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Abstract

We present and study a new algorithm for simulating the N -phase mean cur-
vature motion for an arbitrary set of (isotropic) N.N�1/2 surface tensions. The
departure point is the threshold dynamics algorithm of Merriman, Bence, and
Osher for the two-phase case.

A new energetic interpretation of this algorithm allows us to extend it in a
natural way to the case of N phases, for arbitrary surface tensions and arbi-
trary (isotropic) mobilities. For a large class of surface tensions, the algorithm is
shown to be consistent in the sense that at every time step, it decreases an energy
functional that is an approximation (in the sense of Gamma convergence) of the
interfacial energy. A broad range of numerical tests shows good convergence
properties.

An important application is the motion of grain boundaries in polycrystalline
materials: It is also established that the above-mentioned large class of sur-
face tensions contains the Read-Shockley surface tensions, both in the two-
dimensional and three-dimensional settings. © 2015 Wiley Periodicals, Inc.

1 Introduction
We present and study new algorithms for simulating the mean curvature motion

of networks of interfaces under arbitrary surface tensions. This motion arises as
the L2 gradient descent for an energy in which the area of each surface in the
network is weighted by a possibly different constant. It appears prominently in
several fields including materials science, where it describes the motion of grain
boundaries in polycrystalline materials [30], and in computer vision, where it is
used for segmenting images [31].

The mathematical setting of the problem is as follows: LetD be a domain in Rd ,
typically d D 3. For convenience, we will work mostly on a cube with periodic
boundary conditions, so that D will in fact be a torus. Consider a partition of D
into closed sets †1; : : : ; †N called phases that may intersect only through their
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FIGURE 1.1. A partitioning of a domain into sets †j that intersect only
at their boundaries. Interface �i;j separates †i from †j . This set-up
appears e.g. in materials science, where the sets †j represent grains
(individual single-crystal pieces) making up a polycrystalline material.

boundaries:

(1.1) D D

N[
jD1

†j and †i \†j D .@†i / \ .@†j / for i 6D j:

Denote the interface separating †i and †j by �i;j :

�i;j D .@†i / \ .@†j /:

See Figure 1.1 for an illustration.
The energy we study, defined on partitions of D, is

(1.2) E.†1; : : : ; †N / D

NX
i;jD1

�i;j Area.�i;j /;

where �i;i D 0 and �i;j D �j;i are strictly positive for i 6D j . The constant �i;j is
called the surface tension associated with interface �i;j . Denote the set of surface
tension matrices as

SN D f� 2 RN�N W �i;i D 0 and �i;j D �j;i > 0 for all distinct i; j g:

The following triangle inequality is necessary and sufficient for model (1.2) to be
well-posed (lower semicontinuous) [29]:

(1.3) �i;j C �j;k � �i;k for any i , j , and k:
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We will therefore work mostly with the triangle-inequality-satisfying class of sur-
face tensions:

TN D f� 2 SN W �i;j C �j;k � �i;k for any i; j; kg:

Junctions are locations in the domain D of the partition where more than two
grains meet. For a given partition, it is convenient to (informally) define the fol-
lowing sets of points in discussing junctions:

(1.4) Jk D fx 2 D W 9" > 0 s.t. Br.x/ intersects k phases 8r < "g;

so that

J1 D
N[
iD1

V†i ; J�3 D fJunctionsg; and J2 D
�[
i 6Dj

�i;j

�
n J�3:

Our goal is to develop efficient, robust algorithms for simulating theL2 gradient
flow of energy (1.2). Two important rules defining the resulting dynamics are:

(1) At any point p 2 �i;j n J�3 at which �i;j is smooth, the normal speed is
given by

(1.5) v?.p/ D �i;j�i;j �i;j .p/

where �i;j denotes the mean curvature of �i;j . The constants �i;j are
the mobilities associated with the interfaces �i;j ; they are positive, but
otherwise can be chosen arbitrarily.

(2) A condition known as the Herring angle condition [18] holds at triple junc-
tions p 2 J3: At a junction formed by the meeting of the three phases †1,
†2, and †3, one has

(1.6) �1;2n1;2.p/C �2;3n2;3.p/C �3;1n3;1.p/ D 0

where ni;j denotes the unit normal to �i;j , pointing from †i into †j .
Relation (1.6) determines the opening angles �1, �2, and �3 (see Figure 1.2)
of the three phases †1, †2, and †3, respectively, in terms of the surface
tensions:

(1.7)
sin �1
�2;3

D
sin �2
�1;3

D
sin �3
�1;2

:

These two rules do not completely specify the dynamics, because topological
changes in the network of surfaces inevitably take place, and multiple junctions
(where four or more phases meet) routinely form even if absent in the initial condi-
tion. There is, in fact, no complete theory of solutions for this system covering all
possible types of junctions and surviving past topological changes. Rather, these
two are necessary conditions to be met by any reasonable algorithm. Additional
necessary conditions can be derived, e.g., at stable multiple (> 3) junctions [7].

We conclude this introduction with an outline of the paper:
� Section 2 describes the motivation from materials science for studying the

dynamics considered in this paper.
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FIGURE 1.2. The angles �j formed at a triple junction p are determined
according to formula (1.7) by the surface tensions �i;j of the interfaces
meeting there. The tangent to the triple curve points into the page in this
picture.

� Section 3 recalls important previous work, in particular the original thresh-
old dynamics algorithm of Merriman, Bence, and Osher [26, 27] that con-
stitutes the departure point of the algorithms presented here. It also de-
scribes difficulties in extending this algorithm to the general setting of ar-
bitrary surface tensions that is the focus of the present work.
� Section 4 presents an energetic formulation of threshold dynamics. In par-

ticular, it identifies a class of approximations to surface energy that consti-
tute Lyapunov functionals for threshold-dynamics-type algorithms. This is
new even in the case of the most basic, two-phase setting. More impor-
tantly, it reveals a principled way of extending threshold dynamics to the
setting of the general interfacial energy (1.2).
� Section 5.1 contains the derivation of the main result of the paper: Our

threshold dynamics algorithm for general surface tensions �i;j and arbi-
trary mobilities �i;j , fully described in (5.26)–(5.29). Section 5.2 studies
stability properties of the proposed algorithm and establishes its uncondi-
tional gradient stability in a wide class of cases. This matter turns out to
be related to certain well-known questions of embeddability of finite met-
ric spaces in euclidean spaces that arises in theoretical computer science
and combinatorics. Among the cases covered by our stability result is the
physically relevant case of Read-Shockley surface energies, both in the
two-dimensional and three-dimensional crystallography settings. Section
5.3 makes connections between our algorithm and the minimizing move-
ments approach, which may prove useful in the future study of convergence
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of the dynamics. Section 5.4 presents a slightly more costly version of our
threshold dynamics algorithm, the stability of which applies much more
widely to essentially all physically relevant cases.
� Section 6 presents numerical evidence, including both classical conver-

gence studies for smooth flows and experiments with a number of interest-
ing singular phenomena such as topological changes, wetting, and nucle-
ation.
� Finally, the Appendix contains a rigorous proof of the Gamma convergence

of our approximate energies to the interfacial energy (1.2). Since the all-
important Herring angle condition (1.7) is an equilibrium (energetic) con-
dition, this result constitutes strong indication for the correct behavior of
our algorithm at triple junctions.

2 Motivation
Energy (1.2) and its dynamics (1.5) and (1.7) arise in materials science, where

they describe the motion of grain boundaries in polycrystals [30] under annealing
(heat treatment). A material is called polycrystalline if it is composed of many tiny
single crystal pieces, known as grains, stuck together. These types of materials
are very common: they include most metals and ceramics. Connected components
of the phases †i in model (1.2) represent individual grains. The surface tension
�i;j associated with the interface �i;j between two neighboring grains †i and
†j depends on the mismatch between the crystallographic orientations of †i and
†j [20]. In reality, grain boundary energy also depends on the normal ni;j to the
interface �i;j . Here we will ignore this dependence on the normal.

Certain important physical properties of polycrystalline materials, such as their
yield strength and conductivity, depend on their grain boundary network. It is
therefore of interest to simulate the evolution of grain boundaries under common
industrial processes. In certain cases, it is found that the dependence of the energy
density in (1.2) on misorientation is fairly constant for large enough misorienta-
tions. In such cases, the simplest case of model (1.2) with all equal surface tensions
�i;j D 1 (which leaves no dependence on the specific type of material) provides
a reasonable description of some of the grain boundary motion phenomena ob-
served in experiments. However, for certain important grain phenomena, such as
the evolution of the grain boundary character distribution [22], the full generality
of model (1.2), where each �i;j can be different, is required at the bare minimum.

In [10–12], a version of diffusion-generated motion that is more accurate on uni-
form grids (relying on signed distance functions as opposed to characteristic func-
tions to represent phases) was used to carry out large-scale simulations of grain
growth and recrystallization in three dimensions, but only in the equal surface ten-
sion case. In this paper, we develop algorithms so that such large-scale simulations
can be carried out for the full generality of model (1.2) so that phenomena such
as the grain boundary character distribution can be studied via diffusion generated
motion.
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3 Previous Work
There is a large body of work on algorithms for simulating the curvature motion

(1.5) and (1.7) of interfacial networks; see e.g. [21,23] and references therein for a
glimpse of this extensive landscape. The algorithms proposed in the present paper
are motivated by the diffusion generated motion scheme of Merriman, Bence, and
Osher (MBO) introduced in [26, 27]. The essential idea there is to represent the
phases †i via their characteristic functions 1†i and generate the desired motion
of their boundaries by alternating two simple operations: (1) convolution with a
positive, unit mass, radially symmetric kernel G such as the Gaussian

(3.1) Gıt .x/ D
1

.4�.ıt//d=2
e�
jxj2

4.ıt/

and (2) thresholding. To be precise, the original Merriman-Bence-Osher scheme
can be written as follows:

Algorithm (MBO’92): Given the partition †k1 ; : : : ; †
k
N at time

t D .ıt/k, to get the partition †kC11 ; : : : ; †kC1N at the next time step
t D .ıt/.k C 1/:

1. Convolution step:

(3.2) �ki D Gıt � 1†k
i
:

2. Thresholding (redistribution) step:

(3.3) †kC1i D
˚
x W �ki .x/ > �

k
j .x/ for all j 6D i

	
:

The algorithm is appealing because it appears to be unconditionally stable, and
each of its steps can be implemented efficiently on a uniform grid: at M log.M/

cost per time step where M is the total number of grid points. Numerical experi-
ments presented in [27] (and subsequently in [34] with an improved implementa-
tion on adaptive grids) yield ample empirical evidence for the convergence of this
algorithm to the dynamics (1.5) and (1.7) with symmetric (120ı) angles at triple
junctions. In other words, it appears to generate the gradient flow of energy (1.2)
with equal surface tensions:

�i;j D 1 for all i 6D j:

A natural idea for extending the MBO scheme to the general surface tensions
case of model (1.2), where each �i;j can be different, is to replace the thresholding
(redistribution) step (3.3) of the standard MBO scheme with a weighted version:

(3.4) †kC1i D

n
x W

X
`

˛i;`�`.x/ >
X
`

j̨;`�`.x/ for all j 6D i
o
:

The essential question is then how the constants ˛i;j should be chosen to induce
the desired angles at junctions.
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FIGURE 3.1. Left: Solid curves represent a fixed point of our proposed
threshold dynamics algorithm, with (90ı,90ı,120ı) angles at the junc-
tion. The dotted lines are the exact stationary solution of dynamics (1.5)
and (1.7). Right: Zooming in on the junction and plotting the slope of
one of the interfaces as a function of distance from the junction makes
the presence of a boundary layer (of thickness �

p
ıt ) evident. These

boundary layers were not recognized in several previous attempts at
designing threshold dynamics algorithms, and consequently prevented
them from achieving the proper angle conditions (1.7). The bottom line:
The effective and thus relevant angle is the far-field angle, not the an-
gle at the junction. Section 5 shows how to choose parameters in the
proposed algorithm so that the desired effective angle is achieved.

Although several ideas, including a redistribution similar to (3.4), for extending
the MBO scheme to the general surface tensions case are proposed in the original
paper [27], these do not achieve the correct Herring angle conditions (1.7) at junc-
tions. Related ideas for the same goal appear in the well-known but unpublished
notes [25]; these, too, are incorrect.

One difficulty responsible for these failed attempts appears to be the presence of
boundary layers in stationary states of MBO-type schemes when unequal surface
tensions are attempted using modified redistribution rules such as (3.4). Figure 3.1
shows the boundary layers at the junction for a stationary state of a generalized
MBO scheme of the form (3.4). Previous attempts in [25,27] can be understood as
trying to impose the Herring angle condition (1.7) right at the junction, oblivious to
the presence of boundary layers. The relevant, effective junction angles, however,
are not the ones formed right at the junction, but the far-field angles between the
interfaces, which are asymptotically straight at an intermediate-length scale. One
of the contributions of the present paper is a systematic procedure for determining
the effective junction angles induced by any given set of parameters in generalized
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threshold dynamics schemes. Our approach avoids having to understand in detail
the structure of the boundary layer.

In [33], a variant of the MBO scheme is proposed that replaces the thresholding
step (3.3) by a spatially dependent one. The convolutions formed in step (3.2) are
used to estimate the distance of a given point to the nearest triple junction, which is
then utilized in assigning the point to one of the phases via a modified thresholding
step. Extensive numerical tests in [33] indicate that this modification indeed allows
the algorithm to achieve the Herring angle conditions at triple junctions. However:

(1) The resulting algorithm—in particular, its thresholding step—is consider-
ably more complicated than the original MBO scheme, and deviates from
its spirit by having to essentially locate triple junctions.

(2) To treat the full generality of model (1.2), a heuristic averaging step is
introduced that requires taking a weighted sum over N -choose-3 ways of
redistributing points, drastically increasing computational cost.

