Angewandte chemie

Supporting Information

A Scalable Biomimetic Synthesis of Resveratrol Dimers and Systematic Evaluation of their Antioxidant Activities**
Bryan S. Matsuura, Mitchell H. Keylor, Bo Li, YuXuan Lin, Shelby Allison, Derek A. Pratt,* and Corey R. J. Stephenson*

anie_201409773_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents

I. GENERAL INFORMATION S3
II. SCHEME FOR THE TOTAL SYNTHESIS OF QUADRANGULARIN A AND PALLIDOL S5
III. OPTIMIZATION OF PHOTOCATALYTIC/AEROBIC DIMERIZATION S6
IV. SYNTHETIC PROTOCOLS AND CHARACTERIZATION DATA S7
V. ONE-STEP SYNTHESIS OF QUADRANGULARIN A FROM 8 S24
VI. GLOBAL DEBENZYLATION/DE-TERT-BUTYLATION OF 9 S25
VII. RADICAL CLOCK EXPERIMENTS S26
VII. INHIBITED OXIDATIONS OF PHOSPHATIDYLCHOLINE LIPOSOMES S27
VIII. CELLULAR LIPID PEROXIDATION STUDIES S33
IX. CELL VIABILITY STUDIES S36
X. STRUCTURES OF COMPOUNDS USED IN ANTIOXIDANT STUDIES S38
XI. REFERENCES S39
XII. ${ }^{1} \mathrm{H}$ NMR AND ${ }^{13} \mathrm{C}$ NMR SPECTRA S40

I. General Information:

Commercially available starting materials were used as received without further purification unless otherwise noted. Glassware was dried in a $170{ }^{\circ} \mathrm{C}$ oven or flame-dried under vacuum prior to use. Reactions were monitored by TLC and visualized by either dual short-wave/long-wave UV lamp or staining with an ethanolic solution of potassium permanganate or p-anisaldehyde. Flash chromatography was performed manually using 43-60 $\mu \mathrm{m}$ (230-400 mesh) silica gel or utilizing RediSep $\mathbb{R} R_{F}$ Gold silica columns with a Teledyne Isco CombiFlash R_{F} automated purification system.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature at 117 kG and $176 \mathrm{kG}\left({ }^{1} \mathrm{H} 500 \mathrm{MHz}\right.$, $700 \mathrm{MHz} ;{ }^{13} \mathrm{C} 125 \mathrm{MHz}$ and 175 MHz) using an internal deuterium lock on Varian Inova 500 or Varian vnmr 500 and 700 spectrometers. ${ }^{1} \mathrm{H}$ chemical shifts are expressed in parts per million (ppm) relative to the residual protio solvent resonance in CDCl_{3} using $\delta 7.26$ as standard for residual CHCl_{3} or using the center line of the solvent signal as internal reference for acetone- $d_{6}: \delta 2.05$. Multiplicity is reported as follows: ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet), and the corresponding coupling constants are indicated as J values in units of Hz . For ${ }^{13} \mathrm{C}$ spectra, the center line of the solvent signal was used as internal reference: $\mathrm{CDCl}_{3} \delta 77.23 ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO} \delta 29.92$. Infrared spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR spectrophotometer using an ATR mount with a ZnSe crystal. Absorption bands are expressed in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. High-resolution mass spectra (HRMS) were obtained on an Agilent quadrupolar time-of-flight (Q-TOF) mass spectrometer using electrospray ionization (ESI), positive ion mode. Chemical names were generated using ChemDraw Ultra 13.0 (PerkinElmer)-for racemic compounds, the name corresponds to the absolute configuration of the compound whose structure is shown.

Materials. Methyl linoleate, egg phosphatidylcholine, Triton ${ }^{\mathrm{TM}} \mathrm{X}-100$ and penicillin-streptomycin were purchased from Sigma-Aldrich. C11-BODIPY ${ }^{581 / 591}$ (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecano-ic acid), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), RPMI-1640 media with/without phenol red, fetal bovine serum (FBS), Hank's balanced salt solution (HBSS) were purchased from Invitrogen (life technologies). Phosphate buffered saline (PBS), 2, 2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (MeOAMVN), 2,2'-azobis-(2-amidinopropane) monohydrochloride (AAPH) and all other chemicals were used as received. The $\mathrm{H}_{2} \mathrm{~B}-\mathrm{PMHC}$ fluorescent probe was prepared according to the previous literature. ${ }^{[1]}$

Radical Clock Experiments. Methyl linoleate (MeLn) was chromatographed on silica gel (5\% EtOAc/ hexanes) prior to use. Stock solutions (0.02 M) of the tested compounds and methyl linoleate (1.0 M) were prepared in chlorobenzene separately. A stock solution of MeOAMVN (0.05 M) was prepared in benzene. Samples were prepared in 1.0 mL autosampler vials with a total reaction volume of $100 \mu \mathrm{~L}$. The solutions were added in the following order to avoid premature oxidation: inhibitor (final concentration is $0.002-0.01 \mathrm{M}$), amount of chlorobenzene required to dilute samples to $100 \mu \mathrm{~L}$, methyl linoleate (0.1 M), and MeOAMVN $(0.01 \mathrm{M})$. The sealed samples were then incubated at $37^{\circ} \mathrm{C}$ for 90 minutes. Stock solutions of BHT (1.0 M in hexanes) and PPh_{3} (1.0 M in chlorobenzene) were prepared separately. Following the oxidation, the BHT solution $(0.05 \mathrm{M})$ and then PPh_{3} solution $(0.05 \mathrm{M})$, were added to the samples and then diluted to 1 mL with HPLC grade hexanes, and analyzed by HPLC (0.5% $\mathrm{iPrOH} / \mathrm{hexanes}, 1.1 \mathrm{~mL} / \mathrm{min}$ for 30 min , Sun-Fire Silica $5 \mathrm{~mm} 4.6 \times 250 \mathrm{~mm}$ column, detection at 234 nm). The ratio of products ($E, Z: E, E$) was plotted versus the concentration of the tested compound to determine $k_{\text {inh }}$ according to the reported procedure. ${ }^{[2]}$

Liposome Preparation and Oxidation. Liposome preparation and oxidations were performed following the procedure in one of our recent manuscripts. ${ }^{[3]}$ To individual $21.4 \mu \mathrm{~L}$ aliquots of the 20 mM liposome solution were added increasing amounts ($1.25,2.5,5,7.5,10$ and $15 \mu \mathrm{~L}$, respectively) of a solution of the test antioxidant in DMSO $(857.5 \mu \mathrm{M})$ and $2.5 \mu \mathrm{~L}$ of a solution of $\mathrm{H}_{2} \mathrm{~B}$-PMHC in acetonitrile $(25.8 \mu \mathrm{M})$. Each resultant solution was then diluted to $400 \mu \mathrm{~L}$ with 10 mM phosphate buffered-saline (PBS) solution containing $150 \mathrm{mM} \mathrm{NaCl}(\mathrm{pH} 7.4)$, from which $280 \mu \mathrm{~L}$ of each was loaded into a well of a 96 -well microplate. The solution was equilibrated to $37^{\circ} \mathrm{C}$ for 5 min , after which $20 \mu \mathrm{~L}$ of a solution of azo compound (40.5 mM in 2,2'-azobis-(2-amidinopropane)monohydrochloride, AAPH, in PBS or 10.1 mM in 2,2'-azobis-(4-methoxy-2,4-dimethylvaleronitrile, MeOAMVN, in acetonitrile was added to each well. The fluorescence was then monitored for 10 h at 60 s time intervals ($\lambda_{\mathrm{ex}}=485 \mathrm{~nm} ; \lambda_{\mathrm{em}}=520 \mathrm{~nm}$). The final solutions in each well were 1 mM in lipids, $0.15 \mu \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{~B}-\mathrm{PMHC}, 2.7 \mathrm{mM}$ in AAPH or 0.68 mM in MeOAMVN and either $2.5 \mu \mathrm{M}, 5.0 \mu \mathrm{M}, 10 \mu \mathrm{M}, 15 \mu \mathrm{M}, 20 \mu \mathrm{M}, 30 \mu \mathrm{M}$ in antioxidant. The rates of peroxyl radical trapping by the test compounds relative to the probe $\mathrm{H}_{2} \mathrm{~B}-\mathrm{PMHC}$ were determined by replotting the data as $-\ln \left\{\left(I_{\infty}-I_{\mathrm{t}}\right) /\left(I_{\infty}-I_{0}\right)\right\}$ versus $-\ln (1-t / \tau)$ and determining the slope from the initial portion of the graph, which corresponds to $k_{\text {inh }}{ }^{\mathrm{H}}{ }^{\mathrm{B}-\mathrm{PMHC}} / k_{\text {inh }}{ }^{\text {unknown }}$ as described in references [1] and [3].

