
AUTOMATED D m ACCESS
AND ANALYSIS SYSTEM

CODEBOOK PROCESSOR PROGRAM
PROGRAM DOCUMENTAmON MANUAL

Christopher R Ford

APRIL 1983

BJMLTRI The University of Michigan
Transportation Research Institute

On September 16, 1982, the Regents of
The University of Michigan changed the
name of the Highway Safety Research
Institute to the University of Michigan
Transportation Research Institute [UMTRIJ.

i UMTRI-83-18
' 1. T , t l r d k t n t l r

I
s. R 0.9. 1 ADAAS Apri l 1983

I Automated Data Access and Analysis System 6. ~drmng OII..~.L) CY

I Codebook Processor Program
Manual I 1 6. P.ri..m) O.tr*awhr R e k.

Christop:her R. Ford
/ UMTRI-83-18

1 9. P- O I ~ o t r r w m n-. 4 *UI*rr , 1 10. W d Uwt No. (TE1AlS)

/ Transportat ion Research I n s t i t u t e 11 . h o c t u G t n i WS.

1 The Univc~rsity of Michigan

1 2901 Baxter Rd. Ann Arbor, M I 48109 13. TWO ei R W 4 P W , ~ ~ w r d

/ 12. SIlmy A- MU rJ M**l**

I Motor Vehicle Manufacturers Association
1 320 New Center Building ' Det ro i t , M I 48202 I

I The Universi ty of Michigan Transportation Research I n s t i t u t e
(UM1IRI) has developed a s i g n i f i c a n t t ransportat ion-related da t a
base! and an in tegra ted s e t of computer programs (ADAAS) t o e a s i l y
access each da t a s e t .

i
I

An important. pa r t of the u t i l i t y of t h i s da t a system i s the
s e t of comprehens;ive codebooks t h a t document each data s e t i n

i d e t a i l , These ccldebooks descr ibe the c h a r a c t e r i s t i c s of each
elemlent i n t he da.ta s e t , including a f u l l d e f i n i t i o n of a l l code

I values and t h e i r frequencies of occurrence.

This manual documents the operat ion of a computer program t o
manipulate these codebooks and i s an adjunct t o the ADAAS prugran;
docrraentatior. manual,

I
19. b m q C;nlvi. to# *I8 P.LL*) i

3). I . m w C h s u i . cri m e -4 21.)rr. m i P q u

I - 1 Unclassif ied Unclassified

-A ?PC*

i
I

I

Report Number IJMTRI -83- 18

A D A A S

Autornated Data Access and Analysis System

Codebook Processor Program
Program Documentation Manual

by

Christopher R. Ford

April 1983

The University of Michigan
Institute of Science and Technology
Transportation Research Institute

Ann Arbor, Michigan

ACKNOWLEDGEMENTS

The Transportation Research Institute (UMTRI) at the
University of Michigan has been involved for more than a
decade in the collection, reformatting, and dissemination of
transportation-related data with a particular emphasis on
motor-vehicle traffic accident data. As a result, an
integrated set of computer programs (ADAAS) and a
significant data base has been developed. These on-going
efforts at the Institute are under the direction of Dr. John
A. Green.

Primary funding for the development and maintenance of
ADAAS and its associated programs, as well as the extensive
library of data sets that comprise the UMTRI Data Center
system has come from the Motor Vehicle Manufacturer's
Association. The continuing support of that agency is
gratefully acknowledged.

TABLE OF CONTENTS

INTRODUCTION

. Program Operat ion

. Command Sta tements

. Operat ion In Batch

. I m p l i c i t Concatenat ion

COMMAND DESCRIPTIONS

. ALIGN Command

. CHECK Command

. DICT Command

. GENERATECzommand

. LABELSET Command

. SMOOTH Command

. TCONVERT Command

. VREGION Command

APPENDICES

Appendix 1 .. Codebook Card Types
Appendix 2 .. Tcard Formats
Appendix 3 .. HSR1:FREQ and Frequency F i l e s . .

INDEX

. Index

i i i

Codebook Processor

INTRODUCTION

Introduction

The Codebook Processor is an interactive utility
program that provides for the management of codebook card
files, the generation of printable codebooks from these
files, and the creation of dictionaries. The program is
invoked with the command:

$RUN HSR1:CODEBOOK PAR=codecardfile

where "codecardfile" is the name of the codebook card file
to be worked on, The program will prompt for this name if
it Is omitted.

Program Operation

The codebook program uses a right bracket (" 1 ") as a
prefix character when it is waiting for user input, Command
statements may be entered at this point. The commands may
be those unique to the codebook program or any valid MTS
editor command (see MTS Volume 18, "The MTS File Editor",
for a complete description of the editor), In addition,
input beginning with " $ " is treated as an MTS system
comnand.

Eight unique commands are recognized by the program.
The purpose of each command is summarized in the table on
the next page. (Commands not recognized by the program are
proc:essed as if they were MTS editor commands.) The
operation of each command is fully documented on the pages
that: follow.

Several topics of special interest are covered in
appendices at the end of this documentation. These topics
include descriptions of the codebook card "types" that make
up a codebook card file, a more detailed description of
"Tcards", the rnost important card type, and, finally, a
disc:ussion of "frequency files" and how they can be produced
with the program HSRI:FREQ,

Command Statements

Each codebook command is described by a "prototype"
that: has the form:

command lpar options

The designation "command" represents one of the
recognized codebook commands. Each command has an
acceptable minil.mum abbreviation indicated by an underlined

April 1983 Codebook Command Statements - 1

Introduction

Codebook Command Summary

Codebook Processor

Command I Purpose

ALIGN

CHECK

GENERATE

LABELSET

SMOOTH

TCONVERT

VREGI ON

To align Tcards on matching file line
numbers.

To check a codebook card file for format
errors.

To generate dictionaries and produce
summary listings of variable elements.

To generate a codebook from the codebook
cards.

To produce label setup lines to be used
as input to HSR1:LABGEN.

To sequentially renumber, or "smooth",
Tcard variable numbers.

To perform Tcard conversions.

To define "variable" editor regions.

portion of each one's prototype.

"Lpar" is the line-number parameter that specifies the
portion of the file to be acted upon by the command. The
parameter may consist of a single line number, two line
numbers forming a line-number "range", or any combination of
either form. The single line number may be either an
explicit number or any one of the special editor symbols
* I 1 , ry*FF7 , or "*LW. The range may consist of any two single
line numbers or either of the two predefined editor regions
I! IF I! !I IT !I . In addition, the regions generated by the
codebook VREGION command are also recognized. One
restriction on line-number ranges is that they cannot be in
descending order (i.e., backwards in the file is not
allowed), I f omitted, the current line is taken as the
line-number parameter.

"Options" consists of a collection of keywords and
modifiers unique to each codebook command. These options
control various aspects of each command's operation such as
where output should be written or how the output should be
formatted. Options are described in detail with the
commands they operate with. Some of the commands have
several options, many others have none. Where allowed, they

2 - Codebook Command Statements April 1983

Codebook Proce:ssor Introduction

may always be omitted, in which case default actions will
take place.

Examples of Some Valid Codebook Command Statements

Command
- -

Lpa r Options

ALIGN /F

CHECK 1 100

DI CT /T

generate 0 99

LAB 4, 5.001 5.2

smooth 9 12.99,14 *L

TCONV

vreg

NUMBER= 2

LIST OUT=VEHDICT

output=-book noshift

VERIFY

PROMPT

Operation In Batch

Though the codebook program has been designed primarily
to be run interactively at a terminal, it may also be run in
batch. The operation of the program in batch mode is
identical to its operation in terminal mode, with the
exception that any error in batch will cause the program to
terminate with a return code of 4.

Implicit Concatenation

Implicit concatenation, the use of "$CONTINUE WITH
filename RETURN" as a line in the codebook card file to
"tie" it together with another file, is a powerful way to
achieve special effects while processing a codebook card
file. This would be one way, for example, to place more
than 999 lines between any two Tcards that reside on
adjacent whole line numbers. With the exception of ALIGN
and TCONVERT, all of the codebook commands recognize
impiicit concatenation.

April 1983 Codebook Command Statements - 3

Introduction

4 - Codebook Command Statements

Codebook Processor

April 1983

Codebook Processor

ALIGN Command

Command Descriptions

Purpose: To align Tcards on matching file line numbers.

Prototype: - ALI'GN lpar

Action: The cards in the given line-number range "lpar"
are renumbered so that Tcards occur on the
integer file line numbers corresponding to their
variable numbers. Cards positioned between
Tcards will occur on fractional line numbers
evenly distributed between the Tcards.

A restriction on the value of "lpar" is that it
cannot be a multiple line range (for example,
" 1 4, 6 8").

Opt ions: None,

Problems: Possible problems include: no initial Tcard found
in the given line parameter range, Tcard variable
number translation trouble, two variables not in
ascending order, more than 999 cards found
between two Tcards, or an inconsistent alignment
configuration encountered.

Morle often than not, the most common problem with
the ALIGN command will be an "inconsistent
alilgnment configuration." Often, for example,
the line where a Tcard needs to be written is
already occupied by another card. As a general
rulle, cards to be aligned need to be at line
numbers greater than or equal to the line numbers
they currently reside on. In any case, alignment
cannot take place when duplicate or non-
increasing line numbers would occur. By
investigating the alignment accomplished up to
the point of any error, the problem can usually
be solved.

Comments: Unlike the MTS file editor's RENUMBER command,
the ALIGN command does not accept a new starting
lime number or a renumber increment, Because of
this inflexibility, the command may require some
extra effort to be useful.

Examples: ALIGN 107 124.999

The above example will align the Tcards within
the given line number range on whole line numbers
corresponding to their variable numbers. Other

April 1983 ALIGN Command - 5

Command Descriptions Codebook Processor

cards will be placed on fractional line numbers
following each Tcard.

