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Abstract Mmilankovitch theory proposes that the magnitude of high-latitude summer insolation dictates the
continental ice-volume response by controlling summer snow melt, thus anticipating a substantial ice-volume
contribution from the strong summer insolation signal of precession. Yet almost all of the early Pleistocene
8'80 records’ signal strength resides at the frequency of obliquity. Here we explore this discrepancy using a
climate-vegetation-ice sheet model to simulate climate-ice sheet response to transient orbits of varying
obliquity and precession. Spectral analysis of our results shows that despite contributing significantly less to the
summer insolation signal, almost 60% of the ice-volume power exists at the frequency of obliquity due to a
combination of albedo feedbacks, seasonal offsets, and orbital cycle duration differences. Including eccentricity
modaulation of the precession ice-volume component and assuming a small Antarctic ice response to orbital
forcing produce a signal that agrees with the §'20 ice-volume proxy records.

1. Introduction

The most widely held theory for the relationship between ice-volume and insolation comes from the
calculations of Milankovitch [Milankovitch, 1941], who proposed that high-latitude (HL) caloric summer
half-year insolation determines the amount of snow cover that can survive summer melt and consequently,
the amount of ice sheet growth or retreat. Changes in both Earth’s obliquity and precession contribute
significantly to the caloric summer half-year insolation forcing. Therefore, Milankovitch theory predicts

that precession should produce a considerable ice-volume signal, a prediction borne out by climate models
le.q., Berger et al., 1999]. However, the §'80 ice-volume proxy records do not show the same signal. Rather,
little spectral power exists at the frequency of precession, with practically none of the signal strength in the
early Pleistocene (EP) (2.588-0.781 Ma) (Figure 1a) [Lisiecki and Raymo, 2007]. The surprising dominance

of the obliquity signal in opposition to Milankovitch theory has been coined the “41 kyr problem” [Raymo and
Nisancioglu, 2003]. Multiple hypotheses have been proposed to remedy the discrepancies between traditional
Milankovitch theory and the ice-volume proxy record [e.g., Clark and Pollard, 1998; Berger et al., 1999; Philander
and Fedorov, 2003; Raymo and Nisancioglu, 2003; Loutre et al., 2004; Ravelo et al.,, 2004; Vettoretti and Peltier,
2004; Huybers and Wunsch, 2005; Lee and Poulsen, 2005; Huybers, 2006; Raymo et al., 2006; Lee and Poulsen,
2008; Tabor et al.,, 2014], but the contributions of these hypotheses to the ice-volume record have not been
systematically explored with a model that includes both dynamic atmosphere and ice components.

Here we use an Earth system model to investigate the role of orbital forcing on climate. In contrast to previous
studies, which model the climate responses to orbital forcing without dynamic land-ice [e.g., Lee and Poulsen,
2008; Mantsis et al., 2011; Erb et al., 2013] or with only individual orbital parameters [e.g., Tabor et al., 2014], our
simulations use a series of transient orbital configurations with dynamic land-ice and simultaneously varying
obliquity and precession. This model setup allows us to explore the climate interactions produced by combined
orbital forcings and use statistical time series analysis to make direct comparisons between the modeled
ice-volume cycles and proxy data. We find that the ice-volume signal is not entirely a direct response to summer
insolation. Instead, climate feedbacks involving sea ice, vegetation, and clouds, seasonal offset of the insolation
forcing from precession and greater cycle duration of obliquity enhance the ice-volume response to obliquity
relative to precession. Combined, these factors give obliquity about 60% of the ice-volume power. Though
substantially muted, our experiments still produce a larger precession ice-volume response than recorded in
Pleistocene &'80 records. In our discussion, we provide methods to resolve the remaining discrepancies
between the modeled ice-volume signal and the §'80 records of the early Pleistocene. We quantitatively show
that the ice-volume spectral power shifts to the obliquity cycle frequency when modulating the precession
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Figure 1. The 41 kyr problem and the ice sheet responses to orbital forcing. (a) The power spectra of EP (2.588-0.781 Ma) detrended '80 stack [Lisiecki and Raymo,
2005]. Almost all of the power is at the frequency of obliquity. (b) Average standardized spectral power distribution of the ice-volume response to our four transient
orbital configurations (OC1-OC4). The ice-volume response produces more power at the frequency of obliquity than precession. (c) Plot of the 65°N June insolation
spectral power distribution. Here we chose 65°N June insolation because it is a standard commonly associated with modeling studies of Milankovitch theory. Vertical
dashed gray lines highlight the location of the obliquity and precession frequencies. (d) Simulated ice-volume (10" m3) for our four transient orbital configurations
(OC1-0C4). (e) The minimum and maximum ice extents for OC1. Ice extents for OC2-OC4 are comparable.

component by eccentricity or including a small amount of ice-volume response from Antarctica. Our findings
are an important step toward explaining the ice-volume records of the early Pleistocene.