Cellular Lipid Peroxidation. TF 1a cells were cultured in RPMI-1640 media (with phenol red) with 10% FBS and 1% penicillin-streptomycin. The cells (5×10^{5} cells in 1 mL media) were treated with each antioxidant at final concentrations from $1.5 \mu \mathrm{M}$ to $50 \mu \mathrm{M}$ and incubated at $37^{\circ} \mathrm{C}$ for 22 hours in phenol red-free RPMI- 1640 media with 10% FBS in humidified $5 \% \mathrm{CO}_{2}$ atmosphere in 12-well plates. Cells were then treated with $1 \mu \mathrm{MC} 11$-BODIPY ${ }^{581 / 591}$ and incubated at $37^{\circ} \mathrm{C}$ in the dark for 30 minutes after which oxidative stress was induced with diethylmaleate $(9 \mathrm{mM})$ for 2 hours. Treated cells were then collected by centrifugation at $250 \times \mathrm{g}$ for 4 minutes and washed with PBS. Cells were resuspended in PBS and analyzed by flow cytometry at a final concentration of $5 \times 10^{5} \mathrm{cells} / \mathrm{ml}\left(\lambda_{\mathrm{ex}}=488 \mathrm{~nm} ; \lambda_{\mathrm{em}}=525 \pm 25\right.$ nm). Cells not treated with DEM were used as negative control. Cells not treated with antioxidants were used as positive control.

Cell Viability. TF1a cells (5×10^{4} cells in $250 \mu \mathrm{~L}$ media) were treated with each antioxidant in DMSO at final concentrations ranging from $0.5 \mu \mathrm{M}$ to $750 \mu \mathrm{M}$ (final DMSO concentration was to not exceed 1% v / v) and incubated at $37^{\circ} \mathrm{C}$ for 22 hours in phenol red-free RPMI- 1640 media with 10% FBS in a humidified $5 \% \mathrm{CO}_{2}$ atmosphere on a 96 -well plate. Each well was then treated with $50 \mu \mathrm{~L}$ of MTT (12.1 $\mu \mathrm{M}$ in HBSS) for 4 h . The treated cells were collected by centrifugation at $250 \times \mathrm{g}$ for 5 minutes and the solution was aspirated. The resultant purple crystals were dissolved with a $250 \mu \mathrm{~L} 1: 4$ water:DMSO (v / v) solution followed by 30 minutes incubation at room temperature. Absorbance ($\lambda=570 \mathrm{~nm}$) was measured by microplate reader. Results were compared to a negative control ($1 \% \mathrm{DMSO}$) and a positive control (1 \% Triton ${ }^{\mathrm{TM}} \mathrm{X}-100$).

The Total Synthesis of Pallidol (2)

The Total Synthesis of Quadrangularin A (3)

Optimization of Photocatalytic/Aerobic Oxidative Resveratrol Dimerization:

Entry	Photocatalyst	Solvent	Oxidant	Additive	Time	Yield	Product
1	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}$	MeCN	BrCCl_{3}	-	12h	Decomp.	-
2	$\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}$	MeCN	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	-	2 h	Decomp.	-
3	$\operatorname{Ir}(\mathrm{tpy})_{2}\left(\mathrm{PF}_{6}\right)_{3}$	MeCN	O_{2}	-	2d	7\% ${ }^{\left[{ }^{[a]}\right.}$	6
4	$\operatorname{Ir}(\mathrm{ttpy})(\mathrm{tpy})\left(\mathrm{PF}_{6}\right)_{3}$	Acetone	O_{2}	-	2d	38\%	6
5	$\operatorname{Ir}(\mathrm{ttpy})(\mathrm{tpy})\left(\mathrm{PF}_{6}\right)_{3}$	Acetone/MeOH	O_{2}	NaOMe	5h	47\%	8
6	-	Acetone $/ \mathrm{MeOH}$	Degassed	NaOMe	2h	100\%	E/Z 4
$7^{[b]}$	-	Acetone/MeOH	Degassed	NaOMe	2h	-	4
$8^{[b]}$	$\operatorname{Ir}(\mathrm{ttpy})(\mathrm{tpy})\left(\mathrm{PF}_{6}\right)_{3}$	Acetone/ MeOH	O_{2}	NaOMe	5h	45\%	8
$9{ }^{[b]}$	-	Acetone/MeOH	O_{2}	NaOMe	2h	55\%	8
$10^{[6]}$	-	$\mathrm{CCl}_{4}{ }^{[\mathrm{cc]}}$	O_{2}	KO'Bu	1h	60-80\%	5
11	-	THF	$\mathrm{FeCp}_{2} \mathrm{PF}_{6}$	KHMDS	30min	99\%	5
12	$\operatorname{Ir}\left[\left(\mathrm{dF}\left\{\mathrm{CF}_{3}\right\} \text { ppy }\right)_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$	CCl_{4}	CCl_{4}	-	3d	0\%	-

${ }^{[\mathrm{ab]}}$ Incomplete conversion
${ }^{[b]}$ Reaction was shielded from light
${ }^{\text {[c] Assuming that electron transfer to } \mathrm{O}_{2} \text { was the rate-limiting step in the dimerization, we performed the oxidation in solvents }}$ which are known to possess high oxygen solubility: N. J. Turro, V. Ramamurthy, J. C. Scaiano Modern Molecular Photochemistry of Organic Molecules, University Science Books, Sausalito, Calif, 2010, pp. 1001-1042.

Photocatalyst Structure

(E)-2,6-di-tert-butyl-4-(3,5-dimethoxystyryl)phenol (4 OMe): A round bottom flask equipped with a reflux condenser and magnetic stir bar was charged with commercially available 3,5-dimethoxy benzyl bromide ($6.00 \mathrm{~g}, 26.0 \mathrm{mmol}, 1.00$ equiv). The material was dissolved in anhydrous toluene ($60 \mathrm{~mL}, 0.43$ $\mathrm{M})$ at room temperature under N_{2}. To the stirring mixture, $\mathrm{PPh}_{3}(10.2 \mathrm{~g}, 38.9 \mathrm{mmol}, 1.5$ equiv) was added in a single portion and the solution was heated to reflux for 24 h . The reaction mixture was allowed to cool to room temperature and the product collected by vacuum filtration. The solid was washed with hexanes and dried under vacuum to give the desired phosphonium salt as a crystalline white solid (12.8 g, $26.0 \mathrm{mmol} 99 \%$ yield). The phosphonium salt ($5.00 \mathrm{~g}, 10.1 \mathrm{mmol}, 1.00$ equiv) was suspended in anhydrous toluene $(200 \mathrm{~mL}, 0.05 \mathrm{M})$ in a flame-dried, 3-neck 500 mL round bottom flask equipped with a reflux condenser and magnetic stir bar. To the stirring suspension at room temperature under N_{2}, n $\mathrm{BuLi}(4.00 \mathrm{~mL}, 2.5 \mathrm{M}$ soln. in hexanes, 1.00 equiv) was added slowly, turning the mixture a brilliant red. The mixture was allowed to equilibrate at this temperature for 30 minutes, at which point the solution of the ylide was heated to reflux. Once reflux temperature was reached, 3,5-di-tert-butyl-4hydroxybenzaldehyde $(2.38 \mathrm{~g}, 10.1 \mathrm{mmol}, 1.00$ equiv, recrystallized from toluene and dried from benzene 3 x prior to use) was added as a solid, portion wise under a stream of N_{2}. The reaction was allowed to stir at this temperature for 4 hours; reaction progress was monitored by TLC in 9:1 Hexanes/EtOAc. At 4 h , the reaction was quenched with methanol and the solvent removed by rotary evaporation. The crude residue was treated with cold diethyl ether to precipitate triphenylphosphine oxide, and filtered through a fritted funnel packed with Celite and a filter paper. The crude filtrate was then dried onto Celite and purified by flash chromatography using 97:2:1 Hexanes/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the mobile phase. The desired stilbene ($\mathbf{4} \mathbf{O M e}$) was obtained as an amorphous white solid ($2.90 \mathrm{~g}, 7.87 \mathrm{mmol}, 78 \%$ yield).
$R f$ (Hexanes/EtOAc, 9:1): 0.35

IR (Neat): $3624,2956,1590,1456,1436,1358,1236,1204,1150,1066 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.34(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 18 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 161.2,154.2,140.2,136.4,130.3,128.6,126.0,123.7,104.4,99.8,55.6$, 34.6, 30.5;

HRMS (ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 369.2244$, found 369.2426.

