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Abstract we present the nowcast model for low-energy (< 200 keV) electrons in the inner
magnetosphere, which is the version of the Inner Magnetosphere Particle Transport and Acceleration Model
(IMPTAM) for electrons. Low-energy electron fluxes are very important to specify when hazardous satellite
surface-charging phenomena are considered. The presented model provides the low-energy electron

flux at all L shells and at all satellite orbits, when necessary. The model is driven by the real-time solar

wind and interplanetary magnetic field (IMF) parameters with 1 h time shift for propagation to the Earth’s
magnetopause and by the real time Dst index. Real-time geostationary GOES 13 or GOES 15 (whenever
each is available) data on electron fluxes in three energies, such as 40 keV, 75 keV, and 150 keV, are used for
comparison and validation of IMPTAM running online. On average, the model provides quite reasonable
agreement with the data; the basic level of the observed fluxes is reproduced. The best agreement between
the modeled and the observed fluxes are found for <100 keV electrons. At the same time, not all the peaks
and dropouts in the observed electron fluxes are reproduced. For 150 keV electrons, the modeled fluxes
are often smaller than the observed ones by an order of magnitude. The normalized root-mean-square
deviation is found to range from 0.015 to 0.0324. Though these metrics are buoyed by large standard
deviations, owing to the dynamic nature of the fluxes, they demonstrate that IMPTAM, on average,
predicts the observed fluxes satisfactorily. The computed binary event tables for predicting high flux
values within each 1 h window reveal reasonable hit rates being 0.660-0.318 for flux thresholds of
5.10°-2-10° cm™2 5" sr~" keV™' for 40 keV electrons, 0.739-0.367 for flux thresholds of 3 -10*

-1.10° cm=2 57" sr' keV™' for 75 keV electrons, and 0.485-0.438 for flux thresholds of 3 -103
-35.103cm=2s~" sr1 keV™ for 150 keV electrons but rather small Heidke Skill Scores (0.17 and below). This
is the first attempt to model low-energy electrons in real time at 10 min resolution. The output of this model
can serve as an input of electron seed population for real-time higher-energy radiation belt modeling.

1. Introduction

Space weather can be defined as severe disturbances of the upper atmosphere and near-space environment
that can damage modern technology on the ground and in space [Wrenn, 1995; Baker, 2001; lucci et al.,
2005; National Research Council Report, 2008]. These disruptions are driven by changes on the Sun and the
interaction of the solar wind with the Earth’s magnetic field.

Energetic charged particles trapped in the radiation belts are a major source of damaging space weather
effects on life and society here on Earth. They directly and adversely affect space-based technological assets,
and they pose a serious risk of harm to astronauts. Understanding the physical processes that enhance

the radiation belts is, therefore, a timely and pressing issue. This requires an integrated approach that
combines the global topological dynamics of the magnetosphere and bulk plasma properties as well as
detailed trajectory simulations of the highly energetic relativistic electrons and ions.

The observed variability of electrons in the outer radiation belt is due to the competing effects of source
and loss processes, both of which are driven by solar dynamics. The pulsations of the magnetopause and
the magnetotail create ultralow frequency (ULF) waves in the inner magnetosphere that resonate with

the drift periods of the radiation belt particles [Elkington et al., 2004; Shprits et al., 2005]. The plasma sheet
electron and ring current ion distributions get altered into unstable forms, exciting various plasma waves
(notably VLF chorus and electromagnetic ion cyclotron (EMIC) waves) that can either energize or scatter
(i.e., loose) relativistic particles [Horne and Thorne, 1998; Summers et al., 1998; Green and Kivelson, 2001, 2004;
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Horne et al., 2005a, 2005b; Y. Chen et al., 2006; Shprits et al., 2006]. Furthermore, the plasmasphere separates
different types of waves such as plasmaspheric hiss and possibly EMIC waves inside the plasmapause from
chorus outside and these waves not only resonate with electrons in different energy ranges but they also
contribute to electron loss and acceleration in different amounts as they drift around the Earth. Reeves

et al. [2003] showed that some geomagnetic storms enhance the radiation belts while others do not. Great
strides are being made with data analysis and data assimilation techniques, but, so far, the response of the
magnetosphere to solar variability is still poorly understood.

The distribution of low-energy electrons (10-150 keV) is critically important for radiation belt dynamics. This
seed population is further accelerated to MeV energies by various processes. All radiation belt models must
have a flux defined at a low-energy boundary at all L shells. Quite often, the boundary energy is fixed to

be several keV. However, the electron flux at these energies varies significantly with geomagnetic activity.
Satellite measurements cannot provide continuous measurements at 10 to a few hundreds of keV at all MLT
and L shells. The electron flux at these energies is largely determined by convective and inductive electric
fields and varies significantly with substorm activity driven by the solar wind [Mauk and Meng, 1983; Kerns
et al., 1994; Liemohn et al., 1998; Khazanov et al., 2004; Ganushkina et al., 2013]. Inward electron transport
excites plasma wave instabilities that give rise to local electron acceleration and electron precipitation into
the atmosphere. Wave-particle interactions are very effective in precipitating electrons at energies of a

few hundred keV, and radiation belt models often assume that losses are replenished by the transport of
low-energy electrons from the plasma sheet [Subbotin and Shprits, 2009]. However, this is not a steady state
process and this assumption is far from ideal.

