
Efficient Estimation of the Partly Linear Additive

Hazards Model with Current Status Data

(Additional Supporting Information:

Supplementary Material

– Technical Lemmas and Their Proofs)

Xuewen Lu

Department of Mathematics and Statistics

University of Calgary

2500 University Drive NW

Calgary, AB T2N 1N4, Canada

email: lux@math.ucalgary.ca

Peter X.-K. Song

Department of Biostatistics

University of Michigan

1420 Washington Heights

Ann Arbor, MI 48109-2029

email: pxsong@umich.edu

1



1. LEMMAS L.1-L.5 AND THEIR PROOFS

Lemmas L.1-L.5 are used to prove Theorem 2, which addresses the consistency and rate of

convergence of all the estimators for the nonparametric functions. We follow the route of

Huang (1999) in the partly linear additive Cox model with right censored data. We first

establish a sub-optimal convergence rate by taking advantage of concavity of the likelihood

function. Then we focus our attention on a sufficiently small neighborhood of the parameters

to establish Theorem 2.

For any probability measure Q and any function f , define L2(Q) = {f :
∫
f 2dQ <

∞} and ‖f‖2 = (
∫
f 2dQ)1/2. For any subclass F of L2(Q), define the bracketing number

N[](ε,F , L2(Q)) =min{m : there exist fL1 , f
U
1 , · · · , fLm, fUm such that for each f ∈ F , fLi ≤

f ≤ fUi for some i, and ‖fUi − fLi ‖2 ≤ ε}. For any δ > 0, denote

J[](δ,F , L2(Q)) =

∫ δ

0

√
1 + logN[](ε,F , L2(Q)) dε.

For Vi = (Ci,Zi(Ci),Wi), let Pn be the empirical measure of (∆i,Vi), 1 ≤ i ≤ n and let P

be the probability measure of (∆,V). Using linear functional notation, for any measurable

function f , we can write Pnf =
∫
fdPn = n−1

∑n
i=1 f(∆i,Vi).

Lemma L.1. Without loss of generality, assume rn = qn. For any η > 0, let

Θn = {Λ(c) + βββ′z(c) + cφ(w) : ‖βββ − βββ0‖ ≤ η, ‖Λ− Λ0‖2 ≤ η, ‖φ− φ0‖2 ≤ η,

Λ ∈ Ln, φ(w) ∈ Φn}.

Then, for any 0 < ε < η, there exists a constant m > 0, such that,

logN[](ε,Θn, L2(P )) ≤ m{qn log(η/ε)}.

Proof. Hereafter, we use m or mi or mz for generic positive constants, wherever applica-

ble. Following the calculation of Shen and Wong (1994, page 597), we have logN[](ε,Ln, L2(P )) ≤

m1{qn log(η/ε)} and logN[](ε,Φn, L2(P )) ≤ m2{qn log(η/ε)}. Therefore, the logarithm of the

bracketing number of the class

Ψn = {Λ(c) + cφ(w) : ‖Λ− Λ0‖2 ≤ η, ‖φ− φ0‖2 ≤ η,Λ(c) ∈ Ln, φ(w) ∈ Φn}
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is bounded by m3{qn log(η/ε)}. Since the neighborhood B(η) = {βββ : ‖βββ − βββ0‖ ≤ η} can

be covered in Rd by m4(η/ε)d balls with radius ε, and |βββ′z(c) − βββ′0z(c)| ≤ mzη on B(η)

because of condition (B3), Bz(η) = {βββ′z(c) : ‖βββ − βββ0‖ ≤ η} can be covered by m5(η/ε)d

balls with radius ε. Therefore, the logarithm of the bracketing number of Θn is bounded by

m3{qn log(η/ε)}+m5d log(η/ε) ≤ m{qn log(η/ε)} for m = m3 +m5d, qn ≥ 4.

Lemma L.2. Let l0(∆, c, z(c),w;βββ, φ,Λ) = ∆ log[exp{−Λ(c) − βββ′z(c) − cφ(w)}] + (1 −

∆) log[1− exp{−Λ(c)− βββ′z(c)− cφ(w)}]. Define a class of functions

L0(η) = {l0 : ‖βββ − βββ0‖ ≤ η, ‖Λ− Λ0‖2 ≤ η, ‖φ− φ0‖2 ≤ η,Λ ∈ Ln, φ(w) ∈ Φn}.