(E)-4-(3,5-bis(benzyloxy)styryl)-2,6-di-tert-butylphenol (4b): A round bottom flask equipped with a reflux condenser and magnetic stir bar was charged with commercially available 3,5 -dibenzyloxy benzyl bromide ($10.1 \mathrm{~g}, 26.4 \mathrm{mmol}, 1.00$ equiv). The material was dissolved in anhydrous toluene ($60 \mathrm{~mL}, 0.44$ $\mathrm{M})$ at room temperature under N_{2}. To the stirring mixture, $\mathrm{PPh}_{3}(10.4 \mathrm{~g}, 39.6 \mathrm{mmol}, 1.50$ equiv) was added in a single portion and the solution was heated to reflux for 24 h . The reaction mixture was allowed to cool to room temperature and the product collected by vacuum filtration. The solid was washed with hexanes and dried under vacuum to give the desired phosphonium salt as a crystalline white solid (16.9 g , $26.2 \mathrm{mmol} 99 \%$ yield). The phosphonium salt ($13.5 \mathrm{~g}, 22.4 \mathrm{mmol}, 1.00$ equiv) was suspended in anhydrous toluene ($225 \mathrm{~mL}, 0.10 \mathrm{M}$) in a flame-dried, 3-neck 500 mL round bottom flask equipped with a reflux condenser and magnetic stir bar. To the stirring suspension at room temperature under N_{2}, n BuLi ($9.39 \mathrm{~mL}, 2.5 \mathrm{M}$ soln. in hexanes, 1.05 equiv) was added slowly, turning the mixture a brilliant red. The mixture was allowed to equilibrate at this temperature for 30 minutes, at which point the solution of the ylide was heated to reflux. Once reflux temperature was reached, 3,5-di-tert-butyl-4hydroxybenzaldehyde ($5.77 \mathrm{~g}, 24.6 \mathrm{mmol}, 1.10$ equiv, recrystallized from toluene and dried from benzene $3 x$ prior to use) was added as a solid, portionwise under a stream of N_{2}. The reaction was allowed to stir at this temperature for 4 hours; reaction progress was monitored by TLC in 9:1 Hexanes/EtOAc. At 4 h , the reaction was quenched with methanol and the solvent removed by rotary evaporation. The crude residue was treated with cold diethyl ether to precipitate triphenylphosphine oxide, and filtered through a fritted funnel packed with Celite and a filter paper. The crude filtrate was then dried onto Celite and purified by flash chromatography using 97:2:1 Hexanes/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the mobile phase. The desired stilbene ($\mathbf{4 b}$) was obtained as an amorphous white solid ($9.57 \mathrm{~g}, 18.4 \mathrm{mmol}, 82 \%$ yield), which was further purified to a crystalline white powder by sonication in ${ }^{i} \mathrm{PrOH}$ and collected by vacuum filtration.
$R f$ (Hexanes/EtOAc, 9:1): 0.35;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.46-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.04(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 18 \mathrm{H})$.

For additional characterization data, see:
W. Li, H. Li, Y. Li, Z. Hou, Angew. Chem. Int. Ed. 2006, 45, 7609-7611; Angew. Chem. 2006, 118, 7771-7773.

(E)-5-(3,5-di-tert-butyl-4-hydroxystyryl)benzene-1,3-diol (4a): A round bottom flask equipped with a septum and magnetic stir bar was charged with starting $\mathbf{4 b}$ ($1.75 \mathrm{~g}, 3.36 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Me}_{5}-$ benzene ($2.49 \mathrm{~g}, 16.8 \mathrm{mmol}, 5$ equiv). The mixture was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(57 \mathrm{~mL}, 0.05 \mathrm{M}$) at room temperature under N_{2} and cooled to $-78^{\circ} \mathrm{C}$. To the stirring mixture, $\mathrm{BCl}_{3}(10.1 \mathrm{~mL}, 1.0 \mathrm{M}$ soln. in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3$ equiv) was added slowly, turning the reaction deep maroon. Upon completion of the addition, the reaction was quickly transferred to a $0{ }^{\circ} \mathrm{C}$ ice bath and stirred for an additional 40 minutes at this temperature, over which the reaction turned a bright transparent red color. The reaction was quenched at $-78{ }^{\circ} \mathrm{C}$ by pipetwise addition of a $4: 1 \mathrm{THF} /$ sat. aq. NaHCO_{3} mixture and the solution stirred vigorously under N_{2} for several minutes as it decolorized. The contents were then transferred to a separatory funnel containing DI $\mathrm{H}_{2} \mathrm{O}$ and the organic layer separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$ and organic layers combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was purified by flash chromatography using a gradient 5% to $15 \% \mathrm{EtOAc}^{\text {in }} \mathrm{CHCl}_{3}$ mobile phase to give $\mathbf{4 a}$ as an amorphous white solid ($1.05 \mathrm{~g}, 0.81 \mathrm{mmol}, 91 \%$ yield) along with $45 \mathrm{mg}(4 \%)$ of the corresponding (Z)-stilbene isomer. NOTE: $\mathbf{4 a}$ is unstable to prolonged storage in air at room temperature, but could be stored indefinitely at $-20^{\circ} \mathrm{C}$ in a container sealed under N_{2}.
$R f\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right): 0.48 ;$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.31(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H})$.

For additional characterization data, see:
W. Li, H. Li, Y. Li, Z. Hou, Angew. Chem. Int. Ed. 2006, 45, 7609-7611; Angew. Chem. 2006, 118, 7771-7773.

4,4'-(2,3-bis(3,5-dimethoxyphenyl)butane-1,4-diylidene)bis(2,6-di-tert-butylcyclohexa-2,5-dien-1-
one) (5 OMe): In a round bottom flask equipped with a septum and magnetic stir bar, a solution of 4 OMe ($2.00 \mathrm{~g}, 5.43 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ($55 \mathrm{~mL}, 0.1 \mathrm{M}$) was cooled to $0^{\circ} \mathrm{C}$ in an ice bath under inert atmosphere. To this, KHMDS ($5.7 \mathrm{~mL}, 1.0 \mathrm{M}$ soln. in THF, 1.05 equiv) was added slowly, turning the pale yellow solution a dark forest green. The solution was allowed to stir at temperature for 10 minutes, upon which the septum was removed and ferrocenium hexafluorophosphate ($1.9 \mathrm{~g}, 97 \%$ purity, $5.70 \mathrm{mmol}, 1.05$ equiv.) was added in two 950 mg portions, separated by 15 minutes. The heterogeneous reaction slowly turns from blue-green to a dark yellow/orange color as the ferrocenium is reduced. After the reaction was deemed complete by TLC (ca. 30 min), the reaction mixture was dried on to Celite and the solvent removed completely under reduced pressure. The crude material was purified by flash chromatography over SiO_{2} (100:0 Hexanes/EtOAc [to elute ferrocene], then gradient 95:2.5:2.5 to 90:5:5 Hexanes/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 5/5, OMe as an amorphous yellow solid ($1.94 \mathrm{~g}, 2.64 \mathrm{mmol}, 97 \%$ yield), which further purified to a crystalline yellow powder by trituration from a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with MeOH .
$R f$ (Hexanes/EtOAc, 9:1): 0.3;
IR (Neat): 2953, 1602, 1461, 1350, 1201, 1156, 1059, 925, 831, $696 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right): \delta \beta-\mathrm{H}$'s of quinone methides: 7.13 (major diastereomer, $\mathrm{d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (minor diastereomer, $\mathrm{d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.82 (minor diastereomer, $\mathrm{d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.71 (major diastereomer, d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$); δ-H's of quinone methides: 6.43 (minor diastereomer, $\mathrm{m}, 2 \mathrm{H}$), 6.33 (major diastereomer, m, 2H); 6.35 (Ar-H major diastereomer, d, $J=2.1 \mathrm{~Hz}, 4 \mathrm{H}$), 6.31 (Ar-H major diastereomer, $\mathrm{t}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.29-6.27 (Ar-H's minor diastereomer, overlap, 6 H), $4.34-4.30$ (minor diastereomer sp^{3} methines, $\mathrm{m}, 2 \mathrm{H}$), $4.30-4.26$ (major diastereomer sp^{3} methines, $\mathrm{m}, 2 \mathrm{H}$), 3.74 (major diastereomer-OMe's, s, 12H), 3.70 (minor diastereomer-OMe's, s, 12H), 1.25 (minor diastereomer ${ }^{t} \mathrm{Bu}$'s, s, 18 H), 1.24 (major diastereomer ${ }^{t} \mathrm{Bu}{ }^{\prime} \mathrm{s}, \mathrm{s}, 18 \mathrm{H}$), 1.23 (minor diastereomer ${ }^{t} \mathrm{Bu}$'s, s, 18H), 1.22 (major diastereomer ${ }^{t} \mathrm{Bu}$'s, s, 18H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right): \delta 186.67,186.65,161.3,161.2,149.2,149.0,147.7,147.3,145.3,144.1$, $143.3,142.9,134.8,134.7,133.1,132.1,126.1,126.0,106.9,106.8,99.0,98.8,55.54,55.52,51.6,51.2$, $35.6,35.5,35.1,35.0,29.7,29.63,29.62,29.60$;

HRMS (ESI) m / z calculated for $\mathrm{C}_{48} \mathrm{H}_{63} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 735.4619$, found 735.4613.

