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Two-stage model for time-varying effects
of discrete longitudinal covariates with
applications in analysis of daily
process data
Hanyu Yang,a James A. Cranford,b Runze Lic and Anne Buud*†

This study proposes a generalized time-varying effect model that can be used to characterize a discrete longitu-
dinal covariate process and its time-varying effect on a later outcome that may be discrete. The proposed method
can be applied to examine two important research questions for daily process data: measurement reactivity and
predictive validity. We demonstrate these applications using health risk behavior data collected from alcoholic
couples through an interactive voice response system. The statistical analysis results show that the effect of mea-
surement reactivity may only be evident in the first week of interactive voice response assessment. Moreover, the
level of urge to drink before measurement reactivity takes effect may be more predictive of a later depression
outcome. Our simulation study shows that the performance of the proposed method improves with larger sample
sizes, more time points, and smaller proportions of zeros in the binary longitudinal covariate. Copyright © 2014
John Wiley & Sons, Ltd.
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1. Introduction

Daily patterns of health risk behaviors such as substance use can be used to assess the risk of developing
health problems [1] and examine the dynamics of intervention effects over time [2]. Because of the
high cost and heavy participant burden associated with prospective daily data collection, these types
of data have been collected primarily using retrospective methods. Thanks to the advancement of new
telecommunication technology such as the interactive voice response (IVR), such cost and burden have
been reduced. IVR allows humans to interact with a computer via a telephone keypad or by speech
recognition. IVR systems can instruct and respond to users with prerecorded audio and also record their
responses into databases. They have been adopted as powerful research tools in recent years.

Prospective daily data collection using the IVR has the advantages of cutting costs of staff time as
well as minimizing recall bias and tendency to underreport socially undesirable behaviors [3]. Yet, it
unavoidably involves self-monitoring of the target behavior, which is an active component of some
cognitive-behavioral interventions for substance use disorders [4]. The potential measurement reactivity
(defined as reducing the target behavior due to self-awareness) is undesirable for those studies that aim
to investigate the association between the target behavior and its precursor or consequence. On the other
hand, for those applications aiming to facilitate behavior changes, such an effect can be used to boost or
extend intervention effects [5]. Thus, verifying measurement reactivity is an important research question,
especially given that existing empirical investigations are few and have produced mixed results [6, 7].
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In this study, we provide a statistical model that can be used to characterize the trajectory of behavior
changes during the IVR assessment.

Another important measurement issue associated with the IVR assessment is its predictive validity
referring to the utility of the pattern of changes in these repeated measures for predicting a short-term
or long-term health outcome. For example, an alcohol study may examine whether the pattern of daily
alcohol consumption over a period of time is predictive of alcohol-related problems or symptoms at a
later time point. In order to evaluate the effect of longitudinal patterns of health risk behaviors on a
health outcome, we have to overcome some methodological challenges. First, the covariate is measured
at many time points but the outcome is collected at one future time point so standard longitudinal methods
that were designed for longitudinal outcomes are not applicable in this setting. Second, the effect of
longitudinal patterns of health risk behaviors on a short-term or long-term health outcome may be a
complex function of time. For example, those periods with frequent occurrence of binge drinking (defined
as consuming more than five standard alcohol drinks in one episode) tend to have higher negative effects
on alcohol-related problems. Third, health-risk behaviors are most of the time self-reported and thus are
subject to measurement errors due to recall bias or embarrassment [8]. Fourth, the between-subject and
within-subject variability tends to be large in this kind of data, especially for studies on high risk youth
who have not yet developed regular patterns of health-risk behaviors [9]. In this study, we provide a
statistical model that can address all of these methodological challenges.

Zhang et al. [10] developed a two-stage functional mixed model that was motivated by the need to
investigate the effect of the follicle stimulating hormone time profile during a menstrual cycle on total
hip bone mineral density measured at a single time point. The model consists of two stages: the first
stage estimates the periodic subject-specific follicle stimulating hormone profiles using a nonparametric
measurement error model; the second stage plugs the estimated subject-specific profiles into a functional
linear model and estimates the functional covariate effect. This model was designed for a longitudinal
covariate process with continuous values and a continuous scalar outcome. Yet, in many practical settings,
daily process data are discrete. Particularly in substance abuse research, measures of alcohol use often
yield count variables (e.g., ‘How many drinks containing alcohol did you have yesterday?’); measures of
drug use often yield binary variables (e.g., ‘Did you use prescription stimulants like Adderall or Ritalin
to get high yesterday?’). Thus, in order to make the model more applicable to our research questions,
measurement reactivity and predictive validity, we extend it to a more general setting in which both the
longitudinal covariate process and outcome could be either discrete or continuous.