(3) Since the scheme is designed around triple junctions, there is only some
empirical evidence for its behavior when multiple junctions (where four or
more phases meet) inevitably form during the evolution.

In contrast, in Section 5 we provide algorithms for the full generality of model
(1.2), allowing any triangle-inequality-satisfying choice of surface tensions �i;j .
These algorithms maintain the simplicity, efficiency, and spirit of the original MBO
scheme, and thus appear to be its correct generalization to the unequal surface ten-
sion setting. The Appendix and 5.2 present rigorous results strongly indicating that
our algorithms automatically impose the appropriate Herring condition according
to formula (1.7) at any triple junction. Careful numerical convergence studies in
Section 6 provide further evidence.

4 The Approximate Energies
This section studies an approximation to the weighted surface area functional

(1.2) that turns out to be a Lyapunov functional for the original threshold dynam-
ics scheme and our subsequent extensions of it. This is new even in the case of
two-phase threshold dynamics, which had previously been rigorously studied only
via comparison principles [5, 13]. The two-phase version of the approximate en-
ergy appears in previous literature [1]. Interestingly, these two-phase energies also
appear in recent nonlocal models of aggregation and swarming in biological sys-
tems [38, 39]. Gamma convergence of such nonlocal energies to the perimeter of
sets is also established [1]. Extension of these nonlocal approximations of perime-
ter to the multi-phase energy (1.2), discussed below in this section, is new and
allows us to identify in a systematic manner threshold-dynamics-type schemes for
(1.2) in Section 5.
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4.1 Notation and the New Multiphase Approximation
In [1, 28], the following approximation for the perimeter of a set † 2 RN is

considered:

(4.1) Pıt .†/ D
1
p
ıt

Z
†c

Gıt � 1† dx:

In words: An initially uniform temperature distribution in the set † is allowed
to be diffused by the heat equation. Measuring the amount of heat that escapes
to the exterior of the set gives, after normalization, an estimate for the size of
its boundary; hence the term “heat content.” A slightly more general nonlocal
approximation to the perimeter of sets is studied in [1]; one of its results is

� � lim
ı!0C

Pıt .†/ D Per.†/:

For certain choices of the surface tension matrix � 2 TN , energy (1.2) can be
written as a positive sum of perimeters of sets, and thus the Gamma convergence
result of [1] can be directly extended to the multiphase setting for such surface
tensions. However, as discussed at length in Section 5.2, energy (1.2) cannot be
written as a positive sum of perimeters of sets for all � 2 TN . We therefore look
for a more general approximation of (1.2) that is in the same spirit as (4.1).

The idea is to approximate the surface area of interface �i;j appearing in energy
(1.2) by the term

Area.�i;j / �
1
p
ıt

Z
1†iGıt � 1†j dx;

which has the intuitive interpretation that the surface area of the interface �i;j that
separates †i from †j is related to the amount of heat that escapes from †j into
†i . Thus our approximation to model (1.2) has the form

(4.2) Eıt .†1; : : : ; †N / D
1
p
ıt

NX
i;jD1

�i;j

Z
1†iGıt � 1†j dx:

Alternatively, the energy can also be approximated as

(4.3) zEıt .†1; : : : ; †N / D
1p
˛i;j ıt

NX
i;jD1

�i;j

Z
1†iG˛i;j ıt � 1†j dx;

which involves a convolution with a different kernel for each interface. This is
inconvenient from a numerical perspective. Moreover, unlike (4.2), the Gamma
convergence of which is studied in the Appendix, convergence for (4.3) is not clear.
In this paper we will therefore focus on the approximation (4.2).
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The relaxation of energy (4.2) over functions uj taking their values in the unit
interval Œ0; 1� (as opposed to in f0; 1g) and adding up to 1, i.e.,

(4.4) ui � 0 and
NX
iD1

ui D 1 almost everywhere;

will also be denoted by Eıt :

(4.5) Eıt .u1; : : : ; uN / D
1
p
ıt

NX
i;jD1

�i;j

Z
uiGıt � uj dx:

Also, let the vector u denote u.x/ D .u1.x/; : : : ; uN .x//; we will then write
Eıt .u/ in place of (4.5). Configurations u respecting (4.4) will be called admissi-
ble.

We conclude this section by mentioning that in the context of phase field models,
an energy analogous to (4.2) appears in [15, 17].

5 The New Algorithm
Section 5.1 presents a heuristic derivation of the proposed algorithm for (1.5)

and (1.7) for arbitrary mobilities and surface tensions. Section 5.2 provides justifi-
cation.

5.1 Derivation of the Algorithm
The proposed algorithm for (1.5) and (1.7) will be derived as a peculiar opti-

mization procedure for approximate surface energies (4.2) or (4.3). As a special
case, this general discussion will also exhibit the original MBO scheme (3.2) and
(3.3) as an optimization procedure (for the particular case of equal surface tensions,
�i;j D 1 for all i 6D j ), which is a new characterization.

Relaxed and Linearized Energies
Denote the set of binary functions u D .u1; : : : ; uN / on D as

B D fu W for each x there is i s.t. ui .x/ D 1 and uj .x/ D 0 for all j 6D ig:

Binary functions u thus represent characteristic functions of the partitions † D
.†1; : : : ; †N / in (1.1) over which (4.5) agrees with the original approximate en-
ergy (4.2). We consider minimizing energy (4.5) over the following convex set K
of functions instead:

(5.1) K D
n
u W uj .x/ 2 Œ0; 1� for all x and j , and

NX
jD1

uj .x/ D 1 for all x
o
I

i.e., K is the set of admissible configurations (4.4). It is a relaxation of the noncon-
vex constraint set B. The following lemma establishes the equivalence of minimiz-
ing (4.5) over the convex constraint set K and minimizing the original approximate
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energy (4.2). It is stated with the addition of a linear term to (4.5) to prevent trivi-
ality of the minimizer.

LEMMA 5.1. Let � 2 SN and the convolution kernel Gıt be the Gaussian kernel
(3.1). Let L be any linear functional defined on K. Then

min
u2B

.Eıt .u/C L.u// D min
u2K

.Eıt .u/C L.u//:

PROOF. Let v 2 K be the minimizer of Eıt C L on K. Suppose v 62 B. Then
there exists a set A � D of positive measure, an " > 0, and k; ` 2 f1; 2; : : : ; N g
with k 6D ` such that

vk.x/; v`.x/ 2 ."; 1 � "/ for all x 2 A:

Consider the competitor

um.x; t/ D vm.x; t/C t .ım;` � ım;k/1A.x/

for m D 1; 2; : : : ; N . Then we have
P
m um.x; t/ D 1 and um.x; t/ � 0 for

t 2 .�"; "/ so that u. � ; t / 2 K for t in that range. We have

d

dt
um.x; t/ D .ım;` � ım;k/1A.x/

and so

d2

dt2
Eıt .u.x; t// D 2

X
m;n

�m;n

Z �
d

dt
um

��
Gıt �

d

dt
un

�
dx

D 2
X
m;n

�m;n.ım;` � ım;k/.ın;` � ın;k/

Z
1AGıt � 1A dx

D 2.�`;` � �`;k � �k;` C �k;k/

Z
1AGıt � 1A dx

D �4�`;k

Z
1AGıt � 1A dx

< 0:

Thus, v.x/ D u.x; 0/ cannot be a minimizer. �

Let LEıt .uk; � / denote, up to terms constant in u, the linearization of (4.5) at
uk D .uk1 ; : : : ; u

k
N /:

LEıt .uk; u/ D
1
p
ıt

NX
i;jD1

�i;j

Z
uiGıt � u

k
j C ujGıt � u

k
i dx

D
2
p
ıt

NX
iD1

Z
ui

�X
j 6Di

�i;jGıt � u
k
j

�
dx:

(5.2)
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Denote the coefficient of ui in the integrand of (5.2) as

(5.3) �ki WD

NX
jD1

�i;jGıt � u
k
j

so that (5.2) can be written succinctly as

(5.4) LEıt .uk; u/ D
2
p
ıt

NX
iD1

Z
ui�

k
i dx:

Algorithm for Mobilities �i;j D 1=�i;j

It turns out that threshold-dynamics-type schemes for (1.5) and (1.7) can be sys-
tematically derived from the approximate energies (4.2) via the following peculiar
optimization strategy for the relaxed version (4.5) of (4.2):

(5.5) ukC1 D arg-min
u2K

LEıt .uk; u/:

In words: at each iteration, the linearization (5.4) of energy (4.5) is minimized
over the entire constraint set (5.1). Since (5.5) consists of minimizing a linear
functional over the simplex K, the extreme points of which are B, the solution
ukC1 can always be taken to be binary (i.e., ukC1 2 B).

Since optimization problem (5.5) involves the minimization of a linear, point-
wise functional over a convex constraint set, it is easily solved: The minimization
can be carried out at each x 2 D independently, upon which the solution is found
by comparing the coefficients �ki .x/ of ui .x/ in the integrand of (5.4): At time
step k C 1, the point x belongs to the phase whose coefficient is smallest at x:

(5.6) ukC1i .x/ D

(
1 if �ki .x/ D min` �k` .x/;
0 otherwise,

with the proviso that ties of the type �ki .x/ D �
k
j .x/ D min` �k` .x/ for i 6D j can

be broken by insisting that ukC1i .x/ D 1) ukC1j .x/ D 0 if j < i .
Update procedure (5.6) is the analogue of the standard thresholding step of the

MBO scheme and extends it to arbitrary surface tensions for an arbitrary number
of phases. In fact, (5.6) reduces to the basic thresholding criterion of MBO in the
equal surface tension (i.e., �i;j D 1 for all i 6D j ) case. It is, however, differ-
ent from all previous attempts at generalizing the MBO thresholding scheme to
arbitrary surface tensions. A complete description of the algorithm is as follows:
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Algorithm: Given the initial partition †01; : : : ; †
0
N with

†0i D fx W  
0
i .x/ > 0g, to obtain the partition †kC11 ; : : : ; †kC1N at time

step t D .ıt/.k C 1/ from the partition †k1 ; : : : ; †
k
N at time t D .ıt/k:

1. Convolution step: Compute the following convolutions:

(5.7) �ki D Gıt �
� NX
jD1

�i;j 1†k
j

�
:

2. Thresholding (redistribution) step:

(5.8) †kC1i D
˚
x W �ki .x/ < min

j 6Di
�kj .x/

	
:

From (5.8), a level set function delineating the boundary of grain i at the end of
time step k can be formed as follows:

(5.9)  kC1i .x/ D min
` 6Di

�k` .x/ � �
k
i .x/:

We then have

(5.10) †kC1i D
˚
x W  kC1i .x/ > 0

	
:

The behavior of (5.8) on J2, i.e., along one of the smooth surfaces �i;j away
from any junctions, can be understood by simply Taylor-expanding the convolu-
tions. To that end, take a p 2 �i;j n J�3. Near p, we have

Gıt � u
k
i � Gıt � u

k
j �

1

2

while Gıt �uk` for ` 62 fi; j g is exponentially small in ıt near p. Thus, near p, the
coefficients �k

`
.x/ given by (5.7) become

(5.11) �k` �

8̂<̂
:
�`;iGıt � u

k
i C �`;jGıt � u

k
j if ` 62 fi; j g;

�i;jGıt � u
k
j if ` D i;

�i;jGıt � u
k
i if ` D j;

with an error that is exponentially small in ıt . If the surface tensions �i;j satisfy
the strict triangle inequality, this implies

min
˚
�ki .x/; �

k
j .x/

	
< �k` .x/ for all ` 62 fi; j g

for x near p. Hence, wetting does not occur: no new phase gets nucleated along
�i;j . The updated interface �i;j can then be located by the equation

(5.12) �i;jGıt � u
k
j .x/ � �i;jGıt � u

k
i .x/

in a neighborhood of p, where once again the error is exponentially small in ıt .
Let ni;j .p/ denote the unit normal to �i;j at p, pointing from †i into †j ; see

Figure 5.1. Taking the kernel Gıt to be the Gaussian (3.1) and Taylor-expanding
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FIGURE 5.1. The behavior of the algorithm at a point p on the smooth
interface �i;j between two phases †i and †j .

the convolutions as in, e.g., [34], we find

(5.13) Gıt � u
k
i .p C yni;j .p// D

1

2
�

1

2
p
�
p
ıt
y C

p
ıt

2
p
�
�ki;j .p/CO.ıt/:

Using ukj D 1 � u
k
i near p, this expansion in (5.12) yields

y � �ki;j .p/ıt;

which implies that the point p on the interface �i;j moves by the normal speed

v?.p/ � �
k
i;j .p/

at the end of update (5.6). In other words, the mobility of interface �i;j under
update rule (5.6) is given by

�i;j D
1

�i;j
:

Remark. If on the other hand the surface tensions �i;j are positive but fail to satisfy
the triangle inequality, the foregoing discussion is invalid. In fact, numerical exper-
iments show that in those cases update (5.8), as well as its modifications discussed
below, can lead to wetting by instantaneously nucleating a new phase along one of
the existing interfaces. If desired, nucleation can be easily disallowed by restricting
the optimization (5.5) at a given point x 2 D to only those phases that are already
present in a neighborhood of x. All essential properties of the algorithm discussed
in subsequent sections remains intact under this modification.

