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ABSTRACT

Distributed learning, prediction and detection in probabilistic graphs
by

Zhaoshi Meng

Co-Chairs: Alfred O. Hero IIT and XuanLong Nguyen

Critical to high-dimensional statistical estimation is to exploit the structure in the
data distribution. Probabilistic graphical models provide an efficient framework for
representing complex joint distributions of random variables through their conditional
dependency graph, and can be adapted to many high-dimensional machine learning
applications.

This dissertation develops the probabilistic graphical modeling technique for three
statistical estimation problems arising in real-world applications: distributed and
parallel learning in networks, missing-value prediction in recommender systems, and
emerging topic detection in text corpora. The common theme behind all proposed
methods is a combination of parsimonious representation of uncertainties in the data,
optimization surrogate that leads to computationally efficient algorithms, and funda-
mental limits of estimation performance in high dimension.

More specifically, the dissertation makes the following theoretical contributions:

x1



(1)

We propose a distributed and parallel framework for learning the parameters
in Gaussian graphical models that is free of iterative global message passing.
The proposed distributed estimator is shown to be asymptotically consistent,
improve with increasing local neighborhood sizes, and have a high-dimensional

error rate comparable to that of the centralized maximum likelihood estimator.

We present a family of latent variable Gaussian graphical models whose marginal
precision matrix has a “low-rank plus sparse” structure. Under mild conditions,
we analyze the high-dimensional parameter error bounds for learning this family

of models using regularized maximum likelihood estimation.

We consider a hypothesis testing framework for detecting emerging topics in
topic models, and propose a novel surrogate test statistic for the standard like-
lihood ratio. By leveraging the theory of empirical processes, we prove asymp-
totic consistency for the proposed test and provide guarantees of the detection

performance.
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CHAPTER 1

Introduction

Recent advances in information technology have transformed the data generation and
acquisition landscape, resulting in diverse and high volumes of data. Examples include
measurements of various sensing devices (such as ubiquitous sensors, smartphones,
and agents in a social network), behavioral data from users of large-scale Internet
services such as recommendation systems, and digital publication media.

Analyzing and deriving insights from such data sets has emerged as a topic of
great interest to researchers in both academia and industry. While great effort has
been devoted to improving the data processing capability, the statistical aspects of
the problems are often less studied in practice. One of the fundamental problems
is that of statistical estimation, i.e., to recover or extract distributional characteris-
tics from observations, which is often the first step towards statistical inference tasks
such as prediction and detection. Unfortunately, the increasing data dimensions pose
tremendous challenges for statistical estimation. For instance, modern high-resolution
imaging systems typically generate samples from millions of highly correlated pixel
variables. Similarly, an online recommender system (such as the movie streaming
platform Netfliz, or the E-commerce website Amazon.com) often has hundreds of mil-
lions of users and even more products for recommendation. The estimation problem
at such scale requires a judicious choice of model, scalable computational techniques,

and deep understanding of its statistical efficiency with respect to the number of



observations.

This dissertation addresses these three aspects of modeling, computation, and per-
formance in the context of statistical estimation under the framework of probabilistic
graphical modeling. Three broad types of applications are discussed, namely dis-
tributed and parallel estimation in networks, missing-value prediction in recommender
systems, and emerging topic detection in text corpora. The theory and algorithms
developed in this dissertation also apply to other related problems. For each of the
three applications, we propose probabilistic graphical modeling that is adapted to the
structure of the problem, and provide both algorithmic, experimental and theoreti-
cal analysis. The common theme behind all proposed methods is a combination of
parsimonious representation of uncertainties in the data, optimization surrogate that
leads to computationally efficient algorithms, and fundamental limits of estimation

performance in high dimension.

1.1 Overview of probabilistic graphical models

One of the most recent and fruitful directions in high-dimensional statistical estima-
tion is the use of regularization that promotes simple and low-dimensional structures.
Examples abound in machine learning, statistics, and signal processing, including
sparse regression models, low-rank matrix factorization models, and their variants
and combinations. These methods essentially impose sparsity (i.e., a small number
of non-zero parameters) in a certain transformed domain.

Probabilistic graphical modeling (PGM) is a principled framework for compactly
modeling high-dimensional distributions through the conditional dependency graph
among the variables (Lauritzen, 1996; Wainwright & Jordan, 2008; Koller & Fried-
man, 2009). In PGM, each node often represents a random variable (could be either

observed or latent), and an edge denotes the corresponding conditional dependence,
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Figure 1.1: Examples of two probabilistic graphical models: (a) a Markov random
field for the traffic flows in the computer network Abilene, and (b) a hierarchical
Bayesian network, the latent Dirichlet allocation model, for text documents. In (a),
each node of the graphical model represents the traffic lows in a loop of the physical
connectivity graph of Abilene. In (b), the "plate” (left) and a partially unrolled
(right) representation are shown, where the shaded nodes denote the observed words
in the documents and the unshaded nodes denote latent and shared variables and
parameters (see text for details).

i.e., the statistical dependence between two random variables conditioning on all re-
maining variables. This conditional dependency graph is often assumed to be sparse,
which leads to a low-dimensional yet still richly structured representation. Note that
two variables could be conditionally independent but marginally dependent, due to
their mutual dependence with other variables. This phenomenon implies that the set
of conditional dependencies is a more parsimonious representation of the distribu-
tion than the set of (marginal) dependencies. Such modeling efficiency and flexibility
makes PGM especially suitable to high-dimensional distributions.

Two most commonly studied PGM methods are Markov random fields (MRF)
and Bayesian networks (see Figure. 1.1 for illustrations). Markov random fields are
often used for modeling random variables that are spatially correlated, for example,
pixel values in an images or a video, or sensory signals in a sensor network. The

common fundamental assumption is that the statistical dependence between two spa-



tially separated random variables is likely to be weaker than that of two spatially
connected variables. In practice this assumption is often found to be a reasonable
approximation, therefore MRF has been successfully applied to many applications.
In Figure 1.1(a) we show an example for using MRF to model the traffic flows in
a computer network, in which the graphical model is constructed from the physical
connectivity graph of the computer network. We refer the readers to Wainwright &
Jordan (2008); Koller & Friedman (2009) for more examples.

The graph associated with a MRF is often an undirected graph, representing
a certain symmetric relation (such as conditional dependence) between the nodes.
Bayesian networks, on the other hand, use directed and often “hierarchical” graphs
to represent the asymmetric relations between nodes, which could represent either
observed or latent variables. The introduction of latent variables is a crucial part of
creating a sparse representation, since the observed variables are otherwise densely
connected. Another advantage of introducing latent variables that are connected
to many observed variables is to allow for the sharing of statistical strength in the
inference. In Figure 1.1(b), a hierarchical Bayesian network, called latent Dirichlet
allocation (LDA) model is shown. The LDA model is widely used for modeling col-
lection of text documents, where each leaf node represents a word, and all words in
the same document share a parent node which represent certain (latent) document-
specific characteristics. All these document-level nodes, again, share a parent node
which captures certain corpus-level features. The “plate” notation is an efficient
representation of this sharing of variables or parameters, as shown in Figure 1.1(b),
where each box denotes multiple repetitions of the same structure in the “unrolled”
network.

Given a graphical model with known structure and parameters, the classical task
is to infer for the marginal distribution of a subset of random variables (or their con-

ditional distribution conditioning on some evidence). For small or loop-free graphs



(such as tree-structured MRF or simple Bayesian networks), this inference can be done
through sequential marginalization. However, for loopy graphs, an exact marginal
inference is in general intractable even for graphs with moderate size, due to the
exponentially increasing computational complexity. A distributed message passing
algorithm (also known as belief propagation) has been developed for approximate
inference in loopy graphs, which makes PGM especially appealing to large and decen-
tralized systems. For Bayesian networks, when exact inference is intractable, methods
such as the variational inference and Markov Chain Monte Carlo sampling techniques
are often used for approximate inference. For more details on the inference of PGM,

we refer the readers again to Wainwright & Jordan (2008); Koller & Friedman (2009).

1.2 Dissertation outline and contributions

This dissertation focuses on three problems related to PGM.

1.2.1 Distributed estimation in Gaussian graphical models

In the first part of the dissertation, we consider distributed estimation in PGM, fo-
cusing on the Gaussian MRF model, also known as the Gaussian graphical model.
This general problem is motivated by real-world applications, where the data is col-
lected from networks of decentralized sensing devices and agents (see Figure 1.2 for an
illustration). Due to the spatial correlations among the sensing devices, the joint dis-
tribution of the collected data often contains certain structure that can be naturally
captured by MRF. Statistical estimation is often performed in a centralized frame-
work (Figure 1.2(a)), in which all the data samples are collected at a fusion center
for the estimation. Unfortunately, for large network applications, this approach is
often constrained by limited computational capability of local devices and limited

communication bandwidth. The huge volume of data generated by large networks
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Figure 1.2: Tllustration of the centralized and distributed estimation frameworks for
data collected from networks.

creates computational challenges even for the fusion center. A distributed estimation
framework (Figure 1.2(b)), on the other hand, utilizes in-network and local compu-
tation, and hence is advantageous in many aspects. It often requires negligible or no
communication with the fusion center, which significantly reduces the communica-
tion cost by lowering bandwidth requirements. The computational cost for localized
estimation may also be significantly reduced. The key to designing statistical esti-
mation algorithms in a distributed framework is to find a good tradeoff between the
computational complexity and the statistical accuracy achieved by the system.

In Chapter 2, we consider the problem of estimating parameters in a Gaussian

MRF from data samples, which is a prerequisite for performing statistical inference



using the MRF. Since the classical global maximum likelihood estimation is central-
ized, we propose a general distributed framework for parameter estimation, in which
local parameter estimates are obtained by maximizing the marginal likelihoods of
local neighborhoods. Due to the non-convexity of this problem, we propose to solve
a convex surrogate. The local estimates are then combined into a global estimate
without any iterative message-passing between neighborhoods. For this proposed es-
timator, we derive asymptotic properties such as consistency and monotonicity of
the variance (in terms of local neighborhood sizes) under Gaussian distribution as-
sumption. Further high-dimensional analysis also provides a convergence rate for
its estimation error, which is comparable to the global maximum likelihood estima-
tor that requires centralized computation. This asymptotic analysis establishes the
statistical efficiency of the proposed estimator. Since there is no need for message
passing, the proposed estimation framework is naturally distributed and paralleliz-
able, making it well adapted to decentralized and large-scale problems. We illustrate
the performance of our proposed estimator in both synthetic and real-world data sets.

In Chapter 3, we focus on directed Gaussian graphical models, and introduce a dis-
tributed algorithm for performing principal component analysis (PCA) to estimate a
low-dimensional subspace. Note that the graphical model structure characterizes the
conditional dependencies arise in the data distribution, the low-dimensional subspace
we are interested in often captures other application-specific aspects of the data, such
as partially hidden latent effects. By leveraging structured sparsity in the Cholesky
factor of the inverse covariance matrix, our proposed algorithm estimates the global
principal subspace through local computation and message passing. At the core of this
algorithm is a distributed matrix-vector multiplier, which is shown to coincide with
a Cholesky-parameterized sum-product algorithm specialized to exploit the structure
of the problem. We illustrate the estimation efficiency and the reduced computation

and communication complexities of the proposed algorithm on both synthetic and
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Figure 1.3: Missing-value prediction in recommender systems.

real-world network data sets. In particular, in the real-world problem, we propose
two statistical directed graphical models based on the flow routing pattern of a com-
puter network, and demonstrate the computational advantages using the proposed

algorithm.

1.2.2 Learning latent variable Gaussian graphical models

with application to recommender systems

In Chapter 4, we consider learning Gaussian graphical models with latent variables.
This problem is also motivated by real-world applications. In particular, we focus
on the missing-value prediction problem, also known as collaborative filtering, in
recommender systems (Figure 1.3).

In recommender systems, available is an incomplete data sample matrix where
each element denotes the rating score that a user gives to an item. For example, we
consider rating movies in a database. The goal is to predict the unobserved or missing
ratings based on the observed ones. Fundamental to missing-value prediction is to
choose and learn a model that governs the joint distribution of the rating variables. In
this chapter, we propose to use latent variable Gaussian graphical models (LVGGGM).
See Figure 1.4 for an illustration. Specifically, we introduce latent variables to model
certain global factors that affect a large portion of the movie ratings (such as the

movie genres). Conditioning on these latent factors, the conditional distribution of
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Figure 1.4: Mlustration of the latent variable Gaussian graphical model for movie rat-
ings. The marginal inverse covariance matrix of the rating variables has a “low-rank
plus sparse” decomposition, corresponding to certain “global” and “local” effects,
respectively.

the (observed) movie rating variables is captured by a sparse graphical model. Unlike
standard sparse Gaussian graphical models that do not incorporate latent variables,
our proposed model does not have a sparse marginal inverse covariance matrix for
the observed variables. Instead, due to the property of Gaussian distribution, it can
be shown to have a “low-rank plus sparse” decomposition, which allows for efficient
learning as described below.

In practice, the number of items in a recommender system could be large. There-
fore, following Chandrasekaran et al. (2012), we consider regularized maximum like-
lihood estimation as a convex surrogate for learning the marginal inverses covariance
matrix of the LVGGM. Furthermore, by leveraging some recent advances in high-
dimensional asymptotic statistics, we derive the parameter learning error bounds
and sample complexity for the proposed LVGGM estimator under mild conditions in
high-dimensional setting. These results provide insights valuable to understanding the
statistical accuracy and efficiency of the proposed algorithm. The developed theory is
validated by numerical simulation on synthetic data, and the superior missing-value

prediction performance of LVGGM is illustrated through experiments on a real-world



movie rating data set.

1.2.3 Detecting emerging topics in topic models

In Chapter 5, we consider the problem of detecting emerging topics in text document
corpora, which are modeled by one specific type of topic model, the latent Dirichlet
allocation (LDA) model.

Topic detection has many practical real-world applications, such as discovering
breaking news from online articles, and identifying anomalous activities from social
or behavioral data. Built upon the LDA model, we propose a hypothesis testing
framework for detecting emerging topics in a new text corpus (see Figure 1.5 for
illustrations). Under the null hypothesis, the testing corpus is assumed to be gen-
erated from the old LDA model learned from the historical data, while under the
alternative hypothesis, the documents are assumed to be generated from a new LDA
model whose topic collection consists of the old and some emerging ones. The test is
performed through calculating a certain test statistic followed by thresholding it to
achieve a particular level of false positive error control.

For the proposed hypothesis test, the standard generalized likelihood-ratio test is
computational expensive and lacks theoretical guarantees. We propose a surrogate
test which estimates a low-dimensional LDA model and calculates certain geometric
distance between the estimated and old “topic polytopes” (the convex hull of the topic
vectors ) for the thresholding decision. By exploiting the concentration behavior of
the empirical processes, we establish asymptotic consistency of the proposed surrogate
test. Under certain additional conditions, we further show a set of exponential bounds
for the detection errors. The theory is validated through numerical simulations on
synthetic data. The performance guarantees provide confidence for using the proposed

surrogate test for detecting emerging topics.
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Figure 1.5: Illustrations of the emerging topic detection problem: the graphical model
representation (left) and the proposed hypothesis testing framework based on topic
polytopes (right).

Finally, in Chapter 6, I conclude the dissertation with a summary of the contribu-

tions and a discussion of future directions.
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CHAPTER 2

Distributed Parameter Estimation in

Graphical Models via Marginal
Likelihoods

In this chapter, we consider the problem of estimating the parameters of the inverse
covariance matrix, also known as the concentration or precision matrix, in Gaussian
graphical models.

Traditional centralized estimation often requires global inference of the covariance
matrix, which can be computationally intensive in large dimensions. Approximate
inference based on message-passing algorithms, on the other hand, can lead to unsta-
ble and biased estimation in loopy graphical models. In this chapter, we propose a
general distributed estimation framework based on a maximum marginal likelihood
(MML) approach. This approach computes local parameter estimates by maximizing
marginal likelihoods defined with respect to data collected from local neighborhoods.
Due to the non-convexity of the MML problem, we introduce and solve a convex
relaxation. The local estimates are then combined into a global estimate without the
need for iterative message-passing between neighborhoods. The proposed algorithm
is naturally parallelizable and computationally efficient, thereby making it suitable
for high-dimensional problems.

We provide asymptotic analyses for the proposed distributed estimator, which show
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that it is asymptotically consistent, improves monotonically as the local neighborhood
size increases, and has a high-dimensional error convergence rate that is comparable
to the centralized maximum likelihood estimation. Extensive numerical experiments
demonstrate the improved performance of the two-hop version of the proposed esti-
mator, which suffices to almost close the gap to the centralized maximum likelihood

estimator at a reduced computational cost.

2.1 Introduction

Graphical models provide a principled framework for compactly characterizing depen-
dencies among many random variables, represented as nodes in a network (Lauritzen,
1996; Wainwright & Jordan, 2008). Their sparse structure allows for efficient and dis-
tributed inference using message-passing algorithms such as loopy belief propagation
(LBP), which makes them especially well-suited to large networks, such as sensor,
social, and biological networks (Liu & Ihler, 2012; Wiesel & Hero, 2012; Meng et al.,
2012). Less well-studied, however, is the equally important task of distributed esti-
mation of the parameters of a graphical model from data. The goal of this work is to
develop and analyze distributed methods for model parameter estimation.

In this chapter we focus on Gaussian graphical models (GGM) with known graph
structure, i.e, the pattern of edges is known. Our approach can also be extended to
more general graphical models, including discrete distributions. For GGMs, parame-
ter estimation essentially reduces to (inverse) covariance estimation, and knowledge
of the edge pattern imposes sparsity constraints on the inverse covariance matrix, also
known as the concentration or precision matrix. While the resulting GGM maximum
likelihood (ML) parameter estimation problem is a convex optimization, solving it
exactly for generally structured networks using centralized algorithms as in Banerjee

et al. (2006); Dahl et al. (2008); Friedman et al. (2008) becomes impractical in large
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real-world networks where data collection and computational resources are limited.

A natural approach toward distributed parameter estimation is to leverage meth-
ods for distributed marginal inference, such as LBP and its extensions. The idea is
to replace the objective function and its gradient in the ML estimation problem with
approximations that can be computed through iterative message-passing. However,
in many cases LBP may fail to converge or give good marginal estimates, and when
it does converge, the resulting parameter estimates may be biased (Malioutov et al.,
2006; Heinemann & Globerson, 2012).

Another direction for distributed estimation is to consider a surrogate objective
that decomposes into smaller problems that are locally parameterized. Then a dis-
tributed ML algorithm estimates the local parameters by processing local data with
limited message passing. Some recent efforts along this direction (Wiesel & Hero,
2012; Liu & Ihler, 2012) have considered a pseudo-likelihood framework for exponen-
tial family distributions.

In this chapter, we proposes a general framework for distributed estimation based
on marginal likelihoods, as contrasted with pseudo-likelihoods. Each node collects
data within its extended neighborhood and independently forms a local estimate by
maximizing a marginal likelihood. To deal with the non-convexity of the maximum
marginal likelihood (MML) estimation problem, we formulate a convex relaxation of
the problem. The resulting distributed estimator is computationally efficient, and
involves minimal message passing.

We analyze the mean squared error (MSE) of the proposed distributed estimator
in both the classical asymptotic regime (fixed number of parameters p and increas-
ing number of samples T — o0), and also the high-dimensional regime where both
p and T increase to infinity (p,7 — o0). In the classical regime, the distributed
estimator is shown to be asymptotically consistent. Furthermore, the asymptotic

error improves monotonically as the local neighborhood size increases. In the high-
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dimensional regime, we show that under certain conditions and proper scaling between
p and T, the proposed estimator achieves a comparable statistical convergence rate
to the (more expensive) global ML estimator.

Our analytical results are supported by extensive numerical experiments on both
synthetic and real-world data sets. In particular, we show that two-hop local informa-
tion is sufficient for the proposed distributed estimator to match the performance of
the more expensive centralized ML estimator. The proposed estimator also improves
significantly upon existing distributed estimators (Liu & Ihler, 2012; Wiesel & Hero,
2012). In terms of computation, the complexity of our estimator increases at most
linearly with p in most cases and can be further reduced through parallelization. In
the case of a physical network implementation, the near-absence of message passing
and long-distance communication is also an advantage.

We emphasize that the problem we consider is different from covariance selec-
tion (Ravikumar et al., 2011; Rothman et al., 2008; Johnson et al., 2011; Friedman
et al., 2008), in which the graph topology is not known a priori and must be esti-
mated in addition to the parameters. To test our assumption of known graph struc-
ture, we also study the robustness of the proposed estimators against small model
(i.e. structure) mismatch. Both theoretical analysis and numerical results show that
the proposed distributed estimator is as robust as the centralized ML estimator.

The outline of the chapter is as follows. In Section 2.2, we give a brief review
of graphical models, centralized ML parameter estimation, and the difficulty of
parameter estimation using traditional marginal inference techniques. In Section
2.3, we propose a general approach to distributed estimation based on marginal
likelihoods. In Section 2.4, we provide extensive analysis of the convergence rates
and robustness of the proposed estimator. Section 2.5 discusses the computational
complexity and implementation advantages of the estimator. Numerical experiments

are presented in Section 2.6 and we conclude the chapter with a summary in Section
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2.7.

Notation for Chapter 2. Boldface upper case letters denote matrices and bold-
face lower case letters denote column vectors. Sets of single indices are denoted by
calligraphic upper case letters. The cardinality of a set A is denoted by |.A| and the dif-
ference of two sets is denoted as A\B. Following common notation, A x4 - represents
a submatrix of A with rows indexed by M and columns indexed by N'. We also make
reference to irregular sets of index pairs such as the edge set E of a graph, for which
we use standard upper case letters. Ag then refers to the vector of entries of A in-
dexed by E. The standard inner product between two symmetric matrices is denoted
as (A, B), ie., (A, B) = trace(AB) = >, - A, ;B; ;. We distinguish the following two

norms for matrices: the induced fo/lo norm [A[| , := maxi=_ > 7, |A ], and

the element-wise (o norm ||Allc := max; j—1,,

A il. Amax(A) and Apin(A) denote

the maximum and minimum eigenvalues of matrix A, respectively.

2.2 Background

We begin by providing background on graphical models and their statistical inference.
We refer the reader to Lauritzen (1996); Wainwright & Jordan (2008) for a detailed

treatment.

2.2.1 Gaussian Graphical Models

Consider a p-dimensional random vector x following a graphical model with respect to
an undirected graph G = (V, E), where V- = {1,...,p} is a set of nodes corresponding
to elements of x and F is a set of edges connecting nodes. The vector x satisfies
the Markov property with respect to G if for any pair of nonadjacent nodes in G, the

corresponding pair of variables in x are conditionally independent given the remaining
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variables.

If the vector x follows a multivariate Gaussian distribution, the corresponding
model is called a Gaussian graphical model (GGM). We assume without loss of gen-
erality that x has zero mean. Then the probability density function can be written

in canonical form in terms of the concentration matrix J as follows:
1
p(x:J) = (27) 7P/?(det J)V2 exp (—ngJX) : (2.1)

The Markov property manifests itself in a simple way through the sparsity pattern of
J:

Ji;=0foralli#j (i,j) ¢ E. (2.2)

2.2.2 Maximum Likelihood Parameter Estimation for GGMs

Estimating the parameters of a graphical model from sample data is the first step
for many applications. For Gaussian graphical models this reduces to estimating the
non-zero elements of the concentration matrix J (including the diagonal elements).

Defining
E:=EU{(i}_, (2.3)

as the index set for these non-zero elements, the centralized global maximum likeli-

hood (GML) estimation problem can be formulated as (Lauritzen, 1996):

JOML — argmin (3, J) — logdet J
J

st. Jix=0 Y(j,k)¢FE (2.4)

J>o,

18



where

. 1 & .
= ;X(t)x(t)

is the sample covariance matrix and x(1),...,x(7) are i.i.d. samples of x.

The GML problem (2.4) is a convex log-determinant-regularized semidefinite pro-
gram (log det-SDP) with respect to Jz and various gradient-based algorithms can
be applied to solve this problem, many of which have specialized implementations
on graphs, e.g. iterative proportional fitting (IPF) (Wainwright & Jordan, 2008),
chordally-embedded Newton’s method (Dahl et al., 2008), etc. The standard gradi-
ent descent algorithm for solving problem (2.4) has the following update rule at each

iteration:

T = (22 -200)}), i 4] (2.5)
T =y (B - @02, i=j
where ¢(J) is the GML objective function and V/(J) denotes its gradient, 7 is the
step-size, and we have used the facts % = 2(X™1);; for i # j and % -
(X71);; for symmetric matrices (Petersen et al., 2006). The obvious difficulty is
the global matrix inversion involved in computing the gradient at each step, whose
computational cost is cubic in the number of variables for generally structured models.
Given the expense of the matrix inversion in (2.5), an alternative is to consider
distributed message-passing algorithms, such as loopy belief propagation (LBP), an
iterative message-passing algorithm for inference of marginal distributions. When
applied to tree-structured graphs, LBP yields exact marginals. Unfortunately, this
does not hold for loopy graphs in general (Murphy et al.; 1999). For Gaussian mod-

els, many sufficient conditions exist for Gaussian LBP to converge, such as diagonal

dominance, walk-summablility, pairwise normalizability, etc. (Malioutov et al., 2006).
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However, when these sufficient conditions do not hold, Gaussian LBP can be diver-
gent, or it may converge to degenerate, unnormalized marginal distributions. A recent
work by Pacheco & Sudderth (2012) uses the method of multipliers to improve the
convergence behavior of Gaussian LBP for some less ill-conditioned models. How-
ever, even if LBP converges, its final estimate is not guaranteed to be consistent. For
discrete graphical models, Heinemann & Globerson (2012) show that many models
are in principle not learnable through LBP, which implies that an estimator based
on LBP inference is inevitably biased for a subset of models. Similar drawbacks also
hold when using other approximate inference techniques, for example, tree-reweighted
BP (Wainwright, 2006). The above difficulties of parameter estimation using tradi-
tional marginal inference techniques motivate us to consider a different distributed

framework for parameter estimation, as introduced in the next section.

2.3 Distributed Estimation in GGMs

Our framework avoids the weakness of LBP and other message passing approaches
to distributed estimation of GGMs. The proposed distributed algorithm collects all
the data samples from within each neighborhood and computes a local parameter
estimate. A global estimate of the parameter (e.g. precision matrix J) is then formed

by combining these local estimates with a simple, single pass aggregation rule.

2.3.1 Marginal Likelihood Maximization

We consider estimating local parameters by maximizing marginal likelihood functions
in neighborhoods around each node. Define the index set for immediate neighbors of

node 7 as

L :=A{j | (i,5) € E}, (2.6)
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| | ! - (c) Local relaxations (one-hop
(a) 2D lattice and two-hop (b) A general graph and two- (left) and two-hop (right)).
neighborhood N; hop neighborhood N; Dotted lines denote fill-in edges.

Figure 2.1: Illustration of defined sets in the proposed local relaxation of MML. In (a)
and (b) we show two different graphs, in which the two-hop neighborhood N for node
1 is indicated with dashed contours. The buffer set variables xz and the protected
set variables xp (excluding node i itself) are colored blue and red, respectively. For
the graph in (b), we illustrate the one-hop and two-hop local relaxations in (c). The
dashed red lines in (c) denote the fill-in edges due to relaxation.

and consider a neighborhood indexed by a set N; containing at least the node 7 itself
and its immediate neighbors Z;. Let K denote the concentration matrix corresponding
to the marginal distribution over the variables {x;, j € N;} in the neighborhood, and
let 3 NN, = %ZL xn; (t)xn; (t)T be the marginal sample covariance matrix. The

maximum marginal likelihood (MML) estimation problem in neighborhood N can

be formulated as:

FOMML _ arg min <§3M,Nw K) — logdet K
K,J
K=|(J"! B
s.t. = [ a } )
(™) won (2.7)

Jiw=0 V(k) ¢ E,

J >0,
where the first constraint represents the marginalization relationship between K and
the global precision matrix J, and the second line of constraints reflects the global

sparsity constraints. We index the nodes in the MML problem (2.7) in the same way

as in the GML problem (2.4). (For example, if N7 = {1, 3,6}, the rows and columns
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of K are indexed by {1, 3,6} and not re-indexed to {1,2,3}.)

The difficulty with direct application of MML is that problem (2.7) is in general a
non-convex optimization with respect to K and J. The non-convexity arises from the
coupling of the nonlinear marginalization constraint linking K to J and the sparsity
constraints on J. As a surrogate, we derive next a convex relaxation of the MML

estimation problem.

2.3.2 Convex Relaxation of MML

We apply the Schur complement identity to the marginalization constraint in (2.7),

yielding

-1
K=Jvxy—Jyye [Tnene] - Inen, (2.8)

where N¢ is the complementary set to A/, and we have dropped the subscript i to
simplify notation. Define the buffer set B C N as the set of all variables in N/ that

have immediate neighbors in the complement N,
B:={j|jeN and Z,N N # (}. (2.9)

The difference set between N and B is referred to as the protected set P := N\B.
The buffer and protected sets are illustrated in Figure 2.1(a) and 2.1(b). Due to the

Markov property, we have Jp y-c = 0. Decomposing A into B and P then reveals the
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sparsity pattern of K using (2.8):

0 -1
K:JNJ\/— [JNQNC] |: ()’ JNC,B ] s
J&NC‘
0 0
=Jyn— .
0 Jgne [Inene]  Ines
and hence
Kpp=Jppr, Kps=Jps, (2.10)
Kgp=Jss — Jgne [Ine el - Jye s (2.11)

An important observation from (2.10) is that in the rows and columns indexed by
the protected set P, the sparsity pattern of Jur n is entirely preserved and the local
parameters are equal to the global ones. On the other hand, the sparsity pattern in
the “buffer submatrix” Kz s is in general modified from Jz g due to the fill-in term,
i.e., the second term in (2.11).

Based on these observations, we now specify a relaxed set of constraints on the
marginal concentration matrix K. First denote the set of all local edges that are not

affected by the fill-in term in (2.11) as
EPt .= EN{{P x P}U{P x B}U{B x P}}, (2.12)

where the superscript stands for “protected”. We then add to EF™! all index pairs
B x B that could potentially be affected by fill-in in (2.11), resulting in a relazed edge

set R (see Figure 2.1(c) for illustrations):

R = E"™" U {B x B}. (2.13)
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In light of (2.10) and (2.11), any feasible marginal concentration matrix K for the
MML estimation problem (2.7) is guaranteed to be supported only on the set R.
Therefore we can relax the feasible set and formulate the following relaxation of (2.7)

at each node i, called the relaxed MML (RMML) problem:

KR — argmin (S v, K) — logdet K
K
st. Kjp=0 V (k) ¢R 249
K > 0.

