2.8.3.

Remarks:

1) It is interesting to compare the result in Theorem 2.3 with the standard conver-

gence rate for the GML estimator (e.g., Rothman et al. (2008); Ravikumar et al.

(2011); Wainwright (2009)). Theorem 2.3 assumes a very mild condition (Eq. (2.26))

on the sample size, which is less restrictive than the requirement O(p log p) shown

in Rothman et al. (2008) in the high dimensional regime, and is comparable to those

obtained in Ravikumar et al. (2011); Wainwright (2009) when the local neighborhood

size increases more slowly than p, i.e. R = o(p). However, we emphasize that, unlike

some of the literature, we assume the graph structure is known.

2) The error bound in Theorem 2.3 is (up to a constant) slightly more pessimistic
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than the rate O(
√
p log p/T ) shown in Rothman et al. (2008); Ravikumar et al. (2011)

by the additional factor of r/p =
∑p

i=1 |Ri|
p

, which is roughly the average cardinality of

local neighborhoods. Again, when the local neighborhood size increases more slowly

than p in the high-dimensional regime, this additional factor becomes relatively in-

significant.

3) The mild sample size requirement is partly due to our distributed framework, un-

der which the stochastic deviation is smaller since a smaller set of parameters needs

to be considered for each local RMML problem. However, the additional parameters

introduced by convex relaxation and the aggregation of local estimation errors result

in the additional factor r/p mentioned above. This demonstrates the trade-off due to

the desire for distributed, convex optimization in the proposed framework.

2.4.3 Robustness Against Model Mismatch

One of the premises of the estimation framework we consider in this chapter is that

the true structure of the graph is known. However, this assumption could be violated

in practice. In this section, we investigate the robustness of the estimators against

small structure mismatch. Our specific interest is in the bias due to model mismatch

and hence we focus on the infinite sample regime.

We first consider the GML problem. The GML estimator effectively provides

a mapping from the edge elements of moment (covariance) parameters Σ̂Ẽ to the

canonical (concentration) parameters ĴGML
Ẽ

. We denote this mapping asM(·; Ẽ), i.e.,

ĴGML
Ẽ

=M(Σ̂; Ẽ). This mapping is specified implicitly by the optimality condition:

Σ̂Ẽ −
((

ĴGML
)−1
)

Ẽ

= 0. (2.28)

Due to a property of minimal exponential families, M(·; Ẽ) exists and is unique

provided that covariance matrix Σ̂ is positive definite (Wainwright & Jordan, 2008).
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Also by the implicit function theorem,M(·; Ẽ) is differentiable and thus continuous.

Consider a perturbed concentration matrix J̃∗ which has uniformly bounded per-

turbations on the non-edge entries with respect to the nominal parameter J∗:

J̃∗ = J∗ +∆J, (2.29)

where ∆J is supported only on ẼC . We assume the perturbation is small enough,

such that the perturbed matrix is still positive definite. Denote the corresponding

covariance matrix as Σ̃ = (J̃∗)−1. Then the bias of the GML estimator due to

model perturbation can be obtained by a first-order perturbation analysis of the

GML mapping defined above.

Let Γ = Σ ⊗ Σ denote the Hessian of the GML problem (2.4) with no sparsity

constraints, which is also related to the Jacobian of (2.28) with respect to ĴGML
Ẽ

. We

have

J̃GML
Ẽ

=M(Σ̃; Ẽ)

=M((J̃∗)−1; Ẽ)

=M((J∗ +∆J)−1; Ẽ)

=M(J∗−1 + ΓẼ,ẼC∆JẼC +O(∥∆J∥2); Ẽ)

=M(Σ∗; Ẽ) + (ΓẼ,Ẽ)
−1ΓẼ,ẼC∆JẼC +O(∥∆J∥2),

where in the second-to-last relation we have used the first-order approximation of

matrix inversion, and the last identity is due to the implicit function theorem applied

to the optimality condition (2.28). Also note that J∗ =M(Σ∗; Ẽ) due to consistency

of the GML estimator.

Therefore the maximum element-wise bias with respect to the new model can be
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bounded as follows (disregarding higher-order terms):

∥J̃GML − J̃∗∥∞

≤ ∥J̃GML − J∗∥∞ + ∥J̃∗ − J∗∥∞

≲
∣∣∣∣∣∣∣∣∣(ΓẼ,Ẽ)

−1ΓẼ,ẼC

∣∣∣∣∣∣∣∣∣
∞
∥∆JẼC∥∞ + ∥∆JẼC∥∞,

(2.30)

where we recall |||·||| is the induced ∞/∞ matrix norm.

The second term in the last display is the inevitable bias due to model mismatch,

while the first term captures the additional bias attributable to the GML estimator un-

der model perturbation. The additional bias depends on
∣∣∣∣∣∣∣∣∣(ΓẼ,Ẽ)

−1ΓẼ,ẼC

∣∣∣∣∣∣∣∣∣
∞
, which

is intuitively related to the level of incoherence between the edge and non-edge ele-

ments in the Hessian of the GML problem (2.4). Similar incoherence quantities have

been shown to play a crucial role in the literature on variable selection (Meinshausen

& Bühlmann, 2006) (e.g. Lasso) and structure estimation in Gaussian graphical mod-

els (Ravikumar et al., 2011). Therefore the smaller this incoherence parameter is, the

more robust the GML estimator will be.

Since each local problem in RMML estimation has the same structure as the GML

problem, we can apply similar analysis to each local neighborhood. The resulting

bound on the bias of the RMML estimator is dependent on similar incoherence pa-

rameters but defined with respect to relaxed edge sets in the local neighborhoods. We

conjecture that these local incoherence parameters are comparable to, if not smaller

than, the global incoherence. Hence the robustness of the distributed RMML esti-

mator is expected to be comparable to the GML estimator. While our conjecture

is not formally proven in this chapter, it is positively supported by the numerical

experiments in Sec. 2.6.
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2.5 Computational Complexity and Implementa-

tion

In this section we discuss the computational complexity of the proposed RMML ap-

proach and some implementation issues. First we note that each local RMML problem

has the same structure as the centralized ML problem, which is a log det-regularized

semidefinite program (log det-SDP). Therefore many well-developed solvers and effi-

cient specialized algorithms can be used. Furthermore, due to the distributed nature

of the RMML approach, the local problems can all be solved in parallel before the

final one-step averaging. The combination of lower dimensionality in the local prob-

lems and parallelization can significantly reduce the total run time compared with

centralized algorithms.

In terms of algorithms, we find the iterative regression method introduced in Fried-

man et al. (2009) is very efficient for sparse graphs. This algorithm iteratively per-

forms linear regressions of each node variable against its immediate neighbors until

global convergence. However, the major drawback of this algorithm is the need to

maintain global parameters, which prevents direct parallelization and also makes im-

plementation difficult in distributed networks (as discussed below).

The computational advantage of the proposed RMML algorithm becomes more

obvious when the number of variables p increases to large numbers. Assuming that

the local neighborhood dimensions increase more slowly than p, such as with K-NN

graphs and lattice graphs, the total complexity of the RMML estimator scales linearly

in p, independent of the algorithm used to solve the local problems. The run time

increases even more slowly if the overall algorithm can be parallelized. In contrast,

for the centralized algorithms, the dependence of complexity on p is at least linear

and is much faster for denser graphs and/or if generic log det-SDP solvers are used.

Another advantage of the proposed RMML algorithm is that it is highly suitable
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for network applications due to its minimal requirement for message passing which

reduces communication cost. In sharp contrast, many centralized algorithms, such as

the iterative regression algorithm mentioned above, require centralized storage and

iterative updating of a large number of variables, which in turn requires expensive

communication among non-adjacent nodes in the network.

2.6 Experiments

In this section, we evaluate the proposed RMML estimator and compare it with

the centralized and other distributed estimators in the literature. All methods have

been coded in Matlab routines that will be available at the reproducible research

web page 1. We focus on the one-hop and two-hop versions of the RMML estimator

(denoted as RelaxMML-1hop and RelaxMML-2hop, respectively). Other estimators

considered in this section are:

• The centralized GML estimator, denoted as GML in the legends;

• The LOCAL and AVE estimators from Wiesel & Hero (2012), denoted as LOC

and AVE. They coincide with the asymmetric and symmetric versions respec-

tively of the one-hop relaxed MML estimator;

• The weighted maximum pseudo-likelihood estimator using Alternating Direc-

tion Method of Multipliers (ADMM) consensus, proposed in Wiesel & Hero

(2012) and Liu & Ihler (2012) and denoted as PML-ADMM. We use the weights[
ĴLOC
i,i

]2
as in Wiesel & Hero (2012).

We first verify the classical asymptotic rates for the proposed estimators predicted

by Theorems 2.1 and 2.2 (see Fig. 2.2) using 10,000 randomized runs sampled from

a four-nearest-neighbor Gaussian graphical model with p = 20 nodes distributed

1http://tbayes.eecs.umich.edu/rrpapers
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Figure 2.2: Asymptotic normalized MSE for K-NN graphs (p = 20, K = 4). The
curves denote the theoretical asymptotic limits, whereas the symbols denote the em-
pirical normalized MSE over 10,000 runs.

uniformly in space over the unit square. The concentration matrix is initialized as

Ji,j = ± exp(−0.5·di,j) with random sign, where di,j is the Euclidean distance between

the ith and jth nodes. The empirical normalized mean squared errors (MSE), defined

as
∥Ĵ−J∥2F
∥J∥2F

, are computed from Monte Carlo samples, and they are compared with the

theoretical bounds predicted by Theorem 2.1. Fig. 2.2 illustrates the tightness of these

bounds. It is also worth noting that the bound for the two-hop RMML estimator is

much lower than that of the one-hop estimator, as predicted by Theorem 2.2. The

two-hop bound approximates the bound for the GML estimator closely, suggesting

that RMML estimators are nearly asymptotically efficient. The asymptotic bounds

for RMML estimators with larger neighborhoods follow the monotonicity relation in

Theorem 2.2, however the differences are too small to visually identify, and hence are

omitted from the plot.
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Next we evaluate the non-asymptotic MSE performance of the proposed estimator,

and compare it with the other estimators on both synthetic and real-world data sets.

For synthetic data sets, we consider three classes of graphs that are motivated by real-

world applications. For each class we follow similar experiment settings as in Wiesel &

Hero (2012). Specifically, we randomly generate 20 topologies and associated sparse

concentration matrices J, and for each J, we perform 10 experiments in which random

samples are drawn from the distribution and the concentration matrix is estimated

from the samples. The normalized MSEs are averaged over all 200 experiments, and

are reported in Figure 2.3. An illustration of the graph topology is shown in the

top-right corner of each plot. The classes of graphs we consider are:

• K-NN graphs (Figure 2.3(a)): A K-nearest neighbor graph is a straightfor-

ward model for real-world networks whose measurements have correlations that

depend on pairwise Euclidean distances, e.g., sensor networks. For these exper-

iments, we randomly generate p = 500 nodes uniformly over the unit square.

Each node is then connected to its K-nearest neighbors, where K = 4. The

concentration matrix is initialized as Ji,j = ± exp(−0.5 · di,j) with random sign,

where di,j is the Euclidean distance between the ith and jth nodes. Finally we

add a small value to the diagonal to ensure positive definiteness.

• Lattice graphs (Figure 2.3(b)): A lattice graph is appropriate for networks

with regular spatial correlations, e.g., images that are Markov random fields.

We generate a square lattice graph with p = 20 × 20 = 400 nodes and edge

weights generated as Ji.j = min{w, 1}, where w is a normally distributed ran-

dom variable with mean 0.5 and variance 0.2. A small value is added to the

diagonal to ensure positive definiteness.

• Small-world graphs (Figure 2.3(c)): Small-world graphs have been proposed

for social networks, biological networks, etc., where most nodes have few imme-
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diate neighbors but can be reached from any other node through a small number

of hops (Watts & Strogatz, 1998). We generate graphical models structured as

random small-world networks using the Watts-Strogatz mechanism (Watts &

Strogatz, 1998) with p = 100, K(mean degree) = 20, and parameter β = 0.5.

Under this particular setting, a large fraction of nodes have large second-hop

neighborhoods with dimension close to p. In general we expect the second-hop

neighborhood to scale linearly with respect to p. We choose the edge weights to

be uniformly distributed and also add a small diagonal loading to ensure that

J is positive definite.

The MSE curves shown in Figure 2.3 match our theoretical predictions in Sec-

tion 2.4.2, and they also demonstrate the superior performance of the proposed

RMML estimator. In particular, for the graphs that have relatively small two-hop

neighborhoods, namely the K-NN graphs and the lattice grids, the MSE of the pro-

posed two-hop relaxed MML estimator almost coincides with the MSE of the global

MLE. On the other hand, for small-world networks, the dimensions of the two-hop

neighborhoods grow as fast as p. In this case, a noticeable gap emerges between the

global MLE and the two-hop relaxed MML estimator. These graphs are known to be

harder to learn through distributed algorithms. The two-hop relaxed MML estimator

still outperforms the other distributed algorithms by a large margin.

Next, we apply the estimators to a real-world sensor network. The IntelLab

dataset (Guestrin et al., 2004) contains temperature information from a sensor net-

work of 54 nodes deployed in the Intel Berkeley Research lab between February 28

and April 5, 2004. This dataset is known to be very difficult with missing data, noise

and failed sensors. We select 50 sensors with relatively stable and regular measure-

ments. To obtain a target concentration matrix, we use 1800 consecutive samples

per sensor, interpolate the missing or failed readings and de-trend the data using a

local rectangular window of 10 samples. Next, we compute the sample covariance
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(a) Normalized MSE for K-NN graphs (p =
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(b) Normalized MSE for lattice graphs (p =
20× 20 = 400, µ = 0.5, σ2 = 0.2)
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(c) Normalized MSE for small-world graphs
(p = 100, K = 20, β = 0.5)
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Figure 2.3: Normalized MSE in the concentration matrix estimates for different graph-
ical models. The legend in Figure 2.3(d) applies to all plots. The proposed 2-hop
relaxed maximum marginal likelihood (RMML) estimator clearly improves upon ex-
isting distributed estimators and nearly closes the gap to the centralized maximum
likelihood estimator.
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and invert it to obtain a sample concentration matrix. This concentration matrix

is then thresholded to yield a ground truth graphical model with a sparsity level of

70% zeros. Using knowledge of the sparsity and sampling from the original 1800

samples, we estimate the concentration matrix using the same estimators as before.

As shown in Figure 2.3(d), the proposed two-hop relaxed MML estimator still gives

a very tight approximation to the centralized GML estimator and its advantage over

other distributed estimators is obvious.

We investigate the robustness of the centralized and distributed estimators in the

presence of model mismatch. The nominal precision matrix J corresponds to a four-

nearest-neighbor graphical model with p = 200 as in the previous experiments. We

add ±0.1 random perturbations to the non-edge components of the nominal precision

matrix (also with minimal diagonal loading to ensure positive definiteness), then

generate samples from the perturbed model. The different estimation algorithms are

applied assuming the nominal graph structure and the resulting MSEs are plotted

with respect to the nominal model. The MSEs of all estimators (using samples from

both the original and perturbed models, respectively) are reported in Figure 2.4. All

errors are averaged across 50 randomized experiments. As can be seen, the model

mismatch leads to estimation bias for both centralized and distributed estimators.

The magnitudes of the model mismatch bias for all estimators are comparable, as

predicted by the theoretical analysis in Sec. 2.4.3. These experiment results confirm

the robustness of the proposed distributed algorithm.

We next turn to computational comparisons. In the following experiments, we

illustrate the computational gain of our distributed estimator over the centralized

one through two runtime comparisons performed in Matlab. Our main focus is on

the relative scaling of the runtime with respect to the number of nodes p for different

estimators. We consider two algorithms for solving both the centralized GML problem

and the local RMML problems. The first is an interior point algorithm implemented
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Figure 2.4: Robustness of estimators under model mismatch. All errors are obtained
from K-NN (p = 200, K = 4) graphs and averaged over 50 experiments. For the
perturbed models, ±0.1 is added to the non-edge components of the nominal preci-
sion matrix. The proposed distributed RMML estimator is as robust as the GML
estimator.
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in the solver logdetPPA (Wang et al., 2010), which is specially designed for solving

log det-SDPs. The second algorithm is the iterative regression approach in Friedman

et al. (2009) for solving the covariance selection problem (Friedman et al., 2008)

with known structure. In both experiments, the graphical model is a four-NN graph

with similar parameter settings as before. We compare the total runtime of the

GML estimator and that of different versions of RMML estimators. For the RMML

estimators, we implement a sequential and a parallel version using the parfor function

in Matlab. The results are reported in Figure 2.5. As expected, the runtime of the

GML estimator is at least linear in p and the generic solver appears to be much

more expensive than the iterative regression algorithm for this particular task. The

total cost of the RMML estimator without parallelization is also linear in p, and is

slightly higher than the GML estimator. However, when four-core parallelization is

used, the run time is approximately reduced by a factor of four, resulting in lower

computational complexity after p > 500.

It is expected that with a higher degree of parallelization, the run time of the

proposed RMML estimator will continue to decrease almost linearly with the number

of cores. As discussed in Section 2.5, all local RMML problems can be solved in

parallel without the need for any iterative message-passing. Therefore the communi-

cation overhead is minimal, consisting of the final concatenation and symmetrization

steps (2.16) and (2.18).

2.7 Summary of Chapter 2

We have proposed a distributed MML framework for estimating the concentration

matrix in Gaussian graphical models. The proposed method solves a convex re-

laxation of a marginal likelihood maximization problem independently in each local

neighborhood. A global estimate is then obtained by combining the local estimates

42



300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Number of nodes (p)

A
ve

ra
ge

 r
un

 ti
m

e 
of

 e
ac

h 
ex

pe
rim

en
t

Computation complexity comparison (K = 4, #Samples = 200)

 

 

GML
RelaxMML−1hop
RelaxMML−2hop(No parallel)
RelaxMML−2hop(4−parallel)

(a) Run time comparison using logdetPPA

solver

400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7

8

9

10

11

Number of nodes (p)

A
ve

ra
ge

 r
un

 ti
m

e 
of

 e
ac

h 
ex

pe
rim

en
t

Computation complexity comparison (K = 4, #Samples = 200)

 

 

GML
RelaxMML−1hop
RelaxMML−2hop(No parallel)
RelaxMML−2hop(4−parallel)

(b) Run time comparison using iterative re-
gression algorithm

Figure 2.5: Run time comparisons for GML and RMML estimators. In panel (a) the
logdetPPA solver is used, and in panel (b) the iterative regression algorithm is used.
In both figures, solid lines denote the runtime scaling of the sequential version of the
algorithm, while the dashed lines denote runtime scaling for a parallelized version
with four cores. In both figures, the runtime of the GML estimator is super-linear in
p, while the RMML estimator exhibits linear scaling in p, and the runtime is further
reduced by a factor approximately equal to the number of cores used. All experiments
are implemented in a Matlab environment.

43



via a single round of local averaging. The proposed estimator is shown to be statis-

tically consistent and computationally efficient. In particular, we have shown that

the statistical convergence rate of our estimator is comparable to that of the more

expensive centralized maximum likelihood estimator. Likewise in numerical experi-

ments, a two-hop version of the distributed estimator is seen to be sufficient to attain

centralized performance. Its improved performance relative to existing distributed

estimators is also illustrated.

2.8 Proofs for Chapter 2

2.8.1 Proof of Theorem 2.1

Proof. Consider the following set of sparse positive semidefinite matrices with respect

to a non-zero element set R:

KR := {K | K ⪰ 0,K(j,k) = 0, ∀(j, k) /∈ R}.

We first note that, when R is taken to be the relaxed edge set of a neighborhood

as defined in (2.13), then the true marginal concentration matrix corresponding to

the neighborhood, K∗ = (Σ∗
N ,N )−1, must belong to the set KR. This can be seen

from the fact that the true global concentration matrix J∗ conforms to the sparsity

pattern specified by Ẽ and from relations (2.10) and (2.11). Therefore the proposed

relaxed MML problem (2.14) is equivalent to a standard ML problem with respect

to a GGM distribution parameterized by matrix K ∈ KR, with K∗ being the popu-

lation parameter. Then the asymptotic consistency, normality and efficiency of the

proposed relaxed MML estimator (with respect to the local problem) all follow from

the standard asymptotic analysis of the ML estimator Van der Vaart (2000). In par-

ticular, the variances of the errors achieve the diagonal elements of the inverse Fisher
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information matrix F defined in Eq. (2.20) (see Johnson (2006) for the derivation).

Finally by extracting and summing the variances corresponding to the row param-

eters, we obtain the expression for the asymptotic mean squared Frobenius error of

the proposed global estimator ĴRelax.

2.8.2 Proof of Theorem 2.2

Proof. We first consider the case of k = 1, i.e., we compare the asymptotic variances

of the one-hop and two-hop RMML estimators. Subsequently we generalize the ar-

guments to k > 1 and to the global ML estimator. Suppressing the index i for local

neighborhoods, let Bj,N j be the sets of buffer and all nodes (i.e. variables) with

respect to the j-hop neighborhood, respectively (j = 1, 2).

Next we define some set notation for edge parameters. Let Ej = Ẽ ∩ (N j ×N j)

denote the subset of edges in Ẽ with both endpoints in N j. Let Bj be the set of all

possible edges connecting j-hop buffer nodes, i.e. Bj := Bj × Bj. Recall from (2.15)

that L denotes the set of row parameters, which is defined as L = E1\B1. Finally

note that the (j-hop) relaxed edge sets defined in Eq. (2.13) are related to the above

two sets as Rj := Ej ∪Bj, j = 1, 2.

We augment the two-hop neighborhood graph by adding all edges among one-

hop buffer nodes and among two-hop buffer nodes that are not already in E2 (see

Figure 2.6 for an illustration). This augmented edge set is denoted as E2 := E2 ∪

B1 ∪ B2. After this augmentation, the one-hop buffer clique B1 separates the two-

hop neighborhood graph into two components and a non-overlapping decomposition

follows:

E2 = [L,B1,︸ ︷︷ ︸
C1=R1

L,

C2︷ ︸︸ ︷
B1, (E2\E1) ∪B2], (2.31)

where we define two subsets C1 and C2. The augmented two-hop neighborhood graph
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is therefore decomposed by (C1\B1, B1, C2\B1) (Lauritzen, 1996, Def. 2.1).

i

C1

C2

Figure 2.6: Illustration of the graph augmentation in the proof of Theorem 2.2.
Dashed red lines indicate the added edges, and dashed blue contours indicate the sets
C1 and C2, which intersect at the one-hop separator clique formed by red nodes.

Similar to Theorem 2.1, the asymptotic error covariance matrix of the RMML esti-

mator for the augmented two-hop neighborhood is the inverse of corresponding Fisher

information matrix (FIM), denoted as F. By Proposition 5.8 in Lauritzen (1996), the

decomposability of the augmented graph leads to the following decomposition of the

inverse of FIM:

F
−1

=
[
(FC1,C1)

−1
]0

+
[
(FC2,C2)

−1
]0 − [(FB1,B1)−1

]0
,

where [·]0 appropriately zero-pads its argument to conform to the dimensions of F
−1
.

Restricting this relation to the row parameters L, we have

F
−1

L,L = (FC1,C1)
−1
L,L, (2.32)

since the row parameters are only contained in C1. Noting that set C1 is equivalent

to the one-hop relaxed edge set R1, then

F
−1

L,L = (FC1,C1)
−1
L,L = (FR1,R1)−1

L,L. (2.33)
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Therefore, from Theorem 2.1 we have that the asymptotic mean squared error of

the RMML estimator using the augmented graph is the same as that of the one-hop

RMML estimator.

On the other hand, the augmented edge set E2 is different from the relaxed edge

set R2 only in the one-hop buffer clique B1. Therefore another possible decomposition

of the augmented edge set is (after re-ordering):

E2 = [L,E1\L, (E2\E1) ∪B2︸ ︷︷ ︸
R2

, B1\E1︸ ︷︷ ︸
D

], (2.34)

where we define the difference set as D. Then using a property of Schur complements

of positive semidefinite matrices, the variance matrix corresponding to R2 (i.e. the

non-zero pattern of the two-hop RMML estimator) satisfies

F
−1

R2,R2 =
(
FR2,R2 − FR2,D(FD,D)

−1FD,R2

)−1

⪰
(
FR2,R2

)−1
. (2.35)

Restricting this relation to the submatrix indexed by set L, we have

F
−1

L,L ⪰
(
FR2,R2

)−1

L,L
. (2.36)

Now combining Eq. (2.33), Eq. (2.36) and Theorem 2.1, we can conclude that the

asymptotic variance of the one-hop RMML estimator (i.e. the mean squared error)

is larger than that of the two-hop estimator.

Similar arguments can be established for comparing the asymptotic variances of the

two-hop RMML and the GML estimators, which shows that the asymptotic variance

of RMML estimator is larger than that of the GML estimator. The above proof can

be easily generalized to arbitrary k-hop neighborhoods.
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2.8.3 Proof of Theorem 2.3

The key ingredient in proving Theorem 2.3 is the following lemma, which provides a

bound for the error of the RMML estimator K̂Relax (2.14) in a given local neighbor-

hood (the neighborhood index i is suppressed). Let Σ∗ be the true global covariance

matrix, and K∗ be the true marginal precision matrix corresponding to the given

neighborhood.

Lemma 2.1. For a given local neighborhood N , if

∥∥∥(Σ̂(T ) −Σ∗
)
R

∥∥∥
∞
≤ ϵΣ ≤

1

9κ
√
|R|

, (2.37)

we have

∥∥∥K̂Relax −K∗
∥∥∥
F
≤ 9κ2ϵΣ

√
|R|. (2.38)

The proof of Lemma 2.1 is given in Section 2.8.4. The above lemma is deterministic

in nature. To ensure that assumption (2.37) is satisfied with high probability when

the sample covariance Σ̂(T ) is random, we make use of the following concentration

result for Gaussian random variables by Ravikumar et al. Ravikumar et al. (2011):

Lemma 2.2. For a p-dimensional Gaussian random vector with covariance matrix

Σ∗, the sample covariance matrix obtained from T samples Σ̂(T ) satisfies

P
{
|Σ̂(T )

i,j −Σ∗
i,j| > ϵ

}
≤ 4 exp

(
− T · ϵ2

3200σ2

)
, (2.39)

for all ϵ ∈ (0, 40σ), where σ := maxi=1,...,p Σ
∗
i,i.

Now we are ready to prove Theorem 2.3.
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Proof. (Theorem 2.3) Given the condition (2.26) on T , we have

C

√
3200σ2 log p2

T
≤ 40σ. (2.40)

Then applying Lemma 2.2 and the union bound, we have

P

{∥∥∥∥(Σ̂(T ) −Σ∗
)
Ri

∥∥∥∥
∞
≤ C

√
3200σ2 log p2

T

}

≥ P

{∥∥∥Σ̂(T ) −Σ∗
∥∥∥
∞
≤ C

√
3200σ2 log p2

T

}

≥ 1− 4

p2(C2−1)
.

(2.41)

Conditioned on the event in (2.41), condition (2.26) also guarantees that (2.37) holds

for all local neighborhoods. Then the total Frobenius error in the global estimate

ĴRelax can be bounded by Lemma 2.1:

∥ĴRelax − J∗∥F
(i)
=

(
p∑

i=1

∥(ĴRelax − J∗)Li
∥2F

)1/2

(ii)
=

(
p∑

i=1

∥(K̂Relax −K∗)Li
∥2F

)1/2

(Lem. 2.1)

≤

 p∑
i=1

(
9κ2C

√
3200σ2|Ri| log p2

T

)2
1/2

≤ 720C · κ2σ
√
r log p

T
,

where identity (i) is due to the fact that the global estimator is a concatenation of

non-overlapping row parameter sets (see Eq. (2.15) for definition of Li’s), equality

(ii) is due to our construction of ĴRelax from K̂Relax (see Eq. (2.16)), and the fact that

row parameters are always protected.
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2.8.4 Proof of Lemma 2.1

Proof. The main idea of this proof is inspired by Rothman et al. (2008). The difference

is that we focus on the local RMML problem, rather than the global ML problem

(which is studied in Rothman et al. (2008)). Define the marginal likelihood function

for a local neighborhood N as L(K) = ⟨Σ̂(T )
N ,N ,K⟩− log det(K), where we super-script

the sample covariance to emphasize that it is obtained from T samples.

