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ABSTRACT: Imide-containing vinyl fluorosilicone resin (MR-VFS) was synthesized from maleated rosin (MR). And then, with MR-

VFS as a new polar cross-linking agent in a heat curable fluorosilicone rubber composition, a series of maleated rosin-modified fluo-

rosilicone rubbers (MR-FSR) were obtained. The effects of MR-VFS on the mechanical properties, oil resistance, thermal stability, and

low-temperature performance were studied in detail. It was found that MR-VFS could increase the tearing strength and high-

temperature thermal stability of fluorosilicone rubber. When the MR-VFS weight content reached to 2 wt %, the tearing strength of

MR-FSR increased by 20.1% compared with that of common fluorosilicone rubber. However, MR-FSR showed a similar low-

temperature resistance and a little worse oil resistance. The morphological study showed that incorporation of maleated rosin could

intensify the microphase separation of fluorosilicone rubber. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41888.
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INTRODUCTION

Fluorosilicone combines the structures of fluorocarbon and pol-

ysiloxane. It has the unique properties of heat resistance, low-

temperature flexibility, and fuel resistance.1–10 It offers the best

low-temperature properties of any oil-resistant rubber and is

primarily used in fuel delivery systems of automotives, aeronau-

tics and astronautics.1,5 However, similar to all silicone rubbers,

it has the drawback of relatively low mechanical strength

because of the weak intermolecular forces among polysiloxane

chains. To improve the mechanical strength, especially the tear-

ing strength, vinyl-containing silicone resin has been used as

cross-linking agent.11

Polyimide is an important class of high-performance materials

and has outstanding comprehensive properties such as excellent

thermo-oxidative stability, mechanical strength, electrical prop-

erties, and high solvent resistance.12 And all these properties are

more due to the strong rigidity and polarity of imide hetero-

cycle. Theoretically, grafting imide heterocycle onto flexible flu-

orosilicone chain would be a promising approach to increase

the mechanical strength.13 Poly(methyltrifluoropropylsiloxane-

block-imide) copolymers have been prepared by the thermal

imidization of carboxylic dianhydride and aminopropyl-

terminated fluorosilicone prepolymer.14 However, effects of

imide on the mechanical strength of fluorosilicone rubber have

rarely been reported.

The decrease in petroleum has led to research and development

activities worldwide for the use of alternative resource material

for polymers.15–17 Maleated rosin (MR) is the Diels-Alder

adduct of natural rosin and maleic anhydride and mainly con-

tains maleopimaric acid (MPA) and others resin acid.17 So

maleated rosin is a very promising thermal imidization reagent.

In this study, imide-modified vinyl fluorosilicone resin (MR-

VFS) was synthesized by the imidization of maleated rosin with

amino group in the side chain of fluorosilicone. After then,

with MR-VFS as a new polar cross-linking agent in a heat cura-

ble fluorosilicone rubber composition, a series of maleated

rosin-modified fluorosilicone rubbers (MR-FSR) were obtained.

Effects of MR-VFS on the mechanical properties, oil resistance,

low-temperature performance, and thermal stability were stud-

ied in detail. It was found that maleated rosin could increase
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the mechanical properties and thermal stability of fluorosilicone

rubber. The morphology was also investigated by scanning elec-

tron microscope (SEM) and energy-dispersive X-ray spectros-

copy (EDX).

EXPERIMENTAL

Materials

D3F (1,3,5-tris((3,3,3-trifluoropropyl)methyl)cyclotrisiloxane,

purity� 99.5%) was supplied by Shenzhen Guanheng New

Materials Technology. HAPMS was obtained from the hydroly-

zation of 3-aminopropyl(diethoxy)methylsilane and then dehy-

drated under vacuum at 100�C for 8 h, and its chemical

structure could be found in Figure 1. Fluorosilicone gum (pol-

y(methyltrifluoropropylsiloxane-co-methylvinylsiloxane), the

weight percent of vinyl group was 0.16% and the viscosity-

average molecular weight was 1.1 3 106) was obtained accord-

ing to literature.18 Fluorosilicone oil (a silanol end-stoped pol-

y(methyltrifluoropropylsiloxane) with a viscosity of 104 MPa s)

was obtained according to literature.19 Fumed silica HDKVR N20

was purchased from Wacker. MR (maleated rosin, 115) was pur-

chased from Wuzhou Sun Shine Forestry and Chemicals. All the

other chemicals were of analytical reagent grade and purchased

from J&K Scientific.