The above RMML problem is a convex optimization with respect to K and has
the same form as the global MLE problem (2.4) but over matrices of much lower
dimension.

After solving the RMML estimation problems as surrogates to estimate local pa-
rameters, a global estimate of the concentration matrix can then be constructed by
extracting a subset of parameters from each local estimate and concatenating them.

Specifically, we extract the local parameter estimates indexed by

i.e., the non-zero entries in the ith row of J. We refer to the parameters indexed
by L; as the row parameters for node i. From (2.10), when there are no sampling
errors, i.e. T' — oo, the marginal and global concentration matrices are guaranteed
to share the same parameters in L;. Therefore our global estimate of J is formed by

concatenating local solutions of (2.14):
Jhelax o KR for i =1,...,p. (2.16)
The proposed RMML framework is very general and applies to many possible
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choices of local neighborhoods, which include, e.g., nearest neighbors, second-order
nearest neighbors, or, in general, k-th order nearest neighbors of a node 7. In the
following subsections, we consider one- and two-hop neighborhoods. The absence of

sampling errors is still assumed, i.e. T" — oo.

2.3.3 Case I: One-hop Estimator

We first consider a first-order (i.e., one-hop) neighborhood consisting of node i and its
immediate neighbors Z;, i.e., N; = {i} UZ;. Generically in the worst case where the
immediate neighbors are all buffer nodes, we have B; = Z;, and P; = {i}. The fill-in
term in (2.11) affects the submatrix Kz, 7,, leaving only the first row and column
untouched. In this case, since ¢ is by definition connected to all elements in Z;, the
relaxed edge set R; defined in (2.13) includes all possible pairs (see leftmost graph of

thop — A % M.

(]

Figure 2.1(c) for an illustration): R
The solution to the relaxed MML problem (2.14) for the first-order neighborhood

is simply the inverse of the local sample covariance,
~ ~ -1
Kithor — (ZMM) . (2.17)

The global estimate is obtained by combining the local one-hop estimates as in (2.16).

In the one-hop case, the proposed relaxed MML estimator reduces to the LOC
estimator in Wiesel & Hero (2012). As shown in Wiesel & Hero (2012), this esti-
mator is also equivalent to the pseudolikelihood estimator (Liang & Jordan, 2008)
without symmetry constraints, and the covariance selection procedure in Friedman

et al. (2008) when the graph is known.
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2.3.4 Case II: Two-hop Estimator

We next consider a second-order neighborhood (two-hop), N; that includes nodes that
are reachable from node ¢ within two hops. In this setting, the worst-case protected
set is given by P; = {i} UZ; and the buffer set B; = N;\P; consists of all nodes that
are exactly two hops away from the ith node. Hence B; can be thought of as the set of
second-hop nodes. In the two-hop case, the protected edge set E¥™! includes not only
edges between node i and its immediate first-hop neighbors, but also edges between
first-hop neighbors and between first- and second-hop neighbors (see Figure 2.1(c) for
an illustration).

Unlike in the one-hop case, the two-hop problem (2.14) does not admit a general
closed-form solution. However, as mentioned before, Eq. (2.14) can be solved using
efficient algorithms for semidefinite programming. A global estimate is obtained as

before by combining row parameter estimates (2.16).

2.3.5 Symmetrization of RMML Estimator

When 3 is estimated from finite sample sizes, the local estimates from the relaxed

Relax

MML problems are not perfectly consistent with each other. For example, j” ,

which comes from node i’s local estimate, may not agree with j?flax, which comes
from node j’s local estimate. Therefore the resulting global estimate JR9 in (2.16)
is not guaranteed to be symmetric.

A common way of addressing these discrepancies is to use iterative consensus
methods as in Wiesel & Hero (2012); Liu & Ihler (2012). In this work however, we

find that a single round of naive local averaging along edges is sufficient to ensure

convergence to the true parameters, and also to yield a good approximation to the
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global MLE. Specifically, the local average is given by
JRelax 1Aeax TRelax ..
T e S+ I3), (1) € B, (2.18)

which is the only message passing required. This message passing is single pass, unlike
LBP which requires several iterations (if it converges at all). In the one-hop case, the
resulting symmetric estimator coincides with the AVE estimator proposed in Wiesel

& Hero (2012).

2.4 Analysis

2.4.1 Asymptotic Analysis: Classical Fixed-Dimensional
Regime

First we analyze the proposed distributed RMML estimator in the classical asymptotic
regime, where the number of variables p is fixed while the number of samples T
goes to infinity. Let J* and X* denote the true precision and covariance matrices,
respectively. The following theorem states the asymptotic consistency of the RMML

estimator JRe and characterizes its asymptotic mean squared error:

Theorem 2.1 (Asymptotic MSE). The relazed MML estimator JBelar s asymptoti-

cally consistent, and its mean squared (Frobenius) error satifies

p
T B3R — 3* 3 =3 N [diag (FY)], (2.19)

i=1 jeL;

where T is the number of samples, diag(-) denotes the diagonal of a matriz, and F;

1s the Fisher information matriz of the relaxed MML problem in the ith neighbor-
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hood (2.14), which takes the following form:

(

QEml, m=nandl =k
(Fi)(m,n),(z,k) =25, m=nl#Fkorm#Fnl=k (2.20)
3 k2, otherwise.
\

The above result can be derived by applying classical asymptotic theory (Van der
Vaart, 2000) to each local RMML problem (2.14), which is a well-defined M-estimation
problem. Then the asymptotic behavior of the global RMML estimate follows by
aggregation. The detailed proof of Theorem 2.1 is provided in Section 2.8.1.

While Theorem 2.1 ensures the consistency of RMML estimators with arbitrary lo-
cal neighborhoods (as long as the row parameters are included), the following theorem
guarantees that, in the asymptotic limit, larger neighborhoods always yield reduced

estimation variance:

Theorem 2.2 (Monotonicity of Asymptotic MSE). Let JRelaz, k-hop pe the RMML
estimate obtained from k-hop local neighborhoods. When the number of samples T —

oo, for k=1,2,..., we have

EHjRelax, k-hop J*H2 >EHJRelax (k +1)-hop J*HF (221)

> B[ JEME — 3|2 (2.22)

While Theorem 2.2 is stated for Gaussian graphical models, it was first proven
for the case of discrete graphical models by Massam and Wang in Massam & Wang
(2013). As pointed out by Massam & Wang (2013), their proof can be easily extended
to the Gaussian case. For completeness, we include our own proof of Theorem 2.2 in
Section 2.8.2. The two proofs follow parallel lines of argument.

In Section 2.6, we present numerical results that verify Theorem 2.2 not only in
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the large-sample regime but also when the sample size 1" is comparable to or smaller
than p. In particular, it will be seen that the difference between £ = 1 and k = 2
hops is most significant while the difference between £ = 2 and the GML estimator

(and by extension k > 2 and GML) is much smaller.

2.4.2 Asymptotic Analysis: High-Dimensional Regime

Theorems 2.1 and 2.2 characterize the classical asymptotic behavior of the RMML
estimator. In this subsection we analyze the high-dimensional convergence rate of
the RMML estimator, which can be applied to settings where both the number of
variables p and the number of samples 7' increase to infinity, i.e. p,T — oco. Such
problems arise in high-dimensional applications, and have attracted much attention
in modern statistics (Ravikumar et al., 2011; Friedman et al., 2008; Rothman et al.,
2008). We will show that under very mild conditions, the proposed RMML estimator
enjoys a sharp MSE convergence rate to the true parameter, which is almost the same
as the more expensive global ML estimator.

Similar to Rothman et al. (2008); Ravikumar et al. (2011), we first assume that

the maximum eigenvalue of J* is bounded from above:

Amax(J%) < F < 0. (2.23)

Recall that R; defines the relaxed edge set in the i" local neighborhood. Let R denote

the maximum cardinality among all local relaxed edge sets, i.e.

R := max |Ry|, (2.24)

Z:L'“ap
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and let r denote the sum of the cardinalities of all local relaxed edge sets:

p
ri=> |Ri. (2.25)
i=1

Also denote & := max;—y,_, 2], as the maximum variance.
The following theorem states an upper bound on the estimation error rate in the

high-dimensional regime.

Theorem 2.3 (High-dimensional MSE). Assume the number of samples T satisfies

T > C?c; log p, (2.26)

for ¢1 = 640052 /min*{—L=, 405} and an arbitrary constant C > 1. Then

oV R’

. 1
T — 37 < 720C - B2y [ ;gp’ (2.27)

with probability greater than 1 — 4/p2(c2*1).

Proof of Theorem 2.3 can be found in Section 2.8.3.

Remarks:

1) It is interesting to compare the result in Theorem 2.3 with the standard conver-
gence rate for the GML estimator (e.g., Rothman et al. (2008); Ravikumar et al.
(2011); Wainwright (2009)). Theorem 2.3 assumes a very mild condition (Eq. (2.26))
on the sample size, which is less restrictive than the requirement O(plogp) shown
in Rothman et al. (2008) in the high dimensional regime, and is comparable to those
obtained in Ravikumar et al. (2011); Wainwright (2009) when the local neighborhood
size increases more slowly than p, i.e. R = o(p). However, we emphasize that, unlike
some of the literature, we assume the graph structure is known.

2) The error bound in Theorem 2.3 is (up to a constant) slightly more pessimistic
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than the rate O(y/plogp/T) shown in Rothman et al. (2008); Ravikumar et al. (2011)
by the additional factor of r/p = w, which is roughly the average cardinality of
local neighborhoods. Again, when the local neighborhood size increases more slowly
than p in the high-dimensional regime, this additional factor becomes relatively in-
significant.

3) The mild sample size requirement is partly due to our distributed framework, un-
der which the stochastic deviation is smaller since a smaller set of parameters needs
to be considered for each local RMML problem. However, the additional parameters
introduced by convex relaxation and the aggregation of local estimation errors result

in the additional factor r/p mentioned above. This demonstrates the trade-off due to

the desire for distributed, convex optimization in the proposed framework.

2.4.3 Robustness Against Model Mismatch

One of the premises of the estimation framework we consider in this chapter is that
the true structure of the graph is known. However, this assumption could be violated
in practice. In this section, we investigate the robustness of the estimators against
small structure mismatch. Our specific interest is in the bias due to model mismatch
and hence we focus on the infinite sample regime.

We first consider the GML problem. The GML estimator effectively provides
a mapping from the edge elements of moment (covariance) parameters > 5 to the

canonical (concentration) parameters j%ML We denote this mapping as M(-; E), i.e.,

j%ML = ./\/l(f), FE). This mapping is specified implicitly by the optimality condition:

S ((EGML> 1) =0 (2.28)

E

Due to a property of minimal exponential families, M(7E’) exists and is unique

provided that covariance matrix Y is positive definite (Wainwright & Jordan, 2008).

31



Also by the implicit function theorem, M(; E ) is differentiable and thus continuous.
Consider a perturbed concentration matrix J* which has uniformly bounded per-

turbations on the non-edge entries with respect to the nominal parameter J*:

T =T +AJ, (2.29)

where AJ is supported only on EC. We assume the perturbation is small enough,
such that the perturbed matrix is still positive definite. Denote the corresponding
covariance matrix as % = (j*)_l. Then the bias of the GML estimator due to
model perturbation can be obtained by a first-order perturbation analysis of the
GML mapping defined above.

Let I' = ¥ ® ¥ denote the Hessian of the GML problem (2.4) with no sparsity
constraints, which is also related to the Jacobian of (2.28) with respect to j%ML We

have

JOME = M(3;E)
= M((J) B)
= M((J*+AJ) L E)
= M(I* 4T e AT e + O(|AT|*); E)

= M(Z%E) + (P55 T aeAdge + O(|AT[?),

where in the second-to-last relation we have used the first-order approximation of
matrix inversion, and the last identity is due to the implicit function theorem applied
to the optimality condition (2.28). Also note that J* = M(X*; E) due to consistency
of the GML estimator.

Therefore the maximum element-wise bias with respect to the new model can be
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bounded as follows (disregarding higher-order terms):

||3GML _j*Hoo
< T = I e+ [T = T (2.30)

< ’H(FE,E)_IFE,EC

AT geloe + 18T gl

where we recall ||-|| is the induced oco/oco matrix norm.
The second term in the last display is the inevitable bias due to model mismatch,
while the first term captures the additional bias attributable to the GML estimator un-

der model perturbation. The additional bias depends on H)(I’ B 7 Tz

R which
is intuitively related to the level of incoherence between the edge and non-edge ele-
ments in the Hessian of the GML problem (2.4). Similar incoherence quantities have
been shown to play a crucial role in the literature on variable selection (Meinshausen
& Biithlmann, 2006) (e.g. Lasso) and structure estimation in Gaussian graphical mod-
els (Ravikumar et al., 2011). Therefore the smaller this incoherence parameter is, the
more robust the GML estimator will be.

Since each local problem in RMML estimation has the same structure as the GML
problem, we can apply similar analysis to each local neighborhood. The resulting
bound on the bias of the RMML estimator is dependent on similar incoherence pa-
rameters but defined with respect to relaxed edge sets in the local neighborhoods. We
conjecture that these local incoherence parameters are comparable to, if not smaller
than, the global incoherence. Hence the robustness of the distributed RMML esti-
mator is expected to be comparable to the GML estimator. While our conjecture
is not formally proven in this chapter, it is positively supported by the numerical

experiments in Sec. 2.6.
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2.5 Computational Complexity and Implementa-
tion

In this section we discuss the computational complexity of the proposed RMML ap-
proach and some implementation issues. First we note that each local RMML problem
has the same structure as the centralized ML problem, which is a log det-regularized
semidefinite program (log det-SDP). Therefore many well-developed solvers and effi-
cient specialized algorithms can be used. Furthermore, due to the distributed nature
of the RMML approach, the local problems can all be solved in parallel before the
final one-step averaging. The combination of lower dimensionality in the local prob-
lems and parallelization can significantly reduce the total run time compared with
centralized algorithms.

In terms of algorithms, we find the iterative regression method introduced in Fried-
man et al. (2009) is very efficient for sparse graphs. This algorithm iteratively per-
forms linear regressions of each node variable against its immediate neighbors until
global convergence. However, the major drawback of this algorithm is the need to
maintain global parameters, which prevents direct parallelization and also makes im-
plementation difficult in distributed networks (as discussed below).

The computational advantage of the proposed RMML algorithm becomes more
obvious when the number of variables p increases to large numbers. Assuming that
the local neighborhood dimensions increase more slowly than p, such as with K-NN
graphs and lattice graphs, the total complexity of the RMML estimator scales linearly
in p, independent of the algorithm used to solve the local problems. The run time
increases even more slowly if the overall algorithm can be parallelized. In contrast,
for the centralized algorithms, the dependence of complexity on p is at least linear
and is much faster for denser graphs and/or if generic log det-SDP solvers are used.

Another advantage of the proposed RMML algorithm is that it is highly suitable
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for network applications due to its minimal requirement for message passing which
reduces communication cost. In sharp contrast, many centralized algorithms, such as
the iterative regression algorithm mentioned above, require centralized storage and
iterative updating of a large number of variables, which in turn requires expensive

communication among non-adjacent nodes in the network.

2.6 Experiments

In this section, we evaluate the proposed RMML estimator and compare it with
the centralized and other distributed estimators in the literature. All methods have
been coded in Matlab routines that will be available at the reproducible research
web page 1. We focus on the one-hop and two-hop versions of the RMML estimator
(denoted as RelaxMML-1hop and RelaxMML-2hop, respectively). Other estimators

considered in this section are:
e The centralized GML estimator, denoted as GML in the legends;

e The LOCAL and AVE estimators from Wiesel & Hero (2012), denoted as LOC
and AVE. They coincide with the asymmetric and symmetric versions respec-

tively of the one-hop relaxed MML estimator;

e The weighted maximum pseudo-likelihood estimator using Alternating Direc-
tion Method of Multipliers (ADMM) consensus, proposed in Wiesel & Hero
(2012) and Liu & Ihler (2012) and denoted as PML-ADMM. We use the weights
[jiL’iOCr as in Wiesel & Hero (2012).

We first verify the classical asymptotic rates for the proposed estimators predicted
by Theorems 2.1 and 2.2 (see Fig. 2.2) using 10,000 randomized runs sampled from

a four-nearest-neighbor Gaussian graphical model with p = 20 nodes distributed

lhttp://tbayes.eecs.umich.edu/rrpapers
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Figure 2.2: Asymptotic normalized MSE for K-NN graphs (p = 20, K = 4). The
curves denote the theoretical asymptotic limits, whereas the symbols denote the em-
pirical normalized MSE over 10,000 runs.

uniformly in space over the unit square. The concentration matrix is initialized as

Ji; = £exp(—0.5-d; ;) with random sign, where d; ; is the Euclidean distance between

the ith and jth nodes. The empirical normalized mean squared errors (MSE), defined

¢ 13-313

e are computed from Monte Carlo samples, and they are compared with the
F

a
theoretical bounds predicted by Theorem 2.1. Fig. 2.2 illustrates the tightness of these
bounds. It is also worth noting that the bound for the two-hop RMML estimator is
much lower than that of the one-hop estimator, as predicted by Theorem 2.2. The
two-hop bound approximates the bound for the GML estimator closely, suggesting
that RMML estimators are nearly asymptotically efficient. The asymptotic bounds
for RMML estimators with larger neighborhoods follow the monotonicity relation in

Theorem 2.2, however the differences are too small to visually identify, and hence are

omitted from the plot.
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Next we evaluate the non-asymptotic MSE performance of the proposed estimator,
and compare it with the other estimators on both synthetic and real-world data sets.
For synthetic data sets, we consider three classes of graphs that are motivated by real-
world applications. For each class we follow similar experiment settings as in Wiesel &
Hero (2012). Specifically, we randomly generate 20 topologies and associated sparse
concentration matrices J, and for each J, we perform 10 experiments in which random
samples are drawn from the distribution and the concentration matrix is estimated
from the samples. The normalized MSEs are averaged over all 200 experiments, and
are reported in Figure 2.3. An illustration of the graph topology is shown in the

top-right corner of each plot. The classes of graphs we consider are:

e K-NN graphs (Figure 2.3(a)): A K-nearest neighbor graph is a straightfor-
ward model for real-world networks whose measurements have correlations that
depend on pairwise Euclidean distances, e.g., sensor networks. For these exper-
iments, we randomly generate p = 500 nodes uniformly over the unit square.
Each node is then connected to its K-nearest neighbors, where K = 4. The
concentration matrix is initialized as J; ; = £ exp(—0.5-d; ;) with random sign,
where d; ; is the Euclidean distance between the ith and jth nodes. Finally we

add a small value to the diagonal to ensure positive definiteness.

e Lattice graphs (Figure 2.3(b)): A lattice graph is appropriate for networks
with regular spatial correlations, e.g., images that are Markov random fields.
We generate a square lattice graph with p = 20 x 20 = 400 nodes and edge
weights generated as J;; = min{w, 1}, where w is a normally distributed ran-
dom variable with mean 0.5 and variance 0.2. A small value is added to the

diagonal to ensure positive definiteness.

e Small-world graphs (Figure 2.3(c)): Small-world graphs have been proposed

for social networks, biological networks, etc., where most nodes have few imme-
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diate neighbors but can be reached from any other node through a small number
of hops (Watts & Strogatz, 1998). We generate graphical models structured as
random small-world networks using the Watts-Strogatz mechanism (Watts &
Strogatz, 1998) with p = 100, K (mean degree) = 20, and parameter 5 = 0.5.
Under this particular setting, a large fraction of nodes have large second-hop
neighborhoods with dimension close to p. In general we expect the second-hop
neighborhood to scale linearly with respect to p. We choose the edge weights to
be uniformly distributed and also add a small diagonal loading to ensure that

J is positive definite.

The MSE curves shown in Figure 2.3 match our theoretical predictions in Sec-
tion 2.4.2, and they also demonstrate the superior performance of the proposed
RMML estimator. In particular, for the graphs that have relatively small two-hop
neighborhoods, namely the K-NN graphs and the lattice grids, the MSE of the pro-
posed two-hop relaxed MML estimator almost coincides with the MSE of the global
MLE. On the other hand, for small-world networks, the dimensions of the two-hop
neighborhoods grow as fast as p. In this case, a noticeable gap emerges between the
global MLE and the two-hop relaxed MML estimator. These graphs are known to be
harder to learn through distributed algorithms. The two-hop relaxed MML estimator
still outperforms the other distributed algorithms by a large margin.

Next, we apply the estimators to a real-world sensor network. The IntelLab
dataset (Guestrin et al., 2004) contains temperature information from a sensor net-
work of 54 nodes deployed in the Intel Berkeley Research lab between February 28
and April 5, 2004. This dataset is known to be very difficult with missing data, noise
and failed sensors. We select 50 sensors with relatively stable and regular measure-
ments. To obtain a target concentration matrix, we use 1800 consecutive samples
per sensor, interpolate the missing or failed readings and de-trend the data using a

local rectangular window of 10 samples. Next, we compute the sample covariance
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Figure 2.3: Normalized MSE in the concentration matrix estimates for different graph-
ical models. The legend in Figure 2.3(d) applies to all plots. The proposed 2-hop
relaxed maximum marginal likelihood (RMML) estimator clearly improves upon ex-

isting distributed estimators and nearly closes the gap to the centralized maximum
likelihood estimator.
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and invert it to obtain a sample concentration matrix. This concentration matrix
is then thresholded to yield a ground truth graphical model with a sparsity level of
70% zeros. Using knowledge of the sparsity and sampling from the original 1800
samples, we estimate the concentration matrix using the same estimators as before.
As shown in Figure 2.3(d), the proposed two-hop relaxed MML estimator still gives
a very tight approximation to the centralized GML estimator and its advantage over
other distributed estimators is obvious.

We investigate the robustness of the centralized and distributed estimators in the
presence of model mismatch. The nominal precision matrix J corresponds to a four-
nearest-neighbor graphical model with p = 200 as in the previous experiments. We
add £0.1 random perturbations to the non-edge components of the nominal precision
matrix (also with minimal diagonal loading to ensure positive definiteness), then
generate samples from the perturbed model. The different estimation algorithms are
applied assuming the nominal graph structure and the resulting MSEs are plotted
with respect to the nominal model. The MSEs of all estimators (using samples from
both the original and perturbed models, respectively) are reported in Figure 2.4. All
errors are averaged across 50 randomized experiments. As can be seen, the model
mismatch leads to estimation bias for both centralized and distributed estimators.
The magnitudes of the model mismatch bias for all estimators are comparable, as
predicted by the theoretical analysis in Sec. 2.4.3. These experiment results confirm
the robustness of the proposed distributed algorithm.

We next turn to computational comparisons. In the following experiments, we
illustrate the computational gain of our distributed estimator over the centralized
one through two runtime comparisons performed in Matlab. Our main focus is on
the relative scaling of the runtime with respect to the number of nodes p for different
estimators. We consider two algorithms for solving both the centralized GML problem

and the local RMML problems. The first is an interior point algorithm implemented
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Figure 2.4: Robustness of estimators under model mismatch. All errors are obtained
from K-NN (p = 200, K = 4) graphs and averaged over 50 experiments. For the
perturbed models, +0.1 is added to the non-edge components of the nominal preci-
sion matrix. The proposed distributed RMML estimator is as robust as the GML
estimator.
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in the solver logdetPPA (Wang et al., 2010), which is specially designed for solving
log det-SDPs. The second algorithm is the iterative regression approach in Friedman
et al. (2009) for solving the covariance selection problem (Friedman et al., 2008)
with known structure. In both experiments, the graphical model is a four-NN graph
with similar parameter settings as before. We compare the total runtime of the
GML estimator and that of different versions of RMML estimators. For the RMML
estimators, we implement a sequential and a parallel version using the parfor function
in Matlab. The results are reported in Figure 2.5. As expected, the runtime of the
GML estimator is at least linear in p and the generic solver appears to be much
more expensive than the iterative regression algorithm for this particular task. The
total cost of the RMML estimator without parallelization is also linear in p, and is
slightly higher than the GML estimator. However, when four-core parallelization is
used, the run time is approximately reduced by a factor of four, resulting in lower
computational complexity after p > 500.

It is expected that with a higher degree of parallelization, the run time of the
proposed RMML estimator will continue to decrease almost linearly with the number
of cores. As discussed in Section 2.5, all local RMML problems can be solved in
parallel without the need for any iterative message-passing. Therefore the communi-
cation overhead is minimal, consisting of the final concatenation and symmetrization

steps (2.16) and (2.18).

2.7 Summary of Chapter 2

We have proposed a distributed MML framework for estimating the concentration
matrix in Gaussian graphical models. The proposed method solves a convex re-
laxation of a marginal likelihood maximization problem independently in each local

neighborhood. A global estimate is then obtained by combining the local estimates
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Figure 2.5: Run time comparisons for GML and RMML estimators. In panel (a) the
logdetPPA solver is used, and in panel (b) the iterative regression algorithm is used.
In both figures, solid lines denote the runtime scaling of the sequential version of the
algorithm, while the dashed lines denote runtime scaling for a parallelized version
with four cores. In both figures, the runtime of the GML estimator is super-linear in
p, while the RMML estimator exhibits linear scaling in p, and the runtime is further
reduced by a factor approximately equal to the number of cores used. All experiments
are implemented in a Matlab environment.
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via a single round of local averaging. The proposed estimator is shown to be statis-
tically consistent and computationally efficient. In particular, we have shown that
the statistical convergence rate of our estimator is comparable to that of the more
expensive centralized maximum likelihood estimator. Likewise in numerical experi-
ments, a two-hop version of the distributed estimator is seen to be sufficient to attain
centralized performance. Its improved performance relative to existing distributed

estimators is also illustrated.

2.8 Proofs for Chapter 2

2.8.1 Proof of Theorem 2.1

Proof. Consider the following set of sparse positive semidefinite matrices with respect

to a non-zero element set R:
Kf={K|K > 0,Kgx =0,Y(,k) ¢ R}

We first note that, when R is taken to be the relaxed edge set of a neighborhood
as defined in (2.13), then the true marginal concentration matrix corresponding to
the neighborhood, K* = (Ej‘\,’N)_l, must belong to the set . This can be seen
from the fact that the true global concentration matrix J* conforms to the sparsity
pattern specified by E and from relations (2.10) and (2.11). Therefore the proposed
relaxed MML problem (2.14) is equivalent to a standard ML problem with respect
to a GGM distribution parameterized by matrix K € K, with K* being the popu-
lation parameter. Then the asymptotic consistency, normality and efficiency of the
proposed relaxed MML estimator (with respect to the local problem) all follow from
the standard asymptotic analysis of the ML estimator Van der Vaart (2000). In par-

ticular, the variances of the errors achieve the diagonal elements of the inverse Fisher
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information matrix F defined in Eq. (2.20) (see Johnson (2006) for the derivation).
Finally by extracting and summing the variances corresponding to the row param-
eters, we obtain the expression for the asymptotic mean squared Frobenius error of

the proposed global estimator JRelx, O

2.8.2 Proof of Theorem 2.2

Proof. We first consider the case of k£ =1, i.e., we compare the asymptotic variances
of the one-hop and two-hop RMML estimators. Subsequently we generalize the ar-
guments to £ > 1 and to the global ML estimator. Suppressing the index ¢ for local
neighborhoods, let B, N7 be the sets of buffer and all nodes (i.e. variables) with
respect to the j-hop neighborhood, respectively (j = 1,2).

Next we define some set notation for edge parameters. Let E’ = EN (N7 x NY)
denote the subset of edges in E with both endpoints in N7. Let BJ be the set of all
possible edges connecting j-hop buffer nodes, i.e. B := B/ x B7. Recall from (2.15)
that L denotes the set of row parameters, which is defined as L = E'\B!. Finally
note that the (j-hop) relaxed edge sets defined in Eq. (2.13) are related to the above
two sets as R/ == B U BJ, j =1,2.

We augment the two-hop neighborhood graph by adding all edges among one-
hop buffer nodes and among two-hop buffer nodes that are not already in E? (see
Figure 2.6 for an illustration). This augmented edge set is denoted as E? := E?U
B''U B%. After this augmentation, the one-hop buffer clique B! separates the two-
hop neighborhood graph into two components and a non-overlapping decomposition

follows:

(&

E? = [L,B*, (EQ\AEl) U B, (2.31)

C1=R!

where we define two subsets C} and C5. The augmented two-hop neighborhood graph
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is therefore decomposed by (C1\B*, B!, Cy\B') (Lauritzen, 1996, Def. 2.1).

Figure 2.6: Ilustration of the graph augmentation in the proof of Theorem 2.2.
Dashed red lines indicate the added edges, and dashed blue contours indicate the sets
C1 and Cs, which intersect at the one-hop separator clique formed by red nodes.

Similar to Theorem 2.1, the asymptotic error covariance matrix of the RMML esti-
mator for the augmented two-hop neighborhood is the inverse of corresponding Fisher
information matrix (FIM), denoted as F. By Proposition 5.8 in Lauritzen (1996), the
decomposability of the augmented graph leads to the following decomposition of the

inverse of FIM:

—1

F = [(FCLC’l)il]O + [(Fcz,cz)il}o

— [(FBl,Bl)fl]o )

where [-]° appropriately zero-pads its argument to conform to the dimensions of F

Restricting this relation to the row parameters L, we have

=1

FL,L = (FCLCl)Z,lL’ (2-32)

since the row parameters are only contained in C. Noting that set C is equivalent

to the one-hop relaxed edge set R!, then
_71 p— _ p— _
Frp=Fca)rn = Frm)ip (2.33)
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Therefore, from Theorem 2.1 we have that the asymptotic mean squared error of
the RMML estimator using the augmented graph is the same as that of the one-hop
RMML estimator.

On the other hand, the augmented edge set E? is different from the relaxed edge
set R? only in the one-hop buffer clique B!. Therefore another possible decomposition

of the augmented edge set is (after re-ordering):

E? = [L,E"\L,(E*\E')uU B*, B\E"], (2.34)
h B2 s D
R

where we define the difference set as D. Then using a property of Schur complements
of positive semidefinite matrices, the variance matrix corresponding to R? (i.e. the

non-zero pattern of the two-hop RMML estimator) satisfies

—=—1 — = — R —1
FRQ’RQ - (FRQ,RQ - FRQ,D(FD,D> lFDﬂz)

= (Frem) (2.35)

Restricting this relation to the submatrix indexed by set L, we have

leL = (FRZ,RQ);}L' (2.36)

Now combining Eq. (2.33), Eq. (2.36) and Theorem 2.1, we can conclude that the

asymptotic variance of the one-hop RMML estimator (i.e. the mean squared error)
is larger than that of the two-hop estimator.