At present, there are about 1000 operational satellites at different orbits in near-Earth space and all of
them pass through the Earth’s magnetosphere where the radiation environment can vary significantly with
location [Horne et al., 2013a]. The presence of low-energy electrons in GEO (geostationary) and MEO
(medium Earth orbit) orbits mainly between midnight and dawn [O'Brien, 2009] can cause surface charging
[Purvis et al., 1984; Whipple, 1981; Garrett, 1981; Davis et al., 2008], changes in the satellite potential, and
degradation of satellite surface materials. Surface charging has been reported to cause anomalies on
satellites on geosynchronous orbit [Frezet et al., 1988; Hoeber et al., 1998; Lanzerotti et al., 1998; Koons et al.,
1999]. The injected electrons can also penetrate along the magnetic field lines to low altitudes and affect
polar orbiting satellites in LEO (low Earth orbit) at high latitudes.

Fluxes of low-energy electrons have been modeled in several studies as a part of ring current simulations.
Jordanova and Miyoshi [2005], Miyoshi et al. [2006], and, more recently, Jordanova et al. [2014] extended ring
current-atmosphere interactions model (RAM) [Jordanova et al., 1996] to relativistic energies and electrons
investigating the effect of magnetospheric convection and radial diffusion during the October 2001
geomagnetic storm. M. W. Chen et al. [2006] performed magnetically self-consistent ring current simulations
during the 19 October 1998 storm. These studies were focused on the application to specific events.

It is necessary to have a model that is able to specify the electron flux for all L shells and at all satellite orbits,
when necessary for a given solar wind and IMF input. This model must also provide its output as an input
for higher-energy radiation belt modeling. With the development of the Inner Magnetosphere Particle
Transport and Acceleration Model (IMPTAM) [Ganushkina et al., 2001, 2005, 2006, 2012a] for low-energy
electrons in the inner magnetosphere [Ganushkina et al., 2013] and operating it online under the SPACECAST
project (http://fp7-spacecast.eu) [Horne et al., 2013b] funded by the European Union Seventh Framework
Programme (FP7/2007-2013), the computational view on the low-energy electron fluxes L = 2-10 is now
feasible. In this paper, we present a nowcasting near-real-time model of low-energy electrons (<200 keV)

in the inner magnetosphere and its operational implementations (sections 2 and 3). We use the real-time
geostationary data from GOES 13 and GOES 15 satellites on the <200 keV electron fluxes to validate the
running of IMPTAM online and show the comparisons in section 4. We summarize the model performance
and the obtained results in section 5.

2. Nowcasting Procedure

The IMPTAM [Ganushkina et al., 2001, 2005, 2006, 2012a] for low-energy electrons in the inner
magnetosphere [Ganushkina et al., 2013] is currently operating online and is driven by the following
parameters provided in real time by the data acquisition procedure in SPACECAST:
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Figure 1. Schematic representation of the hourly procedure of running IMPTAM for the nowcast of low-energy electron fluxes in the inner magnetosphere. Color
coded in green is “Cron-one” and in pink “Cron-two".

1. one minute resolution data of solar wind number density, total plasma bulk velocity, and solar wind
dynamic pressure (NOAA Space Weather Prediction Center);

2. one minute resolution data of the interplanetary magnetic field (IMF) comprising three components in
GSM coordinates (NOAA Space Weather Prediction Center); and

3. hourly values of the Dst index (compiled from NOAA National Geophysical Data Center and World Data
Center for Geomagnetism, Kyoto).

All the data sources are freely available. The data files may contain times for which data are not available or
filled with unrealistic numbers. When this happens to the Dst index, the values are assumed to be constant,
so the last Ds value recorded in the local data files of parameters is used. During this period for solar wind
and IMF parameters with 1 min resolution of the data, the values are ignored and the last proper values are
kept constant through the data gap.

Figure 1 presents the general framework of the implemented nowcasting procedure with the most
important steps for the internal and external links. The workflow is completely automated and does not
need any manual interference from the user. The hourly, fully automated functioning of the nowcast is
ensured by using the software utility “cron” Cron is a time-based job scheduler in Unix-like computer
operating systems. This software has the ability, once set, to run periodically at fixed times, dates, or intervals
scheduled jobs (commands or shell scripts) in specific software environments. Two cron jobs were
implemented to ensure reliable and fully automated online operation. In Figure 1, the green color-coded
boxes are “Cron-one” and pink color-coded boxes are “Cron-two.” The first cron job (Cron-one) runs hourly
at 15 min past the hour. Cron-one makes the following jobs automatic: (1) connecting to the external
SPACECAST data acquisition system; (2) downloading four different files containing: solar wind and IMF
parameters, Dst index and GOES data for comparison; (3) formatting the files for IMPTAM use; (4) checking if
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IMPTAM is ready for new parameters; and (5) flagging IMPTAM that the data is ready to use. If on step (4) the
state diagnoses determines that IMPTAM has stopped running for any reason, Cron-one can immediately
restart IMPTAM from the last saved output. IMPTAM has the ability to save the output fluxes in the modeling
domain at certain user-defined moments in time. These output fluxes serve as backups and constitute
snapshots of the whole inner magnetosphere. Once a certain output flux is loaded, the simulation resumes.
The second automated job (Cron-two) runs hourly at 25 min past the hour, allowing IMPTAM 10 min to
process and simulate 1 h worth of data. Cron-two is responsible for (1) checking if IMPTAM has finished the
simulation; (2) formatting the output in an easy to plot format; (3) connecting to an external ftp and upload
the latest files; and (4) locally archiving the latest results. The output files are downloaded from the ftp and
immediately made available in figure and tabular format on the SPACECAST website.