This paper is organized as follows. In Section 2, we present a generalized time-varying effect model
that can be used to characterize a discrete longitudinal covariate process and its time-varying effect on a
later outcome. In Section 3, the 14-day daily process data of an alcohol study are presented as a motivating
example. Section 4 delineates the design and results of the simulation study. We present discussion and
concluding remarks in Section 5.

2. The statistical model

Suppose that from the i-th subject (i = 1,… , n), we collect an observed longitudinal covariate process
𝐖i = (Wi1,… ,Wini

)T , a vector of time-invariant covariates 𝐙i = (Zi1,… ,Zip)T , and an outcome Yi. In
the context of our research questions, 𝐖i is daily IVR data of self-reported health-risk behaviors, which
tend to contain missing values and are subject to measurement errors. Thus, we assume that there exists
a smooth latent individual trajectory xi(⋅) in [T1,T2], and the observed 𝐖i is related to this latent xi(⋅)
through the following nonparametric measurement error model:

Wij ∼ fW(⋅;𝜇ij), h(𝜇ij) = xi(tij), (1)

where fW(⋅) is a distribution in the exponential family, and h(⋅) is a known link function. This model
would allow us to characterize the individual trajectory of the health-risk behaviors collected through the
IVR and examine the hypothesis of measurement reactivity.

In the context of our research question, predictive validity, we are interested in studying the effect of
longitudinal patterns of health-risk behaviors on a later health outcome. Assume that the outcome Yi is
related to the individual trajectory xi(⋅) and the time-invariant covariate 𝐙i through a partial functional
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generalized linear model [11]

Yi ∼ fY (⋅; 𝜂i), g(𝜂i) = 𝐙T
i 𝜹 + ∫

T2

T1

xi(t)𝛾(t)dt, (2)

where fY (⋅) is a distribution belonging to an exponential family, g(⋅) is a known link function, 𝜹 is a vector
of regression coefficients of 𝐙i, and 𝛾(⋅) is a smooth function for the time-varying effect of longitudinal
patterns of health-risk behaviors. In particular, if Yi’s are Gaussian, it becomes a partial functional linear
model [12] of

Yi = 𝐙T
i 𝜹 + ∫

T2

T1

xi(t)𝛾(t)dt + 𝜖i.

The calibration regression method is adopted with the estimation procedure involving two stages:
Stage-I estimates xi(t) in Model (1) based on the observed data Wij; Stage-II estimates 𝜹 and 𝛾(t) in Model
(2), given the estimate x̂i(t) from Stage-I and the observed data 𝐙i and Yi. Here, we only provide a general
description of the estimation procedure. Interested readers are referred to the Appendix for the techni-
cal details. In Stage-I, the subject-specific latent profile xi(⋅) is decomposed into a population profile and
a random individual deviation: xi(⋅) = x0(⋅) + di(⋅). When the natural cubic spline (NCS) technique is
applied, Model (1) becomes a generalized additive mixed model [13]. In Stage-II, the predictors x̂i(⋅)’s
from Stage-I are then plugged into Model (2). With the NCS technique, the calibration model yields a
semiparametric model, and thus similar procedures can be employed for the estimation.

3. The motivating example

3.1. The study on alcoholic couples

To demonstrate applications of the proposed model, we conducted statistical analysis on the real data of a
study on the feasibility of using IVR technology to collect daily diary data from alcoholic couples for 14
consecutive days [14]. Fifty-four alcoholic married couples (either spouse met DSM-IV diagnosis [15]
of past year alcohol use disorder) were recruited from the University of Michigan Addiction Treatment
Services (37%) and the local community. At baseline, couples completed questionnaires about their past
month moods, marital interactions, and drinking behaviors and received an extensive IVR training ses-
sion. Participants were instructed to call a toll-free telephone number separately during a designated time
window (5–9 pm) when they had 15 min of privacy to report their daily moods, marital interactions, and
alcohol involvement. Responses were automatically entered into an online database. In order to increase
compliance, the participants were informed that they would receive an automated reminder call if they
had not called the IVR system by 8 pm; the amount of the incentive they received would depend on their
level of compliance. Participants completed a total of 1418 out of a possible 1512 daily reports, for an
overall compliance rate of 94%. About half of the sample completed all 14 daily IVR reports.