Similar arguments can be established for comparing the asymptotic variances of the

two-hop RMML and the GML estimators, which shows that the asymptotic variance

of RMML estimator is larger than that of the GML estimator. The above proof can

be easily generalized to arbitrary k-hop neighborhoods.
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2.8.3 Proof of Theorem 2.3

The key ingredient in proving Theorem 2.3 is the following lemma, which provides a
bound for the error of the RMML estimator K&* (2.14) in a given local neighbor-
hood (the neighborhood index i is suppressed). Let X* be the true global covariance
matrix, and K* be the true marginal precision matrix corresponding to the given

neighborhood.
Lemma 2.1. For a given local neighborhood N, if

- 1
H (2<T> - 2*) H Cen < —, (2.37)
Rlloo 9%+/|R|

we have

HKRelax —K*

= IR e/ |R|. (2.38)

The proof of Lemma 2.1 is given in Section 2.8.4. The above lemma is deterministic

in nature. To ensure that assumption (2.37) is satisfied with high probability when

~

the sample covariance () is random, we make use of the following concentration

result for Gaussian random variables by Ravikumar et al. Ravikumar et al. (2011):

Lemma 2.2. For a p-dimensional Gaussian random vector with covariance matriz

3, the sample covariance matriz obtained from T samples 5 satisfies

(T * T-é
P{ISD - 51 > ef <dexp (_W , (2.39)

for all e € (0,407), where T := max;— ., 3; ;.

Now we are ready to prove Theorem 2.3.
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Proof. (Theorem 2.3) Given the condition (2.26) on 7', we have

320057 log p?
(J\/U#ng < 405. (2.40)

Then applying Lemma 2.2 and the union bound, we have

—2
Rill, =V T
=2
> P{Him _xr| <oy e 10gp2} (2.41)
- o T

> 1= p2C-1)°

Conditioned on the event in (2.41), condition (2.26) also guarantees that (2.37) holds

for all local neighborhoods. Then the total Frobenius error in the global estimate

1/2
2)
F

» 1/2
(i) SRelax | 1os
: (Zn(KRl K m@)
=1
2
(Lem. 2.1) p 2| 7. 2
2y (9@2 . \/32000 |7]?l\logp )

=1

< 720C - EZE\/H;gp,

where identity (¢) is due to the fact that the global estimator is a concatenation of

JRelax can be bounded by Lemma 2.1

. p N
HJRelaX o J*HF g <Z ||(JRelax _ J*)Lz
=1

1/2

non-overlapping row parameter sets (see Eq. (2.15) for definition of L;’s), equality

(ii) is due to our construction of JR* from KRelax (see Eq. (2.16)), and the fact that

row parameters are always protected. ]
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2.8.4 Proof of Lemma 2.1

Proof. The main idea of this proof is inspired by Rothman et al. (2008). The difference
is that we focus on the local RMML problem, rather than the global ML problem
(which is studied in Rothman et al. (2008)). Define the marginal likelihood function
for a local neighborhood N as L(K) = (25\%\/, K) —log det(K), where we super-script
the sample covariance to emphasize that it is obtained from T' samples.

Recall K* := (Ej\/ N)_l is the local marginal precision matrix. Define the short-
hand notation for the local RMML estimate as K := KRelax,

Consider the function Q(A) := L(K*+ A) — L(K*), where A respects the sparsity
structure of the RMML problem, i.e. Agrec =0 and A = AT, Let 0 <6 < & be a

given radius, define the following set
C(6) :=={A | Age =0,A = AT |A||r = 6}, (2.42)

where R is the local relaxed edge set. Note that C(J) defines a sphere, not a ball.

Note that Q(A) is a convex function of A. By construction we have Q(0) = 0, and
the optimality of KR implies that Q(A) < Q(0) = 0, where we define A := K—K*.
Then if we can establish that

inf Q(A) >0,
A€C(5)

then the optimal error matrix A must lie inside the sphere defined by C(§) by convexity
of Q, implying that ||Al|z < 8. Now it suffices to find a suitable radius § > 0 such

that Q(A) is lower-bounded from zero for all A € C(9).

Since

Q(A) = LIK"+A) — L(KY)

= (ZiF )\ A) — (log det(K* + A) — log det (K*)).
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Similar to Rothman et al. (2008), we make use of the Taylor’s theorem for the log det(+)

function

log det(K* + A) — log det(K*) = ((K*)™, A)—

1
- —
AT V (1-t)(K* +tA) ' o (K" +tA)dt| A, (2.43)
0
%
where ® denotes the Kronecker product, and A is the properly vectorized form of
matrix A.

Using this identity, we have

1
Q(A) = (B — (K7 A) AT {/ (1— 0K +tA) ' @ (K +tA)ldt| X
~~ - 0
Tl '
Ty

J/

(2.44)

Next we bound T} and T, defined above separately.
For T3, notice that the difference matrix A is non-zero only in a restricted set R,

therefore it reduces to a lower-dimensional inner product:

N (@) Eq.(2.37)
T = ((ED = =)p, Ap)| < (BT =Szl - [ArlL < e VIR |A]lr,
(2.45)

where (7) is due to the duality between norms || - || and || - [|1.
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For Ty, we follow similar derivations as in Rothman et al. (2008):

1
Ty > ||AlI% - Ain (/ (1-t)(K*+tA) ' ® (K" + tA)_ldt)
0

—~

1) 1
2 AR / (1— 02, (K° +tA)™) di

> _HAHFor?tlnl )\mln ((K* + tA)_l)

@ 2 2 * | AN—1

> IANE min %, (4 B)7) (2.46)
NP,

Z—IIAHF min [[K*+ A3

IAllF<é

1 . P
> A% min K2+ [A]R) ’

[Allr<é

~ 1
—IIAIIF mm ( +[|AlF) 7 = = lAl7,
8k

IAllF<é

(m‘)

where (i) follows the eigenvalue property of Kronecker product, (i¢) is due to the fact

that A € C(9), (4i7) is due to the interlacing property of eigenvalues of sub-matrices

1 1
H ||2 Amin(EX[,N) = >\min<2*) H ||2 K, (2.47)

The last inequality is due to construction, i.e. § < R.

Now Q(A) can be bounded by

Q(A)

Y]

1
—es VIRT- 1Alr + 1Al (245)

~ 181l (geallalle = s+ VIAT) (2.49)

The proof is complete if the RHS can be lower bounded away from zero. It can
be verified that with the choice of ex as in (2.37), letting & = 9x%ex+/|R| suffices.
Therefore ||A||p < 0 = 9R2es/|R].
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CHAPTER 3

Distributed Principal Component

Analysis in Directed Graphical Models

In this chapter, we continue to develop the distributed estimation framework for
graphical models, but focus on directed Gaussian graphical models. We introduce an
efficient algorithm for performing distributed principal component analysis (PCA)
in directed Gaussian graphical models. By exploiting structured sparsity in the
Cholesky factor of the inverse covariance (concentration) matrix, our proposed al-
gorithm accomplishes global principal subspace estimation through local computa-
tion and message passing. We illustrate the computation/communication advantages
of the proposed algorithm through a simulated online estimation example and an

anomaly detection example in a real-world network.

3.1 Introduction

We consider distributed principal component analysis (PCA) in directed Gaussian
graphical models. As a widely used dimensionality reduction technique, PCA es-
timates the principal subspace from data samples. The principal subspace is the
low-dimensional subspace spanned by the leading eigenvectors of the data covariance
matrix. The projected data onto this subspace preserves most of the covariation of

the data, thus the principal components are often used as compressed representation
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of the original data (Anderson, 1958). The difficulties in implementation of PCA on
large-scale and networked data include the heavy computation burden of eigenvalue
decomposition (EVD) and the massive communication cost required for processing
data at a fusion center. Aiming at overcoming these bottlenecks, distributed and
decentralized implementations of PCA have been proposed for applications such as
distributed estimation and tracking in wireless sensor network (Gastpar et al., 2006;
Li et al., 2011), computer vision (Tron & Vidal, 2011) and anomaly detection in
computer networks (Huang et al., 2006b; Wiesel et al., 2010).

In this work we consider the case that the variables are governed by a graphical
model. Such models represent conditional dependencies between variables by edges
in a graph (Lauritzen, 1996). When the graph is sparse and the variables are jointly
Gaussian, the graphical model imposes sparsity on the inverse covariance, variously
called the information, concentration or precision matrix. Such a representation en-
ables distributed and efficient inference algorithms, such as the well-known junction
tree algorithm (Jordan & Bishop, 2001) and belief propagation (BP) (Pearl, 1988).
When the topology (local dependency) of the graphical model matches the topol-
ogy (local data passage) of internode communication, superior performance can be
achieved at significantly reduced computational cost as compared to the global cen-
tralized approach. In applications such as those mentioned above, often there is a
good match between local dependency and local data passage, e.g., in geographically
distributed networks of sensing devices. The premise of this chaper is that the model
topology and communication topology are matched. Such an assumption is common
in other decentralized formulations of networked estimation, e.g, BP via message
passing in imaging and networks. Even in the case of approximate modeling, it is an
approach to tradeoff precision for complexity through leveraging the computationally
efficient inference algorithm.

Since PCA can be interpreted as maximum likelihood (ML) estimation of the
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covariance followed by its EVD, the first goal of distributed PCA is therefore to
perform distributed covariance estimation. However, it is well-known that the dis-
tributed maximum likelihood covariance estimation problem has no closed form so-
lution (Wiesel et al., 2010). In the special case of chordal graphs (also known as
decomposable or triangulated graphs), a closed-form distributed covariance estima-
tor exists, and a distributed PCA algorithm called DPCA can be implemented for
exploiting sparsity in concentration domain (Wiesel & Hero, 2009).

This chapter extends the DPCA framework to directed graphical models, and
we call this extension Distributed Directed PCA (DDPCA). Instead of assuming
sparsity in the concentration matrix, it assumes sparsity in Cholesky factor of the
concentration matrix. This assumption leads to a more parsimonious representation
when the Cholesky factor specifies a generative model for the observations in terms
of a white noise process (Smith & Kohn, 2002). This proposed approach results
in closed-form distributed covariance estimation and reduced inference complexity
in terms of computation/communication. The DDPCA algorithm can equally be
applied to non-directed decomposable graphical models by using a sparsity-preserving
Markov-equivalent conversion. More specifically, DDPCA first performs distributed
regressions to estimate a rank reduced covariance matrix. Then a distributed iterative
EVD algorithm is implemented based on an efficient matrix-vector multiplier that
fully exploits sparsity structure. We also show that this matrix-vector multiplier
coincides with a specific Cholesky-parametrized sum-product algorithm on Gaussian
DAG models, which is provably convergent and exact for inference of marginal means
and also for solving DAG-sparse linear systems.

The outline of the chapter is as follows. In Section 3.2 we briefly review directed
Gaussian graphical models and state our problem. A two-step DDPCA algorithm is
introduced in Section 3.3. In Section 3.4, we interpret the proposed matrix-vector mul-

tiplier as a specific Cholesky-parametrized sum-product algorithm and then compare
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DDPCA with DPCA algorithm in Section 3.5. We illustrate the improved properties
of DDPCA in an online subspace estimation problem in Section 3.6, and apply it to
the task of distributed anomaly detection in a real-world computer network in Section
3.7. We conclude the chapter with a summary in Section 3.8.

The following notation is used in Chapter 3. Boldface upper case letters denote
matrices, boldface lower case letters denote column vectors, and standard lower case
letters denote scalars. The superscripts ()7 and (-)~! denote the transpose and matrix
inverse, respectively; and (-)~7 means the transpose of inverse. The cardinality of a
set a is denoted by |a|, the difference of two sets is denoted as a\b. We use indices in

the subscript x, or X,; to denote sub-vectors or sub-matrices, respectively.

3.2 Problem Formulation

Graphical models are compact representations of the conditional independencies be-
tween subsets of the random variables of multivariate distributions. Two common
classes of graphical models are directed graphical models (also known as Bayesian
networks), and undirected graphical models (also known as Markov Random Field).
Our focus is on directed models, and first we give a brief review. We refer the readers
to Lauritzen (1996) for more detailed introduction to graphical models.

A directed graphical model is denoted by a graph G = (V, ), where V is the set
of nodes (or vertices) and all edges in the edge set £ are directed. Two vertices i and
j are adjacent if there is an edge between them. If ¢ — j, then i is called a parent
of j and j is called a child of i. The set of parents of 7 in G is denoted as pa(i), and
ch(i) denotes the set of its children. We assume no directed cycle exist in the graph,
therefore the model is also called directed acyclic graph (DAG) model. However, loops
or cycles in the underlying undirected skeleton are allowed.

A p-dimensional random vector x satisfies the Markov property with respect to a
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DAG model G, if the conditional independencies between the variable x;’s are encoded
in G through the notion of d-separation Lauritzen (1996). Applying the Markov

property on the DAG results in the following factorization of joint distribution of x,
F&x) =[] f @i 1 %pa0)- (3.1)
i€V

The DAG corresponds to a certain partial ordering of the variables, therefore is
suitable for modeling spatial or temporal dependent random variables. Each variable
only depends on a subset of its previous variables, denoted as its parents nodes in the
DAG model, i.e.

;= f(@1,...,2i01) + & = [(Xpapi)) + €, (3.2)

where ¢;’s are uncorrelated residuals.
Assuming the random variables are jointly Gaussian distributed with zero mean,

the dependency reduces to the following recursive linear system Wermuth (1980):

T = Z ANirTrp + €, 1=1,..,p. (3.3)

kepa(t)

Define a lower triangular matrix A with zero diagonal and

Ay — 0 if k¢ pa(i) (3.0

A if k € pa(i),

then the above linear system (3.3) can be written as
x = Ax +e. (3.5)

This linear equation leads to the following well-known diagonalization of the co-
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variance matrix ¥ = E(xx?) Smith & Kohn (2002); Riitimann & Biihlmann (2009):

I-AZI-A)" =0, (3.6)

where €2 is a diagonal matrix denoting the variances of residual ¢;’s.
It is convenient to define the modified Cholesky factor (also called the Backward

Cholesky factor) of the concentration matrix J = 37!, denoted as L and defined as:

L'L=J=%"" (3.7)

From (3.6), we have

L=Q 2I-A). (3.8)

It is easy to see that L shares the same lower-diagonal nonzero pattern as A, which
characterizes the topology of the DAG G through (3.4). This fact indicates that, for
directed Gaussian graphical models, the conditional independencies between variables
translate to zeros in the Cholesky factor of the concentration matrix J.

Now we can formulate our problem. The input to our algorithm is a set of 1" real-
izations of a random vector x modeled by a known Gaussian DAG model G: {x[t]}L;.
We assume that there are p units, or agents, that collect and process the data in a
distributed manner. Each agent i only collects and processes all the T" samples of the
i-th component (or sub-vector) {x;[t]}L_,. Agents can perform computation (called
local computation) and communicate with their neighbors (called local communica-
tion) defined by G. Using local data samples and local computation/communication,
our goal is to perform global estimation of the principal subspace spanned by the
first r leading eigenvectors of the covariance matrix. In other words, our algorithm
searches for the the linear combination X = VTx having maximal variance, where

V e RP*7,
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We emphasize that, although we sometimes user scalar notation x; for simplicity,
the proposed framework and algorithm can be easily generalized to multivariate case,
where each node of the graphical model (i.e. each agent) corresponds to a of random

sub-vector x;.

3.3 Algorithm

As discussed above, the classical centralized PCA algorithms are not scalable for gen-
eral high-dimensional problem or networked data, due to the intensive computation,
communication and storage costs of covariance estimation and EVD algorithms ap-
plied to a potentially dense covariance matrix (or its inverse). The proposed Directed
Distributed PCA (DDPCA) algorithm enables decentralized computation by exploit-
ing sparsity in the Cholesky factor of the concentration matrix, and the complexities
and costs only scale with respect to local dimensions.

DDPCA is a two-step algorithm. In the first stage, the Cholesky factor of the
concentration matrix is estimated through local regressions. Then in the second stage
the leading eigenvectors are estimated through an iterative EVD algorithm based on

a distributed matrix-vector multiplier that exploits the estimated Cholesky factor.

3.3.1 Step I: Distributed Covariance Estimation

As mentioned before, given a random vector x that satisfies a DAG model, the condi-
tional independencies among its components translate to zeros in the Cholesky factor
L of the concentration matrix J. Since the inverse covariance matrix is fully char-
acterized by L (or equivalently, A and €2), a simple approach for inverse covariance
estimation on such DAGs is to perform distributed regression (3.3) of each node on

its parents to estimate the parameters in L. The procedure is illustrated in Algorithm
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1, where we define the local covariance matrices as:

S ,pa(z = Z Xpa z ] (39)

Algorithm 1: Distributed covariance estimation on DAGs

Input: Gaussian distributed samples {x[t]}L ;, DAG G
Output: Estimated Cholesky factor L

for all agenti € {1,2,...,p} do

Collect {Xpqi[t]}2; from parents

Calculate local sample covariance (3.9) and (3.10)

Al patiy = Spatiypatiy Srati

ilf] = milt] - Az,pa(z)xpam i
Qi = 5>, &lt1el [t
L=, vz, Ayj, for j € pa(i)
L — 6,

In fact, this procedure results in the maximum likelihood estimation Wermuth
(1980). Upon completion, each agent has its corresponding local component of the
matrix I:, i.e. the 7, row, [I:]l

This distributed regression-based covariance estimator is feasible for temporally
recursive estimation, e.g., by using recursive least squares (RLS), which can enable
online estimation or fast distributed principal subspace tracking in time-varying sce-
narios. The covariance estimation procedures can also be easily extended to the sce-
nario of unknown graph structure by adopting penalized regression for regularization

and variable selection Shojaie & Michailidis (2010); Huang et al. (2006a).
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3.3.2 Step II: Distributed Principal Subspace Estimation

The second stage of DDPCA is a distributed implementation of an iterative EVD
algorithm to estimate the leading eigenvectors of the covariance matrix. Among
many EVD algorithms designed for symmetric matrices, in this chapter we focus on
the most simple yet prevailing one, the Power Iteration. For searching the leading
eigenvector of the covariance matrix 3, in the t-th iteration of Power Iteration, current
estimate of the eigenvector v(*) is multiplied by ¥, the result is then normalized as

the input of next iteration, i.e.

t+1) _ u®

() — 5y®
u’’ = Xv = .
[Juf]|

;v (3.11)

Under mild assumptions (such as separation of the true leading eigenvalues), the
estimate converges to the true leading eigenvector at a linear rate (Golub & Van Loan,
1996).

The most expensive cost for performing the Power Iteration is the repeated matrix-
vector multiplication, especially for large-scale or network data. The proposed
DDPCA decentralizes this computation through the use of an efficient distributed
matrix-vector multiplier that exploiting sparsity pattern of the estimated Cholesky
factor L. We will elaborate this multiplier in the next section.

The norm calculation and scaling operation in (3.11) could be done in a distributed
manner via average consensus (Li et al.; 2011) or message-passing on the DAG under
serial scheduling (e.g. from root to leaves then back to root). The cost is negligible
comparing with the matrix-vector multiplication.

For estimating the principal subspace, a extension of Power Iteration, namely
Orthogonal Iteration could be used for searching multiple leading eigenvectors. In
each iteration, matrix-vector multiplication is performed simultaneously for each es-

timated vector, and QR factorization is used for orthonormalization. The QR factor-
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ization could be implemented in an efficient and distributed form with small additional
cost (O’Leary & Whitman, 1990), when the number of eigenvectors we are interested
in is much smaller than the total dimension (this is often the case in dimensionality
reduction applications).

Similarly, many more advanced EVD algorithms, such as the Lanczos Itera-
tion (Golub & Van Loan, 1996), are also based on repeated matrix-vector multi-
plication. Therefore they can be easily adopted in our DDPCA framework. These
algorithms provide a good way to trade-off implementation complexity for better

convergence property.

3.3.3 Cholesky-based Distributed Matrix-Vector Multiplier

In this section we describe the distributed matrix-vector multiplier (MVM) designed
for directed graphs. Recall in the factorization in (3.7), the multiplication in (3.11)
can be structured as

u=L"'L"v, (3.12)

which is efficiently performed by introducing an auxiliary vector y and sequentially

solving the following two triangular systems:

L'y =v, Lu=y, (3.13)

through backward substitution and forward substitution respectively. The procedures
are detailed in Algorithm 2. We emphasize that, since the non-zero pattern of L
matches the graph structure of G, in the substitution algorithms, solving a given

component of the solution vector only requires linear message-passing from its parents
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or children. For example, the j-th component of y is calculated by

yj = — Y L um)- (3.14)

méech(y)

The proposed MVM is highly scalable by distributing the challenging centralized

computation cost to local computation and efficient message-passing on the edges.

Algorithm 2: Distributed Matrix-Vector Multiplier

Input: Estimated Cholesky factor L with matching sparsity pattern to DAG
g, vector v
Output: Vector u = L7 !L~Tv
// Solve LTy = v through Backward Substitution:
for j =p,...,1do
Yj = Lj_jl(vj - ZmEch(j) M,,-;) )
Bottom-up message calculation: M;_,, = Liy;, for all k € pa(j)

// Solve Lu =y through Forward Substitution:
for j=1,...,pdo
Uj = L]_jl (y] - ZmEpa(j) L]mMm—U)
Top-down message calculation:
M, = uj, for all k£ € ch(y)

With this MVM we can easily implement the above-mentioned Orthogonal Itera-
tion in a distributed manner. The standard convergence properties also hold for this

distributed version since it is an exact reformulation.

3.4 A Sum-Product Perspective

In this section, we discuss the relation between the proposed MVM (Algorithm 2) and
classical inference methods in Gaussian DAGs. The traditional approach for efficient
inference in graphical models is via message passing techniques, as Gaussian belief
propagation (BP) (Weiss & Freeman, 2001) and the sum-product algorithm (Pearl,
1988). Recently, it was shown that such techniques can be used as distributed solu-

tions to sparse linear systems Ax = b, where A is symmetric and represents a sparse
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undirected graph (Shental et al., 2008). Roughly speaking, the solutions are exact for
undirected tree like structures and approximate for loopy undirected graphs (Weiss
& Freeman, 2001; Malioutov et al., 2006). On the other hand, the standard approach
to exact inference in DAGs is via graph conversion to undirected graphical models
(e.g. a possibly inefficient junction tree! via moralization), and then apply inference
algorithms such as loopy belief propagation. In general, inference on DAGs leads to
inexact solutions. In what follows, we prove that the proposed MVM (Algorithm 2) in
fact coincides with a specific Cholesky-parametrized sum-product algorithm in Gaus-
sian DAG models, which is provably convergent and exact for inferring the marginal
means and solving DAG-sparse linear systems. Thus, we exploit the DAG proper-
ties without resorting to inefficient conversion and inexact inference (i.e. loopy belief
propagation). However, we emphasize that our task, namely solving a single linear
system, is a much easier than the general inference tasks, namely solving multiple
linear systems simultaneously by marginalizing over all the nodes together.

DAGs can be conveniently represented by factor graphs Kschischang et al. (2001).
Factor graphs are bipartite graphs that express the structure of factorization. As-

suming a factorization of the joint probability density function of x,

) =[] (X)), (3.15)
jeJ
where the j-th factor is also called a local function, and X; denotes the set of variables
related to f;. A factor graph has a variable node for each variable x;, a factor node
for each local function f;, and edges connecting factor node with all related variable
nodes.
Recall (3.7), the probability density function of a Gaussian distributed random

vector x defined on a DAG model G can be parametrized by the Cholesky factor L

LA junction tree is basically a tree whose nodes are sets of variables which satisfy a special
ordering
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as
f(x) o< exp (Z h;x; — %Z (Lu:pl + Z Lijxj)Z)’ (3.16)
i=1 )

i=1 j€pa(t

then it is natural to define the following factorization

P
f(x) = Hfi($iaxpa(i))a (3.17)
i=1
where the i-th factor is
A 1 2
[i(@i, Xpa(s)) = €xp (hilfi — = (Lsizi + L pa() Xpa()) ) (3.18)

2

With these defined factors, each variable node has an associated factor node connect-
ing it and all its parent variable nodes. Unlike conversion to undirected graphs, no
additional loops are introduced in the resulting factor graphs.

Sum product algorithm is an algorithm for computing marginal functions on fac-
tor graphs via message passing (between variable nodes and factor nodes) and local
marginalization. More specifically, sum-product algorithm computes the following
two types of messages:

Variable node to factor node:

My f(z) = H Mp—e (). (3.19)
hen(x)\f

Factor node to variable node:

() = / 1) I s )| (3.20)

yen(f)\z
where notation fwx means integral with respect to all the variables but z, as used

in Kschischang et al. (2001). In Gaussian case, the calculations of (3.19) and (3.20)
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reduce to computing the parameters h and J of the messages. Finally the marginal
functions can be obtained by computing the product of all incoming messages at
variable nodes.

Since the resulting factor graphs defined by DAGs potentially contain cycles,
in general the convergence and exactness of sum-product algorithm is not guaran-
teed. However, an iterative version of sum-product algorithm can be performed in
loopy graphs under pre-defined message scheduling and initialization. Define a serial
scheduling M as {p,p — 1,...,2,1,2,...,p}, i.e. a bottom-up pass from leaf vari-
able nodes to root variable node (routing via corresponding factor nodes) followed
by a top-down pass back to the leaves, and initialize all the messages as constant

1 (Kschischang et al., 2001). Interestingly, we have the following equivalence result.

Theorem 3.1. The sum-product algorithm on the factor graph defined by a Gaus-
sian DAG model under scheduling M and with constant initialization is equivalent
to Algorithm 2 with input vector equals to h, which results in exact inference of the

marginal means of the Gaussian DAG.

Proof. See Section 3.9. O

In the proof, it is shown that each pass of the sum-product algorithm is equivalent
to a solving a linear triangular system with the Cholesky factor L via distributed
substitution methods. This result resembles (Shental et al., 2008, Proposition 6),
where the authors show the equivalence between Gaussian belief propagation (also
a specific sum-product algorithm) and solving a linear system using Jacobi method.
In contrast to Shental et al. (2008), our approach is especially efficient for Gaussian

DAG models and DAG-sparse systems.
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3.5 Comparison between DDPCA and DPCA

The introduced DDPCA framework is designed for directed Gaussian graphical mod-
els. In this section, we will compare DDPCA with a previously proposed distributed
PCA framework, called DPCA (Wiesel & Hero, 2009), which is designed for decom-
posable Gaussian graphical models (DGGM).

Unlike DAG models, the Markov property on undirected graphs states that random
variables measured at two subsets are conditionally independent given the separating
subset?. Under Gaussian assumption, Markov property in undirected models imposes
zeros in the information matrix J. More specifically, conditional independence be-
tween x; and x; given all the other random variables implies J;; = 0 (Lauritzen,
1996).

Decomposable models (also known as chordal or triangulated models) are a special
type of undirected graphical model in which the conditional independencies satisfy an
appealing structure. A decomposable graph can be divided into an ordered sequence
of fully connected subgraphs known as cliques and denoted by C},...,Ck. These

ordered cliques are coupled through separators
S;=(C;UCU---UC;1)NCy (3.21)

for j = 2,...,, K, and satisfy the running intersection property: for all 7 > 2 there is
a k < j such that S; C Cy. Assuming Gaussian distribution, it is readily seen from
the above running intersection property that the sparsity patterns of the information
matrix for DGGMs matches its decomposable structures. This sparsity pattern can
be exploited for efficient inference (Wiesel & Hero, 2009; Wiesel et al., 2010; Dahl
et al., 2008).

DGGMs are closely related to Gaussian DAG models. Given a DGGM, we can

2We say that set ¢ separates sets a and b, if there is no path between any node in a and node in
b that does not include a node in c.
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construct a DAG model by connecting nodes in the same clique with directed acyclic
edges. The resulting model preserves all the conditional independencies and the
sparsity pattern in its information domain, and is called a Markov equivalence. The
opposite conversion from DAG models to DGGMs is also straightforward through
moralization, but in most cases additional edges are required which might reduce the
sparsity level. The worst-case scenario is the “star” graph, where all but one nodes
have an edge pointing to the last one. The corresponding Cholesky factor of the
information matrix is very sparse, whereas the information matrix itself is completely
dense. Therefore DAG models are more parsimonious than DGGMs.

Due to this immediate equivalence between DAG models and DGGMs, we can com-
pare the proposed DDPCA with DPCA (Wiesel & Hero, 2009). DPCA performs local
computation within overlapping cliques of a DGGM, and global estimation is achieved
through message-passing within the separators. DPCA has cubic local computation
complexity in the clique dimensions (which solves for the local minimum eigenvalue)
and quadratic inter-clique communication cost in the separator dimensions, there-
fore is especially efficient for DDGMs with very small separators and relatively large
cliques. However, the proposed DDPCA only requires quadratic computation cost
in the total local dimension for solving a triangular linear system (Equation (3.14)),
and the communication cost is linear in the clique dimension. Therefore for general
graphs DDPCA enjoys reduced computation and communication costs than DPCA
for Markov equivalent graphical modeling.

We emphasize that PCA algorithms on Markov equivalent Gaussian graphical
models have identical estimation results, since the models have the same second order
moment. But the algorithms have potentially different implementation costs. In the
following sections, we only consider Markov-equivalent Gaussian graphical models for

comparing different PCA algorithms.
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3.6 An Illustrative Example: Online subspace es-
timation

We first illustrate the propose DDPCA algorithm using a synthetic example, where
our task is an online estimation of the first principal component from incremental
Gaussian samples. The samples are generated from a 80-dimensional multivariate
normal random vector using a four-node DAG model plus Gaussian noise. Each
node corresponds to a 20-dimensional random sub-vector, and three non-adjacent
nodes pointing to the last one (the “star” graph). The Markov equivalent undirected
graph of this sparse DAG via moralization is a fully-connected graph, which means
that the concentration matrix has no sparsity. Therefore DPCA does not work for
distributing the computation. However, the proposed DDPCA is a good candidate
for taking advantage of this sparsity in the Cholesky factor.

Using random initialization, we perform DDPCA at each time step with 200 in-
cremental samples to update the previous estimation. Very few number of iterations
(specifically 1, 2 and 8) are performed for the updating. For comparison, we imple-
ment a centralized PCA using the full sample covariance (not our sparse covariance
estimator), which is also updated with incremental samples. Again we emphasize
that DPCA coincides with the centralized PCA on this example.

Fig. 3.1 shows the subspace estimation error, i.e., the subspace distance® between
the estimated and the true one with respect to the number of iterations (which in-
dicates the total number of samples used). It can be seen that even two iterations
in each update are enough for DDPCA; whereas centralized PCA performs poorly
using 20 iterations, and requires 50 iterations for similar performance to DDPCA.
The better performance and faster convergence time of DDPCA is due to the match-

ing covariance model and the better statistical accuracy of DDPCA in low sample

3defined as || Pest — Piruell2, where P is the projector of the subspace.
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Figure 3.1: Online estimation example (DPCA coincides with centralized PCA)

number regime. The decentralized framework also makes DDPCA computationally

advantageous.