3. Modeling of Low-Energy Electrons With IMPTAM

The IMPTAM traces distributions of ions and electrons in the drift approximation with arbitrary pitch
angles from the plasma sheet to the inner L shell regions with energies reaching up to hundreds of keVs in
time-dependent magnetic and electric fields. One of the important results obtained from IMPTAM modeling
is the ability of the model to reproduce the observed amount of ring current protons with energies > 80 keV
during a storm recovery phase [Ganushkina et al., 2006] by the addition of substorm-associated electromag-
netic fields, which was not possible to obtain by other models using a dipole model for magnetic field and
large-scale convection electric field. IMPTAM has been successfully used to examine the evolution of the
current systems during magnetic storms [Ganushkina et al., 2012a], to compute energetic ion drifts in the
inner magnetosphere, and to evaluate the magnetospheric sources of magnetic disturbances recorded on
the ground [Ganushkina et al., 2012b] (i.e., the sources of the Dst index). The detailed description of IMPTAM
was given in Ganushkina et al. [2005, 2012a] with the description for modeling of electrons in Ganushkina
et al. [2013, 2014]. Here we will briefly repeat the main steps for modeling low-energy electrons in the inner
magnetosphere.

We obtain the changes in the electron distribution function f(R, ¢, t, E;,, @), where R and ¢ are the radial
and azimuthal coordinates in the equatorial plane, respectively, t is the time, E;, is the particle energy, and
a is the particle pitch angle, considering the drift velocity as a combination of the E x B drift velocity and
the velocities of gradient and curvature drifts [Roederer, 1970]. We assume the first and second adiabatic
invariants to be constant and use the bounce average drift velocity after averaging over one bounce of

E x B magnetic drift velocities. Liouville’s theorem is used to gain information of the entire distribution func-
tion with losses taken into account. If we know the distribution function f(R, ¢, t, E;,, a) of particles at a
time moment t,, then we can obtain the distribution function of particles at a time moment t, = t; + At,
by computing the drift velocity of the particles. Since we need to take into account the phase-
space-dependent losses (z,.), the final distribution function at t, will be f(t,) = f(t;)exp(—At/7jy)-

For the obtained distribution function, we apply radial diffusion [Fdlthammar, 1965; Schulz and Lanzerotti,
1974; Brautigam and Albert, 2000] by solving the radial diffusion equation [Schulz and Lanzerotti, 1974] for
the distribution function. Kp-dependent radial diffusion coefficients D,; for the magnetic field fluctuations
are computed following Brautigam and Albert [2000] using D;, = 100056%p=9:325/10_Sjince diffusion by the
magnetic field fluctuations at L > 3 dominates diffusion produced by electrostatic field fluctuations [Shprits
and Thorne, 2004], we ignore the electrostatic component of the radial diffusion coefficient [Lejosne et al.,
2013]. After that, we repeat the order of calculation: first, we solve transport with losses and then apply
the diffusion.

For electron losses we consider convection outflow and pitch angle diffusion by introducing the electron
lifetimes. We use Chen et al. [2005] electron lifetimes for the strong diffusion and Shprits et al. [2007] electron
lifetimes for the weak diffusion regimes.

An advantage of IMPTAM is that it can utilize any magnetic or electric field model, including a self-consistent
magnetic field. In the model version running online in near-real time we use the set of models which was
found to provide best agreement with the measured low-energy electron fluxes at geostationary orbit
[Ganushkina et al., 2013]. This set includes

1. a dipole model for the internal magnetic field,
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2.T96 model [Tsyganenko, 1995] for the external magnetic field with Dst, P,
parameters, and

3. Boyle et al.'s [1997] polar cap potential dependent on solar wind and IMF parameters applied to a
Volland-Stern type convection electric field pattern.

sw’

IMF B, and B, as input

As for including the self-consistency, we estimate its effect to be small. IMPTAM can take into account the
self-consistency of the magnetic field by calculating the magnetic field produced by the model currents
and feeding it back to the background magnetic field. It is necessary to be careful when calculating a
self-consistent magnetic field using a realistic model magnetic field such as Tsyganenko models. These
models contain the prescribed ring and near-Earth tail currents. If they are used together with calculations of
the induced magnetic field to trace particles in them, the obtained results will be incorrect. To be accurate,
it is necessary to remove the model ring and near-Earth tail currents from the background magnetic field
model and consider self-consistent calculations of the magnetic field. In previous calculations on this
subject [Ganushkina, 2011], it has been shown that the Tsyganenko models produce a near-Earth nightside
field that is relatively close to the field distortions from self-consistent magnetic field calculations. This is
because of the 1/r> dependence of the magnetic perturbation relative to its associated current density.
Therefore, even if current systems are highly localized, the resulting magnetic field distortion is fairly smooth
and well captured by the empirically derived current configurations within the Tsyganenko models. Since
we study the electrons, their contribution to the ring current is no more than 10%, so their contribution to
the distortion of the background magnetic field is small. Moreover, at the distances from 10 to 6.6 R, the
effect of the electron-pressure-driven self-consistent magnetic field is expected to be small.

There are large asymmetries in magnetic field and particle data of the inner magnetosphere in the region of
ring current. Around this region of high-pressure flows, a current is primarily closing through field-aligned
currents and the ionosphere, altering the near-Earth electric potential pattern [Jaggi and Wolf, 1973;

Ridley and Liemohn, 2002]. Taking into account the electric field in a self-consistent way is of high
importance when modeling the inner magnetosphere particles [Fok et al., 2003; Liemohn and Brandt, 2005].
In our study we focus on low-energy electrons which do not contribute significantly to the total pressure

as compared to ions. In addition, when these electrons precipitate into the upper atmosphere, they create
the high-conductance area of the auroral oval and their feedback on the electric field is short-circuited by
this precipitation. Therefore, electric field self-consistency is not needed to accurately describe the flow of
electrons through the near-Earth nightside magnetosphere. For the nowcast online model, the electrons are
moved in the Boyle et al. [1997] electric field and its alterations by the electron-driven field-aligned currents
and precipitating electrons are considered small.