Algorithm for General Mobilities
To advance the interfaces with more general mobilities, we bring in retardation

terms, to be added to the energy. One (computationally expensive and thus ul-
timately undesirable) approach to designing retardation terms is to use (much as
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in [2] and [24]) the signed distance function of the grains at the kth time step to
limit their movement to the .k C 1/th time step. To that end, let dki .x/ denote the
signed distance function of †ki :

dki .x/ D

(
miny2.†k

i
/c jx � yj if x 2 †ki ;

�miny2†k
i
jx � yj if x 2 .†ki /

c:

Consider the retardation function

(5.14) zRki .x/ WD max
j 6Di
zi;jd

k
j .x/:

The (positive) constants zi;j D zj;i will be specified subsequently. Regardless of
their choice, zRki is a Lipschitz function that is nonpositive in †ki and nonnegative
elsewhere. More to the point, in a neighborhood of a point p 2 �i;j \J2, we have

(5.15) zRk` .x/ D

8̂<̂
:
zi;jd

k
i .x/ D �zi;jd

k
j .x/ if ` D j;

zi;jd
k
j .x/ D �zi;jd

k
i .x/ if ` D i;

maxfzi;`dki .x/; zj;`d
k
j g if ` 62 fi; j g;

for all x in that neighborhood. Consider modifying energy (4.5) at time step k as
follows:

(5.16) zF kıt .u1; : : : ; uN / D Eıt .u1; : : : ; uN /C
2

ıt

NX
iD1

Z
ui zR

k
i dx:

Note that since the additional terms are linear, convexity properties of (5.16) are
the same as that of (4.5). Moreover, we have

zRki .x/

(
� 0 if x 2 †ki ;
� 0 otherwise;

and therefore it easily follows from (5.16) that
zF kıt .u/ �

zFıt .u
k/) Eıt .u/ � Eıt .u

k/:

The linearization of this new energy at uk is

(5.17) LFıt .uk; u/ D LEıt .uk; u/C
2

ıt

X
i

Z
ui zR

k
i dx

up to terms constant in u. Minimization of the linear energy (5.17) over K leads to
the modified thresholding scheme:

(5.18) ukC1i .x/ D

(
1 if �ki .x/C

1p
ıt
zRki .x/ D min`

�
�k
`
.x/C 1p

ıt
zRk
`
.x/
�
;

0 otherwise.

The corresponding level set function delineating the boundary of†kC1i is given by

(5.19)  kC1i D

�
min
6̀Di

�
�k` C

1
p
ıt
zRk`

��
�

�
�ki C

1
p
ıt
zRki

�
:
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As in the previous section, take a point p 2 �i;j \J2. Note that (5.15) implies zRk
`

vanishes at �i;j for all i; j; `. That, together with (5.11), imply that in a neighbor-
hood of p we have

�kj C
1
p
ıt
zRkj D min

6̀Di

�
�k` C

1
p
ıt
zRk`

�
provided that the �i;j satisfy the strict triangle inequality. Therefore,

 kC1i D �kj C
1
p
ıt
zRkj �

�
�ki C

1
p
ıt
zRki

�
(5.15)
D �kj C

1
p
ıt
zi;jd

k
i � �

k
i �

1
p
ıt
zi;jd

k
j

(5.11)
� 2

�
�i;j

�
Gıt � u

k
i �

1

2

�
C

1
p
ıt
zi;jd

k
i

�
:

(5.20)

Specialize Gıt once again to the Gaussian kernel (3.1). Taylor-expanding the con-
volution in (5.20) as in (5.13) and observing that

(5.21) dkj .x/ D �d
k
i .x/ D .x � p/ � ni;j .p/CO.ıt/ for jx � pj D O.

p
ıt/

gives

 kC1i .pC yni;j .p// D �
1
p
ıt

�
1
p
�
�i;j C 2zi;j

�
y C

�i;j
p
�
�i;j .p/

p
ıt CO.ıt/

for y D O.
p
ıt/. Solving for y, we see that the normal speed of the interface at p

is given by
v?.p/ D

�i;j

2
p
� zi;j C �i;j

�i;j .p/:

Hence, choosing

(5.22) zi;j D
1

2
p
�

�
1

�i;j
� �i;j

�
leads to the desired normal speed

(5.23) v?.p/ D �i;j�i;j �i;j .p/

with the proviso that �i;j < 1=�i;j , a condition easily accommodated via rescaling
the variable t as t ! ˛t , if necessary.

As already mentioned, retardation terms (5.14) require computing the signed
distance functions to the boundary of the grains at every time step. This can be
readily accomplished by any one of the efficient redistancing algorithms developed
in the level set literature. Nevertheless, computation of distance functions in a
purely thresholding-based scheme is costly (compared to the other steps) from a
practical and unappealing from an aesthetic point of view. It also turns out to be
unnecessary: the convolutions computed at every time step can be used to construct
proxies for the distance functions dki . Indeed, the level set function

p
ıt ki ought

to serve as a good proxy for dki near �i;j , up to a multiplicative factor independent
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of ıt . To that end, consider replacing the retardation terms zRki in energy (5.16)
with ones of the form

Rki .x/ WD max
j 6Di

i;j
p
ıt  kj .x/;

where i;j D j;i once again denote positive constants that will be subsequently
specified. For x near p, update (5.19) then becomes

(5.24)  kC1i D
�
�kj C i;j 

k
j

�
�
�
�ki C i;j 

k
i

�
:

We now hypothesize that the  ki generated by update (5.24) will satisfy

 ki D C
k
i;j

1
p
ıt
dki CO.ıt/

for all x such that jx � pj D o.
p
ıt/; we will concurrently verify this form and

determine the C ki;j with an informal calculation. Under this hypothesis, (5.24)
becomes

 kC1i D 2

�
�i;j

�
Gıt � u

k
i �

1

2

�
C C ki;j

1
p
ıt
i;jd

k
i

�
CO.ıt/:

Utilizing the Taylor expansions (5.13) and (5.21) once again, we see

 kC1i .p C yni;j .p// D �
1
p
ıt

�
�i;j
p
�
C 2i;jC

k
i;j

�
y

C

p
ıt
p
�
�i;j �i;j .p/CO.ıt/:

Solving for y, we see that the interface moves by normal speed

(5.25) v?.p/ D
�i;j

�i;j C 2i;j
p
�C ki;j

�i;j .p/

at the kth step of the algorithm, and the new level set function  kC1i satisfies

 kC1i D
1
p
ıt

�
�i;j
p
�
C 2i;jC

k
i;j

�
dkC1i CO.ıt/

in a neighborhood of its 0-level set. This means the C k satisfy the simple recur-
rence

C kC1i;j D
�i;j
p
�
C 2i;jC

k
i;j

with the fixed point

Ci;j D
�i;j

p
�.1 � 2i;j /

that is globally asymptotically stable as long as i;j 2 .0; 12/. Thus, as long as
0 < �i;j�i;j < 1, we may choose

i;j D
1

2
.1 � �i;j�i;j /
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and by (5.25) obtain exponential (in time step k) convergence to the desired normal
speed (5.23).

Putting it all together, and in summary, the proposed algorithm for general mo-
bilities �i;j , corresponding to the normal interfacial speed

v?.p/ D �i;j�i;j �i;j .p/

along �i;j and subject to Herring angle conditions (1.7), is as follows:

Algorithm: Given the initial partition †01; : : : ; †
0
N with

†0i D fx W  
0
i .x/ > 0g, to obtain the partition †kC11 ; : : : ; †kC1N at time

step t D .ıt/.k C 1/ from the partition †k1 ; : : : ; †
k
N at time t D .ıt/k:

1. Form the convolutions:

(5.26) �ki D Gıt �
� NX
jD1

�i;j 1†k
j

�
for i D 1; 2; : : : N;

where Gıt is the Gaussian (3.1).
2. Form the retardation functions:

(5.27) Rki D max
j 6Di

p
ıt

2
.1 � �i;j�i;j / 

k
j :

3. Form the comparison functions:

(5.28)  kC1i D

�
min
6̀Di
�k` C

1
p
ıt
Rk`

�
�

�
�ki C

1
p
ıt
Rki

�
:

4. Threshold the comparison functions  kC1i :

(5.29) †kC1i D
˚
x W  kC1i .x/ > 0

	
:

If we define the energy

(5.30) F kıt .u1; : : : ; uN / D Eıt .u1; : : : ; uN /C
2

ıt

NX
iD1

Z
uiR

k
i dx;

we see that the algorithm above consists of the optimization

(5.31) ukC1 D arg-min
u2K

LF k
ıt
.uk; u/

where LF k
ıt
.uk; � / denotes the linearization of F k

ıt
at uk . And in fact, it can be

easily shown that

(5.32) F kıt .u/ � F
k
ıt .u

k/) Eıt .u/ � Eıt .u
k/I
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see the proof of Proposition 5.3 below in Section 5.2. In other words, the pres-
ence of the time-step-dependent retardation terms Rki in (5.32)—which were in-
troduced to fix up mobilities without modifying angle conditions—does not influ-
ence whether the original interfacial energy Eıt in (4.5) is dissipated or not by an
algorithm, such (5.26)–(5.29), that implements (5.31).

5.2 Stability of the Algorithm
In this section, we investigate conditions under which Algorithm (5.26)–(5.29)

introduced in Section 5.1 turns out to be unconditionally gradient stable: under
certain assumptions on the surface tension matrix � , it dissipates energy (5.30) and
thus (4.2) at every iteration, regardless of the width of the convolution kernel G
(e.g., the time step size ıt appearing in the Gaussian (3.1)) used in Step (5.26)
of the algorithm. Although the convolution kernel G is typically taken to be the
Gaussian (3.1), in this section we merely require it to satisfy the following two
conditions: G.x/ � 0 for all x and

(5.33) bG.�/ � 0 for all �

where bG denotes the Fourier transform of G. By virtue of (5.33), we can define a
new kernel g such that

G D g � g:

First note the following simple general fact:

LEMMA 5.2. Let X be a Hilbert space. Let K � X be a closed, bounded, convex
set. Let F W X ! R be Fréchet differentiable and concave on K. Consider the
following minimization scheme:

(5.34) x� 2 arg-min
x2K

LF .x0; x/

where LF .x0; � / denotes the linearization of F at x0 2 K. Then:

F.x�/ � F.x0/:

PROOF. By concavity of F , we have

F.x�/ � LF .x0; x�/:
By optimality of x� for LF .x0; � / on K

LF .x0; x�/ � LF .x0; x0/ D F.x0/:
Combining the two inequalities above leads to the desired conclusion. �

We will consider surface tension matrices � that are conditionally negative semi-
definite: n

� 2 SN W
NX

i;jD1

�i;j �i�j � 0 whenever
NX
iD1

�i D 0
o

In words, these matrices are negative semidefinite as quadratic forms on .1; : : : ;
1/?. Lemma 5.2 implies the following:
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PROPOSITION 5.3. Let the surface tensions matrix � 2 SN be conditionally nega-
tive semidefinite. Then, Algorithm (5.26)–(5.29) is unconditionally gradient stable:
each time step dissipates the energy Eıt on partitions given in (4.2), its relaxation
given in (4.5), and its modified relaxation Fıt given in (5.30).

PROOF. Consider the step k of Algorithm (5.26)–(5.29). The relaxed energy
F k
ıt

at time step k, given in (5.30), is quadratic, and is thus easily seen to be
Fréchet differentiable on .L2.D//N . The constraint set K given in (5.1) is a closed,
bounded, convex subset of .L2.D//N . Take a point u0 2 K; we have

F kıt .u/ D F
k
ıt .u � u

0/C linear terms in u

D

X
i;j

Z
�i;j .u � u

0/iG � .u � u
0/j dx C linear terms in u

D

X
i;j

Z
�i;j .g � .u � u

0//i .g � .u � u
0//jdx

C linear terms in u:

(5.35)

Since � is conditionally negative semidefinite by hypothesis, and
P
i .u�u

0/i D 0

for u 2 K, we see that F k
ıt

is concave on K. Therefore, Lemma 5.2 applies to F k
ıt

on K. The linearization of F k
ıt

at 1†k is

(5.36) LF k
ıt
.1†k ; u/ D

2
p
ıt

Z NX
iD1

ui
�
�ki CR

k
i

�
dx

up to terms constant in u; here the �ki are as in step (5.26) of the algorithm, andRki
are as in step (5.27). The minimizer of LF k

ıt
on K is given by 1†kC1 2 B where

†kC1 is as defined in step (5.29) of the algorithm, since (5.36) can be minimized
over K by minimizing its integrand at each point x 2 D independently, leading
to (5.29). This establishes that Algorithm (5.26)–(5.29) dissipates energy (5.30) at
every time step.

Next, note that by (5.27) and (5.29) the retardation terms satisfy

Rki .x/

(
� 0 if x 2 .†ki /

c;

� 0 if x 2 †ki :

Therefore,
NX
iD1

Z
1†k

i
Rki dx �

NX
iD1

Z
uiR

k
i dx

for any u 2 B. Since F k
ıt
.†kC1/ � F k

ıt
.†k/, this means

Eıt .1†kC1/ � Eıt .1†k /:
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Thus, Algorithm (5.26)–(5.29) dissipates energy (4.5), and equivalently (4.2) at
every time step. �

We now explore conditions under which the matrix of surface tensions �i;j is
conditionally negative semidefinite, so that Proposition 5.3 applies. These matrices
turn out to be extensively studied in various contexts, so we quote a number of
standard results. Here is an outline of the discussion to follow:

� The triangle inequality by itself is neither necessary nor sufficient to guar-
antee that a � 2 SN is conditionally negative semidefinite. However, a
necessary condition turns out to be that the matrix p�i;j satisfy the tri-
angle inequality. An example of a conditionally negative semidefinite �
violating the triangle inequality (i.e., � 62 TN ) is discussed in Section 6.
� Conditional negative semidefiniteness of an N � N matrix � turns out to

be connected to embeddability of finite metric spaces: According to [37], a
matrix �i;j is conditionally negative semidefinite if and only if there exist
points p1; : : : ; pN 2 RM for some M such that �i;j D jpi � pj j22. In
words, the matrix � should arise as the matrix of squared distances for a
finite metric space embeddable into the euclidean space `2.RM / for some
M .