In this study, we applied the proposed method to characterize the overall change in self-reported urge
to drink (a binary covariate) during the 14 days of IVR assessment. Urge to drink refers to a broad range
of thoughts, physical sensations, or emotions that tempt someone to drink, even though he/she has at least
some desire not to. A decreasing trajectory of urge to drink would be an evidence to support the theory
of measurement reactivity. We also modeled the time-varying effect of urge to drink on a continuous
scale of depression (the Beck Depression Inventory [16]) that was measured in 6 months after the IVR
assessment. This set of analysis allows us to investigate the predictive validity of the daily patterns of
urge to drink.

3.2. Statistical analysis on real data

Because our real data were collected from married couples, we modified the notations in Section 2 slightly
by denoting i = 1,… ,m as the family, and k as the family member nested in i.

We modeled the binary longitudinal covariate Wikj, urge to drink, in a certain day (1 for ‘yes’ and 0 for
‘no’), as

Wikj ∼ Bernoulli(𝜇ikj), logit(𝜇ikj) = xik(tikj).

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 34 571–581
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Figure 1. Real data analysis results: trajectories of the longitudinal covariate x0(t) and its time-varying effect 𝛾(t).

The depression score Yik is related to the recruitment setting Zik (1 for the treatment sample from the
University of Michigan Addiction Treatment Services; and 0 for the community sample recruited from
the local community) and the latent individual trajectory xik(⋅) through

Yik = Zik𝛿 + ∫
T2

T1

xik(t)𝛾(t)dt + ai + 𝜖ik,

where ai is an additional random effect with N(0, 𝜎2
a) that characterizes the family effect.

We obtain x̂ik(⋅) following the procedures described in Appendix A.2, when Wikj ∼ Bernoulli(𝜇ikj) and
h(⋅) = logit(⋅). Because a random effect term is introduced, 𝛿 and 𝛾(⋅) are then estimated by fitting a
calibration model

𝐘 = 𝐙𝛿 + 𝐗̂C𝜸 + 𝐍a𝐚 + 𝝐∗,

where 𝐍a is a n×m matrix with 1 for the (ik, i)-th element and 0 elsewhere, and 𝐚 is a m-dimensional ran-

dom vector with N(𝟎, 𝜎2
a𝐈). Following [17], we have 𝛿 and 𝜸̂ in the forms of Equation (A.3) in Appendix

A.3, with 𝐖z = 𝐖 − 𝐖𝐗̂C

(
𝐗̂T

C𝐖𝐗̂C + 𝜆𝛾𝐊
)−1

𝐗̂T
C𝐖 and 𝐖x = 𝐖 − 𝐖𝐙

(
𝐙T𝐖𝐙

)−1 𝐙T𝐖, where

𝐖 =
(
𝜎2
𝜖∗
𝐈 + 𝜎2

a𝐍a𝐍T
a

)−1
. Moreover, both 𝜎2

a and 𝜎2
𝜖∗

are estimated through restricted maximum likeli-
hood; the smoothing parameter 𝜆𝛾 is selected by generalized cross validation (GCV), which is defined as
Equation (A.1) in the Appendix.

Figure 1 characterizes the overall covariate trajectory x0(⋅) and the time-varying effect 𝛾(⋅). The left
panel indicates that although participants’ urge to drink showed a systematic decrease in the first week
of IVR assessment, it rebounded during the second week. This implies that the effect of measurement
reactivity was only short-term. The right panel indicates that the initial level of urge to drink (i.e. before
measurement reactivity took effect) was more predictive of the depression level 6 months later, because
the time-varying effect of urge to drink on depression was only significantly positive in the first few days
of the IVR assessment.

Furthermore, our analysis indicates that the treatment sample had a higher level of depression than
the community sample (𝛿 = 0.4105 with the 95% confidence interval of [0.2657, 0.5552]). The variance
components in the model were estimated as 𝜎̂2

1 = 2.602, 𝜎̂2
2 = 1.022, 𝜏d = 3.642, 𝜎̂2

a = 0.052, and
𝜎̂2
𝜖
= 0.482. Moreover, the smoothing parameters selected by GCV were 𝜆x = 0.4 and 𝜆𝛾 = 20.
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4. Simulation study

Our simulation experiment was designed to evaluate the performance of the proposed model under dif-
ferent situations. Particularly, we manipulated three factors: (i) the sample sizes: small n = 100, medium
n = 200 and large n = 400; (ii) the number of time points: two weeks r = 14, three weeks r = 21 and
four weeks r = 28; and (iii) the proportion of zeros in the longitudinal covariate: 50%, 70%, and 90%,
which can be achieved by adjusting the population profile function x0(⋅). While we manipulated three
factors, the rest of the design of our simulation was based on the data features of the motivating example
in Section 3.