We set the model boundary at 10 R; and use the kappa electron distribution function f,(E) = n - (2 ’:E* )32
7Kg

)~+D where I' is the Gamma function. Analysis of early measurements of plasma sheet

rl;lili—J;})z) (1 + é
particles in the Earth’s magnetosphere [Vasyliunas, 1968; Christon et al., 1989, 1991] and more recent studies
on Geotail and Cluster observations [Asnes et al., 2008; Burin des Roziers et al., 2009] found that the typical
energy spectra fits best by a kappa distribution with spectral slopes in the range k = 4-8. In the beginning of
online simulation in March 2013, we started with k = 5. Our previous results presented as a part of the review
paper by Horne et al. [2013b] (see section 3 and Figure 3) pointed out that decreasing k parameter from 5 to
1.5 provided the best agreement between the modeled and the observed electron fluxes with 50-150 keV
energies at geostationary orbit onboard LANL satellite.

The k values lower than in earlier studies were recently obtained based on the analysis of Cluster (k = 2.89
for the single component fits of the observed electron distribution [Walsh et al., 2013]) and The Time History
of Events and Macroscale Interactions during Substorms (THEMIS) (k = 2.5-3 for 40 keV electrons during
injection events [Gabrielse et al., 2014]) data. It may seem that k values lower than 2 can cause a divergence
of the integration when we obtain, for example, the omni directional energy flux following Vasyliunas [1968]
(equation (11c)). In our model, we assume that the distribution can be fitted by the kappa shape only in the
finite range of velocities, so the integral does not diverge.

We then changed it k = 1.5 at the end of the year after continuous monitoring of the model output
compared to GOES data (see the next section). Particle energy at the distribution peak E; is given by

E; = kgT(1 — 3/2k). Particle flux on the outer boundary is given by j,(E) = n - %’Z ~(ﬁ)3/2 . %% . r(rlf’i—:})z) .

a+ %)‘("“). The number density n and temperature T are given by the empirical model derived from
0
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Figure 2. Example of low-energy electrons’ nowcast during 15 April 2014, 0700 UT to 16 April 2014, 1900 UT: From top
to bottom: (first panel) The 30-50 keV electron flux at L = 2 — 8 at midnight, (second panel) the 40 keV electron flux
measured at GOES 13 (blue diamonds) together with the model flux (red pluses), (third panel) the IMF B, component
(black curve) and the solar wind velocity (red curve), (fourth panel) the solar wind dynamic pressure (magenta curve)
and the Dst index (black curve), and (fifth panel) the Kp (green-yellow-red color bar) and AE indices (black curve).

Geotail data by Tsyganenko and Mukai [2003]. The electron n is assumed to be the same as that for ions in
the model, but Te/Ti = 0.2 is taken into account (as was shown, for example, in Kaufmann et al. [2005] and
Wang et al. [2012], based on Geotail and THEMIS data). We also introduced a time shift of 2 h following
Borovsky et al. [1998] for the solar wind material to reach the midtail plasma sheet.

4, Online Nowcast for Low-Energy Electrons

4.1. Model Snapshots for 24 h

The online nowcast for low-energy electrons is presented at http://fp7-spacecast.eu web page under the
SPACECAST project funded by the European Union Seventh Framework Programme (FP7/2007-2013). We
show the results for three electron energy ranges, namely, 30-50 keV, 50-100 keV, and 100-200 keV, which
correspond to the low-energy electron energy channels on Magnetospheric Electron Detector (MAGED)
onboard the GOES satellites starting from GOES 13 (see GOES N data book, prepared for National Aero-
nautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland 20771, Pursuant

GANUSHKINA ET AL.

©2014. American Geophysical Union. All Rights Reserved. 21


http://fp7-spacecast.eu

@AG U Space Weather 10.1002/2014SW001098

Last 24 hours Forecast

T

T

75 ke Electron Flux at Midnight MLT
(em? & or" eV

T

—
O’ N
g

A B

1

-
Q.
T
|

1
T

&

em® s’ s keV')

10° ; * :

Neon

£
\
URSLLL maRLLL

O GOES-13 | Model at GOES location

L i 1 1

-
°=
T

75 kaV Electran Flux at Midnight MLT

E

Vew (kms' )

g
|
paeligal

110

600 |-
F crseemcansrcaoz s At LT o i R 0

WO e
-10

-20
T v v T v ™31 100.0

0
0
100 1100

Ml Uvastasmumiate Vi IEDOR

S mmae R U —

IMF Bz {nT)

Louvliees

n

T [T
\
)

Dst (nT)
2
I

Psw (nPa

AE (nT)

§5t
T
TR PO IUUTIN |

o

07:00 12:00 17:00 22:00 03:00 08:00 13:00
15 Apr 2014 UTC Time 16 Apr 2014

Plot crosted on Wod Age 16 07.33.37 2014 PSPACFCAST

Figure 3. Example of low-energy electrons’ nowcast during 15 April 2014, 0700 UT to 16 April 2014, 1900 UT for
50-100 keV (75 keV) (same as in Figure 2).

to Contract NAS5-98069, Rev B, February 2005, CDRL PM-1-1-03, Boeing, unpublished work, 2006). The
GOES MAGED data in these three energy channels are the only available real-time data set for low-energy
electrons. We present the results in the same format as they appear online.