Characterization
1H NMR and 13C NMR analyses were conducted with a Bruker

DRX-500 nuclear magnetic resonance spectrometer with tetra-

methylsilane as the internal standard. Mechanical properties

were measured in accordance with ASTM D412, D624, D792–

2008, and D2240. Differential scanning calorimetry (DSC)

measurements were performed on a Perkin-Elmer Diamond

DSC instrument at a heating rate of 10�C min21. The thermog-

ravimetric analysis (TGA) was performed on a TG209F1 ther-

mogravimetric analyser at a heating rate of 10�C min21 in a

nitrogen flow (2 mL min21). The morphology was also investi-

gated by scanning electron microscope (SEM; JSM-7600F,

JEOL) and energy-dispersive X-ray spectroscopy (EDX; X-ACT)

on the new cut surfaces of FSR, which were sputter coated with

platinum.

Average cross-link densities (ce) of the samples were calculated

from data obtained in the mechanical analysis according to the

following equation20:

ce5
r

qRTða2a22Þ (1)

where r is the tensile strength, q is the density, and of rubber,

R is 8.31 J(mol�K)21, T is room temperature, and a is breaking

elongation.

According to ASTM D471, oil resistance of FSR was measured by

the percent change of mechanical properties before and after

immersed in ASTM reference fuel C at 25�C for 72 h. The mechan-

ical strength (P), including tensile strength, breaking elongation,

and tearing strength, was measured, and their percent changes (DP

%) were calculated according to the following eq. (2):

DP%5
Pi2PO

Pi

3100% (2)

where Pi is the initial mechanical strength before immersion, Po

is the mechanical strength after immersion.

The percent change in volume (DV%) was calculated by the fol-

lowing eq. (3):

DV %5
ðM32M4Þ2ðM1-M2Þ

ðM12M2Þ
3100% (3)

where M1 is the initial mass of specimen in air, M2 is the initial mass

of specimen in water, M3 is the mass of specimen in air after immer-

sion, and M4 is the mass of specimen in water after immersion.

Synthesis of Vinyl Fluorosilicone Resin

Maleated rosin-modified vinyl fluorosilicone resin (MR-VFS)

was prepared by a one-pot synthesis process without using any

Figure 1. Preparation scheme of maleated rosin-modified vinyl fluorosilicone resin (MR-VFS).
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solvent. Firstly, 10 g of D3F, 12.5 g of hexamethyldisiloxane,

28.1 g of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane,

20.8 g of HAPMS and 0.1 wt % of potassium hydroxide were

dehydrated at 50�C and polymerized at 100�C for 12 h. After

that, 69.5 g of MR was added and slowly heated to 150�C in

about 4 h. Finally, the product was slowly vacuumed to remove

the volatile at about 180�C. The above preparation scheme of

MR-VFS was presented in Figure 1.

As a contrast, a common vinyl fluorosilicone resin (C-VFS) was pre-

pared in accordance with the aforementioned process, except that the

mass of D3F was adjusted to 100.3 g with HAPMS and MR absent.

Preparation of Fluorosilicone Rubber

In order to study the effect of MR on the fluorosilicone rubber,

the MR-VFS and C-VFS obtained previously were added into a

common heat curable fluorosilicone rubber composition,1,2,21

which would be adjusted for a better processability in this study.

Firstly, 100 weight parts of fluorosilicone gum, 7.2 weight parts

of fluorosilicone oil, and needed parts of VFS were blended in a

vacuum kneader at room temperature. Then, HDKVR N20 was

mixed step by step. MR or fumed silica would significantly

increase the viscosity of fluorosilicone rubber composition and

finally increase the difficulty of rubber processing. In order to

obtain a good processability, the loading of HDKVR N20 was cho-

sen as 36.4 weight parts according to our previous study and

the reported literature. 21 After that, the mixing temperature

was increased to 150�C and kept at a pressure of 30 mmHg for

6 h. After being cooled to room temperature, based on 100

weight parts of the obtained above mixtures, 0.5 weight parts of

DBPH were mixed uniformly using a two roll. The ultimate flu-

orosilicone rubber samples (FSR) were compression molded at

170�C under a pressure of 10 MPa and postcured at 200�C for

2 h. All FSR samples, including MR-FSR, C-FSR, and P-FSR,

were prepared in accordance with the aforementioned process

except for the content of VFS. The needed parts and weight

percent of VFS in the formula of FSR were presented in Table I.