We set 𝐭0 to be r equally spaced time points in [−1.5, 1.5], where r = 14, 21 or 28. It is worth to note
that, observation time points tikj’s were not necessary to be balanced among all the subjects. Particularly,
for each subject ik, the longitudinal covariate process Wik(t) was observed at tikj for j = 1,… , nik, where
nik was an integer randomly chosen from {⌈0.8r⌉,… , r−1, r}, and tikj’s were nik distinct points among 𝐭0.

The longitudinal covariate data Wikj’s were generated from

Wikj ∼ Bernoulli(𝜇ikj), logit(𝜇ikj) = xik(tikj) = x0(tikj) + dik(tikj).

Here, we consider three choices of x0(⋅): x(1)0 (t) = 0.8t4− t2−0.5t−0.1, x(2)0 (t) = 0.8t4− t2−0.5t−1.3, and
x(3)0 (t) = 0.8t4−t2−0.5t−3, which correspond to the proportions of zeros in longitudinal covariates at 50%,
70%, and 90%, respectively. In this way, we are able to examine our hypothesis that the proposed method
may perform better in the setting with a ratio of 0s to 1s being 50 ∶ 50 than in the other settings with the
corresponding ratios of 70 ∶ 30 or 90 ∶ 10, because the former tends to have greater Fisher information.
Moreover, the random process dik(⋅) was determined by 𝐝ik = 𝐁∗𝐛ik with 𝐛ik’s being a random sample
from N(𝟎, diag{12, 0.62, 1.52𝐈(r−2)×(r−2)}). The response data Yik’s were then generated from

Yik = Zik𝛿 + ∫
1.5

−1.5
xik(t)𝛾(t)dt + ai + eik,

where 𝛿 = 0.4; ai ∼ N(0, 0.22); eik ∼ N(0, 0.62); and 𝛾(t) = −0.6arctan(0.8t) that simulates the cor-
responding function estimated from the real data in the motivating example. In addition, to generate
the time-invariant covariate, Zik’s were randomly drawn from {0, 1} with P(Zik = 1) = 0.5 for each
subject ik.

In summary, we manipulated three factors: the sample size (n), the number of time points (r), and the
population profile function (x0(⋅)) and considered 3× 3× 3 = 27 situations in total. Under each situation,
we generated N = 1000 data sets and applied the proposed two-stage method to estimate the parameters.
For each parameter, the mean squared error (MSE) and its empirical standard error (se) were calculated
from N replications. In terms of the nonparametric functions x0(⋅) and 𝛾(⋅), the mean integrated squared
error (MISE) and its empirical standard error were used to summarize the results.

The results of the simulation study are summarized in Tables 1–3. Table 1 shows the MSEs/MISEs and
the associated standard errors for the three different sample sizes, holding the other two factors constant.
When the sample size becomes larger, both the MSE of the coefficient parameter 𝛿 and the MISEs of the
population profile function x0(t) and the time-varying effect 𝛾(t) become smaller. These results indicate
that the performance of the proposed method improves as the sample size increases. The estimation for
variance components (i.e., 𝜎2

1 , 𝜎2
2 , 𝜏d in the longitudinal covariate model, and 𝜎2

a and 𝜎2
𝜀

in the response
model) also benefits from a larger sample size. Such benefit, in turn, enhances the accuracy of estimation
for 𝛿, x0(t), and 𝛾(t), which are of primary interest. Table 2 demonstrates that the performance of the
proposed method is better when we collect data from more time points. However, such improvement is not
as salient as the effect of a larger sample size. Table 3 supports our hypothesis that the proposed method
performs worse when the binary longitudinal covariates contain a higher proportion of 0’s, because the
amount of information contained in the data is reduced. Such an effect is particularly evident as the
proportion of zeros increases from 50% to 90%.

