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1.  LEMMAS L.1-L..5 AND THEIR PROOFS

Lemmas L.1-L.5 are used to prove Theorem 2, which addresses the consistency and rate of
convergence of all the estimators for the nonparametric functions. We follow the route of
Huang (1999) in the partly linear additive Cox model with right censored data. We first
establish a sub-optimal convergence rate by taking advantage of concavity of the likelihood
function. Then we focus our attention on a sufficiently small neighborhood of the parameters
to establish Theorem 2.

For any probability measure @ and any function f, define Lo(Q) = {f : [ f2dQ <
oo} and ||f|la = ([ f2dQ)Y?. For any subclass F of Ly(Q), define the bracketing number
Ny(e, F, Lo(Q)) =min{m : there exist ff, fU, -, fL f5 such that for each f € F, fF <

f < fV for some 4, and || f¥ — fLls < e}. For any § > 0, denote

)
J1(8.F, Lo(Q)) = /0 1+ 10g Ny(e, F, Lo(Q)) de.

For V,; = (C;,Z;(C;), W;), let P,, be the empirical measure of (A;,V;), 1 <i <n and let P
be the probability measure of (A, V). Using linear functional notation, for any measurable

function f, we can write P, f = [ fdP, =n"t> " | f(A;, Vy).
Lemma L.1. Without loss of generality, assume r, = q,. For any n > 0, let

O, = {A(0) +B'z(c) + co(w) 1B = Boll < n, |A = Aoll2 < n, |6 = doll2 <7,

Ael,, o(w)ed,}.
Then, for any 0 < & < n, there exists a constant m > 0, such that,

log Nyy(e, Oy, La(P)) < m{gnlog(n/e)}.

PROOF. Hereafter, we use m or m; or m, for generic positive constants, wherever applica-
ble. Following the calculation of Shen and Wong (1994, page 597), we have log Ny (e, Ly, Lo(P)) <
ma{qn log(n/e)} and log Ny(e, ®p, Lao(P)) < maf{q,log(n/e)}. Therefore, the logarithm of the
bracketing number of the class

W = {A() + cop(w) : |A = Aoll2 <0, [[¢ = doll2 <1, Alc) € Lin, o(w) € P}
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is bounded by ms{g,log(n/e)}. Since the neighborhood B(n) = {B : |8 — Boll < n} can
be covered in R? by my(n/e)? balls with radius e, and |B8'z(c) — Byz(c)| < m.n on B(n)
because of condition (B3), B.(n) = {B'z(c) : ||B — Byl < n} can be covered by ms(n/c)?
balls with radius €. Therefore, the logarithm of the bracketing number of ©,, is bounded by

m3{qnlog(n/e)} + msdlog(n/e) < m{q,log(n/e)} for m = ms + msd, g, > 4.
Lemma L.2. Let lo(A, c,z(c),w;B,¢,A) = Aloglexp{—A(c) — B'z(c) — cop(w)}] + (1 —
A)log[l — exp{—A(c) — B'z(c) — cp(w)}]. Define a class of functions

Lo(m) ={lo: 1B —Boll <0, |A = Aoll2 <, [|¢ — dolla < n, A € Ly, p(w) € Py, .

Then for any 0 < € < n and some positive constant my,

IOgN[](Eaﬁo(U)>L2(P)) < mo{qnlog(n/e)}.

Consequently, by Lemma 3.4.2 of Van der Vaart and Wellner (1996),

Jy(n, Lo(n), La(P)) < mogy*n.

PROOF. Since the exponential function exp(-) is monotone, by Lemma L.1, the entropy of
the class consisting of functions exp{—A(c)—B'z(c) —co(w)} for A(c)+B'z(c)+cp(w) € O, is
bounded by mo{g, log(n/e)}. Therefore, the bracketing entropy of the class Ly(n) is bounded
by mo{q. log(n/e)} as well.

