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ABSTRACT.

Purpose: To investigate new genetic risk factors and replicate reported associations with advanced
age-related macular degeneration (AMD) in a prospective case—control study developed with a
Spanish cohort.

Methods: Three hundred and fifty-three unrelated patients with advanced AMD (225 with atro-
phic AMD, 57 with neovascular AMD, and 71 with mixed AMD) and 282 age-matched controls
were included. Functional and tagging SNPs in 55 candidate genes were genotyped using the
SNPIlex™ genotyping system. Single SNP and haplotype association analysis were performed to
determine possible genetic associations; interaction effects between SNPs were also investigated.
Results: In agreement with previous reports, ARMS2 and CFH genes were strongly associated
with AMD in the studied Spanish population. Moreover, both loci influenced risk independently
giving support to different pathways implicated in AMD pathogenesis. No evidence for association
of advanced AMD with other previous reported susceptibility genes, such as CST3, CX3CRI,
FBLN5, HMCNI1, PON1, SOD2, TLR4, VEGF and VLDLR, was detected. However, two addi-
tional genes appear to be candidate markers for the development of advanced AMD. A variant
located at the 3 UTR of the FGF2 gene (rs6820411) was highly associated with atrophic AMD,
and the functional SNP rs3112831 at 4BCA4 showed a marginal association with the disease.
Conclusion: We performed a large gene association study in advanced AMD in a Spanish popula-
tion. Our findings show that CFH and ARMS2 genes seem to be the principal risk loci contribut-
ing independently to AMD in our cohort. We report new significant associations that could also
influence the development of advanced AMD. These findings should be confirmed in further studies
with larger cohorts.
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Introduction

Age-related macular  degeneration
(AMD) is a late-onset, genetically
complex disease that causes progres-
sive damage to the macula. Early
stages are characterized by the pres-
ence of small, intermediate or soft
drusen and pigmentary abnormalities
in the retinal pigment epithelium
(RPE). Progression to advanced stage
leads to loss of central vision after the
development of two different types of
late-stage lesions, choroidal neovascu-
larization (CNV), associated with sub-
retinal haemorrhage and scarring; or
geographic atrophy (GA). Advanced
AMD is the major cause of untreat-
able blindness in the Western coun-
tries (Friedman et al. 2004). Although
neovascular AMD accounts for about
10% of AMD cases, it is responsible
for more than 90% of legal blindness
due to AMD (Jager et al. 2008).
Several environmental, dietary, and
genetic risk factors have been estab-
lished for AMD development, includ-
ing age, Caucasian race, heredity, and




smoking history (Seddon et al. 1997;
van Leeuwen et al. 2003). Smoking has
been consistently established as a risk
factor, resulting in about two- to three-
fold increased risk of developing AMD
in current-smokers compared with
never-smokers (Thornton et al. 2005).

In recent years, major progress has
been made in elucidating the AMD
genetic basis through the identification
of two major risk loci at 1q31 and
10q26, together accounting for above
50% of AMD cases (Edwards et al.
2005; Klein et al. 2005). At 1q31, sev-
eral risk variants and haplotypes in
the complement factor H (CFH) gene
have been strongly associated with
early and advanced AMD, suggesting
an involvement of immune-mediated
complement pathway in AMD patho-
genesis (Edwards et al. 2005; Hag-
eman et al. 2005, 2006; Klein et al.
2005; Hughes et al. 2006; Li et al.
2006). In addition, several comple-
ment genes have recently been also
associated with AMD susceptibility,
including complement factor B (CFB),
complement 2 (C2), and complement
3 (C3) genes (Gold et al. 2006; Maller
et al. 2007; Yates et al. 2007). Besides
the complement pathway, the major
genetics contributor to AMD risk lies
in 1026 locus at ARMS2/HTRAI
genes. Variants in this region have
been consistently reproducible across
multiple ethnic groups (Jakobsdottir
et al. 2005; Rivera et al. 2005; Dewan
et al. 2006; Schmidt et al. 2006; Tan-
imoto et al. 2007; Weger et al. 2007).
To date, many candidate gene associa-
tion studies have been carried out,
describing several other minor suscep-
tibility variants. However, those find-
ings should be considered as
inconclusive because of the lack of
consistent replication in different pop-
ulations  (Swaroop et al.  2009).
Despite this progress in AMD genetic
research in the past few years, the
total number of loci involved in AMD
development and their account for the
population attributable risk are far
from being fully known. Identification
of these genetic and environmental
risk factors is the first step towards
earlier detection, prevention, and in
the future, better treatments.

To further investigate the genetic
complexity of advanced AMD in
Spain, we performed a large and com-
prehensive study of candidate genes
for advanced AMD, including 350

functional and tagging variants in 55
genes. Our aim was to identify
new genetic risk factors, and to repli-
cate the two major and other minor
AMD risk loci previously reported.
We additionally aimed to explore the
combined effects and potential inter-
actions between gene variants.

Materials and Methods

Patient population

A total of 353 case subjects with
advanced AMD and 282 age-matched
unrelated controls were recruited from
ophthalmic clinics in fifteen hospitals
from the Spanish multi-centre group
of AMD. Subjects were all Caucasian
and of Spanish descent.

The diagnosis of AMD was estab-
lished on the basis of 35° colour pic-
tures obtained of the macular area of
each eye, after dilatation of pupils with
tropicamide 0.5% and phenylephrine
5%. Fundus photographs were graded
according to the Age-Related Eye Dis-
ease Study (AREDS) classification for
AMD by two trained professionals
(Age-Related Eye Disease Study
Research Group 2000). AMD patients
were categorized into early and
advanced AMD, according to status in
the more severely affected eye. Briefly,
early AMD (grades 2 and 3) was
defined as the presence of either soft,
distinct drusen with pigmentary irregu-
larities, or soft, indistinct drusen with
or without pigmentary irregularities.
Advanced AMD (grade 4) was defined
as atrophic, neovascular or mixed
AMD. As this study focused on end-
stage disease, patients with early AMD
changes were excluded. Patients were
classified in three subgroups: 225 sub-
jects with atrophic AMD, 57 subjects
with neovascular AMD, and finally 71
patients with a mixed phenotype, with
both geographic atrophy and choroidal
neovascularization.

Age-matched controls were recruited
from the same hospitals during routine
ophthalmic examinations and were
above 65 years of age. Control individ-
uals had no evidence of drusen in either
eye, macular or retinal disorder after
ophthalmic examination, family rela-
tionship with the AMD cohort, or fam-
ily history of maculopathies.

