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ABSTRACT
Background: Cholinergic projection systems degenera-

tion is associated with dopamine nonresponsive fea-

tures of Parkinson’s disease (PD). Cholinergic deficits

are variable in nondemented PD. Identification of cho-

linergic deficits in PD may help with selection of suita-

ble patients for targeted cholinergic drug treatment in

PD. The objective of this retrospective multivariate pre-

dictor analysis study was to identify clinical markers

indicative of cholinergic deficits in PD patients, as

assessed by acetylcholinesterase ([11C]PMP) positron

emission tomography.
Methods: One hundred thirty-seven PD patients (34

female) participated; median modified Hoehn and Yahr

score was 2.5 (range, 1-4), average age 65.6 6 7.4

years, and average duration of motor disease symp-

toms of 6.0 6 4.2 years. Subjects were dichotomized

as “normocholinergic” or “hypocholinergic” based on a

5th percentile cutoff from normal for the basal

forebrain-cortical and pedunculopontine nucleus-

thalamic cholinergic projection systems. Previously

identified clinical indices of cholinergic denervation

were used for statistical prediction of cholinergic defi-

cits. Logistic regression determined which risk factors

predicted cholinergic deficits. Sensitivity, specificity,

and accuracy were determined for the (combinations

of) significant predictor variables.
Results: Forty-nine (35.8%) hypocholinergic PD sub-

jects were identified. The combination of rapid eye

movement (REM) sleep behavior disorder (RBD) symp-

toms and fall history showed highest diagnostic accu-

racy (81.1%) for predicting combined thalamic and

cortical cholinergic deficits. A combined assessment of

8.5 m walk time and lower score on the Montreal cog-

nitive assessment scale provided diagnostic accuracy

of 80.7% for predicting isolated cortical cholinergic

denervation.
Conclusion: Assessment of clinical indices of choliner-
gic denervation may be useful for identifying suitable

subjects for trials of targeted cholinergic drug treat-

ments in PD. VC 2014 International Parkinson and

Movement Disorder Society

Key Words: Parkinson’s disease; acetylcholine; ace-
tylcholinesterase; PET; biomarkers

Parkinson’s disease (PD) is a multisystem neurodege-

nerative syndrome with significant heterogeneity of

motor and non-motor features.1 Cholinergic projection

systems degeneration is associated with specific motor

and non-motor features of PD, independent of
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nigrostriatal dopaminergic denervation; it is associated
with impaired cognition,2-7 falling,8-10 slower gait
speed,11 rapid eye movement (REM) sleep behavior
disorder (RBD),12 and impaired olfaction.6,13 In addi-
tion, older age, longer motor disease symptom dura-
tion, and male sex associate with cholinergic system
degeneration in PD.7,14

Cholinergic system degeneration is heterogeneous in
PD, and it may affect basal forebrain-neocortical or
pedunculopontine nucleus-thalamic (PPN) projections
differentially.7 Heterogeneity of cholinergic system
degeneration may explain clinical variation in PD.
Optimal evaluation of cholinergic replacement therapy
requires accurate identification of the subset of PD
patients with cholinergic deficits. Clinical trials of cho-
linergic agents in PD would be facilitated greatly by
inclusion of convenient clinical measures as markers
of differential cholinergic system loss.

The purpose of this study was to identify conven-
ient, cost-effective, and noninvasive clinical markers of
cholinergic deficits in PD subjects. Our previous stud-
ies on markers of cholinergic denervation were mainly
based on univariate analysis of a single clinical predic-
tor variable. The objective of this retrospective study
was to perform a multivariate predictor analysis to
identify which combination(s) of clinical markers of

cholinergic deficits best predict cholinergic denervation
as assessed by acetylcholinesterase (AChE) positron
emission tomography (PET).6,7,10-14