In addition to the effects of single factors demonstrated in Tables 1–3, we have conducted simulations
to investigate potential interactions between each pair of factors. When the sample size and the number
of time points are both varied (holding the proportion of zeros constant at 50%), the performance of the
proposed model improves with the number of time points when the sample size is relatively small (n =
100), but such an effect is not apparent when the sample size is large (n = 400). A similar pattern is found

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 34 571–581

575



H. YANG ET AL.

Table 1. Simulation results with varied sample sizes n (r = 21, x(1)0 (t)).

n = 100 n = 200 n = 400

MSE/MISE SE MSE/MISE SE MSE/MISE SE

𝛿 0.0181 0.0252 0.0101 0.0137 0.0049 0.0066
𝜎2

1 0.0498 0.0576 0.0405 0.0384 0.0348 0.0272
𝜎2

2 0.0091 0.0114 0.0050 0.0059 0.0031 0.0037
𝜏d 0.7122 1.1583 0.4181 0.6587 0.2376 0.3273
𝜎2

a 0.0041 0.0075 0.0022 0.0036 0.0013 0.0017
𝜎2
𝜖

0.0194 0.0219 0.0195 0.0160 0.0210 0.0129
x0(⋅) 0.2313 0.1385 0.1448 0.0752 0.0983 0.0458
𝛾(⋅) 0.0259 0.0340 0.0145 0.0142 0.0104 0.0082

MSE, mean squared error; MISE, mean integrated squared error; SE, standard error.

Table 2. Simulation results with varied numbers of time points r (n = 200,
x(1)0 (t)).

r = 14 r = 21 r = 28

MSE/MISE SE MSE/MISE SE MSE/MISE SE

𝛿 0.0096 0.0130 0.0101 0.0137 0.0090 0.0125
𝜎2

1 0.0498 0.0481 0.0405 0.0384 0.0340 0.0343
𝜎2

2 0.0064 0.0085 0.0050 0.0059 0.0042 0.0054
𝜏d 0.6676 1.0266 0.4181 0.6587 0.2915 0.4464
𝜎2

a 0.0021 0.0034 0.0022 0.0036 0.0020 0.0033
𝜎2
𝜖

0.0256 0.0215 0.0195 0.0160 0.0156 0.0143
x0(⋅) 0.1565 0.0855 0.1448 0.0752 0.1420 0.0777
𝛾(⋅) 0.0165 0.0187 0.0145 0.0142 0.0134 0.0145

MSE, mean squared error; MISE, mean integrated squared error; SE, standard error.

Table 3. Simulation results with varied population profile x0(t) (n = 200,
r = 21).

x(1)0 (t) ∶ 50% zeros x(2)0 (t) ∶ 70% zeros x(3)0 (t) ∶ 90% zeros

MSE/MISE SE MSE/MISE SE MSE/MISE SE

𝛿 0.0101 0.0137 0.0105 0.0149 0.0121 0.0163
𝜎2

1 0.0405 0.0384 0.0496 0.0453 0.0735 0.0714
𝜎2

2 0.0050 0.0059 0.0054 0.0069 0.0092 0.0120
𝜏d 0.4181 0.6587 0.4918 0.7761 0.8911 1.5323
𝜎2

a 0.0022 0.0036 0.0023 0.0041 0.0026 0.0046
𝜎2
𝜖

0.0195 0.0160 0.0210 0.0170 0.0310 0.0224
x0(⋅) 0.1448 0.0752 0.2098 0.1331 0.3462 0.2186
𝛾(⋅) 0.0145 0.0142 0.0168 0.0217 0.0424 0.0803

MSE, mean squared error; MISE, mean integrated squared error; SE, standard error.

as we examine the effects of the sample size and the proportion of zero simultaneously. Specifically, the
negative effect of a larger proportion of zeros diminishes as the sample size increases. By the same token,
the positive effect of a larger sample size is more noticeable when the proportion of zeros becomes larger.
However, when the number of time points and the proportion of zeros are manipulated simultaneously,
we do not observe an interaction effect like those in the other two pairs. The two-way tables of this set
of simulations are available upon request.

The overall covariate trajectory across all subjects x0(⋅) is crucial in our research setting, because it
characterizes the trajectory of behavior changes during the IVR assessment and, therefore, can be used
to examine measurement reactivity. The time-varying effect 𝛾(⋅) is also very important because it can be
used to identify the period of time during the IVR assessment that is more predictive of future outcomes.
Thus, we evaluate the performance of the proposed method by comparing the estimated curves of x0(⋅)
and 𝛾(⋅) with the true curves in each setting. Figure 2 shows the estimated curves derived from evaluating
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Figure 2. Simulation results: estimates of x0(t) and 𝛾(t) under the setting of n = 200, r = 21, and x(1)0 (t).

the fitted functions of the N replications at a set of grid points and connecting means at all grid points, for
the setting of n = 200, r = 21, and x(1)0 (t). This figure indicates that our proposed method estimates x0(⋅)
and 𝛾(⋅) well with relatively small bias, and the true functions are covered by 95% pointwise empirical
confidence intervals. The figures for other settings look similar and are available upon request.