This study was conducted according
to the recommendations of the Decla-
ration of Helsinki and approved by the

local ethics committees of the partici-
pating institutions. Signed informed
consent was obtained from all subjects
before inclusion in the study. Each par-
ticipant was given a short question-
naire about sex, smoking, refraction,
medical history review, and familial
history of AMD. Data on disease sta-
tus, sex, age, and smoking history of
subjects are provided in Table 1.

Candidate genes and SNPs selection

Fifty-five candidate genes were
selected on the basis of biological and
genetics knowledge of AMD. We
included genes involved in AMD
pathogenic mechanisms, such as oxi-
dative damage, chronic inflammation,
complement regulation, RPE or pho-
toreceptor death and angiogenesis reg-
ulation, by previous expression,
knock-out, proteomic or biochemical
studies (Mullins et al. 2000; Lambooij
et al. 2003; Rakic et al. 2003; Hahn
et al. 2004; Martin et al. 2004). We
also selected some functional candi-
date genes located at several loci asso-
ciated with the disease by previous
genome-wide linkage studies, such as
1932, 3q24-q25, 4q27, 9933, 12q23.2—
2431, 17q25.1, 19q13.31 (Majewski
et al. 2003; Abecasis et al. 2004;
Weeks et al. 2004; Fisher et al. 2005;
Jun et al. 2005; Barral et al. 2006).
Finally, we also studied the two major
risk loci for AMD, CFH and ARMS2
genes, and other putative susceptibility
genes, such as ABCA4, APOE, CST3,
CX3CRI1, FBLNS, HMCNI1, PONI,
SOD2, TLR4, VEGFA and VLDLR.
More information about the candidate
genes and their selection are given in
the Appendix.

Our aim was to examine common
variations [Minor Allele Frequency
(MAF) >0.1] in the selected candidate
genes for AMD predisposition. Single
nucleotide polymorphisms (SNP) selec-
tion was based on functional variation
and linkage disequilibrium (LD) data
from the International HapMap Pro-
ject [http://www.hapmap.org/] (Hap-
Map 2003). First, we selected all
known common non-synonymous cod-
ing SNPs deposited in the dbSNP data-
base (Build 126) [http://www.ncbi.
nlm.nih.gov/SNP/index.html]. Second,
we used FESD, a functional SNP
Database [http://variome.kobic.re.kr/
FESD/index.php] in order to prioritize
putative regulatory SNPs (Kang et al.
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Table 1. Baseline characteristics of age-related macular degeneration patients and controls.

Variable Controls (N = 282) Cases (N = 353) p-value
Afection status, n (%)
No AMD 282
Neovascular AMD 225 (63.7)
Geographic atrophy 57 (16.2)
Mixed AMD 71 (20.1)
Sex, n (%)
Male 126 (44.7) 163 (46.2) 0.707
Female 156 (55.3) 190 (53.82)
Mean age (SD) 75.1 (5.8) 76.74 (5.82) 0.003
Smoking history, n (%)
No. of subjects 278 344 0.134
Never smoked 209 (75.2) 240 (69.8)
Current or former smoker 69 (24.8) 104 (30.2)
HTA, n (%)
No. of subjects 280 348 0.983
No 133 (47.5) 165 (47.4)
Yes 147 (52.5) 183 (52.6)
Diabetes mellitus, n (%)
No. of subjects 281 348 0.874
No 241 (85.8) 300 (86.2)
Yes 40 (14.23) 48 (13.8)
Atheromatous disease, n (%)
No. of subjects 280 345
No 226 (80.7) 269 (78)
Ischaemic cardiopathy 32 (11.4) 44 (13) 0.568
Ischaemic stroke 6(2.1) 12 (3.6) 0.297
Peripheral atherosclerosis 27 (9.6) 33 (9.8) 0.950

2005). Finally, using genotypes and
haplotypes from the HapMap Cauca-
sian (CEU) population panel, tagSNPs
were selected by using a tagging strat-
egy with the Tagger tool implemented
in Haploview (Barrett et al. 2009),
using a strong LD tagging criteria of
r* > 0.8 and with MAF >10%. Each
candidate gene was covered including
an extended region of 10 kb upstream
and downstream of the coding region.

Genotyping

Genomic DNA was isolated from
peripheral blood using Wizard Geno-
mic DNA Purification Kit (Promega,
Madison, WI, USA). SNP genotyping
was performed by the SNPlex™
genotyping system available in the
Santiago de Compostela node of the
National Genotyping Centre of Spain
(CEGEN, Santiago de Compostela,
Spain) (Tobler et al. 2005). Genotyp-
ing assays were successfully designed
for 380 SNPs using the assay design
to the SNPlex System Bioinformatics
Design Pipeline. SNPlex technology
uses oligonucleotide ligation assay
(OLA) combined with multiplex PCR
technology to achieve allelic discrimi-
nation and target amplification. The
final products are detected by capil-

lary electrophoresis on 3730x] DNA
Analyzer (Applied Biosystems, Foster
City, CA, USA) and analysed with
GeneMapper v.4.0 (Applied Biosys-
tems). As a quality control, we tested
for any departure from Hardy—Wein-
berg equilibrium (HWE) in control
samples (p > 0.001).

Quality measures taken into
account for genotyped SNPs to be
excluded from the subsequent analysis
were: MAF < 0.05, genotyping suc-
cess <80% and failed Hardy—Wein-
berg equilibrium test in control
samples (p > 0.001).

Statistical analysis

Analyses of genotyping results were
performed using several toolsets
implemented in SNPator [http://
www.snpator.com/] (Morcillo-Suarez
et al. 2008), Haploview 4.0 [http://
www.broad.mit.edu/mpg/haploview/]
(Barrett et al. 2005) and SNPassoc
[http://cran.r-project.org/web/packages
/SNPassoc/index.html] software (Rak-
ic et al. 2003). Mann—Whitney U test
was used to compare the ages of cases
subjects and controls. Chi-square test
was used to compare categorical vari-
ables and allele or haplotypes frequen-
cies between AMD patients (or in the

three AMD subgroups) and controls
and to check for Hardy—Weinberg
equilibrium (HWE) in control group.
Fisher’s exact test was used when
allele counts were <5 by convention.
Likelihood ratio test was used to
compare genotype frequencies and to
investigate interaction effects between
SNPs. Dominant, recessive and cod-
ominant models were considered and
the Akaike information criteria (AIC)
was used to choose the genetic model
that best fits the data. Adjusted analy-
ses by traditional risk factors of AMD
(age, gender and smoking status) were
done with logistic regression models.
p values, odds ratios (ORs) and 95%
confidence intervals are reported. To
evaluate the significance of the genetic
associations with AMD after adjust-
ment for multiple testing, permutation
correction was performed with the
association tests of individual SNPs
with 10 000 simulations (Corrected
p < 0.05 was considered as signifi-
cant).