Recall K∗ :=
(
Σ∗

N ,N
)−1

is the local marginal precision matrix. Define the short-

hand notation for the local RMML estimate as K̂ := K̂Relax.

Consider the function Q(∆) := L(K∗+∆)−L(K∗), where ∆ respects the sparsity

structure of the RMML problem, i.e. ∆RC = 0 and ∆ = ∆T . Let 0 < δ ≤ κ be a

given radius, define the following set

C(δ) := {∆ | ∆RC = 0,∆ = ∆T , ∥∆∥F = δ}, (2.42)

where R is the local relaxed edge set. Note that C(δ) defines a sphere, not a ball.

Note that Q(∆) is a convex function of ∆. By construction we have Q(0) = 0, and

the optimality of K̂Relax implies thatQ(∆̂) ≤ Q(0) = 0, where we define ∆̂ := K̂−K∗.

Then if we can establish that

inf
∆∈C(δ)

Q(∆) > 0,

then the optimal error matrix ∆̂ must lie inside the sphere defined by C(δ) by convexity

of Q, implying that ∥∆̂∥F ≤ δ. Now it suffices to find a suitable radius δ > 0 such

that Q(∆) is lower-bounded from zero for all ∆ ∈ C(δ).

Since

Q(∆) = L(K∗ +∆)− L(K∗)

= ⟨Σ̂(T )
N ,N ,∆⟩ − (log det(K∗ +∆)− log det(K∗)).
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Similar to Rothman et al. (2008), we make use of the Taylor’s theorem for the log det(·)

function

log det(K∗ +∆)− log det(K∗) = ⟨(K∗)−1,∆⟩−

−→
∆T

[∫ 1

0

(1− t)(K∗ + t∆)−1 ⊗ (K∗ + t∆)−1dt

]
−→
∆ , (2.43)

where ⊗ denotes the Kronecker product, and
−→
∆ is the properly vectorized form of

matrix ∆.

Using this identity, we have

Q(∆) = ⟨Σ̂(T )
N ,N − (K∗)−1,∆⟩︸ ︷︷ ︸

T1

+
−→
∆T

[∫ 1

0

(1− t)(K∗ + t∆)−1 ⊗ (K∗ + t∆)−1dt

]
−→
∆︸ ︷︷ ︸

T2

.

(2.44)

Next we bound T1 and T2 defined above separately.

For T1, notice that the difference matrix ∆ is non-zero only in a restricted set R,

therefore it reduces to a lower-dimensional inner product:

|T1| = |⟨(Σ̂(T ) −Σ∗)R,∆R⟩|
(i)

≤ ∥(Σ̂(T ) −Σ∗)R∥∞ · ∥∆R∥1
Eq.(2.37)

≤ ϵΣ ·
√
|R| · ∥∆∥F ,

(2.45)

where (i) is due to the duality between norms ∥ · ∥∞ and ∥ · ∥1.
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For T2, we follow similar derivations as in Rothman et al. (2008):

T2 ≥ ∥∆∥2F · λmin

(∫ 1

0

(1− t)(K∗ + t∆)−1 ⊗ (K∗ + t∆)−1dt

)
(i)

≥ ∥∆∥2F
∫ 1

0

(1− t)λ2min

(
(K∗ + t∆)−1

)
dt

≥ 1

2
∥∆∥2F min

0≤t≤1
λ2min

(
(K∗ + t∆)−1

)
(ii)

≥ 1

2
∥∆∥2F min

∥∆̃∥F≤δ
λ2min

(
(K∗ + ∆̃)−1

)
≥ 1

2
∥∆∥2F min

∥∆̃∥F≤δ
∥K∗ + ∆̃∥−2

2

≥ 1

2
∥∆∥2F min

∥∆̃∥F≤δ
(∥K∗∥2 + ∥∆̃∥2)−2

(iii)

≥ 1

2
∥∆∥2F min

∥∆̃∥F≤δ
(κ+ ∥∆̃∥F )−2 =

1

8κ2
∥∆∥2F ,

(2.46)

where (i) follows the eigenvalue property of Kronecker product, (ii) is due to the fact

that ∆ ∈ C(δ), (iii) is due to the interlacing property of eigenvalues of sub-matrices

∥K∗∥2 =
1

λmin(Σ∗
N ,N )

≤ 1

λmin(Σ∗)
= ∥J∗∥2 = κ, (2.47)

The last inequality is due to construction, i.e. δ ≤ κ.

Now Q(∆) can be bounded by

Q(∆) ≥ −ϵΣ ·
√
|R| · ∥∆∥F +

1

8κ2
∥∆∥2F (2.48)

= ∥∆∥F
(

1

8κ2
∥∆∥F − ϵΣ ·

√
|R|
)
. (2.49)

The proof is complete if the RHS can be lower bounded away from zero. It can

be verified that with the choice of ϵΣ as in (2.37), letting δ = 9κ2ϵΣ
√
|R| suffices.

Therefore ∥∆̂∥F ≤ δ = 9κ2ϵΣ
√
|R|.
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CHAPTER 3

Distributed Principal Component

Analysis in Directed Graphical Models

In this chapter, we continue to develop the distributed estimation framework for

graphical models, but focus on directed Gaussian graphical models. We introduce an

efficient algorithm for performing distributed principal component analysis (PCA)

in directed Gaussian graphical models. By exploiting structured sparsity in the

Cholesky factor of the inverse covariance (concentration) matrix, our proposed al-

gorithm accomplishes global principal subspace estimation through local computa-

tion and message passing. We illustrate the computation/communication advantages

of the proposed algorithm through a simulated online estimation example and an

anomaly detection example in a real-world network.

3.1 Introduction

We consider distributed principal component analysis (PCA) in directed Gaussian

graphical models. As a widely used dimensionality reduction technique, PCA es-

timates the principal subspace from data samples. The principal subspace is the

low-dimensional subspace spanned by the leading eigenvectors of the data covariance

matrix. The projected data onto this subspace preserves most of the covariation of

the data, thus the principal components are often used as compressed representation
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of the original data (Anderson, 1958). The difficulties in implementation of PCA on

large-scale and networked data include the heavy computation burden of eigenvalue

decomposition (EVD) and the massive communication cost required for processing

data at a fusion center. Aiming at overcoming these bottlenecks, distributed and

decentralized implementations of PCA have been proposed for applications such as

distributed estimation and tracking in wireless sensor network (Gastpar et al., 2006;

Li et al., 2011), computer vision (Tron & Vidal, 2011) and anomaly detection in

computer networks (Huang et al., 2006b; Wiesel et al., 2010).

In this work we consider the case that the variables are governed by a graphical

model. Such models represent conditional dependencies between variables by edges

in a graph (Lauritzen, 1996). When the graph is sparse and the variables are jointly

Gaussian, the graphical model imposes sparsity on the inverse covariance, variously

called the information, concentration or precision matrix. Such a representation en-

ables distributed and efficient inference algorithms, such as the well-known junction

tree algorithm (Jordan & Bishop, 2001) and belief propagation (BP) (Pearl, 1988).

When the topology (local dependency) of the graphical model matches the topol-

ogy (local data passage) of internode communication, superior performance can be

achieved at significantly reduced computational cost as compared to the global cen-

tralized approach. In applications such as those mentioned above, often there is a

good match between local dependency and local data passage, e.g., in geographically

distributed networks of sensing devices. The premise of this chaper is that the model

topology and communication topology are matched. Such an assumption is common

in other decentralized formulations of networked estimation, e.g, BP via message

passing in imaging and networks. Even in the case of approximate modeling, it is an

approach to tradeoff precision for complexity through leveraging the computationally

efficient inference algorithm.

Since PCA can be interpreted as maximum likelihood (ML) estimation of the
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covariance followed by its EVD, the first goal of distributed PCA is therefore to

perform distributed covariance estimation. However, it is well-known that the dis-

tributed maximum likelihood covariance estimation problem has no closed form so-

lution (Wiesel et al., 2010). In the special case of chordal graphs (also known as

decomposable or triangulated graphs), a closed-form distributed covariance estima-

tor exists, and a distributed PCA algorithm called DPCA can be implemented for

exploiting sparsity in concentration domain (Wiesel & Hero, 2009).

This chapter extends the DPCA framework to directed graphical models, and

we call this extension Distributed Directed PCA (DDPCA). Instead of assuming

sparsity in the concentration matrix, it assumes sparsity in Cholesky factor of the

concentration matrix. This assumption leads to a more parsimonious representation

when the Cholesky factor specifies a generative model for the observations in terms

of a white noise process (Smith & Kohn, 2002). This proposed approach results

in closed-form distributed covariance estimation and reduced inference complexity

in terms of computation/communication. The DDPCA algorithm can equally be

applied to non-directed decomposable graphical models by using a sparsity-preserving

Markov-equivalent conversion. More specifically, DDPCA first performs distributed

regressions to estimate a rank reduced covariance matrix. Then a distributed iterative

EVD algorithm is implemented based on an efficient matrix-vector multiplier that

fully exploits sparsity structure. We also show that this matrix-vector multiplier

coincides with a specific Cholesky-parametrized sum-product algorithm on Gaussian

DAG models, which is provably convergent and exact for inference of marginal means

and also for solving DAG-sparse linear systems.

The outline of the chapter is as follows. In Section 3.2 we briefly review directed

Gaussian graphical models and state our problem. A two-step DDPCA algorithm is

introduced in Section 3.3. In Section 3.4, we interpret the proposed matrix-vector mul-

tiplier as a specific Cholesky-parametrized sum-product algorithm and then compare
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DDPCA with DPCA algorithm in Section 3.5. We illustrate the improved properties

of DDPCA in an online subspace estimation problem in Section 3.6, and apply it to

the task of distributed anomaly detection in a real-world computer network in Section

3.7. We conclude the chapter with a summary in Section 3.8.

The following notation is used in Chapter 3. Boldface upper case letters denote

matrices, boldface lower case letters denote column vectors, and standard lower case

letters denote scalars. The superscripts (·)T and (·)−1 denote the transpose and matrix

inverse, respectively; and (·)−T means the transpose of inverse. The cardinality of a

set a is denoted by |a|, the difference of two sets is denoted as a\b. We use indices in

the subscript xa or Xa,b to denote sub-vectors or sub-matrices, respectively.

3.2 Problem Formulation

Graphical models are compact representations of the conditional independencies be-

tween subsets of the random variables of multivariate distributions. Two common

classes of graphical models are directed graphical models (also known as Bayesian

networks), and undirected graphical models (also known as Markov Random Field).

Our focus is on directed models, and first we give a brief review. We refer the readers

to Lauritzen (1996) for more detailed introduction to graphical models.

A directed graphical model is denoted by a graph G = (V , E), where V is the set

of nodes (or vertices) and all edges in the edge set E are directed. Two vertices i and

j are adjacent if there is an edge between them. If i → j, then i is called a parent

of j and j is called a child of i. The set of parents of i in G is denoted as pa(i), and

ch(i) denotes the set of its children. We assume no directed cycle exist in the graph,

therefore the model is also called directed acyclic graph (DAG) model. However, loops

or cycles in the underlying undirected skeleton are allowed.

A p-dimensional random vector x satisfies the Markov property with respect to a
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DAG model G, if the conditional independencies between the variable xi’s are encoded

in G through the notion of d-separation Lauritzen (1996). Applying the Markov

property on the DAG results in the following factorization of joint distribution of x,

f(x) =
∏
i∈V

f(xi |xpa(i)). (3.1)

The DAG corresponds to a certain partial ordering of the variables, therefore is

suitable for modeling spatial or temporal dependent random variables. Each variable

only depends on a subset of its previous variables, denoted as its parents nodes in the

DAG model, i.e.

xi = f(x1, . . . , xi−1) + ϵi = f(xpa(i)) + ϵi, (3.2)

where ϵi’s are uncorrelated residuals.

Assuming the random variables are jointly Gaussian distributed with zero mean,

the dependency reduces to the following recursive linear system Wermuth (1980):

xi =
∑

k∈pa(i)

λikxk + ϵi, i = 1, ..., p. (3.3)

Define a lower triangular matrix Λ with zero diagonal and

Λik =

 0 if k /∈ pa(i)

λik if k ∈ pa(i),
(3.4)

then the above linear system (3.3) can be written as

x = Λx+ ϵ. (3.5)

This linear equation leads to the following well-known diagonalization of the co-
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variance matrix Σ = E(xxT ) Smith & Kohn (2002); Rütimann & Bühlmann (2009):

(I−Λ)Σ(I−Λ)T = Ω, (3.6)

where Ω is a diagonal matrix denoting the variances of residual ϵj’s.

It is convenient to define the modified Cholesky factor (also called the Backward

Cholesky factor) of the concentration matrix J = Σ−1, denoted as L and defined as:

LTL = J = Σ−1. (3.7)

From (3.6), we have

L = Ω−1/2(I−Λ). (3.8)

It is easy to see that L shares the same lower-diagonal nonzero pattern as Λ, which

characterizes the topology of the DAG G through (3.4). This fact indicates that, for

directed Gaussian graphical models, the conditional independencies between variables

translate to zeros in the Cholesky factor of the concentration matrix J.

Now we can formulate our problem. The input to our algorithm is a set of T real-

izations of a random vector x modeled by a known Gaussian DAG model G: {x[t]}Tt=1.

We assume that there are p units, or agents, that collect and process the data in a

distributed manner. Each agent i only collects and processes all the T samples of the

i-th component (or sub-vector) {xi[t]}Tt=1. Agents can perform computation (called

local computation) and communicate with their neighbors (called local communica-

tion) defined by G. Using local data samples and local computation/communication,

our goal is to perform global estimation of the principal subspace spanned by the

first r leading eigenvectors of the covariance matrix. In other words, our algorithm

searches for the the linear combination X = VTx having maximal variance, where

V ∈ Rp×r.
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We emphasize that, although we sometimes user scalar notation xi for simplicity,

the proposed framework and algorithm can be easily generalized to multivariate case,

where each node of the graphical model (i.e. each agent) corresponds to a of random

sub-vector xi.

3.3 Algorithm

As discussed above, the classical centralized PCA algorithms are not scalable for gen-

eral high-dimensional problem or networked data, due to the intensive computation,

communication and storage costs of covariance estimation and EVD algorithms ap-

plied to a potentially dense covariance matrix (or its inverse). The proposed Directed

Distributed PCA (DDPCA) algorithm enables decentralized computation by exploit-

ing sparsity in the Cholesky factor of the concentration matrix, and the complexities

and costs only scale with respect to local dimensions.

DDPCA is a two-step algorithm. In the first stage, the Cholesky factor of the

concentration matrix is estimated through local regressions. Then in the second stage

the leading eigenvectors are estimated through an iterative EVD algorithm based on

a distributed matrix-vector multiplier that exploits the estimated Cholesky factor.

3.3.1 Step I: Distributed Covariance Estimation

As mentioned before, given a random vector x that satisfies a DAG model, the condi-

tional independencies among its components translate to zeros in the Cholesky factor

L of the concentration matrix J. Since the inverse covariance matrix is fully char-

acterized by L (or equivalently, Λ and Ω), a simple approach for inverse covariance

estimation on such DAGs is to perform distributed regression (3.3) of each node on

its parents to estimate the parameters in L. The procedure is illustrated in Algorithm
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1, where we define the local covariance matrices as:

Spa(i),pa(i) =
1

T

T∑
t=1

xpa(i)[t]x
T
pa(i)[t], (3.9)

Spa(i),i =
1

T

T∑
t=1

xpa(i)[t]x
T
i [t]. (3.10)

Algorithm 1: Distributed covariance estimation on DAGs

Input: Gaussian distributed samples {x[t]}Tt=1, DAG G
Output: Estimated Cholesky factor L̂
for all agent i ∈ {1, 2, . . . , p} do

Collect {xpa(i)[t]}Tt=1 from parents
Calculate local sample covariance (3.9) and (3.10)
Λ̂T

i,pa(i) = S−1
pa(i),pa(i)Spa(i),i

ϵ̂i[t] = xi[t]− Λ̂i,pa(i)xpa(i)[t]

Ω̂ii =
1
T

∑T
t=1 ϵ̂i[t]ϵ̂

T
i [t]

L̂ij = −Ω̂−1/2
ii · Λ̂ij, for j ∈ pa(i)

L̂ii = Ω̂
−1/2
ii

In fact, this procedure results in the maximum likelihood estimation Wermuth

(1980). Upon completion, each agent has its corresponding local component of the

matrix L̂, i.e. the ith row, [L̂]i,:.

This distributed regression-based covariance estimator is feasible for temporally

recursive estimation, e.g., by using recursive least squares (RLS), which can enable

online estimation or fast distributed principal subspace tracking in time-varying sce-

narios. The covariance estimation procedures can also be easily extended to the sce-

nario of unknown graph structure by adopting penalized regression for regularization

and variable selection Shojaie & Michailidis (2010); Huang et al. (2006a).
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3.3.2 Step II: Distributed Principal Subspace Estimation

The second stage of DDPCA is a distributed implementation of an iterative EVD

algorithm to estimate the leading eigenvectors of the covariance matrix. Among

many EVD algorithms designed for symmetric matrices, in this chapter we focus on

the most simple yet prevailing one, the Power Iteration. For searching the leading

eigenvector of the covariance matrixΣ, in the t-th iteration of Power Iteration, current

estimate of the eigenvector v(t) is multiplied by Σ, the result is then normalized as

the input of next iteration, i.e.

u(t) = Σv(t), v(t+1) =
u(t)

∥ut∥
. (3.11)

Under mild assumptions (such as separation of the true leading eigenvalues), the

estimate converges to the true leading eigenvector at a linear rate (Golub & Van Loan,

1996).

The most expensive cost for performing the Power Iteration is the repeated matrix-

vector multiplication, especially for large-scale or network data. The proposed

DDPCA decentralizes this computation through the use of an efficient distributed

matrix-vector multiplier that exploiting sparsity pattern of the estimated Cholesky

factor L̂. We will elaborate this multiplier in the next section.

The norm calculation and scaling operation in (3.11) could be done in a distributed

manner via average consensus (Li et al., 2011) or message-passing on the DAG under

serial scheduling (e.g. from root to leaves then back to root). The cost is negligible

comparing with the matrix-vector multiplication.

For estimating the principal subspace, a extension of Power Iteration, namely

Orthogonal Iteration could be used for searching multiple leading eigenvectors. In

each iteration, matrix-vector multiplication is performed simultaneously for each es-

timated vector, and QR factorization is used for orthonormalization. The QR factor-
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ization could be implemented in an efficient and distributed form with small additional

cost (O’Leary & Whitman, 1990), when the number of eigenvectors we are interested

in is much smaller than the total dimension (this is often the case in dimensionality

reduction applications).

Similarly, many more advanced EVD algorithms, such as the Lanczos Itera-

tion (Golub & Van Loan, 1996), are also based on repeated matrix-vector multi-

plication. Therefore they can be easily adopted in our DDPCA framework. These

algorithms provide a good way to trade-off implementation complexity for better

convergence property.

3.3.3 Cholesky-based Distributed Matrix-Vector Multiplier

In this section we describe the distributed matrix-vector multiplier (MVM) designed

for directed graphs. Recall in the factorization in (3.7), the multiplication in (3.11)

can be structured as

u = L−1L−Tv, (3.12)

which is efficiently performed by introducing an auxiliary vector y and sequentially

solving the following two triangular systems:

LTy = v, Lu = y, (3.13)

through backward substitution and forward substitution respectively. The procedures

are detailed in Algorithm 2. We emphasize that, since the non-zero pattern of L

matches the graph structure of G, in the substitution algorithms, solving a given

component of the solution vector only requires linear message-passing from its parents
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or children. For example, the j-th component of y is calculated by

yj = L−1
jj (vj −

∑
m∈ch(j)

LT
mjym). (3.14)

The proposed MVM is highly scalable by distributing the challenging centralized

computation cost to local computation and efficient message-passing on the edges.

Algorithm 2: Distributed Matrix-Vector Multiplier

Input: Estimated Cholesky factor L̂ with matching sparsity pattern to DAG
G, vector v

Output: Vector u = L̂−1L̂−Tv
// Solve L̂Ty = v through Backward Substitution:
for j = p, ..., 1 do

yj = L̂−1
jj (vj −

∑
m∈ch(j) Mm→j)

Bottom-up message calculation: Mj→k = L̂T
jkyj, for all k ∈ pa(j)

// Solve L̂u = y through Forward Substitution:
for j = 1, . . . , p do

uj = L̂−1
jj (yj −

∑
m∈pa(j) L̂jmMm→j)

Top-down message calculation:
Mj→k = uj, for all k ∈ ch(j)

With this MVM we can easily implement the above-mentioned Orthogonal Itera-

tion in a distributed manner. The standard convergence properties also hold for this

distributed version since it is an exact reformulation.

3.4 A Sum-Product Perspective

In this section, we discuss the relation between the proposed MVM (Algorithm 2) and

classical inference methods in Gaussian DAGs. The traditional approach for efficient

inference in graphical models is via message passing techniques, as Gaussian belief

propagation (BP) (Weiss & Freeman, 2001) and the sum-product algorithm (Pearl,

1988). Recently, it was shown that such techniques can be used as distributed solu-

tions to sparse linear systems Ax = b, where A is symmetric and represents a sparse

63



undirected graph (Shental et al., 2008). Roughly speaking, the solutions are exact for

undirected tree like structures and approximate for loopy undirected graphs (Weiss

& Freeman, 2001; Malioutov et al., 2006). On the other hand, the standard approach

to exact inference in DAGs is via graph conversion to undirected graphical models

(e.g. a possibly inefficient junction tree1 via moralization), and then apply inference

algorithms such as loopy belief propagation. In general, inference on DAGs leads to

inexact solutions. In what follows, we prove that the proposed MVM (Algorithm 2) in

fact coincides with a specific Cholesky-parametrized sum-product algorithm in Gaus-

sian DAG models, which is provably convergent and exact for inferring the marginal

means and solving DAG-sparse linear systems. Thus, we exploit the DAG proper-

ties without resorting to inefficient conversion and inexact inference (i.e. loopy belief

propagation). However, we emphasize that our task, namely solving a single linear

system, is a much easier than the general inference tasks, namely solving multiple

linear systems simultaneously by marginalizing over all the nodes together.

DAGs can be conveniently represented by factor graphs Kschischang et al. (2001).

Factor graphs are bipartite graphs that express the structure of factorization. As-

suming a factorization of the joint probability density function of x,

f(x) =
∏
j∈J

fj(Xj), (3.15)

where the j-th factor is also called a local function, and Xj denotes the set of variables

related to fj. A factor graph has a variable node for each variable xi, a factor node

for each local function fj, and edges connecting factor node with all related variable

nodes.

Recall (3.7), the probability density function of a Gaussian distributed random

vector x defined on a DAG model G can be parametrized by the Cholesky factor L

1A junction tree is basically a tree whose nodes are sets of variables which satisfy a special
ordering
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as

f(x) ∝ exp
( p∑

i=1

hixi −
1

2

p∑
i=1

(
Liixi +

∑
j∈pa(i)

Lijxj
)2)

, (3.16)

then it is natural to define the following factorization

f(x) =

p∏
i=1

fi(xi,xpa(i)), (3.17)

where the i-th factor is

fi(xi,xpa(i)) ≜ exp
(
hixi −

1

2
(Li,ixi + Li,pa(i)xpa(i))

2
)
. (3.18)

With these defined factors, each variable node has an associated factor node connect-

ing it and all its parent variable nodes. Unlike conversion to undirected graphs, no

additional loops are introduced in the resulting factor graphs.

Sum product algorithm is an algorithm for computing marginal functions on fac-

tor graphs via message passing (between variable nodes and factor nodes) and local

marginalization. More specifically, sum-product algorithm computes the following

two types of messages:

Variable node to factor node:

mx→f (x) =
∏

h∈n(x)\f

mh→x(x). (3.19)

Factor node to variable node:

mf→x(x) =

∫
∼x

f(X)
∏

y∈n(f)\x

my→f (y)

 , (3.20)

where notation
∫
∼x

means integral with respect to all the variables but x, as used

in Kschischang et al. (2001). In Gaussian case, the calculations of (3.19) and (3.20)
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reduce to computing the parameters h and J of the messages. Finally the marginal

functions can be obtained by computing the product of all incoming messages at

variable nodes.

Since the resulting factor graphs defined by DAGs potentially contain cycles,

in general the convergence and exactness of sum-product algorithm is not guaran-

teed. However, an iterative version of sum-product algorithm can be performed in

loopy graphs under pre-defined message scheduling and initialization. Define a serial

scheduling M as {p, p − 1, . . . , 2, 1, 2, . . . , p}, i.e. a bottom-up pass from leaf vari-

able nodes to root variable node (routing via corresponding factor nodes) followed

by a top-down pass back to the leaves, and initialize all the messages as constant

1 (Kschischang et al., 2001). Interestingly, we have the following equivalence result.

Theorem 3.1. The sum-product algorithm on the factor graph defined by a Gaus-

sian DAG model under scheduling M and with constant initialization is equivalent

to Algorithm 2 with input vector equals to h, which results in exact inference of the

marginal means of the Gaussian DAG.

Proof. See Section 3.9.

In the proof, it is shown that each pass of the sum-product algorithm is equivalent

to a solving a linear triangular system with the Cholesky factor L via distributed

substitution methods. This result resembles (Shental et al., 2008, Proposition 6),

where the authors show the equivalence between Gaussian belief propagation (also

a specific sum-product algorithm) and solving a linear system using Jacobi method.

In contrast to Shental et al. (2008), our approach is especially efficient for Gaussian

DAG models and DAG-sparse systems.
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3.5 Comparison between DDPCA and DPCA

The introduced DDPCA framework is designed for directed Gaussian graphical mod-

els. In this section, we will compare DDPCA with a previously proposed distributed

PCA framework, called DPCA (Wiesel & Hero, 2009), which is designed for decom-

posable Gaussian graphical models (DGGM).

Unlike DAGmodels, the Markov property on undirected graphs states that random

variables measured at two subsets are conditionally independent given the separating

subset2. Under Gaussian assumption, Markov property in undirected models imposes

zeros in the information matrix J. More specifically, conditional independence be-

tween xi and xj given all the other random variables implies Jij = 0 (Lauritzen,

1996).

Decomposable models (also known as chordal or triangulated models) are a special

type of undirected graphical model in which the conditional independencies satisfy an

appealing structure. A decomposable graph can be divided into an ordered sequence

of fully connected subgraphs known as cliques and denoted by C1, . . . , CK . These

ordered cliques are coupled through separators

Sj = (C1 ∪ C2 ∪ · · · ∪ Cj−1) ∩ Cj (3.21)

for j = 2, . . . , , K, and satisfy the running intersection property : for all j ≥ 2 there is

a k < j such that Sj ⊆ Ck. Assuming Gaussian distribution, it is readily seen from

the above running intersection property that the sparsity patterns of the information

matrix for DGGMs matches its decomposable structures. This sparsity pattern can

be exploited for efficient inference (Wiesel & Hero, 2009; Wiesel et al., 2010; Dahl

et al., 2008).

DGGMs are closely related to Gaussian DAG models. Given a DGGM, we can

2We say that set c separates sets a and b, if there is no path between any node in a and node in
b that does not include a node in c.
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construct a DAG model by connecting nodes in the same clique with directed acyclic

edges. The resulting model preserves all the conditional independencies and the

sparsity pattern in its information domain, and is called a Markov equivalence. The

opposite conversion from DAG models to DGGMs is also straightforward through

moralization, but in most cases additional edges are required which might reduce the

sparsity level. The worst-case scenario is the “star” graph, where all but one nodes

have an edge pointing to the last one. The corresponding Cholesky factor of the

information matrix is very sparse, whereas the information matrix itself is completely

dense. Therefore DAG models are more parsimonious than DGGMs.

