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Ertel’s potential vorticity (PV) is used as a diagnostic tool to give a direct comparison
between the treatment of PV in the dynamics and the integration of PV as a passive
tracer, yielding a systematic evaluation of a model’s consistency between the dynamical
core’s integration of the equations of motion and its tracer transport algorithm. Several
quantitative and qualitative metrics are considered to measure the consistency, including
error norms and grid-independent probability density functions. Comparisons between
the four dynamical cores of the National Center for Atmospheric Research’s (NCAR)
Community Atmosphere Model version 5.1 (CAM) are presented. We investigate the
consistency of these dynamical cores in an idealized setting: the presence of a breaking
baroclinic wave. For linear flow, before the wave breaks, the consistency for each model is
good. As the flow becomes nonlinear, the consistency between dynamic PV and tracer PV
breaks down, especially at small scales. Large values of dynamic PV are observed that do not
appear in the tracer PV. The results indicate that the spectral-element (CAM-SE) dynamical
core is the most consistent of the dynamical cores in CAM, however the consistency between
dynamic PV and tracer PV is related to and sensitive to the diffusive properties of the
dynamical cores.
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1. Introduction

Much attention has been paid of late to the evaluation and
accuracy of the dynamical cores of general circulation models
(GCMs). The term dynamical core refers to the integration of the
nonlinear equations of motion and typically includes all transport
processes. One of the key building blocks for a dynamical core is
the advection scheme which passively advects the many (possibly
hundreds) of tracers used in climate studies (Lamarque et al.,
2008). Tracer advection schemes implicitly rely on the accurate
integration of the momentum equation because the advective
winds are taken from this dynamic step. Some models even
use the identical tracer advection algorithm as a building block
for integrating both the tracers and the momentum equations
(Lin and Rood, 1996; Lin, 2004). Tracer advection routines
and the integration of the nonlinear dynamics are therefore
fundamentally linked. The impact that this relationship has on
the subgrid (unresolved) scales needs further quantification. The
current article is one approach to this problem.

Investigations into the veracity of a model’s tracer transport
algorithm (Lauritzen ef al., 2011) are necessary to validate model
performance. Typically, such test cases are performed on a
variety of modelling frameworks, isolating the effect of the
advective transport via a series of tests with variable difficulty
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(Nair and Lauritzen, 2010; Kent etal., 2012a, 2014). These
tests have prescribed dynamical fields, such as prescribed wind
velocities, and omit the parametrized physics, concentrating
on the advection algorithm. Other tests such as the adiabatic
baroclinic wave test by Jablonowski and Williamson (2006a)
provide a means to compare the evolution of the nonlinear
dynamics (as opposed to the linear tracer advection equation)
between models, while omitting the effect of complicated
physics parametrizations. In a different approach to examining
the dynamical core or tracer advection routine separately,
Rasch etal. (2006) closely monitored the effect of different
tracer routines on climate-related constituents, using the full
physics parametrization package available in the National Center
for Atmospheric Research (NCAR)’s Community Atmosphere
Model (CAM) version 3.0. Rasch et al. (2006) considered three
of the dynamical cores available in CAM. These are named
after the discretization method of the prognostic equations in
the dynamical core: finite volume (CAM-FV), spectral-transform
Eulerian (CAM-EUL), and spectral-transform semi-Lagrangian
(CAM-SLD). They found that, even with the identical physics
parametrization package, the evolution of the tracers depended
on the choice of dynamical core and hence the choice of the
advection algorithm. By investigating the relationship between
the discrete integration of the dynamics and the corresponding
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tracer transport algorithm within each of the four dynamical
cores in CAM version 5.1 (Neale et al., 2010), we shed some light
on the results of Rasch et al. (2006).