RENUMBER
MATCHOA /F : I :
ALTER@A /M :I:T:
ALIGN /F
ALTER@A 0, 100, 200 :T:I:

The above example assumes that there are three
variable "sections" in the codebook card file
(for example, an accident section that includes
variables 1 through 49, a vehicle section that
includes 101 through 170, and an occupant section
that includes 201 through 212). It also assumes
that at the beginning of each section is an Icard
(or "index" card) and that the first Icard has
the number "0" right-justified in columns 2
through 5, the second has "100", and the third
has "200". The file is first renumbered to
insure that it begins on line 1 and has no
fractional line numbers. The Icards are then
identified and changed into "dummy" Tcards. The
ALIGN command then puts all Tcards in the file on
whole line numbers corresponding to each one's
variable number, with other cards on fractional
line numbers in between. Finally, the dummy
Tcards are changed back into Icards. (Note that
the variable numbers of the dummy Tcards are
placed, right-justified, in columns 2 through 5,
not 2 through 6. The ALIGN command, noting that -
these "Tcards" do not have the Type-5 Tcard
format, will expect the variable numbers to occur
there.)

6 - ALIGN Command April 1983

Codebook Processor

CHECK Command

Command Descriptions

Purpose: To check a codebook card file for format errors.

Prototype: =C:K lpar options

Action: The cards in the given line-number range "lpar"
are checked for possible format errors or
problems that may occur when the GENERATE or
other codebook commands are used. These problems
may be serious (an untranslatable field-width
value, for instance), moderate (an out-of-
sequence Ccard code value that won't interrupt
generation but will cause unpredictable results),
or minor (the improper use of a page or blank
card). A complete list of error messages
produced by the CHECK command is provided at the
end of this description, along with more detailed
explanations of their possible causes.

Options: - NOPERCNT

Allows the CHECK command to assume that
percentages will not be calculated in the final
generation of the codebook. By default, it is
assumed that percentages will be calculated,

Specifies the number of frequency files that the
CHECK command should assume will be used in the
final generation of the codebook. The maximum
number is 6. The default is 1.

Specifies the output file or device where the
error messages will be written. If not
specified, messages are written on *SINK*,

Specifies the frequency insertion width that the
CHECK command should assume will be used in the
final generation of the codebook. The minimum
width value is 6, the maximum is 12. The default
width is 6 when a single set of frequencies will
be inserted, and 8 with multiple frequency
insertions.

April 1983 CHECK Command - 7

Command Descriptions Codebook Processor

Specifies the Xerox 9700 character that the CHECK
command should assume will be used in the final
generation of the codebook. The character value
can be 1 , 2, 4, or 5, The default character is

Problems: Interrupts caused by non-numeric characters in
fields undergoing character to arithmetic
conversions are vigorously guarded against as
part of the entire checking procedure. They may
still rarely occur, however.

Comments: The CHECK command investigates all card types,
including Tcards. Because of their special
nature, however, a thorough check of Tcards can
only be guaranteed with the use of either the
DICT or TCONVERT commands.

Four of the codebook card types (HI MI N, and S)
have maximum lengths dependent on the Xerox
character to be used in the final generation of
the codebook, along with possibly the NUMBER of
frequency files to be used, the WIDTH of
frequency insertions, and whether or not
percentages are to be calculated. (If the
frequency-insertion field resulting from these
option settings exceeds the maximum allowed for
the particular Xerox character being used, card
checking will not proceed.) See the comments
section of the GENERATE command for a discussion
of the interaction between these options, as well
as the limits of the frequency-insertion field,

Many of the error messages produced by the CHECK
command may not point directly to the format
problem causing the error, For example, Type-5
Tcards are recognized by the command by the
presence of five zero characters ("00000") in
columns 76 though 80 of the card. If they happen
to be out of place for some reason, an error
message may appear saying that the Tcard variable
number is invalid. This would be due to the fact
that the Tcard was not identified as Type-5 and
the placement of the variable number was
misinterpreted.

Other format problems may produce compound error
messages. For example, a single Tcard may go
unrecognized because of a small-case "t" in
column one. A multitude of error messages may
result from the valid cards that follow.

8 - CHECK Command April 1983

Codebook Processor Command Descriptions

Extunples : CHECK 2 0 30

The above example checks all the codebook cards
between lines 20 and 30 for possible format
errors. Any that are found are reported at the
tern~inal, along with the line number of the
offending card.

CHECK /F XCHAR=4 NOPERC

The above example checks all the codebook cards
through the entire file. Xerox character "4"
will. be used in the final generation of the
codebook. No percentages will be calculated.
The CHECK command takes these assumptions into
consideration when checking the lengths of H, MI
N, and Scards.

Messages: The following is a complete list of all possible
error messages produced by the CHECK command,
along with more detailed descriptions of their
meanings.

Bcard follows a Pcard and has no effect

Blanks that are encountered immediately after a
new codebook page has begun are not printed out.

Ccard exceeds 120 characters

Ccards over this length will be truncated.

Ccard too short

Ccards must be at least 1 1 characters long, plus
the field width of the variable they document.

Ccard without preceding Tcard

By definition, Ccards document the code values of
the Tcard they follow.

Code value out of sequence

Ccard code values must be in ascending, numerical
order.

E l M, Bcards better choice than Xcard

Xcards were formerly used to insert text in a
codebook. E, MI and Bcards have taken over this
function.

CHECK Command - 9

Command Descr ip t ions Codebook Processor

Ecard exceeds 120 characters

Ecards over t h i s l eng th w i l l be t r unca t ed .

Hcard lacking text?

No t e x t was found on t h i s Hcard.

Hcard not preceded by Bcard (or blank)

Except fo r t he f i r s t code value heading, every
Hcard should have a Bcard before i t .

Hcard too long

The maximum leng th of an Hcard i s dependent on
t h e NUMBER of frequency f i l e s being accessed , the
WIDTH of each frequency i n s e r t i o n f i e l d , and the
XCHAR cha rac t e r being used.

Hcard too short

Hcards must be a t l e a s t 7 c h a r a c t e r s long.

Invalid character in column 6

For C and Kcards, only a blank or an " a t " s ign
(" @ ") should appear i n column 6 .

Invalid delimiter after code: FW problem?

After each C o r Kcard code value a d e l i m i t e r i s
expected. (This d e l i m i t e r i s usual ly a per iod
(" . ") , but i t can be any charac te r chosen by the
u se r . The d e l i m i t e r found on the f i r s t C o r
Kcard i s determined t o be t h i s c h a r a c t e r .) A
v a l i d d e l i m i t e r was looked f o r i n t h i s i n s t ance
where i t should have occurred but was not found.
F i e l d width problems can o f t e n be t h e cause of
t h i s problem. For example, i f the Tcard t h a t the
Ccard documents i n d i c a t e s t h a t the v a r i a b l e ' s
f i e l d width i s two, Ccard code values such a s
" 1 . " or " 0 0 1 , " would produce t h i s message.

Kcard exceeds 120 characters

Kcards over t h i s l eng th w i l l be t runca ted .

Kcard too short

Kcards must be a t l e a s t 1 1 cha rac t e r s long, p lus
t h e f i e l d width of t h e va r i ab l e they document.

Kcard without preceding Tcard

10 - CHECK Command Apr i l 1983

Codebook Processor Command Descr ip t ions

Like Ccards, Kcards document t he code va lues of
the Tcard they fol low.

Mcard too long

The maximum length of an Mcard i s dependent on
the XCHAR cha rac t e r being used,

Ncard before t h i s Tcard won't be used

The n o t a t i o n a l t e x t of Ncards appears i n t he
codebook only when C , K , o r H c a rds a r e a l s o
encountered. One could f o r c e an Ncard t o be
p r in t ed by fol lowing i t with a s i n g l e Kcard
suppressed with an " a t " s i g n in column 6 .

Ncard fol lows f i r s t C , K , or Ncard

Ncards should appear immediately a f t e r Tcards.
Those encountered a f t e r t he f i r s t C , K , or Hcard
w i l l not be used.

Ncard lacking text?

No t e x t was found on t h i s Ncard,

Ncard too long

The maximum length of an Ncard i s dependent on
t he NUMBER of frequency f i l e s being accessed , t he
WIDTH of each frequency i n s e r t i o n f i e l d , and the
XCHAR cha rac t e r being used,

too short

Ncards must be a t l e a s t 7 c h a r a c t e r s long.

Non-blank found a f t e r code value de l imi ter

A t l e a s t one blank should appear a f t e r a C or
Kcard 's code value d e l i m i t e r .

Nona-blank found i n column 6

Except fo r Ccards, Kcards, and some Tcards ,
column 6 i n a l l codebook cards should be blank.

Non-blank found i n range spec i f i ca t ion

A C or Kcard range should have a dash i n column
1 1 and blanks up t o the code value d e l i m i t e r .

 on-blank(s) found between c o l s 7 and 10

Apr i l 1983 CHECK Command - 1 1

Command Descr ip t ions Codebook Processor

C or Kcards should have blanks between columns 7
and 1 0 .

Non-numeric found in code value field

This Ccard ' s code value has a non-numeric
c h a r a c t e r appearing i n i t .

Non-numeric found in field-width field

This Tcard ' s f i e l d width s e t t i n g i s i n v a l i d .

Non-numeric found in variable number field

This Tca rd ' s v a r i a b l e number i s i n v a l i d .

Only E l M, or Bcards allowed within box

O n l y E l MI or Bcards w i l l be p roper ly format ted
wi thin a box.

Open box flows into a Tcard

Another box ca rd i s needed t o c l o s e t h i s open
box.

Pcard follows a Pcard and will NOT page

Because t h e Pcard s e t s a va lue wi thin t h e
program, t he new page occurs when the next ca rd
is encountered. I f t h e next ca rd i s a Pcard, i t
i s ignored.

