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Abstract
Rationale, aims and objectives An essential requirement for ensuring the validity of
outcomes in matching studies is that study groups are comparable on observed pre-
intervention characteristics. Investigators typically use numerical diagnostics, such as
t-tests, to assess comparability (referred to as ‘balance’). However, such diagnostics only
test equality along one dimension (e.g. means in the case of t-tests), and therefore do not
adequately capture imbalances that may exist elsewhere in the distribution. Furthermore,
these tests are generally sensitive to sample size, raising the concern that a reduction in
power may be mistaken for an improvement in covariate balance. In this paper, we
demonstrate the shortcomings of numerical diagnostics and demonstrate how visual dis-
plays provide a complete representation of the data to more robustly assess balance.
Methods We generate artificial datasets specifically designed to demonstrate how widely
used equality tests capture only a single-dimension of the data and are sensitive to sample
size. We then plot the covariate distributions using several graphical displays.
Results As expected, tests showing perfect covariate balance in means failed to reflect
imbalances at higher moments (variances). However, these discrepancies were easily
detected upon inspection of the graphic displays. Additionally, smaller sample sizes led to
the appearance of covariate balance, when in fact it was a result of lower statistical power.
Conclusions Given the limitations of numerical diagnostics, we advocate using graphical
displays for assessing covariate balance and encourage investigators to provide such graphs
when reporting balance statistics in their matching studies.

Introduction
While the randomized controlled trial (RCT) is the gold standard
for evaluating the effectiveness of health-related interventions, its
implementation is often not feasible because of logistical, practical
or ethical reasons. As an alternative, investigators often choose
from a wide variety of matching approaches in an attempt to
emulate the randomization process using observational data. The
primary difference between the RCT and matching approaches is
that randomization should produce balance on both observed and
unobserved covariates, while matching studies can only endeavour
to obtain balance on observed covariates, and must assume that the
unknown characteristics will not bias the results [1]. Therefore,
observed covariate balance is an essential criterion for helping to
ensure that treatment effects are valid in matching studies.

Covariate balance can be assessed using both numerical and
graphical diagnostics [2,3]. In practice, matching studies typically

report only numerical balance statistics. This may be due to the
perception that the objective criteria provided by quantifiable sum-
maries are preferable to graphical displays, which inherently
require subjective interpretation [4]. However, numerical diagnos-
tics have some important limitations that may actually constrain
their effectiveness in assessing covariate balance. For example, the
most widely used metrics, such as statistical tests to measure the
equality of means (e.g. t-tests) or variances (e.g. variance compari-
son tests), can only assess covariate balance in one dimension (or
moment). As a result, balance (which is typically qualified by a
P-value greater than 0.05) may be observed in one dimension, but
not in others. Thus, investigators would need to run an array of
numerical tests on each covariate in order to get a representation of
the overall balance. Even if investigators pursued this approach,
they would be faced with a second limitation – these statistical
tests are sensitive to sample size, which means that the reduction
in sample size that typically occurs in matching strategies
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(as non-matched controls are dropped from the analysis) may
cause covariates to appear balanced, when in fact a P-value greater
than 0.05 is likely to be the result of reduced power [5]. One
commonly used balance measure, the standardized difference [6],
circumvents the sample size sensitivity issue by dividing the dif-
ference in the two sample means by their pooled standard devia-
tion. However, as the standardized difference does not have an
associated P-value, investigators can only assess the improvement
in balance relative to the covariate in the ‘pre-matching’ state.
Moreover, like the other balance measures mentioned above, the
standardized difference is also limited to reporting balance in a
single dimension.

There are two-sample tests available to measure the equality of
overall distributions, such as the Kolmogorov–Smirnov (KS) test
[7,8] and the Anderson–Darling test [9], but these tests also have
limitations. For example, the KS test is known to have low sensi-
tivity to deviations in the tails, while the Anderson–Darling test
has low sensitivity in the middle of the distribution. Additionally,
a brief review of the literature did not uncover any adaptations of
these tests to accept probability weights or multiple samples,
thereby limiting the use of these tests to 1:1 matching approaches.
Finally, while a significant P-value on one of these tests indicates
an inequality in the distributions, there is no way of knowing at
which points along the continuum inequalities exist.