5. Discussion

This study proposes a generalized time-varying effect model that can be used to characterize a continu-
ous or discrete longitudinal covariate process and its time-varying effect on a later outcome that could be
continuous or discrete. The proposed method can be applied to examine two important research questions
for daily process data: measurement reactivity and predictive validity. We demonstrate these applications
using health-risk behavior data collected from alcoholic couples through the IVR system. The proposed
model can also be used to analyze daily process data that are collected using other modern technology
including the mobile phone text messaging, handheld computers, or Web-based data collection. The sta-
tistical analysis results show that the effect of measurement reactivity may only be evident in the first week
of IVR assessment and fade away afterwards. Moreover, the level of urge to drink before measurement
reactivity takes effect may be more predictive of the level of depression 6 months later.

We conduct a simulation study based on the features of real data to evaluate the performance of the
proposed method under different situations. The results show that the performance improves with larger
sample sizes, more time points, and smaller proportions of zeros in the binary longitudinal covariate.
Future research may consider multiple correlated longitudinal covariates because health-risk behaviors
such as substance use, violence, and sexual risk behavior tend to co-occur. Furthermore, in some applica-
tions, researchers may collect multiple correlated outcomes or longitudinal outcomes at later time. More
methodological work is thus needed to extend the proposed model to handle such complex data.

Appendix A: details of the two-stage estimation

A.1. Natural cubic spline

In the estimation procedure, we propose to approximate nonparametric functions xi(⋅) and 𝛾(⋅) by employ-
ing the NCS [18], with knots 𝐭0 = (t0

1,… , t0
r )

T being an r-dimensional vector of ordered distinct values of
all time points {tij}, (i = 1,… , n, j = 1,… , 1,… , ni). According to Green and Silverman [18], there exists
a set of r piecewise cubic polynomial basis functions 𝐜(⋅) = (c1(⋅),… , cr(⋅))T such that xi(⋅) = 𝐱T

i 𝐜(⋅)
and 𝛾(⋅) = 𝜸T𝐜(⋅), where 𝐱i = xi(𝐭0) and 𝜸 = 𝛾(𝐭0) are evaluated at 𝐭0. Particularly, each cl(⋅) itself is
an NCS function satisfying cl(𝐭0) = 𝐞l, where 𝐞l is an r-dimensional vector with 1 in the l-th element

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 34 571–581
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and 0 elsewhere. Hence, by defining 𝐂 = ∫ T2

T1
𝐜(t)𝐜T (t)dt, we can write the integral term in Model (2) as

∫ T2

T1
xi(t)𝛾(t)dt = 𝐱T

i 𝐂𝜸, for computational purposes.
In order to smooth a function s(⋅), the smoothing spline technique adds the following quadratic

roughness penalty term to the quasi-likelihood of s(⋅):

Js =
1
2
𝜆∫

T2

T1

(s′′ (t))2dt = 1
2
𝜆𝐬T𝐊𝐬,

where 𝐬 = s(𝐭0), 𝜆 ≥ 0 is a smoothing parameter, and 𝐊 is an r × r smoothing matrix specified in
Equation (2.3) of [18]. In addition, following [19] and [13], we denote 𝐓 = (𝟏r, 𝐭0) as the non-trivial
null space of 𝐊 and decompose 𝐊 as 𝐊 = 𝐋𝐋T , where 𝐋 is an r × (r − 2) full-rank matrix satisfying
𝐋T𝐓 = 𝟎. We also define 𝐁 = 𝐋(𝐋T𝐋)−1 and use it in the Stage-I of estimation.