RESULTS AND DISCUSSION

Characterization of MR-Modified Vinyl Fluorosilicone Resin

The structures of C-VFS and MR-VFS were determined by 1H

NMR and 13C NMR. Their 1H NMR spectra were shown in

Figure 2. And the typical peaks of C-VFS at 020.3 ppm (Si–

CH3), 0.720.8 ppm (Si–CH2), 2.022.3 ppm (–CH2CF3) and

5.626.2 ppm (Si–CH@CH2) could be observed in Figure 2(a).4

In contrast to the spectrum of C-VFS, there were different peaks

occurred in the spectrum of MR-VFS. The peak at 5.4 ppm

should be attributed to CH@C in maleated rosin; the signal in

the range of 3.123.4 ppm should be the protons

(O@CCHCHC@O) on the imide heterocycle; the peak at 3.0

ppm should be attributed to the N–CH2, which were connected

with the imide heterocycle; the other peaks in the ranges of

4.525.3 ppm and 0.322.9 ppm should be attributed to

maleated rosin and SiCH2CH2.22

The 13C NMR spectra of C-VFS and MR-VFS were shown in

Figure 3. And the typical carbon peaks of C-VFS at 21.5 ppm

(SiCH3), 8.5 ppm (SiCH2), 26227 ppm (–CH2CF3), 1322136

ppm (Si–CH@CH2) could be observed in Figure 3(a), while the

carbon peaks of –CF3 (125 ppm) were not obvious.23 The peak

at 76 ppm was produced by the solvent CDCl3. In Figure 2(b),

the typical carbon peaks of MR appeared at 184 ppm (COOH),

1752179 ppm (carbons in the imide heterocycle), 145 ppm

(CH@C) and 124 ppm (CH@C).22 The other carbon peaks of

maleated rosin were widely distributed in the range of 10–150

ppm.

The NMR spectra of MR-VFS were more complex than C-VFS.

However, the characteristic peaks of maleated rosin-modified

fluorosilicone resin (MR-VFS) could be observed in the 1H

NMR and 13C NMR spectra. These signals, especially the peaks

of CH@C and O@C–N–C@O, strongly proved that MR-based

fused ring (MRBFR) had been successfully grafted onto the side

chain of fluorosilicone polymer. The grafting reactions were

mainly realized by the amidization and imidization of carbonyl

group (O@C) in MR and primary amino group (H2N–) in the

side chain of fluorosilicone polymer (Figure 1).12

With the significant difference in molecular structure, MR could

not dissolve in the fluorosilicone polymer to form a homogene-

ous solution. So any unreacted MR would precipitate from

reaction product. However, in this study, the obtained reaction

product of MR and fluorosilicone polymer was homogeneous,

which strongly demonstrated the formation of chemical bond-

ing between MR and fluorosilicone polymer and completion of

the grafting reaction.

MR-VFS was a complex mixture and maybe useful in fluorosili-

cone rubber modification. With the equivalent molecular

weight, C-VFS was clear liquid at room temperature, while MR-

VFS was brown powder. This convincingly demonstrated that

MRBFR could increase the cohesion energy (Ecoh) of fluorosili-

cone polymer. To improve the tearing strength of silicone rub-

ber, the vinyl-containing silicone resin had always been used as

a cross-linking agent in heat-curable silicone rubber.11 With

MR-VFS as a substitute for conventional cross-linking agent,

maleated rosin-modified fluorosilicone rubber (MP-FSR) would

be prepared and characterized in the following text.

Mechanical Properties

The mechanical properties of FSR were listed in Table II, and

effects of VFS on the tearing strength of FSR were presented in

Table I. Weight Parts and Weight Percent of Vinyl-Containing

Fluoroslicone Resin (VFS) in the Formulae of FSR

MR-VFS C-VFS

Sample Parts wt % Parts wt %

P-FSR 0 0 0 0

C-FSR1 0 0 1.5 1.0

C-FSR2 0 0 3.0 2.0

C-FSR3 0 0 4.5 3.0

C-FSR4 0 0 6.0 4.0

MR-FSR1 1.5 1.0 0 0

MR-FSR2 3.0 2.0 0 0

MR-FSR3 4.5 3.0 0 0

MR-FSR4 6.0 4.0 0 0
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Figure 4. Although the tensile strength and hardness of MR-FSR

were not improved by the incorporation of polar MRBFR, the

tearing strength and breaking elongation were effectively

improved. These mechanical improvements should be due to

the increase in Ecoh,13,24 which was resulted by the incorpora-

tion of polar MRBFR.