Lemma L.3. Suppose that g = A(C)+B'Z(C)+Chp(W), A € L, ¢ € A. Then, there exists
a function g, = A, (C) +BZ(C) + Co (W), A, € L,,, ¢, € ®,, with P,¢, =0 such that

lgn — gll2 = Op(n™"7 + n~0=1)/2),

PROOF. According to Lu (2007), there exists A,, € L,, such that |A, — All2 = O,(n™"?).
By Corollary 6.21 of Schumaker (1981, page 227), for ¢, there exists a ¢! € ®,, such that

6% — dlloe = O(). Let ¢n = ¢ —n 22", 65(W;) = ¢% — Pug’. Then Pogy = 0.
Noticing |¢, — ¢| < |¢f — ¢| + |Prol|, we consider

Png, = (P — P)¢;, + P(¢;, — ).

3



By Lemma L.2 and Lemma 3.4.2 of Van der Vaart and Wellner (1996), (P, — P)¢} =
Oy(n~Y/2n7/2), and |P(¢%, - 6)| < 165, — Blloc = O(n*7). Therefore, ¢, — dllos < Opln~"?+
n=0=72) and || ¢, — ¢z = Op(n P +n~0=")/2) Finally, let g, = A, (C)+B'Z(C)+C(W),

the lemma follows from the triangle inequality.

Lemma L.4. Denote ly(A,g) = A{—g} + (1 — A)log{l — exp(—g)}. For any g with ||g —

Gnlloo < 1, constant n > 0, there exist constants 0 < mq,my < 00 such that

—mallg = gull3 + Op(n™>7 +n~17)

IA

Pl()(Aag) - PlO(Aagn)

< —mallg = gnll3 + Op(n P + 0071y,

PROOF. Let h = g — go, where gy is the true value of g. Let
Ll(S) = Plo(A,go + Sh) — Plo(A,g0>

The first and the second derivatives of L,(s) are given by

exp(—(go + sh)) — exp(—go)
{1 —exp(—(go + sh)) {1 — exp(—go) }
(1 +C) (A~ A)exp(—(go + 5h)) 1

{1 — exp(—(go + sh))}?

Li(s) = Pl(1+0)h(1—A)

f/l(S) = —-P |:
Since L;(0) = L;(0) = 0, by Taylor expansion, we have
PlO(Avg) - Pl0<A7QO> = Ll(l) = L1<€>/27

where £ is a value between 0 and 1. By the same arguments as those made in the proof of

Lemma L.5, there exit constants m; > msy > 0 such that

—(m1/2)lg — goll3 < Plo(A, g) — Plo(A, go) < —(2ma)lg — goll5-

Likewise, it can be shown that

|Plg(A,9n) - PZO(Aago)’ - O;D(Hgn - gO“%)



Finally, using the following inequality,

(1/2)lg = gnllz — 90 — 90115 < lg = 0ll3 < 2llg = gall3 + 2llg. — 90ll5,
we obtain
—millg = gall3 + Op(Dllgn — ol < Plo(A, g) = Plo(A, g2)
< —mallg = gall3 + Op(1)llgn — oll3.
Combining this inequality and Lemma L.3, we complete the proof.

Lemma L.5. Forv = (c,z(c),w), let g,(v) = A, (c)+B8'z(c)+cpn(w). Denote the estimator
of go(v) by gn(v) = Apn(c) + B;z(c) + con(w). Let g, = K, + p be the number of polynomial

splines basis functions defined in Section 2, we have

G — gn“% = Op(%?l)‘
Furthermore, by Lemma 7 of Stone (1986), ||Gn — gnllco = 0p(1).

PROOF. Choose b € RY, 4, € ®,, and 7, € LL,, such that ||7,,(C)+b'Z(C) +Ch,(W)||3 =
O(g; ). This is possible because both ¢ and z(c) are bounded. Denote h,, = 7,,(c) + b'z(c) +
cth(W). Let b,(v,s) = gn(V) + shy, = Ay(c) + s70(c) + (B + sb)'z(c) + c(¢n + s1n(W)). Let
H,(s) =P,(bn(-,5)) = Pu(gn + shy). It is easy to obtain