4,4'-(2,3-bis(3,5-bis(benzyloxy)phenyl)butane-1,4-diylidene)bis(2,6-di-tert-butylcyclohexa-2,5-dien-1-one) (5): In a round bottom flask equipped with a septum and magnetic stir bar, a solution of $\mathbf{4 b}$ (1.88 $\mathrm{g}, 3.61 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ($30 \mathrm{~mL}, 0.1 \mathrm{M}$) was cooled to $0^{\circ} \mathrm{C}$ in an ice bath under inert atmosphere. To this, KHMDS ($3.8 \mathrm{~mL}, 1.0 \mathrm{M}$ soln. in THF, 1.05 equiv) was added slowly, turning the pale yellow solution a dark forest green. The solution was allowed to stir at temperature for 10 minutes, upon which the septum was removed and ferrocenium hexafluorophosphate ($1.25 \mathrm{~g}, 97 \%$ purity, 3.79 mmol, 1.05 equiv) was added in two 625 mg portions, separated by 15 minutes. The heterogeneous reaction turns from blue-green to a dark yellow/orange color as the ferrocenium is reduced. After the reaction was complete by TLC (ca. 30 min), the reaction mixture was dried on to Celite and the solvent removed completely under reduced pressure. The crude material was purified by flash chromatography over $\mathrm{SiO}_{2}(100 \%$ Hexanes [to elute ferrocene], then gradient 95:2.5:2.5 to 90:5:5 Hexanes $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{5 / 5},(1.87 \mathrm{~g}, 1.81 \mathrm{mmol}, 99 \%$ yield) as an amorphous yellow solid, which was further purified to a crystalline yellow powder by sonication in pH neutral $\mathrm{CH}_{3} \mathrm{NO}_{2}$. When ran on 10 gram scale, isolated 9.49 g of $\mathbf{5}(95 \%$ yield).
$R f$ (Hexanes/EtOAc, 9:1): 0.35;
IR (Neat): 2954, 1593, 1453, 1361, 1292, 1254, 1160, 1054, 930, 822, 734, $695 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.40-7.40(\mathrm{~m}, 20 \mathrm{H}), \beta$-H's of quinone methides: 7.12 (major diastereomer, d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.02 (minor diastereomer, d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.82 (minor diastereomer, d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.72 (major diastereomer, d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$); δ-H's of quinone methides: $6.41-6.37$ (minor diastereomer, m, 2H), $6.33-6.29$ (major diastereomer, m, 2H); 6.48 (major diastereomer, t, $J=$ $2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.47 (minor diastereomer, t, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.45 (major diastereomer, d, $J=2.1 \mathrm{~Hz}, 4 \mathrm{H}$), 6.38 (minor diastereomer, d, $J=2.2 \mathrm{~Hz}, 4 \mathrm{H}$), 4.96 (major diastereomer, d, $J=11.5 \mathrm{~Hz}, 4 \mathrm{H}$), 4.94 (major diastereomer, d, $J=11.5 \mathrm{~Hz}, 4 \mathrm{H}$), 4.91 (minor diastereomer, d, $J=11.5 \mathrm{~Hz}, 4 \mathrm{H}$), 4.89 (minor diastereomer, $\mathrm{d}, J=11.5 \mathrm{~Hz}, 4 \mathrm{H}$), 4.28 (m , overlap, sp^{3} methines of both diastereomers, 4 H), 1.26 (minor diastereomer ${ }^{t} \mathrm{Bu}$'s, s, 18 H), 1.24 (major diastereomer ${ }^{t} \mathrm{Bu}$'s, s, 36 H), 1.23 (minor diastereomer ${ }^{t} \mathrm{Bu}$'s, s, $18 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right): \delta 186.70,186.66,160.5,160.4,149.2 .149 .1,147.7,147.4,145.2,143.9$, 143.3, 142.9, 136.7, 136.6, 134.9, 134.7, 133.2, 132.2, 128.85 (2C), 128.4, 127.81, 127.79, 126.2, 126.0, $108.2,108.0,100.6,100.57,100.54,70.5,51.8,51.2,35.57,35.55,35.11,35.05,29.7,29.64,29.62$;

HRMS (ESI) m / z calculated for $\mathrm{C}_{72} \mathrm{H}_{79} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$1039.5832, found 1039.5871.

4,4'-((4bS,5S,9bS,10S)-1,3,6,8-tetramethoxy-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-5,10-diyl)bis(2,6-di-tert-butylphenol) ($7 \mathbf{O M e}$): A solution of $5 \mathbf{O M e}(20 \mathrm{mg}, 0.027 \mathrm{mmol}, 1.00$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 0.003 \mathrm{M})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath under inert atmosphere. To this, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(14 \mu \mathrm{~L}, 46.5 \%$ in diethyl ether, 2 equiv) was added dropwise, turning the reaction a brilliant magenta color. Temperature control is critical for the success of this reaction. The reaction was allowed to run for 40 minutes upon which the reaction was quenched with sat. aq. NaHCO_{3} at temperature and allowed to warm to room temperature under vigorous stirring. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred to a separatory funnel. The phases were separated and the aqueous layer was extracted with portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, washed with sat. aq. NaHCO_{3}, brine, dried over sodium sulfate and concentrated in vacuo. The crude material was purified by column chromatography over $\mathrm{SiO}_{2}\left(90: 5: 5 \mathrm{Hexanes} / \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $7 \mathbf{O M e}(8.5 \mathrm{mg}, 0.012$ $\mathrm{mmol} 43 \%$ yield) as a white amorphous solid. The remaining material was identified as compound 6 OMe (see S13 for characterization data).
$R f$ (Hexanes/EtOAc 9:1): 0.1;
IR (Neat): 3646, 2988, 1600, 1436, cm^{-1};
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right): \delta 7.12(\mathrm{~s}, 4 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 4.57(\mathrm{~s}, 2 \mathrm{H})$, $4.25(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 36 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right): \delta 161.1,157.1,152.0,148.5,136.3,135.4,125.9,124.3,100.8,97.6,59.6$, 55.7, 55.3, 54.2, 34.5, 30.6;

HRMS (ESI) m / z calculated for $\mathrm{C}_{68} \mathrm{H}_{63} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 735.4650$, found 735.4625 .

2,6-di-tert-butyl-4-(((1S,2S,3S)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3,5-dimethoxyphenyl)-4,6-dimethoxy-2,3-dihydro-1H-inden-1-yl)methylene)cyclohexa-2,5-dien-1-one (6 OMe)
$R f$ (Hexanes/THF, 90:10): 0.33;
IR (Neat): 3640, 2953, 1594, 1460, 1434, 1360, 1202, 1152, 1070, 934, 882, $832 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.30(\mathrm{~m}, 4 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=9.2,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}$, $18 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 186.8,161.6,161.0,157.5,152.1,148.7,147.8,147.1,146.7,144.8$, $135.1,134.9,133.9,132.8,127.0,124.0,123.8,106.5,100.9,98.9,98.7,65.1,56.6,55.8,55.5,55.4,52.9$, $35.4,35.0,34.5,30.6,29.61,29.56 ;$

HRMS (ESI) m / z calculated for $\mathrm{C}_{48} \mathrm{H}_{63} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 735.4619$, found 735.4620.