3.7 Experiments on Real-world Networks

3.7.1 Network Model

In this section we introduce a widely used network model and describe two specific
models that match our graphical model assumptions. Consider a computer network
whose topology is a graph G,, consisting of N nodes and L links (adjacent nodes
are connected by two links). The network carries traffic flows from origin nodes to
destination nodes, known as OD (Origin-Destination) flows, through routing over a
predetermined ordered subset of links (called a path) of the network. On each link of
the network, the accumulation of all OD flows that pass through this link is measured.

Therefore link flows and the OD flows can be related by a linear equation

y = Ax, (3.22)
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where y € R” is the link-level flow measurement vector, x € R¥ is the OD flow

vector, and P is the total number of OD paths. The routing matriz A = (ay,)rxp is

defined as:

1, if link [ is on path p
Qrp = (323)
0, otherwise.

As noted in Stoev et al. (2010), under uncongested network conditions, the OD
traffic flows z,’s can be well approximated as statistically independent. Thus the
statistical dependence between components of y are determined by the structure of
routing matrix A. We consider the following two scenarios for modeling the link flow
vector y:

Scenario A (Decomposable model). In this scenario, we consider the natural
intuition that two distantly separated link flow variables are approximately condi-
tionally independent given the separator flow variables between them. Therefore if
the network topology satisfies decomposable separation as defined in (3.21), then y
is readily modeled by a DGGM, which also can be converted into a DAG model as
described in Section 3.5. This model is equivalent to the model assumed in Wiesel
& Hero (2009) that specifies a decomposable sparsity structure on the concentration
matrix.

Scenario B (Single-source model). In this scenario, we consider network flows
consisting of OD flows originating from a single source node (See Fig. 3.3(a)). Due
to the tree-structured routing, “parent” link carries accumulated flows of all its de-
scendants. Thus its corresponding flow random variable statistically depends only
on its descendant flows variables. Therefore there exists a natural ordering of all the
link flow variables as in (3.2), and y naturally follows a DAG model. Note that the
parent-child dependence relationships of the DAG are opposite to the directions of
the flows.

This single-source model is useful in the context of network spoofing detec-
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Figure 3.2: Anomaly detection in Abilene with decomposable model

tion (Kemmerer & Vigna, 2002), where an attacker who impersonates the identity
of one of the routers making independent and unauthorized connections and injects
phony packets into its OD flow tree. The attack could be detected by origin au-
thentication at each receiver but this requires a trusted certification authority, i.e.,
transport layer security (TLS). A distributed flow-based anomaly detection algorithm
would allow network administrator to detect the intrusion without access to private

endpoint authentication information (Lakhina et al., 2004).

3.7.2 Distributed Anomaly Detection in Abilene Network

Finally, we apply the proposed DDPCA to anomaly detection of a real-world network
named Abilene (Lakhina et al., 2004) based on a DAG network model. Abilene is the
Internet2 backbone network which carries traffic between universities in the United
States. Fig. 3.2(a) shows its connectivity map consisting of 11 nodes and 30 links.
Measurements of link flow traffic data satisfy the network model (3.22), where the
routing matrix A is known. Our goal is to detect the anomalies occurring in the OD

flow vector x with observations of y.
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Figure 3.3: Anomaly detection in Abilene with single-source model

In this context, PCA is used for estimating a low dimensional principal subspace
containing the nominal flow traffic. The test data are projected into the nullspace (the
residual space) and the norm of the projected data is thresholded to indicate potential
anomalies (Lakhina et al.,; 2004). Compared with centralized PCA, DDPCA enables
distributed estimation of the principal subspace through decentralized computation
and communication over the network.

We consider the two models as described in Section 3.7.1 for implementing the
PCA algorithms:

(A) Decomposable model. We consider all the OD flows and links. From the topol-
ogy of the network (See Fig. 3.2(a)), it can be seen that there exist two separators: S;
= {DNVR-KSCY, SNVA-KSCY, LOSA-HSTN}, S, = {KSCY-IPLS, HSTN-ATLA}
which physically separate the other three subsets of links. Then we can model the
link traffic variables by a three-clique DGGM, which can be equivalently converted
into a five-node DAG model.

Note that in this model, the dimensions of the separating sets (|S1] = 6, |Sz| = 4)

are not significantly smaller than the clique dimensions (14,12, and 14, respectively).
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Therefore the computation cost (~ 14%) and communication cost (~ 14) for imple-
menting the DAG-based DDPCA is less expensive than the DGGM-based DPCA,
which requires cubic local computation cost (~ 14%) and quadratic communication
cost (~ 62). The advantage would be more significant for large-scale networks.

(B) Single-source model. In this scenario, we consider all the OD flows originating
from node ATLA, as shown in Fig. 3.3(a). The dotted lines with arrows indicate OD
flows, and the thickness of solid links are proportional to the number of OD flows
passing through it. As described above we can construct a 11-node sparse DAG
model for the link traffic. Note that in this example, the equivalent DGGM has two
additional edges and is thus less sparse than the DAG model. Again, the improvement
due to sparsity level would be more significant for large-scale networks.

In our experiments on both models, we used two weeks of real-world flows data®.
We learn the normal subspace from the first week’s data using centralized PCA and
DDPCA, respectively. Then for anomaly detection on the second week’s link traf-
fic, we project it on the learned residual subspace. Fig. 3.2 and Fig. 3.3 shows
the norm of residual signal using centralized PCA (first row), using DDPCA (second
row) and their difference (third row). We can clearly see that DDPCA successfully
approximates the centralized PCA in computing the normal subspace and obtain-
ing the residual signal under both scenarios and models. Anomaly detection can be
performed by thresholding the residual norm and locating the peaks. As explained
in Section 3.5, DPCA can also be applied on corresponding Markov equivalent DG-
GMs to achieve the same performance, but with more expensive computation and

communication costs.

4The data are available on http://www.cs.bu.edu/~crovella/links.html
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3.8 Summary of Chapter 3

We have presented a distributed PCA algorithm on directed Gaussian graphical
models, called DDPCA, designed for exploiting structured sparsity arising from the
Cholesky factors of the concentration matrix. We have illustrated DDPCA’s com-
putational and communication advantages in sparse directed models, and showed its
application to distributed anomaly detection using link traffic of a real-world com-

puter network.

3.9 Proof of Theorem 3.1

Proof. First we consider the first pass of bottom-up message-passing. We claim that
all the bottom-up messages have zero information parameter J = 0, and we prove it
by induction. For leaf nodes, it could be easily verified. Now consider the message

passed from factor node f; to the variable node z;, who is a parent of x;,

Mg —a; (xj)

_ / F@oxpe) [ meon @) | dedspuns. (3.24)

yE{zi JUXpa i)\ 5

Since all the top-down messages are initialized to 1, only messages involved with
x; will contribute to the integration. Also, due to the induction, the information

parameter of message my,_,y, is zero, we only have to include its potential parameter

5



h,, s for performing the integration,

mf—a; (:L“])

1
o exp (=LLL; (hi + hy,p,)z;) (3.26)
1
£ exp (hfi—>(lfjxj + §in_>$jl’]2~> s (327)

where the following formula is used

1 b?
/exp(——ax + bx)dr = C - exp(=), (3.28)
2 2a
and the updated parameters of message my, ., are
hy o, = =L L (hi + hy ), (3.29)
Jtise; = 0. (3.30)

The resulting information parameter is also zero, which completes the induction.

The next bottom-up message-passing from variable z; to factor f; is simple, as

My, () H Mz, (25), (3.31)
i€ch(j)

which results in the following parameter updates

$1_>f1 Z Lz] i + hx1—>f,) (332)

i€ch(y)

Junp, = 0. (3.33)

76



Now define a vector y whose j-th component is
yi = L (hy + o). (3.34)

Then it can be easily seen from (3.32) that y satisfies the following recursion

v =L (hy— Y Liy), (3.35)
i€ch(y)

the equivalence between vector y and the auxiliary vector introduced in Algorithm
2 with h as input is obvious. Therefore, the first bottom-up pass of sum-product
algorithm is equivalent to the first part of Algorithm 2, which solves a linear up-
per triangular system via distributed backward substitution. Similarly, the second
pass of top-down message-passing of sum-product algorithm can also be shown to be
equivalent to the second part of Algorithm 2, namely solving a linear lower triangu-
lar system via distributed forward substitution. The resulting inferred mean vector

i =L"'LTh = J 'h is thus exact inference. O
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CHAPTER 4

Learning Latent Variable Gaussian
Graphical Models with Application to

Recommender Systems

In the previous two chapters, we have focused on Gaussian graphical models, for which
sparsity plays a central role both statistically and computationally. Unfortunately,
real-world data often does not fit well to sparse Gaussian graphical models. In this
chapter, motivated by the missing-value prediction in recommender systems, we con-
sider a family of latent variable Gaussian graphical models (LVGGM). In LVGGM,
the model is conditionally sparse given a set of latent variables, but is marginally
non-sparse. In particular, the inverse covariance matrix has a low-rank plus sparse
structure, and can be learned in a regularized maximum likelihood framework. We
derive novel parameter estimation error bounds for LVGGM under mild conditions in
the high-dimensional setting, which complements the existing theory on the structural
learning. Our theory is validated through numerical simulations, and the effectiveness

of LVGGM is illustrated on a real-world movie rating data set.
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4.1 Introduction

Critical to many statistical inference tasks in complex real-world systems, such as
prediction and detection, is the ability to extract and estimate distributional charac-
teristics from the observations. Unfortunately, in the high-dimensional regime such
model estimation often leads to ill-posed problems, particularly when the number
of observations n (or sample size) is comparable to or fewer than the ambient di-
mensionality p of the model (i.e., the “large p, small n” problem). This challenge
arises in many modern real-world applications ranging from recommender systems,
gene microarray data, and financial data, to name a few. To perform accurate model
parameter estimation and subsequent statistical inference, low dimensional structure
is often imposed for regularization (Negahban et al., 2012).

For Gaussian-distributed data, the central problem is often to estimate the inverse
covariance matrix (alternatively known as the precision, concentration or informa-
tion matrix). Gaussian graphical models (GGM) provide an efficient representation
of the precision matrix through a graph that represents non-zeros in the matrix (Lau-
ritzen, 1996). In high-dimensional regimes, this graph can be forced to be sparse,
imposing a low-dimensional structure on the GGM. For sufficiently sparse GGM,
statistically consistent estimates of the model structure (i.e., sparsistency) can be
achieved (e.g., Ravikumar et al. (2011)). On the computational side, sparsity also
leads to reduced complexity of the estimator (Hsieh et al., 2013). However, when the
true distribution can not be well-approximated by a sparse GGM, the standard learn-
ing paradigm suffers from either large estimation bias due to enforcing a overly sparse
model, or degraded computation time for a dense model. Both result in suboptimal
performance in the subsequent inference tasks.

In this chapter, we consider a new class of high-dimensional GGM for extending
the standard sparse GGM. The proposed model is motivated by many real-world

applications, where there exist certain exogenous and often latent factors affecting a
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large portion of the variables. Examples are the price of oil on the airlines’ stock price
variables (Choi et al., 2010), and the genres on movie rating variables. Conditioning
on these global effects, the variables are assumed to have highly localized interactions,
which can be well-fitted by a sparse GGM. However, due to the marginalization
over global effects, the observed (marginal) GGM, and its corresponding precision
matrix, is not sparse. Unfortunately, in this regime, existing theoretical results and
computational tools for sparse GGM are not applicable.

To address this problem, we propose to use latent variable Gaussian graphical
models (LVGGM) for modeling and statistical inference. LVGGM introduce latent
variables to capture the correlations due to the global effects, and the remaining effects
are captured by a conditionally sparse graphical model. The resulting marginal preci-
sion matrix of the LVGGM has a sparse plus low-rank structure, therefore we consider
a regularized maximum likelihood (ML) approach for parameter estimation (previ-
ously considered by Chandraseckaran et al. (2012)). By utilizing the almost strong
convezity (Kakade et al.,; 2010) of the log-likelihood, we derive a non-asymptotic pa-
rameter error bound for the regularized ML estimator. Our derived bounds apply
to the high-dimensional setting of p > n due to restricted strong convexity (Negah-
ban et al., 2012) and certain structural incoherence between the sparse and low-rank
components of the precision matrix (Yang & Ravikumar, 2013).

We show that for sufficiently large n, the Frobenius norm error of the precision
matrix of LVGGM converges at the rate O(\/w), where s is the number
of non-zeros in the conditionally sparse precision matrix, r.g is the effective rank
of the covariance matrix and r is the number of latent variables. This rate is in
general significantly faster than the standard convergence rate of O(4/ ’%) for an
unstructured dense GGM. This result offers a compelling argument for using LVGGM
over sparse GGM for many inference problems.

The chapter is structured as follows. In Section 4.2 we review the relevant prior
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literature. In Section 4.3 we formulate the LVGGM estimation problem. In Sec-
tion 4.4 the main theoretical results are presented. Experimental results are shown in
Section 4.5 and we conclude the chapter in Section 4.7. Throughout the chapter, we
use boldface letters to denote vectors and matrices. || - ||, || - ||2, || - |7, || - ||« denote

the elementwise ¢, spectral, Frobenius, and nuclear matrix norms, respectively.

4.2 Background and Related Work

The problem of learning GGM with sparse inverse covariance matrices using /;-
regularized maximum likelihood estimation, often referred to as the graphical lasso
(Glasso) problem, has been studied in Friedman et al. (2008); Ravikumar et al. (2011);
Rothman et al. (2008). In particular, the authors of Ravikumar et al. (2011) study
the model selection consistency (i.e., “sparsistency”) under certain incoherence condi-
tion. Beyond sparse GGM, Choi et al. (2010) propose a multi-resolution extension of
a GGM augmented with sparse inter-level correlations, while in Choi et al. (2011) the
authors consider latent tree-structured graphical models. Both models lead to compu-
tationally efficient inference and learning algorithms but restrict the latent structure
to trees. Recently, Liu & Willsky (2013) consider a computationally efficient learning
algorithm for a class of conditionally tree-structured LVGGM.

The work that is most relevant to ours is by Chandrasekaran et al. (2012), who
study the LVGGM learning problem, but focus on the simultaneous model selection
consistency of both the sparse and low-rank components. In contrast, in this chapter
we focus on the Frobenius norm error bounds for estimating the precision matrix of
LVGGM. Although structural consistency can be useful for deriving insights, param-
eter estimation error analysis is of equal or greater importance in practice. Since
it provides additional, and usually more direct, insights into factors influencing the

performance of the subsequent statistical inference tasks, such as prediction and de-
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Figure 4.1: Illustrations of a sparse Gaussian graphical model (GGM) (left) and a
latent variable Gaussian graphical model (LVGGM) (right). (A) Example of a sparse
GGM with only observed variables, (B) Sparsity pattern of example sparse GGM’s
precision matrix, (C) Example of a LVGGM with both observed and latent variables,
(D) Sparsity pattern of example LVGGM’s precision matrix.

tection. Also, compared with Chandrasekaran et al. (2012), our Frobenius norm error
bounds are derived under mild condition on the Fisher information of the distribution.

We note that there is a fundamentally different line of work on estimating models
with a similar structural composition, known as robust PCA (Candes et al., 2011).
In robust PCA, the data matrix is modeled as “low-rank plus sparse”. This model
has been applied to extracting the salient foreground from background in videos,
and detecting malicious user ratings in recommender system data (Xu et al., 2012).
In contrast, the equivalent covariance model of our LVGGM can be decomposed
into a low-rank plus a dense matrix whose inverse is sparse. A similar covariance
model has recently been studied by Kalaitzis & Lawrence (2012), in which an EM
algorithm is proposed for estimation but no theoretical error bounds are derived.
In this chapter, we instead focus on the precision matrix parameterization, which
enables model estimation through a convex optimization. This formulation is of both

theoretical and computational importance.

4.3 Problem Setup

In this section, we briefly review Gaussian graphical models and formulate the prob-

lem of latent variable Gaussian graphical model estimation via a regularized maximum
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likelihood optimization.

4.3.1 Gaussian Graphical Models

Consider a p-dimensional random vector x associated with an undirected graph G =
(Va, Eg), where Vg is a set of nodes corresponding to elements of x and Eg is a
set of edges connecting nodes (including self-edges for each node). Then x follows
a graphical model distribution if it satisfies the Markov property with respect to G:
for any pair of nonadjacent nodes in G, the corresponding pair of variables in x are
conditionally independent given the remaining variables, i.e., z; L z; | x\;;, for all
(,7) & Ee.

If x follows a multivariate Gaussian distribution, the corresponding graphical
model is called a Gaussian graphical model (GGM). We assume without loss of gen-
erality that x has zero mean. The Markov property in GGM is manifested in the

sparsity pattern of the inverse covariance matrix J:

Ji;=0foralli#j (i,j) ¢ E. (4.1)

An example of this property for sparse GGM is shown in Figure 4.1(a) and 4.1(b).
The precision matrix parameterization arises in many statistical inference problems
for Gaussian distributions, in areas such as belief propagation (Malioutov et al., 2006),
linear prediction, portfolio selection in financial data (Ledoit & Wolf, 2003), and
anomaly detection (Chen et al., 2011). Estimation of the precision matrix in GGM

is the first step in these inference problems.

4.3.2 Latent Variable Gaussian Graphical Models

Unfortunately, due to the presence of global factors that destroy sparsity, real-world

observations often do not conform exactly to a sparse GGM (Choi et al., 2010, 2011).
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By introducing latent variables (denoted as a r-dimensional random vector x,) to cap-
ture global factors, we can generalize the GGM. Specifically, we construct a model
that is conditionally a GGM, i.e., one that has a sparse precision matrix given knowl-
edge of latent variables, x; .

Defining the p observed variables as xp, we assume the joint distribution of the
(p 4+ r)-dimensional concatenated random vector x = (x0, %) follows a Gaussian
distribution with covariance matrix € and precision matrix J = 2~'. An example of
this structure can be seen in Figure 4.1(c) and 4.1(d). Marginalizing over the latent
variables x;, the distribution of the observed variables xo remains Gaussian with

observed covariance matrix, 3 = Qo . The observed precision matrix © € RP*?

satisfies:
0=2"'=Joo-Jord; Iro0, (4.2)
N~ ™ -~ v
S L
where we have defined S := Jpo and L := —JO,LJE}LJLO. Thus, the marginal

precision matrix can be written as © = S 4 L, the sum of a sparse and a low-rank
matrix. Similar to standard GGM, we parameterize the marginal distribution through
the precision matrix. We refer to this model as the latent variable GGM, or LVGGM.

The LVGGM is a hierarchical model that generalizes the (sparse) GGM. Note
that S™! = J5,10 = Qoo — QO,LQE}LQLO is the covariance matrix of the conditional
distribution of the observed variables. The matrix is not generally sparse, even though
S is assumed to be sparse. We will also assume that the number of latent variables
is much smaller than the number of observed variables, i.e., r < p. We place no
sparsity restrictions on the dependencies between the observed and latent variables
— the submatrices Jo and J, o could be dense. As a result, the p X p matrix
L = —Jo, LJZ,lLJ Lo is low-rank and potentially dense. The sparse plus low-rank

structure of the marginal precision matrix © is the key property of the precision
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matrix that will be exploited for model estimation.
The structural assumptions on the precision matrix of the LVGGM can be vali-

dated on real-world recommender system data. See Section 4.6 for more details.

4.3.3 Effective Rank of Covariance Matrix

We introduce the effective rank of a matrix, which will be useful to derived high-
dimensional error bounds. The effective rank of a matrix 3 is defined as (Vershynin,

2010):
rer(2) = tr(X)/||X]|2- (4.3)

The effective rank can be considered a measure of the concentration level of the
spectrum of ¥. As we will show in Section 4.5.1, in many situations the effective
rank of the covariance matrix corresponding to a LVGGM is much smaller than p.
Under this condition, our theoretical results in the sequel provide a tight Frobenius
norm estimation error bound, which is significantly improved upon the error bound

derived without the effective rank assumption.

4.3.4 Regularized ML Estimation of LVGGM

Available are n samples 1, xs, ..., z, from a LVGGM model xp, concatenated into

a data matrix X € RP*". The negative log-likelihood function is
L£(0;X) = (3, 0) — log det(O), (4.4)

where 3 = %XTX is the sample covariance matrix. The regularized ML estimate
minimizes the objective function £(0;X) + AR (O), where the regularization param-

eter A > 0, and the regularization function R(©) is designed to enforce the sparse
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plus low-rank structure on ©.
Similar to Chandrasekaran et al. (2012), we consider the following regularized ML

estimation problem:

min £(S + L; X) + A[[S[|y + L.
S (4.5)
st. —L>0, S+L >0,

where the corresponding regularization function is the sum of two regularizers:
R(©) = [|S||1 + §||L]|+, each of which has been shown to promote sparse (low-rank)
structure in S (L, respectively) (Negahban et al., 2012). Constants A\, u > 0 are regu-
larization parameters corresponding to the two functions, respectively. The LVGGM
estimator is defined as a solution to the above convex optimization problem (4.5).
Efficient convex solver, such as Ma et al. (2013), can be used to solve.

Note that only the sample covariance matrix is needed as the input of the regular-
ized ML estimation (4.5) (see (4.4) for the expression of likelihood). Therefore in the
presence of missing observations, as in the case of recommender systems, an estimator
of the fully-observed covariance matrix constructed from the incomplete observations
can be used instead. See Kolar & Xing (2012); Loh & Wainwright (2012) for some
recent discussions on the issue of consistent estimation in the presence of missing

observations.

4.4 Error Bounds on ML LVGGM Estimation

We analyze the regularized ML estimation problem (4.5) and provide Frobenius norm
error bounds for estimating the precision matrix in high-dimensional setting. We
adopt the decomposable regularization framework of Negahban et al. (2012); Agarwal
et al. (2012); Yang & Ravikumar (2013) to derive these bounds. In contrast to this

prior work, here we focus on multiple decomposable regularizers interacting with the
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non-quadratic log-likelihood loss function encountered in the LVGGM. Two important
ingredients in the derivations are the restricted strong convexity of the loss function,
and an incoherence condition between the two structured subspaces containing the
sparse and low-rank components (S and L). We show that under assumptions on the
Fisher information these two conditions are verified.

In the following subsections, first we define some necessary notation, then we
introduce the assumptions and place them in the context of prior literature, and

finally we state the main results in Theorem 4.1 and Theorem 4.2.

4.4.1 Decomposable Regularizers and Subspace Notation

In this subsection we introduce the notion of decomposable regularizers and the cor-
responding subspace pairs. We refer the reader to Negahban et al. (2012) for more
details.
Consider a pair of subspaces (M,NL), where M C M C RP*P. R(-) is called
a decomposable regularization function with respect to the subspace pair if, for any
we M,ve M, we have R(u+v) = R(u) + R(v).
For the sparse and low-rank matrix-valued parameters, the following two subspace
pairs and their corresponding decomposable regularizers are considered:
e Sparse matrices. Let E C {1,...,p} x{1,...,p} be a subset of index pairs (edges).
Define M(E) = M(E) as the subspace of all sparse matrices in RP*P that are
supported in subsets of E, i.e., Prr)(A) = Ag. A decomposable regularizer is

the ¢ norm, since ||A||; = ||[Ag|1 + ||Age]1-

e Low-rank PSD matrices. Consider a class of low-rank and positive semi-definite
matrices A C SE”? which have rank r < p. For any given matrix A € A, let col(A)

denote its column space. Let U C R" be a r-dimensional subspace and define the
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subspace M(U) and the perturbation subspace /VL(U ) as

M(U) :={A € R"*? | col(A) C U},

M (U) :={A € R™P | col(A) C U*).

Then the nuclear norm R.(-) = || - ||« is a decomposable regularization function

with respect to the subspace pair (M(U),ML(U)).

For the true model parameter ©*, we define its associated structural error set with

respect to a subspace M as (Negahban et al.; 2012):

C(M, M";0%) = {A € RV | R(A 1) < BR(Agg) + 4R( *W)} |
By construction, if the norm of the projection of the true parameter ©* into M s
small, then elements A in this structural error set also have limited projection onto
the perturbation subspace HL.

Now let ©* be the true (marginal) precision matrix of the LVGGM, and let the
sparse and low-rank components be S* and L*, respectively. For the defined sub-
space pairs (M(E), M(E)*) and (M(U), M(U)*), we use C(E) and C(U) as the
shorthand notations for the corresponding structural error sets centered at S* and
L*, ie., C(M(E), M(E)*;S*) and C(M(U), M(U)*; L*), respectively. Later, we

will consider the perturbation of ©* along restricted directions in these two sets.

4.4.2 Assumptions on Fisher Information

We characterize the interaction between the elements in the two subspaces through
their inner products using the Hessian of the loss function, also known as the Fisher
information of the distribution. Denoting the Fisher information matrix of a Gaussian

distribution as F* (evaluated at ©*), we find that 7* = ©* ! ® ©* !, where ® is the
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Kronecker product. We define the Fisher inner product between two matrices A4

and Ag as

(A, Ag) 5+ := vec(A ) Frvec(Ap) (4.6)

= Tr(0* 'A,0* 'Ap), (4.7)

where vec(+) denotes the vectorization of a matrix.
Similar to prior work of Kakade et al. (2010), we define the induced Fisher norm

of a matrix A as

A% := vec(A)T Frvec(A) (4.8)

= Tr(0* A 'A). (4.9)

The first assumption we make is the following Restricted Fisher Eigenvalue (RFE)
condition on the true precision model with respect to the sparse and low-rank struc-

tural error sets.

Assumption 4.1 (Restricted Fisher Eigenvalue). There erxists some constant
Krin > 0, such that for all A € C(E)UC(U), the following holds:

min

IAIF > Kl Al - (4.10)

This RFE condition generalizes the restricted eigenvalue (RE) condition for
sparsity-promoting linear regression problems Bickel et al. (2009). It assumes that the
minimum eigenvalue of the Fisher information is bounded away from zero along the
directions C(E) and C(U). Due to the identity (4.8) and properties of the Kronecker

product, a trivial lower bound for %, is A2, (0*), where Ay, (-) denotes the mini-

min min

*
min»

mum eigenvalue. In the high-dimensional setting, the RFE parameter which is

defined only with respect to the above restricted set of directions, can be substantially
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min

*
min?

larger than A7, (©%). As a result, the derived error bounds, which depend on &

are generally tighter than the bounds depending on A2, (©*) (cf. Theorem 4.1).

Due to the sparse plus low-rank superpositioned structure, we impose a type of
incoherence between the two structural error sets to ensure consistent estimation of
the combined model. The incoherence condition will limit the interaction between
elements from the two sets. For our problem, such interaction occurs through their
inner products with the Fisher information, which motivates the following Structural
Fisher Incoherence (SFI) assumption (which generalizes the C-Linear assumption
proposed in Yang & Ravikumar (2013)).

Let Pp = Pﬂ( p) denote the projection operator corresponding to the subspace
M(E). Similarly define Py = Prypy, Ppr = Prymye, and Pyo = Py We

assume the following condition on the Fisher information.

Assumption 4.2 (Structural Fisher Incoherence). Given a constant M > 6, a

set of regularization parameters (\, ), and the subspace pairs (M(E), M(E)*) and

(MU), M(U)*Y) as defined above, let A = 2 + 3max {:\/@, ’;g}, where s = |E| and

r = rank(U). Then the Fisher information F* satisfies:

*

max {7 (PpFPy), 7 (Ppi F*Py) .7 (PeF Pyi) 7 (Ppi FPys)} < :HT
1

where 5(-) denotes the mazimum singular value, and constant ¢, is defined as ¢; =

16M
M—-6"

The constant M is related to a “burn-in” period after which the likelihood loss
function has desirable properties in a small neighborhood of the true parameter. In
particular, when M = 7, the constant ¢; = 112 suffices for our theory to hold. See
the main theorem and its proof for more discussion on this quantity.

It is interesting to compare our SFI assumption to other similar assumptions in

the literature of GGM estimation. In Ravikumar et al. (2011), a form of irrepre-
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sentability condition is assumed, which limits the induced ¢; norm of a matrix that
is similar to the projected Fisher information onto the sparse matrix subspace pair.
In Chandrasekaran et al. (2012), the notion of irrepresentability is extended to two
subspace pairs (i.e., sparse and low-rank), but detailed behaviors of the projected
Fisher information are controlled (see the main assumption on page 1949 of Chan-
drasekaran et al. (2012)). For model selection consistency, a more general form of
irrepresentability has been shown to be necessary for model selection consistency,
see Lee et al. (2013) for a recent discussion. In contrast to the above line of work,
the SFI assumption we make only controls the maximum singular values of the pro-
jected Fisher information. This can be explained as we are interested in bounding
a weaker quantity, the Frobenius norm of the parameter estimation error, instead of
establishing the stronger model selection consistency of Ravikumar et al. (2011) or

the algebraic consistency as in Chandrasekaran et al. (2012).

4.4.3 Error Bounds for LVGGM Estimation

We have the following bound on the parameter error of the estimated precision matrix

of LVVGGM, O=S+ i, obtained by solving the regularized ML problem (4.5).