Ho(s) — %ZAi{—bn(Vi, O+ (1= A log{1 — exp(—by (Vs s))},

H,(s) = %Z(l + C)hy, {—Ai +(1-A)) 1 EXS}EI:(I)_”(EY(Z\’/:?Z))} ’

1.(s) = 1 ” — A, N2z exp(=ba(Vis))
H,(s) n;(l AL+ CPR R

Because H,(s) < 0, H,(s) is a concave function of s and H,(s) is a non-increasing function.
Therefore, to prove the lemma, it suffices to show that for any s = sy > 0, Hn(so) < 0 and

Hn(—so) > () except on events with probability tending to zero. Note if this property holds,



then g, must be between g, — soh,, and ¢, + Sohn, S0 ||gn — gnll2 < Sol|hnll2- Without loss of

generality, assume sy = 1. Using the identity

Ploon {F2ERENSTY] = o

by some algebraic operations we have

H,(1) = (B P) {(1 +O)h, {exp( V’l)\)f, ) H

1 — oxp(—bn(
wp jasom T ] - larom T ]

o (SR oo ey

dgf Iln + ]277, + I3n-

Since infy {1 — exp(—b,(V, 1))} > 1/m; for some constant m; > 0, the first term is of order
n~'/2 In fact, by Lemma L.1 and Lemma L.2 on the bracket number for Ly(n), taking

n= qﬁl/g leads to

|]1n|

IN

m sup (P = P)[(1 4+ C)hn{exp(=bn(V, 1)) — A}]|

S Op(l)n_1/2q51/2(q;1/2+10g1/2qn)

= 0,(n7'?).
In a similar way, we can show

[Lsn| < OM)[lhnll2]lgn — goll2
= 0(1)g, " *(n =72 4 n77)

= o™,

for 1/(1+2p) <v <1/2.
Now, we evaluate Io,. Let
R Rt v N G b

) exp(—bu(V, 5)) — exp(—ga(V))
- P{(”@h”“‘A){l—exp( R (i
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By Taylor expansion, I, = L(1) = L(0) 4+ L(¢), € € (0,1), where L(0) = 0 and

(14+C)1 = A)exp(—b,(V,s)) hg]

{1 —exp(=bn(V,5))}? "
[0+ O)exp(=ba(V,s)){1 — exp(=g0(V))}, -
- r [ 1= exp(=ba(V, 5))J2 h"} |

By Lemma 7 of Stone (1986), |[hn]lec < mg *||hn|ls = O(1) for some constant m > 0.

L(s) = —P {

Therefore, my < b,(v,s) = go(V) + gu(V) — go(V) + shn, < go(V) + me < my + my for
0 < s < 1 and some constants m; > 0, j = 0,1,2. Given that our function k(z) =
exp(—r)/(1 — exp(—x))? is a non-increasing function on (0, o), we have

exp(—b,(V, s)) S exp(—my — mg)
{1 —exp(—=b,(V,$)}2 = {1 —exp(—my —my)}?*

Therefore, we obtain

. [ @+ e) exp(=mi — mo){1 —exp(=mu)} 5
Ls) = {1 — exp(—my — my)}? Pi)

def.
=" —mg||ha|3

and
Ly < —mg||ha|l3 = —mag, .

In summary, we yield

H,(1) < —mgq; ' +O(n~Y?) <0,

except on events with probability tending to zero. Using similar arguments, we can show

that Hn(—l) > (0 with high probability. This completes the proof of the Lemma L.5.

2. LEMMA L.6 AND ITS PROOF
To prove the asymptotic normality of the estimator of parameter B,, we apply a general
theorem for semiparametric maximum likelihood estimation given in Huang (1996). The

following lemma paves the path to Theorem 3.