Linkage disequilibrium was assessed
using both D’ and r* measures imple-
mented in Haploview. Haplotype
inference was performed by the EM
algorithm and haplotype blocks were
generated by the algorithm and
parameters of Gabriel et al. (2002).
Permutation test was used to adjust
for multiple testing.

Results

We genotyped 380 SNPs in 55 candi-
date genes in a Spanish population of
353 patients with advanced AMD
and 282 age-matched control subjects.
The mean age at examination was
76.2 years for AMD patients (standard
deviation [SD], 5.9 years; range, 52—
96 years) and 75.1 years for controls
(SD, 5.8 years; range, 65-92 years).
Although patients were slightly older
than controls (p = 0.003), the other
factors, such as the gender, smoking
status, hypertension, diabetes mellitus,
and atheromatous disease, did not dif-
fer between cases and controls.

Of the selected SNPs, 27 failed in
the SNPlex Genotyping system, 14
had low genotyping call rate and 7
were monomorphic in our population.
Therefore, these 48 of the 380 SNPs
were not further studied. The success
genotyping rate for the remaining
SNPs was above 92%. These were
tested separately in case and control
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Table 2. Single marker analysis. Allele association results.
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OR, odds ratios.

Perm. p value = p-value from 10 000 permutations
* Significant p-values (<0.05) are shown in bold.

samples for any departure from the
Hardy—Weinberg equilibrium. All the
SNP were in Hardy—Weinberg equilib-
rium in controls samples (p > 0.001)
with the exception of two SNPs
(rs968451 and rs4858652), which were
also excluded from further analyses.

Single-SNP association study

Association analysis was directly
assessed with the 330 SNPs (Appen-
dix) and adjusted analyses by age,
gender and smoking status were also
performed, with similar results (data
not shown). After correction for
multiple hypothesis testing through
permutation analysis (corrected-p <
0.05), SNPs strongly associated with
advanced AMD are compiled in
Tables 2 and 3. Additional stratified
analyses by AMD subphenotype (neo-
vascular, atrophic or mixed AMD)
were also performed and most of the
above SNPs remained statistically sig-
nificant in spite of the smaller number
of atrophic and mixed AMD patients

In agreement with previous reports,
both ARMS2 and CFH genes were
associated with AMD in Spanish popu-
lation (de la Fuente et al. 2007; Recal-
de et al. 2008). Briefly, the T risk allele
in the A69S variant (rs10490924) at
ARMS?2 gene showed the strongest
association with late stage AMD
(T allele, OR =394, p =175 X
107%%; ORpom = 12.64, ORye = 4.19,
p = 319 x1072). As shown in
Table 2, A69S confers similar risks to
the three forms of advanced AMD. In
the same way, seven alleles at CFH
gene were also significantly associated
with advanced AMD patients. Between
them, two intronic tagging SNPs
(rs1329428 and rs1329421) showed the
strongest associations (OR = 2.49,
p=213 x107"° and OR = 2.04,
p = 8.12 x 107'°, respectively). When
neovascular, atrophic and mixed AMD
stratified analyses were performed,
association with CFH gene remained.
No epistatic interactions were detected
between rs10490924 at ARMS2 gene
and the two most significant SNPs at
CFH gene based on the likelihood ratio
test (Table 4 ).

In addition to the previously known
risk variants of AMD, a tagging SNP
(rs6820411) located 3” of FGF2 (Fibro-
blast growth factor 2) was also asso-
ciated with advanced AMD after
permutation correction (allele A OR =
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1.96, p = 0.0043; ORAp+aCc =2.2,p =
0.0076). Also, their effect remained sig-
nificant after adjusting for other risk
factors, including smoking status, age
and polymorphisms in CFH and
ARMS?2 (data not shown). When phe-
notype subgroups were compared with
controls, allele and genotype frequency
differences were also found. Although
the association remained significant
only for atrophic AMD cases after cor-
rection for multiple testing, exudative
and mixed AMD cases showed a trend
toward association (Table 2). Epistatic
interactions were not detected between
rs6820411 at FGF2 and risk alleles in
ARMS?2 and CFH based on the likeli-
hood ratio test, as shown in Table 5.

In order to replicate the putative
effect of FGF2, the associated polymor-
phism in Spanish population was addi-
tionally genotyped in a total of 609
AMD cases and 325 healthy Caucasian
subjects from US (Swaroop). No evi-
dence of association was found in this
cohort (allele association p = 0.17).

Additionally, two variants showed a
lesser extent of association with
advanced AMD after a multiple testing
correction. A functional SNP at ABCA4
gene (rs3112831) had a marginal asso-
ciation (p = 0.0015) with advanced
AMD. rs2384571, and a tagSNP located
in CGREFI gene, had also shown a
significant association but only for atro-
phic AMD patients (p = 0.0045).

Haplotype association analysis

To determine whether any of the haplo-
types in the candidate genes could be
associated with AMD, linkage disequi-
librium (LD) analysis and haplotype
estimation were performed. Haplotype
analysis did not detect any association in
the additional candidate genes, only
CFH and FGF2 haplotypes showed a
strong evidence of association with late
AMD after correcting for multiple test-
ing (corrected-p < 0.05). The associa-
tion between the haplotype carrying risk
alleles was either equal or weaker than
the association at each individual SNP.
In concordance with previous
reports, CFH region showed extensive
LD in our population, as shown in
Fig. 1. Except for rs800292, all SNPs at
CFH gene were included in a large LD
block. Haplotype estimation in CFH
gene in cases and controls identified a
common risk haplotype (H1) in 50% of
AMD cases versus 35% of controls
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Table 4. Two loci analysis. CFH and LOC 387715 interactions.