As was shown in Figure 4, the tearing strength of MR-FSR

increased initially with the increasing content of MR-VFS and

decreased rapidly after the content of MR-VFS exceeded 2 wt

%. When the VFS content was less than 2 wt %, MR-FSR

behaved better tearing resistance than C-FSR and P-FSR.

When the VFS content was at 2 wt %, the tearing strength of

MR-FSR increased by 20.1% (compared with C-FSR) and

9.1% (compared with P-FSR). It could be concluded that MR-

VFS (or MRBFR) could significantly improve the tearing

strength of fluorosilicone rubber, even though a little amount

of MR-VFS (or MRBFR) was added in the fluorosilicone rub-

ber. However, when the VFS content exceeded 2 wt %, the

tearing strength of MR-FSR decreased rapidly, and the hard-

ness showed the similar trend. It was known that both tearing

strength and hardness have a close relation with cross-link

density in rubber.11,13,20 So it was necessary to study the cross-

link density of MR-FSR.

Average cross-link densities (ce) of FSR were calculated accord-

ing to eq. (1) and listed in Table II. It could be observed that

hardness of C-FSR increased as C-VFS content and ce went up,

that is to say, the ce of C-FSR had a positive correlation with

hardness.24 This indicated that C-VFS could increase the cross-

link density of fluorosilicone rubber and further result in the

increase in hardness. It could be predicted that the tearing

strength and hardness of MR-FSR would decrease with the

decreasing ce of MR-FSR on the overall trend in a much wider

range of MR-VFS content (e.g., 0210 wt %). However, the

above regulation of C-FSR seemed to be not applicable to MR-

FSR in this paper when MR-VFS content was less than 4.0 wt

%. The ce of MR-FSR decreased with the increase of MR-VFS

content, which showed a different change trend from the hard-

ness and tearing strength.

Figure 2. 1H NMR spectra of C-VFS (a) and MR-VFS (b) in CDCl3.
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Figure 3. 13C NMR spectra of C-VFS (a) and MR-VFS (b) in CDCl3.

Table II. Mechanical Properties and Average Cross-Link Density (ce) of FSR Before Immersed in Oil

Density Tensile strength Breaking elongation Hardness
Cross-linking
density (ce)

Sample (g cm23) (MPa) (%) (Shore A) (mol m23)

P-FSR 1.459 9.2 202 62 12.8

C-FSR1 1.457 8.7 197 63 12.4

C-FSR2 1.450 8.2 177 65 13.1

C-FSR3 1.446 8.1 172 66 13.4

C-FSR4 1.449 8.1 168 68 13.7

MR-FSR1 1.455 7.1 211 62 9.49

MR-FSR2 1.452 6.0 256 65 6.63

MR-FSR3 1.448 3.6 272 64 3.75

MR-FSR4 1.444 2.1 184 63 3.24
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It seemed that both hardness and tearing strength of MR-FSR

tended to have closer relation with the sum of ce and Ecoh,

because Ecoh could also resist the tearing force and increase the

hardness.24 With the increase in MR-VFS content, MR-FSR’

Ecoh would increase, while its ce showed an opposite trend. In

theory, there was a possibility that the maximum value of their

sum would occur at 2 wt %. That is to say, the sum of ce and

Ecoh increased initially with the increasing content of MR-VFS

and decreased after the content of MR-VFS exceeded 2 wt %.

Oil Resistance

The mechanical strength of FSR was measured after immersed in

ASTM reference fuel C at 25�C for 72 h. As was shown in Figure 5,

the percent change in the tearing strength of MR-FSR was larger

than that of C-FSR but was still smaller than that of P-FSR. So

MR-FSR behaved better oil resistance than P-FSR in respect of

tearing strength. The percent changes in tensile strength, breaking

elongation and volume were all listed in Table III. It could be

found that there was no obvious difference among them. In sum,

it could be concluded that MR-FSR behaved a little worse oil resist-

ance than C-FSR, but better than P-FSR.