Theorem 4.1. Suppose Assumption 4.1 and 4.2 hold for the true marginal precision

matrix ©%, and the reqularization parameters are chosen such that
A2 23~ 8o and p> 2|5~ . (4.11)

Given a constant M > 6, if an optimal solution pair (/S\, f;) to the convez program (4.5)

satisfies

Sy < (4.12)

L-1*
| | e

max{||S — S*|

F*

91



then we have the following error bound for the estimated precision matrix ©=S+L:

~ 6 &r*
16 — O lr < — max {AVE v/} + 1/ = (4.13)
Re R

where s = |E|, r = rank(U), and

M —2
= ——— K. 4.14
/{:L" 2(7‘[_ 1)'%111111’ ( )

ﬁ
'_
Il

p
TEA DY ISh e Y o). (4.15)
(k)¢ E j=r+1
Proof sketch. The proof is inspired by Yang & Ravikumar (2013), in which a parame-
ter estimation error bound is proven for estimating a class of superposition-structured
parameters, such as sparse plus low-rank, through M-estimation with decomposable
regularizers. Critical to specializing this framework to our LVGGM estimation prob-
lem is to verify two conditions on the log-likelihood loss function (4.4): the restricted
strong convexity (RSC) and structural incoherence (SI). The RSC condition (which
originally proposed in Negahban et al. (2012)) specifies the loss function to be suf-
ficiently curved (i.e. lower bounded by a quadratic function) along a restricted set
of directions (defined by C(£) and C(U)). On the other hand, the SI condition ef-
fectively limits certain interaction between elements from the above two structural
error sets. In Yang & Ravikumar (2013), under certain C-linear assumptions, the
RSC and SI conditions are verified for several problems with quadratic loss functions.
For the LVGGM estimation problem, however, the technical difficulty lies in the non-
quadratic log-likelihood loss (4.4), for which the previously established RSC and SI
conditions do not hold.
To deal with this difficulty, we leverage the almost strong convezity proper-
ties (Kakade et al., 2010) to characterize the convergence behavior of the sum of

higher-order terms in the Taylor series of the log-likelihood loss function. We show
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that in the regime specified by condition (4.12), the loss function can be well-
approximated by the sum of a quadratic function and a residual term. Under this
condition, the RFE assumption (Assumption 4.1) guarantees the RSC condition
(cf. Lemma 4.2), and the SFI assumption (Assumption 4.2) leads to SI condition
to hold (cf. Lemma 4.4). Theorem 4.1 can then be proven by the general theorem
in Yang & Ravikumar (2013). A detailed proof of Theorem 4.1 can be found in

Section 4.8.1. O
We make the following remarks:

e The error bound (4.13) is a family of upper bounds defined by different sets
of subspace pairs (M(E), M(E)*) and (M(U), M(U)*). The tightest bound
can be achieved by appropriately choosing E and U. The first additive term
in (4.13) captures effect of the estimation error, while the second term cap-
tures the approximation error. In many cases it is reasonable to assume the
approximation error is zero, then the error bound reduces to the first additive

term.

e We note that similar derivations also apply to ¢;-regularized estimation of sparse
GGM. For the sparse GGM, only Assumption 4.1 is required, and the derivations
largely simplify. The final error bound also contains estimation and approxi-
mation errors, depending only on the sparse matrix subspace pair. However,
when the true precision matrix ©* cannot be well-approximated as a sparse ma-
trix (such as the LVGGM case), the approximation error would be much worse,

leading to an inefficient learning rate.

e We finally remark that the SFI assumption can be relaxed to an even milder
incoherence condition, |L||w < a, as considered in Agarwal et al. (2012). Fol-

lowing similar derivations as in the proof of Theorem 4.1, the corresponding
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error bound can be obtained. However, as a result of this incoherence assump-
tion, the error bound would contain an additional incoherence term which does
not vanish to zero even with infinite samples. This disadvantage is overcome

under the structural incoherence condition.

The statement of Theorem 4.1 is deterministic in nature and applies to any opti-
mum of the convex program. However, the condition on the regularization parame-
ters (4.11) and the error bound depend on the sampled data (in particular the sample
covariance matrix i), which is random. Therefore the key to specifying the regu-
larization parameters, and hence obtaining error bounds independent of data, is to
derive tight deviation bounds of the sample covariance matrix in terms of the /.
and ¢, norms, such that condition (4.11) holds with high probability. These bounds
can be obtained by using concentration inequalities for Gaussian distributions, which

leads to the following corollary.

Corollary 4.1. Let the same assumptions in Theorem 4.1 hold.  Given con-
stants Cy > 1 and Cy > 1, assume that the number of samples n satisfies n >

max {4C? log p, C3p}, and that the regularization parameters satisfy

/1
\ = 1600C,7* % and p = 16C’2p*\/g, (4.16)

where 7 = max; 37, and p* = ||S*||2. Then with probability at least 1 — 4p=2(~H —
Qexp(—%p), we have

~ 1
16 =0 lr < er|=2E + ey |2, (4.17)

96
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where ¢; = 0 and cy =

Remark: The estimation error (4.17) consists of two terms corresponding to the

sparse and low-rank components, respectively. Note its resemblance to the error
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bounds of robust PCA (e.g., Agarwal et al. (2012); Yang & Ravikumar (2013)) and
the derived bound in Chandrasekaran et al. (2012). In particular, the first term
in (4.17) was on the same order as the estimation error of a sparse GGM (Ravikumar
et al., 2011). However, due to the presence of latent variables, both the sample
requirement (i.e., n 2 p) and the combined error bound are worse than those for
learning the sparse conditional GGM.

Next we consider a scenario under which this additional disadvantage is largely
removed. Assume that the true marginal covariance matrix 3* has an effective rank
Tof := Te(25%) (recall reg(X*) := tr(X*)/||X*[|2 ) that is much smaller than p. Then,
by using recent advances on the asymptotic behavior of the sample covariance ma-
trix (Lounici, 2012), we can obtain a much tighter bound which only depends on p

logarithmically, as stated in the following theorem.

Theorem 4.2. Let the same assumptions in Theorem 4.1 hold. Given a
constant C; > 1, assume that the number of observations n satisfies n >

max {401 log p, Cgreﬂlog2(2p)}, and the reqularization parameters satisfy

/1 [7 el
A = 160C,7" % and p = Cyp” %, (4.18)

where 7° = max; X7, p* = || X2, and C3,Cy > 0 are sufficiently large constants.

Then with probability at least 1 — 2p~ =Y — (2p)~1, we have

. 1 o (2
18 — ||y < &1y/ (;gp +52,/W+)‘5(P>, (4.19)

960=+ = _ 8Cy x
K 2 3/££p'

where ¢; =

Proof sketch. Same as Corollary 4.1, we need to verify that the choices of regulariza-
tion parameters (4.18) satisfy the condition (4.11) with high probability. Since the

choice of A has been verified in Corollary 4.1, it only remains to verify the condition
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on p. To this end, we make use of the following sharp bound on the spectral norm

deviation of the sample covariance matrix:

Lemma 4.1 (Lounici (2012)). Let S be a sample covariance matriz constructed from
n iid. samples from a p-dimensional Gaussian distribution N (0,X*). Then with

probability at least 1 — (2p)~!,

2ryplog(2p) 2r.ylog(2p)(3/8 + log(2pn) }
n n ’

SIS SCHE*HzmaX{ |

where C > 0 1s an absolute constant.

Then as commented in Lounici (2012) (Prop. 3), when the sample size n is suffi-
ciently large such that n > Csreglog® max{2p,n}, where Cs > 0 is a large constant,
the choice of regularization parameter p as in (4.18) suffices for the condition (4.11)

to hold with high probability. O]

Notice that when reg < p, the error bound (4.19) is significantly tighter than the
bound (4.17). Also the sample requirement n 2 reglog(p) is much milder. This result
implies the efficiency of LVGGM learning when the true covariance model has a low

effective rank.

4.5 Experiments

We use a set of simulations on synthetic data to verify our reduced effective rank
assumption on the covariance matrix of LVGGM, and the derived error bounds in

Theorem 4.2.

4.5.1 Effective Rank of Covariance of LVGGM

To better understand the effective rank of the covariance matrix of LVGGM, it is

convenient to consider a hierarchical generating process for the observed variables:
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o ~ Axp+z, where z;, ~ N(0,€ 1) are the latent variables, A := JéloJO,L e RP*",
and z ~ N(0,S71) captures the conditional effects. The marginal covariance matrix

of the observed variables can be represented as

Y =AQ;, AT +S7 (4.20)
N
G

where G is a low-rank covariance matrix (global effects), and S™! is a non-sparse
covariance matrix (conditionally local effects) whose inverse is sparse. While the low-
rank global effects naturally result in a concentrated spectrum, the sparse-inverse
local effects generally contribute to a diffuse spectrum. The effective rank, which is
the sum of all eigenvalues divided by the magnitude of the largest one, depends on
the relative energy ratio between G and S—!.

Since an exact characterization of the effective rank in terms of A, €, and S
tends to be difficult, we use Monte Carlo simulations to investigate synthetic LVGGM
that conform to our assumptions. We generate LVGGM with independent latent vari-
ables (i.e., diagonal Jy, 1), dense latent-observed submatrix Jy o, and a sparse con-
ditional GGM Jp o for observed variable with a random sparsity pattern (sparsity
level =~ 5%). We fix the number of latent variables to be 10, and vary the number of
observed variables p = {80, 120, 200, 500}. By scaling the magnitudes of the elements
in the latent variable submatrix, we sweep through the relative energy ratio between
the global and local factors, i.e., Tr(G)/Tr(S™!) from 0.1 to 10. After 550 realiza-
tions for each value of p, we plot the empirical effective ranks of observed covariance
matrices in Figure 4.2.

As seen in the figure, when the global factor dominates (i.e., the ratio is large), the
effective rank of the covariance matrix is very small, as expected. On the other hand,
when the local effects become stronger (e.g., when the number of observed variables p

increases) the effective rank increases, but at a very mild rate. In particular, when p
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Figure 4.2: Effective ranks of covariance matrices of LVGGM with various global /local
energy ratios.

increases from 80 to 500, the maximum empirical effective rank in our simulation only
increases from 4 to 26. For all of our simulated LVGGM, the empirical effective ranks
are observed as at least an order of magnitude smaller than p. This mild growing
rate of the effective rank (compared to p) will lead to our improved error bound in

Theorem 4.2 to hold.

4.5.2 Frobenius Norm Error of LVGGM Estimation

We simulate LVGGM data with number of observed variables p = {160, 200, 320,400}
and number of latent variables in the set r = {0.1,0.15,0.2,0.3}p. The sparse con-
ditional GGM is a chain graph whose associated precision matrix is tridiagonal with
off-diagonal elements S;;, 1 = S; ;11 = 0.4S;; for i = {2,...,p — 1}. For each con-
figuration of p and r, we draw n samples from the LVGGM, where n ranges from
200 to 1000. Using these samples, the precision matrix O is learned by solving
the regularized ML estimation problem (4.5). As shown in Section 4.5.1, the ef-
fective rank of the covariance matrix grows mildly. Then Theorem 4.2 predicts that

the Frobenius error of the estimated precision matrix of LVGGM should scale as
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Figure 4.3: Simulations for chain graphical models with latent variables. Plots
of Frobenius norm error ||© — ©*||p versus the rescaled sample size n/(slog(p) +

rlog(2p)).

16 — 6% < v/ (slog(p) + rlog(2p))/n, when the regularization parameters are cho-

sen such that A < o*4/ % and p < p*y/ %Og(m. Guided by this theoretical result,

log(p)

log(p) refi log(p)
n

n Y

we set the regularization parameters as A = C,* and p = Cyp*
where constants C, and C} are cross-validated and then fixed for all test data sets
with different configurations. We plot the Frobenius estimation errors against the
rescaled sample size n/(slog(p) + rlog(2p)) in Figure 4.3. With a wide range of con-
figurations, almost all the empirical error curves for models align and have the form
of f(t) oc t7*/2 when the sample size is rescaled, as predicted by Theorem 4.2. In
practice when the true model is unknown, one could set the regularization parameters

according to the sample versions of the quantities o* and p*, as discussed in Lounici

(2012).
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4.6 LVGGM for Recommender Systems

As mentioned in Section 1.2.2, the LVGGM can be motivated by recommender sys-
tems. In this section, we illustrate how the recommender system data can be modeled
by LVGGM, and then present its superior performance in predicting missing values

in recommender systems.

4.6.1 Background and Problem Formulation

In recommender systems, available is an incomplete data sample matrix R € R"*?
where each element R;; denotes the rating score that the i user gives to the ;™
item (e.g., movie). The goal is to predict the unobserved or missing ratings based on
the observed ones. Fundamental to missing-value prediction is to choose and learn a
model that governs the joint distribution of the movie rating variables.

Popularized by the famous Netfliz Prize challenge!, there has been a substantial
body of literature on the recommender systems. Here we briefly review two most pop-
ular approaches which have been widely studied in the literature and implemented in
practical recommender systems. Interested readers are referred to Su & Khoshgoftaar
(2009) for a survey of various techniques, and Koren (2008); Bell & Koren (2007) for
the approaches that won the competition (in which the two methods described below
are both used).

One of the most successful approaches for recommender systems is the latent fac-
tor model, also known as the low rank model or matrix factorization technique Koren
et al. (2009). As the names suggest, this model posits that there exist a small number
(r) of global “latent factors” affecting the movie ratings given by the users. Accord-
ingly, each user and item are represented as a low-dimensional feature vector, and the

rating given by the i user to the j'" movie is modeled as the similarity, 4.e., inner

http://www.netflixprize.com

100


http://www.netflixprize.com

2000

1800F

1600

1400 1

1200

1000 1

800

B00T

400

Scree plot for Movielens Data (#viovie=1000)

K

Curmnulative energy

Cumulative energy of SVs

o o o o o
Noow R @

o

200 i

0

. L L L I I T T . ' f L L L L L L L
1) 100 200 300 400 500 BOO 700 800 900 1000 UEl 100 200 300 400 500 600 700 800 900 1000

SVs SVs

Figure 4.4: Illustration of the high-rank residual in the real-world Mouvielens data
set. Left: Plot of magnitudes of singular values (SV) of top 1000 movies in Mowvielens
data. Right: Plot of energy captured by the number of leading SVs. Only 50% of the
total energy is captured by the largest 200 SVs, indicating the existence of a strong
high-rank residual.

product of the two corresponding feature vectors:

~ 1L
Rij =~ u

* Vi, (421)

where u;,v; € R" are r-dimensional user- and item-specific feature vectors, respec-
tively. As a result, the rating matrix can be approximated by the product of two
feature matrices:

R~U"V, (4.22)

where U € R™™ and V € R"™ P contains the user and item feature vectors, re-
spectively. Note that r, the number of latent factors, is often much lower than the
dimensions of the rating matrix. Therefore R is assumed to be low-rank, and it
admits an approximate matrix factorization as shown in (4.22).

Despite the success of low-rank models on many real-world data sets, a comple-

mentary model is often required for capturing the residual information after removing
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the low-rank dominating component, as the real-world data often exhibits a high-rank
and heavy-tailed spectrum. In Figure 4.4, we plot the magnitudes of singular values
(SV) of the rating matrix corresponding to the top 1000 movies in the Movielens
data. As can be seen, only 50% of the energy is captured by the largest 200 SVs,
suggesting the existence of a strong high-rank residual.

Another widely adopted method for recommender systems is the item-graph ap-
proach Koren (2008). In this framework, an item-graph is constructed where each
node represents an item, and an edge connecting two nodes suggests significant cor-
relation or similarity between the ratings given to the two associated items. Then the
rating given by the i** user to the j** item is modeled as a weighted linear combination

of the rating he/she gives to the neighboring movies:

Ry~ b+ Y 00 (R — bi), (4.23)
kEN (5)

where N(j) denotes the set of neighbors of node j in the item-graph, and ¢}, is a
coefficient characterizing the rating similarity between item j and k for user i. The
item graph captures the correlation structure between the ratings, and it utilizes
this structure for missing-rating prediction. However, the main drawback of the
item-graph approach is a lack of theoretical guidance on choosing appropriate graph
structure and guarantees for the model estimation performance.

An alternative model that extends the item-graph approach is to use the Markov
random field to model the rating variables. When the data is Gaussian distributed,
this model is also known as the Gaussian graphical model (GGM). As described in
Section 4.3.1, GGM provides an efficient characterization of the joint distribution
using the conditional dependency graph, whose edge pattern coincides with the non-
zero pattern of the inverse covariance matrix. For the recommender system data, we

assume the rating vector for each user (which contains the ratings for all the movies)
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is an 4.1.d. sample from the joint distribution of the movie rating variables, which is
modeled by a GGM. Note that the Gaussian distribution assumption (after removing
the mean effects in the ratings) has been widely adopted in the recommender sys-
tems literature as a standard approximation technique (see, for example, Lawrence &
Urtasun (2009)). More accurate distributional characterization has also been studied
(see, for example, Salakhutdinov & Mnih (2008); Guo et al. (2014)), but at the cost
of more computationally expensive estimation algorithms and more complicated the-
oretical analysis. The GGM approach is not constrained by the low-rank assumption
imposed in the latent factor model, and by parameterizing the joint distribution by
conditional dependencies, it is also statistically more efficient than the item-graph
approach, which essentially parameterizes the distribution using marginal dependen-
cies. Given the ratings from n users, we can learn the structure and parameters of
the inverse covariance matrix using the ¢;-regularized maximum likelihood estima-
tion (Ravikumar et al., 2011). Related literature on regularized learning of GGM was
reviewed in Section 4.2.

Unfortunately, in the presence of global and latent variables, both theory and
empirical results suggest the ineffectiveness of using GGM, since the marginal inverse
covariance matrix corresponding to the observed variables (i.e., the movie rating
variables) is not sparse. Enforcing sparsity will lead to large bias and, as a result,
suboptimal prediction performance.

As motivated in Section 4.3.2, we propose to use the LVGGM for modeling the
recommender system data. Specifically, the latent variables are introduced to capture
the global and latent effects that affecting a large portion of the movie ratings (such
the movie genres). Conditioning on these latent factors, the conditional distribution
of the observed movie rating variables is modeled by a sparse GGM. The resulting
marginal inverse covariance matrix has a “low-rank plus sparse” structure, and can

be learned through a regularized maximum likelihood estimation (4.5).
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Note that only the sample covariance matrix of the movie rating variables are
needed for the regularized ML estimation (4.5), therefore a “plug-in” estimator of
the fully-observed covariance matrix constructed from the incomplete observations
can be used instead. In particular, following Kolar & Xing (2012), we construct
the sample covariance from the incomplete observations by weighting each sample
covariances by its specific empirical missingness level. This construction yields a
consistent estimator for the covariance matrix, and it alleviates the missing-value
effect. We refer the interested readers to Kolar & Xing (2012) for analysis on this

procedure and Loh & Wainwright (2012) for a recent related work.

4.6.2 Validation of Structural Assumptions of LVGGM

Next we use Movielens?, a real-world movie rating data set, to validate the structural
assumptions of the LVGGM. For this purpose, we manually impose the movie genre
as a global effect by constructing a data set with 60 movies from three genres, where
each genre contains 20 movies. To minimize the effect of the missingness in the data,
we choose the ratings given by the most active 600 users and for the most rated 20
movies from each of the following three genres: Horror, Children’s, and Action. This
results in a 600 x 60 rating matrix with 56% completeness. We consider the joint
distribution of 60 movie rating variables as a LVGGM with three latent variables. As
mentioned above, each user’s rating vector is treated as an i.i.d. sample from the
LVGGM. Since the true covariance matrix is unknown, we use the sample covariance
matrix as a reasonable proxy since n > p. Each covariance element is weighted by
the actual number of observations to compensate for the missingness in the data.
According to the decomposition of covariance matrix of a LVGGM (see Eq. (4.20)),
we expect that this genre effect can be extracted with a low-rank component G in the

covariance matrix. Our goal is to examine whether the remaining residual component

2http://movielens.org
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can be reasonably fitted by a sparse GGM (i.e.,, has a sparse precision matrix S but
less sparse covariance matrix S™'. Note that, for illustration purpose, we will use
eigen-decomposition to decompose the sample covariance matrix, which in general
will results in different estimates as those obtained by the regularized maximum
likelihood estimation.

We decompose the rating matrix into two matrices: a rank-3 matrix spanned by
its top three leading singular vectors, and a residual matrix capturing the conditional
effects. We denote the covariance matrix of the low-rank component as é, and the
sparse precision matrix of the residual component as S. A heat map of the normalized
G is shown in Figure 4.5(a), and the sparsity patterns of the normalized S and S
(i.e., the covariance of the residual) are shown in Figure 4.5(b), thresholded by 0.1.
As expected, the low-rank G captures the structure of the global effects (i.e., movie
genre), and the residual can be well-modeled by a sparse GGM - its precision matrix
is much sparser than the covariance matrix. In addition, we find the effective rank of
the covariance is equal to 7.4, much smaller than the number of variables, 60, which

validates the low effective rank assumption.

Local Effects: |S| > 0.1 Local Effects: |S™Y > 0.1
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Figure 4.5: Illustration of LVGGM assumptions on Movielens data set. (a): Heat
maps of the leading low-rank matrices capturing the global effects (movie genre). (b):
Sparsity patterns of the precision and covariance matrices of the remaining conditional
effects.
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4.6.3 Missing-value prediction using LVGGM

Under the LVGGM, the observed movie rating variables are jointly Gaussian dis-

tributed as follows:
Xo ~ N(O, @71),

where the marginal inverse covariance matrix © is given in Eq. (4.2), and can be
learned from the training data.

Given a user, we denote the set of observed (or known) movie ratings from this
user by K, and denote the set of missing (or unknown) ratings by U. Then the

(conditional) distribution of the variables x; conditioning on x is
XU|XK ~ N(_@(_]}U@U,KXIO @(;,IU)

For prediction of x;;, we can use the estimated © to calculate the conditional
distribution, and then use the corresponding conditional mean as the predicted values

for xy, i.e.,
(Prediction) %U‘XK = _GalU@U,KXK- (424)

This prediction rule notably bears much resemblance to the well-known item-graph

approach for recommender systems (Koren, 2008).

4.6.4 Experiment results on Mowvielens

We implement and compare the above-mentioned three models for missing-value pre-
diction on a subset of Movielens data set: the latent factor model (LFM), the GGM
without latent variables, and the LVGGM. The LFM is learned for various number

of latent factors and by the alternating least square (ALS) algorithm (Koren, 2008).
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The GGM without latent variables is learned by the ¢;-regularized maximum likeli-
hood (Ravikumar et al., 2011). The LVGGM is learned by Eq. (4.5). The number
of latent factors in the LFM and regularization parameters in learning GGM and
LVGGM are cross-validated on a training data set. The optimal predication perfor-
mance (measured by the root-mean-square errors (RMSE)) on a testing data set and

some descriptive statistics of the optimal models are reported in Table 4.1.

LFM | GGM | LVGGM
Rank 20 \ 55
Average graph degree \ 76.5 16.4
Total # parameters | 30000 | 38727 | 36189
RMSE 0.8186 | 0.8166 | 0.8115

Table 4.1: Prediction performance and descriptive statistics for three models on
Movielens data set with 500 movies and 1000 users. The data missing rate is 53%.
LVGGM achieves the lowest RMSE with comparable total number of parameters.
The conditional graph of LVGGM is much sparser than the GGM without latent
variables (in terms of the average graph degree).

As can be seen, the proposed LVGGM achieves superior performance among three
models with comparable total number of parameters. Notably, the conditional graph
of the optimal LVGGM is much sparser than the optimal GGM without latent vari-

ables, which validates our intuitions.

4.7 Summary of Chapter 4

We have considered a family of latent variable Gaussian graphical model (LVGGM)
whose precision matrix has a sparse plus low-rank structure. For this LVGGM, we
derive the parameter estimation error bounds for regularized maximum likelihood es-
timation under mild conditions. The theory is validated by numerical simulations, and
the proposed LVVGM achieves superior prediction performance on a recommender

system data set.
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4.8 Proofs for Chapter 4

4.8.1 Proof of Theorem 4.1

In Yang & Ravikumar (2013), the authors proved a general superpositioned parameter
estimate error bound using the decomposable regularized framework. Theorem 4.1
can be proven similarly by specializing the result in Yang & Ravikumar (2013) to the
LVGGM learning problem (4.5). Then it suffices to verify the two critical conditions
(C3) and (C4) in Yang & Ravikumar (2013) (the other two conditions are trivial to

verify for our problem), which we introduce and elaborate in this section.

Restricted strong convexity. Let 0L(A;©*) denote the remainder term in first-
order Taylor series approximation of the loss function £(-) at the true parameter ©*

with respect to a perturbation A = ©* — o:
IL(A;0%) = L(O"+ A) — L(O") — (VL(O"), A). (4.25)

In Negahban et al. (2012), the authors introduce the restricted strong converity (RSC)
condition, which specifies that given some set C C RP*P, there exists some curvature

parameter k., > 0 and tolerance function 7, such that the following holds:
SL(A;0%) > k|| Al|F — 72(0%), VA € C. (4.26)

The RSC condition guarantees sufficient curvature of the loss function at the true
parameter along some directions specified by set C. This condition is critical for
consistent estimation in the high-dimensional regime, since standard strong convexity
usually does not hold in the p > n setting.

The following shows that the restricted Fisher eigenvalue conditions defined in

Assumption 4.1 implies the RSC condition.
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Lemma 4.2 (RSC condition). Suppose Assumption 4.1 holds for the true marginal
precision matric ©* and let M > 2. Then for all A € C(E)U C(U), such that

|A||% < 5i5, the RSC condition (4.26) is satisfied with the curvature parameter

2M?2

. M-2 *
ke = 5r—1) Fmin

and the tolerance function 7, = 0.

The proof of Lemma 4.2 is largely inspired by Kakade et al. (2010), in which it
is shown that exponential family distributions exhibit almost strong convezity in a
neighborhood. The RFE assumption makes connection between this property and
the RSC condition. A proof of Lemma 4.2 is given in the Section 4.8.2.

Note there is an important difference between the RSC condition considered here
and the condition introduced in Agarwal et al. (2012). The RSC condition considered
here is satisfied with respect to the error matrices of each simple structure separately,
while the RSC condition in Agarwal et al. (2012) is required for the combined error
matrices (defined in the product space of two sets), which could lie in a significantly

larger set.

Structural incoherence. The second ingredient for consistent estimation of the
sparse plus low-rank parameter ©, is some type of incoherence condition between
the sparse and low-rank components. In the present work, we consider the struc-
tural incoherence condition that was proposed more recently in Yang & Ravikumar
(2013). This condition allows for a vanishing error bound when n goes to infinity,
and is applicable to more general loss functions, such as the log-likelihood function
in Eq. (4.4).

Define the following incoherence measure of the loss function £ for two structural

error matrices Ag and Ay:

cc(As,AL; ©7) := [L(0" + Ag + AL) + L(OF)

—L(6" + Ag) — LI + AL)|,VAg € C(E), Ay, € C(U).
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Then the structural incoherence (SI) condition is satisfied if the following relation

holds for all Ag € C(E) and A;, € C(U):
o K
cc(Bs, AL 07) < (1 As]F + 1 ALl). (4.27)

where k. is the curvature parameter in the RSC condition (4.26).

The following lemma shows that, in addition to the restricted Fisher eigenvalue
assumption (Assumption 4.1), if the true marginal model also satisfies the structural
Fisher incoherence assumption (Assumption 4.2), then the above SI condition on the

likelihood loss function is guaranteed.

Lemma 4.3 (SI condition). Suppose Assumption 4.1 and 4.2 hold for the true

marginal precision matriz ©* and let M > 6. Then the SI condition (4.27) is satisfied

for all Ag € C(E) and Ay, € C(U), such that max{||Ag||%., |ALllF} < gz The
curvature parameter kg s the same as in Lemma 4.2, i.e., kg = %mfmn.

The proof of Lemma 4.3 is in Section 4.8.3.

Finally, under Assumption 4.1 and Assumption 4.2, Lemma 4.2 and 4.3 imply the
RSC and SI conditions hold for our LVGGM learning problem, respectively. Thus
Theorem 4.1 can be proven by directly appealing to Theorem 1 in Yang & Ravikumar
(2013).

4.8.2 Proof of Lemma 4.2

Proof. The remainder term in the first-order Taylor series of the negative log-

likelihood (4.4) of GGM takes the following form:

SL(A;0%) = L(0" + A) — L(O7) — (VL(O%),A)

= (0*"" A) —logdet(0* + A) + log det(0").
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For s € (0, 1], define the Taylor series of function g(s; ©*) := log det(©* + sA) at
@*

Ck

g(s;0") =logdet(©" + sA) = Z (4.28)
k=0

where c;x(A) := g*)(s;©*) is the k-th derivative of the log det function at ©*. Define

co(A) :=log det(©*), the remainder can be expressed as:

0 Ck 2(A)32 L cn(A)s” B co(A)s? ) *
=2 =3

(4.29)

where the second term dg(s) is defined as the second-order Taylor error of the log-
determinant function. Next we show that this error term, which is the sum of all
the higher-order terms, can be bounded by a quadratic term in a small neighborhood
around ©*.

For exponential family distributions (Gaussian as an example), the log-partition
function (i.e., logdet function for Gaussian) coincides with the cumulant generating
function. This implies that the derivatives c,(A) are the corresponding cumulants
of the distribution, which can be shown to converge to zero quite rapidly. Indeed,
in Kakade et al. (2010) the authors show that for a univariate random variable z

under an exponential family distribution, its k-th order cumulant satisfies

cx(2)

1 k—2

where « is a finite constant, and the second-order cumulant coincides with the Fisher
norm of the deviation c3(A) = ||Al|%. due to the definition of the Fisher information.
For multivariate Gaussian distributions, a = /2 suffices for the above relation to

hold (see Sec. 3.2.2 in Kakade et al. (2010)).
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Therefore we bound the second-order Taylor error term in Eq. (4.29) as follows

(similar to Kakade et al. (2010)):

Ga(s: A, ©%)| = i ck(g)sk (4.31)
=
< %é 251y (A)H/2H (4.32)
R (433
Y 32022@) g A;k (4.34)
_ % (4.35)
= 2(?\24(%)1) maX{ZMicQ(A), 1 (4.36)
(i) 2(3\24(_{)1) (4.37)

2. < 2]\142) and s < 1.

where (i) and (iz) are due to our conditions on c3(A) (i.e., ||A]

Then we obtain a lower bound for JL(A; ©*):

@ M —2
A0 > (- - | () > kA7
+5g<87 7@)— (2 Q(M—l))02< )— 2<M_1>’%m1nH HF’

(4.38)

where (ii) is due to the RFE condition. Therefore the RSC condition is satisfied with

M-—2 *
2(M—-1) ’imin

the curvature parameter k. := and a zero tolerance parameter 7, = 0.

]

4.8.3 Proof of Lemma 4.3

Proof. First we state the following lemma which gives a bound on the magnitude of

Fisher inner product between elements from the two sets.
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Lemma 4.4. Suppose Assumption 4.1 and 4.2 hold for the true marginal precision
matriz ©*. Then given a constant M > 6, the following inequality holds for all

ALl

_1_

Ag € C(E) and Ay, € C(U) such that max{||Ag| < mpe

2
F*

|(Ag, ApL)F e [IAL

<4 (|As]

%), (4.39)

2M

=

where 1) :=

The proof of Lemma 4.4 follows similarly as that of the Proposition 2 in Yang &
Ravikumar (2013), and hence is omitted.

Next we prove Lemma 4.3 using the above result. Following similar derivations
as in the proof of Lemma 4.2, the incoherence measure in the SI condition can be

simplified to

Cﬁ(AS, AL; @*) = |5£(AS + AL; ®*> - 5£(A5, @*) - 5£(AL, @*)| .