2. Methods
2.1. Earth System Model

We use a global climate-vegetation-ice model consisting of the Global Environmental and Ecological
Simulation of Interactive Systems (GENESIS) 3.0 general circulation model (GCM) [Alder et al., 2011], the Global
biome model version 4 (BIOME4) vegetation model [Kaplan et al., 2003], and the Pennsylvania State
University (PSU) ice sheet model [Pollard and DeConto, 2012]. The GENESIS 3.0 GCM contains coupled
atmosphere (atmospheric general circulation model (AGCM)) and land surface (LSX) components. The AGCM
is run at T31 horizontal resolution (~3.75°) with 18 vertical sigma levels, and the LSX model is run at 2°
horizontal resolution with a 50 m slab ocean that calculates ocean heat transport through linear diffusion
based on local temperature gradient and a latitude-dependent diffusion coefficient and dynamic sea ice.
GENESIS 3.0 is synchronously coupled with the BIOME4 vegetation model. Ecosystem types are calculated
annually from a combination of prescribed soil and atmospheric CO,, and monthly mean GCM averages

of temperature, insolation, and precipitation. The PSU ice sheet model is a 3-D thermomechanical model;
here its marine ice capability is suppressed, so all dynamics are based on the shallow ice approximation.
Further, we use an insolation/temperature melt scheme (ITM) [Pollard, 1980; van den Berg et al., 2008] in place
of the commonly employed positive-degree-day (PDD) melt scheme. Robinson et al. [2010] find that the
ITM scheme produces a heightened ice sheet sensitivity compared to the PDD scheme, which better represents
ice-volume changes over long time scales.
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2.2. Experiment Design

We force the Earth system model with a series of four idealized, transient orbital configurations that represent
the extremes of the Pleistocene [Berger and Loutre, 1991] to explore the interactions of obliquity and
precession on climate and Northern Hemisphere (NH) ice-volume. For ease and efficiency, obliquity and
precession vary through time as pure (simple, idealized) sinusoids with durations of 40 kyr and 20 kyr
respectfully, approximations of the actual durations. The four orbital configurations (OC1-0OC4) differ only in
the timing of precession with respect to obliquity. From a fixed obliquity perspective, precession cycles are
staggered by 5 kyr (Table S1 in the supporting information). All experiments are initialized with modern
continental configuration and land surface type including modern Greenland and Antarctica, and no other
ice sheets. The dynamic ice sheet domain includes Greenland and North America above 40°N. Due to
computational costs, we use an asynchronous coupling technique to capture the responses of the Earth
system to the transient orbits [e.g., Birchfield et al., 1981; Herrington and Poulsen, 2012]. We look at the climate
response to orbital forcing both with (climate ice) and without (climate only) a dynamic ice sheet. For
experiments without dynamic ice, the ice sheet model is not run, and land surface type and topography are
held fixed at modern. Because EP greenhouse gas (GHG) fluctuations are not well known, we use values
representing the average of the last 400 kyr (CO, =230 ppmv, CH4 =520 ppbv, and N,0 =250 ppbv) [Petit
et al., 1999; Bender, 2002]. See supporting information for additional experiment design details.

3. Results
3.1. Ice-Volume Spectral Power

The ice-volume responses to our four transient orbital configurations produce mean sea level equivalent
(MSLE) variations between 25 and 31 m (Figure 1d). Transient orbital forcing causes substantial variations in
the areal extent of both the Laurentian and Cordilleran ice sheets (Figure 1e). Spectral analysis of the transient
ice-volume signals shows that, on average, there is more power at the frequency of obliquity (40kyr™") than
precession (20 kyr™") (Figure 1b). There is some minor variability in the power density distribution between
the four transient orbital configurations, but the greatest signal strength is always at the frequency of
obliquity (Figure S1). In contrast, most of the spectral power of June 65°N insolation intensity, a commonly
used metric for Milankovitch forcing in climate models, is at the frequency of precession (Figure 1c), which
indicates this common Milankovitch metric is not a direct driver of ice-volume in our model. Like other
modeling studies, our results also display too great of an ice-volume response to precession, which is absent
in the ice-volume proxy records of the EP [Lisiecki and Raymo, 2005; Huybers, 2007] (Figure 1a). We propose
several explanations for this discrepancy below.