OR (95% CI)
rs10490924
G/G G/T T/T Interaction p
rs1329421
A/A 1 4.3 (8.2-2.3) 13.2 (39-4.5) 0.99871
A/T 2.3 (4-1.3) 9.1 (17-4.9) 33.1 (101.5-10.8)
T/T 3.9 (7.9-1.9) 15 (31.7-7.1) 45.2 (362.8-5.6)
rs1329428
G/G 1 4.5 (7.7-2.6) 12.3 (36.8-4.1) 0.79878
A/G 0.6 (1-0.4) 2.7 (4.6-1.3) 10.7 (37.4-3.1)
A/A 0.2 (0.6-0.1) 0.5(1.3-0.2) 0.8 (5.12-0.13)
1r$3766404
T/T 1 3.9 (5.8-2.5) 13 (31.7-5.4) 0.64755
C/T 0.4 (0.7-0.2) 2.6 (5.4-1.3) 5.4 (16.7-1.7)
Cc/C 0.4 (3.2-0.04) 0.6 (2.4-0.2) NA
rs1831282
T/T 1 3.9 (7.5-2) 10.6 (32-3.5) 0.9939
C/T 2.07 (3.7-1.2) 8.6 (16.3-4.5) 30.6 (94.8-9.8)
Cc/C 3.3(6.7-1.7) 14.1 (29.3-6.8) 52.9 (420.4-6.6)
rs12144939
G/G 1 3.7 (5.8-2.4) 13.8 (36.1-5.2) 0.61646
G/T 0.5 (0.8-0.3) 3 (1.5-5.8) 6.1 (18.7-2)
T/T 0.1 (1.1-0.02) 0.41 (1.5-0.1) 0 (NA-0)

Table 5. Two locus analysis. FGF2 interactions with CFH and LOC387715.

OR (95% CI)

rs6820411
C/C C/A A/A Interaction p
CFH

rs1329421
A/A 1 2.2 (4.6-1.1) 0 (0-NA) 0.500
A/T 2.1 (3.2-1.4) 3.7 (6.8-2) 3.3 (18.6-0.6)
T/T 3.3 (5.6-2) 12.5 (37-4.2) NA

rs1329428
G/G 1 2.3 (4.4-1.2) 0.6 (9.2-0.04) 0.373
A/G 0.5 (0.7-0.3) 1.1 (2.2-0.6) 1.1 (6.3-0.2)
A/A 0.2 (0.34-0.1) 0.1 (0.5-0.02) NA

r$3766404
T/T 1 1.9 3.1-1.2) 0.7 (3.6-0.1) 0.124
C/T 0.4 (0.7-0.3) 1.1 (2.5-0.4) NA
Cc/C 0.2 (0.7-0.05) NA NA

rs1831282
T/T 1 2.1 (44-1) NA 0.729
C/T 2 (3-1.33) 3.8 (7.1-2.1) 2.2 (10.2-0.5)
Cc/C 3.3 (5.5-2) 10.3 (28-3.8) NA

rs12144939
G/G 1 2.3 (3.9-1.4) 1.1 (6.4-0.2) 0.836
G/T 0.5 (0.7-0.3) 1.1 (2.3-0.5) 1.4 (15.6-0.1)
T/T 0.1 (0.5-0.04) 0.1 (1.2-0.02) NA

LOC387715

r$10490924
G/G 1 2.5(4.5-1.4) 2.1 (10.9-0.5) 0.858
G/T 4.1 (6.2-2.7) 8.7 (17-4.5) NA
T/T 14.5 (31.9-6.6) 16.1 (72.1-3.6) NA

CFH gene were previously described
as associated to AMD (Hageman
et al. 2005; Klein et al. 2005; Li et al.
2006; Francis et al. 2007).

The strong linkage disequilibrium
present in this region makes it difficult
to distinguish the causal variant of
another in linkage disequilibrium with

it. Although CFH Y402H could play
a causal role in the development of
AMD, as postulated by several
reports (Skerka et al. 2007; Yu et al.
2007; Ormsby et al. 2008), also other
variants could increase the risk of
AMD by regulating the expression of
CFH or CFH-related genes located
within the RCA (Regulation of
Complement Activation) locus on chro-
mosome 1. In our Spanish AMD
cohort, we could also found a set of
common susceptibility and protective
haplotypes against AMD, as previ-
ously observed in other Caucasian
population. Those haplotypes were
defined by 7 SNPs, and two of them,
T allele at rs1329421 and the A allele
at rs1329428 were exclusively found in
the risk and protective haplotypes,
respectively.

Although we could not asses the
AMD risk associated with CFH
Y402H due to a unsuccessful genotyp-
ing assay with SNPlex platform, we
could previously report a risk effect
on advanced AMD in a preliminary
study with 175 AMD cases and 119
controls (de la Fuente et al. 2007).
When we considered only common
samples analysed in both cohorts,
Y402H variant showed a strong LD
with  rs1329421 and  rs1831282
(* = 0.98 and 0.92, respectively). The
risk-associated C-allele of the Y402H
variant was found to take part of the
risk haplotype HI (data not shown).
Therefore, our 7-SNP haplotype seems
to fit well with risk haplotypes
described in other Caucasian popula-
tions.

Our results showed that significant
CFH polymorphisms overall associate
with a similar frequency with the neo-
vascular, atrophic and mixed AMD
subtypes. Neither single variants nor
risk haplotype preferentially increased
susceptibility to one of these 3 pheno-
types. In our report, we did not
include early or intermediate stages of
AMD; so, whether those polymor-
phisms also contribute to earlier
AMD phenotypes remains to be fully
explored.

Our findings also confirm ARMS?2
as another principal contributor to
advanced AMD risk in Spanish popu-
lation (de la Fuente etal. 2007,
2007; Fritsche et al.
2008; Recalde et al. 2008). In agree-
ment with previous studies, we could
not identify gene interaction between

Kanda et al.
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Fig. 1. LD and haplotype maps of the CFH locus in this Spanish population. A schematic representation of the intron/exon structure of the
CFH gene is indicated above the LD plot. Relative positions of studied SNPs are also indicated. Each box provides 1 values with darker red
shades representing stronger LD. Haplotype association analysis in cases and controls were performed for the single haplotype block found at this
locus. All of the haplotypes with a frequency of > 1% are displayed. The estimated frequencies of the haplotype in cases and controls, ORs, 95%
CI and p-values are also shown. The risk haplotype (H1) is shown in red shading, and the protective haplotypes (H3, H4 and HS) are shown in
green shading. Alleles exclusively found in these risk and protective haplotypes are boxed.