Thermal Stability

Thermal stability of FSR was investigated by TGA in nitrogen

atmosphere, and the results could be found in Supporting

Information Figures S1 and S2. P-FSR, C-FSR2, and MR-FSR2

were taken as examples and their corresponding results were

presented in Figure 6. The T5 (the temperature corresponding

to the mass loss 5 5%) of P-FSR, C-FSR2, and MR-FSR2 were,

respectively, 457.7, 452.8, and 437.5�C. Although MR-FSR2

showed the worst thermal stability before 450�C, the mass loss

of MR-FSR2 did not exceed 7%. This decline of thermal stabil-

ity for MR-FSR2 should be due mainly to the decrease of cross-

link density in fluorosilicone rubber.

The obvious weight losses from all samples began around 450�C
and were all complete by 600�C. The values of Tmax (the tempera-

ture corresponding to the weight-loss rate-maximum in the DTG

curve) were, respectively, 507.7�C (P-FSR), 526.5�C (C-FSR1),

523.6�C (C-FSR2), 522.8�C (C-FSR3), 522.1�C (C-FSR4), 539.2�C
(MR-FSR1), 527.3�C (MR-FSR2), 526.7�C (MR-FSR3), and

517.0�C (MR-FSR4). Compared with C-FSR and P-FSR, MR-FSR

showed better thermal stability at high temperature, which should

be due to the presence of imide heterocycle.12,14

Figure 4. Tearing strength of fluorosilicone rubber with varying contents

of VFS resin (-�- MR-FSR; -•- C-FSR).

Figure 5. Percent change in the tearing strength of fluorosilicone rubber

after immersed in oil with varying contents of VFS resin (-�- MR-FSR;

-•- C-FSR). Figure 6. TG and DTG curves of P-FSR (a), C-FSR2 (b), and MR-FSR2 (c).

Table III. Percent Change in Mechanical Properties of Fluorosilicone

Rubber After Immersed in Oil

Tensile
strength

Breaking
elongation Volume

Sample % % %

P-FSR 245.0 233.6 16.7

C-FSR1 244.1 233.9 16.3

C-FSR2 243.1 232.1 16.1

C-FSR3 246.8 235.9 15.8

C-FSR4 247.4 238.0 16.1

MR-FSR1 247.0 235.1 16.7

MR-FSR2 245.7 228.4 17.1

MR-FSR3 251.3 231.2 18.0

MR-FSR4 254.9 238.8 18.0
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The final residual mass ratio of P-FSR, C-FSR2, and MR-FSR2

at 800�C was, respectively, 32.2%, 25.8%, and 29.8%. Although

their VFS contents were equal, MR-FSR2 presented a higher

residual mass ratio than C-FSR2. Thus, it could be predicted

that the incorporation of MR in fluorosilicone rubber was help-

ful to the formation of residue such as SiO2 or silicon-

oxycarbide under thermal degradation.7

In sum, it could be concluded that incoporation of maleated

rosin (or MRBFR) could improve the high temperature thermal

stability of fluorosilicone rubber.

Low-Temperature Resistance

The low-temperature performance was investigated by DSC in

the temperature range of 275�C to 0�C, and the results could

be found in Supporting Information Figures S3 and S4. All of

the DSC curves showed a similar change trend. P-FSR, C-FSR2,

and MR-FSR2 were taken as examples and presented in Figure

7. Their glass transition temperature (Tg) were, respectively,

267.3�C (P-FSR), 267.6�C (C-FSR1), 267.4�C (C-FSR2),

267.5�C (C-FSR3), 267.6�C (C-FSR4), 267.9�C (MR-FSR1),

267.5�C (MR-FSR2), 268.0�C (MR-FSR3), and 268.1�C (MR-

FSR4). So it could be concluded that MR-FSR performed simi-

lar low-temperature resistance with ordinary fluorosilicone

rubber.

Morphology

The above special properties of MR-FSR should be correlated

with its microscopic structure. Since MR-VFS contains both

imide heterocycle and phenanthrene ring (i.e., MRBFR), it

should have more stronger polarity and rigidity than fluorosili-

cone polymer. In theory, this difference in the polarity and

rigidity would lead to the phase separation between MRBFR

and fluorosilicone polymer.25 Actually, the similar microphase

separation between imide segment and silicone segment had

been observed in poly(methyltrifluoropropylsiloxane-b-imide)

copolymer by SEM.14 Besides, the aggregation of hydrogenated

rosin in pressure-sensitive adhesives was also reported.26

In this study, morphologies of P-FSR, C-FSR, and MR-FSR were

investigated by means of SEM. P-FSR, C-FSR2, and MR-FSR2

were taken as examples to study the effect of MR-VFS on the

morphology of FSR, and their corresponding SEM images were

presented in Figure 8. The white and spherical domains should

be fumed silica, while the left domain was heterogeneous and

should be the polymer phase, in which microphase separation

could be observed. It could be found that the degree of the

micro-phase separation was in the following order: P-FSR<C-

FSR<MR-FSR.