3.2. Climate Signal Decomposition

The prominent ice-volume response at the obliquity frequency occurs through climate amplification of the
insolation forcing. To better and more easily understand the climate responses to changes in orbital forcing,
we decompose the climate responses of the climate-only experiments into contributions from obliquity
and precession using a least squares fitting procedure similar to that of Jackson and Broccoli [2003]. The
deviation of a given variable through time from its mean, X(t), is expressed as follows:

X(t) = Ao (t) 4 Apcos[A(t) — ¢,] + R(t) 1

where ¢'is the deviation of obliquity from its mean, 1 is the longitude of perihelion, and R is the residual that
accounts for nonlinearity of the system. The fitting procedure finds the amplitude of response to obliquity A,
the amplitude of response of precession A, and the phase angle of precession ¢,. Because eccentricity is
constant, it is excluded from equation (1).

The following analysis focuses on the North American (NA) HL (area between 55 and 75°N and 57 and 165°W)
responses of insolation, surface-absorbed shortwave radiation, and near-surface temperature because these
variables are used to calculate ablation in the ice sheet model (equation (S1)). Precipitation also contributes
to the mass balance of the ice sheets; however, our ice-volume responses are dominated by ablation, not
accumulation, a finding mirrored in other studies [e.g., DeConto et al., 2008; Tabor et al., 2014]. Furthermore,
precipitation responses to orbital changes are less linear than surface-absorbed shortwave radiation

and near-surface temperature, which reduces the appropriateness of the least squares fitting procedure.
Conversely, the NA HL surface-absorbed shortwave radiation and near-surface temperature responses to
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Figure 2. Decomposition of NA HL summer insolation, surface-absorbed shortwave radiation, and near-surface temperature into obliquity and precession components.
Spatial and temporal averages of NA HL (55-75°N, 57-165°W) June, July, and August (JJA) signals from OC1 over an orbital cycle. The model responses (solid orange line)
and least squares reconstructions (dashed black line) are plotted on the primary y axis. The contributions from obliquity (dashed blue line) and precession (solid blue line)
are plotted on the secondary y axis. (a) The insolation forcing (W mfz). (b) The amount of surface-absorbed shortwave radiation (W m72). (c) The near-surface
temperature (K) response. Obliquity contributes nearly twice as much to the NA HL summer variations in surface-absorbed shortwave radiation and near-surface
temperature as it does to insolation forcing, which suggests internal amplification.

insolation changes are quite linear in the summer months. The decomposed climate responses discussed
below are spatially, temporally, and experiment-averaged signal decompositions from all four transient
orbital configurations. We find that the climate responses are similar for all orbital configurations, and
therefore, Figure 2 shows the outputs of OC1 for simplicity. Note, we focus on NA for our analysis because it is
within the dynamic ice domain; however, similar responses are found throughout the NH HL.

3.2.1. Summer Season Feedbacks

The total HL June, July, and August (later referred to as summer) insolation variability is over 124Wm™
(Figure 2a, orange line). By decomposing the summer insolation forcing into obliquity and precession
components, we find that only 11% of the variance is due to obliquity with the remaining 89% attributable to
precession. On the other hand, the variance of the 78 W m 2 fluctuations in NA HL summer surface-absorbed
radiation is split 36% to 62%, and the 10°C fluctuations in NA HL summer near-surface temperature are
split 24% and 75% between obliquity and precession, respectively (Figures 2b and 2c). While precession
still controls the majority of the NA HL summer surface-absorbed shortwave radiation and near-surface
temperature responses, obliquity contributes nearly twice what would be expected assuming a direct surface
response to insolation forcing.

2

The amplification of the surface responses to insolation forcing is mainly a result of albedo feedbacks that are
significantly larger for obliquity than the incoming insolation would suggest. For instance, obliquity forcing
accounts for 49% of the NA HL summer planetary albedo variance. The planetary albedo signal is, in part, a
result of variations in surface albedo, which oscillates by 0.14 during the summer months, with a 39% to 57%
split in the variance between obliquity and precession, respectively. Changes in NH HL sea ice fractional
coverage, split 57% to 38% between obliquity and precession, and NA HL tundra/boreal forest exchange, split
38% to 58% between obliquity and precession, cause much of the summer surface albedo variability. We focus
on the summer response because of its significance to ice ablation, but the sea ice contribution from obliquity is
even larger in the spring and fall months. Furthermore, in the model, vegetation distributions do not vary
seasonally, enhancing the obliquity response all year. In addition to their direct effects, the surface albedo
feedbacks of sea ice and vegetation also influence the amount of snow cover through melting and canopy
masking, which further magnifies the surface albedo response. However, the snow cover fluctuations are less
linear than sea ice and vegetation and, therefore, are difficult to decompose through least squares fitting. These
surface albedo feedbacks allow the surface to warm disproportionately relative to the insolation forcing,
amplifying the obliquity signal relative to precession.

The obliquity contribution to cloud albedo response is also larger than the insolation forcing with a 47% to
46% split in variance between obliquity and precession. The total cloud albedo changes over an orbital cycle
are only 0.033 and are mainly a result of changes in stratus clouds. In these experiments cooler HL summer
temperatures during periods of low summer insolation allow more snow and soil moisture to persist into the
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summer months. The surface moisture source, combined with a weak low-level lapse rate due to the cold
surface, allows greater low-level relative humidity and stratus cloud cover. In the summer, enhanced cloud
cover reduces surface-absorbed shortwave radiation and temperature and provides a positive ice-volume
feedback. As previously mentioned, the changes in cloud albedo are fairly small.

The amplified responses of sea ice fraction and vegetation to obliquity relative to precession are a consequence
of the annual-mean insolation changes due to obliquity. Latitudinal redistribution of annual-mean insolation
due to changes in obliquity causes variations in ocean-absorbed shortwave to be greater than those due
to precession, resulting in more ocean heat release and a larger sea ice response. Likewise, obliquity forced
annual-mean insolation variations in the high latitudes produce a larger range of annual temperature and
sunlight reaching the surface than precession, which boosts the range of net-primary productivity and allows
for a greater vegetation transition between tundra and boreal forest. Other studies have also found important
vegetation and sea ice responses to orbital variations [e.g., Gallimore and Kutzbach, 1995, 1996; Tuenter et al.,
2004, 2005; Claussen et al., 2006; Horton et al., 2010; Tabor et al., 2014]; however, this research is the first to
examine surface feedbacks under the combined effects of obliquity and precession with a complex Earth
system model that includes dynamic land-ice.

3.2.2. Precession Seasonal Insolation Offset

In addition to differences in summer insolation and climate response, obliquity and precession also contribute
differently to insolation timing and duration. Even though precession dominates the summer insolation signal,
precession produces no changes in annual-mean insolation. Conversely, obliquity does alter the latitudinal
distribution of annual-mean insolation, especially in the HLs. The difference in mean-annual insolation between
obliquity and precession works to amplify the climate influence of obliquity while dampening the influence
of precession [Huybers, 2006]. Using the least squares signal decomposition, we illustrate the difference in
insolation forcing from precession and obliquity by examining differences in NH HL insolation forcing between
April and September (Figure S2a). When April insolation forcing from precession is anomalously large, September
insolation forcing from precession is anomalously small, and vice versa. The difference in seasonal phasing
of the precession insolation signal causes offset in the NA HL surface-absorbed shortwave (Figure S2b) and,
to a lesser amount due to inertia of the system, near-surface temperature (Figure S2c) while the concurrent
seasonal phasing of obliquity amplifies the response. These differences in seasonal forcing shorten the melt
season for precession but lengthen it for obliquity.

The amount of ablation that occurs during the spring and fall is small, about 5% of the total climate-only HL NA
land potential ablation (based on equation (S1)), which makes seasonal offset of secondary importance in
our experiments. However, our experimental design uses relatively low-GHG concentrations. While not well
constrained, the EP was potentially warmer than the mean climate produced by our model configuration. In a
warmer world, the melt threshold is more easily reached, allowing a longer melt season that both enhances the
seasonal cancelation effect from precession and melt of obliquity [Huybers and Tziperman, 2008]. Therefore,
our experiments represent a conservative estimate of the seasonal offset response to precession forcing.