In Williamson (2007) it is noted that employing two different
numerical schemes for the integration of the dynamics and for
tracer advection ‘is not entirely satisfactory’. This aspect is, for
example, illustrated in Zhang et al. (2008). They observed that
a tracer advection scheme that was not inherently consistent
with the dynamical framework in the atmospheric model GAMIL
(Wang et al., 2004; Wan et al.,, 2006) led to significant errors
in a radon transport test. Adjusting the advective scheme
appropriately appeared to reduce the impact of these errors,
and Zhang et al. (2008) proposed that the difference arose from
the lack of consistency of the originally used advective scheme.
These results highlight only some of the possible issues that
may arise from treating advection differently than the dynamics
(Lee et al., 2004; Lauritzen etal., 2011). Furthermore, Joeckel
et al. (2001) emphasized these ideas, arguing that, for accurate
constituent transport, the discrete advective continuity equation
should reduce to that used for the transport of mass (dynamics).
This restriction on the design of a dynamical core was one of
the primary considerations in the design of CAM-FV (Lin and
Rood, 1996; Lin, 2004; Rood, 2011). In this article we suggest an
idealized approach which measures this ‘consistency’ between the
dynamical core and its tracer advection scheme. This is done via
the assessment of Ertel’s potential vorticity which acts both as a
dynamic quantity and passive tracer.

Ertel’s potential vorticity (PV) with symbol g is defined as

q:%(ZSl—}—VXu%(V@), (1)

where p is the density of the air, u stands for the three-dimensional
velocity vector field, € symbolizes the Earth’s rotation vector,
0 denotes the potential temperature, and Vx and V are the
curl and gradient operators. When the hydrostatic and shallow-
atmosphere approximations are made, as is the case for the
hydrostatic primitive equations, then the isobaric and isentropic
versions of Eq. (1) are

(2)
(3)

g = —g(fk+V,xv)-V,0,

~ 20
q g§(f +k Vexv)ap,
respectively (Hoskins ef al., 1985). Here, g symbolizes the gravity,
k is the vertical unit vector, f =2Qsin¢ is the Coriolis
parameter with the scalar angular velocity of the Earth €2, ¢
represents latitude, v is the horizontal velocity field v = (u,v,0)
with the zonal and meridional wind components u and v,
Vp,x and V, are the three-dimensional curl and gradient
operators applied on levels of constant pressure p, and Vjy is
the three-dimensional gradient operator applied along levels of
constant potential temperature. For adiabatic, frictionless flow,
the potential vorticity is conserved following the flow (Ertel,
1942; Hoskins et al., 1985; Salmon, 1998; Gibbon and Holm,
2010) which yields a tracer advection equation for g

Dq
—< = 4
Dr (4)
s,y 0 (5)
9., — o
at 1

with D/Dt representing the material derivative and ¢ time. For
completeness, we note that the flux form of this conservation is
given by

d(pq)
Jat

+V - (upq) = 0. (6)

As an aside, even diabatic effects like friction (as a general term
for all dissipative processes) can be formally included into the PV
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equations (4) and (6) as e.g. detailed in Haynes and McIntyre
(1987, 1990). It yields

Dg 1
= %)
Dt 0

0

TV (wpg+N) = 0, (8)

in either Lagrangian or flux form, respectively, where N denotes
a non-advective flux that is driven by e.g. subgrid-scale diffusive
processes. The exact form of N and how frictional forces
enter this vector term is thoroughly discussed in Haynes and
MclIntyre (1990), but is not relevant here. The important point
is that Eqs (7) and (8) do not contain any source or sink
terms in the classical, e.g. chemical, sense. Rather, the diabatic
term on the right-hand side of Eq. (7) appears as the specific
volume times a divergence and thereby denotes a non-advective
redistribution (transport) process as clearly shown by the flux
form in Eq. (8). Such a redistribution is conservative. Therefore,
our measure of consistency is also applicable to dynamical cores
and tracer advection algorithms in the presence of subgrid-scale
dissipation N, whether explicitly added or implicitly induced via
the numerical scheme. We emphasize that the type of dissipation
in the discretized tracer advection algorithm and the dynamical
core is most often different. This indicates that the subgrid-scale
dissipation may cause inconsistencies between the dynamic PV
and its passive tracer PV counterpart, which is at the very essence
of this article.