In the same vein, it turns out that if �i;j D jpi � pj j1 for some points
p1; : : : ; pN 2 RM for some M , then � is conditionally negative semidef-
inite. In words, a sufficient condition is that � arise as the matrix of dis-
tances for a finite metric space that is embeddable into `1.RM / for some
M . This is a large subset of TN and has a neat interpretation from the point
of view of numerical methods.
� A well-known model of how surface tensions arise due to dislocations in a

simple cubic lattice was proposed by Read and Shockley in [32]. There the
surface tension of the interface between two neighboring grains is shown
to have a functional dependence of a certain form on the misorientation
between the two grains on either side. It turns out that when the crystallo-
graphic orientations of the grains differ from each other by rotations about
a fixed axis (sometimes called the fiber-texture, or the two-dimensional
crystallography setting), all surface tensions models broadly resembling
that of Read and Shockley, when taken together with a high-angle satu-
ration assumption [19], are conditionally negative semidefinite. This is
shown in Theorem 5.5.

More realistically (i.e., in the so-called three-dimensional crystallogra-
phy case), when the orientations of the grains in the network differ from
each other by arbitrary rotations about an arbitrary axis, we can use the
very specific functional dependence (see formula (5.44)) of surface tension
on the misorientation angle that is widely accepted and used in materials
science literature to still show that the resulting surface tension matrix is
conditionally negative semidefinite. This is shown in Theorem 5.6. Thus,
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algorithms (5.7)–(5.8) and the more general (5.26)–(5.29) proposed in this
paper are unconditionally gradient stable for the important class of Read
and Shockley grain models.
� There are many studies in materials science that describe deviations from

Read-Shockley-type surface tensions, e.g., [7]. It is therefore of interest to
at least find a variant of Algorithm (5.26)–(5.29) that can be guaranteed to
dissipate energy (4.2) for as wide a class of surface tensions as possible.
It turns out that a Gauss-Seidel version of (5.26)–(5.29) can be devised
that is guaranteed to dissipate (4.2) for all triangle-inequality-satisfying
surface tensions. This algorithm is described and its properties established
in Proposition 5.7.

We now explain these points in detail. The terminology and basic facts relating
to embeddability of finite metric spaces are taken from [4].

Any triangle-inequality-satisfying set of surface tensions �i;j defines a metric
on the finite set of N elements fp1; : : : ; pN g:

d.pi ; pj / D �i;j :

Given a set of N points, a metric d on this set of points is called a cut metric if it
has the following form:

dS .pi ; pj / D

8̂<̂
:
0 if i 2 S and j 2 S;
0 if i 2 Sc and j 2 Sc;

1 otherwise;

for some S � f1; 2; : : : ; N g. We write dS to denote the cut metric associated with
the set of indices S . The following turns out to be a standard fact [8, prop. 4.2.2]:

Fact 1. A metric d on the set of N points fp1; : : : ; pN g can be embedded into
`1.RM / for some M if and only if d is a positive sum of cut metrics:

d.pi ; pj / D
X
k

˛kdSk .pi ; pj /

where ˛k � 0 and Sk � f1; 2; : : : ; N g.

The next claim follows easily from this and gives another partial characterization
of surface tensions that Proposition 5.3 applies to.

COROLLARY 5.4. Let � 2 TN . If �i;j can be embedded into `1.RM / for some M
when viewed as pairwise distances on a finite set of N elements, then � defines
a negative form on .1; 1; : : : ; 1/? � RN . Therefore, Algorithm (5.26)–(5.29) is
unconditionally gradient stable for such a choice of surface tensions: it dissipates
energies (4.2), (4.5), and (5.16).
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PROOF. By Fact 1, it is sufficient to establish negativity of � 2 TN of the form

�i;j D

8̂<̂
:
0 if i 2 S and j 2 S;
0 if i 2 Sc and j 2 Sc;

1 otherwise,

where S 2 f1; 2; : : : ; N g. Let � 2 .1; 1; : : : ; 1/? � RN . We haveX
i2Sc

�i D �
X
i2S

�i :

Therefore,X
i;j

�i;j �i�j D 2
X
i2S
j2Sc

�i�j D 2
X
i2S

�i
X
j2Sc

�j D 2
�X
i2S

�i

��
�

X
i2S

�i

�
:

The last expression above is concave in
P
i2S �i and therefore also in �. �

Remark. Corollary 5.4 covers a large subset of triangle-inequality-satisfying sur-
face tensions TN . A much smaller subset of this class are the additive surface
tensions: these are of the form

(5.37) �i;j D �i C �j for i 6D j

where �i are arbitrary positive constants. The resulting surface tension matrix �i;j
is easily seen to be conditionally negative definite, so additive surface tensions
constitute a special case of the surface tensions covered by Corollary 5.4. The
corresponding surface energies are the subset of energies of the form (1.2) that can
be written as a positive sum of perimeters of the phases †1; : : : ; †N :

(5.38) E D
X
i

�i Per.†i /:

Energy (1.2) cannot always be put in form (5.38), since the number of degrees of
freedom in (5.38) is merely N versus the N -choose-2 degrees of freedom in (1.2).
When N D 3, any triangle-inequality-satisfying set of surface tensions is additive.
For N � 4, this is no longer the case, and the class of surface tensions covered by
Corollary 5.4 is a much larger subset of all triangle-inequality-satisfying surface
tensions than (5.37). Indeed, this larger class corresponds to surface energies (1.2)
that can be written as

E D
X

S�f1;2;:::;N g

�S Per
�[
i2S

†i

�
where S � f1; 2; : : : ; N g and �S are arbitrary positive constants. In words, these
are energies that can be written as a positive sum of perimeters of arbitrary unions
of the phases †1; : : : ; †N .

A number of earlier, well-known numerical algorithms for (1.2), such as [41],
are restricted to the very small class of additive energies (5.38). The interesting
recent approach of [35, 36] also appears to be restricted to this very special case.
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Metrics

Concave Et

σ∗(1, 1.9)

σ∗(1, 1.6)

ℓ2-embeddable√
σi,j

ℓ1-embeddable σi,j

Et additive on unions

FIGURE 5.2. `1-embeddable metrics constitute a strict subset of the sur-
face tensions that are covered by Proposition 5.3.

Examples of non-`1 embeddable metrics can be found in, e.g., [8]. They are
good candidates for � 2 SN that possibly might not be conditionally negative
semidefinite. It turns out that whenN � 4, all metrics are `1 embeddable (and thus
such a �i;j is conditionally negative semidefinite); see, e.g., [4]. So the simplest
example of a grain boundary model for which Proposition 5.3 potentially does not
apply contains five phases. The fact that any �i;j 2 TN withN � 4 is conditionally
negative semidefinite appears previously also in [17].

Example. Consider the matrix

��.a; b/ D

0BBBB@
0 b b a a

b 0 b a a

b b 0 a a

a a a 0 b

a a a b 0

1CCCCA :
In order for ��i;j .a; b/ to satisfy the triangle inequality, we must have

a; b � 0 and maxfa; bg � 2minfa; bg:

If b 2 .3
2
a; 2a/, then ��.a; b/ is non-`1 embeddable, as it then fails to satisfy a

pentagon inequality; see, e.g., [4]. It turns out that this is not sufficient for ��.a; b/
to violate negativity on .1; 1; : : : ; 1/?. Indeed, we have, for example:

(1) ��.1; 1:6/ is non-`1 embeddable, but conditionally negative definite, and
(2) ��.1; 1:8/ is not conditionally negative semidefinite.

Thus, ��.1; 1:8/ is an example of triangle-inequality-satisfying set of surface ten-
sions that falls outside the scope of Proposition 5.3. In fact, the approximate energy
(4.5) is not quasi-concave (i.e., not all its superlevel sets are convex) on the con-
straint set K for this � . A direction of positivity for the corresponding quadratic
form is .�2;�2;�2; 3; 3/, which corresponds to phases 4 and 5 growing simulta-
neously at the expense of phases 1, 2, and 3. The situation is summarized in Figure
5.2.
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As the foregoing discussion shows, we are unable to establish that Algorithm
(5.26)–(5.29) dissipates energy (4.2) for all triangle-inequality-satisfying surface
tensions; instead, we gave some partial results in this direction. Now, we add
another special case to the class of surface tensions for which (5.26)–(5.29) can be
shown to be dissipative: Read-Shockley surface tensions.

In two-dimensional crystallography, the orientation of a simple cubic lattice can
be described by a single parameter: the angle � of clockwise rotation about the
origin that maps it back to the standard lattice Z2. Due to symmetries, one can
take � 2 Œ��

4
; �
4
� with the two ends of that interval identified. In the well-known

work [32], Read and Shockley described a model for the grain boundary formed
between two planar (or columnar in three dimensions) grains with cubic lattices.
They obtained an expression for the surface tension (energy per unit area) of the
grain boundary as a function of the misorientation angle between the two lattices
under the proviso that the said angle is small. Together with a high-angle saturation
assumption [19], the surface tension �i;j of the interface between two grains with
orientations �i and �j has the form

�i;j D min
k2Z

f
�ˇ̌̌
�i � �j C k

�

2

ˇ̌̌�
where f W RC ! R satisfies

(1) f 2 C.Œ0;1// \ C 2..0;1// and lim�!0C �
2f 0.�/ D 0,

(2) f .0/ D 0 and f .�/ � 0 for all �,
(3) f 0.�/ � 0 for all � > 0,
(4) f 00.�/ � 0 for all � > 0.

See Figure 5.3 for an example.

THEOREM 5.5. Let the surface tensions �i;j arise from the Read and Shockley law
for two-dimensional crystallography. Then the �i;j satisfy the triangle inequality.
Moreover, as a quadratic form, �i;j is conditionally negative semidefinite. Algo-
rithm (5.26)–(5.29) is thus unconditionally gradient stable for Read-and-Shockley-
type grain boundary models for two-dimensional crystallography.

PROOF. First, let

di;j D min
k2Z

ˇ̌̌
�i � �j C k

�

2

ˇ̌̌
:

The di;j 2 Œ0; �=4� are shortest distances among points on the circle Œ��=2; �=2�,
and therefore satisfy the triangle inequality. Take three distinct indices i; j; k 2
f1; 2; : : : ; N g. With no loss of generality, assume that di;j � dj;k . Then:

f .di;j C dj;k/ � f .di;j /C f
0.di;j /dj;k

by the concavity of f . Also,

f 0.di;j /dj;k � f
0.dj;k/dj;k
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FIGURE 5.3. According to Read and Shockley [32], the typical depen-
dence on the misorientation angle � D mink2Z j�i � �j C k�=2j of the
surface tension �i;j .�/ associated with a grain boundary formed between
two planar grains with cubic lattices.

and

f .dj;k/ D

Z dj;k

0

f 0.�/d� � f 0.dj;k/dj;k :

Together, these mean

f .di;j C dj;k/ � f .di;j /C f .dj;k/:

Since f is increasing,

f .di;j C dj;k/ � f .di;k/

by the triangle inequality di;k � di;j C dj;k . The last two inequalities now imply

f .di;k/ � f .di;j /C f .dj;k/;

which establishes the triangle inequality for the �i;j .
Define the quadratic form

Q.u/ D

Z �=4

��=4

Z �=4

��=4

f .x � y/ u.x/ u.y/dy dx

where f and u are extended periodically to R with period �
2

. Taking u.�/ DP
j �j ı.� � �j /, we get

Q.u/ D
X
i;j

�i;j �i�j :
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Thus, it is sufficient to check that Q.u/ � 0 for all u with
R
ud� D 0. Expressing

Q.u/ via the Fourier transform gives

Q.u/ D
X
n

bf nj�nj2:
Therefore, it is in fact sufficient to check that bf n � 0 for all n 6D 0. Moreover,
since f is even, it suffices to consider the cosine terms. We have

bf n D 2 Z �=4

��=4

f .�/ cos.4n�/d� D �
1

n
lim
"!0C

Z �=4

"

f 0.�/ sin.4n�/d�

D
1

4n2
lim
"!0C

�
.�1/nf 0.�=4/ � f 0."/ cos.4n"/ �

Z �=4

"

f 00.�/ cos.4n"/d�
�

�
1

4n2
lim
"!0C

�
.�1/nf 0.�=4/ � f 0."/ cos.4n"/ �

Z �=4

"

f 00.�/d�

�
D

1

4n2
lim
"!0C

�
Œ.�1/n � 1�f 0.�=4/C f 0."/.1 � cos.4n"//

�
D

1

4n2
Œ.�1/n � 1�f 0.�=4/ � 0:

where we integrated by parts twice and used the monotonicity, concavity, and be-
havior at 0 of f . �

We now turn to the Read and Shockley model for three-dimensional crystallog-
raphy, as described in [19]. A grain in three dimensions with a simple cubic crystal
lattice can be described (nonuniquely) by a matrix g 2 SO.3/, i.e., by an orthogo-
nal matrix with determinantC1 describing the rotation required to obtain the lattice
of the grain from the standard integer lattice in R3. Any matrix g 2 SO.3/ can be
described as a rotation by an angle � 2 Œ0; �� about an axis v 2 S2. The rotation
angle can be easily expressed as

(5.39) �.g/ D arccos
�

trace.g/ � 1
2

�
;

whereas the axis v is the eigenvector of g corresponding to the eigenvalue 1. The
sign of v is chosen so that the rotation angle is in the range Œ0; ��. When � D � , the
two possible axes of rotation, namely˙v, are identified with one another. SO.3/ is
thus equivalent to the unit ball in R3, the antipodal points on the surface of which
have been identified.