3.3. Cycle Frequencies and Nonequilibrium

Even with surface amplification of obliquity signal and seasonal offset of precession forcing, the ablation response
favors precession; however, the ice-volume response favors obliquity. Much of this remaining discrepancy

is a consequence of the nonequilibrium response of the ice sheets to orbital forcing in combination with
differences in cycle duration between obliquity and precession [Roe, 2006; Huybers and Tziperman, 2008]. Our
results show that ablation has a nearly linear control on ice-volume rate of change while ice-volume lags
ablation and has no direct correlation (Figure S3). Using these relationships, we can describe the magnitude of
the ice-volume as a combination of obliquity and precession [Huybers and Tziperman, 2008]:

V= Q—Zsin(a)ot) +2—Zsin(wpt) ¥))
where t is time, V is ice-volume, A, is the amplitude response to obliquity, w, is the frequency of obliquity
(4okyr™), Ap, is the amplitude response to precession, and w,, is the frequency of precession (20 kyr™"). Here
we assume a 90° phase lag response of the ice sheets to forcing. Equation (2) demonstrates that the influence
of obliquity on the ice-volume rate of change is relatively enhanced simply because the frequency of the
obliquity cycle is half that of the precession cycle.
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Figure 3. Comparison of standardized ice-volume power spectra responses under different orbital and ice scenarios. (a) lce-volume spectral power distribution from the
high eccentricity and obliquity orbital configuration (OC1). (b) Ice-volume spectral power distribution from the moderate eccentricity and obliquity orbital configuration.
A moderate orbit results in a weaker precession ice-volume signal, but the precession signal is still larger than the 580 records of the EP. (c) Ice-volume spectral
power distribution that includes transient eccentricity modulation of the precession response shows a reduction in the precession power. (d) Ice-volume spectral
power distribution of the global ice-volume response that includes contributions from both hemispheres. The precession power is significantly reduced with only 15 m
of MSLE fluctuations from Antarctica. (€) The combination of transient eccentricity modulation and ice-volume fluctuations from Antarctica almost completely removes
the precession signal, creating the 41 kyr world.

We approximate relative magnitudes of A, and A, in our simulations to be 40% and 58% by calculating the HL
NA land potential ablation (based on equation (S1)) contributions from obliquity and precession. Due to its
lower frequency, we estimate that obliquity accounts for over 58% of the ice-volume signal. The actual
ice-volume responses to obliquity and precession are quite similar to this estimate (Figure 1b).

4. Discussion
4.1. Orbital Bias

One cause for the overly large precession ice-volume signal in our model results is our choice of orbital
configuration. In these experiments, the value of eccentricity is a larger deviation from the mean orbit (66%
difference) than the cycle of obliquity (47% difference). To address this bias, we ran an additional experiment
using the OC1 phasing of obliquity and precession with the Pleistocene average eccentricity (0.0285) and
obliquity range (22.791-24.085). The total ice-volume response decreases with a more moderate transient
orbit (22 m versus 31 m), and the resulting ice-volume spectral power distribution transfers signal strength to
the obliquity frequency (73%) compared to the default OC1 configuration (63%) (Figure 3b). Nonetheless, the
precession ice-volume signal strength remains larger than that observed in §'20 records of the EP [Lisiecki
and Raymo, 2005; Huybers, 2007].

An additional bias in our orbital configuration is that eccentricity remains constant, giving precession a large
insolation forcing every 20 kyr instead of every 100 kyr or 400 kyr. We approximate the effect of transient
eccentricity on modeled ice-volume spectral power distribution by decomposing the ice-volume signals into
obliquity and precession components, then temporally scaling the precession signal amplitude by the percent
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difference between the original eccentricity (0.056596) and a 100 kyr eccentricity cycle (0.000267-0.056596).
Recombining the obliquity ice-volume component with the scaled precession ice-volume component
produces an eccentricity cycle-modulated ice-volume signal. The resulting spectral power distribution amplifies
the obliquity power from 63% to 80% and reduces the precession power to 10% (Figure 3c).