Starting from GOES 13, the Space Environment Monitor (SEM) subsystem on GOES spacecraft consists of
multiple instruments used to monitor the near-Earth (geostationary altitude) space environment including
the EPS (Energetic Particle Sensor)/HEPAD (High Energy Proton and Alpha Detector) Instrument. It measures
the flux of protons, alpha particles, and electrons over an extensive range of particle energies. One of the
constituents of this instrument is the MAGED detector. Magnetospheric electrons are measured at nine
pitch angle directions. The detector set is mounted on the anti-Earth side of the spacecraft and measures
electrons at 0°, +35°, and +70° from the anti-Earth direction in both the equatorial and the azimuthal
planes. Each detector telescope has a full detection cone angle of 30°. MAGED measures electrons in five
differential energy channels from 30 to 600 keV. Algorithms are provided to correct the electron channels
for the proton contamination that is unavoidable with this detection system.

For comparison with GOES MAGED data online, we use the data from the central telescope (telescope 1)
facing in the zenith direction and covering mostly 90° pitch angles. Figures 2-4 demonstrate one example
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Figure 4. Example of low-energy electrons’ nowcast during 15 April 2014, 0700 UT to 16 April 2014, 1900 UT for
100-200 keV (150 keV) (same as in Figure 2).

of the model output for low-energy electrons model as presented at http://fp7-spacecast.eu web page

as 24 h snapshots for 15 April 2014, 0700 UT to 16 April 2014, 1900 UT. Figure 2 contains the results for
electrons with energies of 40 keV. Figure 3 corresponds to the electrons with energies of 75 keV, and
Figure 4 for 150 keV electrons. The first panel in Figures 2-4 shows the time evolution of the electron flux in
cm=2 s~ s keV™' at L = 2 — 8 at midnight. The second panel presents the electron flux measured at GOES
13 by telescope 1 (blue diamonds) during this time interval together with the model flux (red pluses) for
corresponding energy at the GOES orbit. The satellite midnight and noon locations are marked by dashed
vertical lines. The IMF B, component (black curve) and the solar wind velocity (red curve) are shown on the
third panel, the solar wind dynamic pressure (magenta curve) and the Dst index (black curve), on the fourth
panel, and the Kp (green-yellow-red color bar) and AE indices (black curve), on the fifth panel.

The presented time period was rather quiet, IMF B, being about —4 nT until 2000 UT on 15 April turning
then northward with 2 nT and becoming negative again at 0100 UT on 16 April. Solar wind velocity was
around 400 km/s, solar wind dynamic pressure did not rise above 1 nPa, no significant activations were seen
in AE index, Kp was below or at about 2 and Dst did not drop lower than —10 nT. The modeled and observed
electron fluxes show rather reasonable agreement on average for all three energy ranges. The flux of 40 keV
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Figure 5. Example of low-energy electrons’ nowcast during 15 August 2013, 0600 UT to 16 August 2013, 0700 UT for
30-50 keV (40 keV) electrons (same as in Figure 2).

electrons (Figure 2) shows most variations compared to the fluxes for 75 and 150 keV electrons. In the
beginning of the presented time interval, GOES 13 was moving toward noon on 15 April, and the 40 keV
modeled and observed fluxes were very close being about 3-4 -10* cm=2 5~! sr~" keV~'. At noon at 1700 UT
the modeled flux was an order of magnitude lower than the observed one. Then satellite moved to the
duskside and the modeled fluxes were very close again to the observed values. At 0500 UT on 16 April,
GOES 13 reached midnight and the modeled and observed fluxes coincided very well. For 75 keV electrons
the agreement is also very good although it is necessary to mention that no significant variations were
51! keV™". The modeled flux was very

—2 —

observed. The observed flux stayed at the level of 1-2-10* cm=2 s
close to the observed values when GOES 13 moved toward noon but became about 4 times higher than
that observed when GOES 13 was coming to midnight through dusk. At the same time, the higher energy
flux (150 keV) was observed at 10* cm=2 s~" sr~" keV™" level but the modeled flux was close to the observed
only around midnight and was lower being about 5 - 102 cm=2 s~" sr=' keV~' at other local times.

Another example of nowcast output is for more disturbed conditions during 15 August 2013, 0600 UT to
16 August 2013, 0700 UT (Figures 5-7). In the beginning of 15 August, IMF B, was varying around zero and
then stayed negative from 0600 to 1000 UT turning positive at that time and reaching 10 nT. Solar wind
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Figure 6. Example of low-energy electrons’ nowcast during 15 August 2013, 0600 UT to 16 August 2013, 0700 UT for
50-100 keV (75 keV) (same as in Figure 2).

speed was about 500 km/s, solar wind dynamics pressure was around 3-4 nPa, Kp = 3, Dst was about —5 nT,
and AE showed substorm activations with 800 nT around 0900 UT.

At that time GOES 13 was moving from midnight toward noon through dawn. The observed 40 keV electron
flux was very well reproduced by the model in the beginning of this period (Figure 5). Later on it showed an
increase with a peak of two orders of magnitude around 0930 UT, which was not reproduced by the model.
This increase of the observed fluxes at dawn is most probably associated with possible substorm injections
as presence of substorm activations was seen in AE. Electron fluxes with energies of 75 keV (Figure 6) and
150 keV (Figure 7) showed smaller variations during that period, and the modeled fluxes were about
310" cm 257" sr! keV™! for 75 keV and 2 - 103 cm™2 57" sr=' keV ™" for 150 keV which fits the data

on average.

When satellite was around noon, the modeled fluxes for < 100 keV electrons matched the observed ones
very well. IMF B, became negative and reached —10 nT at 1530 UT. For higher-energy electrons
(100-200 keV), the model underestimated the observed fluxes by almost an order of magnitude.