The misorientation matrix between two grains with orientations gi and gj is
then given by gig�1j D gig

T
j . In [19], it is assumed that the surface tension �i;j of

the interface �i;j between the two grains depends only on the corresponding angle
of the rotation gigT

j , not on the axis. In calculating the angle of rotation between gi
and gj , symmetries of the cubic lattice have to be taken into account. Let O denote
the octahedral group (of symmetries of the cube in three dimensions), which has
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24 elements and is generated by 2 of them: right-handed 90ı rotations about any
two of the three coordinate axes i, j, and k. Note that

(5.40) �.r/ �
�

2
if r 2 O and r 6D Id:

Define the minimal angle of rotation �O.g/ of a g 2 SO.3/ as

(5.41) �O.g/ D min
r2O

�.rg/:

The misorientation angle between gi and gj is defined to be

(5.42) �i;j D �O
�
gig

T
j

�
;

and the corresponding surface tension �i;j is given by

(5.43) �i;j D f .�i;j /

where f is a function conforming to the properties listed previously in the two-
dimensional crystallography setting on page 832. In the three-dimensional crystal-
lography setting, we will in fact need to be more precise about the function f . As
in [19, 32], we focus on the specific choice

(5.44) f .�/ D

(
�
��

�
1 � log

�
�
��

��
if � < ��;

1 if � � ��;

where �� is a critical misorientation value. It denotes the rotation angle beyond
which the surface tension saturates and, according to [19], has been experimentally
determined to lie somewhere between 10ı and 30ı.

THEOREM 5.6. Let the surface tension matrix � arise from the Read and Shockley
law for three-dimensional crystallography, given according to (5.42) and (5.43)
where f satisfies conditions listed on page 832. Then, � satisfies the triangle in-
equality. Assume further that f is given by the specific form (5.44) and that the
critical misorientation angle �� in (5.44) satisfies �� � �

4
D 45ı. Then, � is

conditionally negative semidefinite. Therefore, Algorithm (5.26)–(5.29) is uncon-
ditionally gradient stable for the Read and Shockley grain boundary model for
three-dimensional crystallography.

PROOF. Let us first establish the triangle inequality. For any three unit vectors
v1, v2, and v3 in R3, using the triangle inequality for the geodesic distance on S2

we have

(5.45) arccos.v1 � v3/ � arccos.v1 � v2/C arccos.v2 � v3/:

Moreover, the angle of rotation �.g/ 2 Œ0; �� of a rotation matrix g, given by
formula (5.39), can be characterized as

(5.46) �.g/ D max
v2R3
jvjD1

arccos.v � gv/:
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Combining these two, one gets

(5.47) �.g1g2/ � �.g1/C �.g2/ for any g1; g2 2 SO.3/:

Given now gi , gj , and gk in SO.3/, we have

�i;k
(5.42)
D min

r2O
�
�
rgig

T
k

�
D min
r1;r22O

�
�
r2r1

�
gig

T
j

��
gjg

T
k

��
(5.39)
D min

r1;r22O
�
��
r1gig

T
j

��
gjg

T
kr2

��
(5.47)
� min

r1;r22O

�
�
�
r1gig

T
j

�
C �

�
gjg

T
kr2

��
(5.39)
(5.42)
D �i;j C �j;k :

(5.48)

The triangle inequality for the corresponding surface tensions �i;j D f .�i;j / then
follows as in the proof of Theorem 5.5 from the properties of the function f listed
on page 832.

Turning to conditional negative semidefiniteness of � , we will use a couple of
rudimentary facts from the representation theory of SO.3/; see, e.g., [9, 40]. The
notation below follows chapter 14.4 of [9].

Define the function h W SO.3/! R as

(5.49) h.g/ D f

�
arccos

�
trace.g/ � 1

2

��
D f .�.g//:

We now argue that if �� � �
4

, we have

(5.50)
X

r1;r22O
h
�
r1gi .r2gj /

T�
D 24.�i;j C 23/:

To see this, consider two cases:

Case 1. �O.gigT
j / �

�
4

.
By (5.41), this means there is r� 2 O such that �.r�gigT

j / �
�
4

. If r 2 O and
r 6D r�, then

r�r
T
6D Id) �.r�r

T/ �
�

2
by (5.40), and by the triangle inequality (5.47)

�.rrT
�/ � �

�
r
�
gig

T
j

��
C �

��
gig

T
j

�T
rT
�

�
(5.39)
D �

�
r
�
gig

T
j

��
C �

�
r�
�
gig

T
j

��
;

which means

�
�
rgig

T
j

�
� �.rrT

�/ � �
�
r�gig

T
j

�
�
�

2
�
�

4
D
�

4
:
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By (5.41) and (5.42), this implies

�i;j D �
�
r�gig

T
j

�
;

and thus by (5.43),
h
�
r�gig

T
j

�
D �i;j :

Therefore, and since f .�/ D 1 for � � �
4
� ��,

h.r1gi .r2gj /
T/ D h

�
rT
2r1gig

T
j

�
D

(
�i;j if r1 D r2r�;
1 otherwise;

leading to (5.50).

Case 2. �O.gigT
j / >

�
4

.
In this case �.rgigT

j / �
�
4

for all r 2 O, so (5.50) follows immediately from the
definition (5.49) of h and the fact that f .�/ D 1 for � � �

4
.

Having established (5.50), next we define the following function u on SO.3/:

(5.51) u.g/ D
X
i

�iıgi .g/;

where ıg.�/ denotes the delta function centered at a point g 2 SO.3/. By (5.50),
for any � 2 .1; : : : ; 1/? we haveX

i;j

�i;j �i�j

(5.50)
D

1

24

X
r1;r22O

X
i;j

h
�
r1gi .r2gj /

T��i�j
(5.51)
D

1

24

X
r1;r22O

Z
SO.3/

Z
SO.3/

h
�
r1g1.r2g2/

T�u.g1/u.g2/dg1 dg2
D

1

24

Z
SO.3/

Z
SO.3/

h
�
g1g

T
2

��X
r2O

u.rTg1/
��X
r2O

u.rTg2/
�
dg1 dg2:

Here, dg1 and dg2 denote the left (as well as right) invariant measure of unit mass
(i.e., the Haar measure) on SO.3/. It is therefore sufficient to show that the qua-
dratic form

(5.52) Q.u/ D

Z
SO.3/

Z
SO.3/

h
�
g1g

T
2

�
u.g1/u.g2/dg1 dg2;

defined on functions u W SO.3/ ! R, is conditionally negative semidefinite. Let
om denote the representation of SO.3/ of weightm; this is an .2mC1/� .2mC1/
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unitary matrix-valued function on SO.3/. The convolution defining the quadratic
form Q can be expressed as

(5.53) Q.u/ D
X
m

.2mC 1/trace
�
yumyhm.yum/�

�
where y denotes the “Fourier transform,” i.e.,

(5.54) b�m D Z
SO.3/

�.g/.om/�.g/dg

for a function � W SO.3/! R, with the inversion formula

�.g/ D
X
m

.2mC 1/ trace.b�mom.g//:

See [9, p. 256].
Next, note that since h depends only on the angle of rotation of a matrix g,

it is a class function, and therefore can be expanded in terms of the characters
chm D trace.om/ of the representations om; it turns out these have a simple explicit
expression [9, p. 259]

(5.55) chm.g/ D
sin
� .2mC1/

2
�.g/

�
sin
��.g/
2

�
and are thus class functions themselves. As a consequence, bhmi;j D ˛mıi;j for
some scalars ˛m. Consequently, (5.53) becomes

Q.u/ D
X
m

.2mC 1/˛m
X
i;j

jbumi;j j2:
Therefore, it is sufficient to show that ˛m � 0 for all m � 1. They are given by

˛m D
1

2mC 1

Z
SO.3/

h.g/ chm.g/dg

D
1

2mC 1

Z �

0

f .�/
sin
� .2mC1/

2
�
�

sin
�
�
2

� 1 � cos �
�

d� (by [9, p. 260])

D
1

�.2mC 1/

Z �

0

f .�/
�

cos.m�/ � cos
�
.mC 1/�

��
d�

D �
1

�.2mC 1/

Z �

0

f 0.�/

�
sin.m�/
m

�
sin..mC 1/�/

mC 1

�
d�

(5.56)

where we integrated by parts at the last step.
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Define the function  .m/ for m > 0 as

 .m/ D

Z �

0

f 0.�/
sin.m�/
m

d� D �

Z �

0

f 00.�/
1 � cos.m�/

m2
d�

D
1

m2��

Z m��

0

1 � cos.t/
t

dt;

(5.57)

where we substituted in the specific form (5.44) of f . Using (5.57) in (5.56), we
can express ˛m as

(5.58) ˛m D
1

�.2mC 1/
. .mC 1/ �  .m//:

We’ll show that  is a decreasing function for m � 0. First, compute

(5.59)  0.m/ D
1

m3��

�
Œ1 � cos.m��/� � 2

Z m��

0

1 � cos.t/
t

dt

�
:

We’ll show that  0.m/ � 0 for all m � 0. To that end, consider the function

(5.60) �.x/ D Œ1 � cos.x/� � 2
Z x

0

1 � cos.t/
t

dt:

It is sufficient to show that �.x/ � 0 only for x 2 Œ0; �� since the integral in (5.60)
is an increasing function of x and the term 1 � cos.x/ reaches its maximum at
x D � . Taylor expanding, we get

�.x/ D

1X
nD1

.�1/nC1
.n � 1/

n.2n/Š
x2n:

When x 2 Œ0; ��, the ratio between magnitudes of the .nC 1/th and the nth terms
in this alternating series is

n2x2

.n2 � 1/.2nC 1/.2nC 2/
�
2�2

45
< 1 for all n � 2:

Therefore, �.x/ � 0 for all x 2 Œ0; ��. The foregoing discussion shows that this
implies ˛m � 0 for all m � 1, establishing the conditional negative semidefinite-
ness of �i;j . �

5.3 Minimizing Movements Interpretation
In Section 5.1, we exhibited Algorithms (5.7)–(5.8) and (5.26)–(5.29) as result-

ing from the simple, iterative optimization technique of repeatedly minimizing the
linearization of the cost function over the constraint set. It is also possible to in-
terpret them as implementing minimizing movements (as in, e.g., [2, 24]) on the
energy Eıt given in (4.5).

Indeed, it turns out that

Eıt .u/ �Eıt .u � u
k/ D LEıt .uk; u/
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up to terms constant in u. Thus, minimizing LEıt .uk; u/, as Algorithm (5.7)–(5.8)
does at the kth time step, is equivalent to one step of minimizing movements for
Eıt .u/with�Eıt .u�uk/ as the movement limiting term. Note that whenEıt .�/ is
concave, as in the numerous cases identified in Section 5.2, the movement limiting
term �Eıt .u � uk/ is convex and therefore achieves its minimum value of 0 at
u D uk , as it should, ensuring the dissipation of Eıt at every step; this observation
constitutes an alternative proof of the unconditional stability of Algorithm (5.7)–
(5.8). The connection between �Eıt .u� uk/ and the classical movement limiting
term in [2, 24], namely

(5.61)
1

ıt

Z
†M†k

jd†k jdx;

where d†k denotes the signed distance function to †k , can be motivated by con-
sidering the two-phase case where †k1 and †k2 are half-spaces

†k1 D fx W x1 � 0g and †k2 D fx W x1 � 0g

on the periodic domain D D Œ�L
2
; L
2
/d and †1 is obtained from †k1 by moving

@†k1 in the normal direction by ı:

†1 D fx W x1 � ıg and †2 D fx W x1 � ıg:

Observe that in this case

(5.62)
1

ıt

Z
†M†k

jd†k jdx D
1

ıt

ı2Ld�1

2
:

Since we expect ı D O.ıt/ in a single step of Algorithm (5.7)–(5.8) wherever
grain boundaries are smooth, we have ı �

p
ıt , which for the Gaussian kernel

(3.1) implies

�Eıt .1†1 � 1†k1
; 1†2 � 1†k2

/

D
2�1;2
p
ıt

Z
D

�
1†1 � 1†k1

�
Gıt �

�
1†1 � 1†k1

�
dx

D
2�1;2
p
ıt

Z
D

�
Gıt=2 �

�
1†1 � 1†k1

��2
dx

�
2�1;2
p
ıt
Ld�1

Z L=2

�L=2

ı2
1

2�.ıt/
e�x

2
1=.ıt/dx1

�
�1;2

ıt

ı2Ld�1
p
�

:

(5.63)
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Results of the Appendix indeed show that when the convolution kernel is the
Gaussian (3.1) we have

Eıt .†1; †2/
�
�!

�1;2
p
�
.Per.†1/C Per.†2// D

2�1;2
p
�

Per.†1/:

We thus see from (5.62) and (5.63) that �Eıt .u � uk; v � vk/ plays precisely the
role of the movement limiter (5.61). This also explains why Algorithm (5.7)–(5.8)
leads to the very specific mobilities �i;j D 1

�i;j
.

In the case of Algorithm (5.26)–(5.29) for general mobilities, we have

(5.64) Eıt .u/C

�
�Eıt .u � u

k/C

NX
iD1

Z
uiR

k
i dx

�
D LFıt .uk; u/

up to terms constant in u, so that minimizing LFıt .uk; u/ at the kth time step is
equivalent to carrying out one step of minimizing movements for Eıt , this time
with the movement limiting term given in parentheses in (5.64). Note that each
one of the additional terms

R
uiR

k
i dx acts to limit movement, as it achieves its

minimum value at ui D uki as was noted previously in Section 5.2. There, inter-
pretation of the Rki in terms of the distance function was also already given.

5.4 A Gauss-Seidel Version
In this epilogue to Section 5, we describe a slightly more costly version of

Algorithm (5.26)–(5.29) that can be guaranteed to dissipate energy (4.2) for all
triangle-inequality-satisfying surface tensions � 2 TN . It differs from Algorithm
(5.26)–(5.29) in computing the convolutions of the phases more frequently.

