Outcomes of regenerative treatment with rhPDGF-BB and rhFGF-2 for periodontal intra-bony defects: a systematic review and meta-analysis

Abstract

Background: The aim was to evaluate the effects of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and recombinant human fibroblast growth factor-2 (rhFGF-2) on treating periodontal intra-bony defects, compared to the control (carrier alone).

Methods: Electronic and hand searches were performed to identify eligible studies. The weighed mean differences of linear defect fill (LDF), probing depth (PD) reduction, clinical attachment level (CAL) gain and gingival recession (GR) were calculated using random effect meta-analysis.

Results: The searches yielded 1018 articles, of which seven studies were included. Only one included study was considered at low risk of bias. The outcomes that reached statistical significance in comparison to carriers alone included: LDF (0.95 mm, 95% CI: 0.62–1.28 mm or 20.17%, 95% CI: 11.81–28.54%) and CAL gain (0.34 mm, 95% CI: 0.03–0.65 mm) for PDGF, and LDF (21.22%, 95% CI: 5.82–36.61%) for FGF-2.

Conclusions: Within the limits of this review, rhPDGF-BB demonstrated significantly more LDF and CAL gain; rhFGF-2 resulted in significantly higher percentage of LDF.

Key words: bioengineering; oral reconstruction and wound healing; regenerative medicine; repair; tissue engineering

Accepted for publication 8 December 2014

Conflict of interest and source of funding statement

TJO and WVG are research investigators for a clinical trial supported by Sunstar Corp. The other authors declare that there are no conflicts of interest in this study. No external funding, apart from the authors’ institution, was available for this study.

Regeneration of periodontal structures, characterized by formation of cementum, alveolar bone and periodontal ligament (PDL), has been a challenge and a major goal for clinicians. Common procedures attempting to achieve periodontal regeneration include the use of cell occlusive barrier membranes (Gottlow et al. 1986), bone substitutes with (Bowers et al. 199b, Mellonig 2000) or without membranes (From et al. 1975, Trombacci & Farina 2008), enamel matrix derivatives (Heijl et al. 1997) and root conditioning with chemical agents (Mariotti 2003). Although yielding satisfactory results (Karring et al. 1980, 1984, Gottlow et al. 1986, Bowers et al. 1989a, Zetterstrom et al. 1997), there is a high degree of
variability in clinical outcomes following these regenerative procedures (Aichelmann-Reidy & Reynolds 2008). The application of growth factors, shown to be able to promote periodontal regeneration (Lynch et al. 1989, Giannobile et al. 1994, 1996, Camelo et al. 2003, Nevins et al. 2003, Ridgway et al. 2008), might be another promising approach.

Dimeric platelet-derived growth factor (PDGF), including four isoforms, is primarily secreted from platelet α-granules. As a potent agent for wound healing, rhPDGF-BB has been extensively used for treating neuropathic diabetic ulcers (Smiell et al. 1999). The rhPDGF-BB is also an FDA approved biological agent for periodontal regeneration (Nevins et al. 2005). Mitogenic and chemotactic effects of rhPDGF-BB on periodontal ligament and bone precursor cells have been demonstrated (Lynch et al. 1989, Camelo et al. 2003). Several human histological studies have provided proof-of-principle evidence that rhPDGF-BB results in periodontal regeneration in both periodontal intra-bony (Nevins et al. 2003, Ridgway et al. 2008) and furcation defects (Camelo et al. 2003, Nevins et al. 2003, Mellonig et al. 2009). Clinical studies have shown improvement in probing depth reduction, rate of clinical attachment level gain and bone fill (Giannobile & Somerman 2003, Nevins et al. 2005, McGuire et al. 2006, Jayakumar et al. 2011).