Methods
Subjects

This retrospective cross-sectional multivariate pre-
dictor study included 137 PD patients (34 female)
who are part of an ongoing cohort study (Clinical-
Trials.gov Identifier NCT01565473). The median
modified Hoehn and Yahr score was 2.5 (range,
1-4),15,16 average age of 65.6 6 7.4 years, and average
duration of motor disease symptoms of 6.0 6 4.2
years. Patients met the UK Parkinson’s Disease Society
Brain Bank clinical diagnostic criteria.17 The diagnosis
of PD was confirmed by the presence of a typical pat-
tern of nigrostriatal dopaminergic denervation with
vesicular monoaminergic transporter-type 2 PET.18

Most subjects were on dopaminergic replacement ther-
apy. None of the subjects were on anti-cholinergic or
cholinesterase inhibitor drugs.

Written informed consent was obtained from all
subjects before research procedures. The University of
Michigan Medical School Institutional Review Board
for human studies approved the study.

Clinical Risk Factors for Cholinergic Deficits

We dichotomized each cholinergic deficit–associated
clinical feature into a “hypocholinergic risk factor”
(risk is present 5 1, risk is absent 5 0). Cutoffs for con-
tinuous variables were based on 85% specificity cutoff
as determined by receiver operating characteristic
(ROC) analysis across all PD subjects. This approach
yielded the following clinical indices for cholinergic def-
icits: age of 71 years or older, duration of motor disease
symptoms of 9 years or longer, University of Pennsylva-
nia Smell Identification Test (UPSIT)19,20 score of 9 or
lower, 8.5-meter walk time of 9.6 seconds or longer at
self-selected gait speed, Montreal cognitive assessment
(MoCA) test21 score of 24 or lower, history of one or

TABLE 1. Average values and percentages for each of the clinical features associated with cholinergic deficits for the differ-
ent groups

Normocholinergic

(n 5 88)

Cortex and Thalamus

Combined Choliner-

gic

Deficits (n 5 23)

Cortex-Only Choliner-

gic

Deficits (n 5 26)

Age (years) 63.9 6 7.1 69.0 6 7.4 68.4 6 6.8
Sex (%female/male) 31.8/68.2 13.0/87.0 11.5/88.5
Motor disease symptom duration (y) 5.3 6 3.8 8.2 6 4.5 6.6 6 5.0
UPSIT 17.4 6 8.1 14.6 6 8.0 13.8 6 8.1
8.5 meter walk time (sec) 8.0 6 1.8 10.0 6 5.9 9.1 6 2.8
MoCA 26.3 6 2.4 25.1 6 3.1 25.2 6 2.9
Fall history (% no fall/% fall) 78.4/21.6 47.8/52.2 73.1/26.9
RBD (% no RBD/% RBD) 53.4/46.6 21.7/78.3 53.8/46.2

UPSIT, University of Pennsylvania smell identification test; MoCA, Montreal cognitive assessment; RBD, REM sleep behavior disorder.
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more falls in the previous year, presence of RBD as
assessed by using the informant-based response to ques-
tion 1 on the Mayo Sleep Questionnaire,22 and male
sex. Walk time was assessed in the morning, after over-
night withdrawal of dopaminergic drugs (dopaminergic

“off” state). All subjects walked 8.5 meters in a hallway
and were timed using a stopwatch.11 The MoCA and
University of Pennsylvania Smell Identification Test
assessments were performed in the dopaminergic “on”
state. Table 1 provides an overview of average values
and percentages for each of the clinical features for the
different groups.

Brain Imaging Procedures

All brain imaging procedures have been described in
detail previously.23 In short, all subjects underwent
brain magnetic resonance imaging for anatomic co-
registration with [11C]PMP AChE PET24 to enable a
magnetic resonance imaging–based volume of interest
analysis. Thalamic and neocortical [11C]PMP AChE
hydrolysis rates per minute (k3), a measure of choliner-
gic terminal integrity, were estimated using reference
tissue-based linear least squares analysis25 with the
striatum as the reference tissue.