Contrary to the dawnside, the model fluxes for 40 keV electrons were several times higher than the observed
ones on duskside. This difference decreased noticeably (starting from 0100 UT on 16 August) when GOES
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Figure 7. Example of low-energy electrons’ nowcast during 15 August 2013, 0600 UT to 16 August 2013, 0700 UT for
100-200 keV (150 keV) (same as in Figure 2).

13 came closer to midnight. During that time, the observed peak of 106 cm=2s~! sr~! keV~' at 0330 UT was
seen in the model as 1 order of magnitude lower peak 30 min later. A second peak at 0600 UT at midnight
was not reproduced by the model, but the model flux followed the observed one very well, on average. The
flux variations seen for higher energies (Figures 6-7) were not reproduced by the model, but the modeled
fluxes were of the same order of magnitude with the observed ones, on average. During that time, several
excursions of negative IMF B, were present with indications of substorm activity seen AE.

4.2. Model Performance
4.2.1. Direct Long-Term Data-Model Comparison

The IMPTAM version for low-energy electrons has been running online since March 2013. Constant checks
were done for model performance. In Figure 8 we present the model output for 1 month, from 6 July to

8 August 2013. Figure 8 shows the observed fluxes (black lines) at GOES 13 together with the modeled fluxes
for (a) 40 keV electrons (red line), (b) 75 keV electrons (blue line), and (c) 150 keV electrons (green line).

The general trends for deviations of the modeled fluxes from the observed ones as found for day long model
outputs (Figures 2-4) can be seen for model performance over 1 month. The modeled fluxes for < 100keV
electrons are, on average, in satisfactory agreement with the observed fluxes (Figures 8a and 8b). At the
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Figure 8. Model performance for 1 month, from 6 July to 8 August 2013: the observed fluxes (black lines) at GOES 13
together with the modeled fluxes for (a) 40 keV electrons (red line), (b) 75 keV electrons (blue line), and (c) 150 keV
electrons (green line).

same time, the significant flux dropouts were not present in the model fluxes. For electrons with energies of
150 keV (Figure 8c), the modeled flux is constantly smaller than the observed one. The maximum difference
between the observed and modeled fluxes can reach 1 order of magnitude.

Figure 9 presents the long-term data-model comparison, same as in Figure 8 but for 4 months, from

1 January to 30 April 2014. During this period, the k was 1.5 in the kappa distribution function at the
boundary in the plasma sheet. At a first glance, the model performance for 1 month is very similar to that for
4 months. At the same time, it can be noticed that the model follows the observations more closely, which
will be demonstrated below. Several gaps in the model output can be noticed. They are due to IMPTAM'’s
restarts which have occurred 6 times during that period. The IMPTAM was forced to restart the modeling
with empty magnetosphere mainly by internal problems of ftp server. The periods when the initial filling
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Figure 9. Model performance, same as in Figure 8 but for 4 months, from 1 January to 30 April 2014.

of the magnetosphere was going on and the model flux values were very small were excluded from the
model-data comparison.
4.2.2. Nowcast Verification

The accumulated output from IMPTAM online at GOES satellite locations was evaluated. As a first step, we

chose the root-mean-square deviation (RMSD) or root-mean-square error (RMSE), which is a frequently
used measure of the differences between values predicted by a model or an estimator and the values
actually observed. These individual differences are called residuals when the calculations are performed
over the data sample that was used for estimation. They are called prediction errors when computed out
of sample. The RMSD serves to aggregate the magnitudes of the errors in predictions for various times
into a single measure of predictive power. RMSD is a good measure of accuracy, but it can be used only to
compare forecasting errors of different models for a particular variable and not between variables, as it is
scale-dependent.
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Table 1. Normalized Root-Mean-Squared Deviation (NRMSD) and the Asso-
ciated Standard Deviations of the Observations (Parenthetical; in Units of
cm2 sV gr~T kev )2
Energy Channel
40 keV 75 keV 150 keV

Jul-Aug 2013 1.3016(7.901E4+04)  1.0262(3.052E+04)  1.3577(5.645E+03)
Jan-Apr 2014  0.0324(8.288E+04)  0.0153(3.438E+04)  0.0307(5.737E+03)

aTwo time periods are shown: 6 July to 8 August 2013 (top row) and 1 January
to 30 April 2014 (bottom row).

RMSD is used to compare differences between two things that may vary, neither of which is accepted as the
“standard.” For example, when measuring the average difference between two time series x, , and x, , , the
formula becomes

n 2
Zr=1 (X6 = Xo)

n

RMSD = (M
Note that if an unskilled prediction is made using the mean of the distribution of observed values (y,,,
replacing x, above), equation (1) becomes the standard deviation of the observed values. Normalized RMSD
can be generated by dividing RMSD by some measure of the distribution of the observed values (the range
of the observations is often used). For this study, NRMSD (equivalently, NRMSE) is obtained by dividing
RMSD by the standard deviation of the observed values:

NRMSD = RMSD (2)

Oobs
This choice of normalization has several advantages. First, because the flux values being examined span
many orders of magnitude, the normalization scheme must be robust against large magnitude outliers.
Standard deviation is more robust than the mean or range of the observations. Additionally, because the
RMSD resulting from a constant prediction of y, is equivalent to o, NRMSD of a prediction of i, is 1.
Thus, it is expected that a skilled prediction would yield an NRMSD below 1 (average error is within a single
standard deviation of the observations) and an unskilled prediction would yield an NRMSD well above 1.

Table 1 shows the results of this calculation for two time periods. Periods directly following model restarts,
where fluxes were built up from zero to realistic values, were disregarded. For the test, 1 month perfor-
mance for 6 July to 7 August 2013 (Figure 8), we obtained NRMSD values slightly higher than unity for each
energy channel. For online IMPTAM performance during first 4 months in 2014 (Figure 9, we obtained much
lower values, ranging from 0.015 to 0.0324. Though these metrics are buoyed by large standard deviations
owing to the dynamic nature of the fluxes, they demonstrate that IMPTAM, on average, does reasonably
well predicting flux magnitudes. Additionally, between the two modeling time periods, tuning of our model
improved overall performance.