Fibroblast growth factors (FGFs) belong to a large polypeptide family with more than 20 member of similar structures (Ornitz & Itoh 2001). FGF-2 promotes endothelial cell proliferation and physical organization of endothelial cells; thus, it enhances angiogenesis and the growth of new blood vasculature (Cao et al. 2003). In addition, FGF-2 exhibits powerful angiogenic activity and mitogenic ability on mesenchymal cells (Kao et al. 2009). Recently, rhFGF-2 has shown the ability to regenerate periodontal tissues in periodontal intra-bony defects (Kitamura et al. 2011) and in surgically created defects in pre-clinical studies (Murakami et al. 1999, 2003, Takayama et al. 2001, Nakahara et al. 2003).

With the encouraging evidence of using rhPDGF-BB and FGF-2 for treating periodontal defects in clinical trials, a systematic review and meta-analysis were therefore conducted to summarize the clinical efficacy of these growth factors for regenerating periodontal intra-bony defects.

Materials and Methods

Focused question

Does applying rhPDGF-BB or rhFGF-2 for treating periodontal intra-bony defects offer better clinical and/or radiographic benefits in comparison to the carriers alone?

Selection criteria

Human comparative trials attempting regenerative treatments with the application of rhPDGF-BB or rhFGF-2 for at least eight intraosseous defects with a minimum follow-up period of 6 months were included. Animal studies and human trials with insufficient information or lack of data and a proper control arm were excluded. Potential articles were reviewed in full-text and confirmed for their eligibility.

Search strategy

A search of five electronic databases, including PubMed, Ovid (MEDLINE), EMBASE, Web of Science and Cochrane Center for relevant studies published was conducted from 1990 up to June 2013 in accordance with PRISMA guidelines (Moher et al. 2009). A combination of MeSH terms and keywords was designed to identify all pertinent articles using growth factors for periodontal regeneration. For this review, we only considered PDGF-BB and FGF-2 because they are the only two clinically tested recombinant human growth factors in the US for which more than one randomized controlled clinical trial has been published.

The key terms used in the search included “growth factor”, “regeneration”, “periodontal defect”, “periodontitis regenerative treatment”, “guided tissue regeneration”, “biological agent”, “bone graft”, “platelet-derived growth factor” and “fibroblast growth factor”. Boolean operators, “OR” and “AND”, were used to combine the literature searches. Furthermore, a search in the references of included papers was conducted for publications that were not electronically identified. Two reviewers (VK and JM) evaluated potential relevant articles. Disagreement between the reviewers was resolved with discussion. The level of agreement between the reviewers regarding study inclusion was expressed with the kappa value. In addition, funnel plots were also used to assess the presence of publication biases.

Data extraction

Two reviewers extracted the data (VK and JM). Any disagreement was resolved between the reviewers following a discussion. The parameters recorded for each study included authors’ names, year of publication, study design, sample size, linear defect fill (LDF), percentage of defect fill, probing depth (PD) reduction, clinical attachment level (CAL) gain, gingival recession (GR) and follow-up period. If indicated, authors of the potentially qualified papers were contacted for more detailed data.

Risk of bias assessment

The following criteria modified from the randomized clinical trial checklist of the Cochrane Center and the CONSORT statement (Schulz et al. 2010) were used: representative of general population, defined inclusions/exclusions, randomization methods, allocation concealment method, masking of the examiner, intervention different only, participants drop-out and analysis accounts for patient losses. The degree of bias were categorized as: low risk if all the criteria were met, unclear risk when only one criterion was missing and high risk if two or more criteria were missing. One reviewer (JM) assessed all the included articles and another examiner (VK) confirmed the results.

Data analysis

The primary outcome was linear defect fill (LDF) in mm and %, and the secondary outcome was CAL gain (mm). PD reduction (mm) and GR (mm) were the 3rd outcomes. For the included comparative studies, the pooled weighted mean differences (WMD) and the 95% confidence interval (CI) of each
In one study (Howell et al., 1997), a combination of PDGF and IGF-I (insulin growth factor-I) was used, whereas in another study (Nevins et al., 2003), PDGF-BB was evaluated. In two studies (Kitamura et al., 2008, 2011), FGF-2 was applied. Patients were treated using various treatment protocols, including PDGF-BB, IGF-I, and FGF-2. The outcomes of various parameters for each included study were presented in Table 2.