4,4'-((4bS,5S,9bS,10S)-1,3,6,8-tetrakis(benzyloxy)-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-5,10-diyl)bis(2,6-di-tert-butylphenol) (7a): A solution of 5 ($800 \mathrm{mg}, 0.77 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (77 $\mathrm{mL}, 0.01 \mathrm{M}$) was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice/acetone bath under inert atmosphere. To this, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($390 \mu \mathrm{~L}, 46.5 \%$ in diethyl ether, 2 equiv) was added dropwise, turning the reaction a brilliant magenta color. Temperature control is critical for the success of this reaction. The reaction was allowed to run for 40 minutes upon which the reaction was quenched with sat. aq. NaHCO_{3} at temperature and allowed to warm to room temperature under vigorous stirring. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred to a separatory funnel. The phases were separated and the aqueous layer was extracted with portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, washed with sat. aq. NaHCO_{3}, brine, dried over sodium sulfate and concentrated in vacuo. The crude material was purified by column chromatography over SiO_{2} (95:5 Hexanes/THF gradient to 90:10 Hexanes/THF) to afford $7 \mathbf{7 a}(340 \mathrm{mg}, 0.33 \mathrm{mmol}, 43 \%$ yield) as a white amorphous solid. The remaining material was identified as compound 6 (see S15 for characterization data).
$R f$ (Hexanes/THF, 95:5): 0.19;
IR (Neat): $3636,2954,2908,2870,1598,1433,1316,1135,905,727,695 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 5 \mathrm{H}), 7.03$ $(\mathrm{s}, 4 \mathrm{H}), 7.01(\mathrm{~m}, 4 \mathrm{H}), 6.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 6.33(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 5.04(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 4.88(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.24$ (s, 2H), $1.36(\mathrm{~s}, 36 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right): \delta 160.2,156.0,152.1,148.8,137.3,136.9,135.6,128.8,128.6,128.2$, $127.9,127.7,127.1,126.7,124.3,102.4,99.5,70.6,69.6,60.1,55.4,34.47$ (2C), 30.6;

HRMS (ESI) m / z calculated for $\mathrm{C}_{72} \mathrm{H}_{79} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$1039.5871, found 1039.5843.

4-(((1S,2S,3S)-4,6-bis(benzyloxy)-2-(3,5-bis(benzyloxy)phenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,3-dihydro-1H-inden-1-yl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (6):
$R f$ (Hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 85: 10: 5$): 0.25;
IR (Neat): $3639,2956,1603,1559,1434,1378,1308,1157,1054,1029 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.47-7.28(\mathrm{~m}, 15 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~S}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) 6.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.43(\mathrm{~m}$, overlap, 2 H$), 6.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=9.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}$, $J=8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right): \delta 186.8,160.7,160.2,156.2,152.3,148.8,147.6,147.2,146.8,144.0$, $137.0,136.9,136.8,135.5,134.9,134.2,133.1,128.82,128.75,128.4,128.3,128.2,127.9,127.8,127.5$, $127.1,126.4,124.8,124.1,107.6,102.3,100.5,100.4,70.7,70.3,69.6,65.5,57.0,52.5,35.4,35.1,34.5$, 30.6, 29.66, 29.65;

HRMS (ESI) m / z calculated for $\mathrm{C}_{72} \mathrm{H}_{79} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 1039.5871$, found 1039.5849.

(4bS,5S,9bS,10S)-5,10-bis(3,5-di-tert-butyl-4-hydroxyphenyl)-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-1,3,6,8-tetraol (7b): A heterogenous solution of $7 \mathbf{7 a}(250 \mathrm{mg}, 0.24 \mathrm{mmol}, 1$ equiv) and $30 \mathrm{wt} \%$ $\mathrm{Pd} / \mathrm{C}(770 \mathrm{mg})$ in 5 mL of $3: 2 \mathrm{EtOAc} / \mathrm{MeOH}$ was sparged with hydrogen gas for 30 min at room temperature. The walls of the vessel were rinsed down with a minimum of MeOH and the septum fitted with a full balloon of H_{2}. The reaction was allowed to stir at room temperature overnight under an atmosphere of hydrogen. The reaction solution was filtered over a pad of celite and concentrated to provide $7 \mathbf{b}$ ($155 \mathrm{mg}, 0.23 \mathrm{mmol}, 95 \%$ yield) as an amorphous white solid without need for further purification. NOTE: 7b is unstable to prolonged storage in air at room temperature, but could be stored indefinitely at $-20^{\circ} \mathrm{C}$ in a container sealed under N_{2}.
$R f\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right): 0.09$;
IR (Neat): $3367,2956,1600,1458,1435,1254,1233,1126,1042 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (Acetone $\left.d_{6}, 700 \mathrm{MHz}\right): \delta 7.09(\mathrm{~s}, 4 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H})$, 1.38 (s, 36H);
${ }^{13} \mathrm{C}$ NMR (Acetone $d_{6}, 175 \mathrm{MHz}$): $\delta 159.2,155.3,152.7,150.3,137.8,124.5,123.4,103.4,102.3,60.7$, 54.6, 35.1, 30.8;

HRMS (ESI) m / z calculated for $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 679.3993$, found 679.3989.

Pallidol (2): The following procedure was adapted from Hou et. al. ${ }^{[4]}$ To a solution of $\mathbf{7 b}$ ($150 \mathrm{mg}, 0.22$ mmol, 1 equiv) in anhydrous toluene ($10.8 \mathrm{~mL}, 0.02 \mathrm{M}$) at room temperature under inert atmosphere, AlCl_{3} ($354 \mathrm{mg}, 0.28 \mathrm{mmol}$, 12 equiv) was added as a solution in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1.2 \mathrm{~mL}, 2.25 \mathrm{M}$). The reaction was immediately heated to $60^{\circ} \mathrm{C}$ for 30 min upon which the reaction was removed from the heat source and transferred to a separatory funnel containing $1: 1$ ice $/ 1 \mathrm{~N} \mathrm{HCl}$. The reaction flask was rinsed with EtOAc several times and the contents transferred to the separatory funnel. The phases were separated and the aqueous layer extracted with additional ethyl acetate (2x). The organic layers were combined, washed with sat. aq. NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude material was purified by flash chromatography over $\mathrm{SiO}_{2}\left(95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient to $\left.90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to afford pallidol (2) ($80 \mathrm{mg}, 0.17 \mathrm{mmol}, 80 \%$) as white amorphous solid.
$R f\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right): 0.09$;
IR (Neat): $3296,1598,1508,1464,1334,1238,1128,1147,995,831 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (Acetone $\left.d_{6}, 500 \mathrm{MHz}\right): 88.02(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 8.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 7.77(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 6.98$ (d, $J=8.5$ $\mathrm{Hz}, 4 \mathrm{H}), 6.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}) 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, 2H);
${ }^{13} \mathrm{C}$ NMR (Acetone $d_{6}, 175 \mathrm{MHz}$): $\delta 159.4,156.4,155.4,150.4,137.8,129.1,123.3,115.9,103.4,102.6$, 60.6, 54.0;

HRMS (ESI) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 455.1450$, found 455.1457 .

(E)-2,6-di-tert-butyl-4-(4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,3-bis(3,5-dimethoxyphenyl)but-3-en-1-ylidene)cyclohexa-2,5-dien-1-one ($\mathbf{8} \mathbf{O M e}$): In a round bottom flask equipped with a septum and magnetic stir bar, a solution of $\mathbf{4} \mathbf{O M e}(1.88 \mathrm{~g}, 2.60 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ($75 \mathrm{~mL}, 0.02$ M) was cooled to $0^{\circ} \mathrm{C}$ in an ice bath under inert atmosphere. To this, KHMDS ($2.73 \mathrm{~mL}, 1.0 \mathrm{M}$ soln. in THF, 1.05 equiv) was added slowly. The solution was allowed to stir at temperature for 10 minutes, upon which the septum was removed and ferrocenium hexafluorophosphate ($932 \mathrm{mg}, 97 \%$ purity, 2.73 mmol , 1.05 equiv) was added in two 466 mg portions, separated by 15 minutes. After the reaction was deemed complete by TLC (ca. 30 min), KHMDS ($3.25 \mathrm{~mL}, 1.0 \mathrm{M}$ soln. in THF, 1.25 equiv), was added, turning the solution from yellow-orange to opaque. After 15 min , the reaction mixture was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, turning the organic phase bright red. The reaction was diluted with EtOAc and transferred to a separatory funnel containing DI $\mathrm{H}_{2} \mathrm{O}$. The phases were separated and the aqueous layer extracted with additional EtOAc (2x). The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried on to Celite and the solvent removed completely under reduced pressure. The crude material was purified by flash chromatography over a short plug of $\mathrm{SiO}_{2}\left(100: 0\right.$ Hexanes/EtOAc [to elute ferrocene] then $\left.100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford 8 ($1.88 \mathrm{~g}, 1.30 \mathrm{mmol}$, crude), which was taken directly on to the next step (see S18). For characterization, the material can instead be eluted with a gradient 95:2.5:2.5 to 90:5:5 Hexanes/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mobile phase.
$R f$ (Hexanes/EtOAc, 95:5): 0.17;
IR (Neat): 3630, 2956, 2359, 1653, 1590, 1457, 1356, 1204, 1153, 1065, 833, $738 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.92(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.7(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$, 0.91 (s, 9H);
${ }^{13}{ }^{2}$ NMR $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right): \delta 186.6,160.9,160.7,152.8,147.6,146.6,146.22,146.15,144.5,141.6$, $137.5,135.4,130.8,127.8,124.0,106.9,105.0,100.2,98.2,65.3,56.6,55.5,55.4,54.6,35.0,34.8,34.5$, 30.5, 30.0, 29.3;

HRMS (ESI) m / z calculated for $\mathrm{C}_{48} \mathrm{H}_{63} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 735.4619$, found 735.4616.