Another approach which we used is binary event tables [Jolliffe and Stephenson, 2003]. These predictions
are considered as yes/no forecast within a given time interval and represent the simplest type of forecasting
and decision-making. There are two ways for a forecast to be correct (either a Hit or a Correct Rejection)
and two ways for a forecast to be incorrect (either a False Alarm or a Miss). In practice, many sets of binary
forecasts are produced by varying a threshold. A Hit and a False Alarm count is made if the model can or
cannot forecast a certain threshold. To evaluate the model performance, several thresholds are needed.

The main metric is the Heidke Skill Score (HSS), which is determined as
2s(1 =s)(H-F)

HSS = ,
s+s(1 = 25)H+ (1 —s)(1 = 25)F

where
_  Hit + Miss
Sum of all events
is the event probability (base rate),
H= Mt
Hit + Miss
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Table 2. IMPTAM Performance Determined From the Binary Event Tables for 1 Hour Window in the
Time-Dependent IMPTAM Output With 2201 Events in Total

Flux Level, False Correct False Heidke
(cm=2s'sr- ' kev=') Hit Alarm Miss Rejection HitRate Alarm Rate  Skill Score
40 keV Electron Fluxes
5.10% 348 721 179 953 0.660 0.431 0.170
1-10° 109 612 121 1359 0.474 0.311 0.084
2-10° 34 403 73 1691 0.318 0.192 0.051
3.10° 16 288 39 1858 0.291 0.134 0.049
4.10° 5 228 22 1946 0.185 0.105 0.017
75 keV Electron Fluxes
3.10* 295 1043 104 759 0.739 0.579 0.084
5.10* 82 816 85 1218 0.491 0.401 0.030
1-10° 18 429 31 1723 0.367 0.199 0.034
150 keV Electron Fluxes
3.103 34 403 73 1691 0.485 0.603 -0.077
3.5.103 16 288 39 1858 0.438 0.525 —-0.065
1-10% 5 228 22 1946 0.159 0.233 —0.064

is the Hit Rate and

Fe False Alarm
False Alarm + Correct Rejection

is the False Alarm Rate. The perfect skill gives HSS = 1, the minimum value is —1.

For IMPTAM output we selected several thresholds of the values of the electron fluxes depending on the
electron energy shown in Table 2. We computed the binary event tables for 1 h window (Hit, False Alarm,
Miss, Correct Rejection) in the time-dependent IMPTAM output for 4 months (1 January to 30 April 2014)
and determined the Hit Rates, the False Alarm Rates, and the Heidke Skill Scores. The total number of all

events was 2201.

It must be noted that significant flux dropouts were not present in the model fluxes. For 40 keV electrons,
the difference between the observed and modeled fluxes is oscillating around zero. The 1 h window gives
a rather small HSS but reasonable hit and false alarm rates for the first three thresholds. The best hit rate

is for 75 keV electrons. The modeled fluxes of 150 keV electrons are constantly smaller than the observed
ones (1 order of magnitude). Nevertheless, the hit rates are reasonable for 150 keV electrons, but the HSS is
very small.

We present here the estimates of model performance for four first months of 2014, since the model output
corresponds to the most correct set of models in IMPTAM including k = 1.5 for boundary distribution. We
must stress that this is the first attempt to model low-energy electrons in real time at 10 min resolution. The
basic level of the observed fluxes is reproduced. We have developed a very powerful tool, and the model
performance will be improved with our next efforts on model development.

5. Summary and Discussion

We presented the nowcast model for low-energy (< 200 keV) electrons in the inner magnetosphere,
operating online in near real time under the SPACECAST project (http://fp7-spacecast.eu), which is the
version of the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) [Ganushkina

et al., 2001, 2005, 2006, 2012a] for electrons [Ganushkina et al., 2013, 2014]. The presented model provides
the low-energy electron flux at all L shells and at all satellite orbits, when necessary. The model is driven
by the real time solar wind and IMF parameters with 1 h time shift for propagation to the Earth’s magne-
topause, and by the real-time Dst index. Real-time geostationary GOES 13 or GOES 15 (whenever available)
MAGED data on electron fluxes in three energy channels (30-50 keV, 50-100 keV, and 100-200 keV) for
three energies of 40, 75, and 150 keV are used for comparison and validation of IMPTAM running online. The
GOES MAGED data in these three energy channels are the only available real-time data set for low-energy
electrons. Long-term comparison with other data sets not available in real time at present, such as, HOPE
[Funsten et al., 2013] and MagEIS [Blake et al., 2013] data in the range of 1 to 200 keV from ECT Instrument
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Suite [Spence et al., 2013] onboard Van Allen Probes, is a proper and necessary test to conduct for model
performance which will be done in the near future.

At the same time, it is necessary to stress that the nowcast model is not the same as the model which can
be used for specific scientific studies. When we run the model online, we need to have data which can be
available in real time. We cannot go back and change the model settings or add other physical processes
which could be missing to the model to fit the data better as we usually do for past event analysis. Adding
comparisons to other data sets, not available in real time, will mean not a nowcast model but case studies.
Thus, validation of online model performance is limited at present.

Another important thing is that it is hard to expect that a model working online in real time will capture
all the variations in the observed fluxes. As was mentioned above, it is impossible to change the model
parameters while it is working online to fit the data better. Thus, the model must be able to work well with
a certain set of parameters during different geomagnetic conditions and in different regions of the inner
magnetosphere and, moreover, on the 10 min or so time scales. It is a challenging task, and we presented
our first attempts to deal with it.