CFH and ARMS?2. Thus, the A69S
polymorphism in ARMS?2 is strongly
associated with advanced AMD in an
independent extent of the CFH poly-
morphisms.

With regard to the rest of gene vari-
ants studied here, most of them did
not show allelic or genotype frequency
differences between AMD cases and
controls. Only rs6820411 at FGF2
gene and rs3112831 at ABCA4 gene
maintained statistical significance after
multiple testing correction.

Fibroblast growth factor 2 (FGF2)
is a widely expressed protein with
potent angiogenic activity that pro-
motes growth and differentiation of a
broad spectrum of cell types. FGF2
seem to play also an essential role in
VEGF-dependent choroidal neovascu-
larisation (Frank 1997; Browning
et al. 2008). It was found in high con-
centration in neovascular tissue in
AMD patients and up-regulated in
laser-induced choroidal neovasculari-

sation (Ogata et al. 1996; Cameron
et al. 2007). In our study, we found a
strong association between advanced
AMD and r1s6820411 even after
adjusting for age, sex, smoking, CFH
or ARMS? risk variants. In addition,
when endophenotypes were consid-
ered, significant association with atro-
phic AMD was also maintained after
multiple testing corrections.

rs6820411 is located downstream of
FGF2 in the promoter region of
NUDT6 gene, which is transcribed in
the opposite direction (Fig. 2).
NUDT6 transcription generates an
overlapping antisense RNA (FGF-AS)
implicated in the post-transcriptional
regulation of FGF-2 expression and
function (Baguma-Nibasheka et al.
2007). HapMap Phase II data shows a
large extent of LD as the 37
FGF2/FGF-AS region, making possi-
ble that rs6820411 being in LD with a
non-assayed causal variant at FGF-
AS. The lack of replication in an

admixed US population with patients
at early and advanced AMD stages
could be reflecting a population and
phenotype-dependence of this variant
on AMD susceptibility. Epidemiologi-
cal studies have revealed differences in
the prevalence of advanced AMD
among different ethnic groups with
major rates in Caucasian than African
and Asian individuals (Age-Related
Eye Disease Study Research Group
2000). As HapMap data showed,
rs6820411 is only polymorphic in
Caucasian (CEU) population. In addi-
tion, despite showing positive associa-
tion with general AMD in our study,
when subclinical forms of the disease
were considered, the putative risk
allele was only detected in the atro-
phic forms. Consequently, further
resequencing and association analyses
of FGF2/FGF-AS region in a larger
cohort, phenotypically well character-
ized in the different clinical AMD
phenotypes, are needed to confirm the
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Fig. 2. LD and haplotype maps of the FGF2 locus in this Spanish population. A schematic representation of the intron/exon structure of the
FGF2 and NUDT6 genes with the relative positions of tagSNPs, is indicated above the LD plot. Each box provides r* values with darker red
shades representing stronger LD. Haplotype association analysis in cases and controls are also performed on the two haplotype blocks found at
this locus. All of the haplotypes with a frequency of >1% are displayed. The estimated haplotypic frequencies in cases and controls, p-values,
ORs and 95% CI are also shown. The risk haplotype (H3) is shown in red shading remarking in a box the risk allele at rs6820411.

putative role of FGF-AS in AMD sus-
ceptibility.

ABCA4 is the retina-specific 4BC
transporter gene and responsible for
the Stargardt disease, an autosomal
recessive form of juvenile macular
degeneration. We observed a marginal
allelic association with the missense
H423R  variant  (rs3112831)  with
advanced AMD. Although some
authors reported mutations in 4BCA4

gene in a small percentage of AMD
cases (Allikmets et al. 1997; Shroyer
et al. 2001), most of the studies
reported no statistical significant asso-
ciation (Rivera et al. 2000; Souied et al.
2000; Guymer et al. 2001; Schmidt
et al. 2003). In a similar way, we
observed some marginal significant
association with two variants at
CGREFI and APOE variants with
atrophic and mixed AMD forms. Addi-

tionally studies are needed with larger
cohorts to confirm those observations.
We could not detect statistically sig-
nificant association in our population
between other minor susceptibility
genes and advanced AMD, such as
CST3, CX3CRI1, FBLNS, HMCNI,
PONI1, SOD2, TLR4, VEGFA and
VLDLR, in agreement with other
reports (Schultz et al. 2003; Abecasis
et al. 2004; Baird et al. 2004; Hayashi
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et al. 2004; Bojanowski et al. 2005;
Esfandiary et al. 2005; Schmidt et al.
2005; Fuse et al. 2006; Kaur et al.
2006; Seitsonen et al. 2006; Fisher
et al. 2007; Richardson et al. 2007;
Despriet et al. 2008; Edwards et al.
2008; Utheim et al. 2008). Discrepan-
cies in replication of risk variants in
association studies could be caused by
population heterogeneity, disease het-
erogeneity, and/or the use of different
diagnostic criteria among cases, but it
could also reflect the lack of power to
detect modest gene effects with under-
sized samples. With our sample size,
the study reached >80% power at a
5% significance level to detect an odds
ratio greater than 1.52 when the allele
frequency is 0.05, or an OR >1.26
for an allele at a frequency of 30%.
Since we only examined for associa-
tion advanced stages of AMD in our
study, it could be possible that some
of these candidates genes are only
associated with the early forms of
AMD.

Recently, other risk and protective
variants on complement genes have
been strongly associated with AMD;
however, they could not be assessed
here because the study design and
genotyping were performed before the
variants in these loci were confirmed
as risk and protective factors.

In summary, we have replicated
the CFH and ARMS2 gene variants
association with advanced AMD in
the Spanish population. Moreover, as
it was previously reported (Deangelis
et al. 2008), both loci influence risk
independently, giving support to dif-
ferent pathways implicated in the
pathogenesis of the disease. No evi-
dence for a role of other previously
reported genes in the development of
AMD was found. Nevertheless, more
extended studies should be performed
in order to role out the effect of
these genes taking into account dif-
ferent groups of populations and pos-
sible interactions with other genetic
or environmental factors. Finally,
although we have identified a gene
variant (rs6820411) within the down-
stream region of the FGF2 locus,
with a novel hypothetical role in the
pathogenesis of AMD, we could not
replicate our findings in a matched
US American set of samples. Valida-
tion of the putative effect of this var-
iant deserves further analysis in an
extended group of late AMD patients

with European descent, well charac-
terized in the different clinical forms
of the disease.