Then for any 0 < ε < η and some positive constant m0,

logN[](ε,L0(η), L2(P )) ≤ m0{qn log(η/ε)}.

Consequently, by Lemma 3.4.2 of Van der Vaart and Wellner (1996),

J[](η,L0(η), L2(P )) ≤ m0q
1/2
n η.

Proof. Since the exponential function exp(·) is monotone, by Lemma L.1, the entropy of

the class consisting of functions exp{−Λ(c)−βββ′z(c)−cφ(w)} for Λ(c)+βββ′z(c)+cφ(w) ∈ Θn is

bounded by m0{qn log(η/ε)}. Therefore, the bracketing entropy of the class L0(η) is bounded

by m0{qn log(η/ε)} as well.

Lemma L.3. Suppose that g = Λ(C) +βββ′Z(C) +Cφ(W), Λ ∈ L, φ ∈ A. Then, there exists

a function gn = Λn(C) + βββ′Z(C) + Cφn(W), Λn ∈ Ln, φn ∈ Φn with Pnφn = 0 such that

‖gn − g‖2 = Op(n
−νp + n−(1−ν)/2).

Proof. According to Lu (2007), there exists Λn ∈ Ln such that ‖Λn − Λ‖2 = Op(n
−νp).

By Corollary 6.21 of Schumaker (1981, page 227), for φ, there exists a φ∗n ∈ Φn such that

‖φ∗n − φ‖∞ = O(n−νp). Let φn = φ∗n − n−1
∑n

i=1 φ
∗
n(Wi) = φ∗n − Pnφ∗n. Then Pnφn = 0.

Noticing |φn − φ| ≤ |φ∗n − φ|+ |Pnφ∗n|, we consider

Pnφ∗n = (Pn − P )φ∗n + P (φ∗n − φ).
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By Lemma L.2 and Lemma 3.4.2 of Van der Vaart and Wellner (1996), (Pn − P )φ∗n =

Op(n
−1/2nν/2), and |P (φ∗n−φ)| ≤ ‖φ∗n−φ‖∞ = O(n−νp). Therefore, ‖φn−φ‖∞ ≤ Op(n

−νp +

n−(1−ν)/2) and ‖φn−φ‖2 = Op(n
−νp+n−(1−ν)/2). Finally, let gn = Λn(C)+βββ′Z(C)+Cφn(W),

the lemma follows from the triangle inequality.

Lemma L.4. Denote l0(∆, g) = ∆{−g} + (1 −∆) log{1− exp(−g)}. For any g with ‖g −

gn‖∞ ≤ η, constant η > 0, there exist constants 0 < m1,m2 <∞ such that

−m1‖g − gn‖2
2 +Op(n

−2νp + n−(1−ν))

≤ Pl0(∆, g)− Pl0(∆, gn)

≤ −m2‖g − gn‖2
2 +Op(n

−2νp + n−(1−ν)).

Proof. Let h = g − g0, where g0 is the true value of g. Let

L1(s) = Pl0(∆, g0 + sh)− Pl0(∆, g0).

The first and the second derivatives of L1(s) are given by

L̇1(s) = P

[
(1 + C)h(1−∆)

exp(−(g0 + sh))− exp(−g0)

{1− exp(−(g0 + sh))}{1− exp(−g0)}

]
,

L̈1(s) = −P
[

(1 + C)(1−∆) exp(−(g0 + sh))

{1− exp(−(g0 + sh))}2
h2

]
.

Since L1(0) = L̇1(0) = 0, by Taylor expansion, we have

Pl0(∆, g)− Pl0(∆, g0) = L1(1) = L̈1(ξ)/2,

where ξ is a value between 0 and 1. By the same arguments as those made in the proof of

Lemma L.5, there exit constants m1 > m2 > 0 such that

−(m1/2)‖g − g0‖2
2 ≤ Pl0(∆, g)− Pl0(∆, g0) ≤ −(2m2)‖g − g0‖2

2.