Table 1. Summary of the features of the included studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Study design</th>
<th>Arms</th>
<th>F/U period (months)</th>
<th>N</th>
<th>Patients age</th>
<th>Smokers (%)</th>
<th>N defects & type</th>
<th>Defect depth (mm)</th>
<th>GF</th>
<th>Dose</th>
<th>Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Howell et al. (1997)</td>
<td>RCT</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>46.1</td>
<td>0</td>
<td>76 i.b & f</td>
<td>≥3(Rx)</td>
<td>PDGF/IGF-I</td>
<td>50/50 µg/ml</td>
<td>Methylcellulose gel</td>
</tr>
<tr>
<td>Nevins et al. (2005)</td>
<td>RCT</td>
<td>3</td>
<td>6</td>
<td>60</td>
<td>50.4 ± 1.7</td>
<td>31.1</td>
<td>75 i.b</td>
<td>6.0 ± 0.2</td>
<td>PDGF-BB</td>
<td>0.3 mg/ml</td>
<td>β-TCP</td>
</tr>
<tr>
<td>Kitamura et al. (2008)</td>
<td>RCT</td>
<td>4</td>
<td>9</td>
<td>20</td>
<td>49.2 ± 8.9</td>
<td>59.1</td>
<td>20 i.b</td>
<td>4.7 ± 1.5</td>
<td>FGF-2</td>
<td>0.2 mg/ml</td>
<td>3% HPC</td>
</tr>
<tr>
<td>Jayakumar et al. (2011)</td>
<td>RCT</td>
<td>2</td>
<td>6</td>
<td>27</td>
<td>30.9 ± 5.1</td>
<td>11.1</td>
<td>25 i.b</td>
<td>6.7 ± 1.9(Rx)</td>
<td>PDGF</td>
<td>0.3 mg/ml</td>
<td>β-TCP</td>
</tr>
<tr>
<td>Kitamura et al. (2011)</td>
<td>RCT</td>
<td>4</td>
<td>18</td>
<td>61</td>
<td>52.2 ± 11.2</td>
<td>13.1</td>
<td>63 i.b</td>
<td>5.0 ± 1.8(Rx)</td>
<td>FGF-2</td>
<td>0.3 mg/ml</td>
<td>Vehicle alone 3% HPC</td>
</tr>
<tr>
<td>Thakare & Deo (2012)</td>
<td>RCT</td>
<td>2</td>
<td>12</td>
<td>12</td>
<td>35.7 ± 7.38</td>
<td>0</td>
<td>18 i.b</td>
<td>>3</td>
<td>PDGF-BB</td>
<td>0.3 mg/ml</td>
<td>β-TCP</td>
</tr>
<tr>
<td>Mishra et al. (2013)</td>
<td>RCT</td>
<td>2</td>
<td>6</td>
<td>12</td>
<td>25-50</td>
<td>0</td>
<td>15 i.b</td>
<td>5.19 ± 1.60</td>
<td>PDGF-BB</td>
<td>0.3 mg/ml</td>
<td>1% sodium</td>
</tr>
</tbody>
</table>