Range must be closed by C or Kcard

A range has C o r Kcards before and a f t e r i t .

Range not preceded by C or Kcard

A range has C o r Kcards before and a f t e r i t .

Scard too long

The maximum l eng th of an Scard i s dependent on
t h e XCHAR cha rac t e r being used.

Tcard field width setting invalid

This Tca rd ' s f i e l d width s e t t i n g i s l e s s than or
equal t o zero .

Two ranges in sequence ?

A range has C or Kcards before and a f t e r i t .

1 2 - CHECK Command Apr i l 1983

Codebook Processor Command Descr ip t ions

~nrecognizable card type " "

This ca rd wil l be ignored by the program,

Variable number does not match line number

A s a mat ter of s t y l e , Tcards should appear on t he
i n t ege r l i n e number t h a t corresponds t o t h e i r
v a r i a b l e number, The ALIGN command can be used
t o a.chieve t h i s e f f e c t .

1st Hcard does not need Bcard before it

Every code value heading except -- t he f i r s t should
be preceded by a Bcard,

CHECK Command - 13

Command Descriptions

14 - CHECK Command

Codebook Processo r

April 1983

Codebook Processor

DICT Command

Command Descriptions

Pu,rpose: To qenerate dictionaries and produce summary
listings of variable elements.

Prototype: - DICT lpar options

Action: The Tcards in the given line-number range "lpar"
are used to generate a data dictionary. This
dictionary may be either an OSIRIS type " 1 " or
type "5" dictionary. An optional listing may
also be produced that summarizes the elements of
all the variables. The user may choose, in fact,
to not generate a dictionary at all, in which
case only a summary listing will be produced.

The DICT command relies heavily on the formats of
Tcards to operate properly. Appendix 2 should be
consulted for a complete discussion of Tcards.

Options: - FILENO=n

Spec:ifies the file number of the generated
dictionary when it is written to tape. The value
" 0 " indicates that the file is to be written at
the end of the tape. It will have this value if
the option is omitted and the dictionary is being
written to tape.

LIST= f dname -

Specifies the file or device where the summary
listing of variable elements will be written. If
not specified and a dictionary is being
generated, no listing will be produced. I f not
specified and no dictionary is being generated,
the listing w i n be produced on *SINK* (i.e., the
terminal or printer).

LIST -
This is the equivalent of specifying
"LIST=*SINK*" (i .e., it produces the summary
listing of variable elements on the terminal or
printer).

- OUTl?UT=f i lename

Specifies the file where the generated dictionary
will be written. The file may be either a disk
file or a tape file, I f it is a tape file, the

April 1983 DICT Command - 15

Command Descriptions Codebook Processor

name should not be greater than 17 characters.
In addition, if it is a tape file, the option
must be accompanied by the VOLUME option. If
omitted, no dictionary is generated.

Specifies the pseudodevice name of the tape being
used when the generated dictionary is being
written to tape, If omitted and the dictionary
is being written to tape, the pdn "*HSRI*" is
used.

Specifies a string that will be used as a title
for the summary listing of variable elements,
along with the time and date. The string must
not contain embedded blanks. Strings longer than
24 characters will be truncated. I f not
specified and a dictionary is being generated,
the output file name will be used as the title.
If not specified and no dictionary is being
generated, the title 3 1 1 consist merely of the
time and date.

TYPE 1

Causes the generated dictionary to be an OSIRIS
type " 1 " dictionary. This is the default
dictionary type,

Causes the generated dictionary to be an OSIRIS
type "5" dictionary. I f omitted, the dictionary
will be a type " 1 " dictionary.

Specifies the volume label of the tape being used
when the generated dictionary is being written to
tape. This option is required when a tape is
used, I f it is omitted, it is assumed that the
dictionary is being written to a disk file.

Problems: All Tcard elements are thoroughly checked while
being processed to insure that they not only
contain valid data (all numeric characters, for
example), but also that the values they translate
to lie within valid limits (variable numbers
between 1 and 9999, for example). Any errors
that are encountered will immediately stop
command processing.

16 - DICT Command April 1983

Codebook Processor Command Descriptions

Comments: As stated above, an actual dictionary need not be
generated with the DICT command. If one is not
generated, only a summary variable listing is
produced, This feature is useful if one only
wishes to investigate the attributes of any of
the Tcards in the file more closely.

If a dictionary is to be generated, it may be
written either to a disk file or a tape file. I f
to a tape file, the VOLUME option is required,
while the FILENO and PDN options may or may not
be used. In addition, the tape itself must be
mounted with its "write-enable" ring in prior to
the command being issued.

Examples: DICT 1 10

The above example produces a summary listing of
variables 1 through 10, writing it out on the
terminal or printer.

The above example generates an OSIRIS type "5"
dictionary using all the Tcards in the codebook
card file and writes it into the disk file
"NEWDICT". No summary listing of the variable
elements is produced.

4; MOUNT
C1234A 9TP *HSRI* VOL=CRF WRITE=YES 'HS0001'
Q; ENDF I LE
IIICT /F OUT=VEH83DICT VOL=CRF LIST=-TEMP

The above example generates an OSIRIS type "1"
dictionary using all the Tcards in the codebook
card file, The dictionary is written to the tape
file "VEH80DICTW, situated at the end of the tape
("FI:LENO=O"). As can be seen, the tape was
mounted previously with the pseudodevice name
"*HSRI*" and the specification "WRITE=YESV. A
summary listing of the variable elements
processed by this command is written into the
temporary file "-TEMPw,

DICT Command - 17

Command Descriptions

18 - DICT Command

Codebook Processor

April 1983

Codebook Processor

GENERATE Command

Command Descriptions

Purpose: To qenerate a codebook from the codebook cards.

Prototype: - GENERATE lpar options

Action: The cards in the given line-number range "lpar"
are used to generate the pages of a formatted,
printable codebook. The action of the numerous
card types serve to provide variable information,
supplemental information, code value
documentation, titles, tables of contents, etc,,
in the final codebook. Appendix 1 should be
consulted for a complete description of the
action of each of the card types.

For each Ccard, frequency of occurrences from up
to six different sources are inserted beside the
code value in the codebook, along with an
optional percentage. The frequencies themselves
are produced by other computer programs and
stored in separate disk files (see Appendix 3) .
Depending on the value of the NUMBER option (see
below), the user will be prompted for however
many frequency files are required. The file name
of each should be entered when requested without
a line-number range, A null response ("return"
with nothing else) may be entered if no frequency
file is to be used. Along with each file name, a
character string "titlef' may also be entered to
be used as a heading for that file's particular
column of frequencies. This title can be
separated from the file name by a comma, a blank,
or both. Strings longer than one less than the
value of the WIDTH option will be truncated.
Lower case letters are not converted to upper -
case. A default string "FREQ" will be used if no
title is entered,

Command processing begins after the frequency
file names have been entered by the user. To
allow the progress of the generation to be
monitored, the number of every page divisible by
10 is printed at the terminal when encountered,
along with the final page number.

Upon completion of command processing, the
generated codebook may be used as input to the
MTS program *PAGEPR for printing on the Xerox
9700 page printer.

April 1983 GENERATE Command - 19

Command Descriptions Codebook Processor

Options: - ERROR=undefined.value.string

Specifies the text to be used for the labels of
any code value that occurs in a frequency file
but is found to have no associated code card.
Embedded blanks are not allowed. Lower case
letters will be converted to upper case, Strings
longer than 30 characters will be truncated. The
default value is a blank string.

NOERROR -
Suppresses the reporting of insertion errors
(i.e., the occurrence of code values in frequency
files with no matching code cards). By default,
errors are reported with a generated code value
in the codebook,

NOPERCNT -

Suppresses the calculation and insertion of
frequency percentages. By default, percentages
are calculated.

Disables page-shifting for the codebook. By
default, codebooks are shifted for subsequent
back-to-back printing .of the pages.

Specifies the number of files whose frequencies
will be inserted in the codebook. The maximum
number is 6. The default is 1.

Specifies the output file or device where the
generated codebook will be written. If not
specified, output is written on *SINK* in the TN
format.

Specifies the beginning page number of the
codebook, The specification "PAGE=*" will cause
the beginning page number to be one more than the
last generated codebook's final page number.
This is useful when a codebook is being built in
pieces with more than one use of the GENERATE
command. Note, however, that 'this use of the
option may not work if the last codebook command
issued was not a GENERATE command. The default

20 - GENERATE Command April 1983

Codebook Command Descr ip t ions

beginning page number i s 1 .

Causes t he codebook t o be formatted without Xerox
9700 c o n t r o l l i n e s and w i t h dashes, r a t h e r than
ho r i zon ta l b a r s , i n c e r t a i n s t r u c t u r e s . By
d e f a u l t , codebooks a r e formatted w i t h t he se
specyial 9700 f e a t u r e s when the OUTPUT opt ion i s
being used,

S p e c i f i e s the cha rac t e r width of each frequency
i n s e r t i o n f i e l d . The minimum width value i s 6 ,
t h e maximum i s 1 2 . The d e f a u l t width i s 6 when a
s i n g l e s e t of f requenc ies i s being i n s e r t e d , and
8 w i t h mul t ip le frequency i n s e r t i o n s .

Spec:if ies the Xerox 9700 cha rac t e r t h a t t h e
format of the generated codebook w i l l be b u i l t
around. Xerox c h a r a c t e r 1 has a p i t c h of 1 2 .
Xerox c h a r a c t e r s 2 and 4 have p i t c h e s of 1 0 .
Xerox cha rac t e r 5 has a p i t c h of 1 4 and can
include over 2 0 more l i n e s per page than t h e
o ther cha rac t e r s . The d e f a u l t cha rac t e r i s 1 .