In this paper, we use simulated data to demonstrate the limita-
tions of numerical diagnostics for assessing covariate balance,
while highlighting the advantages of examining graphical displays
of covariate distributions. We advocate the use of graphical dis-
plays as an integral component in the assessment of covariate
balance and encourage investigators to provide such graphs when
reporting balance statistics in their studies.

Methods

Scenario 1: sensitivity of two-sample tests to
sample size

We demonstrate the sensitivity of the two-sample t-test to differ-
ences in sample size, holding all other statistics constant. Two
variables were drawn from a multivariate normal distribution to
represent the treatment and control groups’ continuous baseline
covariate. The treatment group’s mean and standard deviation
(SD) were 100 and 20, respectively, and the control group’s mean
and SD were 95 and 20, respectively, so that the mean difference
was 5 points and the SD was neutralized. This data generating
process was used to create two artificial datasets, one with a
sample size of 1000 subjects per group and the second with a
sample size of 100 per group. For each dataset, P-values were
calculated from two-sample t-tests. Sensitivity to sample size
would be demonstrated if the P-value was greater than 0.05 after
reducing sample size.

Scenario 2: single-dimensional nature of
equality tests in the two-sample setting

We demonstrate that statistical tests designed to measure the
covariate equality in a particular dimension will inevitably miss
inequalities in other dimensions. Two variables were drawn from a
multivariate normal distribution to represent the treatment and

control groups’ continuous baseline covariate with both groups
having sample sizes of 100 each. The treatment group’s mean and
SD were 100 and 20, respectively, and the control group’s mean
and SD were 100 and 10, respectively, so that the mean difference
was 0 and the SD difference was 10. Four separate tests were then
performed on these data: two-sample t-test, standardized differ-
ence [6], Wilcoxon rank-sum test [10] and the variance ratio test
[11]. The single-dimensional nature of an equality test would be
demonstrated if the P-value was greater than >0.05, when there is
a known imbalance at other points in the distribution (demon-
strated by the corresponding equality of variances test).

Scenario 3: sensitivity of the KS test

We demonstrate the low sensitivity of the KS test to deviations in
the tails that appear to be associated with sample size. Two vari-
ables were drawn from a multivariate normal distribution to rep-
resent the treatment and control groups’ continuous baseline
covariate. The treatment group’s mean and SD were 100 and 20,
respectively, and the control group’s mean and SD were 100 and
10, respectively, so that the mean difference was 0 and the SD
difference was 10. This data generating process was used to create
two artificial datasets, one with a sample size of 100 subjects per
group and the second with a sample size of 50 per group. Addi-
tionally, as a sensitivity test for the reduced sample size, 50 sub-
jects per group were randomly drawn from the first artificial
dataset. For each scenario, P-values were calculated from two-
sample KS test. Sensitivity to sample size would be demonstrated
if the P-value was greater than 0.05 after reducing sample size.

Scenario 4: single-dimensional nature of
equality tests in the multiple-sample setting

We demonstrate that, as in the two-sample case, statistical tests
designed to measure the covariate equality in a particular dimen-
sion for multiple treatment groups will inevitably miss inequalities
in other dimensions. Three variables were drawn from a multivari-
ate normal distribution to represent a continuous baseline covariate
for a three-level intervention. The first treatment group’s mean and
SD were 100 and 10, respectively, the second treatment group’s
mean and SD were 100 and 20, respectively, and the third treat-
ment group’s mean and SD were 100 and 30, respectively, so that
the mean difference between all groups was 0 and only the SD
differed between groups. P-values were calculated from a one-way
analysis of variance (ANOVA) to test for equality in means
between groups, and Levine’s robust test statistic to test for
equality of variances [12]. The single-dimensional nature of an
equality test would be demonstrated if the P-value was greater than
>0.05, when there is a known imbalance at other points in
the distribution (demonstrated by the corresponding equality of
variances test).