At present, the nowcast for low-energy electrons are provided in near real time for three energy ranges
(30-50 keV, 50-100 keV, and 100-200 keV) as (1) time evolution of the electron flux in cm=2 s~ sr~" keV™"’
at L = 2-8 at midnight, and (2) as the electron flux for 40, 75, and 150 keV at the GOES 13 (or GOES 15) orbit
together with the measured flux at GOES 13 (or GOES 15) by telescope 1. The IMF B,, the solar wind velocity,
solar wind dynamic pressure, Dst index, Kp, and AE indices are also provided.

On average, the model provides reasonable agreement with the data, the basic level of the observed fluxes
is reproduced. The best agreement between the modeled and the observed fluxes are found for <100 keV
electrons. At the same time, not all the peaks and dropouts in the observed electron fluxes are reproduced.
For 150 keV electrons, the modeled fluxes are often smaller than the observed ones by an order of
magnitude. The NRMSD is to range from 0.015 to 0.0324. The computed binary event tables for 1 h window
reveal reasonable hit rates being 0.660-0.318 for flux thresholds of 5 -10%-2 -10° cm=2 s~" sr~" keV™" for
40 keV electrons, 0.739-0.367 for flux thresholds of 3 -10%=1 -10° cm=2 s~" sr~" keV~" for 75 keV electrons,
and 0.485-0.438 for flux thresholds of 3 -103-3.5 103 cm=2 5" sr~! keV™" for 150 keV electrons but rather
small Heidke Skill Scores (0.17 and below). This is the first attempt to model low-energy electrons in real
time at 10 min resolution. The output of this model can serve as an input of the electron seed population for
the higher-energy radiation belt modeling.

As a result of the comparison of modeled fluxes to the GOES 13 observations over a 1 month period and
4 months period shown in the present paper, we found that some of the observed significant peaks and
dropouts cannot be reproduced by the set of background magnetic and electric field models and bound-
ary conditions used in IMPTAM. IMPTAM is driven by the variations in the solar wind and IMF via the
dependence of the background magnetic and electric field models and boundary conditions on the
solar wind number density, velocity, dynamics pressure, IMF components, and Dst index. If no significant
variations are seen in these parameters, no observed peaks and dropouts can be represented.

The observed variations can be associated with substorm activity seen in the AE index. The large-scale back-
ground electric and magnetic fields used in IMPTAM for the presented near-real-time output do not have
the effect of substorm variations. As was shown in Ganushkina et al. [2013, 2014], the substorm-associated
electromagnetic fields are of key importance for the electron transport and acceleration from the plasma
sheet to the inner magnetosphere. The effects which substorm activity has upon the transport and
acceleration of low-energy electrons were incorporated by launching an electromagnetic pulse at substorm
onset times determined from AE index variations. It is not a straightforward task to incorporate the substorm
activity effects for nowcast modeling. To launch a pulse at a substorm onset, the substorm timing and AE
peaks must be forecasted. If the forecasting tools for AE index are developed in the future, the substorm
activity effects could be properly taken into account.

Another explanation for the discrepancy between the observed and modeled fluxes is the usage of the
empirical model by Tsyganenko and Mukai [2003] as boundary conditions 10 R, which was developed
for ions. Applying this model for boundary conditions has a number of limitations as was pointed out in
Ganushkina et al. [2014]. At the same time, it is currently the best analytical model that can be used for
time-dependent boundary conditions at 10 R; in the plasma sheet.
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Ganushkina et al. [2013, 2014] also discussed the role of the accurate representation of the loss processes for
modeled electrons to the atmosphere due to the resonant pitch angle scattering by chorus waves. As was
seen from the analysis of model performance, the modeled fluxes for 30-100 keV electrons were higher than
that observed at dawn and very close to the observed ones at dusk. This may be due to limitations of the
electron lifetimes which were introduced according to Shprits et al. [2007] and Chen et al. [2005]. Introducing
the loss processes due to wave-particle interactions according to recent studies such as by Orlova

and Shprits [2014] will be part of our future study. Orlova and Shprits [2014] presented the lifetimes of

1 keV-2 MeV electrons computed in the Tsyganenko 89 magnetic field model for the night, dawn, prenoon,
and postnoon magnetic local time (MLT) sectors for different levels of geomagnetic activity and distances.
They developed a realistic chorus lower band and upper band wave models for each MLT sector using the
recent statistical studies of CRRES, Polar, and THEMIS observations of wave amplitude, wave normal angle,
and wave spectral density distributions as functions of magnetic latitude, distance, and Kp index. Separate
representations of lifetimes are given for electrons with energies < 10 keV and from 10 keV up to 500 keV.
Shprits et al. [2007] and Chen et al. [2005] representations do not include the energy and MLT dependencies
of electron lifetimes. For 100-200 keV electrons, there can be an internal acceleration source due to
wave-particle interactions that contributes at this energy. Global simulation results also found that
additional acceleration is required [Varotsou et al., 2005; Horne et al., 2006; Albert et al., 2009; Shprits

etal., 2009].

Keeping in mind all the efforts of the ongoing work on the improvement of model performance, we
presented a working online near-real-time nowcast of low-energy electrons as a very important tool which
provides highly valuable output. Low-energy electron fluxes are very important to specify when hazardous
satellite surface-charging phenomena are considered. These fluxes constitute the low-energy part of the
seed population which is critically important for radiation belt dynamics. IMPTAM output provides a critical
link in our ability to understand radiation belt dynamics during magnetic storms.
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