Problems: Character t o binary t r a n s l a t i o n s of t h e Tcard
v a r i a b l e number, f i e l d width , or number of
responses w i l l a l l i n t e r r u p t command process ing
i f non-numeric c h a r a c t e r s a r e encountered.
Command processing w i l l a l s o s t o p i f any Ccard
code value t r a n s l a t i o n t r o u b l e occurs . These and
many o ther problems may be de tec ted beforehand
with t he CHECK command. E r ro r s r e s u l t i n g from
t h e i n t e r n a l format of frequency f i l e s a r e l e s s
e a s i l y a n t i c i p a t e d . The user should r e f e r t o
Appendix 3 i f any occur.

Comments: The amount of space a v a i l a b l e t o t h e user f o r
frequency i n s e r t i o n s is a funct ion of t h e NUMBER
of frequency f i l e s being processed, t he WIDTH of
each i n s e r t i o n f i e l d , and whether or not
percentages a r e being c a l c u l a t e d . A formula may
be used t o express t h i s s i z e :

'SIZE = NUMBER * (WIDTH + PERCENTFACTOR)

where PERCENTFACTOR i s 6 i f percentages a r e t o be
c a l c u l a t e d , and 0 i f n o t . For an XCHAR value of
1 , t h e value of S I Z E cannot exceed 36. For an
XCHilR value of 2 or 4 , SIZE cannot exceed 30.

Apri l 1983 GENERATE Command - 2 1

Command Descriptions Codebook Processor

For an XCHAR value of 5, SIZE cannot be greater
than 42.

Examples : GENERATE /F OUTPUT=-TEMP
1982FREQ
STOP
$RUN *PAGEPR SCARDS=-TEMP

The above example generates a printable codebook
using all the codebook cards in the file,
Frequencies are taken from the file "1982FREQ1'.
After the codebook program is stopped, the
formatted codebook is printed on the Xerox 9700
with the *PAGEPR program.

GEN *F 299 NOPERC WIDTH=8 OUT=-BOOK NUMBER=3
TXS81FREQ 5%SAMP
TXT81FREQ TRUCK
TXF81FREQ FATAL
GEN 300 *L NOPERC WIDTH=8 OUT=-BOOK(*L+~) P=*
TXP8lFREQ PED/CYC
STOP
$RUN *PAGEPR SCARDS=-BOOK

The above example generates a single codebook
with two uses of the GENERATE command. Both uses
suppress insertion of frequency percentages
alongside the code value frequencies, and both
set the frequency columns to a width of 8. The
first use inserts frequencies from three files:
"TXS81FREQ", "TXT81FREQ", and "TXF81FREQ".
Frequency titles are provided for each. The
second use inserts frequencies from only one
file, "TXP81FREQ", but also provides a title.
Notice, too, how the second use outputs to the
end of the temporary file "-BOOK1' with " (*~+1) "

and causes the beginning page number to be one
more than the final page of the first use with
the specification "P=*". After the program is
stopped, the formatted codebook is printed on the
Xerox 9700 with the *PAGEPR program.

22 - GENERATE Command April 1983

Codebook Processor

LABELSET Command

Command Descriptions

Purpose: To produce label setup lines to be used as input
to H:SRI : LABGEN .

Prototype: - LABElLSET lpar options

Action: The Tcards and Ccards in the given line-number
range "lpar" are transformed into label "setup"
lines. These setup lines can then be input into
the UMTRI label-generation program HSR1:LABGEN to
produce an ADAAS label file.

0 ~ t ions: - OUTF'UT=f dname

Specifies the output file or device where the a

setup lines will be written. By default, setup
lines (if any) are written on *SINK*.

STRI P -
Causes the setup lines to be generated without
regard to labels that exceed 16 characters, in
effect, "stripping" the codebook card file. By
default, labels are verified while they are
generated.

VERl - FY

Causes the lengths of all Ccard labels to be
verified that they do not exceed 16 characters
without generating any actual setup lines. By --
default, labels are generated while they are
verj.f ied.

Problems: Besides verifying that Ccard labels do not exceed
16 c:haracters, the command will also verify that
all Ccard code values are in sequential numeric
order. Certain errors will interrupt command
processing, however, For example, if a Tcard
field-width setting contains any non-numeric
characters, a conversion error will occur. In
addition, if more than 4096 labels are
encountered for a single variable, processing
will also be interrupted. One should note,
however, that two potential problems are not
checked for: non-numeric characters in the Tcard
var:~able number, and non-numeric characters in
the Ccard code value. The CHECK command can be
used to locate these errors.

April 1983 LABELSET Command - 23

Command Descriptions Codebook Processor

Comments: An appendix to the ADAAS documentation entitled
"Generating Label Files" should be consulted for
a complete description of the HSR1:LABGEN
program.

Examples : LABELSET /F OUTPUT=-LABTEMP
STOP
$RUN HSR1:LABGEN
MYLABELFILE
$CONTINUE WITH -LABTEMP
STOP

The above example generates label setup lines for
the entire file and places them in the temporary
file "-LABTEMP". After running HSRI:LABGEN, a
"$CONTINUE WITH -LABTEMP" within the program
causes the setup lines to be input into the
LABGEN program as commands, thus generating
ADAAS-compatible labels that are stored in the
file "MYLABELFILE".

LAB 30 39.999 VERIFY

The above example verifies the Ccard label
lengths of variables 30 through 39 without
generating any label setup lines,

24 - LABELSET Command April 1983

Codebook Processor

SMOOTH Command

Command Descriptions

Purpose: To sequentially renumber, or "smooth", Tcard
variable numbers.

Prot.otype: - SMOOTH lpar

Action: The Tcards in the given line-number range "lpar"
are renumbered in ascending, sequential order,
beginning with the first Tcard encountered. In
addition, for reference purposes, each new
variable number is placed, right-justified, in
columns 2 through 5 of the non-Tcards that
immediately follow each Tcard.

Options: None.

Problems: Two problems may occur: no initial Tcard found
within the given line parameter range or, if one
is found, a non-numeric character encountered
while translating its variable number,

Comments: One should note that this command does - not affect
the file line numbers that Tcards reside on,
Rather, it only affects the variable number of
each Tcard (occurring in columns 3 through 6 on
Type-5 Tcards, or 2 through 5 on SRS Tcards). To
renumber Tcard file line numbers, the ALIGN
comrnand may be used.

Examples : !SMOOTH /F

The above example will sequentially renumber the
Tcajrd variable numbers through the entire file
using the variable number of the first Tcard as
the initial number. If there were, for example,
40 Tcards and the first Tcard documented variable
10, the resulting Tcards would range from
variable 10 to 49, inclusive.

!SMOOTH 1 99
SMOOTH 101 199
SMOOTH 201 299

The above example assumes that there are three
variable "sections" in the codebook card file
(for example, an accident, vehicle, and occupant
section). It also assumes that the first
accident Tcard is variable 1 at file line number
1, the first vehicle Tcard is variable 101 at
lime 101, and the first occupant variable is

April 1983 SMOOTH Command - 25

Command Descriptions Codebook Processor

variable 201 at line 201. If several of the
variables have had their relative positions
changed by additions, deletions, or simple
exchanges, the above commands will insure that
the file's Teards are once more numbered
contiguously within each section.

26 - SMOOTH Command April 1983

Codebook Processor

TCONVERT Command

Command Descriptions

Purpose: To perform Tcard conversions.

Prototype: - TCONVERT lpar options

Action: The Tcards in the given line-number range "lpar"
are converted into another Tcard format according
to the option(sf specified.

Tcards may be converted from an SRS format to a
Type-5 format, from Type-5 to SRS, and from a
"free format" to either SRS or Type-5. Both the
SRS and Type-5 formats are described in detail in
Appendix 2, Free-format Tcards are described
below.

Because "lpar" applies only to the codebook card
file as input, if either the INPUT, PROMPT, or
SOURCE options are utilized, "lpar" is
effectively ignored.

Ogt ions : INPUT=£ dname

Specifies the file or device where Tcards to be
converted are read from. If not specified and
"prompting" is not taking place (see below), the
codr~book card file is used for Tcard input.

Specifies the file where converted Tcards will be
written. If not specified, the codebook card
f il~e is used for Tcard output.

Causes the program to prompt the user for "free-
for~mat" Tcard input. As many free-format Tcards
as desired may be entered. Prompting will
continue until either a "$ENDFILE" is issued or
an input error occurs. If omitted and the INPUT
option is not used, the codebook card file is
used for Tcard input.

SOURCE -
This is a synonym £.or the PROMPT option. Using
either one is the equivalent of specifying
"INPUT=*SOURCE*".

April 1983 TCONVERT Command - 27

Command Descriptions Codebook Processor

SRS -
Causes the Tcards to be converted usinq the SRS
format. The specification "TYPEIT' is a synonym
for this option. The SRS format is the default
conversion format.

Causes the Tcards to be converted using the
Type-5 format. If omitted, the SRS format is
used.

Problems: All Tcard elements are thoroughly checked while
being processed to insure that they not only
contain valid data (all numeric characters, for
example), but also that the values they translate
to lie within valid limits (variable numbers
between 1 and 9999, for example). Any errors
that are encountered will immediately stop
command processing.

Another less obvious problem may occur if either
the INPUT or OUTPUT option is used, or if
prompting is taking place. When these options
are used, converted Tcards are written out on
file line numbers corresponding to their variable
numbers (the Tcard for variable 3 on line 3, for
example). Before any new Tcard is written out,
the line where it will be written is first
checked to insure that it is vacant. If it is
not, the card that resides there is then checked
to insure that it is indeed a Tcard and that it
describes a variable with the same number as the
Tcard that is about to take its place. If either
of these conditions is not met, command
processing is interrupted. This checking
provides a measure of security against accidental
damage of the output file.