Lemma L.6. Under the given conditions in Theorem 3, for ly defined in Lemma L.4, let

s(+,g) = 0lo(+,9)/0g = —A+(1—=A) exp(—g)/{1—exp(—g)}. For real-valued vector functions

7



u=a;(c)+ch(w) of (c, w) € Rt xR, let U = a;(C)+Ch(W) and U* = a}(C)+Ch*(W),

denote

sz - 250z
and

sov) = 25y

Then, we have the following results.
(C1) ua(Bo An, 60) (1] + lng(Bry A, 00)[CB] = Pus(-, ) [U"] = 0, (n~172).
(C2) (P — P){s(-, 3u)[Z] — 5(-, 90)[Z]} = 0,(n""?) and
(P = P){s(, gu)[U"] = 5(, 90)[U°]} = 0p(n~"72).
(C3) P{s(-,92)(Z(C) = U") = (-, 90)(Z(C) = U")} = 1(By)(B, — Bo) + 0,(n~'/?).

PrOOF OF (C1). By condition (B6) and equations (A.2) and (A.3) in the information
bound calculation, we can show that the elements of aj and h* are gth differentiable and their
gth derivatives are bounded. Thus, by similar arguments as those in the proof of Lemma

L.3, there exist an aj,, and a h;, their elements belong to £,, and ®,,, respectively, such that
lai, —ajll2 = O(q,?) and |h; —h"[]y = O(q,").
By the definition of (,Bn, An, ¢En), for any U, = a;,, + Ch,,, a1, € L,,, h, € ¢,

l.nA(Brw ATL: an)[aln} + ln¢<Bn7 A'rw an)[chn] - PnS(', gn)[Un] = 0
Also notice that
P{s(-,90)[U" = U]} =0

for U} = aj,, + Ch}. Hence,

Pns(+,9,)[U] = Pus(-,6,)[U" — U}

= (Py = P)s(-,gn)[U" = U]+ P{(s(, Gn) — 5(,90))[U" = U, ]}

= Ly + I,



By the maximal inequality in Lemma 3.4.2 of Van der Vaart and Wellner (1996) and some
entropy calculations similar to those in Lemma L.2, it can be shown that I, = 0,(n"1/2).
By Taylor expansion and the given boundary conditions, there exists a constant m > 0 such
that

[ Lon| < m[[U* = Uy [2[lgn — goll2-

Therefore, Iy, = n~%0,(n™"? + n~(17")/2) = 0,(n~/2) under the conditions in Theorem 3.
PROOF OF (C2). For U = Z or U*, we have P{s(-, 9,)[U] — s(-, 90)[U]}* < O(||gn —

9ol3), and the e-bracketing number of the class functions S(n) = {s(-, 9,)[U] — s(-, g0)[U] :

lg — goll2 < n} is gylog(n/e). The corresponding entropy integral Jy(n, S(n), Lo(P)) is

2 4 ¢.n~/2. Therefore, by Lemma 3.4.2 of Van der Vaart and Wellner (1996) and

(1-v)

1
ndn

Theorem 2, forn =r, =n /2 4 ¥ we have

BB, — P){s(3)[U] — 5(- g0) [U]}] < O()n~2(r7 g% + gun /%) = o(n~V/2).

This completes the proof of (C2).

ProOOF OF (C3). By Taylor expansion, for some £ between go and §,, we have

~ 88(-,9)

S('?.gn) - 5('790) + 89 1 d S(-,g)

2 Jg

(gn - 90)2'
9=¢

(gn - gO) +

9=go

Noticing that, for any function k(v) = k(c,z,w) and V = (C,Z(C), W),

175"

k(V)} = P{s*(-, 0)k(V)},

g=

we obtain

P{s(-,gn)[Z = U] = 5(-, 90)[Z = U'[}
= —Ps(.90)(Z = U )(Z)(B, — Bo) — Ps*(-,90)(Z = U ){A, + Cé, — (Ao + C)}

+O(IB = Boll* + 1A = Aoll3 + [0 — doll3).
By (A.1) and Theorem 1, we see that

Ps*(+, go)(Z — U ){A, + Cdy — (Ag+ C)} =0

9



and
Ps?(-,9o)(Z = U*)(Z') = P{s*(;, 9o)(Z — U")**} = I(B,).

By Theorem 2, HBn —Boll* = op(n71/?), H[\n —Aoll3 = 0,(n""/?) and Hén — ¢oll3 = 0p(n~"?),

therefore, (C3) is approved.
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