Likewise, it can be shown that

|Pl0(∆, gn)− Pl0(∆, g0)| = Op(‖gn − g0‖2
2).
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Finally, using the following inequality,

(1/2)‖g − gn‖2
2 − ‖gn − g0‖2

2 ≤ ‖g − g0‖2
2 ≤ 2‖g − gn‖2

2 + 2‖gn − g0‖2
2,

we obtain

−m1‖g − gn‖2
2 +Op(1)‖gn − g0‖2

2 ≤ Pl0(∆, g)− Pl0(∆, gn)

≤ −m2‖g − gn‖2
2 +Op(1)‖gn − g0‖2

2.

Combining this inequality and Lemma L.3, we complete the proof.

Lemma L.5. For v = (c, z(c),w), let gn(v) = Λn(c)+βββ′z(c)+cφn(w). Denote the estimator

of g0(v) by ĝn(v) = Λ̂n(c) + β̂ββ
′
nz(c) + cφ̂n(w). Let qn = Kn + ρ be the number of polynomial

splines basis functions defined in Section 2, we have

‖ĝn − gn‖2
2 = Op(q

−1
n ).

Furthermore, by Lemma 7 of Stone (1986), ‖ĝn − gn‖∞ = op(1).

Proof. Choose b ∈ Rd, ψn ∈ Φn and τn ∈ Ln such that ‖τn(C)+b′Z(C)+Cψn(W)‖2
2 =

O(q−1
n ). This is possible because both c and z(c) are bounded. Denote hn = τn(c) +b′z(c) +

cψn(w). Let bn(v, s) = gn(v) + shn = Λn(c) + sτn(c) + (βββ + sb)′z(c) + c(φn + sψn(w)). Let

Hn(s) = Pn(bn(·, s)) = Pn(gn + shn). It is easy to obtain

Hn(s) =
1

n

n∑
i=1

∆i{−bn(Vi, s)}+ (1−∆i) log{1− exp(−bn(Vi, s))},

Ḣn(s) =
1

n

n∑
i=1

(1 + Ci)hn

{
−∆i + (1−∆i)

exp(−bn(Vi, s))

1− exp(−bn(Vi, s))

}
,

Ḧn(s) = − 1

n

n∑
i=1

(1−∆i)(1 + Ci)
2h2

n

exp(−bn(Vi, s))

{1− exp(−bn(Vi, s))}2
.

Because Ḧn(s) ≤ 0, Hn(s) is a concave function of s and Ḣn(s) is a non-increasing function.

Therefore, to prove the lemma, it suffices to show that for any s = s0 > 0, Ḣn(s0) < 0 and

Ḣn(−s0) > 0 except on events with probability tending to zero. Note if this property holds,
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then ĝn must be between gn− s0hn and gn + s0hn, so ‖ĝn− gn‖2 ≤ s0‖hn‖2. Without loss of

generality, assume s0 = 1. Using the identity

P

[
(1 + C)hn

{
exp(−g0(V))−∆

1− exp(−g0(V))

}]
= 0,

by some algebraic operations we have

Ḣn(1) = (P− P )

[
(1 + C)hn

{
exp(−bn(V, 1))−∆

1− exp(−bn(V, 1))

}]
+P

[
(1 + C)hn

{
exp(−bn(V, 1))−∆

1− exp(−bn(V, 1))

}]
− P

[
(1 + C)hn

{
exp(−gn(V))−∆

1− exp(−gn(V))

}]
+P

[
(1 + C)hn

{
exp(−gn(V))−∆

1− exp(−gn(V))

}]
− P

[
(1 + C)hn

{
exp(−g0(V))−∆

1− exp(−g0(V))

}]
def.
= I1n + I2n + I3n.

Since infV{1− exp(−bn(V, 1))} > 1/m1 for some constant m1 > 0, the first term is of order

n−1/2. In fact, by Lemma L.1 and Lemma L.2 on the bracket number for L0(η), taking

η = q
−1/2
n leads to

|I1n| ≤ m1 sup
(∆,V)

|(P− P ) [(1 + C)hn{exp(−bn(V, 1))−∆}] |

≤ Op(1)n−1/2q−1/2
n (q−1/2

n + log1/2 qn)

= Op(n
−1/2).