Comments: As stated above, when either the INPUT or OUTPUT
options is used, or when prompting is taking
place, converted Tcards are written out on file
line numbers corresponding to their variable
numbers. Otherwise, the default input and output
file is the codebook card file itself, and
converted Tcards are written back out on the same
lines where they were found.

Examples : TCONVERT /F TYPE5

The above example converts all the Tcards in the
file into Type-5 Tcards. The Tcards to be
converted can be in any format, including the

28 - TCONVERT Command April 1983

Codebook Processor Command De~~criptions

free-format Tcard described below. Free-format
cards must begin with a "T", however, in order to
be recognized, Any Type-5 Tcards that exist in
the file prior to the command being issued will
be left in the Type-5 format, effectively only
being checked by the command.

The above example causes the program to prompt
for free-format Tcards. Three are entered, along
with "$ENDFILE" to stop the prompting. The
resulting Tcards are in the SRS format. They are
displayed in the example that shows typical
codebook card types in Appendix 1.

Free-Format Tcards

Free-format Tcards have been designed to facilitate the
entry of finished Tcards. They may either be entered by
hand at the prompt when using the PROMPT or SOURCE options,
or placed in the input file with a "T" in column 1. When
being entered by hand, the program produces the prompt:

These nine elements, or items, may be entered on a single
line in the order shown, separated from one another by
commas. Except in the variable name specification, blanks
should be avoided.

Every element has a default value that will be assigned
to :~t when no value has been entered. Default values are
ass:~gned by simply omitting the item to be defaulted. For
example, "2,DA'Y OF WEEK,,,9tt will cause variable 2 to have a
field width of 1 and a character numeric storage type.
Default values are also assigned when elements remain after
the end of the Tcard line. For example, "2,DAY OF WEEK,,,9"
will have no second missing data code, will be a single
response varialble with no implied decimal places, and will
have no specified starting location.

Normally, the default value for the missing data
elements is "none", or no missing data code. Another
default technique has been provided, however. For these
elements, a single blank will cause the missing data code to
be a field of nines for that variable. For example,
"1,ACCIDENT NUMBER,G,C, ," assigns the value "999999" as the
first missing data code for the variable.

April 1983 TCONVERT Command - 29

Command Descr ip t ions Codebook Processor

Any value entered i n t he n i n t h pos i t i on i s u sua l ly
i n t e r p r e t e d a s an abso lu te s t a r t i n g column loca t ion fo r t h e
v a r i a b l e . I f t h e value begins w i t h a s t a r (" * ") , however,
the value w i l l be taken t o be an o f f s e t . See Appendix 2 f o r
a f u r t h e r d i scuss ion of l o c a t i o n s and o f f s e t s .

The d e f a u l t values and limits for a l l t he f ree - format
Tcard elements a r e provided i n t h e t a b l e below.

Free-Format Tcard Elements

30 - TCONVERT Command

I tem

Variable number

Var iable name

F ie ld width (FW)

Storage type

Missing da t a 1

Missing d a t a 2

Response number

Decimal p laces

Locat ion

Apri l 1983

Default Value

1 for f i r s t Tcard --
one more than l a s t

fo r subsequent Tcards

"VARIABLE nl ' (where "n"
i s v a r i a b l e number)

1

"C" (c h a r a c t e r numeric)

No missing da t a 1
(i f blank, " n i n e s ")

No missing da t a 2
(i f blank, " n i n e s ")

1 (s i n g l e response)

0 (no decimal p l a c e s)

No s t a r t i n g l oca t i on

Value L i m i t s

1 t o 9999

2 4 c h a r a c t e r s
(no commas)

C : 1 t o 15
A : 1 t o 999

C, A, 1 , F l
P I Z , o r B

-999999 t o 9999999
(i f FW >= 7)

-999999 t o 9999999
(i f FW >= 7)

0 t o 99

0 t o 9

1 t o 32767

Codebook Processor

VREGION Command

Command Descriptions

Purpose: To d,efine "variable" editor regions.

Prototype: VREGION - lpar

Action: Every whole number in the given line-number range
"lpar" is used to define an editor region that
corresponds to all of a variable's codebook
card~s. For example, for a variable 130, the
region is defined as ranging from file line
number 130 to 130.999 and specified by the
designator "/130". A single use of the command
will define up to a maximum of 100 regions.

Opt ions: None.

Prclblems: None,

Corr~ments: Use of this command assumes that Tcards reside on
whole line numbers corresponding to their
variable numbers (see the ALIGN command).

The above example defines a single variable
region, based on the value of the current line.
The region is then printed out (assuming that the
current line happened to be something like 3.4,
or, for that matter, any line number between 3
and 3.999).

'CrREGION 20 22
MOVE /22, /21, /20 TO 20
SMOOTH 19 23
ALIGN 19 23

The above example defines regions for variables
20 through 22. The subsequent editor MOVE
comntand serves to invert the order of the three
vari,ables. The SMOOTH command is then used to
renumber the variable numbers, while the ALIGN
command is used to insure that the Tcards once
agai,n reside on whole line numbers corresponding
to their variable numbers.

April 1983 VREGION Comma.nd - 3 1

Command D e s c r i p t i o n s

32 - VREGION Command

Codebook Processor

Codebook Processor

APPENDIX 1

Codebook Card Types

Appendix 1

UMTRI codebooks are generated from a collection of what
have traditionally been called codebook "cards". These
cards actually correspond to lines in a disk file,
Currently there are 15 recognizable card types that provide,
among other things, variable documentation, code value
descriptions, titles, tables of contents, etc., in the final
printable codebook. This appendix describes each of the
cart3 types,

The type of the card, usually an upper-case letter,
always appears in card column 1 , Columns 2 through 5 for
all cards usually contain the variable number of the
preceding Tcard, though this is not a requirement. For most
cards, column 6 should be blank. The remainder of the card
format varies from card to card. No single card, however,
shoi~ld be longer than 120 characters.

T Tcards describe the characteristics of the data set
variables. These "variable descriptorsn document,
variables. These "variable descriptors" document,
among other things, the number and name of each
variable, the field widths, and the missing data codes,
As a matter of style, each Tcard should appear on the
file line number corresponding to its variable number,
Currently, there are two types of Tcard formats: an SRS
format that comes from the early days of the HSRI
Statistical Research System, and a Type-5 format that
closely follows the current format of OSIRIS variable
descriptor records. These formats are both documented
in Appendix 2. Because the format of any Tcard is
quite rigid, Tcards are best generated by the TCONVERT
command.

C Ccards document the variable's code values. Column 6
is usual1,y blank, except for a print suppression
indicator (described below). Columns 7 through 10 must
be blank. The numeric code value itself must begin in
column 1 1 , with leading zeros inserted to the correct
field width. A delimiter immediately follows the code
value, ('Traditionally, this delimiter has been a
period (" . ") , but it may, in fact, be any character.)
The card :may end here, or it may continue with text.
If it does continue, the delimiter should be followed
by at least one blank. In the columns that remain, a
label documenting the code value may be entered. Text
beyond column 120 is ignored. Text should not be
continued on subsequent cards.

April 1983 Codebook Card Types - 33

Appendix 1 Codebook Processor

A range of values may be accommodated with a "range"
card, a Ccard with a dash in column 1 1 , blanks in the
remainder of the value field, a delimiter, blank, and
any label. The range card is placed between two
ascending Ccards.

The printing of values for which no correspon2ing
frequencies are found may be suppressed by placing an
"at" sign (" @ ") in column 6. The printing of the range
card may also be suppressed. In contrast, values for
which there are frequencies but no corresponding code
cards are automatically generated and printed in the
codebook (unless the GENERATE command's NOERROR option
is used), Up to 100 contiguous, non-matched values can
be processed in this manner.

K Kcards are identical in format to Ccards and are
handled in much the same way. Frequency insertion,
however, is not attempted for Kcards. Because of this
fact, a non-numeric code value may appear on the card.
Kcards are useful for documenting the values of an
alphabetic-type variable, as well as for adding
supplementary information to Ccards such as a parallel
set of definitions for the same values.

H Hcards are used as headings for C or Kcards. The
heading text should begin in column 9, though text
beginning anywhere from column 7 or beyond will be
accommodated. The heading will be formatted to "hang
over" the Ccards that follow by two spaces. The text
itself may extend to column 120 on the Hcard, but only
the portion able to fit between two spaces before the
start of values and the right margin of the codebook
will be used. This length is variable and depends on
the GENERATE command's NUMBER and WIDTH setting, as
well as the XCHAR character being used.

N Ncards contribute "notational" information to the
variable Tcards they follow. The text of the
(optional) note card can be used to spell out the name
of the variable more fully, perhaps, or to otherwise
amplify the significance of the variable in some way.
The text may begin in column 7 or anywhere beyond. The
text will be used on the first "frequency heading"
placed above the beginning of C or Kcards for the
variable. For this reason, if no C or Kcards follow
the variable's Tcard, no frequency heading is printed.
Though the frequency heading is distinct from the
heading produced by the Hcard, the Ncard text is
formatted in an identical manner. Thus, the same text-
length limitations apply.

E Ecards allow elaborations, or explanations, to be
included in the-codebook. Text for Ecards may begin in

34 - Codebook Card Types April 1983

Codebook Processor Appendix 1

column 7 o r anywhere beyond, and may extend t o column
1 2 0 . The GENERATE command w i l l au tomat ica l ly format
t he t e x t of contiguous Ecards so t h a t a t l e a s t 5 spaces
occur between the t e x t and the l e f t and r i g h t margins
of t he f i n i shed codebook. Indented paragraphs may be
achieved w i t h the use of t i l d e s (' I - ") .