Acknowledgements

We greatly thank all the members of
the Spanish multi-centre group of
AMD: A.Garcia Layana, Clinica Uni-
versitaria de Pamplona, Navarra;
B. Pazos Gonzalez, Instituto Gallego
de Oftalmologia, Santiago de Compos-
tela; M. Diaz Llopis, Hospital Univer-
sitario la Fe, Valencia; C. Torrdn,
Hospital Universitario Miguel Servet,
Zaragoza; R. Coco, IOBA, Valladolid;
F. Martinez, Hospital Marques de Val-
decilla, Santander; J. Arraiz, Instituto
Clinico Quirtrgico de Oftalmologia,
Bilbao; J. M. Ruiz Moreno, Vissum In-
stituto Oftalmoldgico, Alicante; C. De-
sco Esteban, Fundacion Oftalmoldgica
del Mediterraneo, Valencia; E. Este-
ban, Hospital Virgen de la Macarena,
Sevilla; M.S. Figueroa, Hospital Ram-
on y Cajal, Madrid; F. Goémez-Ulla,
Hospital Clinico Universitario de San-
tiago de Compostela; J. Bafiuela Bafiu-
ela, Hospital de Alcorcon, Madrid;
B. Fernandez-Vega Sanz, Instituto Oft-
almologico Fernandez Vega, Asturias;
L. Arias, Hospital Universitario de
Bellvitge, Barcelona; and J. Fernandez
Vigo, Facultad Medicina, Universidad
de Extremadura.

This study was supported by grants
from the Xunta de Galicia (PGI-
DIT06PXIB208204PR), the Instituto
de Salud Carlos III (EMER07/018),
and National Institutes of Health,
USA. The sponsor or funding organi-
zation had no role in the design or
conduct of this research.

References

Abecasis GR, Yashar BM, Zhao Y et al.
(2004): Age-related macular degeneration:
a high-resolution genome scan for suscepti-
bility loci in a population enriched for
late-stage disease. Am J Hum Genet 74:
482-494.

Age-Related Eye Disease Study Research
Group (2000): Risk factors associated with
age-related macular degeneration. A case—
control study in the age-related eye disease
study: age-Related Eye Disease Study
Report Number 3. Ophthalmology 107:
2224-2232.

Allikmets R, Shroyer NF, Singh N et al.
(1997): Mutation of the Stargardt disease
gene (ABCR) in age-related macular degen-
eration. Science 277: 1805-1807.

Baguma-Nibasheka M, Li AW & Murphy
PR (2007): The fibroblast growth factor-2
antisense gene inhibits nuclear accumula-
tion of FGF-2 and delays cell cycle pro-
gression in C6 glioma cells. Mol Cell
Endocrinol 267: 127-136.

Baird PN, Chu D, Guida E, Vu HT & Guy-
mer R (2004): Association of the MS5SL
and QI92R paraoxonase gene polymor-
phisms with age-related macular degenera-
tion. Am J Ophthalmol 138: 665-666.

Barral S, Francis PJ, Schultz DW et al.
(2006): Expanded genome scan in extended
families with age-related macular degenera-
tion. Invest Ophthalmol Vis Sci 47: 5453-9.

Barrett JC, Fry B, Maller J & Daly MJ
(2005): Haploview: analysis and visualiza-
tion of LD and haplotype maps. Bioinfor-
matics 21: 263-265.

Bojanowski CM, Tuo J, Chew EY, Csaky
KG & Chan CC (2005): Analysis of Hemi-
centin-1, hOggl, and E-selectin single
nucleotide polymorphisms in age-related
macular degeneration. Trans Am Ophthal-
mol Soc 103: 37-44. discussion 44-45.

Browning AC, Dua HS & Amoaku WM
(2008): The effects of growth factors on
the proliferation and in vitro angiogenesis
of human macular inner choroidal endo-
thelial cells. Br J Ophthalmol 92: 1003-
1008.

Cameron DJ, Yang Z, Gibbs D et al. (2007):
HTRAL variant confers similar risks to
geographic atrophy and neovascular age-
related macular degeneration. Cell Cycle 6:
1122-1125.

Deangelis MM, Ji F, Adams S et al. (2008):
Alleles in the HtrA serine peptidase 1 gene
alter the risk of neovascular age-related
macular degeneration. Ophthalmology 115:
1209-1215.

Despriet DD, Bergen AA, Merriam JE et al.
(2008): Comprehensive analysis of the can-
didate genes CCL2, CCR2, and TLR4 in
age-related macular degeneration. Invest
Ophthalmol Vis Sci 49: 364-371.

Dewan A, Liu M, Hartman S et al. (2006):
HTRA1 promoter polymorphism in wet
age-related macular degeneration. Science
314: 989-992.

Edwards AO, Ritter R 3rd, Abel KJ, Manning
A, Panhuysen C & Farrer LA (2005): Com-
plement factor H polymorphism and age-
related macular degeneration. Science 308:
421-424.

Edwards AO, Chen D, Fridley BL et al.
(2008): Toll-like receptor polymorphisms
and age-related macular degeneration.
Invest Ophthalmol Vis Sci 49: 1652-1659.

Esfandiary H, Chakravarthy U, Patterson C,
Young I & Hughes AE (2005): Association
study of detoxification genes in age related
macular degeneration. Br J Ophthalmol 89:
470-474.

Fisher SA, Abecasis GR, Yashar BM et al.
(2005): Meta-analysis of genome scans of
age-related macular degeneration. Hum
Mol Genet 14: 2257-2264.

Fisher SA, Rivera A, Fritsche LG, Keilhauer
CN, Lichtner P, Meitinger T, Rudolph G

€20



ActaA OpHTHALMOLOGICA 2011

& Weber BH (2007): Case—control genetic
association study of fibulin-6 (FBLN6 or
HMCNI) variants in age-related macular
degeneration (AMD). Hum Mutat 28: 406—
413.

Francis PJ, Schultz DW, Hamon S, Ott J,
Weleber RG & Klein ML (2007): Haplo-
types in the complement factor H (CFH)
gene: associations with drusen and
advanced age-related macular degeneration.
PLoS ONE 2: el197.

Frank RN (1997): Growth factors in age-
related macular degeneration: pathogenic
and therapeutic implications. Ophthalmic
Res 29: 341-353.

Friedman DS, O’Colmain BJ, Munoz B et al.
(2004): Prevalence of age-related macular
degeneration in the United States. Arch
Ophthalmol 122: 564-572.