Key: ND, Not determined or reported; CS, Case series; RCT, Randomized controlled trial; F/U, Follow-up; PDGF, platelet-derived growth factor; FGF, Fibroblast growth factor; All, Allograft; i.b, Intra-bony; f, furcation; HPC, Hydroxypropylcellulose.
<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Group</th>
<th>Carrier</th>
<th>GF</th>
<th>Dose</th>
<th>N defect (BL)</th>
<th>N defect (FE)</th>
<th>Clinical parameters</th>
<th>Rx parameters</th>
<th>Other parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initial bone defect (mm)</td>
<td>Final bone defect (mm)</td>
<td>Bone growth (mm)</td>
</tr>
<tr>
<td>#1</td>
<td>Howell et al. (1997)</td>
<td>T</td>
<td>4% methylcellulose gel</td>
<td>PDGF-BB</td>
<td>50 µg/µl</td>
<td>8</td>
<td>8</td>
<td>4.63 ± 0.84</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>4% methylcellulose gel</td>
<td>IGF-I</td>
<td>50/0.1 µg/µl</td>
<td>8</td>
<td>8</td>
<td>4.69 ± 1.12</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
<td>4% methylcellulose gel</td>
<td>PDGF-BB</td>
<td>150 µg/µl</td>
<td>11</td>
<td>11</td>
<td>4.25 ± 0.38</td>
<td>2.08 ± 0.40</td>
<td>42.3 ± 9</td>
</tr>
<tr>
<td>#2</td>
<td>Nevins et al. (2005)</td>
<td>T</td>
<td>β-TCP</td>
<td>PDGF-BB</td>
<td>0.3 mg/ml</td>
<td>60</td>
<td>60</td>
<td>6.0 ± 0.2</td>
<td>ND</td>
<td>2.6 ± 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>4% methylcellulose gel</td>
<td>IGF-I</td>
<td>50/0.1 mg/µl</td>
<td>61</td>
<td>58</td>
<td>5.7 ± 0.2</td>
<td>ND</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>#3</td>
<td>Kitamura et al. (2008)</td>
<td>T</td>
<td>3% HPC</td>
<td>FGF-2</td>
<td>0.3%</td>
<td>59</td>
<td>56</td>
<td>5.7 ± 0.2</td>
<td>ND</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>3% HPC</td>
<td>IGF-I</td>
<td>0.1%</td>
<td>20</td>
<td>19</td>
<td>4.8 ± 2.4</td>
<td>ND</td>
<td>0.54 ± 1.26</td>
</tr>
<tr>
<td>#4</td>
<td>Jayakumar et al. (2011)</td>
<td>T</td>
<td>β-TCP</td>
<td>PDGF-BB</td>
<td>0.3 mg/ml</td>
<td>27</td>
<td>25</td>
<td>6.3 ± 1.9</td>
<td>ND</td>
<td>3.7 ± 1.1</td>
</tr>
<tr>
<td>#5</td>
<td>Kitamura et al. (2011)</td>
<td>T</td>
<td>β-TCP</td>
<td>PDGF-BB</td>
<td>0.3%</td>
<td>68</td>
<td>61</td>
<td>4.8 ± 1.6</td>
<td>ND</td>
<td>2.8 ± 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>3% HPC</td>
<td>IGF-I</td>
<td>0.2%</td>
<td>58</td>
<td>54</td>
<td>4.8 ± 1.7</td>
<td>ND</td>
<td>52.15 ± 38.12</td>
</tr>
<tr>
<td>#6</td>
<td>Thakare & Deo (2012)</td>
<td>T</td>
<td>β-TCP</td>
<td>PDGF-BB</td>
<td>0.3 mg/ml</td>
<td>9</td>
<td>9</td>
<td>3.00 ± 0.81</td>
<td>ND</td>
<td>3.00 ± 0.81</td>
</tr>
<tr>
<td>#7</td>
<td>Mishra et al. (2013)</td>
<td>T</td>
<td>β-TCP + HA</td>
<td>PDGF-BB</td>
<td>0.3 mg/ml</td>
<td>9</td>
<td>9</td>
<td>2.30 ± 0.67</td>
<td>ND</td>
<td>2.30 ± 0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>1% sodium hyaluronate gel</td>
<td>PDGF-BB</td>
<td>0.3 mg/ml</td>
<td>15</td>
<td>14</td>
<td>5.19 ± 1.60</td>
<td>1.72 ± 0.96</td>
<td>1.89 ± 0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>1% sodium hyaluronate gel</td>
<td>IGF-I</td>
<td>50/0.1 µg/µl</td>
<td>16</td>
<td>14</td>
<td>5.08 ± 1.50</td>
<td>1.83 ± 1.18</td>
<td>1.85 ± 1.11</td>
</tr>
</tbody>
</table>