In a similar way, we can show

|I3n| ≤ O(1)‖hn‖2‖gn − g0‖2

= O(1)q−1/2
n (n−(1−ν)/2 + n−νp)

= O(n−1/2),

for 1/(1 + 2p) < ν < 1/2.

Now, we evaluate I2n. Let

L(s) = P

[
(1 + C)hn

{
exp(−bn(V, s))−∆

1− exp(−bn(V, s))

}]
− P

[
(1 + C)hn

{
exp(−gn(V))−∆

1− exp(−gn(V))

}]
= P

[
(1 + C)hn(1−∆)

exp(−bn(V, s))− exp(−gn(V))

{1− exp(−bn(V, s))}{1− exp(−gn(V))}

]
.
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By Taylor expansion, I2n = L(1) = L(0) + L̇(ξ), ξ ∈ (0, 1), where L(0) = 0 and

L̇(s) = −P
[

(1 + C)(1−∆) exp(−bn(V, s))

{1− exp(−bn(V, s))}2
h2
n

]
= −P

[
(1 + C) exp(−bn(V, s)){1− exp(−g0(V))}

{1− exp(−bn(V, s))}2
h2
n

]
.

By Lemma 7 of Stone (1986), ‖hn‖∞ ≤ mq
1/2
n ‖hn‖2 = O(1) for some constant m > 0.

Therefore, m0 < bn(v, s) = g0(v) + gn(v) − g0(v) + shn ≤ g0(v) + m2 ≤ m1 + m2 for

0 ≤ s ≤ 1 and some constants mj > 0, j = 0, 1, 2. Given that our function k(x) =

exp(−x)/(1− exp(−x))2 is a non-increasing function on (0,∞), we have

exp(−bn(V, s))

{1− exp(−bn(V, s))}2
≥ exp(−m1 −m2)

{1− exp(−m1 −m2)}2
.

Therefore, we obtain

L̇(s) ≤ −
[

(1 + lc) exp(−m1 −m2){1− exp(−m1)}
{1− exp(−m1 −m2)}2

P (h2
n)

]
def.
= −m3‖hn‖2

2

and

I2n ≤ −m3‖hn‖2
2 = −m3q

−1
n .

In summary, we yield

Ḣn(1) ≤ −m3q
−1
n +O(n−1/2) < 0,

except on events with probability tending to zero. Using similar arguments, we can show

that Ḣn(−1) > 0 with high probability. This completes the proof of the Lemma L.5.

2. LEMMA L.6 AND ITS PROOF

To prove the asymptotic normality of the estimator of parameter βββ0, we apply a general

theorem for semiparametric maximum likelihood estimation given in Huang (1996). The

following lemma paves the path to Theorem 3.

Lemma L.6. Under the given conditions in Theorem 3, for l0 defined in Lemma L.4, let

s(·, g) = ∂l0(·, g)/∂g = −∆+(1−∆) exp(−g)/{1−exp(−g)}. For real-valued vector functions
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u = a1(c)+ch(w) of (c,w) ∈ R+×RJ , let U = a1(C)+Ch(W) and U∗ = a∗1(C)+Ch∗(W),

denote

s(·, g)[Z] =
∂s(·, g)

∂g
Z

and

s(·, g)[U] =
∂s(·, g)

∂g
U.

Then, we have the following results.

(C1) l̇nΛ(β̂ββn, Λ̂n, φ̂n)[a∗1] + l̇nφ(β̂ββn, Λ̂n, φ̂n)[Ch∗] = Pns(·, ĝn)[U∗] = op(n
−1/2).

(C2) (Pn − P ){s(·, ĝn)[Z]− s(·, g0)[Z]} = op(n
−1/2) and

(Pn − P ){s(·, ĝn)[U∗]− s(·, g0)[U∗]} = op(n
−1/2).

(C3) P{s(·, ĝn)(Z(C)−U∗)− s(·, g0)(Z(C)−U∗)} = I(βββ0)(β̂ββn − βββ0) + op(n
−1/2).