Fritsche LG, Loenhardt T, Janssen A, Fisher
SA, Rivera A, Keilhauer CN & Weber BH
(2008): Age-related macular degeneration is
associated with an unstable ARMS2
(LOC387715) mRNA. Nat Genet 40: 892—
896.

de la Fuente M, Blanco MJ, Pazos B et al.
(2007): Complement factor H. Ophthalmol-
ogy 114: 193.e1-193.e2.

Fuse N, Miyazawa A, Mengkegale M, Yosh-
ida M, Wakusawa R, Abe T & Tamai M
(2006): Polymorphisms in Complement
Factor H and Hemicentin-1 genes in a Jap-
anese population with dry-type age-related
macular degeneration. Am J Ophthalmol
142: 1074-1076.

Gabriel SB, Schaffner SF, Nguyen H et al.
(2002): The structure of haplotype blocks
in the human genome. Science 296: 2225-
2229.

Gold B, Merriam JE, Zernant J et al. (2006):
Variation in factor B (BF) and complement
component 2 (C2) genes is associated with
age-related macular degeneration. Nat
Genet 38: 458-462.

Guymer RH, Heon E, Lotery AJ et al
(2001): Variation of codons 1961 and 2177
of the Stargardt disease gene is not associ-
ated with age-related macular degeneration.
Arch Ophthalmol 119: 745-751.

Hageman GS, Anderson DH, Johnson LV
et al. (2005): A common haplotype in the
complement regulatory gene factor H
(HF1/CFH) predisposes individuals to age-
related macular degeneration. Proc Natl
Acad Sci USA 102: 7227-7232.

Hageman GS, Hancox LS, Taiber AJ et al.
(2006): Extended haplotypes in the com-
plement factor H (CFH) and CFH-related
(CFHR) family of genes protect
against age-related macular degeneration:
characterization, ethnic distribution and
evolutionary implications. Ann Med 38:
592-604.

Hahn P, Qian Y, Dentchev T, Chen L, Beard
J, Harris ZL & Dunaief JL (2004): Disrup-
tion of ceruloplasmin and hephaestin in
mice causes retinal iron overload and reti-
nal degeneration with features of age-
related macular degeneration. Proc Natl
Acad Sci USA 101: 13850-13855.

HapMap CI (2003): The International Hap-
Map Project. Nature 426: 789-796.

Hayashi M, Merriam JE, Klaver CC et al.
(2004): Evaluation of the ARMDI locus
on 1g25-31 in patients with age-related
maculopathy: genetic variation in laminin
genes and in exon 104 of HEMICENTIN-
1. Ophthalmic Genet 25: 111-119.

Hughes AE, Orr N, Esfandiary H, Diaz-Tor-
res M, Goodship T & Chakravarthy U
(2006): A common CFH haplotype, with
deletion of CFHR1 and CFHR3, is associ-
ated with lower risk of age-related macular
degeneration. Nat Genet 38: 1173-1177.

Jager RD, Mieler WF & Miller JW (2008):
Age-related macular degeneration. N Engl
J Med 358: 2606-2617.

Jakobsdottir J, Conley YP, Weeks DE, Mah
TS, Ferrell RE & Gorin MB (2005): Sus-
ceptibility genes for age-related maculopa-
thy on chromosome 10g26. Am J Hum
Genet 77: 389-407.

Jun G, Klein BE, Klein R et al. (2005): Gen-
ome-wide analyses demonstrate novel loci
that predispose to drusen formation. Invest
Ophthalmol Vis Sci 46: 3081-3088.

Kanda A, Chen W, Othman M et al. (2007):
A variant of mitochondrial protein
LOC387715/ARMS2, not HTRAI, is
strongly associated with age-related macu-
lar degeneration. Proc Natl Acad Sci USA
104: 16227-16232.

Kang HJ, Choi KO, Kim BD, Kim S & Kim
YJ (2005): FESD: a Functional Element
SNPs Database in human. Nucleic Acids
Res 33: D518-D522.

Kaur I, Hussain A, Hussain N et al. (2006):
Analysis of CFH, TLR4, and APOE poly-
morphism in India suggests the Tyr402His
variant of CFH to be a global marker for
age-related macular degeneration. Invest
Ophthalmol Vis Sci 47: 3729-3735.

Klein RJ, Zeiss C, Chew EY et al. (2005):
Complement factor H polymorphism in
age-related macular degeneration. Science
308: 385-389.

Lambooij AC, van Wely KH, Lindenbergh-
Kortleve DJ, Kuijpers RW, Kliffen M &
Mooy CM (2003): Insulin-like growth fac-
tor-I and its receptor in neovascular age-
related macular degeneration. Invest Oph-
thalmol Vis Sci 44: 2192-2198.

van Leeuwen R, Klaver CC, Vingerling JR,
Hofman A & de Jong PT (2003): The risk
and natural course of age-related maculop-
athy: follow-up at 6 1/2 years in the
Rotterdam study. Arch Ophthalmol 121:
519-526.

Li M, Atmaca-Sonmez P & Othman M
(2006): CFH haplotypes without the
Y402H coding variant show strong associa-
tion with susceptibility to age-related
macular degeneration. Nat Genet 38: 1049—
1054.

Majewski J, Schultz DW, Weleber RG et al.
(2003): Age-related macular degeneration —
a genome scan in extended families. Am J
Hum Genet 73: 540-550.

Maller JB, Fagerness JA, Reynolds RC, Ne-
ale BM, Daly MJ & Seddon JM (2007):

Variation in complement factor 3 is associ-
ated with risk of age-related macular
degeneration. Nat Genet 39: 1200-1201.

Martin G, Schlunck G, Hansen LL & Agos-
tini HT (2004): Differential expression of
angioregulatory factors in normal and
CNV-derived human retinal pigment epi-
thelium. Graefes Arch Clin Exp Ophthal-
mol 242: 321-326.

Morcillo-Suarez C, Alegre J, Sangros R et al.
(2008): SNP analysis to results (SNPator):
a web-based environment oriented to statis-
tical genomics analyses upon SNP data.
Bioinformatics 24: 1643-1644.

Mullins RF, Russell SR, Anderson DH & Hag-
eman GS (2000): Drusen associated with
aging and age-related macular degeneration
contain proteins common to extracellular
deposits associated with atherosclerosis,
elastosis, amyloidosis, and dense deposit dis-
ease. FASEB J 14: 835-846.