Cholinergic Deficits

Subjects were characterized as either “normocho-
linergic” or “hypocholinergic” based on the 5th percentile
cutoff from normal range neocortical or thalamic cholin-
ergic innervation. There were 49 (35.8%) hypocholiner-
gic PD subjects; 26 with cortical-only cholinergic
denervation, 18 PD subjects with a combination of both
cortical and thalamic cholinergic denervation, and five
with thalamic-only cholinergic denervation. We grouped
hypocholinergic subjects either as cortical-only hypocholi-
nergic or as combined cortical and thalamic hypocholi-
nergic (Fig. 1).

FIG. 1. Averaged radioactivity from 40- to 70-min frames of dynamic
[11C]PMP PET for a subject with normal cortical and thalamic choliner-
gic innervation (row A), a subject with cortical-only cholinergic deficits
(row B), and a subject with combined cortical and thalamic cholinergic
deficits (row C). [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

TABLE 2. v2 test results for the cholinergic deficits risk factor proportions of combined cortical and thalamic hypocholinergic
PD subjects vs. normocholinergic PD subjects, and cortical-only PD subjects vs. normocholinergic PD subjects

v2 (p-value) Sensitivity (%) Specificity (%) Accuracy (%)

Combined cortical-thalamic RBD 7.3 (0.007) 78.3 53.4 58.6
Fall history 8.5 (0.004) 52.2 78.4 73.0
RBD & fall history 13.0 (<0.001) 34.8 93.2 81.1

Cortical-only Sex 4.2 (0.041) 88.5 31.8 44.7
Walking speed 4.4 (0.037) 34.6 84.1 72.8
MoCA 7.3 (0.007) 42.3 83.0 73.7
Walking speed & sex 3.8 (0.050) 26.9 88.6 74.6
MoCA & sex 5.9 (0.015) 34.6 86.4 74.6
Age 8.2 (0.004) 42.3 84.1 74.6
Age & sex 5.7 (0.017) 30.8 88.6 75.4
MoCA & age & sex 0.9 (0.349) 7.7 96.6 76.3
MoCA & age 3.6 (0.057) 15.4 95.5 77.2
Walking speed & age & sex 3.4 (0.067) 7.7 98.9 78.1
Walking speed & MoCA & age & sex 3.4 (0.065) 3.8 100 78.1
Walking speed & age 6.9 (0.009) 15.4 97.7 78.9
Walking speed & MoCA & age 6.9 (0.009) 7.7 100 78.9
Walking speed & MoCA 13.2 (<0.001) 19.2 98.9 80.7

Sensitivity, specificity, and accuracy for the different (combinations of) cholinergic deficits risk factors is included. Significant contingency table results are in
italics. Table is sorted by increasing accuracy within each of the group comparisons.
PD, Parkinson’s disease; RBD, REM sleep behavior disorder; MoCA, Montreal cognitive assessment test.
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Statistical Analysis

Statistical procedures were performed using SPSS
Statistics 20 (IBM, Chicago, IL, USA). Separate analy-
ses were performed for the cortical-only hypocholiner-
gic and the combined cortical and thalamic
hypocholinergic groups. Stepwise (likelihood ratio)
logistic regression was performed to determine which
risk factors best predicted cholinergic group status
(normocholinergic or hypocholinergic). For each of
the significant predictors and for combinations of sig-
nificant predictors (eg, all risk factors are present), the
sensitivity (% true positive for risk factor across all

hypocholinergic subjects), specificity (% true negative
for risk factor across all normocholinergic subjects),

and accuracy (proportion of true positives and true
negatives across all subjects) were calculated. Area

under the curve of ROC analysis was calculated for
the combination of significant predictors with highest

diagnostic accuracy. The proportion of negative and
positive cases for each cholinergic deficits risk factor

was compared between the normocholinergic and the
hypocholinergic group, using the v2 test for contin-

gency tables.

Results
For the combined cortical and thalamic cholinergic

denervation group, results of stepwise logistic regres-
sion showed significant prediction of cholinergic defi-
cits (2, v2 5 18.5; P<0.001) by presence of RBD
(Wald 5 8.7, P 5 0.003) and fall history (Wald 5

10.0, P 5 0.002). The highest diagnostic test accu-
racy (81.1%; specificity 93.2%) was obtained with
the combination of RBD presence and fall history
(Table 2). Area under the curve of ROC analysis was
0.64.