Using the remainder in the Taylor series of £ (4.29), the incoherence measure can
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be expressed as:

Cﬁ(As, Ap; @*)

w +69(s; As + Ap) — (62<2AS) +8g(s1; As)> - (CQ(ZAL) +0g(s2; AL)) ’

CQ(AS + AL) B CQ(As) CQ(AL)

(4) c2(As + Ap) + ca(Ag) + e2(Ar)
< *
Agl|%. + |AL% + (Ag, AL 7~
|As|% + | AL||%.
< s«
—M_1|<A87AL>J-"|+ T
Gi)) M — 92

< ——— = g (lAg]A ALlA
_4(M_1)’Lim1n(H SHF+H LHF)

R
<5 (1AslF +1ALll7),

where in (7) we have apply (4.37) to bound the second-order Taylor error terms (note

2 1
Fx S SM2 due to

that the conditions on the error matrices also guarantees ||[Ag+ Ayp|
Lemma 4.4). Inequality (i7) is due to Lemma 4.4. Inequality (i7i) can be verified by

the definitions of 1) and the RSC curvature parameter .. O

4.8.4 Proof of Corollary 4.1

Proof. Theorem 4.1 is a deterministic statement, however, the condition on the reg-
ularization parameters (4.11) and the error bound depend on the sample covariance
matrix  which is random. Note that the error bound directly follows from the de-
terministic error bound in Theorem 4.1 and the choices of regularization parameters
as in Eq. (4.16). To prove Corollary 4.1, it only remains to verify that the condi-
tion (4.11) in Theorem 4.1 is guaranteed with high probability. More specifically, this

requires bounding the deviation of the sample covariance matrix in terms of /., and
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and spectral norms.
First we make use of the following lemma to characterize the element-wise deviation

of the sample covariance matrix®.

Lemma 4.5 (Ravikumar et al. (2011)). For a p-dimensional Gaussian random vector
with covariance matriz 3*, the sample covariance matriz obtained from n samples >
satisfies

- . nes
P {|Em - > 61} < dexp (—WO;*Q) , (4.40)

for all e; € (0,407), where 0 := max;—1 27,

If the number of samples satisfies n > 4logp, then by choosing %)\ > € =
80C17%4/ % € (0,407), where C; > 1 is an arbitrary constant, and applying the

union bound we have
~ 1 .
P {“2 — oo < gA} > P{IIE — ' < el} > 1 — 4p G,

Then the condition on A is satisfied with high probability.
Next we consider the condition on the other regularization parameter p, which re-
quires bounding the deviation of the operation norm of the sample covariance matrix.

The following lemma provides such a characterization.

Lemma 4.6 (Chandrasekaran et al. (2012), Lemma 3.9). For a p-dimension Gaussian
random vector with covariance matriz 3* and let p* = ||X*||o. If the number of

samples n be such that n > M—fgﬁ, then the sample covariance matriz S obtained
2

3The original lemma applies to all sub-Gaussian variables, here we specialize to Gaussian random
vectors.
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from n samples satisfies

2
- * 77/62
PLIS -3 > &} <2exp (—128[)*2) , (4.41)

for all e5 € (0,8p").

If n > p, then by choosing %,u > € = 86’2/)*\/% € (0,8p*), where Cy > 1 is an

arbitrary constant, we have

a 1 -~ 2
P{HE—E*H2 < §u} >P{IS - <ef>1-2ex (-%) .

Combining the above results we have verified the condition (4.11) in Theorem 4.1

holds with high probability, which concludes the proof. O
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CHAPTER 5

Detecting Emerging Topics in Topic
Models with Confidence

In this chapter, we focus on a specific Bayesian network, which is known in machine
learning as a “topic model”, namely the latent Dirichlet allocation (LDA) model. In
particular, we consider the problem of detecting emerging topics in text document
corpora based on the LDA model. A hypothesis testing framework for this detection
problem is proposed, and as a surrogate for the standard generalized likelihood-ratio
test, we consider and perform a simple test procedure called the surrogate Hausdorff
test. We develop theory which shows that, in addition to significantly reduced com-
putational cost, the proposed test procedure also has strong detection performance
guarantees, such as the asymptotic consistency. Numerical experiments on both syn-

thetic and real-world corpora validate and complement our theoretical results.

5.1 Introduction

Event detection is an important and challenging task which has many real-world ap-
plications, ranging from discovering breaking news from online articles, to identifying
anomalous activities from social or behavioral data. For text document corpora, this
task can be formulated as topic detection, where each topic captures an event, such

as a piece of news or a trending meme on social media websites. In this paper, we
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consider a hypothesis testing framework for this problem. This framework is built
upon a specific type of topic model, namely the latent Dirichlet allocation (LDA)
model.

The LDA model has been widely used in modeling collections of text documents
since its first introduction to the computer science and applied statistics communi-
ties (Blei et al., 2003). Its empirical success has been observed in various areas and
for diverse data sets (see, for example, Blei (2014, 2012) for recent surveys). The
LDA model posits that each document (seen as a “bag of words”) is sampled from a
mixture of multinomial distributions over the vocabulary of words, where each mix-
ture component is called a “topic”. These topics are assumed to be shared by all
documents in the corpus, while the mixing proportions are specific to each of the
documents. A parallel and equally active line of work can be found in the genetics
literature under the name admizture model, where the primary interest is in model-
ing the ancestral structure in the genotype data (see Pritchard et al. (2000) for an
introduction). In this present paper we adopt the terminology used in the context of
topic modeling for text documents. However, the theory and algorithms developed
naturally apply to any field that uses LDA models.

The problem of topic detection in topic models is motivated by real-world applica-
tions that share the following general set-up. Suppose that a corpus of time stamped
documents is collected from some source, e.g., a publications database, over a period
of time. At some later time another collection of documents is collected from the
same source. We are interested in detection of novel topics in the newer collection
that were not present in the older collection. These novel topics are called emerging
topics. We note that the notion of topic can be generalized to any previously unseen
event, in particular when the topic models are used for modeling non-text data, such
as images.

Perhaps the most straightforward approach to incorporate these new topics into the
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old topic model is to increase the number of topics when fitting the new document
collection. However, without a clear characterization of the emerging event, it is
difficult to specify how many additional topics are required. A standard practice in
applying the LDA model is to over-fit the model with many more topics, and then
remove the low-quality or duplicate ones. These redundant topics are often identified
through either manual inspection of the top words, or some heuristic quality measures.
Unfortunately, both empirical studies and recent theoretical analysis have shown that
over-fitting degrades the learnability of the LDA topics (Tang et al., 2014; Nguyen,
2014). As a result, many topics obtained from such an over-fitting strategy will likely
not capture the true topics.

An alternative approach to deal with the change of number of topics is to modify
the standard LDA model. Some examples include Blei & Lafferty (2006); Wang &
McCallum (2006); AlSumait et al. (2008); Wang et al. (2012). The shared idea is to
couple multiple LDA models to capture the emergence or disappearance of topics. A
more principled framework to handle the unknown and varying number of topics are
nonparametric extensions of the LDA model, e.g., the hierarchical Dirichlet process
model (Teh et al., 2006) and its variants (Gao et al., 2011; Lin & Fisher, 2012; Chen
et al.,, 2012). Unfortunately, most existing models and approaches lack theoretical
guarantees, and are often computationally expensive due to the increased parameter
space and model complexity.

In this paper, we consider a hypothesis testing framework for detecting emerging
topics in the LDA model. In particular, we propose to estimate a LDA model from
the new data set with only one additional topic on top of the existing ones. Then a
test statistic is calculated by projecting the estimated new topic onto the convex hull
of the old topics. This test statistic can be shown to be interpreted as a computation-
ally simpler surrogate for the standard likelihood ratio. By leveraging the theory of

empirical processes and some recently established results relating various forms of di-
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vergence for LDA densities to the Hausdorff distance between the corresponding topic
polytopes, we show that the proposed surrogate test guarantees the consistency of the
original hypothesis testing problem, even when the true number of emerging topics
is greater than one. In particular, the surrogate test statistic correctly converges to
zero under the null hypothesis (i.e., in the absence of new topics), and is bounded
away from zero under the alternative hypothesis (i.e., there occurs at least one new
topic). We further provide the convergence rate of the surrogate test statistic and
bounds on the hypothesis testing errors. The theory is validated through numerical
experiments on both synthetic and real-world corpora.

The remainder of the paper is organized as follows. In Section 5.2 we describe the
LDA model and the notion of topic polytope. A hypothesis testing framework for topic
detection is introduced in Section 5.3 and our proposed surrogate test is described in
Section 5.4. Our main results on the detection performance of the proposed surrogate
test are stated in Section 5.5 and their proofs are included in Section 5.6. In Section 5.7
we provide numerical experimental results to validate our theory, and we conclude

with future directions in Section 5.8.

Notation for Chapter 5. The Euclidean distance between a point # and a set C'is
defined as dist(0,C') := infyec ||@ — x||. The Hausdorff distance between two convex

bodies C' and C" is defined as:

dy(C,C") = max {Igleagc dist (6, C"), max dist(6 ,C’)} . (5.1)

By(0, R) denotes a closed d-dimensional Euclidean ball centered at point 6 and has
radius R. The notations int G, relint GG, extr G, aff GG, and vol; G denote the interior,
relative interior, the set of extreme points, the affine span, and the d-dimensional
volume of set G. We define the dimension of a convex polytope to be the dimension

of its affine hull. A? denotes the d-dimensional probability simplex.
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The following divergence measures for probability distributions are used: K(p, q),
h(p,q), V(p,q) denote, respectively, the Kullback-Leibler divergence, Hellinger dis-

tance and total variation distances between two densities p and ¢ defined with respect

to a measure on a common space: K(p,q) = [plog(p/q), K*(p,q) = 3 [(/p — 2)*
and V(p,q) = 5 [ Ip —ql.

5.2 The LDA model and topic polytope

Latent Dirichlet Allocation (LDA) models were first introduced in Blei et al. (2003)
and Pritchard et al. (2000). We briefly review the model assumptions, and give
an equivalent representation that will be used to derive the surrogate test statistic.
Interested readers are referred to the above papers for more details.

Available are a collection of m documents. The i document is represented as a
“bag of words”: S[in] 1= (Xy5)7-y, where X;; € {0,1,...,d} is a word in the vocabulary,
and n is the number of words in the document. Without loss of generality, we have
assumed all documents have the same number of words. The LDA model assumes
that the words in each document are independent and identically distributed (3.7.d.)
samples from a document-specific mixture of K multinomial distributions over the
vocabulary, where each multinomial distribution is called a “topic” and is parame-
terized by a vector ¢, € A% k =1,..., K. Here A? is the d-dimensional probability
simplex. In practice, it is reasonable to assume K < d (for example, Griffiths &
Steyvers (2004) found that around 300 topics are optimal for modeling a corpus of
28,154 abstract documents with a vocabulary of 20,551 words). The collection of m
documents S[[:Z]I] = (S[in])?;l is generated independently in the same manner, condi-
tioning on the same set of K topic vectors ® = (¢1,...,¢k). One of the primary
goals in LDA modeling is inference of the topic parameters ® on the basis of the

sampled m x n words S[[:]L].
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As first introduced in Nguyen (2014), instead of studying the individual topic

vectors of the LDA model, we propose to consider their convex hull:

G = conv(¢y, ..., 0K), (5.2)

which we shall refer to as the topic polytope. By studying this topic polytope, we
effectively remove the “label-switching” ambiguity between the true and estimated
topics and also handle the difficulty of estimating topics that are inside the polytope
(i.e., topics that can be expressed as convex combination of others). The critical role
of the topic polytope G can be seen from an equivalent representation of the LDA
model described as follows. For each document : = 1,..., m, we associate it with a
random vector in the topic polytope n; € G, parameterized by 1; = 0, 101+. . .+0; kO K,
where the random vector 0, = (6;1,...,0i k) € AK=1 contains the topic mixing
proportions. Conditioning on 7;, the words in the document an} = (Xij)?zl are
i.i.d. draws from the multinomial distribution Multi(n;) specified by n;, i.e., P(X;; =
l|m)=myforl =0,...,d. As in the standard LDA model, we assume the topic
proportion vector 6 follows a Dirichlet distribution Dir(«), where a@ = (a, ..., ak)
are the concentration parameters. Then the random vector n follows an induced
distribution over topic polytope G, denoted as P g.

The distribution of a document S["n}, denoted by Ps,, |, is obtained by integrating
out the random vector n over the topic polytope G, yielding the following density

with respect to counting measure:

n d
PSpl6(Sinp) = /GH H nfz(Xij:l)dPan(m)- (5.3)

7=11=0

Accordingly, the joint distribution of the full data set S ™l Jenoted as Pg?n]lG’ is the

[n]
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product distribution of all single-document distributions:

m

Pg[lnllG(S[T}) = H PS[n]IG(an])- (5.4)

i=1

Note that our formulation of the LDA model focuses on the topic-level and
document-level characteristics, since only the marginal distribution (5.4) is needed
for the proposed hypothesis testing with respect to the topic polytope. Therefore we
do not need to introduce the latent word-topic assignment variables as in Blei et al.
(2003). Instead, they have been marginalized out in our representation.

The topic parameters ® can be estimated by either empirical Bayes approaches or
in a full Bayesian framework. In the full Bayesian framework, the topic parameters
are assumed random and endowed with a prior distribution. Then their posterior
distributions given the observed documents can be obtained through approximate
inference techniques. In this paper, we take the empirical Bayes approach (as in Blei
et al. (2003)), where a point estimate of the topic parameters ® (and hence their
induced topic polytope G) is obtained by maximizing the marginal likelihood of the
samples (5.4). This perspective allows us to use some established empirical process
theory to derive the concentration behavior of the topic parameter estimates, which

complements recent theory in the Bayesian framework (Nguyen, 2014).

5.3 Hypothesis testing framework for detecting
emerging topics

Suppose there is an available LDA model learned from historical data. Our goal is
to detect the occurrence of emerging topics. Alternatively, one can also consider this
task as an anomaly detection problem, where the existing LDA model corresponds to

the nominal model, and the emerging topics capture certain anomalous activities.
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We formulate the topic detection problem as a composite hypothesis test. The
null hypothesis assumes that the new samples are generated from the existing LDA
model, while the alternative hypothesis assumes that they are generated from a new
LDA model which contains emerging topics in addition to the existing ones. Let the
LDA model in the null hypothesis has K topics, denoted as ® = {¢1,..., ¢k}, and
let their convex hull be Gy = conv(®) (called the null topic polytope). Given a text
document corpus S[[:g], the emerging topic detection problem can be formulated as

the following composite hypothesis test (HT-q):

(HT-q) (5.5)

H 8[”] PS[n]le’

where G, = conv(®, ¢x 1, ..., Px+q) is the topic polytope of the LDA model under
the alternative hypothesis. The set of the extreme points of G, includes the existing
topics ® and ¢ new topics (¢ > 0), each of which captures an event.

A standard test procedure for composite hypothesis testing is the generalized like-
lihood ratio test (GLRT), in which the maximum likelihood (ML) estimation of the
alternative model is followed by a log-likelihood ratio test (LRT). For our specific test
HT-g, the ML estimation step involves the inference of the unknown topic parameters
OK+1s - - -, Pr4+q (nOte that ¢ is also unknown) or, equivalently, the topic polytope G|,.

Define G” as the set of all polytopes with at most (K + ¢) extreme points that
include :

G'={G | ® Cextr G, |extr G| < K +q}. (5.6)

Note that Gy € G by definition. The ML polytope under the alternative hypothesis
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G, = arg max P‘;?n]\G(S[[Z]ﬂ)' (5.7)
Geg!

Equivalently, this ML estimation is also with respect to the topic parameters, i.e.,

Gy = comv(®, i1, Drrq). (5.8)

where {$K+j,j =1,...,q} denote the ML estimates for the topic vectors.

The standard log-likelihood ratio test statistic can be formulated as

m P ~
1 Sin)lGq 1;1 5.9
0g=5—— 2 T, (5.9)
= Dsulce

where the decision threshold 7,,, is often a function of the sample sizes m and n
chosen by the user.

Although conceptually straightforward, performing the above GLRT procedure
involves several challenges. The first difficulty is that the ML estimation under the
alternative hypothesis involves LDA model selection for all possible ¢ > 0, which is
computationally expensive and statistically vulnerable to overfitting. Moreover, eval-
uating the exact likelihood Ps ¢ for a given topic polytope G, or the log-likelihood
ratio in Eq. (5.9), is in general computationally intractable due to the integral (5.3).
Sampling-based algorithms or variational approximation are often used in practice,
but the results are mixed (see, e.g., Wallach et al. (2009); Taddy (2012); Scott &
Baldridge (2013); Foulds & Smyth (2014) for some recent discussions). Finally, choos-
ing an appropriate threshold function 7,,, that guarantees a certain level of detection
performance (e.g., a given false positive rate) is a largely unexplored problem in the

LDA model selection literature.
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5.4 Surrogate Hausdorff test

We propose a surrogate testing procedure to address the above challenges. First we
introduce a new hypothesis testing problem (HT-1) in which the generating LDA

model in the alternative hypothesis has only (K + 1) topics:

(HT-1) (5.10)

. elml m
H]_ . S[TL] ~Y Ps[n]lGl,

where G| = conv(®, ¢ 1), and ¢ 41 € A? is a new topic vector. Under this setting,
the space of alternative hypotheses is substantially reduced, and hence ML estimation
of the single-topic parameters is computationally more tractable than it is in the HT-q
problem (5.5).

Our proposed test described below is motivated by the idea of using this HT-1
problem as a surrogate for the HT-q problem. Let El denote the set of all polytopes

with at most (K + 1) extreme points that include &:
g = {G | ® Cextr G, |extr G| < K + 1}. (5.11)

Then the ML estimate of the (K + 1)-polytope, denoted as G, and referred to as the

surrogate ML polytope, is defined as:

G, = arg max Pg?n]IG(S[[:L?]). (5.12)
Geg

Its associated ML (K + 1)™ topic vector can be represented as:

bxi1 = arg max Pg’[@n”G(S[m}), G = conv(P, pgi1). (5.13)

Pr1€0 be
As a surrogate for the likelihood ratio (5.9), we propose to use d’)—[(@]_, Go), the
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Hausdorff distance between the surrogate ML polytope él and the null polytope G

as our test statistic. The decision rule is:

~ Hy
du(G1,Go) 2 p, (5.14)

Hy

where p is a decision threshold. We shall refer to this proposed estimation-detection

procedure as the surrogate Hausdorff test.

Figure 5.1: Illustration of the Hausdorff distance between null and alternative poly-
topes. All points denote vectors in A?, the d-dimensional word probability simplex
(not shown). “x” denotes the empirical word frequency vector corresponding to a
document. (Zi is the projection of (}54 onto Gy. When 54 ¢ aff Gy, the Hausdorff
distance between G = conv(¢r, P2, ¢3, g/b\4) and Gy = conv(¢1, ¢a, ¢3) is the Euclidean
distance between ¢4 and ¢}

Computation of the Hausdorff distance. When the extreme points of @1 are
composed of the extreme points of GGy and (ZKH (this holds almost surely under our
assumed setting K < d), the Hausdorff distance between G, and G coincides with

the following projected Euclidean distance (see Figure 5.1 for an illustration)

(G, Go) = d(dx41, Go)

1Tw=1,w>

K
min - {|orcin = > widnl), (5.15)
k=1

which can be formulated as a quadratic programming optimization (by equivalently
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optimizing the squared Euclidean distance) with respect to a low-dimensional AK~1-
constrained vector w. Therefore the Hausdorff distance can be calculated efficiently

by generic convex optimization techniques (Boyd & Vandenberghe, 2009).

5.5 Performance guarantees of surrogate Haus-

dorff test

In this section we state the theoretical results on performance guarantees for the
proposed surrogate Hausdorff test. The proofs of the main theorems are given in

Section 5.6.

Asymptotic setting. The data samples available are a collection of m documents,
S[[Zi‘] = (S[Z'R});il. Our main focus is to establish performance guarantees for the
proposed surrogate Hausdorff test as the total number of words (or tokens) m x n
goes to infinity. In particular, we consider the asymptotic setting where both m, the
number of documents, and n, the number of words in each document, are finite and
allowed to increase to infinity while the constraint logn = o(m) is satisfied. Note
that our asymptotic setting requires a mild increasing rate of n, as contrasted to
the setting of Nguyen (2014), in which both m and n increase to infinity with the

constraint loglogm < logn = o(m).

Assumptions. Recall from the model description that each document is distributed
according to the LDA density, i.e., S[in] ~ Fs, G- The (latent) topic mixing propor-
tions vector € is endowed with a Dirichlet prior distribution Dir(«). We make the

following assumptions.

(AO) The number of topics is much smaller than the number of words in the vocab-

ulary, i.e., K < d.
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(A1) The true LDA models under the null and alternative hypotheses have identical
Dirichlet concentration parameters aq,...,ag. The alternative hypothesis has

additional concentration parameters g1, ..., 0x1q-
(A2) For the LDA models under both hypotheses, a; € (0,1] forall j =1,..., K +g¢.

(A3) The topic polytope Gy is fixed and not degenerate, i.e., for some r, R > 0,

v € A4 Gy contains the spherical ball Bx(v,r) and is contained in Bg(v, R).

(A4) Topic vectors ¢; = (¢j0,---,Pja),  =1,..., K +q, are bounded away from the

boundary of A% i.e., min_g__4¢;; > co for some ¢y > 0.

(A5) The surrogate ML polytope G' under the alternative hypothesis of HT-¢q con-
verges to a (K + 1)-polytope G € G' almost surely. In addition, the Hausdorft

distance between G* and Gy is bounded away from zero almost surely!.

Under these assumptions, the following theorem states the consistency of the pro-

posed surrogate Hausdorff test.

Theorem 5.1. Let ¢ be the test function associated with the proposed surrogate Haus-
dorff test p := H{dq{(al, Go) > p}, where Gy is the surrogate ML polytope and p is a
decision threshold. Under Assumptions (A0 - A5), there exists some p > 0, such that

as m — oo and n — oo such that logn = o(m), the following holds:

P g, [l = 0, (5.16)
PE o [1—¢] =0, (5.17)

where Pg'[zn]‘G [p] denotes the expectation of test ¢ under distribution Pg;n”G, and

G’ € G, the set of all (K + q)-polytopes with any finite integer q > 0.

"'We conjecture that this statement can be proven to be true. Due to technical reason, we present
it as an assumption. See Section 5.6.2 for more details.
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Theorem 5.1 shows that the the proposed test based on Hausdorff distance between
the surrogate ML polytope G! and the null polytope G| is asymptotically consistent
for the hypothesis testing problem HT-¢, in particular both the false alarm (Type-I)
and false negative (Type-II) rates approach zero with sufficient samples. The proof
of Theorem 5.1 is given in Section 5.6.2.

The convergence of false alarm rate with respect to zero relies on the convergence
behavior of the surrogate ML polytope @1, which is interesting in its own right. In
particular, when the true polytope G* lies in ?1, by leveraging the theory of empirical

processes we have the following theorem on the convergence of @1 with respect to G*.

Theorem 5.2. Assume Assumptions (A0 - A4) hold and the true topic polytope
G* € ?1. Let Gy be the surrogate ML polytope estimated from samples S[[Z}L]. As
m — oo and n — oo such that logn = o(m), for some sufficiently large constant C
independent of m and n, a universal constant c, and for all 6 > 0., p, wWhere Oy, 1S

the vanishing sequence defined as

1
Sn — [logm N logn N lognl | (5.18)
m n m
we have
ngn],G* (dH(CAh,G*) > C’cﬁ) < cexp (—m52/02) , (5.19)

where the exponent y = 1 when G* = Gy, andy = K = |extr Go| when G* € El\{Go}.

We make the following remarks:

1. It is interesting to note that the convergence rate of the Hausdorff distance d,,,
parallels the posterior contraction rate of the topic polytope recently established

by Nguyen (2014) in a Bayesian setting (cf. Theorem 2 therein), which is validated

130



by empirical results (Tang et al., 2014). However, note that the asymptotic setting

of our results is different (see the remark in the beginning of Section 5.5).

. It can be shown that the quantity dy(él,G*)V serves as a lower bound for
h(PS[nH@l, Ps[nﬂg*), the Hellinger divergence between densities PS[n]\@l and Ps[n]\G*
(cf. Lemma 5.1). Therefore Eq. (5.19) implies that, when G* € ?1, the detection
error exponent for the proposed surrogate Hausdorff test is asymptotically on the
order of the squared Hellinger divergence hQ(PS[ 16y PS[H]IG*) or, equivalently, the

Kullback-Leibler divergence K (Ps[ G Ps, jc+)-

. When the true polytope G* = Gy, i.e., under the null hypothesis of the HT-q
problem, Eq. (5.19) ensures the convergence of G! with respect to Gy. Moreover,
it provides guidance for choosing the decision threshold in the surrogate Hausdorff
test (Eq. (5.14)) and an upper bound on the false alarm rate (Type-I error) for

the HT-q problem.

. Under the alternative hypothesis of the HT-¢q problem, i.e., when G* € ?q\al,
using our surrogate test, the ML polytope Gl e ?1 will not converge to the true
model G*. Therefore Eq. (5.19) does not generally apply due to the model mis-
specification. However, under a slightly more restrictive, but still realistic, setting,
the results of Theorem 5.2 apply to both the null and alternative hypotheses, as

shown below.

Performance guarantees for HT-1. We revisit the HT-1 problem (5.10), in which

the LDA models under the alternative hypothesis are assumed to have exactly (K +1)

topics (i.e., the alternative topic polytope has (K + 1) extreme points). In this

scenario, we have the following theorem.

Theorem 5.3. Assume Assumptions (A0 - A4) hold and the true topic polytope

G* € Gl. Let Gy be the surrogate ML polytope estimated from samples S[[Zf]. As

131



m — oo and n — oo such that logn = o(m), for some sufficiently large constants
C and C'" independent of m and n, some universal constants ¢ and ¢, and for all
d > Omp, where 0p,p is a vanishing sequence defined in Eq. (5.18), we have the

following relations:

Pg?nHGo (dH(Gl, Go) > C5> < cexp (—m52/02) (5.20)

sup Ps e (dy(él, G') < 0’6%) < dexp (—mé*/d) . (5.21)

G'eg

Furthermore, there exists some constant p > 0, such that the following guarantees

hold for the Hausdorff test o := I[{dH(@l, Go) > p}:

Pg c, @] < cexp (=mé?/c?), (5.22)

sup Pg o [1—¢] < exp (-mé*/c), (5.23)

G'egG

where Pg[ln]lG [¢] denotes the expectation of test ¢ under distribution Pg[Ln]\G'

Theorem 5.3 sharpens the consistency results in Theorem 5.1 by providing expo-
nential bounds for both the Type-I and Type-II errors of the HT-1 problem. These
results suggest that, if the emerging event(s) can be well captured by a single topic,
which might be reasonable in practice, our theory provides strong guarantees for the

proposed surrogate Hausdorff test.

5.6 Proofs of main theorems

In this section, we provide proofs of the main theorems. First we introduce the
following lemma, which is derived from some results established in Nguyen (2014).
This key lemma links the Hellinger divergence h between LDA densities and the
Hausdorff distance dy; between the corresponding topic polytopes. For completeness,

its proof is given in Section 5.9.
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Lemma 5.1. Let G, G’ be polytopes in Gl. Assume that dy(G,G") > cy/logn/n for
some sufficiently large constant c, then there is a constant Cy, > 0 independent of

G,G" such that
h(pe,per) > Cidy(G,G')7, (5.24)

where the exponent v = 1 when G = Gy, G’ € Gl\{GO}, and v = K = |extr Go| when
G, G € G\{Go}.

Next we prove Theorem 5.2, which serves as a key component for the derivations

of the other main theorems.

5.6.1 Proof of Theorem 5.2 (convergence of surrogate ML
polytope)

Our proof leverages a result in van de Geer (2000) on the convergence rate of the
ML estimator (in terms of Hellinger metric) for a general class of densities using the
concentration behavior of empirical processes. We specialize this general result to the
proposed hypothesis testing problem and derive a convergence rate of the ML topic

polytope, using the relation in Lemma 5.1.

Notation. We first introduce some necessary definitions and notation. The LDA
densities under consideration are indexed by topic polytopes in Gl. Let pg be a
shorthand notation for the density of Ps ¢ for some topic polytope G. Denote

»2

the “average density”® between a topic polytope G and the null polytope Gy as

Do = (pa + pa,)/2. Define

P6) = (Bl hvo.py) < 0} (5.25)

2The use of the averaged densities ensures the log-likelihood log D /pa, is bounded from below,
which allows for the convenience of using Hellinger metric (van de Geer, 2000).

133



as the local Hellinger ball around p¢, intersected with the space of square-root av-
eraged densities 7_71/2 = {ﬁlc/z,‘v’G}. It will be shown that the convergence rate
of the maximum likelihood LDA density depends crucially on the richness of this
set, measured by its entropy with bracketing. We briefly introduce this entropy no-
tion, more detailed can be found in van der Vaart & Wellner (1996); van de Geer
(2000). For any u > 0 and a function class F, let Ng(u, F) be the smallest value of
N for which there exist pairs of functions (called brackets) {[fF, f']}}Z, such that
Hij - ij“ < u, and for each f € F there exists a j such that f]L < f< fJU. Then
Hgp(u, F) =log Np(u,F) is defined as the entropy with bracketing of F (with respect
to a certain metric).

For small , H B(u,51/2(5)) denotes the entropy with bracketing of the defined set

731/2(5). Define an entropy integral as

é
Ts(6,P"%(6)) = » HY (0, P?(6))du v 6, (5.26)

where ¢ is an absolute constant (e.g., 2'% is used in van de Geer (2000)). Define

U(6) > Jg(d, 51/2(5)) as any function such that ¥(§)/6? is non-increasing in 4.

Proof of Theorem 5.2. Let G* be the true topic polytope and its associated distri-
bution which generates the data samples be Pg«. Recall the surrogate ML polytope
estimate @1 and its associated density Pg . The following proposition, which is a
version of Theorem 7.4 in (van de Geer, 2000), provides a convergence rate of Pa,
with respect to pg+ in terms of Hellinger divergence (note that we slightly abuse the

notation d,,, which is different to that defined before).

Proposition 5.1. Assume the following holds for a vanishing sequence 6,,, (as a
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function of m and n) and a universal constant c:

VMo, = ¥ (6mn)- (5.27)

Then we have for all 6 > . p,
Psiic (h(pg,-pa+) > 6) < cexp (—mo?/c?) . (5.28)

Under the null hypothesis, the convergence limit of @1, denoted as Gj, is the null
polytope Gy (see Figure 5.2). Proposition 5.1 implies that the Hellinger divergence
between the density parameterized by the surrogate ML polytope and the true density
converges to zero at the rate of Op(d,,,). Due to Lemma 5.1 (for G = GY), the
Hausdorff distance between the ML and the true polytopes converges to zero at the
same rate as the Hellinger divergence, also Op(d,,,). Therefore it remains to find
a sequence 6,,, that satisfies the entropy integral condition (5.27) to complete the
proof of Theorem 5.2.