Key: ND, Not determined or reported; GF, Growth factor; CAL, Clinical attachment level; PD, Probing depth; CS, Case series; RCT, Randomized controlled trial; Rx, Radiographic; F/U, Follow-up; FE, Final examination; T, Test; C, Control; PDGF, platelet-derived growth factor; FGF, Fibroblast growth factor; All, Allograft; i.b, Intra-bony; f, furcation; HPC, Hydroxypropylcellulose.
between the ages 36–68 were treated and followed between 6 and 18 months. In one study (Howell et al. 1997) smokers were not included in the trial. In one study (Howell et al. 1997), both furcation and intra-bony defects were treated; however, only the results of the intra-bony defects were used and analysed for this review.

Defect features
Four studies (Howell et al. 1997, Kitamura et al. 2008, 2011, Thakare & Deo 2012) measured defects depth radiographically, whereas in two studies (Nevins et al. 2005, Jayakumar et al. 2011) the depth of the defects was measured directly during the surgery and in another (Mishra et al. 2013) bone sounding was used. In four studies (Nevins et al. 2005, Kitamura et al. 2008, Jayakumar et al. 2011, Mishra et al. 2013) detailed baseline defect configuration data were available.

Results of the meta-analysis

Results of the primary outcome
The WMD of LDF were 0.95 mm (95% CI = 0.62–1.28 mm, p < 0.0001) and 0.17 mm (95% CI = −0.52–0.86 mm, p = 0.63), respectively, favouring PDGF but not FGF, (Fig. 1). A significant heterogeneity among selected studies using PDGF (p = 0.009) was noticed. The WMD of LDF (%) were 20.17% (95% CI = 11.81–28.54%, p < 0.00001) and 21.22% (95% CI = 5.82–36.61%, p = 0.007) for PDGF and FGF groups, respectively, favouring the growth factor groups (Fig. 2). Significant heterogeneity among the studies using PDGF was also found (p = 0.0002).

Results of the secondary outcome
The WMD of CAL gain for the PDGF group was 0.34 mm (95% CI = −0.04 to 1.18 mm, p = 0.07) (Fig. 4) with significant heterogeneity among selected studies (p = 0.03). The WMD of GR was 0.18 mm (95% CI = −0.09 to 0.46 mm) (p = 0.18) (Supplemental Figure S2) with no significant heterogeneity among selected studies (p = 0.59). No data were available for assessing the 3rd outcomes in the FGF group.

Risk of bias assessment
Two of the included RCT studies (Thakare & Deo 2012) (Mishra et al. 2013) were identified with a high risk of bias, one study identified with a low risk of bias (Jayakumar et al. 2011) and the rest were identified with an unclear risk of bias (Supplementary table 1). Funnel plots evaluating the publication bias of each parameter were prepared (Figs S3–S7).

Discussion

PDGF-BB for promoting periodontal regeneration

Summary of the main findings
Topical delivery of PDGF resulted in statistically significantly higher LDF (0.95 mm or 20.17%) than the carriers alone, supporting that PDGF is beneficial in promoting periodontal defect fill. The amount of defect fill with PDGF, ranging from 36.2% to 81%, is comparable with other regenerative procedures. Previous studies have reported 34% bone fill after 6 months (Kilic et al. 1997) and 31% bone fill after 3 years (Zetterstrom et al. 1997) following GTR and the use of enamel matrix derivatives respectively. The difference in the amount of CAL gain was 0.34 mm, favouring the PDGF group. A systematic review (Esposito et al. 2009) showed a mean 1.1 mm more CAL gain in periodontal defects treated with enamel matrix derivatives (EMD) than open flap debridement alone. However, no head-to-head comparison study was...
available to support if PDGF or EMD is superior. The modest CAL gain from PDGF over the control might be due to the profound effect of the bone fillers on CAL gain.