Due to this immediate equivalence between DAGmodels and DGGMs, we can com-

pare the proposed DDPCA with DPCA (Wiesel & Hero, 2009). DPCA performs local

computation within overlapping cliques of a DGGM, and global estimation is achieved

through message-passing within the separators. DPCA has cubic local computation

complexity in the clique dimensions (which solves for the local minimum eigenvalue)

and quadratic inter-clique communication cost in the separator dimensions, there-

fore is especially efficient for DDGMs with very small separators and relatively large

cliques. However, the proposed DDPCA only requires quadratic computation cost

in the total local dimension for solving a triangular linear system (Equation (3.14)),

and the communication cost is linear in the clique dimension. Therefore for general

graphs DDPCA enjoys reduced computation and communication costs than DPCA

for Markov equivalent graphical modeling.

We emphasize that PCA algorithms on Markov equivalent Gaussian graphical

models have identical estimation results, since the models have the same second order

moment. But the algorithms have potentially different implementation costs. In the

following sections, we only consider Markov-equivalent Gaussian graphical models for

comparing different PCA algorithms.
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3.6 An Illustrative Example: Online subspace es-

timation

We first illustrate the propose DDPCA algorithm using a synthetic example, where

our task is an online estimation of the first principal component from incremental

Gaussian samples. The samples are generated from a 80-dimensional multivariate

normal random vector using a four-node DAG model plus Gaussian noise. Each

node corresponds to a 20-dimensional random sub-vector, and three non-adjacent

nodes pointing to the last one (the “star” graph). The Markov equivalent undirected

graph of this sparse DAG via moralization is a fully-connected graph, which means

that the concentration matrix has no sparsity. Therefore DPCA does not work for

distributing the computation. However, the proposed DDPCA is a good candidate

for taking advantage of this sparsity in the Cholesky factor.

Using random initialization, we perform DDPCA at each time step with 200 in-

cremental samples to update the previous estimation. Very few number of iterations

(specifically 1, 2 and 8) are performed for the updating. For comparison, we imple-

ment a centralized PCA using the full sample covariance (not our sparse covariance

estimator), which is also updated with incremental samples. Again we emphasize

that DPCA coincides with the centralized PCA on this example.

Fig. 3.1 shows the subspace estimation error, i.e., the subspace distance3 between

the estimated and the true one with respect to the number of iterations (which in-

dicates the total number of samples used). It can be seen that even two iterations

in each update are enough for DDPCA; whereas centralized PCA performs poorly

using 20 iterations, and requires 50 iterations for similar performance to DDPCA.

The better performance and faster convergence time of DDPCA is due to the match-

ing covariance model and the better statistical accuracy of DDPCA in low sample

3defined as ∥Pest − Ptrue∥2, where P is the projector of the subspace.
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Figure 3.1: Online estimation example (DPCA coincides with centralized PCA)

number regime. The decentralized framework also makes DDPCA computationally

advantageous.

3.7 Experiments on Real-world Networks

3.7.1 Network Model

In this section we introduce a widely used network model and describe two specific

models that match our graphical model assumptions. Consider a computer network

whose topology is a graph Gn, consisting of N nodes and L links (adjacent nodes

are connected by two links). The network carries traffic flows from origin nodes to

destination nodes, known as OD (Origin-Destination) flows, through routing over a

predetermined ordered subset of links (called a path) of the network. On each link of

the network, the accumulation of all OD flows that pass through this link is measured.

Therefore link flows and the OD flows can be related by a linear equation

y = Ax, (3.22)
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where y ∈ RL is the link-level flow measurement vector, x ∈ RP is the OD flow

vector, and P is the total number of OD paths. The routing matrix A = (alp)L×P is

defined as:

alp =

 1, if link l is on path p

0, otherwise.
(3.23)

As noted in Stoev et al. (2010), under uncongested network conditions, the OD

traffic flows xp’s can be well approximated as statistically independent. Thus the

statistical dependence between components of y are determined by the structure of

routing matrix A. We consider the following two scenarios for modeling the link flow

vector y:

Scenario A (Decomposable model). In this scenario, we consider the natural

intuition that two distantly separated link flow variables are approximately condi-

tionally independent given the separator flow variables between them. Therefore if

the network topology satisfies decomposable separation as defined in (3.21), then y

is readily modeled by a DGGM, which also can be converted into a DAG model as

described in Section 3.5. This model is equivalent to the model assumed in Wiesel

& Hero (2009) that specifies a decomposable sparsity structure on the concentration

matrix.

Scenario B (Single-source model). In this scenario, we consider network flows

consisting of OD flows originating from a single source node (See Fig. 3.3(a)). Due

to the tree-structured routing, “parent” link carries accumulated flows of all its de-

scendants. Thus its corresponding flow random variable statistically depends only

on its descendant flows variables. Therefore there exists a natural ordering of all the

link flow variables as in (3.2), and y naturally follows a DAG model. Note that the

parent-child dependence relationships of the DAG are opposite to the directions of

the flows.

This single-source model is useful in the context of network spoofing detec-
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Figure 3.2: Anomaly detection in Abilene with decomposable model

tion (Kemmerer & Vigna, 2002), where an attacker who impersonates the identity

of one of the routers making independent and unauthorized connections and injects

phony packets into its OD flow tree. The attack could be detected by origin au-

thentication at each receiver but this requires a trusted certification authority, i.e.,

transport layer security (TLS). A distributed flow-based anomaly detection algorithm

would allow network administrator to detect the intrusion without access to private

endpoint authentication information (Lakhina et al., 2004).

3.7.2 Distributed Anomaly Detection in Abilene Network

Finally, we apply the proposed DDPCA to anomaly detection of a real-world network

named Abilene (Lakhina et al., 2004) based on a DAG network model. Abilene is the

Internet2 backbone network which carries traffic between universities in the United

States. Fig. 3.2(a) shows its connectivity map consisting of 11 nodes and 30 links.

Measurements of link flow traffic data satisfy the network model (3.22), where the

routing matrix A is known. Our goal is to detect the anomalies occurring in the OD

flow vector x with observations of y.
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Figure 3.3: Anomaly detection in Abilene with single-source model

In this context, PCA is used for estimating a low dimensional principal subspace

containing the nominal flow traffic. The test data are projected into the nullspace (the

residual space) and the norm of the projected data is thresholded to indicate potential

anomalies (Lakhina et al., 2004). Compared with centralized PCA, DDPCA enables

distributed estimation of the principal subspace through decentralized computation

and communication over the network.

We consider the two models as described in Section 3.7.1 for implementing the

PCA algorithms:

(A) Decomposable model. We consider all the OD flows and links. From the topol-

ogy of the network (See Fig. 3.2(a)), it can be seen that there exist two separators: S1

= {DNVR-KSCY, SNVA-KSCY, LOSA-HSTN}, S2 = {KSCY-IPLS, HSTN-ATLA}

which physically separate the other three subsets of links. Then we can model the

link traffic variables by a three-clique DGGM, which can be equivalently converted

into a five-node DAG model.

Note that in this model, the dimensions of the separating sets (|S1| = 6, |S2| = 4)

are not significantly smaller than the clique dimensions (14, 12, and 14, respectively).
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Therefore the computation cost (∼ 142) and communication cost (∼ 14) for imple-

menting the DAG-based DDPCA is less expensive than the DGGM-based DPCA,

which requires cubic local computation cost (∼ 143) and quadratic communication

cost (∼ 62). The advantage would be more significant for large-scale networks.

(B) Single-source model. In this scenario, we consider all the OD flows originating

from node ATLA, as shown in Fig. 3.3(a). The dotted lines with arrows indicate OD

flows, and the thickness of solid links are proportional to the number of OD flows

passing through it. As described above we can construct a 11-node sparse DAG

model for the link traffic. Note that in this example, the equivalent DGGM has two

additional edges and is thus less sparse than the DAG model. Again, the improvement

due to sparsity level would be more significant for large-scale networks.

In our experiments on both models, we used two weeks of real-world flows data4.

We learn the normal subspace from the first week’s data using centralized PCA and

DDPCA, respectively. Then for anomaly detection on the second week’s link traf-

fic, we project it on the learned residual subspace. Fig. 3.2 and Fig. 3.3 shows

the norm of residual signal using centralized PCA (first row), using DDPCA (second

row) and their difference (third row). We can clearly see that DDPCA successfully

approximates the centralized PCA in computing the normal subspace and obtain-

ing the residual signal under both scenarios and models. Anomaly detection can be

performed by thresholding the residual norm and locating the peaks. As explained

in Section 3.5, DPCA can also be applied on corresponding Markov equivalent DG-

GMs to achieve the same performance, but with more expensive computation and

communication costs.

4The data are available on http://www.cs.bu.edu/~crovella/links.html
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3.8 Summary of Chapter 3

We have presented a distributed PCA algorithm on directed Gaussian graphical

models, called DDPCA, designed for exploiting structured sparsity arising from the

Cholesky factors of the concentration matrix. We have illustrated DDPCA’s com-

putational and communication advantages in sparse directed models, and showed its

application to distributed anomaly detection using link traffic of a real-world com-

puter network.

3.9 Proof of Theorem 3.1

Proof. First we consider the first pass of bottom-up message-passing. We claim that

all the bottom-up messages have zero information parameter J = 0, and we prove it

by induction. For leaf nodes, it could be easily verified. Now consider the message

passed from factor node fi to the variable node xj, who is a parent of xi,

mfi→xj
(xj)

=

∫ fi(xi,xpa(i))
∏

y∈{xi}∪xpa(i)\j

my→fi(y)

 dxidxpa(i)\j. (3.24)

Since all the top-down messages are initialized to 1, only messages involved with

xi will contribute to the integration. Also, due to the induction, the information

parameter of message mxi→fi is zero, we only have to include its potential parameter
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hxi→fi for performing the integration,

mfi→xj
(xj)

∝
∫
xi

exp

(
(hi + hxi→fi)xi −

1

2
(Li,ixi + Lijxj)

2

)
dxi (3.25)

∝ exp
(
−LT

ijL
−1
ii (hi + hxi→fi)xj

)
(3.26)

≜ exp

(
hfi→xj

xj +
1

2
Jfi→xj

x2j

)
, (3.27)

where the following formula is used

∫
exp(−1

2
ax2 + bx)dx = C · exp( b

2

2a
), (3.28)

and the updated parameters of message mfi→xj
are

hfi→xj
= −LT

ijL
−1
ii (hi + hxi→fi), (3.29)

Jfi→xj
= 0. (3.30)

The resulting information parameter is also zero, which completes the induction.

The next bottom-up message-passing from variable xj to factor fj is simple, as

mxj→fj(xj) =
∏

i∈ch(j)

mfi→xj
(xj), (3.31)

which results in the following parameter updates

hxj→fj =
∑

i∈ch(j)

−LT
ijL

−1
ii (hi + hxi→fi), (3.32)

Jxj→fj = 0. (3.33)
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Now define a vector y whose j-th component is

yj ≜ L−1
jj

(
hj + hxj→fj

)
. (3.34)

Then it can be easily seen from (3.32) that y satisfies the following recursion

yj = L−1
jj

(
hj −

∑
i∈ch(j)

LT
ijyi
)
, (3.35)

the equivalence between vector y and the auxiliary vector introduced in Algorithm

2 with h as input is obvious. Therefore, the first bottom-up pass of sum-product

algorithm is equivalent to the first part of Algorithm 2, which solves a linear up-

per triangular system via distributed backward substitution. Similarly, the second

pass of top-down message-passing of sum-product algorithm can also be shown to be

equivalent to the second part of Algorithm 2, namely solving a linear lower triangu-

lar system via distributed forward substitution. The resulting inferred mean vector

µ = L−1L−Th = J−1h is thus exact inference.
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CHAPTER 4

Learning Latent Variable Gaussian

Graphical Models with Application to

Recommender Systems

In the previous two chapters, we have focused on Gaussian graphical models, for which

sparsity plays a central role both statistically and computationally. Unfortunately,

real-world data often does not fit well to sparse Gaussian graphical models. In this

chapter, motivated by the missing-value prediction in recommender systems, we con-

sider a family of latent variable Gaussian graphical models (LVGGM). In LVGGM,

the model is conditionally sparse given a set of latent variables, but is marginally

non-sparse. In particular, the inverse covariance matrix has a low-rank plus sparse

structure, and can be learned in a regularized maximum likelihood framework. We

derive novel parameter estimation error bounds for LVGGM under mild conditions in

the high-dimensional setting, which complements the existing theory on the structural

learning. Our theory is validated through numerical simulations, and the effectiveness

of LVGGM is illustrated on a real-world movie rating data set.
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4.1 Introduction

Critical to many statistical inference tasks in complex real-world systems, such as

prediction and detection, is the ability to extract and estimate distributional charac-

teristics from the observations. Unfortunately, in the high-dimensional regime such

model estimation often leads to ill-posed problems, particularly when the number

of observations n (or sample size) is comparable to or fewer than the ambient di-

mensionality p of the model (i.e., the “large p, small n” problem). This challenge

arises in many modern real-world applications ranging from recommender systems,

gene microarray data, and financial data, to name a few. To perform accurate model

parameter estimation and subsequent statistical inference, low dimensional structure

is often imposed for regularization (Negahban et al., 2012).

For Gaussian-distributed data, the central problem is often to estimate the inverse

covariance matrix (alternatively known as the precision, concentration or informa-

tion matrix). Gaussian graphical models (GGM) provide an efficient representation

of the precision matrix through a graph that represents non-zeros in the matrix (Lau-

ritzen, 1996). In high-dimensional regimes, this graph can be forced to be sparse,

imposing a low-dimensional structure on the GGM. For sufficiently sparse GGM,

statistically consistent estimates of the model structure (i.e., sparsistency) can be

achieved (e.g., Ravikumar et al. (2011)). On the computational side, sparsity also

leads to reduced complexity of the estimator (Hsieh et al., 2013). However, when the

true distribution can not be well-approximated by a sparse GGM, the standard learn-

ing paradigm suffers from either large estimation bias due to enforcing a overly sparse

model, or degraded computation time for a dense model. Both result in suboptimal

performance in the subsequent inference tasks.

In this chapter, we consider a new class of high-dimensional GGM for extending

the standard sparse GGM. The proposed model is motivated by many real-world

applications, where there exist certain exogenous and often latent factors affecting a
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large portion of the variables. Examples are the price of oil on the airlines’ stock price

variables (Choi et al., 2010), and the genres on movie rating variables. Conditioning

on these global effects, the variables are assumed to have highly localized interactions,

which can be well-fitted by a sparse GGM. However, due to the marginalization

over global effects, the observed (marginal) GGM, and its corresponding precision

matrix, is not sparse. Unfortunately, in this regime, existing theoretical results and

computational tools for sparse GGM are not applicable.

To address this problem, we propose to use latent variable Gaussian graphical

models (LVGGM) for modeling and statistical inference. LVGGM introduce latent

variables to capture the correlations due to the global effects, and the remaining effects

are captured by a conditionally sparse graphical model. The resulting marginal preci-

sion matrix of the LVGGM has a sparse plus low-rank structure, therefore we consider

a regularized maximum likelihood (ML) approach for parameter estimation (previ-

ously considered by Chandrasekaran et al. (2012)). By utilizing the almost strong

convexity (Kakade et al., 2010) of the log-likelihood, we derive a non-asymptotic pa-

rameter error bound for the regularized ML estimator. Our derived bounds apply

to the high-dimensional setting of p ≫ n due to restricted strong convexity (Negah-

ban et al., 2012) and certain structural incoherence between the sparse and low-rank

components of the precision matrix (Yang & Ravikumar, 2013).

We show that for sufficiently large n, the Frobenius norm error of the precision

matrix of LVGGM converges at the rate O(
√

(s+reff·r) log p
n

), where s is the number

of non-zeros in the conditionally sparse precision matrix, reff is the effective rank

of the covariance matrix and r is the number of latent variables. This rate is in

general significantly faster than the standard convergence rate of O(
√

p2 log p
n

) for an

unstructured dense GGM. This result offers a compelling argument for using LVGGM

over sparse GGM for many inference problems.

The chapter is structured as follows. In Section 4.2 we review the relevant prior
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literature. In Section 4.3 we formulate the LVGGM estimation problem. In Sec-

tion 4.4 the main theoretical results are presented. Experimental results are shown in

Section 4.5 and we conclude the chapter in Section 4.7. Throughout the chapter, we

use boldface letters to denote vectors and matrices. ∥ · ∥1, ∥ · ∥2, ∥ · ∥F , ∥ · ∥∗ denote

the elementwise ℓ1, spectral, Frobenius, and nuclear matrix norms, respectively.

4.2 Background and Related Work

The problem of learning GGM with sparse inverse covariance matrices using ℓ1-

regularized maximum likelihood estimation, often referred to as the graphical lasso

(Glasso) problem, has been studied in Friedman et al. (2008); Ravikumar et al. (2011);

Rothman et al. (2008). In particular, the authors of Ravikumar et al. (2011) study

the model selection consistency (i.e., “sparsistency”) under certain incoherence condi-

tion. Beyond sparse GGM, Choi et al. (2010) propose a multi-resolution extension of

a GGM augmented with sparse inter-level correlations, while in Choi et al. (2011) the

authors consider latent tree-structured graphical models. Both models lead to compu-

tationally efficient inference and learning algorithms but restrict the latent structure

to trees. Recently, Liu & Willsky (2013) consider a computationally efficient learning

algorithm for a class of conditionally tree-structured LVGGM.

The work that is most relevant to ours is by Chandrasekaran et al. (2012), who

study the LVGGM learning problem, but focus on the simultaneous model selection

consistency of both the sparse and low-rank components. In contrast, in this chapter

we focus on the Frobenius norm error bounds for estimating the precision matrix of

LVGGM. Although structural consistency can be useful for deriving insights, param-

eter estimation error analysis is of equal or greater importance in practice. Since

it provides additional, and usually more direct, insights into factors influencing the

performance of the subsequent statistical inference tasks, such as prediction and de-
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Observed Variables

Observed

Observed Variables

Latent Variables

Latent Observed

Figure 4.1: Illustrations of a sparse Gaussian graphical model (GGM) (left) and a
latent variable Gaussian graphical model (LVGGM) (right). (A) Example of a sparse
GGM with only observed variables, (B) Sparsity pattern of example sparse GGM’s
precision matrix, (C) Example of a LVGGM with both observed and latent variables,
(D) Sparsity pattern of example LVGGM’s precision matrix.

tection. Also, compared with Chandrasekaran et al. (2012), our Frobenius norm error

bounds are derived under mild condition on the Fisher information of the distribution.

We note that there is a fundamentally different line of work on estimating models

with a similar structural composition, known as robust PCA (Candès et al., 2011).

In robust PCA, the data matrix is modeled as “low-rank plus sparse”. This model

has been applied to extracting the salient foreground from background in videos,

and detecting malicious user ratings in recommender system data (Xu et al., 2012).

In contrast, the equivalent covariance model of our LVGGM can be decomposed

into a low-rank plus a dense matrix whose inverse is sparse. A similar covariance

model has recently been studied by Kalaitzis & Lawrence (2012), in which an EM

algorithm is proposed for estimation but no theoretical error bounds are derived.

In this chapter, we instead focus on the precision matrix parameterization, which

enables model estimation through a convex optimization. This formulation is of both

theoretical and computational importance.

4.3 Problem Setup

In this section, we briefly review Gaussian graphical models and formulate the prob-

lem of latent variable Gaussian graphical model estimation via a regularized maximum
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likelihood optimization.

4.3.1 Gaussian Graphical Models

Consider a p-dimensional random vector x associated with an undirected graph G =

(VG, EG), where VG is a set of nodes corresponding to elements of x and EG is a

set of edges connecting nodes (including self-edges for each node). Then x follows

a graphical model distribution if it satisfies the Markov property with respect to G:

for any pair of nonadjacent nodes in G, the corresponding pair of variables in x are

conditionally independent given the remaining variables, i.e., xi ⊥ xj | x\i,j, for all

(i, j) /∈ EG.

If x follows a multivariate Gaussian distribution, the corresponding graphical

model is called a Gaussian graphical model (GGM). We assume without loss of gen-

erality that x has zero mean. The Markov property in GGM is manifested in the

sparsity pattern of the inverse covariance matrix J:

Ji,j = 0 for all i ̸= j, (i, j) /∈ E. (4.1)

An example of this property for sparse GGM is shown in Figure 4.1(a) and 4.1(b).

The precision matrix parameterization arises in many statistical inference problems

for Gaussian distributions, in areas such as belief propagation (Malioutov et al., 2006),

linear prediction, portfolio selection in financial data (Ledoit & Wolf, 2003), and

anomaly detection (Chen et al., 2011). Estimation of the precision matrix in GGM

is the first step in these inference problems.

4.3.2 Latent Variable Gaussian Graphical Models

Unfortunately, due to the presence of global factors that destroy sparsity, real-world

observations often do not conform exactly to a sparse GGM (Choi et al., 2010, 2011).
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By introducing latent variables (denoted as a r-dimensional random vector xL) to cap-

ture global factors, we can generalize the GGM. Specifically, we construct a model

that is conditionally a GGM, i.e., one that has a sparse precision matrix given knowl-

edge of latent variables, xL.

Defining the p observed variables as xO, we assume the joint distribution of the

(p + r)-dimensional concatenated random vector x = (xO,xL) follows a Gaussian

distribution with covariance matrix Ω and precision matrix J = Ω−1. An example of

this structure can be seen in Figure 4.1(c) and 4.1(d). Marginalizing over the latent

variables xL, the distribution of the observed variables xO remains Gaussian with

observed covariance matrix, Σ = ΩO,O. The observed precision matrix Θ ∈ Rp×p

satisfies:

Θ = Σ−1 = JO,O︸︷︷︸
S

−JO,LJ
−1
L,LJL,O︸ ︷︷ ︸
L

, (4.2)

where we have defined S := JO,O and L := −JO,LJ
−1
L,LJL,O. Thus, the marginal

precision matrix can be written as Θ = S + L, the sum of a sparse and a low-rank

matrix. Similar to standard GGM, we parameterize the marginal distribution through

the precision matrix. We refer to this model as the latent variable GGM, or LVGGM.

The LVGGM is a hierarchical model that generalizes the (sparse) GGM. Note

that S−1 = J−1
O,O = ΩO,O −ΩO,LΩ

−1
L,LΩL,O is the covariance matrix of the conditional

distribution of the observed variables. The matrix is not generally sparse, even though

S is assumed to be sparse. We will also assume that the number of latent variables

is much smaller than the number of observed variables, i.e., r ≪ p. We place no

sparsity restrictions on the dependencies between the observed and latent variables

– the submatrices JO,L and JL,O could be dense. As a result, the p × p matrix

L = −JO,LJ
−1
L,LJL,O is low-rank and potentially dense. The sparse plus low-rank

structure of the marginal precision matrix Θ is the key property of the precision
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matrix that will be exploited for model estimation.

The structural assumptions on the precision matrix of the LVGGM can be vali-

dated on real-world recommender system data. See Section 4.6 for more details.

4.3.3 Effective Rank of Covariance Matrix

We introduce the effective rank of a matrix, which will be useful to derived high-

dimensional error bounds. The effective rank of a matrix Σ is defined as (Vershynin,

2010):

reff(Σ) := tr(Σ)/∥Σ∥2. (4.3)

The effective rank can be considered a measure of the concentration level of the

spectrum of Σ. As we will show in Section 4.5.1, in many situations the effective

rank of the covariance matrix corresponding to a LVGGM is much smaller than p.

Under this condition, our theoretical results in the sequel provide a tight Frobenius

norm estimation error bound, which is significantly improved upon the error bound

derived without the effective rank assumption.

4.3.4 Regularized ML Estimation of LVGGM

Available are n samples x1, x2, . . . , xn from a LVGGM model xO, concatenated into

a data matrix X ∈ Rp×n. The negative log-likelihood function is

L(Θ;X) = ⟨Σ̂,Θ⟩ − log det(Θ), (4.4)

where Σ̂ := 1
n
XTX is the sample covariance matrix. The regularized ML estimate

minimizes the objective function L(Θ;X) + λR(Θ), where the regularization param-

eter λ > 0, and the regularization function R(Θ) is designed to enforce the sparse
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plus low-rank structure on Θ.

Similar to Chandrasekaran et al. (2012), we consider the following regularized ML

estimation problem:

min
S,L

L(S+ L;X) + λ∥S∥1 + µ∥L∥∗

s.t. − L ⪰ 0, S+ L ⪰ 0,

(4.5)

where the corresponding regularization function is the sum of two regularizers:

R(Θ) = ∥S∥1 + µ
λ
∥L∥∗, each of which has been shown to promote sparse (low-rank)

structure in S (L, respectively) (Negahban et al., 2012). Constants λ, µ > 0 are regu-

larization parameters corresponding to the two functions, respectively. The LVGGM

estimator is defined as a solution to the above convex optimization problem (4.5).

Efficient convex solver, such as Ma et al. (2013), can be used to solve.

Note that only the sample covariance matrix is needed as the input of the regular-

ized ML estimation (4.5) (see (4.4) for the expression of likelihood). Therefore in the

presence of missing observations, as in the case of recommender systems, an estimator

of the fully-observed covariance matrix constructed from the incomplete observations

can be used instead. See Kolar & Xing (2012); Loh & Wainwright (2012) for some

recent discussions on the issue of consistent estimation in the presence of missing

observations.

4.4 Error Bounds on ML LVGGM Estimation

We analyze the regularized ML estimation problem (4.5) and provide Frobenius norm

error bounds for estimating the precision matrix in high-dimensional setting. We

adopt the decomposable regularization framework of Negahban et al. (2012); Agarwal

et al. (2012); Yang & Ravikumar (2013) to derive these bounds. In contrast to this

prior work, here we focus on multiple decomposable regularizers interacting with the
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non-quadratic log-likelihood loss function encountered in the LVGGM. Two important

ingredients in the derivations are the restricted strong convexity of the loss function,

and an incoherence condition between the two structured subspaces containing the

sparse and low-rank components (S and L). We show that under assumptions on the

Fisher information these two conditions are verified.

In the following subsections, first we define some necessary notation, then we

introduce the assumptions and place them in the context of prior literature, and

finally we state the main results in Theorem 4.1 and Theorem 4.2.

4.4.1 Decomposable Regularizers and Subspace Notation

In this subsection we introduce the notion of decomposable regularizers and the cor-

responding subspace pairs. We refer the reader to Negahban et al. (2012) for more

details.

Consider a pair of subspaces (M,M⊥
), where M ⊂ M ⊂ Rp×p. R(·) is called

a decomposable regularization function with respect to the subspace pair if, for any

u ∈M, v ∈M⊥
, we have R(u+ v) = R(u) +R(v).

For the sparse and low-rank matrix-valued parameters, the following two subspace

pairs and their corresponding decomposable regularizers are considered:

• Sparse matrices. Let E ⊆ {1, . . . , p}×{1, . . . , p} be a subset of index pairs (edges).

Define M(E) = M(E) as the subspace of all sparse matrices in Rp×p that are

supported in subsets of E, i.e., PM(E)(A) = AE. A decomposable regularizer is

the ℓ1 norm, since ∥A∥1 = ∥AE∥1 + ∥AEC∥1.

• Low-rank PSD matrices. Consider a class of low-rank and positive semi-definite

matrices A ⊂ Sp×p
+ which have rank r ≤ p. For any given matrix A ∈ A, let col(A)

denote its column space. Let U ⊂ Rn be a r-dimensional subspace and define the
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subspaceM(U) and the perturbation subspaceM⊥
(U) as

M(U) :={A ∈ Rn×p | col(A) ⊆ U},

M⊥
(U) :={A ∈ Rn×p | col(A) ⊆ U⊥}.

Then the nuclear norm RL(·) = ∥ · ∥∗ is a decomposable regularization function

with respect to the subspace pair (M(U),M⊥
(U)).

For the true model parameter Θ∗, we define its associated structural error set with

respect to a subspaceM as (Negahban et al., 2012):

C(M,M⊥
; Θ∗) :=

{
∆ ∈ Rn×p | R(∆M⊥) ≤ 3R(∆M) + 4R(Θ∗

M⊥)
}
.

By construction, if the norm of the projection of the true parameter Θ∗ intoM⊥
is

small, then elements ∆ in this structural error set also have limited projection onto

the perturbation subspaceM⊥
.