Proof of (C1). By condition (B6) and equations (A.2) and (A.3) in the information

bound calculation, we can show that the elements of a∗1 and h∗ are qth differentiable and their

qth derivatives are bounded. Thus, by similar arguments as those in the proof of Lemma

L.3, there exist an a∗1n and a h∗n, their elements belong to Ln and Φn, respectively, such that

‖a∗1n − a∗1‖2 = O(q−qn ) and ‖h∗n − h∗‖2 = O(q−qn ).

By the definition of (β̂ββn, Λ̂n, φ̂n), for any Un = a1n + Chn, a1n ∈ Ln, hn ∈ Φn,

l̇nΛ(β̂ββn, Λ̂n, φ̂n)[a1n] + l̇nφ(β̂ββn, Λ̂n, φ̂n)[Chn] = Pns(·, ĝn)[Un] = 0.

Also notice that

P{s(·, g0)[U∗ −U∗n]} = 0

for U∗n = a∗1n + Ch∗n. Hence,

Pns(·, ĝn)[U∗] = Pns(·, ĝn)[U∗ −U∗n]

= (Pn − P )s(·, ĝn)[U∗ −U∗n] + P{(s(·, ĝn)− s(·, g0))[U∗ −U∗n]}

= I1n + I2n.
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By the maximal inequality in Lemma 3.4.2 of Van der Vaart and Wellner (1996) and some

entropy calculations similar to those in Lemma L.2, it can be shown that I1n = op(n
−1/2).

By Taylor expansion and the given boundary conditions, there exists a constant m > 0 such

that

|I2n| ≤ m‖U∗ −U∗n‖2‖ĝn − g0‖2.

Therefore, I2n = n−qνOp(n
−νp + n−(1−ν)/2) = op(n

−1/2) under the conditions in Theorem 3.

Proof of (C2). For U = Z or U∗, we have P{s(·, ĝn)[U] − s(·, g0)[U]}2 ≤ O(‖ĝn −

g0‖2
2), and the ε-bracketing number of the class functions S(η) = {s(·, ĝn)[U] − s(·, g0)[U] :

‖g − g0‖2 ≤ η} is qn log(η/ε). The corresponding entropy integral J[](η, S(η), L2(P )) is

ηq
1/2
n + qnn

−1/2. Therefore, by Lemma 3.4.2 of Van der Vaart and Wellner (1996) and

Theorem 2, for η = rn = n(1−ν)/2 + nνp, we have

E|(Pn − P ){s(·, ĝn)[U]− s(·, g0)[U]}| ≤ O(1)n−1/2(r−1
n q1/2

n + qnn
−1/2) = o(n−1/2).

This completes the proof of (C2).

Proof of (C3). By Taylor expansion, for some ξ between g0 and ĝn, we have

s(·, ĝn) = s(·, g0) +
∂s(·, g)

∂g

∣∣∣∣
g=g0

(ĝn − g0) +
1

2

∂2s(·, g)

∂g

∣∣∣∣
g=ξ

(ĝn − g0)2.

Noticing that, for any function k(v) = k(c, z,w) and V = (C,Z(C),W),

−P
{
∂s(·, g)

∂g

∣∣∣∣
g=g0

k(V)

}
= P{s2(·, g0)k(V)},

we obtain

P{s(·, ĝn)[Z−U∗]− s(·, g0)[Z−U∗]}

= −Ps2(·, g0)(Z−U∗)(Z′)(β̂ββn − βββ0)− Ps2(·, g0)(Z−U∗){Λ̂n + Cφ̂n − (Λ0 + Cφ0)}

+O(‖β̂ββn − βββ0‖2 + ‖Λ̂n − Λ0‖2
2 + ‖φ̂n − φ0‖2

2).

By (A.1) and Theorem 1, we see that

Ps2(·, g0)(Z−U∗){Λ̂n + Cφ̂n − (Λ0 + Cφ0)} = 0
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and

Ps2(·, g0)(Z−U∗)(Z′) = P{s2(·, g0)(Z−U∗)⊗2} = I(βββ0).

By Theorem 2, ‖β̂ββn−βββ0‖2 = op(n
−1/2), ‖Λ̂n−Λ0‖2

2 = op(n
−1/2) and ‖φ̂n−φ0‖2

2 = op(n
−1/2),

therefore, (C3) is approved.
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