In words, at the `th inner step of Algorithm (5.65)–(5.68) (see p. 842), only those
points belonging to phase `C 1 are updated, in the sense that they are potentially
assigned to one of the other N � 1 phases. Immediately thereafter, all convolu-
tions and retardation terms are refreshed. If the convolutions and retardation terms
are refreshed per time step as opposed to per inner step, Algorithm (5.65)–(5.68)
reduces to Algorithm (5.26)–(5.29) of Section 5.1.

Roughly speaking, the behavior of Algorithm (5.65)–(5.68) near a point p 2
�i;j nJ�3 (i.e., on a smooth interface between two phases, away from junctions) is
the same as that of Algorithm (5.26)–(5.29). Indeed, it is reasonable to expect that
if the normal speed of �i;j is nonzero near p, then the partition and the relevant
retardation functions are updated near p either at inner step ` D i or inner step
` D j , but not at both, and certainly not at any ` 62 fi; j g. But then Algorithm
(5.65)–(5.68) agrees with Algorithm (5.26)–(5.29). Thus, the formal consistency
argument offered for Algorithm (5.26)–(5.29) in Section 5.1 applies here as well.
As for the stability of Algorithm (5.65)–(5.68), we have the following:

PROPOSITION 5.7. Algorithm (5.65)–(5.68) is unconditionally gradient stable for
all � 2 TN : It dissipates energy (4.2) for all time step sizes ıt � 0.
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Algorithm: Given the initial partition †0 with †0i D fx W  
0
i .x/ > 0g, obtain

the partition †kC1 at time step t D .ıt/.k C 1/ from the partition †k at time
t D .ıt/k using N inner steps †k;`, with ` D 0; 1; : : : ; N � 1, †k;0i D †ki ,
and †k;N�1i D †kC1i .

Obtain †k;`C1 from †k;` as follows:
1. Form the convolutions:

(5.65) �
k;`
i D Gıt �

� NX
jD1

�i;j 1
†
k;`
j

�
:

2. Form the retardation functions:

(5.66) R
k;`
i D max

j 6Di

1

2
.1 � �i;j�i;j / 

k;`
j :

3. Form the comparison functions

(5.67)  
k;`C1
i D(

max
˚
 
k;`
i ;

�
minj 6Di �

k;`
j CR

k;`
j

�
�
�
�
k;`
i CR

k;`
i

�	
if i 6D `C 1;

min
˚
 
k;`
i ;

�
minj 6Di �

k;`
j CR

k;`
j

�
�
�
�
k;`
i CR

k;`
i

�	
if i D `C 1:

4. Threshold the comparison functions  k;`C1i :

(5.68) †
k;`C1
i D

˚
x W  

k;`C1
i .x/ > 0

	
:

PROOF OF PROPOSITION 5.7. At each time step, the `th inner step of the al-
gorithm replaces some of the points belonging to phase ` C 1 with the rest. It is
therefore sufficient to show that replacing phase 1 with phases 2; 3; : : : ; N as the
algorithm does decreases the energy. Such a perturbation can be written as

ui .x; t/ D

(
u1.x/ � t

P
i 6D1 �i .x/ if i D 1;

ui .x/C t�i .x/ otherwise;

where �i .x/ � 0 for all x and i D 2; 3; : : : ; N .
Energy (4.5) turns out to be concave along such perturbation directions as long

as � 2 TN :

d2

dt2
Eıt .u.t// D

X
i;j

�i;j

Z �
Gıt �

d

dt
ui

��
Gıt �

d

dt
uj

�
dx

D 2
X
i<j

�i;j

Z �
Gıt �

d

dt
ui

��
Gıt �

d

dt
uj

�
dx D
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D �2

NX
jD2

�1;j

Z �X
i 6D1

�i �Gıt

�
.�j �Gıt /dx

C 2
X
1<i<j

�i;j

Z
.�i �Gıt /.�j �Gıt /dx

D �2AC 2B

where

A D
X
i 6D1
j 6D1

�1;j

Z
.�i �Gıt /.�j �Gıt /dx;

B D
X
1<i<j

�i;j

Z
.�i �Gıt /.�j �Gıt /dx:

Looking at these terms separately, we have

A D
X
i

�1;ik�i �Gıtk
2
L2
C

X
1<i<j

�1;j

Z
.�i �Gıt /.�j �Gıt /dx

C

X
1<j<i

�1;j

Z
.�i �Gıt /.�j �Gıt /dx:

Looking at B , using the triangle inequality

�i;j � �1;i C �1;j

and the fact
.�i �Gıt /.x/ � 0 for all x and i 6D 1;

we get

B �
X
1<i<j

�1;i

Z
.�i �Gıt /.�j �Gıt /dx

C

X
1<i<j

�1;j

Z
.�i �Gıt /.�j �Gıt /dx:

Putting A and B together gives

d2

dt2
Eıt .u.t// � �2

X
i

�1;ik�i �Gıtk
2:

Thus, Eıt is concave in the perturbation directions that arise in Algorithm (5.65)–
(5.68). The algorithm seeks a minimum of the linearization of Eıt in the space of
these directions and therefore, by Lemma 5.2, decreases the energy at every time
step. �
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FIGURE 6.1. The blue curve shows the initial condition. Red curve
shows the result of dynamics (1.5) and (1.7) computed using the pro-
posed threshold dynamics algorithm of Section 5, with a (90ı, 135ı,
135ı) angle condition at the triple junction and all mobilities �i;j D 1.
The black curve shows the same dynamics computed using front track-
ing. (The two curves are in excellent agreement and almost indistin-
guishable due to the line width of the plot).

6 Numerical Evidence
This section presents a variety of numerical tests of Algorithm (5.26)–(5.29)

from Section 5. There are two types of test: (1) Classical numerical conver-
gence studies for short-time evolution (during which topological changes do not
take place) starting from an initial condition with triple junctions formed by the
meeting of smooth curves, and (2) challenging configurations that involve topo-
logical changes, multiple junctions, nonembeddable surface tensions, wetting, and
nucleation.

6.1 Comparisons with Front Tracking
In the absence of topological changes, and when starting from a smooth ini-

tial condition consisting only of triple junctions, a very appropriate and efficient
algorithm for computing the curvature flow (1.5) and (1.7) is front tracking (see,
e.g., [6]), especially in the plane.
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The initial condition in this set of experiments is shown in Figure 6.1 as the
blue curve. It is evolved under dynamics (1.5) and (1.7) with surface tensions
given by �1;2 D �1;3 D 1 and �2;3 D

p
2. The corresponding junction angles

are .�1; �2; �3/ D .90ı; 135ı; 135ı/. The final configuration at time t D 0:0107,
computed using Algorithm (5.26)–(5.29) of Section 5 on a 3200 � 3200 grid, is
shown as the red curve. The same configuration computed via front tracking is
shown as the black curve. The table below shows the error as measured in the
Hausdorff distance between the boundary @†1 of phase †1 computed using front
tracking versus the proposed algorithm. All mobilities were �i;j D 1.

# Time steps # Grid points Hausdorff dist. Conv. rate
8 100 � 100 0:0678 –

16 200 � 200 0:0339 1.00
32 400 � 400 0:0174 0.962
64 800 � 800 0:0082 1.09

128 1600 � 1600 0:0040 1.04
256 3200 � 3200 0:0018 1.15

The same initial condition (blue curve in Figure 6.1) was used for testing Algo-
rithm (5.26)–(5.29) with surface tensions �1;2 D 5

4
, �1;3 D 3

2
, and �2;3 D 1. The

corresponding junction angles are .�1; �2; �3/ � .138:6ı; 97:18ı; 124:2ı/. The
table below shows the error in phase 1, once again as measured in the Hausdorff
distance between the front tracking solution and the solution obtained from Algo-
rithm (5.26)–(5.29). All mobilities were �i;j D 1.

# Time steps # Grid points Hausdorff dist. Conv. rate
8 100 � 100 0:0806 –

16 200 � 200 0:0392 1.04
32 400 � 400 0:0185 1.08
64 800 � 800 0:0092 1.01

128 1600 � 1600 0:0044 1.06
256 3200 � 3200 0:0019 1.21

6.2 Comparisons with Exact Solutions
A well-known exact solution of dynamics (1.5) and (1.7) is the grim-reaper

solution [16]. Here, two of the interfaces are traveling waves moving with constant
vertical speed, while the third remains a line segment; see Figure 6.2. We will
consider the following asymmetric case:

� D

0BB@
0 1

p
2

1C
p
3

1 0 2

1C
p
3p

2

1C
p
3

2

1C
p
3

0

1CCA ;
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FIGURE 6.2. Numerical convergence test against an exact, travelling
wave solution. The initial condition is the configuration of black curves.
The blue curves are the computed solution (on a 1600 � 1600 grid) and
the red ones are the exact solution, at time t D 0:096 (they are in excel-
lent agreement and almost indistinguishable). The angles at the junction
are .135ı; 150ı; 75ı/.

and the mobilities are given by

�1;2 D �1;3 D 1 and �2;3 D
1

4
p
2
:

The corresponding angles at the junction are .135ı; 150ı; 75ı/. The two interfaces
�1;3 and �2;3 are then graphs of functions f1;3.x; t/ W Œ0; 38 �! R and f2;3.x; t/ W
Œ3
8
; 1
2
�! R that move by vertical translation:

f1;3.x; t/ D
3

2�
log
�

cos
�
2�

3
x

��
�

2
p
2�

3.1C
p
3/
t;

f2;3.x; t/ D
3

8�
log
�
1

2
cos
�
4�.1 � 2x/

3

��
�

2
p
2�

3.1C
p
3/
t:

The interfaces satisfy the natural boundary condition of 90ı intersection with the
boundary of the domain Œ0; 1

2
�� Œ�1

2
; 0� (i.e., @xf1;3.0; t/ D 0 and @xf2;3.12 ; t / D

0). Numerically, the initial configuration is extended evenly to Œ0; 1� � Œ�1; 0�
by reflection, which is then computed with periodic boundary conditions using
Algorithm (5.26)–(5.29).
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FIGURE 6.3. Comparison with front tracking on an example involving
a topological change that is well understood. Two junctions collide, and
then split off along an orthogonal path. Angles at the junction change
from .90ı; 135ı; 135ı/ to .120ı; 120ı; 120ı/ before and after the topo-
logical event. Solution generated by Algorithm (5.26)–(5.29) is in black
(almost indistinguishable from the exact solution in blue).

The L1 error between the computed and exact f1;3 and f2;3 at time t D 0:096
is shown in the table below. Figure 6.2 shows the initial condition, the computed
solution, and the exact solution in black, blue, and red, respectively.

# Time steps # Grid points L1 error Conv. rate
192 100 � 100 0:0381 –
384 200 � 200 0:0211 0.85
768 400 � 400 0:0104 1.02
1536 800 � 800 0:0061 0.77
3072 1600 � 1600 0:0029 1.07

6.3 Topological Change
Here we test the algorithm on a solution that goes through a topological change

that is well understood. The initial condition is of “grim reaper” type, described
previously in the previous subsection. Hence, the exact form of the solution (which
serves as the benchmark) is known until the moment of topological change. At that
critical time, two triple junctions collide, and by all accounts ought to split off
immediately in a particular manner: As shown in Figure 6.3, the two junctions
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traveling towards each other vertically before the critical time should split off into
two new junctions traveling horizontally away from each other immediately after
the collision, forming a new horizontal interface between them. Beyond the crit-
ical time, we compute the benchmark solution using front tracking based on this
expectation.

Define the profile

�.x/ D
1

�
log.cos.�x//:

The initial configuration is as follows:

†01 D

�
.x; y/ W y <

1

4
� �

�
1

4
�

ˇ̌̌̌
x �

1

4

ˇ̌̌̌��
;

†02 D

�
.x; y/ W x <

1

4
and

1

4
� �.x/ < y <

3

4
C �.x/

�
;

†03 D

�
.x; y/ W x >

1

4
and

1

4
� �.x/ < y <

3

4
C �.x/

�
;

†04 D

�
.x; y/ W y >

3

4
C �

�
1

4
�

ˇ̌̌̌
x �

1

4

ˇ̌̌̌��
:

The surface tension matrix is

� D

0BB@
0 1 1 1

1 0
p
2 1

1
p
2 0 1

1 1 1 0

1CCA
so that triple junctions of type .†1; †2; †3/ and .†2; †3; †4/ before the topolog-
ical change have angles .90ı; 135ı; 135ı/ and .135ı; 135ı; 90ı/, respectively, and
triple junctions of type .†1; †2; †4/ and .†1; †3; †4/ after the topological change
have angles .120ı; 120ı; 120ı/. All mobilities were taken to be �i;j D 1

�i;j
in this

example, so that all interfaces move with normal speed �.

6.4 Wetting
Triangle inequality (1.3) is not necessary for Algorithm (5.26)–(5.29) to dissi-

pate the approximate energy (4.2), which presumably converges to the lower semi-
continuous envelope of (1.2) when � 62 TN . Numerical experiments show that in
these wetting cases, the algorithm can instantaneously nucleate a new phase along
the boundary between two others, as might be expected. Figure 6.4 shows the
evolution in a four-phase setting, starting from an initial configuration containing
phases †1, †2, and †3 only. The surface tensions are given by

(6.1) � D

0BBB@
0 3

2
1 1

2
3
2

0 1 1
2

1 1 0 1
1
2

1
2

1 0

1CCCA ;
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FIGURE 6.4. Example of wetting due to violation of the triangle in-
equality. Left: The initial condition contains only phases 1, 2, and 3.
The corresponding 3 � 3 submatrix of the full 4 � 4 surface tension ma-
trix satisfies the triangle inequality, even though the full matrix does not.
Right: Nevertheless, Algorithm (5.26)–(5.29) is aware of the possibility
of a fourth phase, and immediately nucleates a thin layer of it along the
�1;2 interface present in the initial condition. That thin wetting layer of
phase 4, shown as the darkest region, remains between phases 1 and 2
throughout the evolution. See also Figure 6.5.

violating the triangle inequality: �1;4 C �2;4 D 1 < 3
2
D �1;2. Nevertheless, it

turns out that � is conditionally negative semidefinite. Therefore, Corollary 5.4
applies, showing that Algorithm (5.26)–(5.29) is unconditionally gradient stable
for this ill-posed set of surface tensions.