Ogata N, Matsushima M, Takada Y et al.
(1996): Expression of basic fibroblast
growth factor mRNA in developing choroi-
dal neovascularization. Curr Eye Res 15:
1008-1018.

Ormsby RJ, Ranganathan S, Tong JC et al.
(2008): Functional and structural implica-
tions of the complement factor H Y402H
polymorphism associated with age-related
macular degeneration. Invest Ophthalmol
Vis Sci 49: 1763-1770.

Rakic JM, Lambert V, Munaut C et al.
(2003): Mice without uPA, tPA, or plas-
minogen genes are resistant to experimental
choroidal neovascularization. Invest Oph-
thalmol Vis Sci 44: 1732-1739.

Recalde S, Fernandez-Robredo P, Altarriba
M, Salinas-Alaman A & Garcia-Layana A
(2008): Age-related macular degeneration
genetics. Ophthalmology 115: 916-916.

Richardson AJ, Islam FM, Guymer RH,
Cain M & Baird PN (2007): A tag-single
nucleotide polymorphisms approach to the
vascular endothelial growth factor-A gene
in age-related macular degeneration. Mol
Vis 13: 2148-2152.

Rivera A, White K, Stohr H et al. (2000): A
comprehensive survey of sequence variation
in the ABCA4 (ABCR) gene in Stargardt
disease and age-related macular degenera-
tion. Am J Hum Genet 67: 800-813.

Rivera A, Fisher SA, Fritsche LG, Keilhauer
CN, Lichtner P, Meitinger T & Weber BH
(2005): Hypothetical LOC387715 is a second
major susceptibility gene for age-related
macular degeneration, contributing indepen-
dently of complement factor H to disease
risk. Hum Mol Genet 14: 3227-3236.

Schmidt S, Postel EA, Agarwal A et al.
(2003): Detailed analysis of allelic variation
in the ABCA4 gene in age-related macul-
opathy. Invest Ophthalmol Vis Sci 44:
2868-2875.

Schmidt S, Haines JL, Postel EA, Agarwal
A, Kwan SY, Gilbert JR, Pericak-Vance
MA & Scott WK (2005): Joint effects of
smoking history and APOE genotypes in
age-related macular degeneration. Mol Vis
11: 941-949.

e2l



— Acta OpuTHALMOLOGICA 2011

— €22

Schmidt S, Hauser MA, Scott WK et al.
(20006): Cigarette smoking strongly modifies
the association of LOC387715 and age-
related macular degeneration. Am J Hum
Genet 78: 852-864.

Schultz DW, Klein ML, Humpert A, Majew-
ski J, Schain M, Weleber RG, Ott J] &
Acott TS (2003): Lack of an association of
apolipoprotein E gene polymorphisms with
familial age-related macular degeneration.
Arch Ophthalmol 121: 679-683.

Seddon JM, Ajani UA & Mitchell BD (1997):
Familial aggregation of age-related macul-
opathy. Am J Ophthalmol 123: 199-206.

Seitsonen S, Lemmela S, Holopainen J et al.
(2006): Analysis of variants in the comple-
ment factor H, the elongation of very long
chain fatty acids-like 4 and the hemicentin
1 genes of age-related macular degenera-
tion in the Finnish population. Mol Vis 12:
796-801.

Shroyer NF, Lewis RA, Yatsenko AN, Wen-
sel TG & Lupski JR (2001): Cosegregation
and functional analysis of mutant ABCR
(ABCA4) alleles in families that manifest
both Stargardt disease and age-related
macular degeneration. Hum Mol Genet 10:
2671-2678.

Skerka C, Lauer N, Weinberger AA et al.
(2007): Defective complement control of
factor H (Y402H) and FHL-1 in age-
related macular degeneration. Mol Immu-
nol 44: 3398-3406.

Souied EH, Ducroq D, Rozet JM et al.
(2000): ABCR gene analysis in familial
exudative age-related macular degeneration.
Invest Ophthalmol Vis Sci 41: 244-247.

Swaroop A, Chew EY, Rickman CB & Abec-
asis GR (2009): Unraveling a multifactorial
late-onset disease: from genetic susceptibil-
ity to disease mechanisms for age-related
macular degeneration. Annu Rev Genomics
Hum Genet 10: 19-43.

Tanimoto S, Tamura H, Ue T, Yamane K,
Maruyama H, Kawakami H & Kiuchi Y
(2007): A polymorphism of LOC387715
gene is associated with age-related macular
degeneration in the Japanese population.
Neurosci Lett 414: 71-74.

Thornton J, Edwards R, Mitchell P, Harrison
RA, Buchan I & Kelly SP (2005): Smoking
and age-related macular degeneration: a
review of association. Eye 19: 935-944.

Tobler AR, Short S, Andersen MR et al.
(2005): The SNPlex genotyping system: a
flexible and scalable platform for SNP
genotyping. J Biomol Tech 16: 398-406.

Utheim OA, Ritland JS, Utheim TP, Espes-
eth T, Lydersen S, Rootwelt H, Semb SO
& Elsas T (2008): Apolipoprotein E geno-
type and risk for development of cataract
and age-related macular degeneration. Acta
Ophthalmol 86: 401-403.

Weeks DE, Conley YP, Tsai HJ et al. (2004):
Age-related maculopathy: a genomewide
scan with continued evidence of susceptibil-

ity loci within the 1q31, 10926, and 17q25
regions. Am J Hum Genet 75: 174-189.

Weger M, Renner W, Steinbrugger I et al.
(2007):  Association of the HTRAIL -
625G>A promoter gene polymorphism
with exudative age-related macular degen-
eration in a Central European population.
Mol Vis 13: 1274-1279.

Yates JR, Sepp T, Matharu BK et al. (2007):
Complement C3 variant and the risk of
age-related macular degeneration. N Engl J
Med 357: 553-561.

Yu J, Wiita P, Kawaguchi R, Honda J, Jor-
gensen A, Zhang K, Fischetti VA & Sun H
(2007): Biochemical analysis of a common
human polymorphism associated with age-
related macular degeneration. Biochemistry
46: 8451-8461.

Received on March 26th, 2010.
Accepted on October 2nd, 2010.

Correspondence:

Maria Brion, PhD

Faculty of Medicine

University of Santiago de Compostela
San Francisco s/n

5782 Santiago de Compostela

Spain

Tel: + 34 981582327

Fax: + 34981580336

Email: maria.brion@usc.es