The addition of PDGF may result in more favourable tissue attachment than vehicle alone or ß-TCP carrier. Conventional periodontal therapy that reflects the vehicle alone groups healing pattern most likely will result in repair by long junctional epithelium (Caton & Zander 1976, Bowers et al. 1982, Wikesjo et al. 1992). This epithelial attachment does not require new bone formation or cementum on the root surface but provides resistance to probing force. Histological studies (Stahl & Froum 1986, Stavropoulos et al. 2010) have shown that ß-TCP does not result in periodontal regeneration whereas proof-of-principle has been provided by histological studies (Camelo et al. 2003, Nevins et al. 2003, Ridgway et al. 2008) that PDGF-BB results in periodontal regeneration in human periodontal osseous defects.

In one study (Mishra et al. 2013), the use of PDGF in a methylcellulose gel without an osteoconductive scaffold did not provide an additional benefit to the vehicle alone that underscore the significant role of delivery method; hence, for optimizing bioavailability of growth factors, a proper method of delivery is important. One study (Rosen et al. 2015) reported that PDGF-BB results in periodontal regeneration in human periodontal osseous defects.

Fig. 2. Meta-analysis for comparison of percentage of defect fill among selected studies. The overall weighted mean difference (WMD) is 20.70% (95% CI = 14.14–27.26%) in between growth factor group and control group ($p < 0.00001$).

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Growth factors Mean</th>
<th>Control Mean</th>
<th>Mean difference IV, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDGF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howell et al. (1997)</td>
<td>42.3 11</td>
<td>11 18.5 7</td>
<td>11 17.2% 23.80 [17.06, 30.54] 1997</td>
</tr>
<tr>
<td>Nevins et al. (2005)</td>
<td>45.7 60</td>
<td>60 18 6</td>
<td>56 18.9% 27.70 [24.15, 31.25] 2005</td>
</tr>
<tr>
<td>Jayakumair et al. (2011)</td>
<td>35.6 25</td>
<td>25 47.5 19.8</td>
<td>25 12.8% 18.10 [8.58, 28.62] 2011</td>
</tr>
<tr>
<td>Mishra et al. (2013)</td>
<td>36.2 14</td>
<td>14 35 11</td>
<td>14 13.3% 1.20 [-0.92, 12.12] 2013</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>119</td>
<td>115 75.2% 20.17 [11.81, 28.54]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $t^2 = 69.16; \chi^2 = 21.97$, df = 4 ($p = 0.0002$); $I^2 = 82%$ Test for overall effect: $Z = 4.73$ ($p < 0.00001$)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Meta-analysis for comparison of CAL gain among selected studies. The overall weighted mean difference (WMD) is 0.26 mm (95% CI = 0.01 to 0.53 mm) in between growth factor group and control group ($p = 0.06$).