According to the previous study,11 the network of P-FSR should

be formed by “Dispersive Cross-linking” [Figure 9(a)], when C-

VFS was used as the cross-linking agent, “Concentrative Cross-

linking” [Figure 9(b)] should be formed in C-FSR, which made

its microphase separation stronger than that of P-FSR. Based on

this, when MR-VFS was used as the cross-linking agent in MR-

FSR, driven by the polarity and rigidity of MRBFR,

“Concentrative Cross-linking” seemed to aggregate further and

ultimately form the gray and scattered domain in Figure 9(c).
Figure 7. DSC curves of P-FSR (a), C-FSR2 (b), and MR-FSR2 (c).

Figure 8. SEM images of (a) P-FSR, (b) C-FSR2, and (c) MR-FSR2.
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Consequently, the polymer phase in MR-FSR could be classified

into hard phase and soft phase. The gray and scattered phase in

the SEM image of MR-FSR should be the hard phase, which

was formed by the aggregation of MRBFR; the black and con-

tinuous phase should be the soft phase, which was formed by

the aggregation of poly(methyltrifluoropropylsiloxane). The

SEM images of MR-FSR1, MR-FSR3, and MR-FSR4 could be

found in Supporting Information Figure S5.

In order to verify our assumption, EDX was used to identify

the elemental composition of both the hard phase and soft

phase, and the obtained figures were presented in Figure 10. As

was shown in Figure 10(a), EDX was carried out in two repre-

sentative locations: location 1 represented the composition of

hard phase, while location 2 represented that of soft phase.

Their corresponding elemental analysis curves were presented in

Figure 10(b,c). It could be observed that the weight concentra-

tion of the element C in location 1 was higher than that in

location 2. The atomic percent of carbon was calculated and

present in Table IV. The atomic percent of carbon in location 1

was almost 1.5 times larger than that in location 2. Considering

that the carbon content of MRBFR was higher than that of pol-

y(methyltrifluoropropylsiloxane), the aggregation of MRBFR in

hard phase could be demonstrated.

Aggregation of MRBFR intensified the microphase separation in

the polymer phase of MR-FSR, widened the distribution of the

hard phase size, and led to a more random molecular arrange-

ment, which resulted in the decrease in density of MR-FSR com-

pared with P-FSR and C-FSR (Table II). The cohesion energy

Ecoh of hard phase was also improved significantly, which result

in the increase of tearing strength and breaking elongation.

CONCLUSIONS

Maleated rosin had been successfully grafted on the side chain

of vinyl-containing fluorosilicone resin. This maleated rosin-

modified vinyl-containing fluorosilicone resin (MR-VFS) con-

tained imide heterocycle and had more polarity than common

vinyl-containing fluorosilicone resin (C-VFS). With MR-VFS as

a new polar cross-linking agent in a heat curable fluorosilicone

rubber composition, a series of maleated rosin-modified fluoro-

silicone rubbers (MR-FSR) were obtained and characterized in

detail. It was found that maleated rosin could increase the tear-

ing strength effectively. When the MR-VFS weight content

reached to 2 wt %, the tearing strength of MR-FSR increased by

20.1% compared with that of common fluorosilicone rubber

(C-FSR). Maleated rosin also increased high-temperature ther-

mal stability in some extent. The Tmax of MR-FSR2 increased by

3.7�C than that of C-FSR2, and 19.6�C than that of P-FSR.

Figure 10. EDX (a) and elemental analysis (b,c) for MR-FSR2 (the sample point was marked with the white cross).

Table IV. Elemental Composition of the Polymer Phase in MR-FSR

Atomic percent (%) C O F Si

Location 1 74.4 13.4 6.9 5.3

Location 2 30.2 34.4 16.5 18.9

Figure 9. Cross-linking network of (a) pure fluorosilicone rubber P-FSR11,

(b) C-VFS modified fluorosilicone rubber(C-FSR2)11, and (c) MR-VFS

modified fluorosilicone rubber(MR-FSR2).
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However, MR-FSR showed a similar low-temperature resistance

and a little worse oil resistance. The morphological study

showed that incorporation of maleated rosin could intensify the

microphase separation of fluorosilicone rubber.
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