Define ®(6) as the d-parallel of G (which is a d-dimensional body in A?), i.e.,

®(8) = {¢p € ANGy | dist(¢, Gy) <} . (5.29)

By definition, the set ®(§) includes all (K + 1) topic vectors of polytopes in ?1
which are at most § away from Gy in terms of the Hausdorff distance. The following
lemma establishes an upper bound of the entropy number with bracketing of the set
1/2

P 7(6) (defined in Eq. (5.25)) in terms of the (standard) entropy of the set ®(§) with

the Euclidean metric. The proof of Lemma 5.2 is given in Section 5.10.

Lemma 5.2. For small 6,¢ > 0, we have the following relation between the entropy
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with bracketing of 7_31/2(5) and the entropy of ®(0) (with Euclidean metric).

Hy (M”i’é;”,f“%&) < H(e,®(5) =0 (%bg (g)) . (5.30)

— K+1 . .. .
where Qg1 = Qgy1/ Zj;l a; s a scaled Dirichlet concentration parameter for the

topic proportions, and cy > 0 is a constant.

With this result, we could further upper bound the entropy integral defined
in (5.26) as follows:

5
J5(0, 7_31/2(5)) < H'? (2coad n~ u?, ®(5)) du vV 6
82/c

< ([ virman) vs
< ( /5 5/ Vlog (5n(52/c’)—2)du> )

< (0 —6%/c)/log (673n) vV §
< 0y/log (673n) == (),

where we have defined a proper W(4) (up to a constant). One can easily verify
that Eq. (5.27) is satisfied if ¢ is bounded below by a sufficiently large multiple
of [(log n/m)"* + (logm/m)"/?|. Therefore the conditions in Proposition 5.1 hold.
Combining this result with the condition in Lemma 5.1 yields the choice of 6,
(Eq. (5.18)). Theorem 5.2 follows immediately from Proposition 5.1 and Lemma 5.1
(for G = Gy). O

5.6.2 Proof of Theorem 5.1

We show that, under our specified asymptotic setting, a proper decision threshold p
exists which correctly distinguishes the null and alternative hypotheses. The two key

components of our proof are: (1) Under the null hypothesis, the Hausdorff distance
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Figure 5.2: Ilustration of the convergence of surrogate ML polytope estimate.

between the limiting surrogate ML polytope (denoted as Gf) and the null polytope
Gy converges to zero; (2) Under the alternative hypothesis, the Hausdorff distance
between the limiting surrogate ML polytope (denoted as G5) and the null polytope Gy
is bounded from zero. Then a threshold p can be chosen to ensure the consistency of
the surrogate Hausdorff test. The convergence behavior of the surrogate ML estimate

is illustrated in Figure 5.2.

Proof of Theorem 5.1. In Theorem 5.2, we have shown that under the null hypothesis,

the surrogate ML estimate converges to Gy at a rate described in Eq. (5.18)
dH(é\l, Go) = dH(CAJl, G*) =Op(0mn) — 0, asm,n — oo. (5.31)

Therefore there exists some constant C'; > 0, such that for all threshold p > C6,, ,

we have
ngn]\co (dﬂ(@l, Go) > p) — 0, asm,n — oo, (5.32)

which guarantees the convergence of false alarm rate with respect to zero under the

null hypothesis. It only remains to prove that this chosen threshold p also leads to
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the convergence of false negative rate under the alternative hypothesis.

Let the true polytope under the alternative hypothesis be Gj. Generally, G}
has more than (K + 1) extreme points, i.e., G} € ?"\Cl. Therefore, the surrogate
ML polytope G' and its limit G7 will not converge to G;. This results in a model
misspecification in the proposed surrogate estimation procedure (see Figure 5.2). It
is well known that, maximum likelihood estimator under model misspecification (also
known as the quasi-maximum likelihood estimator, or QMLE) converges to a well-
defined limit in the misspecified space under mild conditions (see, for example, White
(1982)). However, our specific asymptotic setting, in particular both m and n are
allowed to increase to infinity, requires an extension of the standard theory.

Under the alternative hypothesis, the true generating LDA density is DS |Gxs 1€,
S[in] ~ Ps, Gz, © = 1,...,m, and the quasi-likelihood for the surrogate estimation
is the LDA density ps,, ¢, G' € Gl. The proposed surrogate ML estimate Gl s

equivalent to the following QMLE:

G' = arg max Lm(S[[Z]L]; G), (5.33)
areg'

where the quasi-likelihood is defined as

m m 1 m m S 1 %
L™(8:G') = ~log PY. 16r(S)) = D~ log s,/ (Sh). (5.34)

=1

Note that the factor 1/n properly scales the log-likelihood of each document.
We make the following identifiability assumption on the surrogate ML polytope

under the alternative hypothesis:

Assumption (A5) Under the alternative hypothesis, as m — oo, n — oo such
that log(n) = o(m), the surrogate ML polytope G converges to a (K + 1)-polytope

Gi € G almost surely. In addition, the Hausdorff distance between G7 and Gj is
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bounded away from zero, i.e., dy(G7%, Gy) > 0 almost surely.

Under Assumption (A5), the surrogate ML polytope G% is bounded away from
the null polytope G in Hausdorff distance as m,n — oo under our specified setting.
This implies that by choosing the threshold p < dy (G5, Go), the proposed surrogate

Hausdorff test is consistent under the alternative hypothesis, i.e.,
Pg a: (dy(G7,Go) < p) — 0, asm,n — oo. (5.35)

Due to the vanishing behavior of the sequence d,,,, for some sufficiently large m
and n we have C10,,, < dy(G7,Go). Therefore there exists some decision thresh-
old p that satisfies C1d,,,, < p < dy(G7,Go). Such threshold leads to the correct
convergences of the detection errors under both the null and alternative hypotheses.
Therefore the consistency of the hypothesis testing problem HT-q is proven.

[

Remarks on Assumption (A5): The first part of Assumption (A5) specifies the
convergence of the surrogate ML polytope, which is an extension of the results es-
tablished in White (1982). Specifically, Assumption (A5) assumes the convergence
of a specifically structured quasi-maximum likelihood polytope estimator, under an
asymptotic setting where both m and n are allowed to increase to infinity. The second
part of Assumption (A5) further characterizes the limiting polytope G} and assumes
its distinguishability from the null polytope Gy. Here we provide some intuitions for
these assumptions.

For any fixed n, using similar arguments as in White (1982), the empirical quasi-
likelihood (5.34) can be shown to converge to its expectation, which is a well-defined
function of G’ (dependent on n). Then the quasi-maximum likelihood polytope con-

verges to the (unique) optimum of the expectation function by the continuous map-
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ping theorem for M-estimation (van der Vaart & Wellner, 1996). As n — oo, we have
increasingly sufficient observations for each document, the empirical word frequency
vector of each document converges to its population mean, which lies in the true
topic polytope G under the alternative hypothesis. Correspondingly, the (K + 1)
extreme point of the quasi-maximum likelihood polytope is expected to converge to
some (relative) interior point of G, which is bounded away from Gy (a boundary
facet of G}) almost surely. See Section 5.11 for a more elaborated presentation of
these arguments.

We conjecture that the statement of Assumption (A5) can be shown to be true
using a rigorous proof (and possibly along the line of arguments as described above).
However, due to technical reason, we present it as an assumption in the current paper,

and leave its rigorous proof for future work (Meng et al., 2014b).

5.6.3 Proof of Theorem 5.3

Proof. The first set of inequalities (Eq. (5.20) and (5.21)) are direct implications
of Theorem 5.2. The second set of relations (Eq. (5.22) and (5.23)) can be proven
similarly as Theorem 5.1, by noting that Theorem 5.2 now provides convergence
rates (Eq. (5.19)) of the ML polytope G* with respect to Go (and G7) under the
null hypothesis (alternative hypothesis, respectively). Therefore, there exists some

decision threshold p such that
Clémm <p< d’H( i, G0> — Ci5£,n, (536)

where G7 is the true polytope under the alternative hypothesis, C; and C] are con-
stants. Therefore correct convergences of the detection errors under both hypotheses

are guaranteed, along with the exponential upper bounds (Eq. (5.19)). ]
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5.7 Algorithmic implementation and experiments

In this section, we first describe the algorithmic implementation of the proposed test,
and then present results of simulations on synthetic data sets. These experimental

results validate our theoretical development.

5.7.1 Algorithms for the surrogate Hausdorff test

The main computation of the proposed surrogate Hausdorff test is the ML estima-
tion of the (K 4 1) topic vector ¢x41 (Eq. (5.13)). This problem can be solved
using variants of standard LDA learning algorithms, including the sampling-based
techniques (e.g., the collapsed Gibbs sampling (Griffiths & Steyvers, 2004; Porteous
et al., 2008)) or variational inference (Blei et al., 2003; Foulds et al., 2013). Under
the setting of HT-1, the collection of LDA topics under the alternative hypothesis is
assumed to include all the (known) topics under the null hypothesis. Therefore an in-
cremental version of the original LDA estimation algorithms is needed. Specifically,
at the end of each iteration of the estimation algorithm (either sampling-based or
variational inference), only the parameters of the (K + 1) topic are updated, while
the remaining K topic vectors are kept fixed throughout the estimation process.

In our numerical experiments, we implement an incremental version of the varia-
tional inference algorithm (Blei et al., 2003), which is proven to be sufficiently accurate

and efficient for our purpose.

5.7.2 Simulations on synthetic data sets

We demonstrate the detection performance of the proposed surrogate Hausdorff test
through numerical simulations on synthetic data generated from LDA models.
The LDA models are parameterized as follows. The vocabulary size d = 100,

the number of topics under the null hypothesis K = 10, the true topic vectors are
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randomly sampled from a d-dimensional Dirichlet distribution with symmetric con-
centration parameter S = 0.2. The Dirichlet concentration parameter vector for the
mixing proportions of the null topics is set to be symmetric and each component
equals a, i.e., a; = ap, for all j = 1,..., K. The value of « is selected from one of
the following three values {0.2,0.5,0.8}. The concentration parameter for the emerg-
ing topic(s) is set to be o; = 0.15,5 = K +1,..., K 4+ ¢. We vary the value of m, the
number of documents, and n, the number of words per documents. For each setting
of (m,n), 80 pairs of document corpuses, one under the null hypothesis and the other
under the alternative hypothesis, are generated according to the LDA model. Using
these sampled document corpus, the proposed surrogate Hausdorff test statistics are
calculated.

In Figure 5.3(a) - 5.3(c), we consider the HT-1 problem (Eq. (5.10)), in which
the true LDA model under the alternative hypothesis contains one new topic. We
plot the receiver operating characteristic (ROC) curves for the three settings oy =
{0.2,0.5,0.8}, as described above. In Figure 5.3(d), we plot the ROC curves for a
HT-q problem (¢ = 2), i.e., the true LDA model contains K + 2 = 12 topics under
the alternative hypothesis. All the reported curves are averaged over 10 Monte Carlo
simulations.

From these simulation results, several observations can be made.

When m and n both increase, the detection performance of the proposed test
improves consistently under all settings. In particular, both the false positive and
false negative errors decrease and approach zero, as predicted by Theorem 5.3. Note
that increasing either m or n while the other quantity kept fixed does not guarantee
the improved performance. This observation agrees with the derived convergence rate
of the Hausdorff distance (cf. Eq. (5.18) in Theorem 5.2) in which both m~2 and n"2
appear.

It is interesting to note that the detection performance degrades when ag, the
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Figure 5.3: ROC curves for the HT-1 and HT-¢ problems using the proposed surrogate
Hausdorff test. When m and n both increase, the detection performance of the
proposed test improves consistently under various LDA settings (i.e., both the false
positive and false negative errors decrease). The detection is more challenging when
«p, the Dirichlet concentration parameters for the null topics, is larger.
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Dirichlet concentration parameters for the null topics, increases. For example, when
ap = 0.2 (Figure 5.3(a)), the detection performance of the proposed test using only
m = 40 documents with length n = 40, almost matches that under oy = 0.8 (Fig-
ure 5.3(c)) using m = 240 documents with length n = 160. Intuitively, large «q
implies strong mixing of the topics among the documents under the null hypothe-
sis (i.e., documents are “topic dense”), which, not surprisingly, leads to difficulty in
detecting emerging topics which has weakly mixing (i.e., relatively small axyq). In
practice, this suggests that topic detection is easier in thematically simple text corpus
(such as news article), and vice versa.

While our asymptotic theory does not provide a direct explanation for such non-
asymptotic phenomenon, some insights can be drawn from our derivation. In par-
ticular, the existence of a proper decision threshold that guarantees consistency
relies on relation (5.36), which hold for sufficiently large m and n. Therefore a
larger dy(G%,Go) results in lower sample complexity. In Section 5.11, we show
that dy (G5, Go) depends on the magnitude of the (K + 1) mixing proportion 0

(cf. (5.56)), which, in turn, depends on the relative weight of the Dirichlet param-

eter Z%Taj = Ka‘;‘f;z;ﬂ (due to the property of Dirichlet distribution). Therefore
increasing «p and/or decreasing ak ;1 results in a large dy(G7, Gg), which leads to
better non-asymptotic detection performance.

Finally, for the HT-g problem (¢ = 2), the detection performance is improved over
the similarly parameterized HT-1 problem (ag = 0.5 for Fig. 5.3(b) and Fig. 5.3(d)).
This could possibly be explained by the fact that the increase in the number of new
topics leads to an increase in the relative magnitudes of the mixing proportion for the
new topics (see discussion above), thereby resulting in larger dy (G5, Go) and better

performance. In practice, this result implies that multiple emerging topics are easier

to identify (although not necessarily easier to estimate) than a single emerging topic.
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Figure 5.4: Set-up of the sequential emerging topic detection in the NIPS corpus.

5.7.3 Experiments on the NIPS corpus

We consider the problem of detecting emerging topics in a real-world document cor-
pus, the NIPS corpus, which consists of the published papers on Neural Information
Processing Systems (NIPS) conferences from 1987 to 1999 2. This corpus contains
2,484 documents, each of which is represented as a word count vector over a vocab-
ulary of 14,036 words. We model the corpus using the LDA model, and apply the
proposed emerging topic detection algorithm in a sequential manner.

The set-up of the sequential detection is as follows (also see Figure 5.4 for an
illustration). We train an initial LDA model using the collection of the first five
years’ NIPS papers from 1987 to 1991. The topic polytope associated with this
initial model is used as the null polytope for the first detection. For each year from
1992 to 1999, we perform the proposed surrogate Hausdorff test to discover new topics
and update the current topic model incrementally. Specifically, the test is performed
multiple times until either the null hypothesis is accepted or the maximum number
of new topics per year (set as three) is achieved. In our experiments, we choose
the decision threshold of the proposed test as half of the Hausdorff distance between
the first detected new topic in that year and the previous topic polytope. After the

detection terminates, we perform a re-estimation of the new topics while holding the

null topics fixed. This re-estimation step is important to extract the “clean” new

3The data set was processed by Sam Roweis and Gal Chechik. It can be retrieved at http:
//ai.stanford.edu/~gal/data.html.
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topics, since our proposed surrogate estimation, which only adds one topic at a time,
is not guaranteed to be consistent (in terms of estimation) when there exist more than
emerging topics (e.g., the surrogate ML topic estimate could be a convex combination
of the new emerging topics, see Figure 5.5 for an example). The re-estimation of the
new topics will refine the previous estimation and alleviate the model misspecification
effect. After the re-estimation, we re-train and update the entire topic model using
the most recent three years’ corpus. The re-trained model then is used as the null
model for the subsequent year. This post-detection re-training captures the changes,
or even disappearance, of the pre-existing topics in the more recent corpus, which is
important for an accurate detection in a time-varying setting. For all the (re-)training
of null models, we discard the redundant and junk topics, which are identified by near-
zero Hausdorff distance with respect to the topic polytope of the other topics, and
negligible Dirichlet concentration parameter estimate (estimated from the data as
described in Blei et al. (2003)), respectively. In practice, we find these two criteria
yield plausible results.

The discovered new topics (after the re-estimation) for each year are listed in Sec-
tion 5.13, and the pre- and post-detection topics are included in Section 5.14. For
each topic, we show the top 30 words that have the largest probabilities. It can
be observed that the detected topics clearly demonstrate certain evolving trends in
the NIPS papers over the considered decade. In particular, many earlier discovered
topics emphasize on neural-related subjects (such as rat, hippocampal, and wvisual),
while some of the more recent topics present word combinations about emerging ma-
chine learning techniques (such as kernel, support, vector, machines and independent,
component, analysis).

Due to the absence of ground truth, the quality of topic modeling on real-world cor-
pora is often more difficult to evaluate quantitatively than those on the synthetic data.

Some empirical measures, such as the pointwise mutual information (PMI) (Newman
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et al., 2010), often utilize external information. For our NIPS corpus, we consider
to investigate the coherence between the detected topics and the key words in the
annual Call For Papers (CFP) of the NIPS conferences, which reflect the emerging
trends and subjects specified by the organizers. Using this evidence, many interesting
results can be found. For example, our proposed method identifies the emergence of
the support vector machines (SVM) on the year of 1998. This is coherent to the CFP
of 1998, where the key words of SVM first appeared in the CFP of NIPS. Another
SVM-related topic is again detected in the year of 1999 by our algorithm, where
svm co-occurs with theorem, proof, conditions, bound, etc., indicating that it is more
focused on the theory of SVM. Another notable finding is the topics related to inde-
pendent component analysis (ICA), which are discovered on the year of 1996 and 1997,
respectively. This detection is interestingly ahead of the first appearance of ICA in
the CFP of NIPS on the year of 2000. Also note that from 1996 to 1999, ICA-related
topics evolve from emerging topics to a persistent component of the post-detection
topic collections (i.e., Topic 5 in the post-detection model).

Another interesting phenomenon is the effect of model misspecification under
our surrogate detection procedure, and its correction using the re-estimation. For
instance, the first detected topic in the year of 1994 before the re-estimation is the

follows:

Detected Topic 1 in 1994: field em tasks teacher map mlp skills user saliency
variance memory student mixtures noise subjects recall active context pyramid hme

mixture wta jordan item michael experts chess eq long loss...

The co-occurrence of michael jordan may not be surprising considering the fact
that Dr. Michael I. Jordan co-authored seven papers in that year of NIPS. However,

after the re-estimation of the new topics, this co-occurrence becomes less notable
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(disappeared from the top 30 words). One possible explanation is that, since our pro-
posed estimation only uses one topic as a surrogate for multiple emerging topics, the
“Michael Jordan” topic is identified as the first surrogate topic due to its high volume
of of occurrences. However, it might be the case that this “Michael Jordan” topic lies
in the convex hull of some other emerging topics, and hence it is replaced by the “ver-
tex topics” during the re-estimation (again, see Figure 5.5 for an illustration). This
observation shows consistency to our geometric intuitions for the proposed detection

procedure under model misspecification.

5.8 Summary of Chapter 5

We propose the surrogate Hausdorff test for topic detection in the latent Dirichlet
allocation model. Our theory shows that this computationally efficient test proce-
dure has strong performance guarantees for detecting emerging topics. The theory
is supported by numerical simulation on synthetic data sets and experiments on a

real-world corpus.

5.9 Proof of Lemma 5.1

Proof. The proof of Lemma 5.1 follows similar steps of Theorem 5 and Lemma 2
in Nguyen (2014). The main difference is that when G = Gy, a new geometric lemma
is needed to characterize the volume of G'\Gy in terms of the Hausdorff distance

dy(G', Gy), where G’ € ?1. The proof of Lemma 5.3 is included in Section 5.12.

Lemma 5.3. Under Assumption (A0), for all G’ € Cl, there exists a positive constant

Cy = Cy(Gy) such that the following holds

VOIK(G/\GO) Z OQd’H(GO, G/) (537)
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When G, G’ € Gl\{Go}, a similar relation with exponent equals to K can be shown
to hold following similar arguments to Lemma 2 in Nguyen (2014). Note that the
thick body assumption required for this lemma is trivially satisfied, since we have
assumed the null polytope is not degenerate and fixed.

For arbitrary polytopes G = Gy or G € ?1 and G' € ?1, we lower bound the
Hellinger divergence between the LDA densities DS |G and PS67 by their total vari-

ation distance:

h(ps,yiGs PSylcr) 2 V(DS Psyylcr) = Sup Ps,ic(M € A) — Ps, e (1 € A)|,

where 7 is the empirical word frequency vector corresponding to document S[in], =
%Z?:J(Xt = 1) for Il =0,...,d, and the supremum is taken over all measurable
subsets of AY. In the proof of Theorem 5 in Nguyen (2014), a suitable test set is
constructed to further lower bound the above variational distance in terms of the
Hausdorff distance dy (G, G"). Let € be some constant such that 0 < e < dy(G,G") /4,

it can be shown that
PS[n]|G(7/7\ € A*) — PS[n]|G’ (7/7\ € A*) Z 046 — 2<d + 1) eXp(—QnEQ/(d + 1)), (538)

where we have used the O-regularity of the Dirichlet-induced density Pyc (or Pyq)
proven in Lemma 4 of Nguyen (2014), and Cy = Cy(a, K, d) is a constant (independent
of m and n) defined therein.

When ¢ = O(logn/n) as assumed in Lemma 5.1, the second term in (5.38) is

dominated by the first term, which concludes the proof. O
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5.10 Proof of Lemma 5.2

Proof. We first state the following lemma which provides an upper bound on the
Kullback-Leibler divergence of two alternative LDA densities in terms of the Euclidean
distance between their (K + 1) topic vectors. The proof of Lemma 5.4 is included

in Section 5.12.

Lemma 5.4. Let G,G € ?1 be two polytopes with (K + 1) extreme points such that

any point n € GU G’ satisfies min—q __qm > co for some constant cg > 0. Then the

-----

Kullback-Leibler divergence between their associated densities satisfy

NOK 11

K(PG;ﬁG’) < ||¢K+1 - ¢/K+1||7 (539)

where Qg1 = a1/ Z]K:J;l a; 15 a scaled Dirichlet concentration parameter for the
mixing proportions, ¢xi1 and ¢y, are the corresponding (K + 1)t extreme points

of G and G', respectively.

For any averaged LDA density o € P(9), by definition we have h(pg, pg,) < 6.
Lemma 4.2 in van de Geer (2000), it can be shown that h(pg, pa,) < 4h(pa, pa,) < 4
Then using Lemma 5.1 (for G € g \{Go}), dy(G,Go) < (45/C)HVE = O(§ 1/K)
which implies that the volume of ®(d) (defined in Eq. (5.29)) is O(6¥K), i
volg ®(9) = O(6YK).

Let {¢,, b1y, .., b1y} denote an e-net of ®(6), ie. € < ||y, — ¢yl < 2¢, Vi, j =
1,...,N. For each ¢, an associated polytopes G;, = conv(®, ¢;,) can be defined.

Accordingly, we obtain a set of alternative models associated with the N points,
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{G:,,...,Giy}. Forany i,j =1..., N, we have

(2) 1
h? (Pa;»Pa;) < 5 ;)
]./ sz + 2pGo 1 1
<= ~PG; + 5P, )dp
2 2pG + 2pGo <2 27"
(# 1
g K(pa; pe,) + 5K (paos pés)
1
Z (PG“PG]-)
S x |pr; — &4l
< n@KHe’
2C0

where (i) is a basic inequality, (ii) is due to the convexity of KL divergence.

Then the following brackets cover the set 51/2((5):

1/2 NOK 1€ _1/2 NO41€ .
|:\/_ \/_ ] _|: / ( 260 )1/2’ pG/f@—i_( 20:)_ )1/2 7221’27"'7]\7'

To see this, note that for any point ¢ € ®(4), there exists some j such that [fo2 —¢ <

TLO[K+1€

2e. By similar arguments as above, we have h?(pga, Pa;) < o

, which implies that
/D lies in the j™ bracket.

Therefore, the entropy with bracketing of P(§) endowed with Hellinger metric,
ie. HB< naKt1e 731/ (5)), is upper bounded by the entropy number of ®(§),

2co

H (€,9(5)) = log N, which is O (£ log (2)) since voly ®(8) = O(6¥/X). O
5.11 Intuitions for Assumption (A5) and some re-

sults

In this section, we provide some intuitions for Assumption (A5) and present some

relevant results.
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Step 1. For any n > 0, we first establish the convergence behavior of the empirical
quasi-likelihood. Let the true generating density be ps,, |c:. The quasi-likelihood for
the surrogate estimation under the alternative hypothesis is the LDA density with
respect to ps,, e for G' € ?1. Due to the unique mapping between the (K + 1)-
polytope in ?1 and its (K + 1) extreme point, the LDA density can be equivalently

parameterized by ¢xiq:

d K
St = il 10, 0 dPy.q.
ps[n]( [n]7¢K+1) /AK exp {n;ml 0g (; Gl + Prcy1y K+1>} b;

The quasi-log-likelihood is (also parameterized by ¢ 1):

LSl dxcan) = ntlog P, (Shys éxcsn). (5.40)

i=1

First we note that, for any fixed n > 0,

n~!log PSS ])‘ is bounded. To see this,
apply the mean value theorem (Olmsted, 1961) to the integration with respect to 0,

we have

n! log Ps, (S[Zn] )

d K
= |n"tlogexp {n Z 1i1 log (Z ¢0; + ¢K+1,Z§K+1> }'

1=0 j=1

d K
= Z i log <Z 0 + ¢K+1,I§K+1>
=0

j=1

’

for some 6 € AKX (note that 6 is dependent on n). Due to Assumption (A4) that the
components of topic vectors ¢;; are bounded away from zero, and the constraint that

Z]K:J;l ; = 1, the right-hand side of the last display is bounded.
Given the boundedness and continuity of the quasi-log-likelihood, and that the

parameter ¢, lies in a compact subset of a Euclidean space (i.e., A?), Mickey’s
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Theorem (given as Theorem 2 in Jennrich (1969)) states that

m? Z n~'log Ps,, (S[in]; brs1) =5 E (nlog Ps,., (an]; Gr1) (5.41)

=1

uniformly for all ¢xy; € A? and almost every sequence (S[in])?;l. Note that the

expectation is taken with respect to the true generating distribution Psc:-

Step 2. Next, we consider the limit of the expected quasi-log-likelihood (i.e., the
right-hand side quantity in (5.41)) as n — oo.

Note that the expected quasi-log-likelihood can be expressed as follows

E nil long[n]‘G/(an])] :Tlil /Ad 10gPg[nﬂgl(s[in])dpg[nﬂgz. (542)

Recall the generative process of LDA model, the marginal density can be expressed
as an integration over the random vector 7 in the topic polytope G. Therefore, we
have Ps, | = Je Ps, lwdPycr and Psq: = i) e Ps,, lndPyc; for the quasi- and true

likelihoods, respectively. These relations lead to

E [nil lOg Pg[n] |G’ (S[ln]):|

d
:n_l/ log/ exp [nZﬁzl log 77},
Ad ’ =0

d
—nl/ / log /exp nZﬁillogngl
a /Al G’ 1=0

where 7); (the empirical word frequency vector) lies in A4, n; (the population word

d Py (1;)dPs,, 6z (Shy) (5.43)

dPy|cr (77;)} dPS[n]ImdPan;(ni)a (5.44)

frequency vector) lies in the true generating polytope G, and n; (the surrogate pop-
ulation word frequency vector) lies in the surrogate polytope G'.
Conditioning on 7; (the population word frequency vector in G7), as n — oo, the

empirical word frequency vector 7); of the words (X;;)j_,, which are i.i.d. draws from
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the multinomial distribution Multi(r;), converges to the population word frequency
vector 7; almost surely. Therefore, loosely speaking, Ps, i — I(m; = n;), which leads

to the following conjectured relation:

E [n_l log PS[nHG’ (S[Zn])}

d
222 | ntlog / exp [n Z ni log n);
G ' 1=0

APy cr (ng)deG; (7:)- (5.45)

Note that the right-hand side quantity in (5.45) is still dependent on n. Therefore

Eq. (5.45) is not a well-defined convergence argument.

Although the convergence with respect to the right-hand side quantity in (5.45) is
not established, it is interesting to investigate its properties, in particular its concavity
in ¢r1. Apply the mean value theorem (Olmsted, 1961) to the outer and inner

integrals, respectively, we have

P, "G (m)dPnIG* (m)

/ n~" log / exp [anz log 7,

=n! log eXp [n Z 7, log n);

d
= n"'logexp [n Z n; log Wz]

=0

dPn dred (771)

d
= Zﬁl log 1/, (5.46)

=0

for some 7 € relint G} and 7’ € relint G’ (the existence of these two vectors is
guaranteed by the continuity of the integrated function, see, for example, Olmsted
(1961, Page 346)). Note that both 7 and 7/ are potentially dependent on n.

Since 1/ can be parameterized by 7/ = EKH ¢J9 where 6 € relint AX is the

corresponding topic proportion vector (again, 6 depends on n). Then the quantity
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in (5.46) can be expressed as a function of ¢ 1:

d d K
> mlogiy = mlog <Z 5105 + ¢K+1J§K+1> - (5.47)
1=0 1=0 j=1

Combine (5.41), (5.45), (5.46) and (5.47), as m — oo and n — oo, we have the

following conjecture:

m d K
m*1 Z n*l 1og Ps[n] (S[Zn}, ¢K+1) — Z T_]l lOg (Z ¢j,lgj —+ ¢K+1,Z§K+1> (548)
=0

i=1 j=1

uniformly in ¢x 1.

Step 3. Assume the convergence argument in (5.48) holds for some limiting function

that takes the following form

d
L*(¢g41) = Zﬁl log ((1 — Ox41)ay + drr110k+1) (5.49)

=0

where 77 and 6 are independent of n, and the vector a is defined as

a=——= Z ¢jl§j- (550)
j=

It can be easily verified through the calculation of second-order derivative that

L*(¢k+1) is strictly concave. Therefore it has a unique maximum, denoted as ¢, ;:

d

q/b\}ﬂ = arg max Zﬁl log ((1 — Oxt1)a + drs1105+1) - (5.51)
¢K+1€Ad 1=0

Recall our surrogate ML estimate of ¢x 1 can be equivalently defined as the fol-
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lowing maximizer of the empirical quasi-likelihood

Gr 41 € argmax m " Zn_l log Ps,,, (an}; Ort1)- (5.52)

P +1EAD i=1

Due to the assumed convergence (5.48) and the uniqueness of the optimum of
L*(¢k41), the continuous mapping theorem for the M-estimation (also known as
the Argmazx continuous mapping theorem (van der Vaart & Wellner, 1996, Theorem

3.2.2)) implies:

PR 11 = Prcir- (5.53)

By the unique mapping between the (K + 1) extreme point and the (K + 1)-polytope

in ?1, we have
G' L2 G, (5.54)

which is the first part of Assumption (A5).