The 3 � 3 submatrix �1W3;1W3 of (6.1) corresponding to the three phases present
in the initial condition satisfies the triangle inequality. However, the algorithm is
aware of the possibility of a fourth phase, and chooses to immediately nucleate a
thin layer of it along the interface �2;3, as can be seen in Figure 6.4. This thin layer
of phase 4 remains between phases 1 and 2 throughout the evolution. Its thickness
appears to depend on the time step size and scale as

p
ıt .

The presence of a thin wetting layer of phase 4 between phases 1 and 2 reduces
the effective cost of a transition between phase 1 and phase 2 down to �1;4 C
�2;4 D 1 from �1;2 D

3
2

. We would therefore expect the resulting dynamics to
approximate flow with the surface tension matrix

(6.2) �effective D

0BBB@
0 1 1 1

2

1 0 1 1
2

1 1 0 1
1
2

1
2

1 0

1CCCA :
Indeed, Figure 6.5 compares the effective three-phase flow (with only phases 1, 2,
and 3 present) computed using (6.2) versus the four-phase flow computed using
the ill-posed set of surface tensions (6.1); it shows that the results are in fact very
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FIGURE 6.5. Comparison of the four-phase dynamics computed using
Algorithm (5.26)–(5.29) with the effective three-phase dynamics when
the surface tensions violate the triangle inequality, leading to wetting.
The effective three-phase dynamics result is the black curve, while the
red curve shows the result of the four-phase computation with the ill-
posed surface tensions; they match very closely. The thin region indi-
cated by the blue curve is the wetting layer automatically nucleated by
Algorithm (5.26)–(5.29) during the four-phase computation. The ma-
genta curve shows what the four-phase evolution would have been if the
wetting layer had not been nucleated. See also Figure 6.4.

close. In other words, Algorithm (5.26)–(5.29) appears to capture the dynamics for
the relaxation of model (1.2) when the model is ill-posed due to violation of the
triangle inequality. Figure 6.5 also compares the computed dynamics with what
the result would have been in the absence of a wetting layer, i.e., three-phase flow
with surface tensions given by �1W3;1W3 in (6.1).

As pointed out in Section 5.1, nucleation can be prevented, if desired, without
sacrificing the useful properties discussed in Section 5.2. Wetting would then take
place only when phase 4 is present in the initial data and comes in contact with
�1;2 at some point during the evolution.

6.5 Nucleation
If the surface tension matrix � satisfies the triangle inequality (1.3) (i.e., � 2

TN ), wetting cannot occur. However, nucleation can still take place at junctions
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FIGURE 6.6. Nucleation and growth of a fourth phase in the evolution
computed by Algorithm (5.26)–(5.29), even though the initial condition
contains only three phases, and the surface tensions satisfy the triangle
inequality. Leftmost panel shows the initial condition.

for certain � 2 TN . An example is the four-phase system with surface tension
matrix

(6.3) �."/ D

0BBB@
0 1 1 1

2
C "

1 0 1 1
2
C "

1 1 0 1
2
C "

1
2
C " 1

2
C " 1

2
C " 0

1CCCA ;
which happens to be one of the several types of polyphase grain structures consid-
ered in [7]. We see that �."/ 2 T4 for " 2 .0; 3

2
/, since then all surface tensions are

within a factor of 2 of each other; hence, the model is well-posed and no wetting
along a smooth interface �i;j can take place. Nevertheless, as explained in [7],
when

" 2

�
0;
2 �
p
3

4C 2
p
3

�
;

a triple junction made up of phases 1, 2, and 3 cannot be stable: even when in its
equilibrium configuration of symmetric, 120ı junction angles, it would be unstable
under the nucleation of phase 4.

Figure 6.6 shows this taking place during a four-phase simulation using Algo-
rithm (5.26)–(5.29), where the surface tensions were taken as in (6.3) with " D
0:03. Note that once again the algorithm is unconditionally gradient stable for this
set of surface tensions.

Appendix: Convergence of the Energies
In this section, we show that the multiphase interfacial energy functional (1.2)

can be obtained as the �-limit of the quadratic nonlocal energy (4.2). We estab-
lish this result for isotropic surface energies, but just under the assumption that
the surface tension matrix � satisfies the triangle inequality (1.3): � 2 TN . In
particular, our result yields the well-known lower semicontinuity of the limiting
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functional by a new and elementary argument, relying on an approximate mono-
tonicity of the approximating functional; see Section A.1. The other ingredients to
our �-convergence result can be found in the literature [1, 28].

For the results on lower semicontinuity in the case of anisotropic surface ten-
sions, we refer to the sufficient criteria of Bi-convexity [3, 2.2] and (B)-convexity
[3, 2.3] for BV -ellipticity [3, 2.1], that is equivalent to lower semicontinuity [3,
Theorem 2.1]. We also refer to [29] for the sufficient criteria of B2-convexity,
which turns out to be equivalent to the triangle inequality in the isotropic case.

At least for the purposes of this section, we may take the convolution kernel G
to be more general than merely the Gaussian. We require it have the formG�.x/ D

��dG.x
�
/, where the mask G.yx/ is smooth and satisfies

(A.1)

G � 0;

Z
Rd

G d yx D 1;

Z
Rd

jyxjG d yx <1;

G D G.jyxj/; j yrG.yx/j . G

�
yx

2

�
; yrG.yx/ � yx � 0:

Recall that we say a configuration u is admissible if it respects (4.4). In this sec-
tion, we take D D Œ0; L/d � Rd and assume that all ui are L-periodic in every
coordinate.

PROPOSITION A.1. Suppose that for an admissible sequence of configurations
fu�g�#0, fE�.u�/g�#0 is bounded. Then fu�g�#0 precompact in L1.Œ0; L/d /.

Under the (strong) topology ofL1.Œ0; L/d /, the sequence of functionals fE�g�#0
�-converges to the functional E defined on the set of admissible u’s given by

E.u/ WD c0
X
i;j

�ij
1

2

� Z
Œ0;L/d

jrui j C

Z
Œ0;L/d

jruj j

�

Z
Œ0;L/d

jr.ui C uj /j

�
;

(A.2)

if ui 2 BV.Œ0; L/d ; f0; 1g/ for all i D 1; 2; : : : ; N , and E.u/ D C1 otherwise.
Here c0 WD

jBd�1j

jSd�1j

R
Rd jyxjG d yx.

Note that 1
2
.
R
Œ0;L/d jrui j C

R
Œ0;L/d jruj j �

R
Œ0;L/d jr.ui C uj /j/ formally is

the .d � 1/-dimensional measure of the interface between fui D 1g and fuj D 1g
on the “torus” Œ0; L/d .

PROOF OF PROPOSITION A.1. The precompactness statement is a consequence
of Lemma A.4 of Section A.3.

We turn to the recovery sequence for a given admissible u. If ui 2 BV.Œ0; L/d ;
f0; 1g/ for all i D 1; 2; : : : ; N , Lemma A.3 shows that we may take u itself as a
recovery sequence. If this is not the case, then Lemma A.4 implies that E�.u/ "



THRESHOLD DYNAMICS FOR NETWORKS 853

1 D E.u/ as � # 0 so that also in this case, we may take u itself as a recovery
sequence.

We finally turn to the lower semicontinuity part of �-convergence. Given is
an admissible sequence fu�g�#0 that converges to an admissible u in L1.Œ0; L/d /.
According to Lemma A.2 we have for any �0 > 0

E�.u�/ �

�
�0

�0 C �

�dC1
E�0.u�/:

Furthermore, since for fixed �0 > 0, E�0 is continuous with respect to L1.Œ0; L/d /
(on the space of admissible configurations), we have

lim
�#0

E�0.u�/ D E�0.u/:

Both statements combine to

lim inf
�#0

E�.u�/ � E�0.u/

for all �0 > 0. Finally, the same argument as in case of the recovery sequence
yields

lim
�0#0

E�0.u/ D E.u/ 2 Œ0;1�:

The two last statements combine into the desired

lim inf
�#0

E�.u�/ � E.u/:

A.1 Approximate Monotonicity
This subsection establishes an approximate sense of monotonicity for the func-

tionals (4.5): they are approximately increasing as the width of the convolution
kernel decreases. This might be the only novel ingredient of our discussion of
�-convergence of (4.5).

LEMMA A.2. Suppose u is admissible. Then we have for all 0 < � � �0:

(A.3) E�.u/ �

�
�0

�0 C �

�dC1
E�0.u/:

PROOF OF LEMMA A.2. We fix u and � > 0. We first argue that (A.3) is a
consequence of the following two statements:

(A.4) E�.u/ � EN�.u/ for all N 2 N

and

(A.5) �0
dC1

E�0.u/ � �
dC1E�.u/ for all �0 � �:

Indeed, for �0 � � let N 2 N be such that

(A.6) .N � 1/� < �0 � N�I in particular,
�0

N�
�

�0

�0 C �
:
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We obtain (A.3) as follows:

E�.u/
(A.4)
� EN�.u/ D .N�/

�.dC1/.N�/dC1EN�.u/

(A.5);(A.6)
� .N�/�.dC1/�dC10 E�0.u/

(A.6)
�

�
�0

�0 C �

�dC1
E�0.u/:

Before addressing the main ingredient (A.4), we turn to the easy ingredient
(A.5), which can be reformulated as

(A.7)
d

d�
E�.u/ � �

d C 1

�
E�.u/:

As we shall see, this is a consequence of the radial monotonicity of G, cf. (A.1).
To ease notation, we introduce

(A.8) F.h/ WD
X
i;j

�ij

Z
ui .x/uj .x C h/dx D

X
i 6Dj

�ij

Z
ui .x/uj .x C h/dx

and note that

(A.9) E�.u/ D
1

�

Z
G�.h/F.�h/dh D

Z
1

�dC1
G

�
h

�

�
F.�h/dh:

Hence we obtain (A.7) as follows:

d

d�
E�.u/

(A.9)
D

Z �
�

1

�dC2

��
.d C 1/G

�
h

�

�
C yrG

�
h

�

�
�
h

�

�
F.�h/dh

(A.1)
�

Z �
�

1

�dC2

�
.d C 1/G

�
h

�

�
F.�h/dh

(A.9)
D �

d C 1

�
E�.u/:

We now turn to the proof of (A.4). We start by arguing that for (A.4), it is enough
to show that

(A.10) F.hC h0/ � F.h/C F.h0/ for all h; h0 2 Rd :

Indeed, on the one hand, (A.10) can be iterated to yield

(A.11) F.Nh/ � NF.h/ for all h 2 Rd ; N 2 N:

On the other hand, we have by (A.9)

(A.12) E�.u/ D
1

�

Z
G�.h/F.�h/dh D

1

�

Z
G.yh/F.��yh/d yh:

We thus obtain, using the nonnegativity of G,

EN�.u/
(A.12)
D

1

N�

Z
G.yh/F.�N�h/d yh

(A.11)
�

1

�

Z
G.yh/F.��h/d yh

(A.12)
D E�.u/:
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We now turn to (A.10). We write for abbreviation x0 WD x C h, x00 WD x0 C h0,
and note that for i 6D j we have

ui .x/uj .x
00/ � ui .x/uj .x

0/ � ui .x
0/uj .x

00/

(4.4)
D ui .x/

X
k

uk.x
0/uj .x

00/ � ui .x/uj .x
0/
X
k

uk.x
00/

�

X
k

uk.x/ui .x
0/uj .x

00/

D

X
k

�
ui .x/uk.x

0/uj .x
00/ � ui .x/uj .x

0/uk.x
00/ � uk.x/ui .x

0/uj .x
00/
�
:

We observe that the contribution from k 2 fi; j g to this sum has a sign:

ui .x/ui .x
0/uj .x

00/ � ui .x/uj .x
0/ui .x

00/ � ui .x/ui .x
0/uj .x

00/

C ui .x/uj .x
0/uj .x

00/ � ui .x/uj .x
0/uj .x

00/ � uj .x/ui .x
0/uj .x

00/

D �ui .x/uj .x
0/ui .x

00/ � uj .x/ui .x
0/uj .x

00/
(4.4)
� 0:

Hence we obtain

ui .x/uj .x C hC h
0/ � ui .x/uj .x C h/ � ui .x C h/uj .x C hC h

0/ �X
k 6Di;j

�
ui .x/uk.x

0/uj .x
00/ � ui .x/uj .x

0/uk.x
00/ � uk.x/ui .x

0/uj .x
00/
�
:

Multiplying both sides by �i;j , integrating over x 2 Œ0; L/d , using translation
invariance, and summing over all pairs .i; j / with i 6D j yields by definition (A.8)
of F :

F.hC h0/ � F.h/ � F.h0/

�

X
i;j;k

pairwise different

�ij

Z
ui .x/uk.x C h/uj .x C hC h

0/

� ui .x/uj .x C h/uk.x C hC h
0/

� uk.x/ui .x C h/uj .x C hC h
0/dx:

(A.13)
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We now claim that the right-hand side of (A.13) has a sign. Indeed, using the
triangle inequality for the �ij ’s, the integrand can be estimated as follows:X

i;j;k
pairwise different

�ij
�
ui .x/uk.x

0/uj .x
00/ � ui .x/uj .x

0/uk.x
00/ � uk.x/ui .x

0/uj .x
00/
�

(1.3);(4.4)
�

X
i;j;k

pairwise different

�
�ikui .x/uk.x

0/uj .x
00/C �kjui .x/uk.x

0/uj .x
00/

� �ijui .x/uj .x
0/uk.x

00/ � �ijuk.x/ui .x
0/uj .x

00/
�
:

Relabeling the indices, we see that the four contributions to the right-hand side
cancel after summation: namely, the first term in the summand cancels with the
third, and the second cancels with the fourth. �

A.2 Consistency
The following lemma can essentially be found in [28][theorem 3.1]. We display

our own proof, since we allow for a slightly more general convolution kernel G,
and since our argument uses even less geometric measure theory (i.e., does not use
the notion and regularity of reduced boundary).

LEMMA A.3. Suppose u is admissible in the sense of (4.4) and that, in addition,
ui 2 BV.Œ0; L/

d ; f0; 1g/ for every i D 1; 2; : : : ; N . Then

lim
�#0

E�.u/ D c0
X
i;j

�ij
1

2

� Z
Œ0;L/d

jrui j C

Z
Œ0;L/d

jruj j �

Z
Œ0;L/d

jr.ui C uj /j

�

where c0 WD
jBd�1j

jSd�1j

R
Rd jyxjG d yx.

PROOF OF LEMMA A.3. The statement obviously reduces to

lim
�#0

1

�

Z
Œ0;L/d

zvG� � v dx

D jBd�1j

Z 1
0

rdG.r/dr

�
1

2

� Z
Œ0;L/d

jrvj C

Z
Œ0;L/d

jrzvj �

Z
Œ0;L/d

jr.v C zv/j

�
;

(A.14)

where v 2 BV.Œ0; L/d ; f0; 1g/ (which plays the role of ui ) and zv 2 BV.Œ0; L/d ;
f0; 1g/ (which plays the role of uj ) satisfy

(A.15) vzv D 0 a.e.
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The first reduction is to get rid of G and to reduce the statement (A.14) to

(A.16) lim
�#0

1

�

Z
Sd�1

Z
Œ0;L/d

zv.x/v.x C ��/dx d� D

jBd�1j
1

2

� Z
Œ0;L/d

jrvj C

Z
Œ0;L/d

jrzvj �

Z
Œ0;L/d

jr.v C zv/j

�
:

Indeed, because of the radial symmetry of G, i.e., G.x/ D G.jxj/ (cf. (A.1)), we
have
1

�

Z
Œ0;L/d

zvG� � v dx D
1

�

Z
Rd

G.h/

Z
Œ0;L/d

zv.x/v.x C �h/dx dh

D

Z 1
0

G.r/rd
1

�r

Z
Sd�1

Z
Œ0;L/d

zv.x/v.x C �r�/dx d� dr:

We thus see that (A.16) formally yields (A.14) by substituting for � by �r in
(A.16) and integrating with respect to the nonnegative measure G.r/rd dr . We
note that this measure is finite because of our moment assumption on G; cf. (A.1).
We now make this argument rigorous by an application of Lebesgue’s dominated
convergence theorem: The dominating function is obtained as follows:

(A.17)

ˇ̌̌̌
1

�r

Z
Sd�1

Z
Œ0;L/d

zv.x/v.x C �r�/dx d�

ˇ̌̌̌
(A.15)
D

ˇ̌̌̌
1

�r

Z
Sd�1

Z
Œ0;L/d

zv.x/.v.x C �r�/ � v.x//dx d�

ˇ̌̌̌

�
1

�r

Z
Sd�1

Z
Œ0;L/d

jv.x C �r�/ � v.x/jdx d�

� jSd�1j

Z
Œ0;L/d

jrvj:

The second reduction step is to disintegrate Sd�1 into individual axes ˙� 2
Sd�1, which means to reduce (A.16) to

(A.18) lim
�#0

1

�

Z
Œ0;L/d

zv.x/.v.x C ��/C v.x � ��//dx D

1

2

� Z
Œ0;L/d

j� � rvj C

Z
Œ0;L/d

j� � rzvj �

Z
Œ0;L/d

j� � r.v C zv/j

�
;
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where j� � rvj D j� � �jjrvj with � D rv
jrvj

denoting the measure-theoretic nor-
mal (which exists by Besicovitch differentiation of measures). Formally, (A.16) is
obtained from (A.18) by integration with respect to 1

2
d� . This is obvious for the

left-hand side. For the right-hand side we note that because of symmetry,Z
Sd�1

Z
Œ0;L/d

j� � rvjd� D

Z
Œ0;L/d

Z
Sd�1

j� � �jd�jrvj D

Z
Sd�1

j� � ed jd�

Z
Œ0;L/d

jrvj;

where ed D .0; : : : ; 0; 1/T, and observe that for s D x � edZ
Sd�1

j� � ed jd� D

Z
.�1;1/

jsj
�
jSd�2j

p

1 � s2
d�2�p

1 � s2 ds

D jSd�2j

�Z
0

jcos � j sind�2 � d�

D 2jSd�2j

�=2Z
0

cos � sind�2 � d�

D 2jSd�2j

�=2Z
0

d

d�

�
1

d � 1
sind�1 �

�
d�

D jSd�2j
2

d � 1
D 2jBd�1j:

To make this rigorous, we use once more dominated convergence based on the
estimate ˇ̌̌̌

1

�

Z
Œ0;L/d

zv.x/.v.x C ��/C v.x � ��//dx

ˇ̌̌̌
� 2

Z
jrvj;

which is obtained as (A.17).
The third reduction step is to reduce (A.18) to the analogous statement for a

single space dimension, namely: For any w; zw 2 BV.Œ0; L/; f0; 1g/ with w zw D 0
a.e., we have

(A.19) lim
�#0

1

�

Z
Œ0;L/

.w.s C �/C w.s � �// zw.s/ds D

1

2

� Z
Œ0;L/

ˇ̌̌̌
dw

ds

ˇ̌̌̌
C

Z
Œ0;L/

ˇ̌̌̌
d zw

ds

ˇ̌̌̌
�

Z
Œ0;L/

ˇ̌̌̌
d.w C zw/

ds

ˇ̌̌̌�
:

Indeed, by symmetry, it suffices to show (A.18) for � D ed , which prompts us to
introduce the coordinates s D ed � x and x0 D x � sed . We claim that (A.18) is
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obtained from applying (A.19) tow D wx0 D v.x0; � / and zw D zwx0 D zv.x0; � / and
formally integrating over x0 2 Œ0; L/d�1 (with respect to the Lebesgue measure).
This is (formally) obvious for the left-hand side of (A.19). For the right-hand side
it follows from elementary BV-theory [14]: For any v 2 BV.Œ0; L/dx / we have
wx0 2 BV.Œ0; L/s/ for a. e. x0 2 Œ0; L/d�1 andZ

Œ0;L/d�1

Z
Œ0;L/

ˇ̌̌̌
dwx0

ds

ˇ̌̌̌
dx0 D

Z
Œ0;L/d

jed � rvj:

Again, the formal integration is made rigorous with the help of the principle of
dominated convergence based on the estimateˇ̌̌̌

1

�

Z
Œ0;L/

zwx0.s/.wx0.s C �/C wx0.s � �/ds

ˇ̌̌̌
� 2

Z
Œ0;L/

ˇ̌̌̌
dwx0

ds

ˇ̌̌̌
;

and noting that the dominating function
R
Œ0;L/ j

dwx0
ds
j is integrable:Z

Œ0;L/d�1

Z
Œ0;L/

ˇ̌̌̌
dwx0

ds

ˇ̌̌̌
dx0 D

Z
Œ0;L/d

jed � rvj <1:

It remains to justify (A.19). Because of w; zw 2 BV.Œ0; L/; f0; 1g/, w and zw are
functions of s that have a finite number of jumps between 0 and 1. Let us denote
the (pairwise different) jump points by s1; : : : ; sM and zs1; : : : ; zs zM . Clearly,

M D

Z
Œ0;L/

ˇ̌̌̌
dw

ds

ˇ̌̌̌
and zM D

Z
Œ0;L/

ˇ̌̌̌
d zw

ds

ˇ̌̌̌
:

Because of w zw D 0, w C zw jumps where either w or zw jumps, so thatZ
Œ0;L/

ˇ̌̌̌
d.w C zw/

ds

ˇ̌̌̌
DM C zM � 2#.fs1; : : : ; sM g \ fzs1; : : : ; zs zM g/:

Hence the right-hand side of (A.19) is given by #.fs1; : : : ; sM g \ fzs1; : : : ; zs zM g/. It
thus remains to argue that

lim
�#0

1

�

Z
Œ0;L/

zw.s/.w.s C �/C w.s � �//ds D

#.fs1; : : : ; sM g \ fzs1; : : : ; zs zM g/:

Indeed, it is elementary to see that if � is smaller than any distance between two
different elements of fzs1; : : : ; zs zM g, we have exact equality:

1

�

Z
Œ0;L/

zw.s/.w.s C �/C w.s � �//ds D #.fs1; : : : ; sM g \ fzs1; : : : ; zs zM g/;

completing the proof. �
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A.3 Compactness
The following lemma can essentially be found in [1, theorem 3.1]. For the con-

venience of the reader, we include its proof in our situation, following the lines
of [1, theorem 3.1].

LEMMA A.4. Suppose fu�g�#0 is a sequence of admissible configurations such
that fE�.u�/g�#0 is bounded. Then fu�g�#0 is precompact in L1.Œ0; L/d /. In
addition, any accumulation point u satisfies ui 2 BV.Œ0; L/d ; f0; 1g/ for all i D
1; 2; : : : ; N .

PROOF OF LEMMA A.4. We note that for any fixed i D 1; : : : ; N

E�.u�/ � .min
j 6Di

�ij /
1

�

X
j 6Di

Z
Œ0;L/d

uj;�G� � ui;� dx

(4.4)
D .min

j 6Di
�ij /

1

�

Z
Œ0;L/d

.1 � ui;�/G� � ui;� dx:

Writing v� WD ui;� 2 Œ0; 1� for abbreviation, we hence have by (4.4)

(A.20)
1

�

Z
Œ0;L/d

.1 � v�/G� � v�dx stays bounded as � # 0;

and we want to show that fv�g�#0 is precompact in L1.Œ0; L/d / and that any accu-
mulation point v is in BV.Œ0; L/d ; f0; 1g/.

We start off by establishing several functional inequalities for an arbitrary L-
periodic function v.x/ 2 Œ0; 1�:Z

Rd

G�.h/

Z
Œ0;L/d

jv.x C h/ � v.x/jdx dh � 2

Z
Œ0;L/d

.1 � v/G� � v dx;(A.21)

Z
Œ0;L/d

jG� � v � vjdx �

Z
Rd

G�.h/

Z
Œ0;L/d

jv.x C h/ � v.x/jdx dh;(A.22)

Z
Œ0;L/d

v.1 � v/dx �

Z
Œ0;L/d

.1 � v/G� � v dx C

Z
Œ0;L/d

jG� � v � vjdx;(A.23)

Z
Œ0;L/d

jr.G� � v/jdx . ��1
Z

Rd

G2�.h/

Z
Œ0;L/d

jv.x C h/ � v.x/jdx:(A.24)
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We start with inequality (A.21)). Because of G.�h/ D G.h/ (cf. (A.1)), we have
in particularZ

Œ0;L/d

.1 � v/G� � v dx

D

Z
Rd

G�.h/

Z
Œ0;L/d

v.x C h/.1 � v.x//dx dh

D
1

2

Z
Rd

G�.h/

Z
Œ0;L/d

v.x C h/.1 � v.x//C v.x/.1 � v.x C h//dx dh:

Now (A.21) follows since if we write v D v.x/ 2 Œ0; 1� and v0 D v.xCh/ 2 Œ0; 1�,
we have

jv0 � vj � jv0 � vv0j C jvv0 � vj D v0.1 � v/C v.1 � v0/:

Inequality (A.22) follows from Jensen’s inequality using G� � 0;
R
G�dh D 1,

cf. (A.1). Inequality (A.23) follows from the fact that if we write v D v.x/ 2 Œ0; 1�
and v0 D .G� � v/.x/ 2 Œ0; 1�, we have

v.1 � v/ � v0.1 � v/C jv0 � vj:

We now turn to (A.24). We note that

r.G� � v/.x/ D

Z
Rd

rG�.h/v.x C h/dh D

Z
Rd

rG�.h/.v.x C h/ � v.x//dh;

so that

(A.25)
Z

Œ0;L/d

jr.G� � v/jdx �

Z
Rd

jrG�.h/j

Z
Œ0;L/d

jv.x C h/ � v.x/jdx dh:

We observe that because of (A.1) we have

(A.26) jrG�.h/j D �
�d�1

jrGj

�
h

�

�
. ��d�1G

�
h

2�

�
� ��1G2�.h/:

Inserting (A.26) into (A.25) yields (A.24).
We now may conclude: By (A.20), (A.21), and (A.24), r.G� � v�/ is bounded

in L1.Œ0; L/d /. Since in addition G� � v� 2 Œ0; 1�, G� � v� is precompact in
L1.Œ0; L/d /. In view of (A.20), (A.21), and (A.22), G� � v� � v� converges to 0
in L1.Œ0; L/d /. Hence v� is also precompact in L1.Œ0; L/d /, as desired. Now let
v be any accumulation point of v� in L1.Œ0; L/d /. Then it is also an accumulation
point ofG� �v�. Since r.G� �v�/ is bounded in L1.Œ0; L/d /, v is in BV.Œ0; L/d /.
Finally, v 2 f0; 1g, as can be seen by using in (A.23) the inequality (A.20) and the
fact G� � v� � v� ! 0 in L1 that was noted above. �
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[10] Elsey, M.; Esedoḡlu, S.; Smereka, P. Diffusion generated motion for grain growth
in two and three dimensions. J. Comput. Phys. 228 (2009), no. 21, 8015–8033.
doi:10.1016/j.jcp.2009.07.020
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