Note that there is a substantial body of work on understanding
atmospheric dynamics, tracer transport and residence times of
chemically and radiatively important trace gases which relies
on the correlative relationship of potential vorticity and several
tracers (e.g. Newman et al., 1988). One goal of this work is
to explore the ability of models to represent the relationship
between potential vorticity and tracers, and hence evaluate the
model’s ability to represent these important environmental issues
and develop strategies to improve the models in this regard.
In addition, it has been well noted that the reversal of the
meridional PV gradient serves as a necessary condition for
baroclinic instability as discussed by Charney and Stern (1962),
and Hoskins ef al. (1985) emphasized the invertibility principle
of the PV distribution. This further demonstrates the importance
of accurately predicting the PV distribution, even beyond the
tracer-dynamics consistency arguments in this article.

From the equations above, the key observation for this article
is that PV is conserved along isentropes that do not intersect the
ground. Hence, given initial data denoted by uyg, 8y, pp, we can
define the initial PV field gy using Eq. (1) which can be advected
via Eq. (4), (5) or (6). The same applies to the hydrostatic
PV representations (Eqs (2) and (3)) provided that v, and 6,
are initially known at either pressure or isentropic levels. At
any given time f, the solution g(¢) should be identical to the
potential vorticity computed from the dynamical variables u(t),
0(t) and p(t) which are solutions of the dynamical equations
of motion (the hydrostatic primitive equations if Eq. (2) or (3)
are used) with initial conditions ug, 6y, po. Therefore, a model
that purports to maintain consistency between tracer advection
and the integration of the dynamical equations should ensure
that a tracer initialized as PV is identical to PV computed
from the dynamic variables. Using PV both as a tracer and a
diagnostic computed from the prognostic variables then allows a
direct evaluation of a given model’s ability to maintain accurate
relationships between tracers and dynamic variables.

Such considerations are not entirely new, as Davis ef al. (1993)
compared the evolution of a PV tracer to the diagnostic PV to
evaluate the relative effects of latent heating and friction on the
evolution of a cyclone. Davis et al. (1993) used the invertibility
principle (Hoskins et al., 1985) for appropriately balanced flows
to then deduce the influence of diabatic processes on the wind
and temperature fields. This idea is carried further in Brennan
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etal. (2007) where the non-conservation of PV is utilized to
diagnose the influence of latent heat release on the development
of low-level jets and cyclones. The use of a PV tracer is further
explored in Stoelinga (1996), Gray (2006), Chagnon and Gray
(2009) and Chagnon et al. (2013). A detailed explanation of the
methodology pursued in these studies is given in Chagnon et al.
(2013). The essential concept is to introduce a series of tracers into
the model evolution that have as sources the calculated diabatic
effects of the full (parametrized) model. Each potential diabatic
source is assigned to a single tracer which then captures the effects
of this source on the transport of the PV. In this way the various
potential diabatic sources of PV can be identified and their effects
quantified adequately. The goal of the current investigation is to
highlight the influence of the underlying numerical scheme on
the conservation of PV, completely independent of the diabatic
effects explicitly accounted for in the physics parametrizations.

As partial motivation for such a comparison, we note that
in the discretized equations the smallest scales are truncated
and the scale interaction determined by the nonlinear advective
term in the momentum equation cannot be imitated by the
linear tracer advection equation. Ohkitani (1991) and Babiano
and Provenzale (2007) provide a discussion of this problem for
incompressible flows in two dimensions. For three-dimensional,
fully compressible (even hydrostatic) flow as utilized by most
climate models, the passive tracer and dynamical variables are
no longer guaranteed to agree once a discrete version of the
equations is considered. When certain scales are truncated from
the representation of the flow, the inter-scale interaction due to
the nonlinear advective term in the momentum equation is not
adequately captured, and so the discrete system will no longer
maintain consistency, even in the ideal cases of extremely high
resolution.