Step 4. Recall 6 € relint AKX, it can be verified that the vector a defined in (5.50)
satisfies a € relint G, where we recall Gy = conv(¢y, ..., ¢x) (see Figure 5.5).
It can be shown through the Karush-Kuhn-Tucker conditions of the optimization

problem (5.51) that its unique optimum ¢}, satisfies

1—-6
Grars =0, OF Py =N — —=—"2ay, 1=0,...,d (5.55)
K+1

for some constant A. Due to our assumption that the topic vector components are

bounded away from zero (Assumption (A4)) and the normalization constraint, it can
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Figure 5.5: Illustration of Eq. (5.56). The null topic polytope Gy = conv(¢y, ¢o, P3)
(K = 3). The true topic polytope (under the alternative hypothesis) G} =
conv(pr, o, P3, ¢4, ¥5) has five extreme points (¢ = 2). Vectors a € relint Gy and
7 € relint G}. As a result of Eq. (5.56), the limiting surrogate ML estimate of the

extreme point qg}{ 41 1s bounded away from (. All points denote vectors in A? the
d-dimensional word probability simplex (not shown).

be verified that A =1 /§K+1, which leads to the relation
ﬁ = §K+1(/b\* + (1 - 5K+1)a. (556)

The above display implies that, the vector 7 lies on the line segment of (a, (E*)
(excluding the endpoints since 01 > 0). Under Assumption (A0), the null polytope
Gy is a boundary facet of the higher dimensional polytope G almost surely (for
g > 1 under the alternative hypothesis). This implies vector a, which is a relative
interior point of Gy, is also on the boundary of G;. Since vector 7 is a relative
interior point of Gy, (5.56) implies that qg* is bounded away from Gy (see Figure 5.5

for an illustration). Therefore, dy(conv(Gy, ¢*), Go) > 0, which is the second part of

Assumption (A5).

Remarks: We conjecture that the statements of Assumption (A5) can be shown to
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be true using a rigorous proof (which is possibly similar to the above arguments).
However, the main technical difficulty is to establish a relation that is similar to
(5.48), in which the right-hand side quantity is independent of n. Another possibly
minor technical issue is the equivalence between our desirable asymptotic setting (i.e.,
both m and n increase to infinity simultaneously) and the setting presented in the
above arguments (i.e., for any fixed n, first let m — oo, then let n — o0). We
conjecture that the limits under two asymptotic settings are equal for our problem,
which requires certain additional uniform convergence argument. For these reasons,

we introduce Assumption (A5) and leave its rigorous proof for future work.

5.12 Proofs of auxiliary lemmas

Proof of Lemma 5.3. Let ¢3;,, be the projection of ¢ 1 onto Gy (see Figure 5.1).
When d > K, the volume of G'\Gj is almost surely a K-pyramid which has apex
¢r+1 and base Go. Therefore Cy = volg_1(Gy) sin ¢ suffices for Eq. (5.37) to hold,

where ¢ is the angle between aff Gy and the line segment [¢px11, o5 4] O

Proof of Lemma 5.4. Our proof utilizes an established upper bound on the
Kullback-Leibler divergence K (pg[n]|g,p3[n]|gx) in terms of the Wasserstein distance

between p, ¢ and py ¢, defined as

Wiy, pyicr) = gelfg/ 71— n2(|dQ (1, m2), (5.57)

where Q(n1,72) denotes a coupling of P, and P ¢, i.e., a joint distribution over
G x G' whose induced marginal distributions of 1, and 7, are equal to P and P ¢,
respectively. Q is the set of all such couplings.

The following lemma (Lemma 6 in Nguyen (2014)) provides an upper bound on

the Kullback-Leibler divergence K (pg[nﬂg, D SWG/):
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Lemma 5.5. Let G, G’ C A? be closed convex subsets such that anyn = (o, ...,nq) €

G UG satisfies min,_g__qm > co for some constant co > 0. Then

n
K(psyics Pspyicr) < C—OW1(pn\G,pn|G'). (5.58)

For distributions P, and P, g, where G,G’ € Gl, we construct a coupling
Q*(n,n') such that under Q*, n = ZJK:JEI 0,¢0; and ' = Zj:;l 0;¢}, i.e., n and 1’ share
the same Dirichlet-distributed topic mixing proportion vector #. This construction is
a valid coupling, since the Dirichlet distributions are identically parameterized by As-

sumption (A1), and the two polytopes share the same K extreme points ¢y, ..., ¢x.
We have

n
K(pS[n”GapS[nHG’) S C_OWI(pMG;pn’\G’)

n *
<n / I — 7 114Q* (m, )
Co
K+1

n /
< aEQ* Z 0illp; — &5l

=1
n /
:C—OEQ*GKHHqﬁKH — Pl

_ NOK4+1

prr1 = Dl

where the last step is due to the property of Dirichlet distribution, and @y . =

a1/ Z]K:T Q. [

5.13 Detected topics in NIPS corpus

Year 1992:
Detected Topic 1 :

query uncertainty gender insertion hole mill epsilon pendulum lqr assembly filter
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rom hjb realization slopes queries committee sensed infomax modes realizations
interconnection gullapalli interconnections restart filters inductive load theoretic
monkey

Detected Topic 2 :

rat distance character place hippocampal image goal tangent representations channel
environment regions hand pre location representation scenes visual window manager
inverse fault spiral manifolds circular dimensionality workspace waves food codebook
Detected Topic 3 :

rules approximation probability evidence model stochastic perturbation bootstrap
distribution building bayesian pruning rule examples eq hints posterior children
blocks selection prior similarity criterion moody lemma descent asymptotic member-

ship theorem missing

Year 1993:

Detected Topic 1 :

filter leech entropy silicon face odor binding dopamine retina eeg exemplar contour
nucleotides fault primary smyth krogh friesen shapes dna subjects site detection bee
splice mach substructures becker genes sites

Detected Topic 2 :

theorem routing asynchronous convergence algorithm finite obs markov algorithms
dynamics state obd transition momentum discrete stochastic pruning monte carlo
Ims communication behavior programming states pca observable methods tree proof
board

Detected Topic 3 :

distance cross data clustering feature features cluster tangent classification images
code validation sound address owl missing block surface signature auditory regression

analysis similarity implicit localization reconstruction vectors nearest activity
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representations

Year 1994:

Detected Topic 1 :

transformation regime actor plasma means spectral online estimators talkers aggre-
gation bishop batch subspace attenuation electrotonic linsker series decorrelation
separation moment transformed periodic andreas min blind magnetic limiting angle
pan predictor

Detected Topic 2 :

field hand subjects force hint operator motor optical manifold position facial subject
auditory tau hints interpolation interference song mst day location learned shift
blocking video group reinforcement learning delta tracking

Detected Topic 3 :

em teacher tasks noise skills saliency mlp active user pyramid student recall queries
hme wta chess mixtures item loss map context memory module capacity eq query

experts coding compression long

Year 1995:

Detected Topic 1 :

loss spike character characters field entropy train transfer bounds lvq rate template
window minima rates bound logistic isi reference receptive poisson warmuth pixels
detections constraints ocr particle ill dimensionality msec

Detected Topic 2 :

robot student period symmetric sensory system dynamical filter frequency channel
dynamics overlaps stage bifurcation motion cochlear integrator onset teacher envi-
ronment gains motor dependencies cochlea filters path place stability simd navigation

Detected Topic 3 :
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tree trees ensemble motor eeg risk stopping perceptrons ica depth decision features
family algorithm energy table visible pruning variables boosting split terminal early

perceptron representations clusters spin shavlik validation yang

Year 1996:

Detected Topic 1 :

experts hme expert batch utility entropic gating stationary growing spherical mem
unlabelled grbf accelerator collective tdnns delays updates utilities welch controller
hebb baum diagnosis tdnn wan questions disease earth saddle

Detected Topic 2 :

disparity carlo monte biases interpolation contour spectrum demonstration player
rivalry mse kalman contours sampling pole elements power gammon trial binocular
natural penalty edge spatiotemporal neal players hyperparameters curves electric
segments

Detected Topic 3 :

separation graph som source sources ica call algorithms independent channel blind
feature component style decision graphs classifier matrix samples price filters query

energy tree algorithm content weak bagging classification extra

Year 1997:

Detected Topic 1 :

release robot module cia monotonic hybrid subject conditioning feedback observer
adaptation ideal reflectance monotonicity winnow shading diffusion words refractory
path subjects observers compensation synapse generative rating free control produc-
tion refractoriness

Detected Topic 2 :

tree decision trees distribution graph hierarchical edge ham nodes blood ltm com-
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posite divergence edges level adaboost leaves rectified kullback covariance margin
weiss kalman ekf hierarchy matching leibler opinion measurement conditional
Detected Topic 3 :

words analysis eeg wavelet rules retrieval target time coding system frequency
component preference independent memory ranking ica source word similarity rule

sources artifacts low human user displays gradient sec attractor

Year 1998:

Detected Topic 1 :

latent sensor pca documents rotation sparse options rotated shrinkage fusion digit
words image labeled unlabeled lie visualisation query vertex singular option upright
minimax images retrieval plan lookahead tipping integral transformation

Detected Topic 2 :

rule state message synergy mode states transition dynamics hmms series stationary
exact fisher memoryless replica dynamical messages tap hebbian modes Itp inference
merge detection mutual equations coin coolen recall behaviors

Detected Topic 3 :

kernel margin support svm clustering inverse arm forward adaboost human subjects
objects pca segments positive familiarity smo metric hand distance position threshold

fig speed convolution wind euclidean machines motor curve

Year 1999:

Detected Topic 1 :

channel nonlinear stochastic capacity channels voltage ekf mode predictive densities
ion states branch steady resonance pairing modes density current entropy wavelet
dual dynamic statistic law gain fluctuations past nonparametric missing

Detected Topic 2 :
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kernel svm support margin boosting solution belief tree adaboost machines nodes
node theorem svms propagation decision variational hypothesis potential convex
weak class vapnik algorithms decoding vector unique working proof conditions
Detected Topic 3 :

information localization sound iiii cue attractor mutual speech language spectral task
cues context location som features light similarity length human wire acquisition

arbors subject languages matlab spatial documents subjects mobile

5.14 Pre- and post-detection topics

Initial topics in the null model (trained on the corpus from 1987 to 1991)

Topic 1:

network neural input learning networks time output set function units figure model
training number system data weights layer hidden problem error algorithm unit
results information pattern state performance systems net

Topic 2:

model cells cell neurons input firing response neuron synaptic activity time stimulus
figure spike frequency cortex fig phase potential inhibitory synapses membrane
excitatory threshold network single system patterns inhibition neural

Topic 3:

speech recognition training word classifiers performance classifier classification
speaker mlp phoneme trained hmm words test set language phonetic experiments
segmentation system frame signal mixture features multi characters rbf acoustic

waibel
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Topic 4:

image images pixel feature vision color pixels object surface maps field optical visual
edges line segmentation depth points recognition discontinuities features illumination
ring digit operator poggio edge competitive data map

Topic 5:

learning reinforcement action task state controller expert control robot actions
sutton barto environment world current connectionist forward tasks learn adaptive
exploration planning goal architecture policy evaluation jordan steps category play
Topic 6:

chip circuit analog neuron figure voltage vlsi neural current synapse weight digital
neurons circuits synaptic charge chips implementation mead design input synapses
cmos silicon device bit pulse output transistor gate

Topic 7:

error generalization probability distribution convergence dimension examples sample
complexity class log classifier bound bounds capacity algorithm theorem minimum
risk polynomial vapnik decay distributions haussler empirical bayesian uniform baum
bayes converge

Topic 8:

memory capacity hopfield matrix associative vectors neurons memories stored code
vector recall neuron states equilibrium codes attraction theorem probability storage
stable state winner outer optical retrieval inverse bit convergence operation

Topic 9:

functions basis regression tree prediction data cart approximation rbf radial error
moody polynomial trees validation mars spline splines cross variables friedman
centers kernel receptive nearest mlp nonlinear classification gaussians density

Topic 10:

motion visual direction velocity eye moving image field spatial receptive murphy
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wind stimulus joint cells position arm figure motor stimuli rotation speed object
sensory target location activity processing velocities directions

Topic 11:

visual cells cortical eye cell neurons dominance cortex model activity map ocular
field center brain receptive development maps synaptic synapses wave spatial spin
orientation monocular Ign correlation owl stimuli rod

Topic 12:

functions threshold function polynomial theorem approximation depth optimization
circuit boolean ary proof circuits degree bounded constrained gate points smooth
wavelet differential lagrangian annealing boltzmann rational shallow variables
spectral complexity constraint

Topic 13:

control motor arm trajectory model movements movement muscle feedback con-
troller cerebellar brain cerebellum command fig cmac joint position kawato cortex
commands change climbing fiber minimum velocity parallel hand organization torque
Topic 14:

object objects features recognition views feature image view visual images aspect
gating instantiation frame edelman module attention traffic viewpoint reference
rotation visit recognize intrator orientation manipulated rigid invariant operator
extracted

Topic 15:

orientation feature map maps ocular dominance space principle cells neighborhood
cortex infomax cortical visual models centers lateral topographic extraction features
loss projection dimensional spatial bifurcation regions kohonen organization hubel
cell

Topic 16:

eq star adjoint barhen trajectory dipole toomarian equations path trajectories paths
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dynamical processors processor slots gulati operator message sensor sensitivity
attitude green settling eqn pen scales zipser simd operators reverse

Topic 17:

attractors symbols content hit role symbol man baird projection normal filters peri-
odic chaotic filter eigenvectors dog associative recursive eigenvalues ghost bifurcation
basic verb semantic coordinates attractor trees stability blocks coarse

Topic 18:

delay oscillation stability bifurcation dynamics oscillatory bat symmetric westervelt
echoes sonar feedback sustained gain echo marcus lattice delayed basin inhibition eq
simmons fixed attractors lateral phys fig attractor moss snr

Topic 19:

vor velocity head eye gain vestibular storage reflex movements vestibulo ocular
robinson compensation anastasio responses normal pathway canal slip compensatory
solid dotted lisberger oculomotor muscles dashed monkey compensated motoneurons
pair

Topic 20:

eeg kernel diagnosis fault vigilance antenna diagnostic faults diagnostics erp engine
plant inference vehicle smyth theoretic classifiers controllers radiology pointing funds
bull head operating monitoring lda event fund magnetic potentials

Topic 21:

strings stack state grammar recurrent automata finite string giles language chen
grammars pollack length grammatical tomita extracted inference languages song sun
fsa lee induction seed symbol regular action automaton watrous

Topic 22:

ann impulse rap receiver ripple receivers user optimum depth ring connect video
spectral access fire impulses regional anns kohn shot matched software users channel

median anomalous detector conventional library communications
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Topic 23:

concept mistake tracker adversary concepts hypothesis tracking examples conserva-
tive sampling selective load instance pac label change rate theorem benign half rivest
day greedy chooses planes atlas incremental kuh drawn varying

Topic 24:

fish tin electric integrator echoes echo harmonic winter column assembly source
chorales moore bach melody confidence sensory clicks body music skeleton transitions
potential objects assemblies animal skin chord harmony ryan

Topic 25:

role representation tensor grammar product binding tree regular structures roles
language filler parse markov connectionist vectors source cons distributed represen-
tations represented entry representing bindings depth bayesian decomposition bayes
smolensky inference

Topic 26:

leg insect controller nervous walking stance cochlear locomotion legs dispersion foot
swing body design behaviors speeds patients stepping artificial temperatures natural
insects controllers movements sensors angle cell currents membrane heterogeneous
Topic 27:

activation pairing saliency grouping signature pot role binding bindings spreading
elements inside john groups object word spread concept localist salient node language
conceptual nodes structured actor paths maximal contours plan

Topic 28:

road vehicle autonomous lane driving navigation steering video retina drive roads
direction image finder sensor ans cmu intensity pomerleau camera situations exem-
plars ahead images travel curvature robot thorpe obstacle land

Topic 29:

jutten template signals separation waveforms waveform matching sources cohen pure
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templates rault blind mixed music delayed overlapping auto delays herault interfer-
ence pouliquen vittoz andreou cancellation cij superimposed filtering comparisons
faggin

Topic 30:

fuzzy cell anna dsp board expert chip extraction rules linguistic crisp cells group
automated antecedent lisp step instruction groups importance intermediate gallant
proposition select bus neurocomputer boser billion chips disorders

Topic 31:

genetic memory vowel harmony weather location round phonology sparse kanerva
addresses fitness holland predicting rogers rain clustering month population buffer
counters hybrid hours members segments trigger wheeler davis phonological locations
Topic 32:

gamma routing message focused principe tdnn interconnection routes memory
utilized vries route greedy kernels depth convolution exhaustive ports eeg multistage
adaline additive goudreau legal tapped delays kuo mackey giles port

Topic 33:

font relevance letter skeleton letters skeletonization mozer production exception
strokes trimming style smolensky stork trim car fonts hunt median east west
assessment metric diamond music ron judged pratt composition project

Topic 34:

robot path planning inverse workspace kinematics configuration sta redundant
manipulator oscillatory terminal dof branches norm demers neighborhood kinematic
positioning bellman branch obstacles disturbance classifier neighborhoods robotics
globally labels generically balls

Topic 35:

fault tolerance faults cmac cluster saturated exemplar judge operational synergy

sensitivity generator lincoln placement activated discontinuous impact mistake toler-
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ant adjustment adjustable drift skrzypek clustered rms stuck addresses manipulator
retraining robotic

Topic 36:

classifier message match post heart strength classifiers links messages environmental
jabri genetic environment list chamber ventricular cycle node link leong matched
parents davis flower chi reproduction xie dual matches population

Topic 37:

faces face sex subjects humans human facial emotion compression female male
emotions holons gender cottrell russell eyes discrimination expressions responses
emotional identity mouth munro gray monkey discriminations relaxed served cortex
Topic 38:

linsker miller eigenvectors eigenvalues mackay eigenvalue centre tit eigenvector heb-
bian covariance surround eigenfunctions principal eigenfunction structures perturbed
synaptic modes correlations regimes goodhill populations eigen dayan correlational
oct synapses operator angular

Topic 39:

food insect feeding arousal animal reticular facial lobe search energy behavior beer
behaviors sensor spinal goal fish mouth environment motivated hungry fin tracking
patch weiss artificial insects intelligent chemical oral

Topic 40:

map retinal eye tectal maps markers brain axons fibers half cowan normal cij schmidt
experiment meyer sij regeneration fiber development formation tectum retina yoon
expanded experiments stick friedman contact details

Topic 41:

energy tank boltzmann ensemble hopfield evidence tour tours hop landscapes
attractor valid wta machines clique winner spaces cities clause traveling hypothesis

thresholds probe salesman escape minima gap shapes probes uphill
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Topic 42:

clause proof protein clauses constraints instance backbone distance resolution query
row bound matrix proteins proofs amino bohr prediction base literal instances
structures copy rows logic original atomic secondary exists propositional

Topic 43:

sleep rem sequencing wake dream sutton cholinergic brainstem wanted whitaker
loops cognitive synthesis wet mind permission influences loop disorder college nore-
pinephrine cued widespread populations bifurcations mckenna rhythms cognition
neuromodulation excitability

Topic 44:

rules dna splice stop kbann links knowledge extracted towell shavlik minus junction
base junctions extraction ann acc don promoter sequences domain superior genes
anns knn noordewier refinement symbolic pages protein

Topic 45:

stress syllable heavy vowel primary syllables linguistic nucleus phonology language
languages word edge learnability wheeler touretzky gupta string metrical alt penul-
timate voicing vowels long deletion onset secondary perceptron alternation french
Topic 46:

signatures signature true verification false acceptance rejection handwritten roc
goodman writer handwriting people stanford rosenberg writing centralized info cards
individuals checks transactions cumulative radar automated tures nettalk eng plot
jackel

Topic 47:

mfa spin annealing temperature averages equilibrium spins graph raleigh ece bout
bins den hamiltonjan van miller relaxation ising snyder lowered markov chain bin
experimentally temperatures begins hopfield attractive wesley iterations

Topic 48:
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chain region mouse human cell receptor beta proteins domains heavy alpha protein
class domain rat false bengio conserved detected amino positives acids score programs
sequences fruit epsilon fly search database

Topic 49:

cues target cue access targets intersection strengths humphreys wiles product dennis
auto arc cross retrieved weakly tensor processes strongly orthogonal associator

temporary semantic cued multiplication cancel blend direct multiplying combination

Post-detection topics (re-trained on the corpus from 1995 to 1999):
Topic 1:

data model learning algorithm set function distribution training number neural
models figure error results gaussian parameters networks probability case network
space problem linear approach time vector method matrix noise input

Topic 2:

model neurons time input figure network visual synaptic neuron response stimulus
cell neural information spike cells learning activity firing rate system cortical stimuli
noise frequency units cortex function patterns shown

Topic 3:

image images recognition object face features feature figure visual network objects
texture based set target information detection human performance pattern represen-
tation faces vision system task local scene search pixel examples

Topic 4:

state learning policy time reinforcement action function states optimal algorithm
control reward actions problem figure model step system rl agent markov algorithms
set number decision robot goal mdp environment based

Topic 5:

ica independent source basis sources separation blind component signal components
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signals eeg natural sparse image analysis coefficients matrix wavelet images noise
sejnowski mixing artifacts functions data gradient processing coding code

Topic 6:

kernel margin svm support training set adaboost vector algorithm function class
decision boosting machines functions error examples solution algorithms classification
theorem classifiers cost svms tree generalization classifier bound working convex
Topic 7:

circuit chip system figure analog output time current control vlsi motion signal
input circuits field flow image cell shown systems frequency processing voltage visual
implementation response design neural direction template

Topic 8:

iiii sound clustering information task language similarity localization attractor human
concept som cluster light speech subjects cues cue mutual documents sequences
spectral acquisition arbors wire length languages matlab source location

Topic 9:

loss bounds functions function theorem bound networks neural threshold dimension
proof linear network class polynomial computational number upper input lower
analog units sigmoidal unit result experts gate bounded ranking Itm

Topic 10:

words instruction system instructions wavelet rules user word preference gradient
coding network retrieval blocks schedule time semantic melody table dec syllable
scheduling video pact errors knowledge concentration guidance bits instance

Topic 11:

speech hmm state recognition hmms word words acoustic system states segmentation
time transition continuous character segmented articulatory emission fusion markov
pdfs articulator audio acoustics arc entropic continuity speaker topology constrained

Topic 12:

173



graph tree nodes trees node level edge matching hierarchical edges graphs clique
parent clustering match matches structures structural structure opinion cut markov
hierarchy correspondence randomized similarity pairwise maximal logarithmic
transducers

Topic 13:

control forward inverse sv hand motor arm feedback position kernels movement con-
troller wind adaptive vapnik convolution support desired kernel front sch familiarity
ridge human regularization kopf smola impulse force movements

Topic 14:

tap solutions codes stationary message sequential replica phys boltzmann tanh spin
recall weiss code shortcut equations messages glass decoding ferromagnetic nadal
saddle gallager correcting connections equilibrium behaviour coolen gee stationarity
Topic 15:

teacher student dynamics xly hebbian phys macroscopic perceptron equations gener-
alization coolen decay saad replica observables restricted saddle batch lyapunov sgn
evolution asymptotic activations simulations theory activation dynamical formalism
regime cavity

Topic 16:

adaptation cia monotonic words feedback subject speech conditioning winnow mono-
tonicity path vowel compensation production generalization diffusion control altered
experiment sound rating formants subjects blocking attributes bond hyperplane
word testing abu

Topic 17:

steady prop gain jacobian industrial plant historical momentum pearlmutter leapfrog
optimizer tensor chemical setpoint austin hamiltonian technion parsimonious tech-
nologies refining johnson exploration neuron auxiliary keeler riemannian martin

discretization scheduling implementing
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Topic 18:

documents sensor fusion words retrieval Isi document queries axes sensors word
topic webb collection band topics magnification relevant indexing query semantic
complementary polarity fused ml text projected collections kurtosis spie

Topic 19:

storage capacity committee gardner connected phys fully internal replica kwon
volumes elementary rev overlaps parity volume breaking symmetry lett conventional
korea barkai mitchison durbin mechanics machine violates europhys representations
engel

Topic 20:

cleaning zimmermann neuneier dilemma observer cleaned eta forecasting var unified
awt neuro covers penalty return obd flat damage siemens bond reviewed financial
finnoff increments forecast trading markets psychological asset hit

Topic 21:

environment learnt characters distortion ocr japanese baxter canonical neighbour
bartlett jonathan environments character misclassification pac cedar neighbours
possessing err learner triples printed recogni buffalo maintained quantization classifi

july english clas
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CHAPTER 6

Conclusions and Future Work

Probabilistic graphical models provide a principled and flexible framework for com-
pactly characterizing structural high-dimensional distributions. This dissertation has
focused on three related problems on graphical modeling: (i) Distributed estimation
of parameters and principal components of Gaussian graphical models; (ii) Learning
of high-dimensional Gaussian graphical models with latent variables; and (iii) Detec-
tion of emerging topics in topic models. For each of these three problems, we have
proposed novel and efficient algorithms, derived theoretical guarantees for the perfor-
mance, and provided numerical experiments on both synthetic and real-world data
sets to validate and complement the theory.

In Chapter 2, we have proposed a distributed framework for estimating the inverse
covariance matrix in Gaussian graphical models based on convex relaxations of the
marginal likelihood maximization problem in local neighborhoods. A global estimate
is obtained by combining the local estimates without the need of iterative global
message passing. We derived asymptotic properties for the proposed distributed esti-
mator, as well as bounds on the high-dimensional error rates, which are comparable to
those of the centralized maximum likelihood estimator. We validated the statistical
and computational efficiencies of the proposed estimator through numerical experi-
ments on synthetic graphical models with various structures and a real-world sensor

network data sets.
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In Chapter 3, we continued our exploration of distributed estimation framework
for Gaussian graphical models, but focused on directed acyclic graphs and the estima-
tion of principal components. We proposed a distributed algorithm, named DDPCA,
for performing principal component analysis (PCA) in directed Gaussian graphical
models. DDPCA was designed for exploiting structured sparsity arising from the
Cholesky factors of the concentration matrix, and was shown to be closely related to
the sum-product algorithm. We illustrated DDPCA’s computational and communi-
cation advantages in a synthetic online subspace tracking problem and the anomaly
detection in a real-world computer network.

In Chapter 4, we have presented a family of latent variable Gaussian graphical
model (LVGGM) whose inverse covariance matrix has a sparse plus low-rank struc-
ture, extending the sparsity assumption used in the previous two chapters. This
LVGGM was motivated by the missing-value prediction problem in recommender
systems, and its structural assumptions were validated on real data. For LVGGM, we
derived parameter estimation error bounds for regularized maximum likelihood esti-
mation in the high-dimensional setting. Results of numerical simulations agreed with
our theory, and the proposed LVGGM-based method achieved superior missing-value
prediction performance on a real-world movie rating data set.

In Chapter 5, we have proposed the surrogate Hausdorff test for detecting emerging
topics in a specific topic model, the latent Dirichlet allocation (LDA) model. The
test statistic was shown to be a computationally tractable surrogate for the standard
likelihood ratio, and is proven to guarantee the asymptotic consistency of the topic
detection problem. We further provided the convergence rate of the test statistic and
bounds on the detection errors when there is at most a single emerging topic. The
theory is validated through numerical experiments on both synthetic and real-world

document corpora.
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6.1 Future Work

There are many interesting directions that are worthy of future study:

First, it would be worthwhile to investigate the non-Gaussian extensions of the
proposed learning frameworks in Chapter 2 through Chapter 4. More specifically,
extending the distributed estimation framework in Chapter 2 to Markov random
fields with non-Gaussian distributions will lead to significant improvement in the
computational complexity with respect to the centralized learning algorithms. There
have been some recent work along this direction, e.g., Mizrahi et al. (2013); Massam
& Wang (2013)), but the understanding is still limited. The non-Gaussian scenario
of the distributed algorithm proposed in Chapter 3 is also worth exploring. The
learning algorithm and analysis framework for LVGGM considered in Chapter 4 both
are potentially generalizable to graphical models parameterized by broader class of
distributions.

With the recent advances of parallel computing machineries, such as Hadoop ! and
Spark 2, the parallel learning framework proposed in Chapter 2 can be easily imple-
mented and applied to very large-scale graphs. A real-world example is the social
networks, which typically contain millions of nodes. As illustrated in Section 2.6, the
proposed algorithm provides a reasonable tradeoff between the statistical approxima-
tion precision and the computational complexity on synthetic small-world graphs, one
of the standard models for social networks. An interesting future direction would be
to pursue this direction using real data and more realistic (and challenging) graphs
that relax the Markovian and/or Gaussian assumptions, such as the Erd
Hos-R
‘enyi graphs (Erdds & Rényi, 1976), scale-free or power law networks (Liu & Ihler,

2011) and Kronecker graphs (Leskovec et al., 2010). Another challenge for learning

http://hadoop.apache.org
’https://spark.apache.org
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many real networks is the possible existence of “hubs” — nodes that have very large
number of neighbors. Extending the current learning algorithm to networks with
hubs is also a future direction worth studying.

In Chapter 2 and 3, the structure of the graphical model is assumed known. An
interesting direction is to estimate the structure of graphical models in a similar
distributed fashion. This appears to be a harder problem, but some insights regarding
distributed algorithms and convex relaxation in particular can perhaps be shared.
Furthermore, approximating loopy undirected models by proper directed models is
one possible way to leverage DDPCA’s advantageous computation complexity and
convergence properties.

The current LVGGM learning and prediction framework is constrained by the
computational complexities of (i) regularized maximum likelihood estimation of the
marginal inverse covariance matrix; (ii) the conditional mean prediction rule which
involves matrix inversion. Computationally more efficient optimization techniques for
LVGGM learning and approximation algorithm for the matrix inversion that take ad-
vantage of the “low-rank plus sparse” structure are both interesting topics for future
efforts. Another direction worth investigating is the effect of missing observations on
LVGGM learning, and the robustness of the learning algorithm against such miss-
ingness. The proposed learning and prediction framework can also be utilized for
other related applications besides recommender systems, such as the stock market
data (see, for example, Luo (2011); Meng et al. (2014a) for empirical studies).

Lastly, for the topic detection framework proposed in Chapter 5, future directions
include theoretical investigation of Assumption (A5) and the convergence rate of the
maximum likelihood polytope under model misspecification (e.g., when there exist
more than a single emerging topics) or parameter misspecification (e.g., unknown
Dirichlet concentration parameters). More in-depth empirical studies, in particular

on real data, are also worth exploring.
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