For the cortical-only cholinergic denervation group,
results of stepwise logistic regression showed significant
prediction of cholinergic deficits (4, v2 5 21.8, P<
0.001) by a longer walk time (Wald 5 4.1, P 5 0.042),
lower MoCA score (Wald 5 5.0, P 5 0.026), higher age
(Wald 5 7.3, P 5 0.007), and male sex (Wald 5 4.2,
P 5 0.040). The highest diagnostic test accuracy
(80.7%; specificity 98.9%) was obtained with the com-
bination of walk time (9.6 seconds or longer) and lower
MoCA score (24 or lower; Table 2). Area under the
curve of ROC analysis was 0.59.

Discussion
The goal of this study was to identify combina-

tion(s) of convenient clinical markers that predict cho-
linergic deficits in PD patients. A history of falling,
especially combined with RBD presence, may be indic-
ative of combined cortical and thalamic cholinergic
deficits. Longer 8.5-m walk time in combination with

a MoCA score of 24 or lower may be indicative of
cortical-only cholinergic deficits.

Ideally, studies should be conducted to identify
markers that are specific to cholinergic system degener-
ation exclusively. However, this may be a challenging
goal to achieve given the multisystem neurodegenera-
tive nature of PD26 and the effect of comorbidities on
PD features.27-30 Selection of effective cut-off criteria of
the clinical features was based on high specificity but at
the expense of lower sensitivity. The reason for this
selection approach relates to the multisystem neurode-
generation process of PD in which clinical manifesta-

tions such as cognitive impairment or gait speed can
have different contributing pathogenetic factors that

are not limited to cholinergic denervation alone, such as
noradrenergic denervation or amyloidopathy.31,32 A

more sensitive selection process would consequently
include a greater number of PD subjects without cholin-

ergic denervation. Therefore, we believe that in the
presence of multisystem neurodegeneration recruitment

for cholinergic augmentation therapy should prioritize
specificity above sensitivity to maximize clinical

response and minimize side effects.
A prerequisite of clinical trials of novel cholinergic

augmentation therapies is the proper identification of
the subset of PD subjects with cholinergic deficits.
Cholinergic system PET imaging is a highly effective
method for identifying cholinergic deficits but with
restricted applicability because of relatively high
expense and limited availability. We identified fall his-
tory in combination with presence of RBD as best pre-

dictors of combined cortical and thalamic cholinergic
deficits; however, a history of RBD was based on clin-

ical symptom endorsement of dream enactment behav-

ior and not assessed by polysomnography.12 Time to

walk 8.5 m (9.6 seconds or longer) in combination

with a MoCA score of 24 or lower were best predic-

tors of isolated cortical cholinergic deficits. The devel-

opment of patient stratification tools was recently

recommended as the highest priority translational

research recommendation in the final report of the

“Parkinson’s Disease 2014: Advancing Research,

Saving Lives” meeting organized by the United States

National Institute of Neurological Disorders and

Stroke (http://www.ninds.nih.gov/research/parkinsons-

web/PD2014). Although our findings will require vali-

dation in an independent cohort, the proposed method

of patient selection based on clinical predictor varia-

bles may present a cost-effective and efficient method

to enrich study populations for trials of cholinergic

agents in PD.
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ABSTRACT
Background: A novel mutation (p.N855S) in DNAJC13

has been linked to familial, late-onset Lewy body par-

kinsonism in a Dutch–German–Russian Mennonite

multi-incident kindred.
Methods: DNAJC13 was sequenced in 201 patients

with parkinsonism and 194 controls from Canada. Rare

(minor allele frequency < 0.01) missense variants iden-

tified in patients were genotyped in two Parkinson’s

disease case–controls cohorts.
Results: Eighteen rare missense mutations were identi-

fied; four were observed in controls, three were
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