Now let Θ∗ be the true (marginal) precision matrix of the LVGGM, and let the

sparse and low-rank components be S∗ and L∗, respectively. For the defined sub-

space pairs (M(E),M(E)⊥) and (M(U),M(U)⊥), we use C(E) and C(U) as the

shorthand notations for the corresponding structural error sets centered at S∗ and

L∗, i.e., C(M(E),M(E)⊥;S∗) and C(M(U),M(U)⊥;L∗), respectively. Later, we

will consider the perturbation of Θ∗ along restricted directions in these two sets.

4.4.2 Assumptions on Fisher Information

We characterize the interaction between the elements in the two subspaces through

their inner products using the Hessian of the loss function, also known as the Fisher

information of the distribution. Denoting the Fisher information matrix of a Gaussian

distribution as F∗ (evaluated at Θ∗), we find that F∗ = Θ∗−1⊗Θ∗−1, where ⊗ is the
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Kronecker product. We define the Fisher inner product between two matrices ∆A

and ∆B as

⟨∆A,∆B⟩F∗ := vec(∆A)
TF∗vec(∆B) (4.6)

= Tr(Θ∗−1∆AΘ
∗−1∆B), (4.7)

where vec(·) denotes the vectorization of a matrix.

Similar to prior work of Kakade et al. (2010), we define the induced Fisher norm

of a matrix ∆ as

∥∆∥2F∗ := vec(∆)TF∗vec(∆) (4.8)

= Tr(Θ∗−1∆Θ∗−1∆). (4.9)

The first assumption we make is the following Restricted Fisher Eigenvalue (RFE)

condition on the true precision model with respect to the sparse and low-rank struc-

tural error sets.

Assumption 4.1 (Restricted Fisher Eigenvalue). There exists some constant

κ∗min > 0, such that for all ∆ ∈ C(E) ∪ C(U), the following holds:

∥∆∥2F∗ ≥ κ∗min∥∆∥2F . (4.10)

This RFE condition generalizes the restricted eigenvalue (RE) condition for

sparsity-promoting linear regression problems Bickel et al. (2009). It assumes that the

minimum eigenvalue of the Fisher information is bounded away from zero along the

directions C(E) and C(U). Due to the identity (4.8) and properties of the Kronecker

product, a trivial lower bound for κ∗min is λ2min(Θ
∗), where λmin(·) denotes the mini-

mum eigenvalue. In the high-dimensional setting, the RFE parameter κ∗min, which is

defined only with respect to the above restricted set of directions, can be substantially
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larger than λ2min(Θ
∗). As a result, the derived error bounds, which depend on κ∗min,

are generally tighter than the bounds depending on λ2min(Θ
∗) (cf. Theorem 4.1).

Due to the sparse plus low-rank superpositioned structure, we impose a type of

incoherence between the two structural error sets to ensure consistent estimation of

the combined model. The incoherence condition will limit the interaction between

elements from the two sets. For our problem, such interaction occurs through their

inner products with the Fisher information, which motivates the following Structural

Fisher Incoherence (SFI) assumption (which generalizes the C-Linear assumption

proposed in Yang & Ravikumar (2013)).

Let PE := PM(E) denote the projection operator corresponding to the subspace

M(E). Similarly define PU := PM(U), PE⊥ := PM(E)⊥ , and PU⊥ := PM(U)⊥ . We

assume the following condition on the Fisher information.

Assumption 4.2 (Structural Fisher Incoherence). Given a constant M > 6, a

set of regularization parameters (λ, µ), and the subspace pairs (M(E),M(E)⊥) and

(M(U),M(U)⊥) as defined above, let Λ = 2 + 3max
{

λ
√
s

µ
√
r
, µ

√
r

λ
√
s

}
, where s = |E| and

r = rank(U). Then the Fisher information F∗ satisfies:

max {σ (PEF∗PU) , σ (PE⊥F∗PU) , σ (PEF∗PU⊥) , σ (PE⊥F∗PU⊥)} ≤ κ∗min

c1Λ2
,

where σ(·) denotes the maximum singular value, and constant c1 is defined as c1 =

16M
M−6

.

The constant M is related to a “burn-in” period after which the likelihood loss

function has desirable properties in a small neighborhood of the true parameter. In

particular, when M = 7, the constant c1 = 112 suffices for our theory to hold. See

the main theorem and its proof for more discussion on this quantity.

It is interesting to compare our SFI assumption to other similar assumptions in

the literature of GGM estimation. In Ravikumar et al. (2011), a form of irrepre-
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sentability condition is assumed, which limits the induced ℓ1 norm of a matrix that

is similar to the projected Fisher information onto the sparse matrix subspace pair.

In Chandrasekaran et al. (2012), the notion of irrepresentability is extended to two

subspace pairs (i.e., sparse and low-rank), but detailed behaviors of the projected

Fisher information are controlled (see the main assumption on page 1949 of Chan-

drasekaran et al. (2012)). For model selection consistency, a more general form of

irrepresentability has been shown to be necessary for model selection consistency,

see Lee et al. (2013) for a recent discussion. In contrast to the above line of work,

the SFI assumption we make only controls the maximum singular values of the pro-

jected Fisher information. This can be explained as we are interested in bounding

a weaker quantity, the Frobenius norm of the parameter estimation error, instead of

establishing the stronger model selection consistency of Ravikumar et al. (2011) or

the algebraic consistency as in Chandrasekaran et al. (2012).

4.4.3 Error Bounds for LVGGM Estimation

We have the following bound on the parameter error of the estimated precision matrix

of LVVGGM, Θ̂ = Ŝ+ L̂, obtained by solving the regularized ML problem (4.5).

Theorem 4.1. Suppose Assumption 4.1 and 4.2 hold for the true marginal precision

matrix Θ∗, and the regularization parameters are chosen such that

λ ≥ 2∥Σ∗ − Σ̂∥∞ and µ ≥ 2∥Σ∗ − Σ̂∥2. (4.11)

Given a constantM > 6, if an optimal solution pair (Ŝ, L̂) to the convex program (4.5)

satisfies

max{∥Ŝ− S∗∥F∗ , ∥L̂− L∗∥F∗} ≤ 1

6M2
, (4.12)
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then we have the following error bound for the estimated precision matrix Θ̂ = Ŝ+ L̂:

∥Θ̂−Θ∗∥F ≤
6

κL
max

{
λ
√
s, µ
√
r
}
+

√
8r∗⊥
κL

, (4.13)

where s = |E|, r = rank(U), and

κL :=
M − 2

2(M − 1)
κ∗min, (4.14)

r∗⊥ := λ
∑

(j,k)/∈E

|S∗
jk|+ µ

p∑
j=r+1

σj(L
∗). (4.15)

Proof sketch. The proof is inspired by Yang & Ravikumar (2013), in which a parame-

ter estimation error bound is proven for estimating a class of superposition-structured

parameters, such as sparse plus low-rank, through M-estimation with decomposable

regularizers. Critical to specializing this framework to our LVGGM estimation prob-

lem is to verify two conditions on the log-likelihood loss function (4.4): the restricted

strong convexity (RSC) and structural incoherence (SI). The RSC condition (which

originally proposed in Negahban et al. (2012)) specifies the loss function to be suf-

ficiently curved (i.e. lower bounded by a quadratic function) along a restricted set

of directions (defined by C(E) and C(U)). On the other hand, the SI condition ef-

fectively limits certain interaction between elements from the above two structural

error sets. In Yang & Ravikumar (2013), under certain C-linear assumptions, the

RSC and SI conditions are verified for several problems with quadratic loss functions.

For the LVGGM estimation problem, however, the technical difficulty lies in the non-

quadratic log-likelihood loss (4.4), for which the previously established RSC and SI

conditions do not hold.

To deal with this difficulty, we leverage the almost strong convexity proper-

ties (Kakade et al., 2010) to characterize the convergence behavior of the sum of

higher-order terms in the Taylor series of the log-likelihood loss function. We show
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that in the regime specified by condition (4.12), the loss function can be well-

approximated by the sum of a quadratic function and a residual term. Under this

condition, the RFE assumption (Assumption 4.1) guarantees the RSC condition

(cf. Lemma 4.2), and the SFI assumption (Assumption 4.2) leads to SI condition

to hold (cf. Lemma 4.4). Theorem 4.1 can then be proven by the general theorem

in Yang & Ravikumar (2013). A detailed proof of Theorem 4.1 can be found in

Section 4.8.1.

We make the following remarks:

• The error bound (4.13) is a family of upper bounds defined by different sets

of subspace pairs (M(E),M(E)⊥) and (M(U),M(U)⊥). The tightest bound

can be achieved by appropriately choosing E and U . The first additive term

in (4.13) captures effect of the estimation error, while the second term cap-

tures the approximation error. In many cases it is reasonable to assume the

approximation error is zero, then the error bound reduces to the first additive

term.

• We note that similar derivations also apply to ℓ1-regularized estimation of sparse

GGM. For the sparse GGM, only Assumption 4.1 is required, and the derivations

largely simplify. The final error bound also contains estimation and approxi-

mation errors, depending only on the sparse matrix subspace pair. However,

when the true precision matrix Θ∗ cannot be well-approximated as a sparse ma-

trix (such as the LVGGM case), the approximation error would be much worse,

leading to an inefficient learning rate.

• We finally remark that the SFI assumption can be relaxed to an even milder

incoherence condition, ∥L∥∞ ≤ α, as considered in Agarwal et al. (2012). Fol-

lowing similar derivations as in the proof of Theorem 4.1, the corresponding
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error bound can be obtained. However, as a result of this incoherence assump-

tion, the error bound would contain an additional incoherence term which does

not vanish to zero even with infinite samples. This disadvantage is overcome

under the structural incoherence condition.

The statement of Theorem 4.1 is deterministic in nature and applies to any opti-

mum of the convex program. However, the condition on the regularization parame-

ters (4.11) and the error bound depend on the sampled data (in particular the sample

covariance matrix Σ̂), which is random. Therefore the key to specifying the regu-

larization parameters, and hence obtaining error bounds independent of data, is to

derive tight deviation bounds of the sample covariance matrix in terms of the ℓ∞

and ℓ2 norms, such that condition (4.11) holds with high probability. These bounds

can be obtained by using concentration inequalities for Gaussian distributions, which

leads to the following corollary.

Corollary 4.1. Let the same assumptions in Theorem 4.1 hold. Given con-

stants C1 > 1 and C2 ≥ 1, assume that the number of samples n satisfies n ≥

max {4C2
1 log p, C

2
2p}, and that the regularization parameters satisfy

λ = 160C1σ
∗

√
log p

n
and µ = 16C2ρ

∗
√
p

n
, (4.16)

where σ∗ = maxiΣ
∗
i,i and ρ

∗ = ∥Σ∗∥2. Then with probability at least 1− 4p−2(C1−1)−

2 exp(−C2
2p

2
), we have

∥Θ̂−Θ∗∥F ≤ c1

√
s log p

n
+ c2

√
rp

n
, (4.17)

where c1 =
960
κL
σ∗ and c2 =

96
κL
ρ∗.

Remark: The estimation error (4.17) consists of two terms corresponding to the

sparse and low-rank components, respectively. Note its resemblance to the error
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bounds of robust PCA (e.g., Agarwal et al. (2012); Yang & Ravikumar (2013)) and

the derived bound in Chandrasekaran et al. (2012). In particular, the first term

in (4.17) was on the same order as the estimation error of a sparse GGM (Ravikumar

et al., 2011). However, due to the presence of latent variables, both the sample

requirement (i.e., n ≳ p) and the combined error bound are worse than those for

learning the sparse conditional GGM.

Next we consider a scenario under which this additional disadvantage is largely

removed. Assume that the true marginal covariance matrix Σ∗ has an effective rank

reff := reff(Σ
∗) (recall reff(Σ

∗) := tr(Σ∗)/∥Σ∗∥2 ) that is much smaller than p. Then,

by using recent advances on the asymptotic behavior of the sample covariance ma-

trix (Lounici, 2012), we can obtain a much tighter bound which only depends on p

logarithmically, as stated in the following theorem.

Theorem 4.2. Let the same assumptions in Theorem 4.1 hold. Given a

constant C1 > 1, assume that the number of observations n satisfies n ≥

max
{
4C1 log p, C3reff log

2(2p)
}
, and the regularization parameters satisfy

λ = 160C1σ
∗

√
log p

n
and µ = C4ρ

∗

√
reff log p

n
, (4.18)

where σ∗ = maxiΣ
∗
i,i, ρ

∗ = ∥Σ∗∥2, and C3, C4 > 0 are sufficiently large constants.

Then with probability at least 1− 2p−2(C1−1) − (2p)−1, we have

∥Θ̂−Θ∗∥F ≤ c̃1

√
s log p

n
+ c̃2

√
reff · r log(2p)

n
, (4.19)

where c̃1 =
960
κL
σ∗, c̃2 =

8C4

3κL
ρ∗.

Proof sketch. Same as Corollary 4.1, we need to verify that the choices of regulariza-

tion parameters (4.18) satisfy the condition (4.11) with high probability. Since the

choice of λ has been verified in Corollary 4.1, it only remains to verify the condition
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on µ. To this end, we make use of the following sharp bound on the spectral norm

deviation of the sample covariance matrix:

Lemma 4.1 (Lounici (2012)). Let Σ̂ be a sample covariance matrix constructed from

n i.i.d. samples from a p-dimensional Gaussian distribution N (0,Σ∗). Then with

probability at least 1− (2p)−1,

∥Σ̂−Σ∗∥2 ≤ C∥Σ∗∥2 max

{√
2reff log(2p)

n
,
2reff log(2p)(3/8 + log(2pn)

n

}
,

where C > 0 is an absolute constant.

Then as commented in Lounici (2012) (Prop. 3), when the sample size n is suffi-

ciently large such that n ≥ C3reff log
2 max{2p, n}, where C3 > 0 is a large constant,

the choice of regularization parameter µ as in (4.18) suffices for the condition (4.11)

to hold with high probability.

Notice that when reff ≪ p, the error bound (4.19) is significantly tighter than the

bound (4.17). Also the sample requirement n ≳ reff log(p) is much milder. This result

implies the efficiency of LVGGM learning when the true covariance model has a low

effective rank.

4.5 Experiments

We use a set of simulations on synthetic data to verify our reduced effective rank

assumption on the covariance matrix of LVGGM, and the derived error bounds in

Theorem 4.2.

4.5.1 Effective Rank of Covariance of LVGGM

To better understand the effective rank of the covariance matrix of LVGGM, it is

convenient to consider a hierarchical generating process for the observed variables:
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xO ∼ AxL+z, where xL ∼ N (0,ΩL,L) are the latent variables,A := J−1
O,OJO,L ∈ Rp×r,

and z ∼ N (0,S−1) captures the conditional effects. The marginal covariance matrix

of the observed variables can be represented as

Σ = AΩL,LA
T︸ ︷︷ ︸

G

+S−1, (4.20)

where G is a low-rank covariance matrix (global effects), and S−1 is a non-sparse

covariance matrix (conditionally local effects) whose inverse is sparse. While the low-

rank global effects naturally result in a concentrated spectrum, the sparse-inverse

local effects generally contribute to a diffuse spectrum. The effective rank, which is

the sum of all eigenvalues divided by the magnitude of the largest one, depends on

the relative energy ratio between G and S−1.

Since an exact characterization of the effective rank in terms of A, ΩL,L, and S

tends to be difficult, we use Monte Carlo simulations to investigate synthetic LVGGM

that conform to our assumptions. We generate LVGGM with independent latent vari-

ables (i.e., diagonal JL,L), dense latent-observed submatrix JL,O, and a sparse con-

ditional GGM JO,O for observed variable with a random sparsity pattern (sparsity

level ≈ 5%). We fix the number of latent variables to be 10, and vary the number of

observed variables p = {80, 120, 200, 500}. By scaling the magnitudes of the elements

in the latent variable submatrix, we sweep through the relative energy ratio between

the global and local factors, i.e., Tr(G)/Tr(S−1) from 0.1 to 10. After 550 realiza-

tions for each value of p, we plot the empirical effective ranks of observed covariance

matrices in Figure 4.2.

As seen in the figure, when the global factor dominates (i.e., the ratio is large), the

effective rank of the covariance matrix is very small, as expected. On the other hand,

when the local effects become stronger (e.g., when the number of observed variables p

increases) the effective rank increases, but at a very mild rate. In particular, when p

97



10−1 100 101
0

5

10

15

20

25

30

Relative Energy Ratio (Global/Local)

Ef
fe

ct
iv

e 
R

an
k 

of
 C

ov
ar

ia
nc

e 
M

at
rix

Effective Rank (r = 10)

 

 

p = 80
p = 120
p = 200
p = 500

Figure 4.2: Effective ranks of covariance matrices of LVGGMwith various global/local
energy ratios.

increases from 80 to 500, the maximum empirical effective rank in our simulation only

increases from 4 to 26. For all of our simulated LVGGM, the empirical effective ranks

are observed as at least an order of magnitude smaller than p. This mild growing

rate of the effective rank (compared to p) will lead to our improved error bound in

Theorem 4.2 to hold.

4.5.2 Frobenius Norm Error of LVGGM Estimation

We simulate LVGGM data with number of observed variables p = {160, 200, 320, 400}

and number of latent variables in the set r = {0.1, 0.15, 0.2, 0.3}p. The sparse con-

ditional GGM is a chain graph whose associated precision matrix is tridiagonal with

off-diagonal elements Si,i−1 = Si,i+1 = 0.4Si,i for i = {2, . . . , p − 1}. For each con-

figuration of p and r, we draw n samples from the LVGGM, where n ranges from

200 to 1000. Using these samples, the precision matrix Θ̂ is learned by solving

the regularized ML estimation problem (4.5). As shown in Section 4.5.1, the ef-

fective rank of the covariance matrix grows mildly. Then Theorem 4.2 predicts that

the Frobenius error of the estimated precision matrix of LVGGM should scale as
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Figure 4.3: Simulations for chain graphical models with latent variables. Plots
of Frobenius norm error ∥Θ̂ − Θ∗∥F versus the rescaled sample size n/(s log(p) +
r log(2p)).

∥Θ̂−Θ∗∥F ≍
√
(s log(p) + r log(2p))/n, when the regularization parameters are cho-

sen such that λ ≍ σ∗
√

log(p)
n

and µ ≍ ρ∗
√

reff log(p)
n

. Guided by this theoretical result,

we set the regularization parameters as λ = Caσ
∗
√

log(p)
n

and µ = Cbρ
∗
√

reff log(p)
n

,

where constants Ca and Cb are cross-validated and then fixed for all test data sets

with different configurations. We plot the Frobenius estimation errors against the

rescaled sample size n/(s log(p) + r log(2p)) in Figure 4.3. With a wide range of con-

figurations, almost all the empirical error curves for models align and have the form

of f(t) ∝ t−1/2 when the sample size is rescaled, as predicted by Theorem 4.2. In

practice when the true model is unknown, one could set the regularization parameters

according to the sample versions of the quantities σ∗ and ρ∗, as discussed in Lounici

(2012).
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4.6 LVGGM for Recommender Systems

As mentioned in Section 1.2.2, the LVGGM can be motivated by recommender sys-

tems. In this section, we illustrate how the recommender system data can be modeled

by LVGGM, and then present its superior performance in predicting missing values

in recommender systems.

4.6.1 Background and Problem Formulation

In recommender systems, available is an incomplete data sample matrix R ∈ Rn×p

where each element Ri,j denotes the rating score that the ith user gives to the jth

item (e.g., movie). The goal is to predict the unobserved or missing ratings based on

the observed ones. Fundamental to missing-value prediction is to choose and learn a

model that governs the joint distribution of the movie rating variables.

Popularized by the famous Netflix Prize challenge1, there has been a substantial

body of literature on the recommender systems. Here we briefly review two most pop-

ular approaches which have been widely studied in the literature and implemented in

practical recommender systems. Interested readers are referred to Su & Khoshgoftaar

(2009) for a survey of various techniques, and Koren (2008); Bell & Koren (2007) for

the approaches that won the competition (in which the two methods described below

are both used).

One of the most successful approaches for recommender systems is the latent fac-

tor model, also known as the low rank model or matrix factorization technique Koren

et al. (2009). As the names suggest, this model posits that there exist a small number

(r) of global “latent factors” affecting the movie ratings given by the users. Accord-

ingly, each user and item are represented as a low-dimensional feature vector, and the

rating given by the ith user to the jth movie is modeled as the similarity, i.e., inner

1http://www.netflixprize.com
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Figure 4.4: Illustration of the high-rank residual in the real-world Movielens data
set. Left: Plot of magnitudes of singular values (SV) of top 1000 movies in Movielens
data. Right: Plot of energy captured by the number of leading SVs. Only 50% of the
total energy is captured by the largest 200 SVs, indicating the existence of a strong
high-rank residual.

product of the two corresponding feature vectors:

Ri,j ≈ uT
i · vj, (4.21)

where ui,vj ∈ Rr are r-dimensional user- and item-specific feature vectors, respec-

tively. As a result, the rating matrix can be approximated by the product of two

feature matrices:

R ≈ UTV, (4.22)

where U ∈ Rr×n and V ∈ Rr×p contains the user and item feature vectors, re-

spectively. Note that r, the number of latent factors, is often much lower than the

dimensions of the rating matrix. Therefore R is assumed to be low-rank, and it

admits an approximate matrix factorization as shown in (4.22).

Despite the success of low-rank models on many real-world data sets, a comple-

mentary model is often required for capturing the residual information after removing
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the low-rank dominating component, as the real-world data often exhibits a high-rank

and heavy-tailed spectrum. In Figure 4.4, we plot the magnitudes of singular values

(SV) of the rating matrix corresponding to the top 1000 movies in the Movielens

data. As can be seen, only 50% of the energy is captured by the largest 200 SVs,

suggesting the existence of a strong high-rank residual.

Another widely adopted method for recommender systems is the item-graph ap-

proach Koren (2008). In this framework, an item-graph is constructed where each

node represents an item, and an edge connecting two nodes suggests significant cor-

relation or similarity between the ratings given to the two associated items. Then the

rating given by the ith user to the jth item is modeled as a weighted linear combination

of the rating he/she gives to the neighboring movies:

Rij ≈ bij +
∑

k∈N(j)

θijk(Rik − bik), (4.23)

where N(j) denotes the set of neighbors of node j in the item-graph, and θijk is a

coefficient characterizing the rating similarity between item j and k for user i. The

item graph captures the correlation structure between the ratings, and it utilizes

this structure for missing-rating prediction. However, the main drawback of the

item-graph approach is a lack of theoretical guidance on choosing appropriate graph

structure and guarantees for the model estimation performance.

An alternative model that extends the item-graph approach is to use the Markov

random field to model the rating variables. When the data is Gaussian distributed,

this model is also known as the Gaussian graphical model (GGM). As described in

Section 4.3.1, GGM provides an efficient characterization of the joint distribution

using the conditional dependency graph, whose edge pattern coincides with the non-

zero pattern of the inverse covariance matrix. For the recommender system data, we

assume the rating vector for each user (which contains the ratings for all the movies)
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is an i.i.d. sample from the joint distribution of the movie rating variables, which is

modeled by a GGM. Note that the Gaussian distribution assumption (after removing

the mean effects in the ratings) has been widely adopted in the recommender sys-

tems literature as a standard approximation technique (see, for example, Lawrence &

Urtasun (2009)). More accurate distributional characterization has also been studied

(see, for example, Salakhutdinov & Mnih (2008); Guo et al. (2014)), but at the cost

of more computationally expensive estimation algorithms and more complicated the-

oretical analysis. The GGM approach is not constrained by the low-rank assumption

imposed in the latent factor model, and by parameterizing the joint distribution by

conditional dependencies, it is also statistically more efficient than the item-graph

approach, which essentially parameterizes the distribution using marginal dependen-

cies. Given the ratings from n users, we can learn the structure and parameters of

the inverse covariance matrix using the ℓ1-regularized maximum likelihood estima-

tion (Ravikumar et al., 2011). Related literature on regularized learning of GGM was

reviewed in Section 4.2.

Unfortunately, in the presence of global and latent variables, both theory and

empirical results suggest the ineffectiveness of using GGM, since the marginal inverse

covariance matrix corresponding to the observed variables (i.e., the movie rating

variables) is not sparse. Enforcing sparsity will lead to large bias and, as a result,

suboptimal prediction performance.

As motivated in Section 4.3.2, we propose to use the LVGGM for modeling the

recommender system data. Specifically, the latent variables are introduced to capture

the global and latent effects that affecting a large portion of the movie ratings (such

the movie genres). Conditioning on these latent factors, the conditional distribution

of the observed movie rating variables is modeled by a sparse GGM. The resulting

marginal inverse covariance matrix has a “low-rank plus sparse” structure, and can

be learned through a regularized maximum likelihood estimation (4.5).
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Note that only the sample covariance matrix of the movie rating variables are

needed for the regularized ML estimation (4.5), therefore a “plug-in” estimator of

the fully-observed covariance matrix constructed from the incomplete observations

can be used instead. In particular, following Kolar & Xing (2012), we construct

the sample covariance from the incomplete observations by weighting each sample

covariances by its specific empirical missingness level. This construction yields a

consistent estimator for the covariance matrix, and it alleviates the missing-value

effect. We refer the interested readers to Kolar & Xing (2012) for analysis on this

procedure and Loh & Wainwright (2012) for a recent related work.

4.6.2 Validation of Structural Assumptions of LVGGM

Next we use Movielens2, a real-world movie rating data set, to validate the structural

assumptions of the LVGGM. For this purpose, we manually impose the movie genre

as a global effect by constructing a data set with 60 movies from three genres, where

each genre contains 20 movies. To minimize the effect of the missingness in the data,

we choose the ratings given by the most active 600 users and for the most rated 20

movies from each of the following three genres: Horror, Children’s, and Action. This

results in a 600 × 60 rating matrix with 56% completeness. We consider the joint

distribution of 60 movie rating variables as a LVGGM with three latent variables. As

mentioned above, each user’s rating vector is treated as an i.i.d. sample from the

LVGGM. Since the true covariance matrix is unknown, we use the sample covariance

matrix as a reasonable proxy since n ≫ p. Each covariance element is weighted by

the actual number of observations to compensate for the missingness in the data.

According to the decomposition of covariance matrix of a LVGGM (see Eq. (4.20)),

we expect that this genre effect can be extracted with a low-rank component G in the

covariance matrix. Our goal is to examine whether the remaining residual component

2http://movielens.org
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can be reasonably fitted by a sparse GGM (i.e.,, has a sparse precision matrix S but

less sparse covariance matrix S−1. Note that, for illustration purpose, we will use

eigen-decomposition to decompose the sample covariance matrix, which in general

will results in different estimates as those obtained by the regularized maximum

likelihood estimation.

We decompose the rating matrix into two matrices: a rank-3 matrix spanned by

its top three leading singular vectors, and a residual matrix capturing the conditional

effects. We denote the covariance matrix of the low-rank component as G̃, and the

sparse precision matrix of the residual component as S̃. A heat map of the normalized

G̃ is shown in Figure 4.5(a), and the sparsity patterns of the normalized S̃ and S̃−1

(i.e., the covariance of the residual) are shown in Figure 4.5(b), thresholded by 0.1.

As expected, the low-rank G̃ captures the structure of the global effects (i.e., movie

genre), and the residual can be well-modeled by a sparse GGM – its precision matrix

is much sparser than the covariance matrix. In addition, we find the effective rank of

the covariance is equal to 7.4, much smaller than the number of variables, 60, which

validates the low effective rank assumption.
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Figure 4.5: Illustration of LVGGM assumptions on Movielens data set. (a): Heat
maps of the leading low-rank matrices capturing the global effects (movie genre). (b):
Sparsity patterns of the precision and covariance matrices of the remaining conditional
effects.
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4.6.3 Missing-value prediction using LVGGM

Under the LVGGM, the observed movie rating variables are jointly Gaussian dis-

tributed as follows:

xO ∼ N (0,Θ−1),

where the marginal inverse covariance matrix Θ is given in Eq. (4.2), and can be

learned from the training data.

Given a user, we denote the set of observed (or known) movie ratings from this

user by K, and denote the set of missing (or unknown) ratings by U . Then the

(conditional) distribution of the variables xU conditioning on xK is

xU |xK ∼ N (−Θ−1
U,UΘU,KxK ,Θ

−1
U,U).