Graphical displays

We use several graphic displays to visualize and compare the
distributions of the covariate between groups [13]. For the two-
sample scenario, we utilize a quantile-quantile plot (Q-Q plot),
box plot, histogram and kernel density plot. The Q-Q plot [14]
graphs the quantiles of the covariate for the treatment group
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against the quantiles of the covariate for the control group. The
goal in reviewing the Q-Q plot is to determine how and where the
points deviate from the diagonal line representing perfect correla-
tion between the two distributions. Box plots [15] provide a more
concise summary of each distribution for comparison than the Q-Q
plot by graphing the median, the upper and lower quartiles, the
upper and lower adjacent values, and outliers. In a histogram,
the data are divided into non-overlapping intervals (bins), and the
number of data points within each interval is counted. The graph
depicts these frequency counts – the bar is centred at the midpoint
of each interval – and its height reflects the average number of data
points in the interval. In a kernel density plot, the range is still
divided into intervals, and estimates of the density at the centre of
intervals are produced; however, the intervals are allowed to
overlap and are smoothed [16]. For all graphic displays, the assess-
ment of covariate balance is assessed by the degree of overlap in
the respective distributions. For example, perfect covariate balance
would make one group’s distribution indistinguishable from
another’s.

We illustrate the distributions in the multiple-group scenario
using a quantile plot and box plots. The quantile plot [14] is a
variant of the Q-Q plot, in which the distributions of all groups are
jointly plotted against the common quantile range (0, 1), rather
than contrasting one distribution against another one.

Statistical software

All analyses were conducted using Stata 13.1 (StataCorp, College
Station, TX, USA). Additionally, three graphic displays were gen-
erated through user-written Stata commands: the Q-Q plot used
QQPLOT3 [17], which can plot both unweighted and weighted
Q-Q plots; the quantile plot used QPLOT [18]; and the two-sample
histogram used BYHIST [19].

Results
Table 1 presents the results for the first three scenarios in which
two-sample comparisons are made. For the first scenario, a 5-point
mean difference that is statistically significant (P < 0.001) with
1000 subjects per group becomes statistically non-significant
(P < 0.079) when the number of subjects drops to 100 per group.

For the second scenario, when the mean difference is 0, both the
parametric t-test and non-parametric rank-sum test provide
P-values close to 1.0 while the standardized difference is 0, all of
which indicate near perfect balance in the means. However, the
variance ratio test indicates that the variances (and thus SDs) were
statistically different between the two groups in these data
(P < 0.001). For scenario 3, the KS test identifies the inequality in
the overall distributions with 100 subjects per group (P < 0.039),
but when the sample size dropped to 50 per group (either in the
original sample or by random sampling, 50 from the original
sample), no statistically significant inequalities were found.

Figure 1 illustrates the simulated distributions of the covariate
for the two groups, in scenario 2. As is clearly evident in all graphs,
the distributions of the covariate are considerably different.
However, it is more apparent in the Q-Q plot than in the other
graphs that the only point in the distribution where there is no
divergence between groups is at the mean. This is supported by the
numerical summaries presented in Table 1.

Table 2 presents the results for scenario 4 in which three treat-
ment groups are compared. As shown, when the mean difference is
0, the ANOVA provides a P-value 1.0, indicating a perfect balance
among the three means. However, the robust test for comparisons
of variances indicates that the variances were statistically different
between the three groups in these data (P < 0.001).

Figure 2 illustrates the simulated distributions of the covariate
for the three groups generated in scenario 4. As is evident in all
graphs, the distributions of the covariate are considerably different
between groups, with the quantile plot making it more apparent
than in the other graphs that the only point in the distribution
where there is no divergence between groups is at the mean. This
is supported by the numerical summaries presented in Table 2.

Discussion
The results of these simulations indicate that numerical diagnos-
tics alone provide incomplete, and possibly misleading, sum-
maries of covariate balance. Specifically, we demonstrate that
groups can exhibit covariate balance in the means, while exhibit-
ing fundamentally different distributions. One may argue that if
the ultimate treatment effects will be measured as the difference in
means (e.g. average treatment effects), then achieving balance in

Table 1 Comparisons of covariate balance
between simulated two-sample treatment
and control groups under various scenariosScenario no. Test n (group)

Treated Non-treated

P-value*Mean SD Mean SD

1 Two-sample t-test 1000 100 20 95 20 <0.001
1 Two-sample t-test 100 100 20 95 20 0.079
2 Two-sample t-test 100 100 20 100 10 1.000
2 Standardized difference 100 100 20 100 10 0.000†