(E)-4-(2,3-bis(3,5-bis(benzyloxy)phenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)but-3-en-1-ylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (8): In a round bottom flask equipped with a septum and magnetic stir bar, a solution of $\mathbf{4 b}(1.00 \mathrm{~g}, 1.92 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ($75 \mathrm{~mL}, 0.02 \mathrm{M}$) was cooled to $0^{\circ} \mathrm{C}$ in an ice bath under inert atmosphere. To this, KHMDS (1 M solution in THF, 1.61 $\mathrm{mL}, 1.05$ equiv) was added slowly. The solution was allowed to stir at temperature for 10 minutes, upon which the septum was removed and ferrocenium hexafluorophosphate ($655 \mathrm{mg}, 97 \%$ purity, 2.04 mmol , 1.05 equiv) was added in two 328 mg portions, separated by 15 minutes. After the reaction was complete by TLC (ca. 30 min), KHMDS ($1.92 \mathrm{~mL}, 1.0 \mathrm{M}$ soln. in THF, 1.25 equiv), was added, turning the solution from yellow-orange to opaque. After 15 min , the reaction mixture was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction was diluted with EtOAc and transferred to a separatory funnel containing DI $\mathrm{H}_{2} \mathrm{O}$. The phases were separated and the aqueous layer extracted with EtOAc (2x). The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried on to Celite and the solvent removed under reduced pressure. Purification by flash chromatography over a short plug of SiO_{2} (100% Hexanes [to elute ferrocene], then $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $\mathbf{8}(1.00 \mathrm{~g}, 0.96 \mathrm{mmol}$, crude), which was taken directly on to the next step (see S19). For characterization, the material can instead be eluted with a gradient 95:2.5:2.5 to 90:5:5 Hexanes/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mobile phase.
$R f\left(\right.$ Hexanes $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85: 10: 5$): 0.25;
IR (Neat): $3641,2952,1654,1590,1435,1373,1264,1151,1054,1028,834,733,696 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.39-7.29(\mathrm{~m}, 20 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.89$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.92$ (s, 9H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right): \delta 186.6,160.2,159.9,152.9,147.6,146.5,146.2,144.4,141.6,137.5$, $137.0,136.9,135.4,130.9,128.80,128.78,128.76,128.2,127.9,127.82,127.76,127.7,124.0,108.2$, $106.3,102.0,100.3,70.32,70.27,65.2,56.6,54.7,35.0,34.8,34.5,30.5,30.0,29.3$;

HRMS (ESI) m / z calculated for $\mathrm{C}_{72} \mathrm{H}_{79} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$1039.5832, found 1039.5838.

2,6-di-tert-butyl-4-((1S,2S)-3-((E)-3,5-di-tert-butyl-4-hydroxybenzylidene)-2-(3,5-
dimethoxyphenyl)-5,7-dimethoxy-2,3-dihydro-1H-inden-1-yl)phenol (9 OMe): A solution of crude 8 OMe (S12) ($260 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.00$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL}, 0.01 \mathrm{M})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. To this, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (175 $\mu \mathrm{L}, 46.5 \%$ in diethyl ether, 2 equiv) was added dropwise, turning the solution into a deep ruby red color. After 5 min , the reaction was quenched with sat. aq. NaHCO_{3} at $-78{ }^{\circ} \mathrm{C}$ and allowed to warm to room temperature with vigorous stirring. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred to a separatory funnel containing additional sat. aq. NaHCO_{3}. The phases were separated and the aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$. The organic layers were combined, washed with brine, dried over sodium sulfate and concentrated in vacuo. The crude residue was purified by flash chromatography using a 90:5:5 Hexanes/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mobile phase to afford 9 OMe ($235 \mathrm{mg}, 0.32 \mathrm{mmol}, 90 \%$ yield over 3 steps) as a pale yellow amorphous solid.
$R f$ (Hexanes/EtOAc, 90:10): 0.33;

IR (Neat): 3633, 2965, 1593, 1435, 13783, 1304, 1234, 1153, 1050, 1028, $736 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{~s}, 6 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 18 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right): \delta 161.3,161.0,160.8,157.5,153.1,152.0,147.9,145.1,142.5,136.3$, $135.8,135.3,128.9,127.2,126.3,125.9,124.1,123.9,106.0,104.9,98.9,98.3,95.5,58.8,57.0,55.8$, $55.4,55.3,34.50,34.45,30.5,30.4$;

HRMS (ESI) m / z calculated for $\mathrm{C}_{48} \mathrm{H}_{63} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 735.4625$, found 735.4648 .

4-((1S,2S)-5,7-bis(benzyloxy)-2-(3,5-bis(benzyloxy)phenyl)-3-((E)-3,5-di-tert-butyl-4-hydroxybenzylidene)-2,3-dihydro-1H-inden-1-yl)-2,6-di-tert-butylphenol (9): A solution of crude 8 (S13) ($1.00 \mathrm{~g}, 0.96 \mathrm{mmol}, 1.00$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(96 \mathrm{~mL}, 0.01 \mathrm{M})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath under inert atmosphere. To this, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(511 \mu \mathrm{~L}, 46.5 \%$ in diethyl ether 2 equiv) was added dropwise, turning the solution into a deep ruby red color. After 5 min, the reaction was quenched with sat. aq. NaHCO_{3} at $-78{ }^{\circ} \mathrm{C}$ and allowed to warm to room temperature with vigorous stirring. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and transferred to a separatory funnel containing additional sat. aq. NaHCO_{3}. The phases were separated and the aqueous layer was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$. The organic layers were combined, washed with brine, dried over sodium sulfate and concentrated in vacuo. The crude residue was purified by flash chromatography using a 90:5:5 Hexanes $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mobile phase to afford $9(898 \mathrm{mg}, 0.86 \mathrm{mmol}, 90 \%$ yield over 3 steps$)$ as a pale yellow amorphous solid.
$R f$ (Hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 85: 10: 5$): 0.27;
IR (Neat): 3632, 2953, 1592, 1451, 1434, 1372, 1304, 1154, 1048, 774, $696 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 13 \mathrm{H}$, benzyl group overlap), $7.21(\mathrm{~m}, 3 \mathrm{H})$, $7.14(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}$, benzyl group H’s), $7.00(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.95(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}), 1.29(\mathrm{~s}, 18 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right): \delta 160.5,160.2,156.4,153.2,152.1,148.1,145.3,142.5,137.3,137.20$, 137.16, 136.6, 135.7, 135.5, 128.9, 128.80, 128.77, 128.7, 128.6, 128.5, 128.21, 128.18, 128.1, 128.0, $127.9,127.8,127.7,127.2,127.1,126.0,124.2,124.1,107.1,100.8,100.1,97.0,70.6,70.2,69.6,58.9$, 57.6, 34.5, 34.4, 30.6, 30.5, 30.4;

HRMS (ESI) m / z calculated for $\mathrm{C}_{72} \mathrm{H}_{79} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$1039.5871, found 1039.5829.

(2S,3S)-1-((E)-3,5-di-tert-butyl-4-hydroxybenzylidene)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(3,5-dihydroxyphenyl)-2,3-dihydro-1H-indene-4,6-diol: A solution of $9(460 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.00$ equiv) and pentamethylbenzene ($1.30 \mathrm{~g}, 8.8 \mathrm{mmol}, 20$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL}, 0.02 \mathrm{M})$ was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice/acetone bath under inert atmosphere. To this, $\mathrm{BCl}_{3}(5.3 \mathrm{~mL}, 1.0 \mathrm{M}$ soln. in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12$ equiv) was added dropwise turning the yellow solution a brilliant magenta color. Reaction was maintained at $-78{ }^{\circ} \mathrm{C}$ until deemed complete by TLC (ca. 2h). At this point, the reaction was quenched with a $4: 1 \mathrm{THF} /$ sat. aq. NaHCO_{3} mixture at $-78^{\circ} \mathrm{C}$ and allowed to warm to room temperature while stirring vigorously. Upon thawing, the solution returned to a yellow color. The reaction was diluted with ethyl acetate (50 mL) and transferred to a separatory funnel containing additional sat. aq. NaHCO_{3}. The phases were separated and the aqueous layer extracted with additional EtOAc (2x). The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude residue was purified by flash chromatography over $\mathrm{SiO}_{2}\left(98: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient to $90: 10$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to afford $\mathbf{1 0}(245 \mathrm{mg}, 0.36 \mathrm{mmol}, 82 \%$ yield) as a white amorphous solid. NOTE: $\mathbf{1 0}$ is unstable to prolonged storage in air at room temperature, but could be stored indefinitely at $-20^{\circ} \mathrm{C}$ in a container sealed under N_{2}.
$R f\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right): 0.09$;
IR (Neat): $3376,2957,1599,1547,1467,1434,1341,1237,1157,1006,838 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (Acetone $d_{6}, 700 \mathrm{MHz}$): $\delta 8.13$ (br. s., $4 \mathrm{H}, \mathrm{OH}$), 7.86 (br. s., 2H, OH), 7.15 (s, 2H), 7.12 (s, 1H), $7.05(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H})$, $4.26(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (Acetone $d_{6}, 175 \mathrm{MHz}$): $\delta 159.6,159.5,155.9,154.0,152.9,148.8,147.2,143.0,137.9,137.8$, 137.6, 130.0, 126.6, 124.4, 107.0, 103.6, 101.5, $98.8,60.5,58.0,35.2,30.8,30.7$;

HRMS (ESI) m / z calculated for $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$679.3993, found 679.3989.