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Growth factors Mean</th>
<th>Control Mean</th>
<th>Mean difference IV, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDGF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howell et al. (1997)</td>
<td>1.62 19</td>
<td>19 1.66 0.64</td>
<td>19 19.9% -0.04 [-0.44, 0.36] 1997</td>
</tr>
<tr>
<td>Nevins et al. (2005)</td>
<td>3.8 56</td>
<td>56 3.5 0.2</td>
<td>56 33.9% 0.30 [0.23, 0.37] 2005</td>
</tr>
<tr>
<td>Jayakumair et al. (2011)</td>
<td>3.7 25</td>
<td>25 2.8 0.9</td>
<td>1 2.2% 0.90 [-0.91, 2.71] 2011</td>
</tr>
<tr>
<td>Thakare & Deso (2012)</td>
<td>3.42 9</td>
<td>9 2.06 0.63</td>
<td>9 7.2% 1.36 [0.45, 2.27] 2012</td>
</tr>
<tr>
<td>Mishra et al. (2013)</td>
<td>3 14</td>
<td>14 2.64 0.67</td>
<td>14 13.5% 0.36 [-0.22, 0.94] 2013</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>127</td>
<td>99 76.6% 0.34 [0.03, 0.65]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $t^2 = 0.06; \chi^2 = 8.45$, df = 4 ($p = 0.08$); $I^2 = 53%$ Test for overall effect: $Z = 2.12$ ($p = 0.03$)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Growth factors Mean</th>
<th>Control Mean</th>
<th>Mean difference IV, Random, 95% CI Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDGF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howell et al. (1997)</td>
<td>2.06 55</td>
<td>55 2.63 1.54</td>
<td>19 8.0% -0.57 [-1.42, 0.28] 2008</td>
</tr>
<tr>
<td>Nevins et al. (2005)</td>
<td>2.43 174</td>
<td>174 2.12 1.72</td>
<td>67 15.3% 0.31 [-0.21, 0.83] 2011</td>
</tr>
<tr>
<td>Jayakumair et al. (2011)</td>
<td>2.29 76</td>
<td>76 23.4% -0.06 [-0.92, 0.79] 2011</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $t^2 = 0.26; \chi^2 = 3.00$, df = 1 ($p = 0.08$); $I^2 = 67%$ Test for overall effect: $Z = 0.15$ ($p = 0.88$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>356</td>
<td>175 100.0% 0.26 [-0.01, 0.53]</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $t^2 = 0.06; \chi^2 = 12.45$, df = 6 ($p = 0.05$); $I^2 = 52%$ Test for overall effect: $Z = 1.87$ ($p = 0.06$)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2011) by utilizing FDBA and β-TCP as carriers for PDGF yielded a mean of 4.1 mm CAL gain in treating 50 intra-bony defects. Although it is arguable that case series studies do not provide the same level of evidence as RCTs, the favourable outcome suggested the use of an osteoconductive carrier with a lower degradation rate might be beneficial.

Optimal dosage is required for growth factors to exert the greatest effect. The 0.3 mg/ml of rhPDGF-BB resulted in a mean 2.6 mm bone gain, compared to 1.5 mm with the 1.0 mg/ml dose in a multicentre study (Nevins et al. 2005). The results suggested that higher dose of PDGF might have a reduced effect on tissue healing due to likely feedback inhibition with such high local doses in a bolus release.

Previous studies (Polson & Heijl 1978, Cortellini et al. 1998) have shown that there is an increased potential for better treatment outcomes in well-contained defects, for example 3-wall deep and narrow periodontal defects, following regenerative procedures. In two included RCTs using PDGF (Nevins et al. 2005, Jayakumar et al. 2011) although the majority of the defects were 1 or 2 walls, significant more LBG and bone formation were observed in the test groups. Moreover, subgroup analysis revealed a significant increase in bone fill in all defect types in comparison to β-TCP group (Nevins et al. 2005). The results suggest the potential of using PDGF in challenging clinical scenarios.

FGF-2 for promoting periodontal regeneration

Somewhat less information is available for the use of FGF-2 in periodontal regeneration. Although there was significantly more bone fill (21.2%, 95% CI: 5.82–36.61%) with the use of FGF-2 in comparison to vehicle alone groups, the WMD of CAL gain was not significant (p = 0.88). Histological observation on the effect of FGF-2 in promoting periodontal regeneration in humans has not been studied; however, preclinical studies revealed that FGF-2 induced significant periodontal regeneration comprised of new cementum with Sharpey’s fibres, new functionally oriented periodontal ligament fibres and new alveolar bone (Takayama et al. 2001, Murakami et al. 2003).

In spite of the absence of an osteoconductive carrier, the percentage of bone fill was 39%, 52% and 49% for 0.2%, 0.3% and 0.4%, respectively, for FGF-2 after 9 months, whereas this value was 15.86 ± 22.14% for the vehicle control group. Although better results with addition of an osteoconductive bone substitute may be expected, to date, no human clinical trial is available to validate this consideration. The choice of osteoconductive material in combination with growth factors may have an important impact on the outcomes.