For prediction of xU , we can use the estimated Θ̂ to calculate the conditional

distribution, and then use the corresponding conditional mean as the predicted values

for xU , i.e.,

(Prediction) x̂U |xK = −Θ−1
U,UΘU,KxK . (4.24)

This prediction rule notably bears much resemblance to the well-known item-graph

approach for recommender systems (Koren, 2008).

4.6.4 Experiment results on Movielens

We implement and compare the above-mentioned three models for missing-value pre-

diction on a subset of Movielens data set: the latent factor model (LFM), the GGM

without latent variables, and the LVGGM. The LFM is learned for various number

of latent factors and by the alternating least square (ALS) algorithm (Koren, 2008).
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The GGM without latent variables is learned by the ℓ1-regularized maximum likeli-

hood (Ravikumar et al., 2011). The LVGGM is learned by Eq. (4.5). The number

of latent factors in the LFM and regularization parameters in learning GGM and

LVGGM are cross-validated on a training data set. The optimal predication perfor-

mance (measured by the root-mean-square errors (RMSE)) on a testing data set and

some descriptive statistics of the optimal models are reported in Table 4.1.

LFM GGM LVGGM
Rank 20 \ 55

Average graph degree \ 76.5 16.4
Total # parameters 30000 38727 36189

RMSE 0.8186 0.8166 0.8115

Table 4.1: Prediction performance and descriptive statistics for three models on
Movielens data set with 500 movies and 1000 users. The data missing rate is 53%.
LVGGM achieves the lowest RMSE with comparable total number of parameters.
The conditional graph of LVGGM is much sparser than the GGM without latent
variables (in terms of the average graph degree).

As can be seen, the proposed LVGGM achieves superior performance among three

models with comparable total number of parameters. Notably, the conditional graph

of the optimal LVGGM is much sparser than the optimal GGM without latent vari-

ables, which validates our intuitions.

4.7 Summary of Chapter 4

We have considered a family of latent variable Gaussian graphical model (LVGGM)

whose precision matrix has a sparse plus low-rank structure. For this LVGGM, we

derive the parameter estimation error bounds for regularized maximum likelihood es-

timation under mild conditions. The theory is validated by numerical simulations, and

the proposed LVVGM achieves superior prediction performance on a recommender

system data set.
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4.8 Proofs for Chapter 4

4.8.1 Proof of Theorem 4.1

In Yang & Ravikumar (2013), the authors proved a general superpositioned parameter

estimate error bound using the decomposable regularized framework. Theorem 4.1

can be proven similarly by specializing the result in Yang & Ravikumar (2013) to the

LVGGM learning problem (4.5). Then it suffices to verify the two critical conditions

(C3) and (C4) in Yang & Ravikumar (2013) (the other two conditions are trivial to

verify for our problem), which we introduce and elaborate in this section.

Restricted strong convexity. Let δL(∆;Θ∗) denote the remainder term in first-

order Taylor series approximation of the loss function L(·) at the true parameter Θ∗

with respect to a perturbation ∆ = Θ∗ − Θ̂:

δL(∆;Θ∗) := L(Θ∗ +∆)− L(Θ∗)− ⟨∇L(Θ∗),∆⟩. (4.25)

In Negahban et al. (2012), the authors introduce the restricted strong convexity (RSC)

condition, which specifies that given some set C ⊆ Rp×p, there exists some curvature

parameter κL > 0 and tolerance function τL, such that the following holds:

δL(∆;Θ∗) ≥ κL∥∆∥2F − τL(Θ∗), ∀∆ ∈ C. (4.26)

The RSC condition guarantees sufficient curvature of the loss function at the true

parameter along some directions specified by set C. This condition is critical for

consistent estimation in the high-dimensional regime, since standard strong convexity

usually does not hold in the p≫ n setting.

The following shows that the restricted Fisher eigenvalue conditions defined in

Assumption 4.1 implies the RSC condition.
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Lemma 4.2 (RSC condition). Suppose Assumption 4.1 holds for the true marginal

precision matrix Θ∗ and let M > 2. Then for all ∆ ∈ C(E) ∪ C(U), such that

∥∆∥2F∗ ≤ 1
2M2 , the RSC condition (4.26) is satisfied with the curvature parameter

κL = M−2
2(M−1)

κ∗min and the tolerance function τL = 0.

The proof of Lemma 4.2 is largely inspired by Kakade et al. (2010), in which it

is shown that exponential family distributions exhibit almost strong convexity in a

neighborhood. The RFE assumption makes connection between this property and

the RSC condition. A proof of Lemma 4.2 is given in the Section 4.8.2.

Note there is an important difference between the RSC condition considered here

and the condition introduced in Agarwal et al. (2012). The RSC condition considered

here is satisfied with respect to the error matrices of each simple structure separately,

while the RSC condition in Agarwal et al. (2012) is required for the combined error

matrices (defined in the product space of two sets), which could lie in a significantly

larger set.

Structural incoherence. The second ingredient for consistent estimation of the

sparse plus low-rank parameter Θ, is some type of incoherence condition between

the sparse and low-rank components. In the present work, we consider the struc-

tural incoherence condition that was proposed more recently in Yang & Ravikumar

(2013). This condition allows for a vanishing error bound when n goes to infinity,

and is applicable to more general loss functions, such as the log-likelihood function

in Eq. (4.4).

Define the following incoherence measure of the loss function L for two structural

error matrices ∆S and ∆L:

cL(∆S,∆L; Θ
∗) := |L(Θ∗ +∆S +∆L) + L(Θ∗)

− L(Θ∗ +∆S)− L(Θ∗ +∆L)|, ∀∆S ∈ C(E),∆L ∈ C(U).
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Then the structural incoherence (SI) condition is satisfied if the following relation

holds for all ∆S ∈ C(E) and ∆L ∈ C(U):

cL(∆S,∆L; Θ
∗) ≤ κL

2
∥(∥∆S∥2F + ∥∆L∥2F ), (4.27)

where κL is the curvature parameter in the RSC condition (4.26).

The following lemma shows that, in addition to the restricted Fisher eigenvalue

assumption (Assumption 4.1), if the true marginal model also satisfies the structural

Fisher incoherence assumption (Assumption 4.2), then the above SI condition on the

likelihood loss function is guaranteed.

Lemma 4.3 (SI condition). Suppose Assumption 4.1 and 4.2 hold for the true

marginal precision matrix Θ∗ and let M > 6. Then the SI condition (4.27) is satisfied

for all ∆S ∈ C(E) and ∆L ∈ C(U), such that max{∥∆S∥2F∗ , ∥∆L∥2F∗} ≤ 1
6M2 . The

curvature parameter κL is the same as in Lemma 4.2, i.e., κL = M−2
2(M−1)

κ∗min.

The proof of Lemma 4.3 is in Section 4.8.3.

Finally, under Assumption 4.1 and Assumption 4.2, Lemma 4.2 and 4.3 imply the

RSC and SI conditions hold for our LVGGM learning problem, respectively. Thus

Theorem 4.1 can be proven by directly appealing to Theorem 1 in Yang & Ravikumar

(2013).

4.8.2 Proof of Lemma 4.2

Proof. The remainder term in the first-order Taylor series of the negative log-

likelihood (4.4) of GGM takes the following form:

δL(∆;Θ∗) = L(Θ∗ +∆)− L(Θ∗)− ⟨∇L(Θ∗),∆⟩

= ⟨Θ∗−1,∆⟩ − log det(Θ∗ +∆) + log det(Θ∗).
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For s ∈ (0, 1], define the Taylor series of function g(s; Θ∗) := log det(Θ∗ + s∆) at

Θ∗

g(s; Θ∗) = log det(Θ∗ + s∆) =
∞∑
k=0

ck(∆)sk

k!
, (4.28)

where ck(∆) := g(k)(s; Θ∗) is the k-th derivative of the log det function at Θ∗. Define

c0(∆) := log det(Θ∗), the remainder can be expressed as:

δL(s∆;Θ∗) =
∞∑
k=2

ck(∆)sk

k!
=
c2(∆)s2

2
+

∞∑
k=3

ck(∆)sk

k!
=
c2(∆)s2

2
+ δg(s; ∆,Θ∗),

(4.29)

where the second term δg(s) is defined as the second-order Taylor error of the log-

determinant function. Next we show that this error term, which is the sum of all

the higher-order terms, can be bounded by a quadratic term in a small neighborhood

around Θ∗.

For exponential family distributions (Gaussian as an example), the log-partition

function (i.e., log det function for Gaussian) coincides with the cumulant generating

function. This implies that the derivatives ck(∆) are the corresponding cumulants

of the distribution, which can be shown to converge to zero quite rapidly. Indeed,

in Kakade et al. (2010) the authors show that for a univariate random variable z

under an exponential family distribution, its k-th order cumulant satisfies

∣∣∣∣ ck(z)c2(z)k/2

∣∣∣∣ ≤ 1

2
k!αk−2, ∀k ≥ 3, (4.30)

where α is a finite constant, and the second-order cumulant coincides with the Fisher

norm of the deviation c2(∆) = ∥∆∥2F∗ due to the definition of the Fisher information.

For multivariate Gaussian distributions, α =
√
2 suffices for the above relation to

hold (see Sec. 3.2.2 in Kakade et al. (2010)).
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Therefore we bound the second-order Taylor error term in Eq. (4.29) as follows

(similar to Kakade et al. (2010)):

|δg(s; ∆,Θ∗)| =

∣∣∣∣∣
∞∑
k=3

ck(∆)sk

k!

∣∣∣∣∣ (4.31)

≤ 1

2

∞∑
k=3

2
k
2
−1c2(∆)k/2sk (4.32)

≤ s2c2(∆)

2

∞∑
k=1

(s
√
2c2(∆))k (4.33)

(i)

≤ s2c2(∆)

2

∞∑
k=1

1

Mk
(4.34)

=
s2c2(∆)

2(M − 1)
(4.35)

≤ c2(∆)

2(M − 1)

1

max{2M2c2(∆), 1}
(4.36)

(ii)
=

c2(∆)

2(M − 1)
(4.37)

where (i) and (ii) are due to our conditions on c2(∆) (i.e., ∥∆∥2F∗ ≤ 1
2M2 ) and s ≤ 1.

Then we obtain a lower bound for δL(∆;Θ∗):

δL(∆;Θ∗) ≥ c2(∆)

2
+ δg(s; ∆,Θ∗) ≥

(
1

2
− 1

2(M − 1)

)
c2(∆)

(ii)

≥ M − 2

2(M − 1)
κ∗min∥∆∥2F ,

(4.38)

where (ii) is due to the RFE condition. Therefore the RSC condition is satisfied with

the curvature parameter κL := M−2
2(M−1)

κ∗min and a zero tolerance parameter τL = 0.

4.8.3 Proof of Lemma 4.3

Proof. First we state the following lemma which gives a bound on the magnitude of

Fisher inner product between elements from the two sets.
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Lemma 4.4. Suppose Assumption 4.1 and 4.2 hold for the true marginal precision

matrix Θ∗. Then given a constant M ≥ 6, the following inequality holds for all

∆S ∈ C(E) and ∆L ∈ C(U) such that max{∥∆S∥2F∗ , ∥∆L∥2F∗} ≤ 1
6M2 :

|⟨∆S,∆L⟩F∗| ≤ ψ
(
∥∆S∥2F∗ + ∥∆L∥2F∗

)
, (4.39)

where ψ := 1
4
− 3

2M
.

The proof of Lemma 4.4 follows similarly as that of the Proposition 2 in Yang &

Ravikumar (2013), and hence is omitted.

Next we prove Lemma 4.3 using the above result. Following similar derivations

as in the proof of Lemma 4.2, the incoherence measure in the SI condition can be

simplified to

cL(∆S,∆L; Θ
∗) := |δL(∆S +∆L; Θ

∗)− δL(∆S; Θ
∗)− δL(∆L; Θ

∗)| .

Using the remainder in the Taylor series of δL (4.29), the incoherence measure can

113



be expressed as:

cL(∆S,∆L; Θ
∗)

=

∣∣∣∣c2(∆S +∆L)

2
+ δg(s; ∆S +∆L)−

(
c2(∆S)

2
+ δg(s1; ∆S)

)
−
(
c2(∆L)

2
+ δg(s2; ∆L)

)∣∣∣∣
≤
∣∣∣∣c2(∆S +∆L)

2
− c2(∆S)

2
− c2(∆L)

2

∣∣∣∣+ |δg(s; ∆S +∆L)|+ |δg(s1; ∆S)|+ |δg(s2; ∆L)|

(i)

≤|⟨∆S,∆L⟩F∗ |+ c2(∆S +∆L) + c2(∆S) + c2(∆L)

2(M − 1)

=|⟨∆S,∆L⟩F∗ |+ ∥∆S∥2F∗ + ∥∆L∥2F∗ + ⟨∆S,∆L⟩F∗

M − 1

≤ M

M − 1
|⟨∆S,∆L⟩F∗ |+ ∥∆S∥2F∗ + ∥∆L∥2F∗

M − 1
(ii)

≤Mψ + 1

M − 1
(∥∆S∥2F∗ + ∥∆L∥2F∗)

(iii)

≤ M − 2

4(M − 1)
κ∗min(∥∆S∥2F + ∥∆L∥2F )

≤κL
2
(∥∆S∥2F + ∥∆L∥2F ),

where in (i) we have apply (4.37) to bound the second-order Taylor error terms (note

that the conditions on the error matrices also guarantees ∥∆S +∆L∥2F∗ ≤ 1
2M2 due to

Lemma 4.4). Inequality (ii) is due to Lemma 4.4. Inequality (iii) can be verified by

the definitions of ψ and the RSC curvature parameter κL.

4.8.4 Proof of Corollary 4.1

Proof. Theorem 4.1 is a deterministic statement, however, the condition on the reg-

ularization parameters (4.11) and the error bound depend on the sample covariance

matrix Σ̂ which is random. Note that the error bound directly follows from the de-

terministic error bound in Theorem 4.1 and the choices of regularization parameters

as in Eq. (4.16). To prove Corollary 4.1, it only remains to verify that the condi-

tion (4.11) in Theorem 4.1 is guaranteed with high probability. More specifically, this

requires bounding the deviation of the sample covariance matrix in terms of ℓ∞ and
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and spectral norms.

First we make use of the following lemma to characterize the element-wise deviation

of the sample covariance matrix3.

Lemma 4.5 (Ravikumar et al. (2011)). For a p-dimensional Gaussian random vector

with covariance matrix Σ∗, the sample covariance matrix obtained from n samples Σ̂

satisfies

P
{
|Σ̂i,j −Σ∗

i,j| > ϵ1

}
≤ 4 exp

(
− nϵ21
3200σ∗2

)
, (4.40)

for all ϵ1 ∈ (0, 40σ), where σ∗ := maxi=1,...,pΣ
∗
i,i.

If the number of samples satisfies n ≥ 4 log p, then by choosing 1
2
λ ≥ ϵ1 =

80C1σ
∗
√

log p2

n
∈ (0, 40σ), where C1 > 1 is an arbitrary constant, and applying the

union bound we have

P

{
∥Σ̂−Σ∗∥∞ ≤

1

2
λ

}
≥ P

{
∥Σ̂−Σ∗∥∞ ≤ ϵ1

}
≥ 1− 4p−2(C1−1).

Then the condition on λ is satisfied with high probability.

Next we consider the condition on the other regularization parameter µ, which re-

quires bounding the deviation of the operation norm of the sample covariance matrix.

The following lemma provides such a characterization.

Lemma 4.6 (Chandrasekaran et al. (2012), Lemma 3.9). For a p-dimension Gaussian

random vector with covariance matrix Σ∗ and let ρ∗ = ∥Σ∗∥2. If the number of

samples n be such that n ≥ 64pρ∗2

ϵ22
, then the sample covariance matrix Σ̂ obtained

3The original lemma applies to all sub-Gaussian variables, here we specialize to Gaussian random
vectors.
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from n samples satisfies

P
{
∥Σ̂−Σ∗∥2 ≥ ϵ2

}
≤ 2 exp

(
− nϵ22
128ρ∗2

)
, (4.41)

for all ϵ2 ∈ (0, 8ρ∗).

If n ≥ p, then by choosing 1
2
µ ≥ ϵ2 = 8C2ρ

∗√ p
n
∈ (0, 8ρ∗), where C2 ≥ 1 is an

arbitrary constant, we have

P

{
∥Σ̂−Σ∗∥2 ≤

1

2
µ

}
≥ P

{
∥Σ̂−Σ∗∥2 ≤ ϵ2

}
≥ 1− 2 exp

(
−C

2
2p

2

)
.

Combining the above results we have verified the condition (4.11) in Theorem 4.1

holds with high probability, which concludes the proof.
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CHAPTER 5

Detecting Emerging Topics in Topic

Models with Confidence

In this chapter, we focus on a specific Bayesian network, which is known in machine

learning as a “topic model”, namely the latent Dirichlet allocation (LDA) model. In

particular, we consider the problem of detecting emerging topics in text document

corpora based on the LDA model. A hypothesis testing framework for this detection

problem is proposed, and as a surrogate for the standard generalized likelihood-ratio

test, we consider and perform a simple test procedure called the surrogate Hausdorff

test. We develop theory which shows that, in addition to significantly reduced com-

putational cost, the proposed test procedure also has strong detection performance

guarantees, such as the asymptotic consistency. Numerical experiments on both syn-

thetic and real-world corpora validate and complement our theoretical results.

5.1 Introduction

Event detection is an important and challenging task which has many real-world ap-

plications, ranging from discovering breaking news from online articles, to identifying

anomalous activities from social or behavioral data. For text document corpora, this

task can be formulated as topic detection, where each topic captures an event, such

as a piece of news or a trending meme on social media websites. In this paper, we
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consider a hypothesis testing framework for this problem. This framework is built

upon a specific type of topic model, namely the latent Dirichlet allocation (LDA)

model.

The LDA model has been widely used in modeling collections of text documents

since its first introduction to the computer science and applied statistics communi-

ties (Blei et al., 2003). Its empirical success has been observed in various areas and

for diverse data sets (see, for example, Blei (2014, 2012) for recent surveys). The

LDA model posits that each document (seen as a “bag of words”) is sampled from a

mixture of multinomial distributions over the vocabulary of words, where each mix-

ture component is called a “topic”. These topics are assumed to be shared by all

documents in the corpus, while the mixing proportions are specific to each of the

documents. A parallel and equally active line of work can be found in the genetics

literature under the name admixture model, where the primary interest is in model-

ing the ancestral structure in the genotype data (see Pritchard et al. (2000) for an

introduction). In this present paper we adopt the terminology used in the context of

topic modeling for text documents. However, the theory and algorithms developed

naturally apply to any field that uses LDA models.

The problem of topic detection in topic models is motivated by real-world applica-

tions that share the following general set-up. Suppose that a corpus of time stamped

documents is collected from some source, e.g., a publications database, over a period

of time. At some later time another collection of documents is collected from the

same source. We are interested in detection of novel topics in the newer collection

that were not present in the older collection. These novel topics are called emerging

topics. We note that the notion of topic can be generalized to any previously unseen

event, in particular when the topic models are used for modeling non-text data, such

as images.

Perhaps the most straightforward approach to incorporate these new topics into the
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old topic model is to increase the number of topics when fitting the new document

collection. However, without a clear characterization of the emerging event, it is

difficult to specify how many additional topics are required. A standard practice in

applying the LDA model is to over-fit the model with many more topics, and then

remove the low-quality or duplicate ones. These redundant topics are often identified

through either manual inspection of the top words, or some heuristic quality measures.

Unfortunately, both empirical studies and recent theoretical analysis have shown that

over-fitting degrades the learnability of the LDA topics (Tang et al., 2014; Nguyen,

2014). As a result, many topics obtained from such an over-fitting strategy will likely

not capture the true topics.

An alternative approach to deal with the change of number of topics is to modify

the standard LDA model. Some examples include Blei & Lafferty (2006); Wang &

McCallum (2006); AlSumait et al. (2008); Wang et al. (2012). The shared idea is to

couple multiple LDA models to capture the emergence or disappearance of topics. A

more principled framework to handle the unknown and varying number of topics are

nonparametric extensions of the LDA model, e.g., the hierarchical Dirichlet process

model (Teh et al., 2006) and its variants (Gao et al., 2011; Lin & Fisher, 2012; Chen

et al., 2012). Unfortunately, most existing models and approaches lack theoretical

guarantees, and are often computationally expensive due to the increased parameter

space and model complexity.

In this paper, we consider a hypothesis testing framework for detecting emerging

topics in the LDA model. In particular, we propose to estimate a LDA model from

the new data set with only one additional topic on top of the existing ones. Then a

test statistic is calculated by projecting the estimated new topic onto the convex hull

of the old topics. This test statistic can be shown to be interpreted as a computation-

ally simpler surrogate for the standard likelihood ratio. By leveraging the theory of

empirical processes and some recently established results relating various forms of di-
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vergence for LDA densities to the Hausdorff distance between the corresponding topic

polytopes, we show that the proposed surrogate test guarantees the consistency of the

original hypothesis testing problem, even when the true number of emerging topics

is greater than one. In particular, the surrogate test statistic correctly converges to

zero under the null hypothesis (i.e., in the absence of new topics), and is bounded

away from zero under the alternative hypothesis (i.e., there occurs at least one new

topic). We further provide the convergence rate of the surrogate test statistic and

bounds on the hypothesis testing errors. The theory is validated through numerical

experiments on both synthetic and real-world corpora.

The remainder of the paper is organized as follows. In Section 5.2 we describe the

LDAmodel and the notion of topic polytope. A hypothesis testing framework for topic

detection is introduced in Section 5.3 and our proposed surrogate test is described in

Section 5.4. Our main results on the detection performance of the proposed surrogate

test are stated in Section 5.5 and their proofs are included in Section 5.6. In Section 5.7

we provide numerical experimental results to validate our theory, and we conclude

with future directions in Section 5.8.

Notation for Chapter 5. The Euclidean distance between a point θ and a set C is

defined as dist(θ, C) := infx∈C ∥θ − x∥. The Hausdorff distance between two convex

bodies C and C ′ is defined as:

dH(C,C
′) = max

{
max
θ∈C

dist(θ, C ′), max
θ′∈C′

dist(θ′, C)

}
. (5.1)

Bd(θ,R) denotes a closed d-dimensional Euclidean ball centered at point θ and has

radius R. The notations int G, relint G, extr G, aff G, and vold G denote the interior,

relative interior, the set of extreme points, the affine span, and the d-dimensional

volume of set G. We define the dimension of a convex polytope to be the dimension

of its affine hull. ∆d denotes the d-dimensional probability simplex.
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The following divergence measures for probability distributions are used: K(p, q),

h(p, q), V (p, q) denote, respectively, the Kullback-Leibler divergence, Hellinger dis-

tance and total variation distances between two densities p and q defined with respect

to a measure on a common space: K(p, q) =
∫
p log(p/q), h2(p, q) = 1

2

∫
(
√
p −√q)2

and V (p, q) = 1
2

∫
|p− q|.

5.2 The LDA model and topic polytope

Latent Dirichlet Allocation (LDA) models were first introduced in Blei et al. (2003)

and Pritchard et al. (2000). We briefly review the model assumptions, and give

an equivalent representation that will be used to derive the surrogate test statistic.

Interested readers are referred to the above papers for more details.

Available are a collection of m documents. The ith document is represented as a

“bag of words”: S i
[n] := (Xij)

n
j=1, whereXij ∈ {0, 1, . . . , d} is a word in the vocabulary,

and n is the number of words in the document. Without loss of generality, we have

assumed all documents have the same number of words. The LDA model assumes

that the words in each document are independent and identically distributed (i.i.d.)

samples from a document-specific mixture of K multinomial distributions over the

vocabulary, where each multinomial distribution is called a “topic” and is parame-

terized by a vector ϕk ∈ ∆d, k = 1, . . . , K. Here ∆d is the d-dimensional probability

simplex. In practice, it is reasonable to assume K ≪ d (for example, Griffiths &

Steyvers (2004) found that around 300 topics are optimal for modeling a corpus of

28, 154 abstract documents with a vocabulary of 20, 551 words). The collection of m

documents S [m]
[n] := (S i

[n])
m
i=1 is generated independently in the same manner, condi-

tioning on the same set of K topic vectors Φ = (ϕ1, . . . , ϕK). One of the primary

goals in LDA modeling is inference of the topic parameters Φ on the basis of the

sampled m× n words S [m]
[n] .
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As first introduced in Nguyen (2014), instead of studying the individual topic

vectors of the LDA model, we propose to consider their convex hull:

G = conv(ϕ1, . . . , ϕK), (5.2)

which we shall refer to as the topic polytope. By studying this topic polytope, we

effectively remove the “label-switching” ambiguity between the true and estimated

topics and also handle the difficulty of estimating topics that are inside the polytope

(i.e., topics that can be expressed as convex combination of others). The critical role

of the topic polytope G can be seen from an equivalent representation of the LDA

model described as follows. For each document i = 1, . . . ,m, we associate it with a

random vector in the topic polytope ηi ∈ G, parameterized by ηi = θi,1ϕ1+. . .+θi,KϕK ,

where the random vector θi = (θi,1, . . . , θi,K) ∈ ∆K−1 contains the topic mixing

proportions. Conditioning on ηi, the words in the document S i
[n] = (Xij)

n
j=1 are

i.i.d. draws from the multinomial distribution Multi(ηi) specified by ηi, i.e., P (Xij =

l | ηi) = ηil for l = 0, . . . , d. As in the standard LDA model, we assume the topic

proportion vector θ follows a Dirichlet distribution Dir(α), where α = (α1, . . . , αK)

are the concentration parameters. Then the random vector η follows an induced

distribution over topic polytope G, denoted as Pη|G.

The distribution of a document S i
[n], denoted by PS[n]|G, is obtained by integrating

out the random vector η over the topic polytope G, yielding the following density

with respect to counting measure:

pS[n]|G(S
i
[n]) =

∫
G

n∏
j=1

d∏
l=0

η
I(Xij=l)
il dPη|G(ηi). (5.3)

Accordingly, the joint distribution of the full data set S [m]
[n] , denoted as Pm

S[n]|G, is the
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product distribution of all single-document distributions:

Pm
S[n]|G(S

[m]
[n] ) :=

m∏
i=1

PS[n]|G(S
i
[n]). (5.4)

Note that our formulation of the LDA model focuses on the topic-level and

document-level characteristics, since only the marginal distribution (5.4) is needed

for the proposed hypothesis testing with respect to the topic polytope. Therefore we

do not need to introduce the latent word-topic assignment variables as in Blei et al.

(2003). Instead, they have been marginalized out in our representation.

The topic parameters Φ can be estimated by either empirical Bayes approaches or

in a full Bayesian framework. In the full Bayesian framework, the topic parameters

are assumed random and endowed with a prior distribution. Then their posterior

distributions given the observed documents can be obtained through approximate

inference techniques. In this paper, we take the empirical Bayes approach (as in Blei

et al. (2003)), where a point estimate of the topic parameters Φ (and hence their

induced topic polytope G) is obtained by maximizing the marginal likelihood of the

samples (5.4). This perspective allows us to use some established empirical process

theory to derive the concentration behavior of the topic parameter estimates, which

complements recent theory in the Bayesian framework (Nguyen, 2014).

5.3 Hypothesis testing framework for detecting

emerging topics

Suppose there is an available LDA model learned from historical data. Our goal is

to detect the occurrence of emerging topics. Alternatively, one can also consider this

task as an anomaly detection problem, where the existing LDA model corresponds to

the nominal model, and the emerging topics capture certain anomalous activities.
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We formulate the topic detection problem as a composite hypothesis test. The

null hypothesis assumes that the new samples are generated from the existing LDA

model, while the alternative hypothesis assumes that they are generated from a new

LDA model which contains emerging topics in addition to the existing ones. Let the

LDA model in the null hypothesis has K topics, denoted as Φ = {ϕ1, . . . , ϕK}, and

let their convex hull be G0 = conv(Φ) (called the null topic polytope). Given a text

document corpus S [m]
[n] , the emerging topic detection problem can be formulated as

the following composite hypothesis test (HT-q):

(HT-q)


H0 : S [m]

[n] ∼ Pm
S[n]|G0

H1 : S [m]
[n] ∼ Pm

S[n]|Gq
,

(5.5)

where Gq = conv(Φ, ϕK+1, . . . , ϕK+q) is the topic polytope of the LDA model under

the alternative hypothesis. The set of the extreme points of Gq includes the existing

topics Φ and q new topics (q > 0), each of which captures an event.

A standard test procedure for composite hypothesis testing is the generalized like-

lihood ratio test (GLRT), in which the maximum likelihood (ML) estimation of the

alternative model is followed by a log-likelihood ratio test (LRT). For our specific test

HT-q, the ML estimation step involves the inference of the unknown topic parameters

ϕK+1, . . . , ϕK+q (note that q is also unknown) or, equivalently, the topic polytope Gq.

Define Gq as the set of all polytopes with at most (K + q) extreme points that

include Φ:

Gq = {G | Φ ⊂ extr G, |extr G| ≤ K + q}. (5.6)

Note that G0 ∈ G
q
by definition. The ML polytope under the alternative hypothesis
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is

Ĝq = argmax
G∈Gq

Pm
S[n]|G(S

[m]
[n] ). (5.7)

Equivalently, this ML estimation is also with respect to the topic parameters, i.e.,

Ĝq = conv(Φ, ϕ̂K+1, . . . , ϕ̂K+q), (5.8)

where {ϕ̂K+j, j = 1, . . . , q} denote the ML estimates for the topic vectors.

The standard log-likelihood ratio test statistic can be formulated as

m∑
i=1

log
PS[n]|Ĝq

PS[n]|G0

H1

≷
H0

τm,n, (5.9)

where the decision threshold τm,n is often a function of the sample sizes m and n

chosen by the user.

Although conceptually straightforward, performing the above GLRT procedure

involves several challenges. The first difficulty is that the ML estimation under the

alternative hypothesis involves LDA model selection for all possible q > 0, which is

computationally expensive and statistically vulnerable to overfitting. Moreover, eval-

uating the exact likelihood PS[n]|G for a given topic polytope G, or the log-likelihood

ratio in Eq. (5.9), is in general computationally intractable due to the integral (5.3).

Sampling-based algorithms or variational approximation are often used in practice,

but the results are mixed (see, e.g., Wallach et al. (2009); Taddy (2012); Scott &

Baldridge (2013); Foulds & Smyth (2014) for some recent discussions). Finally, choos-

ing an appropriate threshold function τm,n that guarantees a certain level of detection

performance (e.g., a given false positive rate) is a largely unexplored problem in the

LDA model selection literature.
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5.4 Surrogate Hausdorff test

We propose a surrogate testing procedure to address the above challenges. First we

introduce a new hypothesis testing problem (HT-1) in which the generating LDA

model in the alternative hypothesis has only (K + 1) topics:

(HT-1)


H0 : S [m]

[n] ∼ Pm
S[n]|G0

H1 : S [m]
[n] ∼ Pm

S[n]|G1
,

(5.10)

where G1 = conv(Φ, ϕK+1), and ϕK+1 ∈ ∆d is a new topic vector. Under this setting,

the space of alternative hypotheses is substantially reduced, and hence ML estimation

of the single-topic parameters is computationally more tractable than it is in the HT-q

problem (5.5).

Our proposed test described below is motivated by the idea of using this HT-1

problem as a surrogate for the HT-q problem. Let G1 denote the set of all polytopes

with at most (K + 1) extreme points that include Φ:

G1 = {G | Φ ⊂ extr G, |extr G| ≤ K + 1}. (5.11)

Then the ML estimate of the (K +1)-polytope, denoted as Ĝ1 and referred to as the

surrogate ML polytope, is defined as:

Ĝ1 = argmax
G∈G1

Pm
S[n]|G(S

[m]
[n] ). (5.12)

Its associated ML (K + 1)th topic vector can be represented as:

ϕ̂K+1 = argmax
ϕK+1∈∆d

Pm
S[n]|G(S

[m]
[n] ), G = conv(Φ, ϕK+1). (5.13)

As a surrogate for the likelihood ratio (5.9), we propose to use dH(Ĝ1, G0), the
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Hausdorff distance between the surrogate ML polytope Ĝ1 and the null polytope G0

as our test statistic. The decision rule is:

dH(Ĝ1, G0)
H1

≷
H0

ρ, (5.14)

where ρ is a decision threshold. We shall refer to this proposed estimation-detection

procedure as the surrogate Hausdorff test.

�1

�2

�3

b�4

dH( bG,G0)

b�?
4

Figure 5.1: Illustration of the Hausdorff distance between null and alternative poly-
topes. All points denote vectors in ∆d, the d-dimensional word probability simplex
(not shown). “×” denotes the empirical word frequency vector corresponding to a

document. ϕ̂⊥
4 is the projection of ϕ̂4 onto G0. When ϕ̂4 /∈ aff G0, the Hausdorff

distance between Ĝ = conv(ϕ1, ϕ2, ϕ3, ϕ̂4) and G0 = conv(ϕ1, ϕ2, ϕ3) is the Euclidean

distance between ϕ̂4 and ϕ̂⊥
4 .

Computation of the Hausdorff distance. When the extreme points of Ĝ1 are

composed of the extreme points of G0 and ϕ̂K+1 (this holds almost surely under our

assumed setting K ≪ d), the Hausdorff distance between G0 and Ĝ1 coincides with

the following projected Euclidean distance (see Figure 5.1 for an illustration)

dH(Ĝ1, G0) = d(ϕ̂K+1, G0) = min
1Tw=1,w⪰0

∥ϕ̂K+1 −
K∑
k=1

wkϕk∥, (5.15)

which can be formulated as a quadratic programming optimization (by equivalently
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optimizing the squared Euclidean distance) with respect to a low-dimensional ∆K−1-

constrained vector w. Therefore the Hausdorff distance can be calculated efficiently

by generic convex optimization techniques (Boyd & Vandenberghe, 2009).

5.5 Performance guarantees of surrogate Haus-

dorff test

In this section we state the theoretical results on performance guarantees for the

proposed surrogate Hausdorff test. The proofs of the main theorems are given in

Section 5.6.

Asymptotic setting. The data samples available are a collection of m documents,

S [m]
[n] = (S i

[n])
m
i=1. Our main focus is to establish performance guarantees for the

proposed surrogate Hausdorff test as the total number of words (or tokens) m × n

goes to infinity. In particular, we consider the asymptotic setting where both m, the

number of documents, and n, the number of words in each document, are finite and

allowed to increase to infinity while the constraint log n = o(m) is satisfied. Note

that our asymptotic setting requires a mild increasing rate of n, as contrasted to

the setting of Nguyen (2014), in which both m and n increase to infinity with the

constraint log logm ≤ log n = o(m).

Assumptions. Recall from the model description that each document is distributed

according to the LDA density, i.e., S i
[n] ∼ PS[n]|G. The (latent) topic mixing propor-

tions vector θ is endowed with a Dirichlet prior distribution Dir(α). We make the

following assumptions.

(A0) The number of topics is much smaller than the number of words in the vocab-

ulary, i.e., K ≪ d.
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(A1) The true LDA models under the null and alternative hypotheses have identical

Dirichlet concentration parameters α1, . . . , αK . The alternative hypothesis has

additional concentration parameters αK+1, . . . , αK+q.

(A2) For the LDA models under both hypotheses, αj ∈ (0, 1] for all j = 1, . . . , K+ q.

(A3) The topic polytope G0 is fixed and not degenerate, i.e., for some r, R > 0,

v ∈ ∆d, G0 contains the spherical ball BK(v, r) and is contained in BK(v, R).

(A4) Topic vectors ϕj = (ϕj,0, . . . , ϕj,d), j = 1, . . . , K+ q, are bounded away from the

boundary of ∆d, i.e., minl=0,...,d ϕj,l > c0 for some c0 > 0.

(A5) The surrogate ML polytope Ĝ1 under the alternative hypothesis of HT-q con-

verges to a (K +1)-polytope G∗
1 ∈ G

1
almost surely. In addition, the Hausdorff

distance between G∗
1 and G0 is bounded away from zero almost surely1.

Under these assumptions, the following theorem states the consistency of the pro-

posed surrogate Hausdorff test.

Theorem 5.1. Let φ be the test function associated with the proposed surrogate Haus-

dorff test φ := I{dH(Ĝ1, G0) > ρ}, where Ĝ1 is the surrogate ML polytope and ρ is a

decision threshold. Under Assumptions (A0 - A5), there exists some ρ > 0, such that

as m→∞ and n→∞ such that log n = o(m), the following holds:

Pm
S[n]|G0

[φ]→ 0, (5.16)

Pm
S[n]|G′ [1− φ]→ 0, (5.17)

where Pm
S[n]|G [φ] denotes the expectation of test φ under distribution Pm

S[n]|G, and

G′ ∈ Gq, the set of all (K + q)-polytopes with any finite integer q > 0.

1We conjecture that this statement can be proven to be true. Due to technical reason, we present
it as an assumption. See Section 5.6.2 for more details.
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Theorem 5.1 shows that the the proposed test based on Hausdorff distance between

the surrogate ML polytope Ĝ1 and the null polytope G0 is asymptotically consistent

for the hypothesis testing problem HT-q, in particular both the false alarm (Type-I)

and false negative (Type-II) rates approach zero with sufficient samples. The proof

of Theorem 5.1 is given in Section 5.6.2.

The convergence of false alarm rate with respect to zero relies on the convergence

behavior of the surrogate ML polytope Ĝ1, which is interesting in its own right. In

particular, when the true polytope G∗ lies in G1, by leveraging the theory of empirical

processes we have the following theorem on the convergence of Ĝ1 with respect to G∗.

Theorem 5.2. Assume Assumptions (A0 - A4) hold and the true topic polytope

G∗ ∈ G1. Let Ĝ1 be the surrogate ML polytope estimated from samples S [m]
[n] . As

m → ∞ and n → ∞ such that log n = o(m), for some sufficiently large constant C

independent of m and n, a universal constant c, and for all δ ≥ δm,n, where δm,n is

the vanishing sequence defined as

δm,n =

[
logm

m
+

log n

n
+

log n

m

] 1
2

, (5.18)

we have

Pm
S[n]|G∗

(
dH(Ĝ1, G

∗) > Cδ
1
γ

)
≤ c exp

(
−mδ2/c2

)
, (5.19)

where the exponent γ = 1 when G∗ = G0, and γ = K = |extr G0| when G∗ ∈ G1\{G0}.

We make the following remarks:

1. It is interesting to note that the convergence rate of the Hausdorff distance δm,n

parallels the posterior contraction rate of the topic polytope recently established

by Nguyen (2014) in a Bayesian setting (cf. Theorem 2 therein), which is validated
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by empirical results (Tang et al., 2014). However, note that the asymptotic setting

of our results is different (see the remark in the beginning of Section 5.5).

2. It can be shown that the quantity dH(Ĝ1, G
∗)γ serves as a lower bound for

h(PS[n]|Ĝ1
, PS[n]|G∗), the Hellinger divergence between densities PS[n]|Ĝ1

and PS[n]|G∗

(cf. Lemma 5.1). Therefore Eq. (5.19) implies that, when G∗ ∈ G1, the detection

error exponent for the proposed surrogate Hausdorff test is asymptotically on the

order of the squared Hellinger divergence h2(PS[n]|Ĝ1
, PS[n]|G∗) or, equivalently, the

Kullback-Leibler divergence K(PS[n]|Ĝ1
, PS[n]|G∗).

3. When the true polytope G∗ = G0, i.e., under the null hypothesis of the HT-q

problem, Eq. (5.19) ensures the convergence of Ĝ1 with respect to G0. Moreover,

it provides guidance for choosing the decision threshold in the surrogate Hausdorff

test (Eq. (5.14)) and an upper bound on the false alarm rate (Type-I error) for

the HT-q problem.

4. Under the alternative hypothesis of the HT-q problem, i.e., when G∗ ∈ Gq\G1,

using our surrogate test, the ML polytope Ĝ1 ∈ G1 will not converge to the true

model G∗. Therefore Eq. (5.19) does not generally apply due to the model mis-

specification. However, under a slightly more restrictive, but still realistic, setting,

the results of Theorem 5.2 apply to both the null and alternative hypotheses, as

shown below.

Performance guarantees for HT-1. We revisit the HT-1 problem (5.10), in which

the LDA models under the alternative hypothesis are assumed to have exactly (K+1)

topics (i.e., the alternative topic polytope has (K + 1) extreme points). In this

scenario, we have the following theorem.

Theorem 5.3. Assume Assumptions (A0 - A4) hold and the true topic polytope

G∗ ∈ G1. Let Ĝ1 be the surrogate ML polytope estimated from samples S [m]
[n] . As
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m → ∞ and n → ∞ such that log n = o(m), for some sufficiently large constants

C and C ′ independent of m and n, some universal constants c and c′, and for all

δ ≥ δm,n, where δm,n is a vanishing sequence defined in Eq. (5.18), we have the

following relations:

Pm
S[n]|G0

(
dH(Ĝ1, G0) > Cδ

)
≤ c exp

(
−mδ2/c2

)
(5.20)

sup
G′∈G1

Pm
S[n]|G′

(
dH(Ĝ1, G

′) < C ′δ
1
K

)
≤ c′ exp

(
−mδ2/c′

)
. (5.21)

Furthermore, there exists some constant ρ > 0, such that the following guarantees

hold for the Hausdorff test φ := I{dH(Ĝ1, G0) > ρ}:

Pm
S[n]|G0

[φ] ≤ c exp
(
−mδ2/c2

)
, (5.22)

sup
G′∈G1

Pm
S[n]|G′ [1− φ] ≤ c′ exp

(
−mδ2/c′

)
, (5.23)

where Pm
S[n]|G [φ] denotes the expectation of test φ under distribution Pm

S[n]|G.

Theorem 5.3 sharpens the consistency results in Theorem 5.1 by providing expo-

nential bounds for both the Type-I and Type-II errors of the HT-1 problem. These

results suggest that, if the emerging event(s) can be well captured by a single topic,

which might be reasonable in practice, our theory provides strong guarantees for the

proposed surrogate Hausdorff test.

5.6 Proofs of main theorems

In this section, we provide proofs of the main theorems. First we introduce the

following lemma, which is derived from some results established in Nguyen (2014).

This key lemma links the Hellinger divergence h between LDA densities and the

Hausdorff distance dH between the corresponding topic polytopes. For completeness,

its proof is given in Section 5.9.
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Lemma 5.1. Let G,G′ be polytopes in G1. Assume that dH(G,G
′) > c

√
log n/n for

some sufficiently large constant c, then there is a constant C1 > 0 independent of

G,G′ such that

h(pG, pG′) ≥ C1dH(G,G
′)γ , (5.24)

where the exponent γ = 1 when G = G0, G
′ ∈ G1\{G0}, and γ = K = |extr G0| when

G,G′ ∈ G1\{G0}.

Next we prove Theorem 5.2, which serves as a key component for the derivations

of the other main theorems.

5.6.1 Proof of Theorem 5.2 (convergence of surrogate ML

polytope)

Our proof leverages a result in van de Geer (2000) on the convergence rate of the

ML estimator (in terms of Hellinger metric) for a general class of densities using the

concentration behavior of empirical processes. We specialize this general result to the

proposed hypothesis testing problem and derive a convergence rate of the ML topic

polytope, using the relation in Lemma 5.1.

Notation. We first introduce some necessary definitions and notation. The LDA

densities under consideration are indexed by topic polytopes in G1. Let pG be a

shorthand notation for the density of PS[n]|G for some topic polytope G. Denote

the “average density”2 between a topic polytope G and the null polytope G0 as

pG := (pG + pG0)/2. Define

P1/2
(δ) =

{
p
1/2
G : h(p̄G, pG0) ≤ δ

}
(5.25)

2The use of the averaged densities ensures the log-likelihood log pG/pG0 is bounded from below,
which allows for the convenience of using Hellinger metric (van de Geer, 2000).
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as the local Hellinger ball around pG0 intersected with the space of square-root av-

eraged densities P1/2
:=
{
p
1/2
G , ∀G

}
. It will be shown that the convergence rate

of the maximum likelihood LDA density depends crucially on the richness of this

set, measured by its entropy with bracketing. We briefly introduce this entropy no-

tion, more detailed can be found in van der Vaart & Wellner (1996); van de Geer

(2000). For any u > 0 and a function class F , let NB(u,F) be the smallest value of

N for which there exist pairs of functions (called brackets) {[fL
j , f

U
j ]}Nj=1 such that

∥fU
j − fL

j ∥ ≤ u, and for each f ∈ F there exists a j such that fL
j ≤ f ≤ fU

j . Then

HB(u,F) = logNB(u,F) is defined as the entropy with bracketing of F (with respect

to a certain metric).

For small δ, HB(u,P
1/2

(δ)) denotes the entropy with bracketing of the defined set

P1/2
(δ). Define an entropy integral as

JB(δ,P
1/2

(δ)) =

∫ δ

δ2/c′
H

1/2
B (u,P1/2

(δ))du ∨ δ, (5.26)

where c′ is an absolute constant (e.g., 213 is used in van de Geer (2000)). Define

Ψ(δ) ≥ JB(δ,P
1/2

(δ)) as any function such that Ψ(δ)/δ2 is non-increasing in δ.

Proof of Theorem 5.2. Let G∗ be the true topic polytope and its associated distri-

bution which generates the data samples be PG∗ . Recall the surrogate ML polytope

estimate Ĝ1 and its associated density PĜ1
. The following proposition, which is a

version of Theorem 7.4 in (van de Geer, 2000), provides a convergence rate of pĜ1

with respect to pG∗ in terms of Hellinger divergence (note that we slightly abuse the

notation δm,n which is different to that defined before).

Proposition 5.1. Assume the following holds for a vanishing sequence δm,n (as a
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function of m and n) and a universal constant c:

√
mδ2m,n ≥ cΨ(δm,n). (5.27)

Then we have for all δ ≥ δm,n,

PS[n]|G∗
(
h(pĜ1

, pG∗) > δ
)
≤ c exp

(
−mδ2/c2

)
. (5.28)

Under the null hypothesis, the convergence limit of Ĝ1, denoted as G∗
0, is the null

polytope G0 (see Figure 5.2). Proposition 5.1 implies that the Hellinger divergence

between the density parameterized by the surrogate ML polytope and the true density

converges to zero at the rate of OP (δm,n). Due to Lemma 5.1 (for G = G0), the

Hausdorff distance between the ML and the true polytopes converges to zero at the

same rate as the Hellinger divergence, also OP (δm,n). Therefore it remains to find

a sequence δm,n that satisfies the entropy integral condition (5.27) to complete the

proof of Theorem 5.2.

Define Φ(δ) as the δ-parallel of G0 (which is a d-dimensional body in ∆d), i.e.,

Φ(δ) =
{
ϕ ∈ ∆d\G0 | dist(ϕ,G0) ≤ δ

}
. (5.29)

By definition, the set Φ(δ) includes all (K + 1)th topic vectors of polytopes in G1

which are at most δ away from G0 in terms of the Hausdorff distance. The following

lemma establishes an upper bound of the entropy number with bracketing of the set

P1/2
(δ) (defined in Eq. (5.25)) in terms of the (standard) entropy of the set Φ(δ) with

the Euclidean metric. The proof of Lemma 5.2 is given in Section 5.10.

Lemma 5.2. For small δ, ϵ > 0, we have the following relation between the entropy
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with bracketing of P1/2
(δ) and the entropy of Φ(δ) (with Euclidean metric).

HB

(√
nαK+1ϵ

2c0
,P1/2

(δ)

)
≤ H (ϵ,Φ(δ)) = O

(
d

K
log

(
δ

ϵ

))
, (5.30)

where αK+1 := αK+1/
∑K+1

j=1 αj is a scaled Dirichlet concentration parameter for the

topic proportions, and c0 > 0 is a constant.

With this result, we could further upper bound the entropy integral defined

in (5.26) as follows:

JB(δ,P
1/2

(δ)) ≤
∫ δ

δ2/c′
H1/2

(
2c0α

−1
K+1n

−1u2,Φ(δ)
)
du ∨ δ

≲
(∫ δ

δ2/c′

√
log (δnu−2)du

)
∨ δ

≤
(∫ δ

δ2/c′

√
log (δn(δ2/c′)−2)du

)
∨ δ

≲ (δ − δ2/c′)
√

log (δ−3n) ∨ δ

≲ δ
√
log (δ−3n) := Ψ(δ),

where we have defined a proper Ψ(δ) (up to a constant). One can easily verify

that Eq. (5.27) is satisfied if δ is bounded below by a sufficiently large multiple

of
[
(log n/m)1/2 + (logm/m)1/2

]
. Therefore the conditions in Proposition 5.1 hold.

Combining this result with the condition in Lemma 5.1 yields the choice of δm,n

(Eq. (5.18)). Theorem 5.2 follows immediately from Proposition 5.1 and Lemma 5.1

(for G = G0).

5.6.2 Proof of Theorem 5.1

We show that, under our specified asymptotic setting, a proper decision threshold ρ

exists which correctly distinguishes the null and alternative hypotheses. The two key

components of our proof are: (1) Under the null hypothesis, the Hausdorff distance
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Figure 5.2: Illustration of the convergence of surrogate ML polytope estimate.

between the limiting surrogate ML polytope (denoted as G∗
0) and the null polytope

G0 converges to zero; (2) Under the alternative hypothesis, the Hausdorff distance

between the limiting surrogate ML polytope (denoted as G∗
1) and the null polytope G0

is bounded from zero. Then a threshold ρ can be chosen to ensure the consistency of

the surrogate Hausdorff test. The convergence behavior of the surrogate ML estimate

is illustrated in Figure 5.2.

Proof of Theorem 5.1. In Theorem 5.2, we have shown that under the null hypothesis,

the surrogate ML estimate converges to G0 at a rate described in Eq. (5.18)

dH(Ĝ
1, G0) = dH(Ĝ

1, G∗) = OP (δm,n)→ 0, as m,n→∞. (5.31)

Therefore there exists some constant C1 > 0, such that for all threshold ρ > C1δm,n,

we have

Pm
S[n]|G0

(
dH(Ĝ

1, G0) > ρ
)
→ 0, as m,n→∞, (5.32)

which guarantees the convergence of false alarm rate with respect to zero under the

null hypothesis. It only remains to prove that this chosen threshold ρ also leads to
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the convergence of false negative rate under the alternative hypothesis.

Let the true polytope under the alternative hypothesis be G∗
q. Generally, G∗

q

has more than (K + 1) extreme points, i.e., G∗
q ∈ G

q\G1. Therefore, the surrogate

ML polytope Ĝ1 and its limit G∗
1 will not converge to G∗

q. This results in a model

misspecification in the proposed surrogate estimation procedure (see Figure 5.2). It

is well known that, maximum likelihood estimator under model misspecification (also

known as the quasi-maximum likelihood estimator, or QMLE) converges to a well-

defined limit in the misspecified space under mild conditions (see, for example, White

(1982)). However, our specific asymptotic setting, in particular both m and n are

allowed to increase to infinity, requires an extension of the standard theory.

Under the alternative hypothesis, the true generating LDA density is pS[n]|G∗
q
, i.e.,

S i
[n] ∼ PS[n]|G∗

q
, i = 1, . . . ,m, and the quasi-likelihood for the surrogate estimation

is the LDA density pS[n]|G′ , G′ ∈ G1. The proposed surrogate ML estimate Ĝ1 is

equivalent to the following QMLE:

Ĝ1 = argmax
G′∈G1

Lm(S [m]
[n] ;G

′), (5.33)

where the quasi-likelihood is defined as

Lm(S [m]
[n] ;G

′) =
1

n
logPm

S[n]|G′(S [m]
[n] ) =

m∑
i=1

1

n
logPS[n]|G′(S i

[n]). (5.34)

Note that the factor 1/n properly scales the log-likelihood of each document.

We make the following identifiability assumption on the surrogate ML polytope

under the alternative hypothesis:

Assumption (A5) Under the alternative hypothesis, as m → ∞, n → ∞ such

that log(n) = o(m), the surrogate ML polytope Ĝ1 converges to a (K + 1)-polytope

G∗
1 ∈ G

1
almost surely. In addition, the Hausdorff distance between G∗

1 and G0 is

138



bounded away from zero, i.e., dH(G
∗
1, G0) > 0 almost surely.

Under Assumption (A5), the surrogate ML polytope G∗
1 is bounded away from

the null polytope G0 in Hausdorff distance as m,n→∞ under our specified setting.

This implies that by choosing the threshold ρ < dH(G
∗
1, G0), the proposed surrogate

Hausdorff test is consistent under the alternative hypothesis, i.e.,

Pm
S[n]|G∗

q
(dH(G

∗
1, G0) < ρ)→ 0, as m,n→∞. (5.35)

Due to the vanishing behavior of the sequence δm,n, for some sufficiently large m

and n we have C1δm,n < dH(G
∗
1, G0). Therefore there exists some decision thresh-

old ρ that satisfies C1δm,n < ρ < dH(G
∗
1, G0). Such threshold leads to the correct

convergences of the detection errors under both the null and alternative hypotheses.

Therefore the consistency of the hypothesis testing problem HT-q is proven.

Remarks on Assumption (A5): The first part of Assumption (A5) specifies the

convergence of the surrogate ML polytope, which is an extension of the results es-

tablished in White (1982). Specifically, Assumption (A5) assumes the convergence

of a specifically structured quasi-maximum likelihood polytope estimator, under an

asymptotic setting where bothm and n are allowed to increase to infinity. The second

part of Assumption (A5) further characterizes the limiting polytope G∗
1 and assumes

its distinguishability from the null polytope G0. Here we provide some intuitions for

these assumptions.

For any fixed n, using similar arguments as in White (1982), the empirical quasi-

likelihood (5.34) can be shown to converge to its expectation, which is a well-defined

function of G′ (dependent on n). Then the quasi-maximum likelihood polytope con-

verges to the (unique) optimum of the expectation function by the continuous map-
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ping theorem for M-estimation (van der Vaart & Wellner, 1996). As n→∞, we have

increasingly sufficient observations for each document, the empirical word frequency

vector of each document converges to its population mean, which lies in the true

topic polytope G∗
q under the alternative hypothesis. Correspondingly, the (K + 1)th

extreme point of the quasi-maximum likelihood polytope is expected to converge to

some (relative) interior point of G∗
q, which is bounded away from G0 (a boundary

facet of G∗
q) almost surely. See Section 5.11 for a more elaborated presentation of

these arguments.

We conjecture that the statement of Assumption (A5) can be shown to be true

using a rigorous proof (and possibly along the line of arguments as described above).

However, due to technical reason, we present it as an assumption in the current paper,

and leave its rigorous proof for future work (Meng et al., 2014b).

5.6.3 Proof of Theorem 5.3

Proof. The first set of inequalities (Eq. (5.20) and (5.21)) are direct implications

of Theorem 5.2. The second set of relations (Eq. (5.22) and (5.23)) can be proven

similarly as Theorem 5.1, by noting that Theorem 5.2 now provides convergence

rates (Eq. (5.19)) of the ML polytope Ĝ1 with respect to G0 (and G∗
1) under the

null hypothesis (alternative hypothesis, respectively). Therefore, there exists some

decision threshold ρ such that

C1δm,n < ρ < dH(G
∗
1, G0)− C ′

1δ
1
K
m,n, (5.36)

where G∗
1 is the true polytope under the alternative hypothesis, C1 and C ′

1 are con-

stants. Therefore correct convergences of the detection errors under both hypotheses

are guaranteed, along with the exponential upper bounds (Eq. (5.19)).
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5.7 Algorithmic implementation and experiments

In this section, we first describe the algorithmic implementation of the proposed test,

and then present results of simulations on synthetic data sets. These experimental

results validate our theoretical development.

5.7.1 Algorithms for the surrogate Hausdorff test

The main computation of the proposed surrogate Hausdorff test is the ML estima-

tion of the (K + 1)th topic vector ϕ̂K+1 (Eq. (5.13)). This problem can be solved

using variants of standard LDA learning algorithms, including the sampling-based

techniques (e.g., the collapsed Gibbs sampling (Griffiths & Steyvers, 2004; Porteous

et al., 2008)) or variational inference (Blei et al., 2003; Foulds et al., 2013). Under

the setting of HT-1, the collection of LDA topics under the alternative hypothesis is

assumed to include all the (known) topics under the null hypothesis. Therefore an in-

cremental version of the original LDA estimation algorithms is needed. Specifically,

at the end of each iteration of the estimation algorithm (either sampling-based or

variational inference), only the parameters of the (K + 1)th topic are updated, while

the remaining K topic vectors are kept fixed throughout the estimation process.

In our numerical experiments, we implement an incremental version of the varia-

tional inference algorithm (Blei et al., 2003), which is proven to be sufficiently accurate

and efficient for our purpose.

5.7.2 Simulations on synthetic data sets

We demonstrate the detection performance of the proposed surrogate Hausdorff test

through numerical simulations on synthetic data generated from LDA models.

The LDA models are parameterized as follows. The vocabulary size d = 100,

the number of topics under the null hypothesis K = 10, the true topic vectors are
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randomly sampled from a d-dimensional Dirichlet distribution with symmetric con-

centration parameter β = 0.2. The Dirichlet concentration parameter vector for the

mixing proportions of the null topics is set to be symmetric and each component

equals α0, i.e., αj = α0, for all j = 1, . . . , K. The value of α is selected from one of

the following three values {0.2, 0.5, 0.8}. The concentration parameter for the emerg-

ing topic(s) is set to be αj = 0.15, j = K +1, . . . , K + q. We vary the value of m, the

number of documents, and n, the number of words per documents. For each setting

of (m,n), 80 pairs of document corpuses, one under the null hypothesis and the other

under the alternative hypothesis, are generated according to the LDA model. Using

these sampled document corpus, the proposed surrogate Hausdorff test statistics are

calculated.

In Figure 5.3(a) - 5.3(c), we consider the HT-1 problem (Eq. (5.10)), in which

the true LDA model under the alternative hypothesis contains one new topic. We

plot the receiver operating characteristic (ROC) curves for the three settings α0 =

{0.2, 0.5, 0.8}, as described above. In Figure 5.3(d), we plot the ROC curves for a

HT-q problem (q = 2), i.e., the true LDA model contains K + 2 = 12 topics under

the alternative hypothesis. All the reported curves are averaged over 10 Monte Carlo

simulations.

From these simulation results, several observations can be made.

When m and n both increase, the detection performance of the proposed test

improves consistently under all settings. In particular, both the false positive and

false negative errors decrease and approach zero, as predicted by Theorem 5.3. Note

that increasing either m or n while the other quantity kept fixed does not guarantee

the improved performance. This observation agrees with the derived convergence rate

of the Hausdorff distance (cf. Eq. (5.18) in Theorem 5.2) in which both m− 1
2 and n− 1

2

appear.

It is interesting to note that the detection performance degrades when α0, the
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(a) ROC curves for HT-1 (α0 = 0.2, αK+1 =
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(d) ROC curves for HT-q (q = 2, α0 = 0.5,
αK+1 = αK+2 = 0.15).

Figure 5.3: ROC curves for the HT-1 and HT-q problems using the proposed surrogate
Hausdorff test. When m and n both increase, the detection performance of the
proposed test improves consistently under various LDA settings (i.e., both the false
positive and false negative errors decrease). The detection is more challenging when
α0, the Dirichlet concentration parameters for the null topics, is larger.
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Dirichlet concentration parameters for the null topics, increases. For example, when

α0 = 0.2 (Figure 5.3(a)), the detection performance of the proposed test using only

m = 40 documents with length n = 40, almost matches that under α0 = 0.8 (Fig-

ure 5.3(c)) using m = 240 documents with length n = 160. Intuitively, large α0

implies strong mixing of the topics among the documents under the null hypothe-

sis (i.e., documents are “topic dense”), which, not surprisingly, leads to difficulty in

detecting emerging topics which has weakly mixing (i.e., relatively small αK+1). In

practice, this suggests that topic detection is easier in thematically simple text corpus

(such as news article), and vice versa.

While our asymptotic theory does not provide a direct explanation for such non-

asymptotic phenomenon, some insights can be drawn from our derivation. In par-

ticular, the existence of a proper decision threshold that guarantees consistency

relies on relation (5.36), which hold for sufficiently large m and n. Therefore a

larger dH(G
∗
1, G0) results in lower sample complexity. In Section 5.11, we show

that dH(G
∗
1, G0) depends on the magnitude of the (K + 1)th mixing proportion θK+1

(cf. (5.56)), which, in turn, depends on the relative weight of the Dirichlet param-

eter αK+1∑K+1
j=1 αj

= αK+1

Kα0+αK+1
(due to the property of Dirichlet distribution). Therefore

increasing α0 and/or decreasing αK+1 results in a large dH(G
∗
1, G0), which leads to

better non-asymptotic detection performance.

Finally, for the HT-q problem (q = 2), the detection performance is improved over

the similarly parameterized HT-1 problem (α0 = 0.5 for Fig. 5.3(b) and Fig. 5.3(d)).

This could possibly be explained by the fact that the increase in the number of new

topics leads to an increase in the relative magnitudes of the mixing proportion for the

new topics (see discussion above), thereby resulting in larger dH(G
∗
1, G0) and better

performance. In practice, this result implies that multiple emerging topics are easier

to identify (although not necessarily easier to estimate) than a single emerging topic.
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Figure 5.4: Set-up of the sequential emerging topic detection in the NIPS corpus.

5.7.3 Experiments on the NIPS corpus

We consider the problem of detecting emerging topics in a real-world document cor-

pus, the NIPS corpus, which consists of the published papers on Neural Information

Processing Systems (NIPS) conferences from 1987 to 1999 3. This corpus contains

2,484 documents, each of which is represented as a word count vector over a vocab-

ulary of 14,036 words. We model the corpus using the LDA model, and apply the

proposed emerging topic detection algorithm in a sequential manner.

The set-up of the sequential detection is as follows (also see Figure 5.4 for an

illustration). We train an initial LDA model using the collection of the first five

years’ NIPS papers from 1987 to 1991. The topic polytope associated with this

initial model is used as the null polytope for the first detection. For each year from

1992 to 1999, we perform the proposed surrogate Hausdorff test to discover new topics

and update the current topic model incrementally. Specifically, the test is performed

multiple times until either the null hypothesis is accepted or the maximum number

of new topics per year (set as three) is achieved. In our experiments, we choose

the decision threshold of the proposed test as half of the Hausdorff distance between

the first detected new topic in that year and the previous topic polytope. After the

detection terminates, we perform a re-estimation of the new topics while holding the

null topics fixed. This re-estimation step is important to extract the “clean” new

3The data set was processed by Sam Roweis and Gal Chechik. It can be retrieved at http:

//ai.stanford.edu/~gal/data.html.
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topics, since our proposed surrogate estimation, which only adds one topic at a time,

is not guaranteed to be consistent (in terms of estimation) when there exist more than

emerging topics (e.g., the surrogate ML topic estimate could be a convex combination

of the new emerging topics, see Figure 5.5 for an example). The re-estimation of the

new topics will refine the previous estimation and alleviate the model misspecification

effect. After the re-estimation, we re-train and update the entire topic model using

the most recent three years’ corpus. The re-trained model then is used as the null

model for the subsequent year. This post-detection re-training captures the changes,

or even disappearance, of the pre-existing topics in the more recent corpus, which is

important for an accurate detection in a time-varying setting. For all the (re-)training

of null models, we discard the redundant and junk topics, which are identified by near-

zero Hausdorff distance with respect to the topic polytope of the other topics, and

negligible Dirichlet concentration parameter estimate (estimated from the data as

described in Blei et al. (2003)), respectively. In practice, we find these two criteria

yield plausible results.

The discovered new topics (after the re-estimation) for each year are listed in Sec-

tion 5.13, and the pre- and post-detection topics are included in Section 5.14. For

each topic, we show the top 30 words that have the largest probabilities. It can

be observed that the detected topics clearly demonstrate certain evolving trends in

the NIPS papers over the considered decade. In particular, many earlier discovered

topics emphasize on neural-related subjects (such as rat, hippocampal, and visual),

while some of the more recent topics present word combinations about emerging ma-

chine learning techniques (such as kernel, support, vector, machines and independent,

component, analysis).

Due to the absence of ground truth, the quality of topic modeling on real-world cor-

pora is often more difficult to evaluate quantitatively than those on the synthetic data.

Some empirical measures, such as the pointwise mutual information (PMI) (Newman
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et al., 2010), often utilize external information. For our NIPS corpus, we consider

to investigate the coherence between the detected topics and the key words in the

annual Call For Papers (CFP) of the NIPS conferences, which reflect the emerging

trends and subjects specified by the organizers. Using this evidence, many interesting

results can be found. For example, our proposed method identifies the emergence of

the support vector machines (SVM) on the year of 1998. This is coherent to the CFP

of 1998, where the key words of SVM first appeared in the CFP of NIPS. Another

SVM-related topic is again detected in the year of 1999 by our algorithm, where

svm co-occurs with theorem, proof, conditions, bound, etc., indicating that it is more

focused on the theory of SVM. Another notable finding is the topics related to inde-

pendent component analysis (ICA), which are discovered on the year of 1996 and 1997,

respectively. This detection is interestingly ahead of the first appearance of ICA in

the CFP of NIPS on the year of 2000. Also note that from 1996 to 1999, ICA-related

topics evolve from emerging topics to a persistent component of the post-detection

topic collections (i.e., Topic 5 in the post-detection model).

Another interesting phenomenon is the effect of model misspecification under

our surrogate detection procedure, and its correction using the re-estimation. For

instance, the first detected topic in the year of 1994 before the re-estimation is the

follows:

Detected Topic 1 in 1994: field em tasks teacher map mlp skills user saliency

variance memory student mixtures noise subjects recall active context pyramid hme

mixture wta jordan item michael experts chess eq long loss...

The co-occurrence of michael jordan may not be surprising considering the fact

that Dr. Michael I. Jordan co-authored seven papers in that year of NIPS. However,

after the re-estimation of the new topics, this co-occurrence becomes less notable
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(disappeared from the top 30 words). One possible explanation is that, since our pro-

posed estimation only uses one topic as a surrogate for multiple emerging topics, the

“Michael Jordan” topic is identified as the first surrogate topic due to its high volume

of of occurrences. However, it might be the case that this “Michael Jordan” topic lies

in the convex hull of some other emerging topics, and hence it is replaced by the “ver-

tex topics” during the re-estimation (again, see Figure 5.5 for an illustration). This

observation shows consistency to our geometric intuitions for the proposed detection

procedure under model misspecification.

5.8 Summary of Chapter 5

We propose the surrogate Hausdorff test for topic detection in the latent Dirichlet

allocation model. Our theory shows that this computationally efficient test proce-

dure has strong performance guarantees for detecting emerging topics. The theory

is supported by numerical simulation on synthetic data sets and experiments on a

real-world corpus.

5.9 Proof of Lemma 5.1

Proof. The proof of Lemma 5.1 follows similar steps of Theorem 5 and Lemma 2

in Nguyen (2014). The main difference is that when G = G0, a new geometric lemma

is needed to characterize the volume of G′\G0 in terms of the Hausdorff distance

dH(G
′, G0), where G

′ ∈ G1. The proof of Lemma 5.3 is included in Section 5.12.

Lemma 5.3. Under Assumption (A0), for all G′ ∈ G1, there exists a positive constant

C2 = C2(G0) such that the following holds

volK(G
′\G0) ≥ C2dH(G0, G

′). (5.37)
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When G,G′ ∈ G1\{G0}, a similar relation with exponent equals toK can be shown

to hold following similar arguments to Lemma 2 in Nguyen (2014). Note that the

thick body assumption required for this lemma is trivially satisfied, since we have

assumed the null polytope is not degenerate and fixed.

For arbitrary polytopes G = G0 or G ∈ G1 and G′ ∈ G1, we lower bound the

Hellinger divergence between the LDA densities pS[n]|G and pS[n]|G′ by their total vari-

ation distance:

h(pS[n]|G, pS[n]|G′) ≥ V (pS[n]|G, pS[n]|G′) = sup
A

∣∣∣PS[n]|G(η̂ ∈ A)− PS[n]|G′(η̂ ∈ A)
∣∣∣ ,

where η̂ is the empirical word frequency vector corresponding to document S i
[n], η̂l :=

1
n

∑n
t=1 I(Xt = l) for l = 0, . . . , d, and the supremum is taken over all measurable

subsets of ∆d. In the proof of Theorem 5 in Nguyen (2014), a suitable test set is

constructed to further lower bound the above variational distance in terms of the

Hausdorff distance dH(G,G
′). Let ϵ be some constant such that 0 < ϵ ≤ dH(G,G

′)/4,

it can be shown that

∣∣∣PS[n]|G(η̂ ∈ A
∗)− PS[n]|G′(η̂ ∈ A∗)

∣∣∣ ≥ C4ϵ− 2(d+ 1) exp(−2nϵ2/(d+ 1)), (5.38)

where we have used the 0-regularity of the Dirichlet-induced density Pη|G′ (or Pη|G)

proven in Lemma 4 of Nguyen (2014), and C4 = C4(α,K, d) is a constant (independent

of m and n) defined therein.

When ϵ = O(log n/n) as assumed in Lemma 5.1, the second term in (5.38) is

dominated by the first term, which concludes the proof.
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5.10 Proof of Lemma 5.2

Proof. We first state the following lemma which provides an upper bound on the

Kullback-Leibler divergence of two alternative LDA densities in terms of the Euclidean

distance between their (K + 1)th topic vectors. The proof of Lemma 5.4 is included

in Section 5.12.

Lemma 5.4. Let G,G′ ∈ G1 be two polytopes with (K + 1) extreme points such that

any point η ∈ G ∪ G′ satisfies minl=0,...,d ηl > c0 for some constant c0 > 0. Then the

Kullback-Leibler divergence between their associated densities satisfy

K(pG, pG′) ≤ nαK+1

c0
∥ϕK+1 − ϕ′

K+1∥, (5.39)

where αK+1 := αK+1/
∑K+1

j=1 αj is a scaled Dirichlet concentration parameter for the

mixing proportions, ϕK+1 and ϕ′
K+1 are the corresponding (K + 1)th extreme points

of G and G′, respectively.

For any averaged LDA density pG ∈ P(δ), by definition we have h(p̄G, pG0) ≤ δ. By

Lemma 4.2 in van de Geer (2000), it can be shown that h(pG, pG0) ≤ 4h(p̄G, pG0) ≤ 4δ.

Then using Lemma 5.1 (for G ∈ G1\{G0}), dH(G,G0) ≤ (4δ/C1)
1/K = O(δ1/K),

which implies that the volume of Φ(δ) (defined in Eq. (5.29)) is O(δd/K), i.e.,

vold Φ(δ) = O(δd/K).

Let {ϕt1 , ϕt2 , . . . , ϕtN} denote an ϵ-net of Φ(δ), i.e. ϵ ≤ ∥ϕti − ϕtj∥ ≤ 2ϵ, ∀i, j =

1, . . . , N . For each ϕti , an associated polytopes Gti = conv(Φ, ϕti) can be defined.

Accordingly, we obtain a set of alternative models associated with the N points,
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{Gt1 , . . . , GtN}. For any i, j = 1 . . . , N , we have

h2(p̄Gi
, p̄Gj

)
(i)

≤ 1

2
K(p̄Gi

, p̄Gj
)

≤ 1

2

∫
log

1
2
pGi

+ 1
2
pG0

1
2
pGj

+ 1
2
pG0

(
1

2
pGi

+
1

2
pG0)dµ

(ii)

≤ 1

2

(
1

2
K(pGi

, pGj
) +

1

2
K(pG0 , pG0)

)
=

1

4
K(pGi

, pGj
)

(Lem. 5.4)

≤ nαK+1

4c0
∥ϕti − ϕtj∥

≤ nαK+1ϵ

2c0
,

where (i) is a basic inequality, (ii) is due to the convexity of KL divergence.

Then the following brackets cover the set P1/2
(δ):

[√
p̄
Li ,
√
p̄
Ui

]
:=

[
p̄
1/2
Gti
− (

nαK+1ϵ

2c0
)1/2, p̄

1/2
Gti

+ (
nαK+1ϵ

2c0
)1/2
]
, i = 1, 2, . . . , N.

To see this, note that for any point ϕ̃ ∈ Φ(δ), there exists some j such that ∥ϕtj−ϕ̃∥ ≤

2ϵ. By similar arguments as above, we have h2(p̄G̃, p̄Gj
) ≤ nαK+1ϵ

2c0
, which implies that

√
p̄G̃ lies in the jth bracket.

Therefore, the entropy with bracketing of P(δ) endowed with Hellinger metric,

i.e. HB

(√
nαK+1ϵ

2c0
,P1/2

(δ)
)
, is upper bounded by the entropy number of Φ(δ),

H (ϵ,Φ(δ)) = logN , which is O
(

d
K
log
(
δ
ϵ

))
since vold Φ(δ) = O(δd/K).

5.11 Intuitions for Assumption (A5) and some re-

sults

In this section, we provide some intuitions for Assumption (A5) and present some

relevant results.
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Step 1. For any n > 0, we first establish the convergence behavior of the empirical

quasi-likelihood. Let the true generating density be pS[n]|G∗
q
. The quasi-likelihood for

the surrogate estimation under the alternative hypothesis is the LDA density with

respect to pS[n]|G′ for G′ ∈ G1. Due to the unique mapping between the (K + 1)-

polytope in G1 and its (K +1)th extreme point, the LDA density can be equivalently

parameterized by ϕK+1:

pS[n]
(S i

[n];ϕK+1) =

∫
∆K

exp

{
n

d∑
l=0

η̂i,l log

(
K∑
j=1

ϕjlθj + ϕK+1,lθK+1

)}
dPθ;α.

The quasi-log-likelihood is (also parameterized by ϕK+1):

Lm(S [m]
[n] ;ϕK+1) =

m∑
i=1

n−1 logPS[n]
(S i

[n];ϕK+1). (5.40)

First we note that, for any fixed n > 0,
∣∣∣n−1 log pS[n](Si

[n]
)

∣∣∣ is bounded. To see this,

apply the mean value theorem (Olmsted, 1961) to the integration with respect to θ,

we have

∣∣∣n−1 log pS[n]
(S i

[n])
∣∣∣ = ∣∣∣∣∣n−1 log exp

{
n

d∑
l=0

η̂i,l log

(
K∑
j=1

ϕjlθj + ϕK+1,lθK+1

)}∣∣∣∣∣
=

∣∣∣∣∣
d∑

l=0

η̂i,l log

(
K∑
j=1

ϕjlθj + ϕK+1,lθK+1

)∣∣∣∣∣ ,
for some θ ∈ ∆K (note that θ is dependent on n). Due to Assumption (A4) that the

components of topic vectors ϕjl are bounded away from zero, and the constraint that∑K+1
j=1 θj = 1, the right-hand side of the last display is bounded.

Given the boundedness and continuity of the quasi-log-likelihood, and that the

parameter ϕK+1 lies in a compact subset of a Euclidean space (i.e., ∆d), Mickey’s
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Theorem (given as Theorem 2 in Jennrich (1969)) states that

m−1

m∑
i=1

n−1 logPS[n]
(S i

[n];ϕK+1)
m→∞−−−→ E

[
n−1 logPS[n]

(S i
[n];ϕK+1)

]
(5.41)

uniformly for all ϕK+1 ∈ ∆d and almost every sequence (S i
[n])

m
i=1. Note that the

expectation is taken with respect to the true generating distribution PS[n]|G∗
q
.

Step 2. Next, we consider the limit of the expected quasi-log-likelihood (i.e., the

right-hand side quantity in (5.41)) as n→∞.

Note that the expected quasi-log-likelihood can be expressed as follows

E
[
n−1 logPS[n]|G′(S i

[n])
]
= n−1

∫
∆d

logPS[n]|G′(S i
[n])dPS[n]|G∗

q
. (5.42)

Recall the generative process of LDA model, the marginal density can be expressed

as an integration over the random vector η in the topic polytope G. Therefore, we

have PS[n]|G′ =
∫
G′ PS[n]|η′dPη′|G′ and PS[n]|G∗

q
=
∫
G∗

q
PS[n]|ηdPη|G∗

q
for the quasi- and true

likelihoods, respectively. These relations lead to

E
[
n−1 logPS[n]|G′(S i

[n])
]

= n−1

∫
∆d

log

∫
G′
exp

[
n

d∑
l=0

η̂il log η
′
il

]
dPη′|G′(η′i)dPS[n]|G∗

q
(S i

[n]) (5.43)

= n−1

∫
G∗

q

∫
∆d

log

{∫
G′
exp

[
n

d∑
l=0

η̂il log η
′
il

]
dPη′|G′(η′i)

}
dPS[n]|ηidPη|G∗

q
(ηi), (5.44)

where η̂i (the empirical word frequency vector) lies in ∆d, ηi (the population word

frequency vector) lies in the true generating polytope G∗
q, and η

′
i (the surrogate pop-

ulation word frequency vector) lies in the surrogate polytope G′.

Conditioning on ηi (the population word frequency vector in G∗
q), as n→∞, the

empirical word frequency vector η̂i of the words (Xij)
n
j=1, which are i.i.d. draws from
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the multinomial distribution Multi(ηi), converges to the population word frequency

vector ηi almost surely. Therefore, loosely speaking, PS[n]|ηi → I(η̂i = ηi), which leads

to the following conjectured relation:

E
[
n−1 logPS[n]|G′(S i

[n])
]

n→∞−−−→
∫
G∗

q

n−1 log

∫
G′
exp

[
n

d∑
l=0

ηil log η
′
il

]
dPη′|G′(η′i)dPη|G∗

q
(ηi). (5.45)

Note that the right-hand side quantity in (5.45) is still dependent on n. Therefore

Eq. (5.45) is not a well-defined convergence argument.

Although the convergence with respect to the right-hand side quantity in (5.45) is

not established, it is interesting to investigate its properties, in particular its concavity

in ϕK+1. Apply the mean value theorem (Olmsted, 1961) to the outer and inner

integrals, respectively, we have

∫
G∗

q

n−1 log

∫
G′
exp

[
n

d∑
l=0

ηil log η
′
il

]
dPη′|G′(η′i)dPη|G∗

q
(ηi)

= n−1 log

∫
G′
exp

[
n

d∑
l=0

ηl log η
′
il

]
dPη′|G′(η′i)

= n−1 log exp

[
n

d∑
l=0

ηl log η
′
l

]

=
d∑

l=0

ηl log η
′
l, (5.46)

for some η ∈ relint G∗
q and η′ ∈ relint G′ (the existence of these two vectors is

guaranteed by the continuity of the integrated function, see, for example, Olmsted

(1961, Page 346)). Note that both η and η′ are potentially dependent on n.

Since η′ can be parameterized by η′ =
∑K+1

j=1 ϕjθj, where θ ∈ relint ∆K is the

corresponding topic proportion vector (again, θ depends on n). Then the quantity
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in (5.46) can be expressed as a function of ϕK+1:

d∑
l=0

ηl log η
′
l =

d∑
l=0

ηl log

(
K∑
j=1

ϕj,lθj + ϕK+1,lθK+1

)
. (5.47)

Combine (5.41), (5.45), (5.46) and (5.47), as m → ∞ and n → ∞, we have the

following conjecture:

m−1

m∑
i=1

n−1 logPS[n]
(S i

[n];ϕK+1)→
d∑

l=0

ηl log

(
K∑
j=1

ϕj,lθj + ϕK+1,lθK+1

)
(5.48)

uniformly in ϕK+1.

Step 3. Assume the convergence argument in (5.48) holds for some limiting function

that takes the following form

L∗(ϕK+1) =
d∑

l=0

ηl log
(
(1− θK+1)al + ϕK+1,lθK+1

)
, (5.49)

where η and θ are independent of n, and the vector a is defined as

a =
1

1− θK+1

K∑
j=1

ϕjlθj. (5.50)

It can be easily verified through the calculation of second-order derivative that

L∗(ϕK+1) is strictly concave. Therefore it has a unique maximum, denoted as ϕ∗
K+1:

ϕ̂∗
K+1 = argmax

ϕK+1∈∆d

d∑
l=0

ηl log
(
(1− θK+1)al + ϕK+1,lθK+1

)
. (5.51)

Recall our surrogate ML estimate of ϕK+1 can be equivalently defined as the fol-
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lowing maximizer of the empirical quasi-likelihood

ϕ̂K+1 ∈ argmax
ϕK+1∈∆d

m−1

m∑
i=1

n−1 logPS[n]
(S i

[n];ϕK+1). (5.52)

Due to the assumed convergence (5.48) and the uniqueness of the optimum of

L∗(ϕK+1), the continuous mapping theorem for the M-estimation (also known as

the Argmax continuous mapping theorem (van der Vaart & Wellner, 1996, Theorem

3.2.2)) implies:

ϕ̂K+1
a.s.−−→ ϕ̂∗

K+1. (5.53)

By the unique mapping between the (K+1)th extreme point and the (K+1)-polytope

in G1, we have

Ĝ1 a.s.−−→ G∗
1, (5.54)

which is the first part of Assumption (A5).

Step 4. Recall θ ∈ relint ∆K , it can be verified that the vector a defined in (5.50)

satisfies a ∈ relint G0, where we recall G0 = conv(ϕ1, . . . , ϕK) (see Figure 5.5).

It can be shown through the Karush-Kuhn-Tucker conditions of the optimization

problem (5.51) that its unique optimum ϕ∗
K+1 satisfies

ϕ∗
K+1,l = 0, or ϕ∗

K+1,l = ληl −
1− θK+1

θK+1

al, l = 0, . . . , d (5.55)

for some constant λ. Due to our assumption that the topic vector components are

bounded away from zero (Assumption (A4)) and the normalization constraint, it can
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Figure 5.5: Illustration of Eq. (5.56). The null topic polytope G0 = conv(ϕ1, ϕ2, ϕ3)
(K = 3). The true topic polytope (under the alternative hypothesis) G∗

q =
conv(ϕ1, ϕ2, ϕ3, ϕ

∗
4, ϕ

∗
5) has five extreme points (q = 2). Vectors a ∈ relint G0 and

η ∈ relint G∗
q. As a result of Eq. (5.56), the limiting surrogate ML estimate of the

extreme point ϕ̂∗
K+1 is bounded away from G0. All points denote vectors in ∆d, the

d-dimensional word probability simplex (not shown).

be verified that λ = 1/θK+1, which leads to the relation

η = θK+1ϕ̂
∗ + (1− θK+1)a. (5.56)

The above display implies that, the vector η lies on the line segment of (a, ϕ̂∗)

(excluding the endpoints since θK+1 > 0). Under Assumption (A0), the null polytope

G0 is a boundary facet of the higher dimensional polytope G∗
q almost surely (for

q ≥ 1 under the alternative hypothesis). This implies vector a, which is a relative

interior point of G0, is also on the boundary of G∗
q. Since vector η is a relative

interior point of G∗
q, (5.56) implies that ϕ̂∗ is bounded away from G0 (see Figure 5.5

for an illustration). Therefore, dH(conv(G0, ϕ̂
∗), G0) > 0, which is the second part of

Assumption (A5).

Remarks: We conjecture that the statements of Assumption (A5) can be shown to
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be true using a rigorous proof (which is possibly similar to the above arguments).

However, the main technical difficulty is to establish a relation that is similar to

(5.48), in which the right-hand side quantity is independent of n. Another possibly

minor technical issue is the equivalence between our desirable asymptotic setting (i.e.,

both m and n increase to infinity simultaneously) and the setting presented in the

above arguments (i.e., for any fixed n, first let m → ∞, then let n → ∞). We

conjecture that the limits under two asymptotic settings are equal for our problem,

which requires certain additional uniform convergence argument. For these reasons,

we introduce Assumption (A5) and leave its rigorous proof for future work.

5.12 Proofs of auxiliary lemmas

Proof of Lemma 5.3. Let ϕ⊥
K+1 be the projection of ϕK+1 onto G0 (see Figure 5.1).

When d ≫ K, the volume of G′\G0 is almost surely a K-pyramid which has apex

ϕK+1 and base G0. Therefore C2 = volK−1(G0) sinφ suffices for Eq. (5.37) to hold,

where φ is the angle between aff G0 and the line segment [ϕK+1, ϕ
⊥
K+1].