A.2. Stage-I

The latent individual trajectory xi(⋅) in Model (1) can be further decomposed as

xi(⋅) = x0(⋅) + di(⋅),

where x0(⋅) is the population trajectory, and di(⋅) is the deviation of an individual trajectory from the pop-
ulation trajectory. We assume that x0(⋅) and di(⋅) are both NCS functions [18] and di(⋅)’s are independent
mean-zero Gaussian processes. Model (1) can thus be expressed as

𝐖i ∼ fW(⋅;𝝁i), h(𝝁i) = 𝐍i𝐱0 + 𝐍i𝐝i,

where h(𝝁i) = (h(𝜇i1),… , h(𝜇ini
))T , 𝐱0 = x0(𝐭0), 𝐝i = di(𝐭0), and 𝐍i is an ni×r incidence matrix mapping

(ti1,… , tini
)T to 𝐭0 such that the (j, l)-th element is 1 if tij = t0

l and 0 otherwise.
In order to account for the smoothness of the random Gaussian processes di(⋅)’s, we take a transforma-

tion of 𝐝i = 𝐁∗𝐛i. Here, 𝐁∗ = (𝐓,𝐁) is an r × r full-rank matrix, 𝐛i’s are r-dimensional random vectors
independently distributed as 𝐛i ∼ N(𝟎,𝐃(𝜽)), where 𝜽 = (𝜎2

1 , 𝜎
2
2 , 𝜏d)T is a vector of variance compo-

nents, and 𝐃(𝜽) = diag{𝜎2
1 , 𝜎

2
2 , 𝜏d𝐈(r−2)×(r−2)} is the covariance matrix. By denoting 𝐐i = 𝐍i𝐁∗, h(𝝁) =

(h(𝝁1)T ,… , h(𝝁n)T )T , 𝐍 = (𝐍T
1 ,… ,𝐍T

n )
T , 𝐐 = diag{𝐐1,… ,𝐐n}, and 𝐛 = (𝐛T

1 ,… ,𝐛T
n )

T ∼ N(𝟎,)
with  = diag{𝐃,… ,𝐃}, we obtain a special form of the generalized additive mixed model ([13])

h(𝝁) = 𝐍𝐱0 +𝐐𝐛.

Following the method in Section 3 of [13], both 𝐱0 and 𝐛 can be derived by maximizing the double
penalized quasi-likelihood

−1
2

n∑
i=1

ni∑
j=1

dij −
1
2
𝐛T−1𝐛 − 1

2
𝜆x𝐱T

0𝐊𝐱0,

with the conditional deviance

dij = −2∫
𝜇ij

Wij

wij(Wij − s)
vW (s)

ds,

where vW (⋅) is the variance function determined by fW(⋅); and wij’s are prior weights. Explicitly, 𝐱̂0 and
𝐛̂ solve the estimating equations of

𝐍T𝚫(𝐖 − 𝝁) − 𝜆x𝐊𝐱0 = 𝟎, 𝐐T𝚫(𝐖 − 𝝁) −−1𝐛 = 𝟎,

where𝐖 = (𝐖T
1 ,… ,𝐖T

n )
T ,𝚫 = diag{𝚫1,… ,𝚫n}with𝚫i = diag{h

′ (𝜇ij)}, and = diag{1,… ,n}
with i = diag{ wij

𝜙W vW (𝜇ij)(h
′ (𝜇ij))2

}.
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Moreover, the variance component 𝜽 can be estimated by maximizing the marginal log-quasi-
likelihood and then bias-corrected, following similar procedures described in Sections 4 and 5 of [13].
Specifically, if x0(⋅) is represented as 𝐱0 = 𝐓𝜶x + 𝐁𝐚x, with 𝜶x having a uniform prior distribution and
𝐚x ∼ N(𝟎, 𝜆−1

x 𝐈), the marginal log-quasi-likelihood is approximated as

−1
2

log || − 1
2

log |(𝐍𝐓)T−1(𝐍𝐓)| − 1
2

{
𝐖̃ − (𝐍𝐓)𝜶̂x

}T −1
{
𝐖̃ − (𝐍𝐓)𝜶̂x

}
,

where 𝐖̃ = 𝐍𝐱0 + 𝐐𝐛 + 𝚫(𝐖 − 𝝁), 𝐑 = 𝐐𝐐T + −1,  = 𝜆−1
x (𝐍𝐁)(𝐍𝐁)T + 𝐑, and 𝜶̂x is derived

from 𝐱̂0. That is, for each element 𝜽l of 𝜽, 𝜽̂l is the solution to

−1
2
tr
(
𝐏 𝜕𝐑
𝜕𝜽l

)
+ 1

2

(
𝐖̃ − 𝐍𝐱̂0

)T 𝐑−1 𝜕𝐑
𝜕𝜽l

𝐑−1
(
𝐖̃ − 𝐍𝐱̂0

)
= 0,

where 𝐏 = 𝐑−1 − 𝐑−1(𝐍𝐁∗)𝐇−1(𝐍𝐁∗)T𝐑−1. A correction on 𝜽̂ is then taken, following [13] and [20].
The smoothing parameter 𝜆x is selected via the GCV. In particular, the GCV is defined by assuming
independence of the observations, that is,

GCV(𝜆x) =
1
2

∑n
i=1

∑ni

j=1 dij

N
(

1 − edfx
N

)2
, (A.1)

where N =
∑n

i=1 ni, and edfx is the effective degree of freedom in estimating 𝐱0. The parameter 𝜆x is
then chosen by a grid search over GCV(𝜆x)’s.