S Scards provide t i t l e s fo r the codebook. The t i t l e t e x t
may begin i n column 7 or anywhere beyond. I t w i l l be
cen te red au tor ia t i ca l ly by the program and placed a t the
t op of each codebook page. Scards u sua l ly occur i n
p a i r s , t h e f i r s t ca rd providing what could be c a l l e d a
g loba l t i t l e , with t he second card providing a
s u b t i t l e . Scards can occur anywhere i n t h e codebook
card f i l e and take e f f e c t on the next page a f t e r being
encountered. The maximum length of t he ca rd t e x t i s
v a r i a b l e and depends on t h e XCHAR cha rac t e r being used.

M Mcards, o r "middle" c a r d s , a r e s i n g l e l i n e s of t e x t
t h a t a r e au tomat ica l ly cen te red i n t h e f i n i shed
codebook. The t e x t may begin i n column 7 or anywhere
beyond. The maximum leng th of t he ca rd t e x t i s
v a r i a b l e and depends on t he XCHAR c h a r a c t e r being used.

B Bcards genera te a blank l i n e i n t he codebook.

I ca rds cause an "index dump" t o t ake p l ace . A l l
summary information gathered fo r a l l v a r i a b l e s (name,
f i e l d width , e t c .) s i n c e t he l a s t index-dump (i f any)
i s p r i n t e d ou t . With t h i s ca rd , a s e p a r a t e a c c i d e n t ,
v e h i c l e , and occupant index can be generated. When
brought t o t he f ron t of t h e codebook by t h e u s e r , t he se
s epa ra t e ind ices become a codebook t a b l e of con ten t s .
The I ca rd w i l l a l s o fo rce t he next codebook s e c t i o n t o
begin p r i n t i n g on a new page (odd-numbered i f s h i f t i n g
i s i n e f f e c t) , Another important a c t i o n of the I ca rd
i s t he adding up of a new frequency t o t a l f o r
percentage c a l c u l a t i o n . Because an end -o f - f i l e
produces t he same e f f e c t a s an I c a r d , an Ica rd need not
be t he l a s t ca rd i n t he f i l e .

A Acards, o r "add" c a r d s , cause a new frequency t o t a l t o
be c a l c u l a t e d fo r percentage c a l c u l a t i o n . The I ca rd
performs the same f u n c t i o n , but the Acard does i t
without generat ing an index. These ca rds should be
placed between da ta " l e v e l s " (i . e . , between an acc iden t
and v e h i c l e s ec t i on o r whenever t h e value of 'N'
changes) . They should be used whenever percentages a r e
being included i n the f i n i shed codebook and the index-
dumping of Ica rds i s not de s i r ed .

P Pcards cause the information t h a t fo l lows t o begin on a
new page.

Codebook Card Types - 35

Appendix 1 Codebook Processor

U Ucards, or "upper" cards, cause the information that
follows to begin on a new page if it would otherwise
occur on the bottom half of the printed page. I f it
occurs on the top half of the page, no new page is
generated.

The "box1' card formats a box in the finished codebook.
These cards occur in pairs. When first encountered,
the card turns on the box format and generates the top
of the box. The next box card encountered generates
the box bottom and turns off the box format. Any
number and combination of E, M, or Bcards may appear
between the two box cards. The text generated by them
will be printed within the box in the finished
codebook.

X Xcards are supported for compatibility with older
codebook card files. Any text beginning in column 7 is
printed in the finished codebook exactly as it appears.
E, M, or Bcards can usually do what the Xcard was
formerly called upon to do in a more powerful way.
They are therefore better choices than the Xcard.

36 - Codebook Card Types April 1983

Codebook Processor Appendix 1

Exacnples of Some Typical Codebook Cards
(wi th column r u l e r s above and below)

0
0 NATIONAL ACCIDENT STUDY
0 Accident - 1980
0
0 Accident Var iables
0
0 -----Variables 1 through 50 descr ibe
0 acc iden t l e v e l information. They a r e included i n t he
0 Accident , , Vehic le , and Occupant data s e t s .
0 The Accident da t a s e t con t a in s these v a r i a b l e s
0 and no ot:hers.
0
1 ACCIDENT NUMBER * 6 C 999999
1 000000.
1 - . Accident r epo r t number
1 999999.
2 DAY OF WEEK * 1 C
2 DAY OF WEEK OF ACCIDENT
2 1 . Sunday
2 2 . Monday
2 3 . Tuesday
2 4 . Wednesday
2 5 . Thursday
2 6 . Friday
2 7 . Saturday
2@ 9. M i s s i n g da ta
3 ACCIDENT TYPE t
3 S i n g l e v e h i c l e Accident
3 R O , Rollover
3 FX. Struck f i x e d ob j ec t
3
3 Mul t ip le Vehicle Accident
3 HD. Head on
3 SW, Sideswipe

The output on the fol lowing page was produced from the
codebook ca rds above using the GENERATE command. An XCHAR
value of "4" was used a s an op t ion , and, a s can be seen, no
f reyuenc ies were i n se r t ed .

Codebook Card Types - 37

Appendix 1 Codebook Processor

NATIONAL ACCIDENT STUDY
Accident - 1980

Page 1

Accident Variables

Variables 1 through 50 describe accident
level information. They are included in the
Accident, Vehicle, and Occupant data sets. The
Accident data set contains these variables and no
others.

Variable 1 ACCIDENT NUMBER MD1: 999999 FW: 6
MD2: None Numeric

FREQ Prcnt ACCIDENT NUMBER

000000. - . Accident report number
999999.

Variable 2 DAY OF WEEK MD1: 9 FW: 1
MD2: None Numeric

FREQ Prcnt DAY OF WEEK OF ACCIDENT

1. Sunday
2. Monday
3. Tuesday
4. Wednesday
5, Thursday
6. Friday
7. Saturday

Variable 3 ACCIDENT TYPE MD1: None FW: 2
MD2: None Alpha

FREQ Prcnt ACCIDENT TYPE

Single Vehicle Accident
RO. Rollover
FX, Struck fixed object

Multiple Vehicle Accident
HD, Head on
SW. Sideswipe

38 - Codebook Card Types April 1983

Codebook Processor

APPENDIX 2

Tcard Formats

Appendix 2

Tcards form the b a s i s fo r da ta s e t d i c t i o n a r i e s i n both
ADAAS and OSIRIS. In OSIRIS, d i c t i o n a r i e s may a l s o conta in
o ther codebook c a r d s , or records , t h a t perform func t ions
s i m i l a r t o those performed by UMTRI codebook c a r d s , In
f a c t , codebook card f i l e s have no s epa ra t e e x i s t e n c e a p a r t
from d i c t i ona ry f i l e s -- they a r e one and the same. A t one
t ime, UMTRI codebook card f i l e s and d i c t i o n a r y f i l e s were
a l s o t h e same, b u t , over t h e yea r s , codebook card f i l e s have
gradual ly come t o e x i s t independently from d i c t i o n a r y f i l e s .
And though the codebook Tcard and d i c t i ona ry Tcard very
o f t en have a s i m i l a r , i f not i d e n t i c a l , format , some
process ing i s ~ ~ s u a l l y necessary t o transform t h e Tcards i n t o
a d i c t i o n a r y f i l e ,

The Tcards descr ibed i n t h i s appendix a r e "codebook"
Tcards a s opposed t o "d i c t i ona ry" Tcards. Cur ren t ly t h e r e
a r e two d i s t i n c t formats recognized by the codebook program.

Type-5 Tca,rds c l o s e l y follow the format of t h e OSIRIS
v a r i a b l e d e s c r i p t o r records t h a t make up type "5"
d i c t i o n a r i e s . These r eco rds , a s well a s s t r u c t u r e d f i l e
d e s c r i p t i o n records and codebook records , a r e documented i n
t he OSIRIS manual1 on pages 349 through 356.

SRS Tcards were o r i g i n a l l y used a t UMTRI i n conjunct ion
w i t h t h e S t a t i s t i c a l Research System, t he predecessor of
ADAAS. These Tcards , a s well a s s eve ra l e a r l y (and
outmoded) codebook card t ypes , a r e f u l l y descr ibed i n the
SRS manualZ on pages 4 1 through 4 7 .

In most c a s e s , OSIRIS Type-5 Tcard records may be used
withtout a l t e r a t i o n i n a codebook card f i l e . Some
incc lmpat ib i l i t i e s , however, e x i s t a t t h i s time. The
GENEiRATE command, fo r example, can only recognize cha rac t e r
numeric and a lphabe t i c s t o r age types. One should no t e , too ,
t h a t t h e program cannot handle v a r i a b l e numbers g r e a t e r than
9999 o r implied decimal p lace numbers over 9 . One o ther
major d i f ferenc:e between the UMTRI Type-5 Tcard and the
OSIRIS v a r i a b l e d e s c r i p t o r record i s the (o p t i o n a l) use by

Survey Research Cente r , OSIRIS IV User ' s Manual (A n n
Arbor: The Univers i ty of Michigan I n s t i t u t e f o r Soc i a l
Research, October 19821,

Elavid E . Wood and Carole D . Hafner, The S t a t i s t i c a l -
Research System (~ n n Arbor: The Univers i ty of Michigan --
Highway s a f e t y - ~ e s e a r c h I n s t i t u t e , June 1972).

Apri l 1983 Tcard Formats - 39

Appendix 2 Codebook Processor

the UMTRI Tcard of the location field to provide offsets in
the dictionary. This use is discussed below.