Proof of Lemma 5.4. Our proof utilizes an established upper bound on the

Kullback-Leibler divergence K(pS[n]|G, pS[n]|G′) in terms of the Wasserstein distance

between pη|G and pη|G′ , defined as

W1(pη|G, pη|G′) := inf
Q∈Q

∫
∥η1 − η2∥dQ(η1, η2), (5.57)

where Q(η1, η2) denotes a coupling of Pη|G and Pη|G′ , i.e., a joint distribution over

G×G′ whose induced marginal distributions of η1 and η2 are equal to Pη|G and Pη|G′ ,

respectively. Q is the set of all such couplings.

The following lemma (Lemma 6 in Nguyen (2014)) provides an upper bound on

the Kullback-Leibler divergence K(pS[n]|G, pS[n]|G′):

158



Lemma 5.5. Let G,G′ ⊂ ∆d be closed convex subsets such that any η = (η0, . . . , ηd) ∈

G ∪G′ satisfies minl=0,...,d ηl > c0 for some constant c0 > 0. Then

K(pS[n]|G, pS[n]|G′) ≤ n

c0
W1(pη|G, pη|G′). (5.58)

For distributions Pη|G and Pη|G′ , where G,G′ ∈ G1, we construct a coupling

Q∗(η, η′) such that under Q∗, η =
∑K+1

j=1 θjϕj and η
′ =
∑K+1

j=1 θjϕ
′
j, i.e., η and η′ share

the same Dirichlet-distributed topic mixing proportion vector θ. This construction is

a valid coupling, since the Dirichlet distributions are identically parameterized by As-

sumption (A1), and the two polytopes share the same K extreme points ϕ1, . . . , ϕK .

We have

K(pS[n]|G, pS[n]|G′) ≤ n

c0
W1(pη|G, pη′|G′)

≤ n

c0

∫
∥η − η′∥dQ∗(η, η′)

≤ n

c0
EQ∗

K+1∑
j=1

θj∥ϕj − ϕ′
j∥

=
n

c0
EQ∗θK+1∥ϕK+1 − ϕ′

K+1∥

=
nαK+1

c0
∥ϕK+1 − ϕ′

K+1∥,

where the last step is due to the property of Dirichlet distribution, and αK+1 :=

αK+1/
∑K+1

j=1 αj.

5.13 Detected topics in NIPS corpus

Year 1992:

Detected Topic 1 :

query uncertainty gender insertion hole mill epsilon pendulum lqr assembly filter
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rom hjb realization slopes queries committee sensed infomax modes realizations

interconnection gullapalli interconnections restart filters inductive load theoretic

monkey

Detected Topic 2 :

rat distance character place hippocampal image goal tangent representations channel

environment regions hand pre location representation scenes visual window manager

inverse fault spiral manifolds circular dimensionality workspace waves food codebook

Detected Topic 3 :

rules approximation probability evidence model stochastic perturbation bootstrap

distribution building bayesian pruning rule examples eq hints posterior children

blocks selection prior similarity criterion moody lemma descent asymptotic member-

ship theorem missing

Year 1993:

Detected Topic 1 :

filter leech entropy silicon face odor binding dopamine retina eeg exemplar contour

nucleotides fault primary smyth krogh friesen shapes dna subjects site detection bee

splice mach substructures becker genes sites

Detected Topic 2 :

theorem routing asynchronous convergence algorithm finite obs markov algorithms

dynamics state obd transition momentum discrete stochastic pruning monte carlo

lms communication behavior programming states pca observable methods tree proof

board

Detected Topic 3 :

distance cross data clustering feature features cluster tangent classification images

code validation sound address owl missing block surface signature auditory regression

analysis similarity implicit localization reconstruction vectors nearest activity
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representations

Year 1994:

Detected Topic 1 :

transformation regime actor plasma means spectral online estimators talkers aggre-

gation bishop batch subspace attenuation electrotonic linsker series decorrelation

separation moment transformed periodic andreas min blind magnetic limiting angle

pan predictor

Detected Topic 2 :

field hand subjects force hint operator motor optical manifold position facial subject

auditory tau hints interpolation interference song mst day location learned shift

blocking video group reinforcement learning delta tracking

Detected Topic 3 :

em teacher tasks noise skills saliency mlp active user pyramid student recall queries

hme wta chess mixtures item loss map context memory module capacity eq query

experts coding compression long

Year 1995:

Detected Topic 1 :

loss spike character characters field entropy train transfer bounds lvq rate template

window minima rates bound logistic isi reference receptive poisson warmuth pixels

detections constraints ocr particle ill dimensionality msec

Detected Topic 2 :

robot student period symmetric sensory system dynamical filter frequency channel

dynamics overlaps stage bifurcation motion cochlear integrator onset teacher envi-

ronment gains motor dependencies cochlea filters path place stability simd navigation

Detected Topic 3 :
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tree trees ensemble motor eeg risk stopping perceptrons ica depth decision features

family algorithm energy table visible pruning variables boosting split terminal early

perceptron representations clusters spin shavlik validation yang

Year 1996:

Detected Topic 1 :

experts hme expert batch utility entropic gating stationary growing spherical mem

unlabelled grbf accelerator collective tdnns delays updates utilities welch controller

hebb baum diagnosis tdnn wan questions disease earth saddle

Detected Topic 2 :

disparity carlo monte biases interpolation contour spectrum demonstration player

rivalry mse kalman contours sampling pole elements power gammon trial binocular

natural penalty edge spatiotemporal neal players hyperparameters curves electric

segments

Detected Topic 3 :

separation graph som source sources ica call algorithms independent channel blind

feature component style decision graphs classifier matrix samples price filters query

energy tree algorithm content weak bagging classification extra

Year 1997:

Detected Topic 1 :

release robot module cia monotonic hybrid subject conditioning feedback observer

adaptation ideal reflectance monotonicity winnow shading diffusion words refractory

path subjects observers compensation synapse generative rating free control produc-

tion refractoriness

Detected Topic 2 :

tree decision trees distribution graph hierarchical edge ham nodes blood ltm com-
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posite divergence edges level adaboost leaves rectified kullback covariance margin

weiss kalman ekf hierarchy matching leibler opinion measurement conditional

Detected Topic 3 :

words analysis eeg wavelet rules retrieval target time coding system frequency

component preference independent memory ranking ica source word similarity rule

sources artifacts low human user displays gradient sec attractor

Year 1998:

Detected Topic 1 :

latent sensor pca documents rotation sparse options rotated shrinkage fusion digit

words image labeled unlabeled lie visualisation query vertex singular option upright

minimax images retrieval plan lookahead tipping integral transformation

Detected Topic 2 :

rule state message synergy mode states transition dynamics hmms series stationary

exact fisher memoryless replica dynamical messages tap hebbian modes ltp inference

merge detection mutual equations coin coolen recall behaviors

Detected Topic 3 :

kernel margin support svm clustering inverse arm forward adaboost human subjects

objects pca segments positive familiarity smo metric hand distance position threshold

fig speed convolution wind euclidean machines motor curve

Year 1999:

Detected Topic 1 :

channel nonlinear stochastic capacity channels voltage ekf mode predictive densities

ion states branch steady resonance pairing modes density current entropy wavelet

dual dynamic statistic law gain fluctuations past nonparametric missing

Detected Topic 2 :
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kernel svm support margin boosting solution belief tree adaboost machines nodes

node theorem svms propagation decision variational hypothesis potential convex

weak class vapnik algorithms decoding vector unique working proof conditions

Detected Topic 3 :

information localization sound iiii cue attractor mutual speech language spectral task

cues context location som features light similarity length human wire acquisition

arbors subject languages matlab spatial documents subjects mobile

5.14 Pre- and post-detection topics

Initial topics in the null model (trained on the corpus from 1987 to 1991)

:

Topic 1:

network neural input learning networks time output set function units figure model

training number system data weights layer hidden problem error algorithm unit

results information pattern state performance systems net

Topic 2:

model cells cell neurons input firing response neuron synaptic activity time stimulus

figure spike frequency cortex fig phase potential inhibitory synapses membrane

excitatory threshold network single system patterns inhibition neural

Topic 3:

speech recognition training word classifiers performance classifier classification

speaker mlp phoneme trained hmm words test set language phonetic experiments

segmentation system frame signal mixture features multi characters rbf acoustic

waibel
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Topic 4:

image images pixel feature vision color pixels object surface maps field optical visual

edges line segmentation depth points recognition discontinuities features illumination

ring digit operator poggio edge competitive data map

Topic 5:

learning reinforcement action task state controller expert control robot actions

sutton barto environment world current connectionist forward tasks learn adaptive

exploration planning goal architecture policy evaluation jordan steps category play

Topic 6:

chip circuit analog neuron figure voltage vlsi neural current synapse weight digital

neurons circuits synaptic charge chips implementation mead design input synapses

cmos silicon device bit pulse output transistor gate

Topic 7:

error generalization probability distribution convergence dimension examples sample

complexity class log classifier bound bounds capacity algorithm theorem minimum

risk polynomial vapnik decay distributions haussler empirical bayesian uniform baum

bayes converge

Topic 8:

memory capacity hopfield matrix associative vectors neurons memories stored code

vector recall neuron states equilibrium codes attraction theorem probability storage

stable state winner outer optical retrieval inverse bit convergence operation

Topic 9:

functions basis regression tree prediction data cart approximation rbf radial error

moody polynomial trees validation mars spline splines cross variables friedman

centers kernel receptive nearest mlp nonlinear classification gaussians density

Topic 10:

motion visual direction velocity eye moving image field spatial receptive murphy
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wind stimulus joint cells position arm figure motor stimuli rotation speed object

sensory target location activity processing velocities directions

Topic 11:

visual cells cortical eye cell neurons dominance cortex model activity map ocular

field center brain receptive development maps synaptic synapses wave spatial spin

orientation monocular lgn correlation owl stimuli rod

Topic 12:

functions threshold function polynomial theorem approximation depth optimization

circuit boolean ary proof circuits degree bounded constrained gate points smooth

wavelet differential lagrangian annealing boltzmann rational shallow variables

spectral complexity constraint

Topic 13:

control motor arm trajectory model movements movement muscle feedback con-

troller cerebellar brain cerebellum command fig cmac joint position kawato cortex

commands change climbing fiber minimum velocity parallel hand organization torque

Topic 14:

object objects features recognition views feature image view visual images aspect

gating instantiation frame edelman module attention traffic viewpoint reference

rotation visit recognize intrator orientation manipulated rigid invariant operator

extracted

Topic 15:

orientation feature map maps ocular dominance space principle cells neighborhood

cortex infomax cortical visual models centers lateral topographic extraction features

loss projection dimensional spatial bifurcation regions kohonen organization hubel

cell

Topic 16:

eq star adjoint barhen trajectory dipole toomarian equations path trajectories paths
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dynamical processors processor slots gulati operator message sensor sensitivity

attitude green settling eqn pen scales zipser simd operators reverse

Topic 17:

attractors symbols content hit role symbol man baird projection normal filters peri-

odic chaotic filter eigenvectors dog associative recursive eigenvalues ghost bifurcation

basic verb semantic coordinates attractor trees stability blocks coarse

Topic 18:

delay oscillation stability bifurcation dynamics oscillatory bat symmetric westervelt

echoes sonar feedback sustained gain echo marcus lattice delayed basin inhibition eq

simmons fixed attractors lateral phys fig attractor moss snr

Topic 19:

vor velocity head eye gain vestibular storage reflex movements vestibulo ocular

robinson compensation anastasio responses normal pathway canal slip compensatory

solid dotted lisberger oculomotor muscles dashed monkey compensated motoneurons

pair

Topic 20:

eeg kernel diagnosis fault vigilance antenna diagnostic faults diagnostics erp engine

plant inference vehicle smyth theoretic classifiers controllers radiology pointing funds

bull head operating monitoring lda event fund magnetic potentials

Topic 21:

strings stack state grammar recurrent automata finite string giles language chen

grammars pollack length grammatical tomita extracted inference languages song sun

fsa lee induction seed symbol regular action automaton watrous

Topic 22:

ann impulse rap receiver ripple receivers user optimum depth ring connect video

spectral access fire impulses regional anns kohn shot matched software users channel

median anomalous detector conventional library communications
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Topic 23:

concept mistake tracker adversary concepts hypothesis tracking examples conserva-

tive sampling selective load instance pac label change rate theorem benign half rivest

day greedy chooses planes atlas incremental kuh drawn varying

Topic 24:

fish tin electric integrator echoes echo harmonic winter column assembly source

chorales moore bach melody confidence sensory clicks body music skeleton transitions

potential objects assemblies animal skin chord harmony ryan

Topic 25:

role representation tensor grammar product binding tree regular structures roles

language filler parse markov connectionist vectors source cons distributed represen-

tations represented entry representing bindings depth bayesian decomposition bayes

smolensky inference

Topic 26:

leg insect controller nervous walking stance cochlear locomotion legs dispersion foot

swing body design behaviors speeds patients stepping artificial temperatures natural

insects controllers movements sensors angle cell currents membrane heterogeneous

Topic 27:

activation pairing saliency grouping signature pot role binding bindings spreading

elements inside john groups object word spread concept localist salient node language

conceptual nodes structured actor paths maximal contours plan

Topic 28:

road vehicle autonomous lane driving navigation steering video retina drive roads

direction image finder sensor ans cmu intensity pomerleau camera situations exem-

plars ahead images travel curvature robot thorpe obstacle land

Topic 29:

jutten template signals separation waveforms waveform matching sources cohen pure
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templates rault blind mixed music delayed overlapping auto delays herault interfer-

ence pouliquen vittoz andreou cancellation cij superimposed filtering comparisons

faggin

Topic 30:

fuzzy cell anna dsp board expert chip extraction rules linguistic crisp cells group

automated antecedent lisp step instruction groups importance intermediate gallant

proposition select bus neurocomputer boser billion chips disorders

Topic 31:

genetic memory vowel harmony weather location round phonology sparse kanerva

addresses fitness holland predicting rogers rain clustering month population buffer

counters hybrid hours members segments trigger wheeler davis phonological locations

Topic 32:

gamma routing message focused principe tdnn interconnection routes memory

utilized vries route greedy kernels depth convolution exhaustive ports eeg multistage

adaline additive goudreau legal tapped delays kuo mackey giles port

Topic 33:

font relevance letter skeleton letters skeletonization mozer production exception

strokes trimming style smolensky stork trim car fonts hunt median east west

assessment metric diamond music ron judged pratt composition project

Topic 34:

robot path planning inverse workspace kinematics configuration sta redundant

manipulator oscillatory terminal dof branches norm demers neighborhood kinematic

positioning bellman branch obstacles disturbance classifier neighborhoods robotics

globally labels generically balls

Topic 35:

fault tolerance faults cmac cluster saturated exemplar judge operational synergy

sensitivity generator lincoln placement activated discontinuous impact mistake toler-
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ant adjustment adjustable drift skrzypek clustered rms stuck addresses manipulator

retraining robotic

Topic 36:

classifier message match post heart strength classifiers links messages environmental

jabri genetic environment list chamber ventricular cycle node link leong matched

parents davis flower chi reproduction xie dual matches population

Topic 37:

faces face sex subjects humans human facial emotion compression female male

emotions holons gender cottrell russell eyes discrimination expressions responses

emotional identity mouth munro gray monkey discriminations relaxed served cortex

Topic 38:

linsker miller eigenvectors eigenvalues mackay eigenvalue centre tit eigenvector heb-

bian covariance surround eigenfunctions principal eigenfunction structures perturbed

synaptic modes correlations regimes goodhill populations eigen dayan correlational

oct synapses operator angular

Topic 39:

food insect feeding arousal animal reticular facial lobe search energy behavior beer

behaviors sensor spinal goal fish mouth environment motivated hungry fin tracking

patch weiss artificial insects intelligent chemical oral

Topic 40:

map retinal eye tectal maps markers brain axons fibers half cowan normal cij schmidt

experiment meyer sij regeneration fiber development formation tectum retina yoon

expanded experiments stick friedman contact details

Topic 41:

energy tank boltzmann ensemble hopfield evidence tour tours hop landscapes

attractor valid wta machines clique winner spaces cities clause traveling hypothesis

thresholds probe salesman escape minima gap shapes probes uphill
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Topic 42:

clause proof protein clauses constraints instance backbone distance resolution query

row bound matrix proteins proofs amino bohr prediction base literal instances

structures copy rows logic original atomic secondary exists propositional

Topic 43:

sleep rem sequencing wake dream sutton cholinergic brainstem wanted whitaker

loops cognitive synthesis wet mind permission influences loop disorder college nore-

pinephrine cued widespread populations bifurcations mckenna rhythms cognition

neuromodulation excitability

Topic 44:

rules dna splice stop kbann links knowledge extracted towell shavlik minus junction

base junctions extraction ann acc don promoter sequences domain superior genes

anns knn noordewier refinement symbolic pages protein

Topic 45:

stress syllable heavy vowel primary syllables linguistic nucleus phonology language

languages word edge learnability wheeler touretzky gupta string metrical alt penul-

timate voicing vowels long deletion onset secondary perceptron alternation french

Topic 46:

signatures signature true verification false acceptance rejection handwritten roc

goodman writer handwriting people stanford rosenberg writing centralized info cards

individuals checks transactions cumulative radar automated tures nettalk eng plot

jackel

Topic 47:

mfa spin annealing temperature averages equilibrium spins graph raleigh ece bout

bins den hamiltonjan van miller relaxation ising snyder lowered markov chain bin

experimentally temperatures begins hopfield attractive wesley iterations

Topic 48:
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chain region mouse human cell receptor beta proteins domains heavy alpha protein

class domain rat false bengio conserved detected amino positives acids score programs

sequences fruit epsilon fly search database

Topic 49:

cues target cue access targets intersection strengths humphreys wiles product dennis

auto arc cross retrieved weakly tensor processes strongly orthogonal associator

temporary semantic cued multiplication cancel blend direct multiplying combination

Post-detection topics (re-trained on the corpus from 1995 to 1999):

Topic 1:

data model learning algorithm set function distribution training number neural

models figure error results gaussian parameters networks probability case network

space problem linear approach time vector method matrix noise input

Topic 2:

model neurons time input figure network visual synaptic neuron response stimulus

cell neural information spike cells learning activity firing rate system cortical stimuli

noise frequency units cortex function patterns shown

Topic 3:

image images recognition object face features feature figure visual network objects

texture based set target information detection human performance pattern represen-

tation faces vision system task local scene search pixel examples

Topic 4:

state learning policy time reinforcement action function states optimal algorithm

control reward actions problem figure model step system rl agent markov algorithms

set number decision robot goal mdp environment based

Topic 5:

ica independent source basis sources separation blind component signal components
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signals eeg natural sparse image analysis coefficients matrix wavelet images noise

sejnowski mixing artifacts functions data gradient processing coding code

Topic 6:

kernel margin svm support training set adaboost vector algorithm function class

decision boosting machines functions error examples solution algorithms classification

theorem classifiers cost svms tree generalization classifier bound working convex

Topic 7:

circuit chip system figure analog output time current control vlsi motion signal

input circuits field flow image cell shown systems frequency processing voltage visual

implementation response design neural direction template

Topic 8:

iiii sound clustering information task language similarity localization attractor human

concept som cluster light speech subjects cues cue mutual documents sequences

spectral acquisition arbors wire length languages matlab source location

Topic 9:

loss bounds functions function theorem bound networks neural threshold dimension

proof linear network class polynomial computational number upper input lower

analog units sigmoidal unit result experts gate bounded ranking ltm

Topic 10:

words instruction system instructions wavelet rules user word preference gradient

coding network retrieval blocks schedule time semantic melody table dec syllable

scheduling video pact errors knowledge concentration guidance bits instance

Topic 11:

speech hmm state recognition hmms word words acoustic system states segmentation

time transition continuous character segmented articulatory emission fusion markov

pdfs articulator audio acoustics arc entropic continuity speaker topology constrained

Topic 12:
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graph tree nodes trees node level edge matching hierarchical edges graphs clique

parent clustering match matches structures structural structure opinion cut markov

hierarchy correspondence randomized similarity pairwise maximal logarithmic

transducers

Topic 13:

control forward inverse sv hand motor arm feedback position kernels movement con-

troller wind adaptive vapnik convolution support desired kernel front sch familiarity

ridge human regularization kopf smola impulse force movements

Topic 14:

tap solutions codes stationary message sequential replica phys boltzmann tanh spin

recall weiss code shortcut equations messages glass decoding ferromagnetic nadal

saddle gallager correcting connections equilibrium behaviour coolen gee stationarity

Topic 15:

teacher student dynamics xly hebbian phys macroscopic perceptron equations gener-

alization coolen decay saad replica observables restricted saddle batch lyapunov sgn

evolution asymptotic activations simulations theory activation dynamical formalism

regime cavity

Topic 16:

adaptation cia monotonic words feedback subject speech conditioning winnow mono-

tonicity path vowel compensation production generalization diffusion control altered

experiment sound rating formants subjects blocking attributes bond hyperplane

word testing abu

Topic 17:

steady prop gain jacobian industrial plant historical momentum pearlmutter leapfrog

optimizer tensor chemical setpoint austin hamiltonian technion parsimonious tech-

nologies refining johnson exploration neuron auxiliary keeler riemannian martin

discretization scheduling implementing
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Topic 18:

documents sensor fusion words retrieval lsi document queries axes sensors word

topic webb collection band topics magnification relevant indexing query semantic

complementary polarity fused ml text projected collections kurtosis spie

Topic 19:

storage capacity committee gardner connected phys fully internal replica kwon

volumes elementary rev overlaps parity volume breaking symmetry lett conventional

korea barkai mitchison durbin mechanics machine violates europhys representations

engel

Topic 20:

cleaning zimmermann neuneier dilemma observer cleaned eta forecasting var unified

awt neuro covers penalty return obd flat damage siemens bond reviewed financial

finnoff increments forecast trading markets psychological asset hit

Topic 21:

environment learnt characters distortion ocr japanese baxter canonical neighbour

bartlett jonathan environments character misclassification pac cedar neighbours

possessing err learner triples printed recogni buffalo maintained quantization classifi

july english clas
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CHAPTER 6

Conclusions and Future Work

Probabilistic graphical models provide a principled and flexible framework for com-

pactly characterizing structural high-dimensional distributions. This dissertation has

focused on three related problems on graphical modeling: (i) Distributed estimation

of parameters and principal components of Gaussian graphical models; (ii) Learning

of high-dimensional Gaussian graphical models with latent variables; and (iii) Detec-

tion of emerging topics in topic models. For each of these three problems, we have

proposed novel and efficient algorithms, derived theoretical guarantees for the perfor-

mance, and provided numerical experiments on both synthetic and real-world data

sets to validate and complement the theory.

In Chapter 2, we have proposed a distributed framework for estimating the inverse

covariance matrix in Gaussian graphical models based on convex relaxations of the

marginal likelihood maximization problem in local neighborhoods. A global estimate

is obtained by combining the local estimates without the need of iterative global

message passing. We derived asymptotic properties for the proposed distributed esti-

mator, as well as bounds on the high-dimensional error rates, which are comparable to

those of the centralized maximum likelihood estimator. We validated the statistical

and computational efficiencies of the proposed estimator through numerical experi-

ments on synthetic graphical models with various structures and a real-world sensor

network data sets.
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In Chapter 3, we continued our exploration of distributed estimation framework

for Gaussian graphical models, but focused on directed acyclic graphs and the estima-

tion of principal components. We proposed a distributed algorithm, named DDPCA,

for performing principal component analysis (PCA) in directed Gaussian graphical

models. DDPCA was designed for exploiting structured sparsity arising from the

Cholesky factors of the concentration matrix, and was shown to be closely related to

the sum-product algorithm. We illustrated DDPCA’s computational and communi-

cation advantages in a synthetic online subspace tracking problem and the anomaly

detection in a real-world computer network.

In Chapter 4, we have presented a family of latent variable Gaussian graphical

model (LVGGM) whose inverse covariance matrix has a sparse plus low-rank struc-

ture, extending the sparsity assumption used in the previous two chapters. This

LVGGM was motivated by the missing-value prediction problem in recommender

systems, and its structural assumptions were validated on real data. For LVGGM, we

derived parameter estimation error bounds for regularized maximum likelihood esti-

mation in the high-dimensional setting. Results of numerical simulations agreed with

our theory, and the proposed LVGGM-based method achieved superior missing-value

prediction performance on a real-world movie rating data set.

In Chapter 5, we have proposed the surrogate Hausdorff test for detecting emerging

topics in a specific topic model, the latent Dirichlet allocation (LDA) model. The

test statistic was shown to be a computationally tractable surrogate for the standard

likelihood ratio, and is proven to guarantee the asymptotic consistency of the topic

detection problem. We further provided the convergence rate of the test statistic and

bounds on the detection errors when there is at most a single emerging topic. The

theory is validated through numerical experiments on both synthetic and real-world

document corpora.
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6.1 Future Work

There are many interesting directions that are worthy of future study:

First, it would be worthwhile to investigate the non-Gaussian extensions of the

proposed learning frameworks in Chapter 2 through Chapter 4. More specifically,

extending the distributed estimation framework in Chapter 2 to Markov random

fields with non-Gaussian distributions will lead to significant improvement in the

computational complexity with respect to the centralized learning algorithms. There

have been some recent work along this direction, e.g., Mizrahi et al. (2013); Massam

& Wang (2013)), but the understanding is still limited. The non-Gaussian scenario

of the distributed algorithm proposed in Chapter 3 is also worth exploring. The

learning algorithm and analysis framework for LVGGM considered in Chapter 4 both

are potentially generalizable to graphical models parameterized by broader class of

distributions.

With the recent advances of parallel computing machineries, such as Hadoop 1 and

Spark 2, the parallel learning framework proposed in Chapter 2 can be easily imple-

mented and applied to very large-scale graphs. A real-world example is the social

networks, which typically contain millions of nodes. As illustrated in Section 2.6, the

proposed algorithm provides a reasonable tradeoff between the statistical approxima-

tion precision and the computational complexity on synthetic small-world graphs, one

of the standard models for social networks. An interesting future direction would be

to pursue this direction using real data and more realistic (and challenging) graphs

that relax the Markovian and/or Gaussian assumptions, such as the Erd

Hos-R

’enyi graphs (Erdős & Rényi, 1976), scale-free or power law networks (Liu & Ihler,

2011) and Kronecker graphs (Leskovec et al., 2010). Another challenge for learning

1http://hadoop.apache.org
2https://spark.apache.org
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many real networks is the possible existence of “hubs” – nodes that have very large

number of neighbors. Extending the current learning algorithm to networks with

hubs is also a future direction worth studying.

In Chapter 2 and 3, the structure of the graphical model is assumed known. An

interesting direction is to estimate the structure of graphical models in a similar

distributed fashion. This appears to be a harder problem, but some insights regarding

distributed algorithms and convex relaxation in particular can perhaps be shared.

Furthermore, approximating loopy undirected models by proper directed models is

one possible way to leverage DDPCA’s advantageous computation complexity and

convergence properties.

The current LVGGM learning and prediction framework is constrained by the

computational complexities of (i) regularized maximum likelihood estimation of the

marginal inverse covariance matrix; (ii) the conditional mean prediction rule which

involves matrix inversion. Computationally more efficient optimization techniques for

LVGGM learning and approximation algorithm for the matrix inversion that take ad-

vantage of the “low-rank plus sparse” structure are both interesting topics for future

efforts. Another direction worth investigating is the effect of missing observations on

LVGGM learning, and the robustness of the learning algorithm against such miss-

ingness. The proposed learning and prediction framework can also be utilized for

other related applications besides recommender systems, such as the stock market

data (see, for example, Luo (2011); Meng et al. (2014a) for empirical studies).

Lastly, for the topic detection framework proposed in Chapter 5, future directions

include theoretical investigation of Assumption (A5) and the convergence rate of the

maximum likelihood polytope under model misspecification (e.g., when there exist

more than a single emerging topics) or parameter misspecification (e.g., unknown

Dirichlet concentration parameters). More in-depth empirical studies, in particular

on real data, are also worth exploring.
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