Research implications

It is recognized that the delivery systems for growth factors are continuously evolving (Ramsier et al. 2012). Given the fact that growth factors dilute fast in periodontal environment, the half-lives of them are significantly impacted (Anusaksathien & Giannobile 2002, Ramsier et al. 2012); therefore, future research is warranted for enhancement of delivery strategies to improve substantiality of growth factors in periodontal defects.

Clinical implications

The use of PFGF is well supported by clinical trials. If the cost and benefit from radiographs might not be optimal. Radiography often underestimates actual bone fill; in addition, the inherent measurement variability in the radiographs should be considered. In most of the included studies, standardized radiographs were not employed. Finally, only studies written in English were included, which could introduce a selection bias.

Most of the included studies had an unclear risk of publication bias and only one study was recognized with low risk of bias suggesting that the results have to be interpreted with great caution. A common risk of bias of the included papers is subject dropout. Nevertheless, all the studies with subject attrition had described methods to account for subject losses. Other biases include a small subject number that might not be representative of generation population, no description about the allocation concealment method, and calibration of examiners.

Fig. 4. Meta-analysis for comparison of PD reduction among selected studies. The overall weighted mean difference (WMD) is 0.57 mm (95% CI = −0.04 to 1.18 mm) in between growth factor group and control group (p = 0.07).
are justifiable, PDGF can be an option to maximize the healing potential in periodontal defects, especially for teeth of strategic importance and challenging periodontal defects. FGF might be another biological agent with a great potential for augmenting periodontal healing but more clinical trials are needed.

Conclusions

For treating intra-bony defects, applying PDGF-BB demonstrated significantly more defect fill and CAL gain than carriers alone. Controlled clinical trials on FGF-2 are limited; the available evidence suggested that FGF-2 resulted in significantly more defect fill (%) but not in CAL gain. Therefore, PDGF may be used to maximize the regenerative outcomes, provided that the cost/benefit is justified. Future research can be focused on engineering more suitable carriers that can deliver biological agents more effectively.

References

Anusaksathien, O. & Giannobile, W. V. (2002) Sufficient carriers that can deliver bioactive materials can be focused on engineering more suitable carriers that can deliver bioactive materials. Journal of Periodontology 73, 981–987.

Supporting Information

Additional Supporting Information may be found in the online version of this article: &FigureS1.doc/*> / Figure S1. Flow chart illustrating study selection for the systematic review.

Figure S2. Meta-analysis for comparison of the amount of gingival recession among selected studies. The overall weighted mean difference (WMD) is 0.18 mm (95% CI = −0.09 to 0.46 mm) in between growth factor group and control group (p = 0.18).

Figure S3. Funnel plot illustrating publication bias for linear bone growth. Figure S4. Funnel plot illustrating publication bias for the percentage of bone fill. Figure S5. Funnel plot illustrating publication bias for the clinical attachment level gain.

Figure S6. Funnel plot illustrating publication bias for probing depth reduction.

Figure S7. Funnel plot illustrating publication bias for gingival recession.

Address:
Tae-Ju Oh
University of Michigan School of Dentistry
Department of Periodontics and Oral Medicine
1011 North University Avenue
Ann Arbor, Michigan 48109-1078
USA
E-mail: taejuoh@umich.edu

Clinical Relevance

Scientific rationale for the study: Applying biological factors such as growth factors for periodontal regenerative procedures is an emerging technology for clinical application.

Principal findings: rhPDGF-BB and rhFGF-2 result in greater linear defect fill and bone fill (%) than standard of care therapies for treatment of infra-bony periodontal defects.

Practical implications: Local administration of rhPDGF-BB or rhFGF-2 to periodontal osseous defects provides promising clinical benefits to repair lost periodontal tissues.

© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd