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Abstract: This study investigated the effects of anodization-
cyclic precalcification-heat (APH) treatment on the bonding
ability of Ca-P coating to the parent metal and osseointegra-
tion of Ti-6Al-7Nb implants. Eighteen Ti-6Al-7Nb discs, 9
untreated and 9 APH-treated, were cultured with osteoblast
cells in vitro, and the cellular differentiation ability was
assayed at 1, 2, and 3 weeks. For in vivo testing, 28 Ti-6Al-
7Nb implants (14 implants of each group) were inserted to
rat tibias, and after each 4 and 6 weeks of implantation, bone
bonding, and osseointegration were evaluated through
removal torque and histological analysis. Osteoblast-
culturing showed twice as much of the alkaline phosphatase
activity on the treated surface at 3 weeks than on the
untreated surface (p<0.05). The treated implants exhibited

higher removal torque values than the untreated ones (15.5
vs. 1.8 Ncm at 4 weeks and 19.7 vs. 2.6 Ncm at 6 weeks,
p<0.05). Moreover, the excellent bonding quality of coats
was confirmed by the existence of cohesive fractures on the
surface of removed APH implants (field emission scanning
electron microscopy and histological observation). Within the
limits of this study, it can be concluded that the APH treat-
ment significantly enhanced osseointegration of the Ti-6Al-
7Nb implant, with the stable bonding between the coating
and the implant surface. © 2014 Wiley Periodicals, Inc. J Biomed
Mater Res Part B: Appl Biomater, 103B: 641-648, 2015.
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INTRODUCTION

Integration between the load-bearing implant surface and
the living bone, osseointegration, is a prerequisite for
implant success. The successful osseointegration begins
with a biomechanical stability of the implant and a deposi-
tion of new bone along the surface." Modifying the geome-
try and/or the chemistry of the implant surface is still an
area of interest in implant research.?™*

Hydroxyapatite (HA) coating has been one of the most
common strategies for modifying implant surface.® It was
shown that a high concentration of calcium/phosphate
favored tissue response by accelerating and enhancing the
fixation to the bone without any soft tissue interactions.”~
Calcium-phosphate (Ca-P) ceramics are considered to pos-
sess bioactive properties via a chemical bonding between
the materials and bone. However, Ca-P ceramic-coated
titanium-substrate has some disadvantages such as porous
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coating, residual stress at the substrate/coating interface,
dramatic changes in the composition and crystalline prop-
erty of the initial Ca-P powder.'®!" These can cause the sur-
face coating to be delaminated at the implant-coating
interface even if the coating is well-attached to the
bone.'®!* This phenomenon was recorded especially in the
titanium implant coated by plasma-spraying—one of the
methods that are frequently used in clinical settings.'>™** A
clinical study of David et al. (1995) found out that the inci-
dence of loosening increased progressively up to 55% after
9 months of HA-coated implants loading with coat delami-
nation.'> On the other hand, some literature described HA
coating delamination as a significant theoretical prob-
lem.**™* Debris of HA from coat loosening may activate
macrophages, decrease local pH, and induce bacterial coloni-
zation, resulting in bone loss. Thus, HA coating delamination
could lead to clinical failure of the implant.’®!*
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In order to promote mechanical retention of Ca-P coat-
ing on the implant surface, the surface of implants can be
roughened to provide anchorage for Ca-P particles.'>®
Anodization on implant surfaces with titanium or titanium
alloys is often employed to form TiO, nanotube layers,
which increases surface roughness and enhances attachment
of Ca-P particles to the implant surface.!”"2° On the basis of
this context, anodization-cyclic precalcification-heat (APH)
treatment has been applied successfully on Ti-6Al-7Nb sur-
face in our previous study.'® The nanosized Ca-P precipi-
tates could penetrate not only between but also inside the
nanotubes, thus forming interlocking Ca-P crystals within
the tubes.’® Hence, a good adhesion of the coating to the
substrate is expected. Moreover, the precalcification layer is
quite thin (1-2 pm) which makes it suitable to minimize
potential problems of coat loosening.*! The proliferation
activity of osteoblasts on Ti-6Al-7Nb surfaces has been
enhanced by APH treatment during 1-week culturing.'®
However, it has not been demonstrated whether this initial
biological behavior would be correlated with their in vivo
performance. Therefore, this study was conducted to investi-
gate effects of the APH treatment on surface bonding and
osseointegration of nanotubular Ti-6Al-7Nb implants in vitro
and in vivo.

MATERIALS AND METHODS

Preparation of cyclic precalcified nanotubular samples
(APH treatment)

APH samples were prepared as previously described.’® Ti-
6Al-7Nb alloy samples (T-Alloy Tough, GC Corp. Tokyo,
Japan) were anodized with glycerol-distilled water (DW)-
NH4F (79, 20, and 1 wt %, respectively) electrolyte to form
TiO, nanotubes. Cyclic precalcification was subsequently
performed by exposing the nanotube-formed specimens
sequentially in 80°C—0.05M NaH,PO, and 100°C—satu-
rated Ca(OH), solutions for 1 min each turn. This process
was repeated for 20 cycles and finished by heat treatment
at 500°C for 2 h.

In vitro test
Eighteen Ti-6Al-7Nb discs measuring 16 mm in diameter
and 1 mm in thickness were prepared and then polished
with up to #1000 grit SiC paper, followed by a removal of
old oxide layer in HNO3:HF:H,0 (12 : 7 : 81 vol %, respec-
tively) solution for 20 s. Nine samples were submitted to
above APH treatment and 37.5°C simulated body fluid
(SBF)-immersed for 2 days (APH group) and the other nine
untreated samples were used as control group (UT group).
Mouse osteoblast cells (MC3T3-E1) were subcultured
over the prepared samples with an initial density of 10*/mL
in order to evaluate their differentiation behavior. a-MEM
(Gibco, USA) containing 10% fetal bovine (Gibco, USA), 500
unit/mL of penicillin (Gibco, USA) and 500 unit/mL of
streptomycin (Gibco, USA) was used as the growth culture
medium. The medium was changed every 2 days, and the
cultures were maintained at 37°C in a humidified 5 vol %
CO, atmosphere. At 1, 2, and 3 weeks after incubation, the
differentiation of osteoblast cells was evaluated through the
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expression of alkaline phosphatase (ALP) activity using the
Sensolyte® pNPP ALP Assay Kit (AnaSpec, CA). The samples
were washed twice with 1X buffer (AnaSpec, CA) to remove
culture medium. Then, each samples were added 200 pL of
0.2% Triton X-100 (AnaSpec, CA) to lyse the cells. The
lysate was collected in a microcentrifuge tube using a cell
scraper, incubated at 4°C for 10 min under agitation and
centrifuged at 2500 rpm for 10 min at 4°C. A 50 pL of
supernatant was mixed with 50 pL of p-nitrophenyl phos-
phate (pNPP) (AnaSpec, CA). The mixture was incubated at
37.5°C for 30 min and stopped by adding 50 pL of NaOH
solution (AnaSpec, CA) in each well. The final solution
showed a yellow-colored product due to conversion of p-
nitrophenyl phosphatase to p-nitrophenol and was meas-
ured spectrophotometrically at 405 nm (microplate reader,
Molecular Devices, CA). The ALP activity was read off from
a standard curve obtained with ALP concentrations of 0-
200 ng/mL. This test was completed with triplicate
samples.

In vivo tests

After obtaining a fresh oxide layer by above etching step,
we divided 28 cylindrical implants (2-mm diameter X 4-
mm length) manufactured from Ti-6Al-7Nb alloy (MEGA-
GEN, Daegu, Korea) into the untreated group (UT) with
machine surface and the APH-treated group (APH) for ani-
mal experiments. Prior to in vivo tests, implant surfaces
were analyzed by using field emission scanning electron
microscopy (FE-SEM in KBSI Jeonju, S-4700, Hitachi, Tokyo,
Japan) equipped with energy dispersive X-ray analysis (EDS,
Bruker, Germany).

This in vivo study was conducted in compliance with the
Declaration of the Helsinki, and it was approved by the
Institutional Animal Care and Use Committee of the Chon-
buk National University Laboratory Animal Center.

Fourteen male Sprague Dawley rats (9-week-old), weigh-
ing ~300 g, were allowed to acclimate about 1 week prior
to study. The rats were deeply anesthetized via the intraper-
itoneal injection of 50 mg/kg of tiletamine plus zolazepam
(Zoletil 50, Virbac Laboratories, Carros, France) and 15 mg/
kg of xylazine hydrochloride (Rompun, Leuverkeusen, Ger-
many). Additional local anesthesia was given on the surgical
site (tibia) using 1 mL of 2% lidocaine with epinephrine (1
: 100,000). The surgical area was shaved and disinfected
with an iodine scrub. The implantation process was
described in Figure 1(A-D). A 1-cm incision was made on
the tibia [Figure 1(A)]. After flap reflection, a 1.8 mm pilot
bur (H1.316018, Komet, Germany) was used to score a hole
on the cortical bone, followed by preparation of an implant
bed in the medial region of tibia diaphysis using a 2.0 mm
guide drill (Neoplant Unity Surgical Kit, Neobiotech, Korea)
[Figure 1(B)]. The operation was done under a copious
saline irrigation, at a rotary speed of <350 rpm. The
implants were press-fit in their designated positions using
gentle tapping [Figure 1(C)]. For each rat, the UT implant
was placed on one tibia and the APH implant was placed on
the opposite side. A 4/0 suture silk (4/0 Black silk, Ailee
Co., Busan, Korea) was used to approximate the surgical
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FIGURE 1. Implantation procedure (A-D) and removal torque measurement in rat tibia (E-H). A, Bone exposure; B, Implant bed preparation; C,
Implant placement; D, Implant position on X-ray image; E, Implantation area exposure after 4-6 weeks; F, Digital torque gauge with a detailed
drawing of 0.1 Ncm; G, remove torque measurement; H, Cross section of implant area after torque removal measurement (H&E staining, x50).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

wound. Antibiotics (300 pL/kg) were administered subcuta-
neously (Amikacin, Samu media, Korea) at 0, 24, and 48 h,
postoperatively. This was followed by an intraoral radiogra-
phy (Kodak 2200, Trophy, France) of the rat tibia to evalu-
ate implant position at 60 kV and 7 mA for 0.125 s [Figure
1(D)]. At 4 and 6 weeks after the implantation, seven rats
from each were sacrificed by thiopental overdose (Thiopen-
tal sodium, ChoongWaePharma, Seoul, Korea).

Removal torque analysis

Removal torque value (RTV) measurement, which was con-
ducted in 5 rats each at 4 and 6 weeks, is depicted in Fig-
ure 1(E-H). The implant sites in the rat tibias were
surgically exposed via a sharp dissection and the overgrow-
ing bone and soft tissues were carefully removed [Figure
1(E)]. Removal torque tests were performed on two tibias
of a rat using a digital torque gauge (9810P, Aikoh Engineer-
ing, Osaka, Japan) with a detailed drawing of 0.1 Ncm [Fig-
ure 1(F)]. After stabilizing the tibia, an implant removal
mount was securely fastened, engaging the external hex that
was connected to the torque gauge with the insertion device
.The gauge was aligned with the implant axis and torque
was increased incrementally by slowly rotating the gauge in
order to rupture the bone-implant interface [Figure 1(G)].
The RTV was measured by a single examiner and recorded
in Ncm for each group.

After removal torque test, the implants were collected
for surface observation by FE-SEM (FE-SEM in KBSI Jeonju,
S-4700, Hitachi, Tokyo, Japan) and EDS (Bruker, Germany).
Implant-removed tibia blocks were harvested from 5 rats
after the removal torque test at each time point (4 and 6
weeks) and fixed in 10% formalin solution for 2 days. The

blocks were decalcified, then cut in 1 cm in length and
dehydrated in a series of increasing concentrations of etha-
nol (70%, 80%, 90%, 95%, 100%) before embedding in
paraffin. Paraffin embedded block were sectioned as per-
pendicular to the longitudinal axis of the implant at a thick-
ness of 5 um by using a rotary microtome (Leica RM 2235,
Wetzlar, Germany) and mounted on glass slides. The sec-
tions were stained with a hematoxylin and eosin (H&E) dye
and then inspected under an optical microscope (Leica DM
2500M, Germany) to assess the histology of breakage inter-
face [Figure 1(H)].

Histological observation

The bone-implant interface was histologically observed at 4
and 6 weeks postoperatively. Implant-installed tibial blocks
from the remaining two rats at each time point (4 and 6
weeks) were fixed in 10% formalin solution for 2 days,
stained in Villanueva bone stain solution for 3 days, and
dehydrated in a series of increasing concentrations of alco-
hol before embedding in methylmetacrylate. Afterwards, the
blocks were sectioned and ground as parallel to the longitu-
dinal axis of the implants to a thickness of about 10-40 um.
Then, the bone-implant interface was examined by an opti-
cal microscope (Leica DM 2500M, Germany).

Statistical analysis

The ALP assay results and RTV were expressed as
mean = SD (SD: standard deviation). Statistical analysis was
performed using one-way analysis of variance (ANOVA) with
Tukey tests. A p-value of < 0.05 was considered statistically
significant. All statistical analyses were carried out using
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FIGURE 2. FE-SEM images (x3.000) and EDS analysis results of the surfaces: A, Machine turned surface (UT); B, Anodized surface with nanotube
structure (inset image, X100.000); C, Cyclic precalcified nanotubular surface (APH). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

computer software, Statistical Package for the Social Scien-
ces (SPSS ver12.0, SPSS, Chicago, IL).

RESULTS

Figure 2 illustrates surface morphology and chemical com-
position of Ti-6Al-7Nb alloy implant through SEM-EDS
examination after cyclic precalcified nanotubular treatment.
The figure shows the untreated surface [Figure 2(A)], nano-
tubular structures formed after the anodization [Figure
2(B)], and a rough Ca-P layer completely covering the TiO,
substrate after the cyclic precalcification [Figure 2(C)]. Upon
analyzing EDS of these surfaces, detected oxygen level
increased in atomic percentage after anodization treatment,
which means that a thicker TiO, layer has been formed on
sample surfaces. After precalcification, the mineral deposits
on APH surface contained calcium and phosphate with the
Ca/P ratio of 1.69, same to Ca/P ratio of hydroxyapatite.

Osteoblasts culture
As seen from Figure 3, the ALP activity of seeded osteo-
blasts on both two surfaces was increased from week 1 to
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FIGURE 3. Differentiation (alkaline phosphate activity) of osteoblastic
cells cultured on untreated (UT) and treated surfaces (APH) after 1, 2,
and 3 weeks. All data are reported as mean =+ standard deviation.
*p<0.05 indicates a statistically significant difference to 3 week-UT.
1tp < 0.05 indicates a statistically significant difference to 3-week-APH.
$p<0.05 indicates a statistically significant difference between UT
and APH.
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week 3, dramatically at third week (p <0.05). During the
first 2 weeks, the osteoblastic differentiation of the APH
group showed a comparable activity to the UT groups. How-
ever, a significantly accelerated activity in the APH group
was recorded at 3 weeks which over twenty-fold higher
than that at 2 weeks and doubled the result of the UT group
at the same assessed time (p < 0.05).

Removal torque test

Table I presents the removal torque measured at 4 and 6
weeks after placing the dental implants. The torque meas-
urements revealed values under 5 Ncm on the control group
at both periods. In APH groups, the mean resistance to tor-
que removal increased from 15.5* 3.3 Ncm to 19.7 = 2.2
Ncm at 4- to 6-week intervals, exhibiting a significant higher
value as compared with controls at both time points with
ratio of 7.6 and 8.6, respectively (p < 0.05).

After implant removal for removal torque analysis, the
remaining tissues as well as the extracted implant surfaces
were histological observed. The surrounding area of UT
implant showed only connective tissue at 4 weeks, but new
bone remnants were observed at 6 weeks [Figure 4(A,B)].
In the APH group, at both 4 and 6 weeks, new bones were
detected on surrounding tissue with darker stains and more
breakages [Figure 4(C,D)]. FE-SEM and EDS analysis [Figure
4(E,F)] of UT implant surfaces revealed few of attached tis-
sues with Ca/P ratio around 1.5 but in other areas where
Ca and P were unidentified. Meanwhile, most of APH
implant surfaces were covered by a rather thick layer of
bone tissue where the Ca/P ratio was around 1.67 [Figure
4(G,H)]. Therefore, interface fractures between new bone
and implant in the UT group and cohesive fractures within
newly formed bone in the APH group were observed.

TABLE I. Removal Torque Values at 4 and 6 Weeks (n=5 Per
Time Point)

Removal Torque UT Group APH Group
4 weeks (Ncm) 1.8 1.1 (*) 15.56 +3.2 (*)
6 weeks (Ncm) 2.6 0.6 (1) 19.7 £ 2.2 (1)

*+ indicates statistically significant differences between the UT
group and the APH group at 4 and 6 weeks, respectively (p < 0.05).
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FIGURE 4. Histological observation after implant removal. A-D: Cross section of implant site (H&E staining, X50). E-H, Implant surface (FE-SEM,
x35), the onsets are the high magnification (X200) of implant surface. |, implant area; C, connective tissue; NB, new bone tissue, arrows: new
bone fractures v, %%: the EDS checked points. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Histological observation of bone-implant interfaces

The implant-installed tibial blocks were observed by the
optical microscope for bone-implant interface examinations
(Figures 5 and 6). The surface of UT implants at 4 weeks
did not demonstrate the contact bone formation, some bone
clusters were observed along implant axis [Figure 5(A)].
The gap between implant surface and these clusters were
about 20 um. Meanwhile, there was a thin layer of newly
formed bone attaching on APH surface at the same period
[Figure 5(B)]. That is suggestive that osseointegration is tak-
ing place between bone and implant surfaces in the APH
group. At 6 weeks, both groups showed a bone adhesion
without gaps along the implant axis, indicating a contact
osseointegration [Figure 5(C,D)]. However, the bone layer

APH 4w

covering the UT surface is thinner, lightly stained as com-
pared with that on the APH surface. Figure 6 shows higher
magnifications of bone-implant interface in the APH groups.
At 4 weeks, de novo bone formed as an extracellular layer
with the osteoblasts and osteocytes [Figure 6(A)]. Mean-
while, at 6 weeks, remodeling areas with existence of osteo-
clasts and osteoblasts inside a new bone layer indicate that
active and mature bones were formed on modified surface
[Figure 6(B)]. Thus, sites receiving implants coated with Ca-
P exhibited a mature bone formation at 6 weeks.

DISCUSSION
For this study, Ti-6Al-7Nb implants underwent a cyclic pre-
calcified nanotubular (APH) treatment in order to form a

FIGURE 5. Histology of bone-implant interfaces (Villanueva bone staining, X100) in the UT group at 4 weeks (A) and 6 weeks (B) and the APH
group at 4 weeks (C) and 6 weeks (D). |, implant; BM, bone marrow; BC, bone clusters; NBL, new bone layer. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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FIGURE 6. High magnification (xX200) from the surface of APH implant at 4 weeks (A) showed de novo bone layer, and at 6 weeks (B) showed
remodeling areas (dashed squares). |, implant; BM, bone marrow; NBL, new bone layer; OB, osteoblast; OC, osteocyte; OCL, osteoclast. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

biocompatible coating as mentioned in our previous study.'®
Afterward, the degree of osseointegration of these modified
implants were accessed in vitro and in vivo.

The APH treated Ti-6Al-7Nb substrate has exhibited a
bio affinity for osteoblastic cells in our previous study.'®
MTT assay showed that modified surface could provide a
favorable rough and porous surface for MC3T3-E1 attach-
ment and growth compare to smooth surface of UT. How-
ever, a slight decrease in proliferation rate on APH treated
samples was recorded at the 7th day, proposing an early
differentiation potential.'® Therefore, the activity of alkaline
phosphatase, an enzyme that is involved in the osteoblastic
differentiation and initial mineral extracellular matrix (ECM)
formation, were evaluated from 1 to 3 weeks in this
study.*?

The results showed significantly increased ALP activity
on the APH surfaces than on the UT surfaces at 3 weeks.
This phenomenon might be attributed to the change in sur-
face morphology, roughness and chemical composition by
precalcification treatment.® The rough surfaces with the Ca-
P nanoparticles have been reported to enhance the attach-
ment and differentiation of osteoblast, thus stimulating early
bone formation better than unmodified surfaces.?*%
Besides that, the bioactivity property of APH coating, which
was reported in the previous study, also might have an
influence on the ECM formation increase.'®?® According to
Gu et al’s study, HA-deposited nanotube surface showed an
improvement of both earlier osteogenic differentiation and
matrix mineralization compared to plain nanotubes.?® It is
believed that during the early healing phase, APH coating
dissolves partly in the body fluid, along with precipitation
of a biological Ca-P layer on the nanotubes.**™*® Subse-
quently, ECM-forming organic compounds would be incorpo-
rated into this newly formed layer, followed by colonization
of osteoprogenitor cells, such as osteoblasts and osteo-
clasts.?”?° As a result, ECM formation would be promoted
in a short period of time.

In addition, the results also represented the dramatic
increase of ALP enzyme in both two groups at 3 weeks,
which implied that the ECM formation might be induced
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strongly at this period. Thus the bone formation would hap-
pen afterwards. Therefore, a 4-week period is desirable to
obtain the intimate bone contact over the whole length of
the implant surface.?” Different time intervals of the
mechanical testing of implants are discussed in the litera-
ture: 2 weeks,30 4 weeks,31 5 weeks,32 and 9 weeks.>3 In
this study, 4 and 6 weeks were selected as time points to
assess the dynamic process of the formation of the bone/
implant interface in vivo.

Removal test is a dynamic one that considers the three-
dimension relationship between implant and bone, showing
the strength of this attachment.®* During both assessment
periods, higher friction forces between the implant and sur-
rounding bone were well demonstrated in the treated group
as compared with the UT group. This suggests a higher
degree of osseointegration existed, which is in agreement
with other reports that Ca-P coated titanium-implants dis-
played a higher mechanical fixation than uncoated ones.®®
After biomechanical test, the removed implant surfaces and
the fractured tissue were examined. Both at 4 and 6 weeKks,
FE-SEM observation in the APH group showed a high degree
of bone contact with the implants, indicating that more
bone had formed in the areas adjacent to the implant with
a high bonding. In addition, bone fragments were also
observed in surrounding tissue, concluding that fractures
had happened between bone tissue layers. That is, the cohe-
sive fractures existed. Meanwhile, in the UT group, at 4
weeks, connective tissue was detected around implant areas
rather than the bone tissue. At 6 weeks, bone tissue was
identified around the implant site though no trace of bone
was found in the removed implant. This suggests that new
bone was formed with a weak bond strength, which caused
fracture at the bone-implant interface while exerting friction
forces.