2 Two-sample rank-sum 100 100 20 100 10 0.832
2 Variance ratio test 100 100 20 100 10 <0.001
3 Kolmogorov–Smirnov 100 100 20 100 10 0.039
3 Kolmogorov–Smirnov 50 100 20 100 10 0.206
3 Kolmogorov–Smirnov 50 100 20 100 10 0.078‡

*Unless otherwise noted.
†Standardized difference value (lower score is better with 0 being the floor).
‡Derived by sampling 50 subjects per group (of the original 100).
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the means is all that is necessary. However, we also show that what
may appear as covariate balance in the means is actually a result of
decreased sample size that leads to reduced power. Moreover,
decreasing sample size also appears to impact the results of the KS
test, which is designed to compare the equality of distributions (as
opposed to just a single dimension of the data). As most matching
approaches will likely result in smaller samples (as non-matched
individuals will be discarded from the analysis), non-significant
P-values due to insufficient power will falsely appear as covariate
balance. This, of course, raises concerns that if the groups are not
truly comparable on observed baseline covariates, then the out-
comes will be biased.

We also have demonstrated how graphs help visually inspect the
equality of the distributions. In the simulated data, the graphic
displays clearly illustrate that the groups are balanced in the
means, but not at other points in the distribution, particularly in the
tails where, by design, there was no overlap at all. This issue
carries important meaning for health care studies in which imbal-
ances in confounding variables may very likely result in biased
outcomes. For example, assume that the covariate we generated in
our second simulation represents a disease severity score. While,
on average, the treatment and control groups have comparable
severity scores, there is no overlap in the tails of the distribution,
with the treatment group having both much lower and much higher
scores than the control group. Thus, if a hypothetical evaluation
indicated that the treatment group had better outcomes than con-
trols, we would not know if it was due to a larger influence of the

patients in the treatment group with lower disease severity, which,
naturally, would be expected to have better outcomes than those
with higher disease severity. Given that there are no comparable
controls at the tails of the severity score, we cannot perform a
direct comparison to address this question empirically.

Identifying where in the distribution imbalances lie can help
investigators determine the best approach to pursue for adjustment.
For example, if a propensity score [20] was used as the basis for
matching, and visual displays identified distributional imbalances
away from the mean, the investigator could re-estimate the pro-
pensity score with the inclusion of polynomials (i.e. squares and
cubes) of the imbalanced variable, or perhaps utilize boosted logis-
tic regression in lieu of standard logistic regression for estimating
the propensity score. Regression boosting is a general, automated,
data-adaptive modelling algorithm that can estimate the non-linear
relationship between the outcome variable (in this case, treatment
assignment) and a large number of covariates including multiple-
level interaction terms resulting in greater accuracy over standard
linear models [21]. This approach should result in better balance in
the distribution of a given covariate as well as in the distribution of
interacted variables.

Graphical displays of distributions have their limitations. Most
notably, the extent of imbalance is not always clear from visual
inspection. While the data generated for the current examples were
specifically designed to illustrate obvious imbalances, in many
datasets, the imbalances are not that apparent. For example,
covariates may overlap for the greater part of their distributions
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Figure 1 Graphic displays of the two-sample
simulated data (treatment: n = 100,
mean = 100, SD = 20; control: n = 100,
mean = 100, SD = 10). Graph types are
(clockwise from upper left): Q-Q plot, box
plot, kernel density plot, histogram.

Table 2 Comparison of covariate balance
between simulated multiple treatment
groups Scenario no. Test

n
(group)

Group 1 Group 2 Group 3

P-valueMean SD Mean SD Mean SD

4 Analysis of variance 100 100 10 100 20 100 30 1.000
4 Robust variance test 100 100 10 100 20 100 30 <0.001
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with only small divergences, making balance difficult to assess. In
such situations, supplementing graphic displays with complemen-
tary numerical diagnostics may be helpful – provided that the
numerical diagnostics chosen capture multiple dimensions of the
data.

In summary, visual displays allow us to gain a real insight into
the underlying nature of the data while numerical diagnostics
provide only a limited, and in some cases misleading, representa-
tion of those same data. We are not suggesting that investigators
cease to use numerical diagnostics for testing and reporting
covariate balance; rather, we are advocating that graphical displays
of the distributions be considered an additional integral component
in the assessment of covariate balance. We therefore encourage
investigators to provide such graphs when reporting balance sta-
tistics in their studies.
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