In addition, because the rather coarse typical grid spacings in
climate models (Ax ~ 100—200 km in the horizontal directions)
do not capture all of the physically relevant dissipation scales,
a dissipative mechanism is necessary in GCMs to prevent
the build-up of kinetic energy and enstrophy that otherwise
could accumulate at the smallest, under-resolved grid scales.
Kent etal. (2012b) provide a discussion of this with respect
to the dynamical cores in CAM which are also used in this
study. The dissipative schemes can take the form of filters,
explicitly added or implicitly induced numerical diffusion as
reviewed in Jablonowski and Williamson (2011). Some of these
dissipative mechanisms (particularly linear diffusion) can be well
understood, e.g. Whitehead et al. (2011) discussed a particular
example of an explicitly added diffusion process in CAM-FV.
Some nonlinear dissipative processes though, and their impact
on the circulation, are harder to assess although one might ‘hope’
that their effects are either negligible or truthfully represent the
small-scale, unresolvable features of the flow. Frequently the
dynamical core uses a different form of dissipation for the tracer
transport algorithm and the dynamical integration. The current
investigation is an initial step toward quantifying how these
differences affect the dynamical core—tracer consistency.

In this study we use the adiabatic baroclinic wave test case
described by Jablonowski and Williamson (2006a), primarily
because the analytic initial conditions for the dynamic variables
allow us to compute exactly an initial condition for the potential
vorticity prescribed as a tracer (tracer PV, see the Appendix).
We then follow the tracer during the simulation via Eq. (4), (5)
or (6) depending on the model formulation, and compare the
tracer’s evolution with the computation of the dynamic potential
vorticity based on u, 6, and p (dynamic PV). In hydrostatic
primitive-equation-based models, only v and 6 are needed for the
computation of the dynamic PV. We propose several methods
for measuring the consistency of a model using the tracer PV and
dynamic PV as test fields. The techniques are tested within the
CAM 5.1 framework (Neale ef al., 2010) with its four dynamical
cores: CAM-FV, CAM-SE (spectral element), CAM-EUL, and
CAM-SLD. We emphasize that the parameter sets and horizontal
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resolutions we select for each dynamical core are the same used for
operational climate simulations, i.e. parameters like the time step
or the horizontal diffusion coefficient are chosen to coincide with
that used in full-physics model runs to highlight the consistency
of the models at climate resolutions. However, we halved the
default CAM 5.1 vertical grid spacing which allows very accurate
computations of the dynamic PV field.

This article is organized as follows. Section 2 briefly surveys
the Jablonowski and Williamson (2006a) baroclinic wave test
case in the context of comparing the tracer and dynamic PV,
before defining some quantitative measures of model consistency.
Section 3 provides limited descriptions of the four CAM 5.1
dynamical cores, and describes the results of the PV consistency
assessments. Section 4 discusses the possible implications of this
work, and includes suggestions for further work. The equations for
the analytic tracer PV initialization are included in the Appendix.
These results (and particularly the details in the Appendix) are
meant to encourage other modellers to utilize the identical set-up
to examine the consistency of their dynamical cores and tracer
advection schemes.

2. Potential vorticity in an idealized setting

2.1.  Tracer and dynamic PV in an idealized baroclinic wave

For the current evaluation of model consistency, we consider
the adiabatic baroclinic wave test case described in Jablonowski
and Williamson (2006a, 2006b). This test case starts with an
analytically prescribed balanced initial state with an overlaid
small-amplitude zonal wind perturbation placed in the northern
midlatitudes. A baroclinic wave develops from this perturbation
in the Northern Hemisphere after 4 days of integration, breaking
around day 9 at low-lying levels. This provides an ideal situation
to consider both the development of linear, yet realistic flow prior
to the wave breaking, and nonlinear, multi-scale flow afterward.

Figure 1 illustrates the evolution of the dynamic PV field at
the interpolated isentropic 300 and 315K levels in a CAM-FV
1° x 1° simulation with 60 vertical levels and a model top around
2 hPa. This resolution corresponds to a horizontal grid spacing of
about 110 km near the Equator. The sloping (with respect to the
height or pressure position) 300 K isentropic level depicted in the
left column lies around 800—600 hPa in the region between 40
and 50°N and intersects the surface at around 30°, as indicated
in white. The 315K isentropic level lies at about 550—400 hPa
in midlatitudes and does not intersect the ground during the
life cycle of the wave considered here. Because this level does
not intersect the surface, it is relied on heavily for the analysis
performed in the following sections.