4.2, Ice-Volume Hemispheric Offset

Another consideration is that the §'20 ice-volume record is not completely driven by NH forcing [Raymo et al.,
2006]. Because insolation forcing from precession is out of phase between hemispheres and ocean §'80 proxies
record global ice-volume, precession might have a significant influence on local ice-volume without producing
a global §'80 signal. Raymo et al. [2006] show that changes in Antarctic ice-volume during the EP can cause
the precession signal to vanish from the §'20 records. Given the already relatively small precession ice-volume
signal strength in our model results, the precession signal also disappears with minimal variations in Southern
Hemisphere (SH) ice-volume. If we assume that other EP ice sheets, including the Fennoscandian and Antarctic
ice sheets, respond to orbital forcing in a similar manner to our NA ice sheets, we can scale our ice-volume
signal to match the estimated EP MSLE variability of ~70 m [Sosdian and Rosenthal, 2009]. As an example, if we
use the ice-volume signal from OC1 to represent the NH ice-volume response and assume SH variations
equivalent to 15 m MSLE in combination with ice §'80 compositions of —30%o and —45%o for NH and SH ice,
respectively [Raymo et al,, 2006], the precession signal contribution to the global 3'20 signal reduces to less
than 10% with only 15m of MSLE contribution from Antarctica (Figure 3d). Further, combining hemispheric
offset with eccentricity modulation of the precession signal almost completely removes power at the frequency
of precession (2%) (Figure 3e). Note, here we posit that the Antarctic ice sheets respond to orbital forcing in
the same manner as the modeled NA ice sheets; however, Antarctica response to orbital forcing is uncertain
and might be more significantly influenced by changes in ocean currents than land-based ablation [e.g., Pollard
and DeConto, 2009]. Nevertheless, our results lend credibility to the hemispheric offset hypothesis given the
relatively small amount of Antarctic ice melt required to remove most of the precession signal. Antarctic
ice-volume variability of 15 m is reasonable since proxy evidence suggests an unstable East Antarctic Ice Sheet
during the late Pliocene, with sea level fluctuations of up to 10 m [Cook et al., 2013].

4.3. GHG Fluctuations

Due to the lack of high-resolution atmospheric composition data available for the EP, we omit GHG
fluctuations from our experiments. However, other modeling studies suggest a significant role for CO, during
the last deglaciation [Abe-Ouchi et al., 2007]. Further, Ruddiman [2003, 2006] shows that during the late
Pleistocene CO, fluctuations were significantly larger at the frequency of obliquity than precession, and these
41 kyr fluctuations in CO, acted nearly in phase with ice-volume, implying a positive feedback. If such a
relationship existed during the EP, it would be yet another mechanism to enhance the 41 kyr ice-volume
signal. Variations in CO; could further reduce the amount of hemispheric offset required to produce the EP
8'80 records. However, additional proxy and modeling data are required to discern the magnitude and time
of EP CO, variability.

4.4. Response Changes After the Mid-Pleistocene Transition

Our simulations address the ice-volume record prior to the mid-Pleistocene transition (MPT), at which point
ice-volume varies predominantly at a period of 100 kyr. The change in the response to orbital forcing might
be related to ice sheet extent. Summer insolation forcing from obliquity is strongest over the high latitudes
and reverses sign below ~45° latitude, while summer insolation forcing from precession remains uniform
over much of the hemisphere. Therefore, once an ice sheet reaches lower latitudes, precession controls
almost all insolation variability in the main ice sheet ablation zone. The simultaneous appearance of larger NA
ice sheets and a stronger eccentricity ice-volume response after the MPT might be a consequence of more
extensive ice sheets requiring a greater magnitude, low-latitude forcing to retreat. Furthermore, a more
extensive ice sheet would likely not be as susceptible to vegetation feedbacks, further reducing the influence
of obliquity. This theory is somewhat dependent on an increasing areal extent of the ice sheets after the
MPT. While some research proposes little change in the maximum ice sheet extent through the Pleistocene
[e.g., Clark and Pollard, 1998], other proxies support a less extensive ice sheet during much of the EP [e.g.,
Balco and Rovey, 2010].
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5. Conclusion

Our results illustrate that no single factor completely explains the modeled ice-volume signal. Instead,
amplification of the obliquity forcing by sea ice, vegetation, and cloud feedbacks; seasonal offset of the
precession forcing; and differences in cycle duration are necessary to understand the contributions of obliquity
and precession to ice-volume response. These factors cause obliquity to have the dominate influence on ice
sheet variability, in agreement with the Pleistocene 5'80 records [Lisiecki and Raymo, 2005; Huybers, 2007].
Furthermore, by including eccentricity modulation of the precession ice-volume signal and invoking a reasonably
small amount of ice response from Antarctica, we are able to reduce the global ice-volume response to
precession and produce a signal that compares favorably with the ice-volume proxy records of the EP. Based
on these results, a possible hypothesis for the “41 kyr world” involves a marginally unstable Antarctic ice
sheet during the EP, which dampens the precession contribution to the §'0 records, while albedo feedback
amplifications allow obliquity to produce a strong signal throughout the Pleistocene.
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