The SRS Tcard format currently in use is a modified
version of an original format used with the Statistical
Research System, Some differences should be noted. A blank
in the variable's data storage type field, for example, at
one time indicated a character numeric variable, while "1"
indicated an alphabetic variable. These designations have
been changed to "C" and "A" , respectively. The codebook
program, however, can still recognize the earlier
designations. Another major difference, as with the Type-5
Tcard, is the use of the location field to optionally
specify offsets. Many older SRS Tcards have "01010" in this
field, and the codebook program takes them into
considerat ion,

Both UMTRI Type-5 and SRS Tcards make special use of
the field containing the variable's starting column
location. I f the location field begins with a star (" * ") ,
the number that follows is assumed to be an "offset" (i.e,
the variable's starting location will be so much more or
less than the current location). For example, if one
variable had a starting location of 45 and a field width of
10, the specification "*-10" would cause the next variable
to begin at the same starting location, 45, rather than at
55 (the case if the offset had been blank). If no star is
present and the field is not blank, whatever value appears
in the field is taken as the variable's absolute starting
location.

Use of one Tcard format over the other is essentially a
personal choice. The Type-5 fornat has the advantage of
being nearly compatible with the OSIRIS variable descriptor
format. On the other hand, the SRS format, besides having
been in use for several years, is much easier to work with.
It more closely matches the format of other UMTRI codebook
cards, has more clearly recognizable elements, and is never
longer than 59 characters, thus avoiding "wrap-around" when
the codebook card file is edited on a terminal with a width
less than 80 characters.

All of the codebook commands can handle either Tcard
format. Most distinguish a Type-5 Tcard from an SRS Tcard
by the presence of five zero characters ("00000") in columns
76 through 80 of the card.

The two tables that follow document the formats of the
Type-5 and SRS Tcards, Fields not described are usually
blank. Several of the Type-5 fields that are described are
not significant to the codebook program.

40 - Tcard Formats April 1983

Codebook Processor Appendix 2

Type-5 Tcard Fields

Ccllumns Len I tern Comments

Card type
Variable number
Reference number
Group number
Variable name
Character type

C: Char numeric
A : Alphabetic

Locat ion
* + Displacement
* - Displacement
*
Absolute location

Field width
Decimal places
Response number
MD code # 1
MD code # 2
Card designator

"T"
Leading blanks
Leading blanks

0"

Data storage type

Location or offset
Trailing blanks
Trailing blanks
Trailing blanks
Leading blanks
Leading blanks
O/blank if none
l/blank if single
Leading blanks
Leading blanks
''00000"

SRS Tcard Fields

- -- - - -

Columns Len I tem Comments

Card type
Variable number
Variable name
Locat ion

* + Displacement
* - Displacement
*
Absolute location

Field width
Decimal places
Character type

C: Char numeric
A: Alphabetic

Response number
MD code # 1
MD code # 2

"TI'
Leading blanks

Location or offset
Trailing blanks
Trailing blanks
Trailing blanks
Leading blanks
Leading blanks
O/blank if none
Data storage type

l/blank if single
Leading blanks
Leading blanks

April 1983 Tcard Formats - 41

Appendix 2

42 - Tcard Formats

Codebook Processor

April 1983

Codebook Processor

APPENDIX 3

Appendix 3

HSR1:FREQ and Frequency Files

Frequencies inserted in finished, printable codebooks
by the GENERATE command are stored in separate disk files.
Although a knowledge of the structure of these files is
sometimes useful, it is never critical to the operation of
the codebook program. More important is knowing how to
produce them in the first place. A separate program has
been written to perform this task. This program,
"HSF!I :FREQ1', is described below, Following this, the
structure of the frequency files themselves is covered in
detail.

HSR I : FREQ

HSR1:FREQ is a "frequency generation" program that
performs basic one-way tabulations on a data file, counting
the number of times that certain data elements occur for any
of several variables. The program has several options that
may be passed to it on the program's run-time parameter
line. For example:

$RUN HSR1:FREQ PAR=list of options in any order

If the parameter line is omitted, the options are read in on
SCARDS until either a "$ENDFILE1' is encountered or the
spec:ification "END" is processed. For example:

$RUN HSRI r FREQ
list of options
in any order
END

These options set the input data and dictionary files, the
output frequency file, specify the variables to be counted,
and perform various other miscellaneous functions.

HSR1:FREQ requires both a data file and a dictionary
file in order to be run successfully. The dictionary must
be an OSIRIS type " 1 " dictionary. The variables to be
accessed must all store their data in "character numeric"
mode (i.e., the numbers 0 to 9 as typed in at a terminal).

To summarize the use of the program's options, the
DATA, DICT, and OUTPUT options are all required. If either
DATA or DICT specify a tape file, the VOLUME option is also
required. In addition, some variables must be also be
spec:ified, either with the VA'RS option, the RV option, or
both.

Apri.1 1983 HSR1:FREQ and Frequency Files - 43

Appendix 3 Codebook Processor

The use of the VARS and RV options deserves special
comment. The VARS option is at the same time powerful and
tolerant in the manner in which it ignores certain
variables, Entire sections of a data file can be specified
without worrying about variable gaps, invalid variables,
etc. Conversely, the VARS option may at first seem somewhat
restrictive in not being able to access variables with field
widths greater than four, Full frequency counts, however,
are usually not inserted in codebooks for these variables.
Rather, they are usually represented by a "range" of values
in the codebook card file. The RV option was, in fact,
designed for these situations and may easily be used to
generate frequencies for these variables.

Options: - DATA=filename

Specifies the data file to be used for the
frequency generation. The file may be either a
disk file or a tape file. If it is a disk file
and the dictionary file happens to be on tape,
the data file name - must be prefixed by its CCID,
even if the program is running from that CCID,
There is no default data file name. It must be
specified.

Specifies the dictionary file to be used for the
frequency generation. The file may be either a
disk file or a tape file. I f it is a disk file
and the data file happens to be on tape, the
dictionary file name must be prefixed by its
CCID, even if the program is running from that
CCID. There is no default dictionary file name.
It must be specified.

Specifies the character to be used as the "fill"
character. Though it can usually be disregarded,
the fill character can occasionally affect the
operation of data conversion, as well as program
filtering. By default, the fill character is
ZERO ("0").

Specifies a single variable and non-negative
integer value, separated by a colon, that will be
used to selectively filter the data file. Only
those cases that have the same value for that
variable will be counted by the program. The
variable itself cannot have a field width greater
than eight. If omitted, no filtering takes

44 - H S R I : F R E Q ' ~ ~ ~ Frequency Files April 1983

Codebook Processor Appendix 3

placze.

OUTPUT= f i lename -

Speczifies the disk file where the final frequency
information will be written. The specification
"WRI:TEV is a synonym for "OUTPUT". There is no
default output file. One must be specified.

Speczifies the pseudodevice name of the tape where
either the dictionary file, the data file, or
both, reside. If omitted and a tape is involved,
the pdn "*HSRI*" is used.

Speczifies a "range" variable and two non-negative
integer values, the first less than the second,
Up t:o 25 different ranges may be specified for
one program run, each identified by different
values of "n". Frequencies will be generated for
each range for data elements less than or equal
to the minimum value, and greater than or equal
to the maximum value. In essence, the two values
spec:ified by the option serve as "end-points"
that: either define a range of data elements that
will. be skipped, or ignored, by the program
(i.e., those between the minimum and maximum
values), or, alternatively, two sets of data
elements that will be counted by the program
(i.e., the range from the smallest data element
found to the minimum value, and the range from
the maximum value to the greatest data element
found). Up to 100 different data elements will
be counted by the program, above and below the
range values. If over 100 data elements are
encountered for a given range variable,
proc:essing for that variable will cease and its
frequencies will not be written into the output
file. The variable itself cannot have a field
width greater than eight. I f no RV option is
used, variables must be specified with the VARS
opt ion.

Speczifies the variables whose data elements will
be c:ounted by the program. Up to 10,000
variables may be specified, but only the first
250 character numeric variables in the dictionary
with a field width of four or less will have
frequencies generated. Many variables will

Apri.1 1983 HSR1:FREQ and Frequency Files - 45

Appendix 3 Codebook Processor

therefore be ignored. These include: variables
not in the dictionary, non-numeric variables,
variables with field widths greater than four,
and any variable also selected with an RV option.
I f the VARS option is not used, variables must be
specified with the RV option,

Specifies the volume label of the tape where
either the dictionary file, the data file, or
both, reside. This option is required when a
tape is involved. If it is omitted, the
dictionary and data files are assumed to reside
on disk.

Problems: The number of distinct data elements allowed for
a single variable processed by the VARS command
is limited to 4096 non-neqative values. The
limit for range variables has been arbitrarily
set at 100 positive and negative values. If
either of these limits is exceeded, the
frequencies for the offending variable are not
written in the output file.

Decimal (character numeric) to binary conversion
errors will cause processing to cease for the
offending variable. Processing continues,
however, for all other variables. The case
number and field causing the error are also
reported.

Problems may also occur when leading blanks,
rather than leading zeros, were used to fill out
variable fields in the data file being processed.
In these situations, decimal to binary conversion
errors may result when the blanks are
encountered. To overcome this problem, the fill
character may be set to blank with the FILL
option, One should understand, however, that
this will also effect program filtering and the
identification of range values. If, for example,
the FILTER option were used and it had been set
to value " 1 " for a variable with a field width of
two, the value would be represented as "01" when
the fill character was zero, but as " 1 " when the
fill character was blank. The low and high
values of a range variable would be similarly
affected. Because both filtering and range
selection based on a value's character
representation, rather than its binary
representation, in certain situations values may
be ignored by the program that should otherwise
be considered.

46 - HSR1:FREQ and Frequency Files April 1983

Codebook Processor Appendix 3

Examples : 8RUN HSRI : FREQ
DICT=VEHICLE.DIC DATA=VEHICLE.DAT VOL=VEHTAP
VARS=101-199 OUTPUT=FREQVEH END

The above example generates frequencies for all
character numeric variables with a field width of
four or less between variables 101 and 199 as
defined by the dictionary file "VEHICLE.DIC" and
found in the data file "VEHICLE,DATV. Both these
files are located on a tape with the volume label
"VEHTAP" that was mounted previously with the
pseudodevice name "*HSRI*". Generated
freguencies are written into the disk file
"FREQVEH". Notice that the options are passed to
the program on lines immediately after the
program is run, and that they are terminated with
the "END" specification.