Quadrangularin A (3): The following procedure was adapted from Hou et. al. ${ }^{[4]}$ To a solution of $\mathbf{1 0}$ ($80.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.00$ equiv) in anhydrous toluene ($5.4 \mathrm{~mL}, 0.022 \mathrm{M}$) at room temperature under inert atmosphere, $\mathrm{AlCl}_{3}\left(190 \mathrm{mg}, 1.44 \mathrm{mmol}, 12.0\right.$ equiv) was added as a solution in $\mathrm{CH}_{3} \mathrm{NO}_{2}(600 \mu \mathrm{~L}$, 2.33 M). The reaction was immediately heated to $60^{\circ} \mathrm{C}$ for 30 min upon which the reaction was removed from the heat source and transferred to a separatory funnel containing 1:1 ice/ 1 N HCl . The reaction flask was rinsed with EtOAc several times and the contents transferred to the separatory funnel. The phases were separated and the aqueous layer extracted with additional ethyl acetate (2x). The organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude material was purified by flash chromatography over $\mathrm{SiO}_{2}\left(95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient to $\left.90: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to afford quadrangularin $\mathrm{A}(\mathbf{3})(43 \mathrm{mg}, 0.095 \mathrm{mmol} 80 \%)$ as a tan amorphous solid.
$R f\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right): 0.09$;
IR (Neat): $3245,1596,1509,1446,1334,1233,1172,1147,1005,831 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (Acetone $\left.d_{6}, 500 \mathrm{MHz}\right): \delta 8.16(\mathrm{~s}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (d, $J=8.5 \mathrm{~Hz}), 6.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=2.2 \mathrm{X} 2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (Acetone $d_{6}, 175 \mathrm{MHz}$): $\delta 159.7,159.7,157.4,156.6,155.9,149.1,147.1,142.7,137.8,131.1$, $129.8,128.8,124.6,123.0,116.0,115.9,106.3,103.7,101.6,98.4,60.7,57.7 ;$

HRMS (ESI) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 455.1489$, found 455.1485 .

Friedel-Crafts Cyclization - Global Deprotection of 8 with $\mathbf{A l C l}_{3}$

A solution of $\mathbf{8}(370 \mathrm{mg}, 0.34 \mathrm{mmol}, 1$ equiv) and pentamethylbenzene ($2.1 \mathrm{~g}, 14.1 \mathrm{mmol}, 40$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(57 \mathrm{~mL}, 0.005 \mathrm{M})$ was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath under inert atmosphere. To this, $\mathrm{AlCl}_{3}\left(1.14 \mathrm{~g}, 8.6 \mathrm{mmol}, 25\right.$ equiv) was added slowly as a solution in $\mathrm{CH}_{3} \mathrm{NO}_{2}(14 \mathrm{~mL}, 0.6 \mathrm{M})$ via syringe turning the clear yellow solution a deep red color. Upon addition, the reaction flask was fitted with a reflux condenser and heated to $60^{\circ} \mathrm{C}$, allowing the reaction to stir at this temperature for 15 minutes. The reaction was removed from the heat and the contents transferred to a separatory funnel containing $1: 1$ ice $/ 1 \mathrm{~N} \mathrm{HCl}$. The reaction flask was rinsed with EtOAc several times and the contents transferred to the separatory funnel. The phases were separated and the aqueous layer extracted with additional ethyl acetate (2 x). The organic layers were combined, washed with sat. aq. NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The dry crude material was dissolved in a minimal amount of diethyl ether using sonication. Then hexane was added dropwise to the sonicating material to precipitate out crude quadrangularin A as a brown amorphous solid, which was collected by vacuum filtration. This crude material (nearly pure by NMR), was purified via flash chromatography (95:2.5:2.5 gradient to 90:5:5 Chloroform/Acetone $/ \mathrm{MeOH}$) to yield quadrangularin A (3) ($82 \mathrm{mg}, 0.18 \mathrm{mmol}, 51 \%$) as a tan amorphous solid (see S23 for characterization data).

Global Deprotection of $\mathbf{9}$ with $\mathbf{A l C l}_{3}$

A solution of 9 ($30 \mathrm{mg}, 0.03 \mathrm{mmol}, 1$ equiv) and pentamethylbenzene ($170 \mathrm{mg}, 1.14 \mathrm{mmol}, 40$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL}, 0.005 \mathrm{M})$ was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath under inert atmosphere. To this, $\mathrm{AlCl}_{3}(92$ $\mathrm{mg}, 0.70 \mathrm{mmol}, 24$ equiv) was added as a solution in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1.5 \mathrm{~mL}, 0.48 \mathrm{M})$ via syringe, turning the clear yellow solution a deep red color. Upon addition, the reaction flask was fitted with a reflux condenser and heated to $60^{\circ} \mathrm{C}$, allowing the reaction to stir at this temperature for 1 hour. The reaction was cooled down to $0{ }^{\circ} \mathrm{C}$, quenched with sat. aq. NaHCO_{3}, and stirred until the solution turned from red to clear yellow. The reaction was transferred to a separatory funnel and washed with ice cold $1 \mathrm{~N} \mathrm{HCl}\left(\mathrm{CO}_{2}\right.$ evolution). The organic layer was removed and the aqueous layer was extracted with EtOAc (2x). The organic layers were combined, washed with sat. aq. NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude residue was purified by flash chromatography over SiO_{2} (17:2:1 Chloroform $/ \mathrm{MeOH} /$ Acetone) to yield quadrangularin A (3) ($11.5 \mathrm{mg}, 88 \%, 5: 1$ ratio of quadrangularin A and its internal alkene isomer) as a tan amorphous solid (see S23 for characterization data).

Radical Clock Experiments with 4b, 7a, 9, and BHT

Figure S1. Ratio of $[E, Z]:[E, E]$ products versus concentration of t - Bu_{2}-resveratrol (4b) (A), t - Bu_{2}-pallidol (7a) (B), t - Bu_{2}-quadrangularin A B (9) (C), and BHT (D) in the MeOAMVN-initiated (0.01 M) autoxidation of methyl linoleate $(0.1 \mathrm{M})$ in chlorobenzene at $37^{\circ} \mathrm{C}$.

Inhibited Oxidations of Phosphatidylcholine Liposomes

Figure S2. Representative fluorescence intensity-time profiles from MeOAMVN-mediated (0.68 mM) oxidations of egg phosphatidylcholine liposomes (1 mM in pH 7.4 PBS buffer) containing $0.15 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{~B}$ PMHC probe and increasing concentrations $(2.5 \mu \mathrm{M}, 5.0 \mu \mathrm{M}, 10 \mu \mathrm{M}, 15 \mu \mathrm{M}, 20 \mu \mathrm{M}, 30 \mu \mathrm{M})$ of resveratrol (1) (A), pallidol (2) (B), quadrangularin A (3) (C) and PMHC (D). Fluorescence ($\lambda_{\mathrm{ex}}=485$ $\left.\mathrm{nm}, \lambda_{\mathrm{em}}=520 \mathrm{nM}\right)$ was recorded every 60 s .

Figure S3. Representative fluorescence intensity-time profiles from MeOAMVN-mediated (0.68 mM) oxidations of egg phosphatidylcholine liposomes (1 mM in pH 7.4 PBS buffer) containing $0.15 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{~B}-$ PMHC and increasing concentrations ($2.5 \mu \mathrm{M}, 5.0 \mu \mathrm{M}, 10 \mu \mathrm{M}, 15 \mu \mathrm{M}, 20 \mu \mathrm{M}, 30 \mu \mathrm{M}$) of $t-\mathrm{Bu}_{2}{ }^{-}$ resveratrol (4a) (A), t - Bu_{2}-pallidol (7b) (B), t - Bu_{2}-quadrangularin $\mathrm{A}(\mathbf{1 0})(\mathrm{C})$ and BHT (D). Fluorescence $\left(\lambda_{\mathrm{ex}}=485 \mathrm{~nm} ; \lambda_{\mathrm{em}}=520 \mathrm{nM}\right)$ was recorded every 60 s .