A.3. Stage-II

We plug in the estimate of 𝐱i’s from Stage-I and fit a calibration model

g(𝜼) = 𝐙𝜹 + 𝐗̂C𝜸,

where 𝐗̂C = 𝐗̂𝐂 with 𝐗̂ = (𝐱̂1,… , 𝐱̂n)T . Hence, 𝜹 and 𝜸 are estimated by maximizing the penalized
pseudo-quasi-likelihood of

−1
2

n∑
i=1

di −
1
2
𝜆T
𝛾𝜸
𝐊𝜸,

with the deviance

di = −2∫
𝜂i

Yi

wi(Yi − s)
vY (s)

ds,

where vY (⋅) is the variance function determined by fY (⋅); and wi’s are prior weights. Specifically,
estimators 𝜹̂ and 𝜸̂ can be iteratively solved from the estimating equations of

𝐙T𝚵(𝐘 − 𝜼) = 𝟎, 𝐗̂T𝚵(𝐘 − 𝜼) − 𝜆𝛾𝐊𝜸 = 𝟎,

where 𝐘 = (Y1,… ,Yn)T , 𝚵 = diag{g
′ (𝜂i)}, and  = diag{ wi

𝜙Y vY (𝜂i)(g
′ (𝜂i))2

}. The smoothing parameter 𝜆𝛾
is selected through GCV, which is similar to that for 𝜆x in Stage-I.

Particularly, if Yi is Gaussian, the calibration model is

𝐘 = 𝐙𝜹 + 𝐗̂C𝜸 + 𝝐∗, (A.2)

where 𝜖∗i ’s are treated as independent following 𝝐∗ ∼ N(𝟎, 𝜎2
𝜖∗
𝐈). We instead estimate 𝜹 and 𝜸 by

maximizing the penalized pseudo-log-likelihood of
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− 1

2𝜎2
𝜖∗

(
𝐘 − 𝐙𝜹 − 𝐗̂C𝜸

)T (
𝐘 − 𝐙𝜹 − 𝐗̂C𝜸

)
− 1

2
𝜆𝛾𝜸

T𝐊𝜸,

which yields maximum penalized likelihood estimators [17]:

𝜹̂ =
(
𝐙T𝐖z𝐙

)−1 𝐙T𝐖z𝐘, 𝜸̂ =
(
𝐗̂T

C𝐖x𝐗̂C + 𝜆𝛾𝐊
)−1

𝐗̂T
C𝐖x𝐘, (A.3)

where 𝐖z =
1
𝜎2
𝜖∗

{
𝐈 − 𝐗̂C

(
𝐗̂T

C𝐗̂C + 𝜎2
𝜖∗
𝜆𝛾𝐊

)−1
𝐗̂T

C

}
and 𝐖x =

1
𝜎2
𝜖∗

{
𝐈 − 𝐙(𝐙T𝐙)−1𝐙T

}
.

Moreover, the variance 𝜎2
𝜖∗

in Model (A.2) is estimated from the restricted maximum likelihood.
Explicitly, 𝜎̂2

𝜖∗
solves the estimating equation of

−1
2
tr(𝐏) + 1

2𝜎4
𝜖∗

(𝐘 − 𝐙𝜹̂ − 𝐗̂𝜸̂)T (𝐘 − 𝐙𝜹̂ − 𝐗̂𝜸̂) = 0,

where

𝐏 = 1

𝜎2
𝜖∗

{
𝐈 − (𝐙, 𝐗̂)

(
𝐙T𝐙 𝐙T𝐗̂
𝐗̂T𝐙 𝐗̂T𝐗̂ + 𝜎2

𝜖∗
𝜆𝛾𝐊

)−1

(𝐙, 𝐗̂)T
}

.

Similar to Stage-I, the smoothing parameter 𝜆𝛾 is selected by GCV.
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