The above example generates frequencies for all
character numeric variables with a field width of
four or less between variables 1 and 3, as well
as 10 and 40. Both the data file ("TEMPDATA")
and dictionary file ("NEWTEMPDICT") are disk
files. Generated frequencies are written into
the file "FREQVEH". Notice that the run-time
parameter line is used to pass options to the
program and that, because of its length, it is
continued onto a second line with a dash (I1-").

$RUN HSRI : FREQ
IIICT=SFQ8:RESULTDICT DATA=RESULTDATA
T70L=MYTAPE PDN= *T*
JIARS=1-1000 OUTPUT=FREQS
RV1=5:1-99998 RV2=20:1-30257 RV3=142:0-999
END

The above example generates frequencies for the
first 250 character numeric variables with a
field width of four or less between variables 1
and 1000, excluding variables 5, 20, and 142.
The data is found in the file "RESULTDATA"
located on a tape with volume "MYTAPE", mounted
with the pseudodevice name "*T*". The
dictionary, however, is found in the disk file
"RESULTDICT" which is explicitly identified with
its CCID, Generated frequencies are written into
the file "FREQS". In addition to the variables
specified with the VARS options, three range
variables are selected:

April 1983 HSR1:FREQ and Frequency Files - 47

Appendix 3 Codebook Processor

These range variable examples demonstrate several
uses of the RV option, illustrated hypothetically
here. The first example will cause frequencies
to be generated for data elements of 1 or less
and 99998 or greater for variable 5. Variable
5's missing data code may be 99999, in which case
the missing data rate can then be displayed in
the codebook. The second example processes data
elements for variable 20 in a similar manner.
Variable 20 could describe a date in Julian
format, however. In this case, not only could
the missing data rate be calculated, but
frequencies for all dates past January 1 , 1983
would also be generated (if less than 100
elements), thus identifying possible wild codes
if no dates should occur there. The third range
example again works in a similar manner.
Variable 64, however, may have values that range
from -99 to 999 (as in a "delta-v" measurement,
for example). If the VARS option were used to
select this variable, the first negative value
encountered would cause a conversion error to
occur, To avoid this, the variable can be
handled with the RV option, as the data elements
it processes can be both positive and negative
(though the minimum and maximum range values
themselves cannot be less than zero). This
specification would be one way, then, to generate
"end-point" frequencies for a variable with
negative values.

48 - HSR1:FREQ and Frequency Files April 1983

Codebook Processor

Frequency Files

Appendix 3

Frequencies inserted in finished, printable codebooks
by the GENERATE command are stored in separate disk files.
The structure of these files is covered in detail here,

Frequency information for any particular variable is
stored on two lines in the disk file, Both of these lines
are keyed to the variable's number, Because of this, a
single frequency file cannot hold multiple frequency
information for a given variable (e.g., frequencies for
variable 1 for injury-only accidents - and frequencies for
variable 1 for fatal accidents). In these cases, multiple
frequency files are required.

The first line for a given variable occurs on the
integer line number corresponding to its variable number
(for example, variable 4 on line 4). This line contains two
pieces of information: the variable number in the first - two
bytes, and, in the next four bytes, the total number of
full-word code values and frequency pairs contained on the
second line. These two values are stored in binary.

The line that follows occurs at a fractional increment
of "0.001" from the first line (for example, line 4.001 for
variable 4) . This second line contains the actual frequency
information: four-byte full-word code values, each
immediately followed by its full-word frequency of
occurrence, all stored in binary. Because a single MTS file
line is limited to a length of 32,767 bytes, this line can
hold no more than 4096 separate code values and frequencies.
Only code values that have a frequency greater than zero,
however, will normally appear. Code values are arranged on
the line in asc:ending numerical order.

Care shou1.d be taken if a frequency file is ever
modified by hand with the MTS file editor. As can be
observed, precise line numbers and line lengths are both
critical to the proper insertion of frequencies by the
GENEZRATE command. Because the information in the file is
stored in binary, to make any sense of the lines when using
the file editor, the lines must be managed with the
hexadecimal modifier (for example, llPRINT@X").

When calcuZating frequency percentages, the GENERATE
command determines the value of IN' by adding up the
frec~uencies appearing on the second line. This operation
only takes plac:e, however, for the first variable processed
that: has frequencies in the codebook card file, along with
the first variable with frequencies after either an Icard or
an Acard has been encountered. The importance of Icards and
Acards can be seen, then, whenever a frequency file is being
proc:essed that has more than one value of 'N' (an accident,

Apri.1 1983 HSR1:FREQ and Frequency Files - 49

Appendix 3 Codebook Processor

vehicle, and occupant value, for example). The implication,
too, is that an incorrect value for percentage calculations
will be derived if the frequencies for the first variable
processed do not equal the value of 'N' (because they were
generated by the RV option of the HSR1:FREQ program, for
example). The user should be aware of these potential
problems.

50 - HSR1:FREQ and Frequency Files April 1983

Codebook Processor Index

INDEX

#card (see Box card), 36

Acai:d
addition of frequency total, 49
description, 35

Addition of frequency total with Acard, 35, 49
Addition of frequency total with Icard, 35, 49
ALIGN command

description, 5
with VREGION command, 31

Alphabetic variables, documenting values with Kcards, 34

Batch operation, 3
Beard

CHECK error rnessage, 9, 13
description, 35

Blanks with Bcards, 35
Box card

CHECK error rnessage, 12
description, 36

Card types, 33
Ccard

CHECK error rnessage, 9-12
description, 33

Centered text with Mcards, 35
CHECK command

description, 7
Code value delimiter

CHECK error message, 10-11
position on card, 33
way in which determined, 10

Code value headings, 34
Code value range (see "Range"), 34
Codebook card types, 33
Codebook commands, 1
Codeboo ks

generating with GENERATE command, 19
printing on the Xerox 9700, 19

Concatenation, implicit, 3
Converting Tcards, 2 7

DICT command
description, 15
use instead of CHECK in finding Tcard problems, 8

Dictionary generation, 15
Dictionary Tcards, 39

Ecard
CHECK error message, 10

Index Codebook Processor

description, 34
Editor commands, 1
Errors, locating with CHECK command, 7

Format errors, locating with CHECK command, 7
Formatted text with Ecards, 34
Free-format Tcards, 29
Frequency files

generation with HSRI:FREQ, 43
internal structure, 49
use with GENERATE command, 19

Frequency generation, 43
Frequency headings, 19, 34
Frequency insertion field, space available, 21
Frequency percentages

automatic calculation, 20
possible problems with I N ' , 49
suppressing, 20

GENERATE command
calculation of percentages, 49
description, 19
finding problems with CHECK command, 7

Generating frequency files, 43
Generating Tcards, 27

Hcard
CHECK error message, 10, 13
description, 34

Headings, 34
HSRI : FREQ, 4 3
HSR1:LABGEN and the LABELSET command, 23

Icard
addition of frequency total, 49
description, 35
with ALIGN command, 6

Implicit concatenation, 3
Index, generation with Icard, 35
Insertion field, space available, 21
~nsertion of non-matched code values, 20

Kcard
CHECK error message, 10-11
description, 34

Labels
producing "setup" lines for HSRI:LABGEN, 23

LABELSET command
description, 23

Line printer codebook output, 21
Line-number parameter, 2
Listing variables with DICT command, 15

April 1983

Codebook Processor

Lpar definition, 2

Index

Mcard
CH:ECK error message, 1 1
description, 35

Moving variables in blocks, 31
MTS commands, 1
MTS file editor commands, 1

Ncard
CH:ECK error message, 1 1
description, 34

Negative code values, 46, 48
Non-matched code values

aultomatic insertion, 20
limit of 100 values, 34
su~ppressing abutomat ic insert ion, 20

Offsets, 40
Onesided codebooks with NOSHIFT, 20
Operation in ba~tch, 3
Options definition, 2
0SIR:IS Tcards, 39

Page
fcrcing new page with Pcard, 35
forcing new page with Ucard, 35

Page number, setting beginning number, 20
Page shifting, suppressing, 20
Pcard
CH:ECK error Inessage, 9, 12
description, 35

Percentages
automatic cal.culat ion, 20
possible problems with IN', 49
su~ppressing, 20

Prototype definition, 1

Range
code value

CHECK error message, 11-12
description, 34
generating frequencies for, 45

line-number, 2
option of HSF!I :FREQ, 45

Range card, 34
Renumbering Tcalrd file line numbers, 5
Renumbering Tcalrd variable numbers, 25

Scard
CHIECK error message, 12
description, 34-35

SMOClTH command
description, 25

April 1983

Index Codebook Processor

with VREGION command, 31
SRS Tcards, 39
Starting locations, 40
Suppressing code cards with no frequencies, 34

Table of contents, generation with Icard, 35
Tcard

CHECK error message, 9-13
checking format with DICT command, 16
checking format with TCONVERT command, 28
description, 33
description of fields, 41
full description and history, 39
SRS format, 41
Type-5 format, 41
with ALIGN command, 5
with DICT command, 15
with SMOOTH command, 25
with TCONVERT command, 27

TCONVERT command
description, 27
use instead of CHECK in finding Tcard problems, 8

Text in the codebook with Ecards, 34
Titles with Scards, 34-35
TN codebook output, 21
Type-5 Tcards, 39
Types of codebook cards, 33

Ucard
description, 35

Variable offsets, 40
Variable regions, 31
Variable starting locations, 40
VREGI ON command

description, 31

Xcard
CHECK error message, 9
description, 3 6

Xerox 9700
characters, 21
printing codebooks on, 19

April 1983