The current study demonstrated that the Ca-P coating
had a good bonding strength with the Ti-6Al-7Nb substrate.
This can be proposed as a better method to diminish coat
delamination compared with plasma spraying method.
Plasma sprayed Ca-P coated implants have been the most
widely used in implant dentistry. However, the delamination
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or interface fracture has been highlighted as a major con-
cern for the failure of these implants.'*™** This is because
nonuniform coats with a thickness of 50-200 um are created
as well as poor adhesion between the coat and the underly-
ing implant."**¢ It can therefore be regarded that our meth-
ods are useful in the creation of coating with a uniform
thickness of 1-2 um, as it can cause positive long-term clini-
cal results of implant by reducing the debonding or loosening
of the surface lamination during the operation process.
Recently, Ca-P coatings, which are produced using a sputter-
ing process—an alternative to plasma spraying—have been
developed.® In a comparative study of Mohseni et al, the
sputtering method can form a uniform, dense and thin (0.5-3
pum) coating on flat substrates with highest adhesion strength
respect to other methods.'® Ueda et al. investigated the
effects of the sputtering method compared to uncoated
implants with rabbit femur?” Comparing with our RTV
results, RTV ratio of the APH implant/the UT implants is
higher than that of the sputtered implants and uncoated
implants (8.6 and 1.3, respectively) after a period of 4
weeks.?” Because of different studying conditions, a direct
comparison between the methods is impossible to carry on,
however, this fact indicates that APH coating strongly
enhanced biomechanical property of bare substrate. Ascribing
for this, underlying nanotubes played an important role. It is
apparent that mechanical stability of the Ca-P coating also
requires a rough titanium surface to form a good connection
with metallic substrate like nanotubes which formed directly
from Ti base.'®?**® (Cyclic-coating procedures gradually
deposited Ca-P particles inside the nanotubes which may
result in the growth of apatite into and on the tubes, forming
a strong link between substrate and upper Ca-P layer.'®

In this study, the interface of bone-implant was histolog-
ically observed at the same two time points, 4 and 6 weeks,
to investigate the patterns of osseointegration in test and
control groups. The results revealed a notable difference
between the two groups. Contact osteogenesis was estab-
lished between the new bone and APH implant at 4 weeks,
and replaced with more mature bone tissue at 6 weeks.
Whereas, a gap was detected between the UT surface and
bone clusters at 4 weeks, followed by appositional bone
growth from the parent bone layer, at 6 weeks, as a thin
layer of woven bone. The osseointegration has been defined
as a histological concept with direct contact of bone to
implant at the resolution level of the optical microscope.*®
Therefore, it can be stated that osseointegration was taking
place at 4 and 6 weeks on the APH and UT implant, respec-
tively. Moreover, the maturation of the new bone layer on
the APH implant was induced through the transformation
from de novo bone at 4 weeks to lamellae bone with exis-
tence of bone reformation or remodeling at 6 weeks. This
de novo bone adhesion to the implant surface during the
early stage, may lead to a desirable osseointegration.? This
enhancement in osseointegration has been reported in
many past studies, which said that a high concentration of
Ca-P coating on a titanium surface produces a favorable tis-
sue response by accelerating the fixation to the bone with-
out any soft tissue interactions.”™
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It is possible that the positive effects of nano structures
seen at a cellular level disappear when screw-shaped
implants, with a pronounced microroughness, are used. It will
cause hardship to detect the effects in in vivo. In this study,
we therefore used an experimental model of the cylindrical
implant without screws to rule out the effects of screw-in and
screw-out force, as well as to perform histological examina-
tions of the remnant tissue around implant area. However,
with this implant model, the ability of press fit of screws/
threads in bone is also eliminated. Therefore, the RTV in this
study is not as high as in other studies where screw-shaped
implants with various surface modifications were used.>*°
Additional studies, including other surface modifications with
a same design, are required to clarify the effectiveness of this
APH coating on biomechanical properties.

Because our surface modifications were performed in an
aqueous condition, it is plausible that the modifications on
implants with complex shapes and multiple threads would
also be applicable. However, the integrity of this coating
might be damaged by the high shear forces that are gener-
ated during the insertion of screw-like implants. If there are
any chances of coatings with an osteoinductive agent such
as bone morphogenic protein-2 (BMP-2), the fragments of
the coating formed during implant insertion will retain their
depots in surrounding sites, and their osteoinductive poten-
tial is still effective.’® Further studies are therefore war-
ranted to examine the effects of the combination of these
agents with osteoconductive coating.

In summary, the overall qualitative evaluation in this study
revealed that the APH surface had a positive effect on the
early healing and mechanical fixation of implants. Additional
studies, including a comparison of the above treatments with
the groups of nanotubular layers without the precalcification
treatment, and HA-coating without nanotubular layers, would
be required to clarify whether the result was due to a rough-
ness from the nanotubes or due to a chemical composition of
Ca-P precipitates. And a possible limitation of this study was
that histomorphometric analysis was not conducted for quan-
tity evaluation of bone-implant contact.
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