Figure S4. Inhibition time-concentration profiles from MeOAMVN-mediated (0.68 mM) oxidations of egg phosphatidylcholine liposomes (1 mM in pH 7.4 PBS buffer) containing $0.15 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{~B}-\mathrm{PMHC}$ and increasing concentrations ($2.5 \mu \mathrm{M}, 5.0 \mu \mathrm{M}, 10 \mu \mathrm{M}, 15 \mu \mathrm{M}, 20 \mu \mathrm{M}, 30 \mu \mathrm{M}$) of the inhibitors which display a clear inhibited period: PMHC (A), t-Bu \mathbf{u}_{2}-resveratrol (4) (B), and t - Bu $_{2}$-quadrangularin $\mathrm{A}(\mathbf{1 0})$ (C). The stoichiometric numbers (n) were calculated based on the slopes of the line of best fit relative to PMHC, for which $n=2$.

Figure S5. Representative fluorescence intensity-time profiles from AAPH-mediated (2.7 mM) oxidations of egg phosphatidylcholine liposomes (1 mM in pH 7.4 PBS buffer) containing $0.15 \mu_{\mathrm{M}}^{\mathrm{H}} \mathrm{H}_{2} \mathrm{~B}-$ PMHC and increasing concentrations ($2.5 \mu \mathrm{M}, 5.0 \mu \mathrm{M}, 10 \mu \mathrm{M}, 15 \mu \mathrm{M}, 20 \mu \mathrm{M}, 30 \mu \mathrm{M}$) of resveratrol (1) (A), pallidol (2) (B), quadrangularin A (3) (C) and PMHC (D). Fluorescence ($\lambda_{\mathrm{ex}}=485 \mathrm{~nm} ; \lambda_{\mathrm{em}}=520$ $\mathrm{nM})$ was recorded every 60 s.

Figure S6. Representative fluorescence intensity-time profiles from AAPH-mediated (2.7 mM) oxidations of egg phosphatidylcholine liposomes (1 mM in pH 7.4 PBS buffer) containing $0.15 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{~B}-$ PMHC and increasing concentrations ($2.5 \mu \mathrm{M}, 5.0 \mu \mathrm{M}, 10 \mu \mathrm{M}, 15 \mu \mathrm{M}, 20 \mu \mathrm{M}, 30 \mu \mathrm{M}$) of t - $\mathrm{Bu}_{2}{ }^{-}$ resveratrol (4a) (A), t - Bu_{2}-pallidol (7b) (B), t - Bu_{2}-quadrangularin A (10) (C) and BHT (D). Fluorescence $\left(\lambda_{\mathrm{ex}}=485 \mathrm{~nm} ; \lambda_{\mathrm{em}}=520 \mathrm{nM}\right)$ was recorded every 60 s .

Figure S7. Inhibition time-concentration profiles from AAPH-mediated (2.7 mM) oxidations of egg phosphatidylcholine liposomes (1 mM in pH 7.4 PBS buffer) containing $0.15 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{~B}-\mathrm{PMHC}$ and increasing concentrations $(2.5 \mu \mathrm{M}, 5.0 \mu \mathrm{M}, 10 \mu \mathrm{M}, 15 \mu \mathrm{M}, 20 \mu \mathrm{M}, 30 \mu \mathrm{M})$ of the inhibitors which display a clear inhibited period: PMC (B) and t - Bu_{2}-resveratrol (4a)(C). The stoichiometric numbers (n) were calculated based on the slopes of the line of best fit relative to PMHC, for which $n=2$.

Cellular Lipid Peroxidation Assay

Figure S8. Dose-response curves obtained from flow cytometry (5×10^{5} cells $/ \mathrm{mL} ; \lambda_{\mathrm{ex}}=488 \mathrm{~nm}, \lambda_{\mathrm{em}}=$ $525 \pm 25 \mathrm{~nm} ; 10,000$ events) following induction of oxidative stress with diethylmaleate (DEM, 9 mM) in TF1a cells grown in media containing resveratrol (1) (A), pallidol (2) (B), quadrangularin A (3) (C) and α-tocopherol (D) (0.015-50 $\mu \mathrm{M}$) for 22 hours at $37^{\circ} \mathrm{C}$. Cells were incubated with the lipid peroxidation reporter C11-BODIPY ${ }^{581 / 591}(1 \mu \mathrm{M})$ for 30 minutes prior to DEM treatment.

Figure S9. Dose-response curves obtained from flow cytometry (5×10^{5} cells/ mL ; $\lambda_{\mathrm{ex}}=488 \mathrm{~nm}, \lambda_{\mathrm{em}}=$ $525 \pm 25 \mathrm{~nm} ; 10,000$ events) following induction of oxidative stress with diethylmaleate (DEM, 9 mM) in TF1a cells grown in media containing t - Bu_{2}-resveratrol (4a) (A), t - Bu_{2}-pallidol (7b) (B), t - $\mathrm{Bu}_{2}-$ quadrangularin $\mathrm{A}(\mathbf{1 0})(\mathrm{C})$ and $\mathrm{BHT}(\mathrm{D})(0.015-50 \mu \mathrm{M})$ for 22 hours at $37^{\circ} \mathrm{C}$. Cells were incubated with the lipid peroxidation reporter C11-BODIPY ${ }^{581 / 591}(1 \mu \mathrm{M})$ for 30 minutes prior to DEM treatment.

Figure S10. Representative histograms obtained from flow cytometry $\left(5 \times 10^{5}\right.$ cells $/ \mathrm{mL}$; $\lambda_{\mathrm{ex}}=488 \mathrm{~nm}$, $\lambda_{\text {em }}$ $=525 \pm 25 \mathrm{~nm} ; 10,000$ events) following induction of oxidative stress with diethylmaleate (DEM, 9 mM$)$ in TF1a cells grown in media containing resveratrol (left black: $5 \mu \mathrm{M}$, right black: $50 \mu \mathrm{M}$) for 22 hours at $37{ }^{\circ} \mathrm{C}$. Cells were incubated with the lipid peroxidation reporter C11-BODIPY ${ }^{581 / 591}(1 \mu \mathrm{M})$ for 30 minutes prior to DEM treatment. Cells not treated with DEM were used as negative control (red). Cells not treated with antioxidants were used as positive control (blue).

Cell Viability Studies

Figure S11. Dose-response curves obtained from MTT cell viability studies with TF1a erythroblasts (0.2 $\times 10^{6}$ cells/ mL) containing varying concentrations of resveratrol (1) (A), pallidol (2) (B), quadrangularin A (3) (C), α-tocopherol (D) incubated at $37^{\circ} \mathrm{C}$ for 22 h .

Figure S12. Dose-response curves obtained from MTT cell viability studies with TF1a erythroblasts $\left(0.2 \times 10^{6}\right.$ cells $\left./ \mathrm{mL}\right)$ containing varying concentrations of t-Buz-resveratrol (4a) (A), t-Buz-pallidol (7b) (B), t-Bu2-quadrangularin A (10 (C), BHT (D) incubated at $37{ }^{\circ} \mathrm{C}$ for 22h.

Compound Structures for Antioxidant Studies

AAPH
2,2'-azobis-(2-amidinopropane)-dihydrochloride

DEM Diethylmaleate

BHT
2,6-di-tert-butyl-4-hydroxytoluene
BODIPY-2,2,5,7,8-pentamethyl-6-hydroxy-chromane

References

[1] K. Krumova, S. Friedland, G. Cosa, J. Am. Chem. Soc. 2012, 134, 10102-10113.
[2] B. Roschek, K. A. Tallman, C. L. Rector, J. G. Gillmore, D. A. Pratt, C. Punta, N. A. Porter, J. Org. Chem. 2006, 71, 3527-3532.
[3] B. Li, J. R. Harjani, N. S. Cormier, H. Madarati, J. Atkinson, G. Cosa, D. A. Pratt, J. Am. Chem. Soc. 2013, 135, 1394-1405.
[4] W. Li, H. Li, Y. Li, Z. Hou, Angew. Chem. Int. Ed. 2006, 45, 7609-7611; Angew. Chem. 2006, 118, 7771-7773.

$$
\stackrel{\stackrel{\sim}{N}}{\stackrel{\sim}{N}} \stackrel{\sim}{\wedge}
$$

7a

S61