Figure 1 highlights the progression and the overturning
(breaking) of the baroclinic wave during its rapid development
phase between days 6—9. The onset of the breaking and the
sharpening of the PV gradients are most distinct at low-lying
levels around day 9, but are also evident at higher levels at later
times. The wave breaking is graphically identified at the lower
level between days 8 and 9, as seen in the left column where
the wave starts to fold onto itself. It can also be seen in other
fields such as the 850 hPa temperature as displayed in Jablonowski
and Williamson (2006a). After the breaking occurs, small-scale
structures develop. The appearance of small scales from the
mean flow indicates that nonlinear effects become dominant in
this region (from 90°E to 150°W in longitude). We make the
distinction between the linear (prior to wave breaking at day 8)
and nonlinear flow (from day 8 and onward), because the tracer
advection algorithm will always be integrating the linear transport
equation (4), (5) or (6) for the passive tracer q. The dynamical
integration is also effectively integrating the transport equation,
but now g = ¢q(v) depends on the velocity v and is thereby
an active tracer so that the dynamical evolution is nonlinear.
This allows additional discretization inconsistencies to occur as
discussed above.
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Figure 1. Longitude—latitude cross-section of the dynamic potential vorticity in the Northern Hemisphere as simulated with CAM-FV at the horizontal resolution
1° x 1° with 60 levels. The PV evolution at days 6, 7, 8 and 9 at (a, ¢, e, g) the 300 K isentropic level and (b, d, f,h) the 315K isentropic level is shown in potential
vorticity units (PVU) defined as PVU = 107° Km?kg~'s~!. The white space at the 300 K isentropic level indicates where the isentrope intersects the Earth’s surface.

We note that the baroclinic wave affects, almost exclusively, a
confined latitudinal strip in the Northern Hemisphere over the
course of the first 15 days. Therefore, we simplify the comparisons
between the dynamic and tracer PV fields, and focus the analyses
on the development of the wave in the latitudinal strip between
30 and 90°N (unless specified otherwise). In all our analyses the
dynamic PV is first computed along CAM’s hybrid n model levels
(Simmons and Burridge, 1981) before being interpolated to the
isentropic 315K layer. The 315 K level is not close to the domain
boundaries in the mid- and high latitudes and thereby avoids the
degradation of the computation due to boundary effects, e.g. the
intersection with the surface.

2.2.  Quantitative measures of consistency

2.2.1.  Paradigms of consistency

There are two basic premises for quantifying the consistency
between dynamics and tracer transport of a model. The first
premise involves point to point comparisons, i.e. when comparing
two datasets it is assumed that both lie on the same grid so
that error norms or scatter plots (as explained in the following
subsection) can be determined exactly. This is a valid assumption
provided the tracer PV and dynamic PV are compared within
the same model framework, and at the same resolutions. It is
also a viable approach if the dynamic and tracer PV of the
same model experiment are vertically interpolated to isentropic
levels via an identical algorithm. The second premise is that
data on differing grids must be compared, and the influence
of the interpolation methods should be minimized. This is of
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particular interest when the flow is nonlinear, because errors due
to interpolations become more significant in complex flow fields
with sharp gradients. An accurate computation of the dynamic
PV and the choice of the interpolation method from one grid type
or resolution are important for PV assessments. This is especially
true in the presence of differing vertical discretizations and grids
as discussed in Ziv and Alpert (1994).

2.2.2.  Point to point comparisons: error norms and scatter plots

A metric used in the analysis of numerical techniques is the discrete
P norm of the error from an exact solution, i.e. if the model data
are represented by g with an exact solution corresponding to gr,
then

1[(q —qr)’] e

9
1T@n’] ©)

Plq} =

defines the normalized I error of g where I [-] denotes the area-
weighted global integral (in this case, actually the integral over the
latitudinal strip from 30 to 90°N at the interpolated isentropic
level of 315K) of the given quantity. The normalized maximum
normp = o0 is

max |q — qr|

(10)
max |gr|

g} =

There is no exact solution known for the baroclinic wave test, but
the difference between the tracer PV and dynamic PV is a measure

Q. J. R. Meteorol. Soc. 141: 739-751 (2015)
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of the lack of consistency in the model, i.e. we let g be the tracer PV
and gr the dynamic PV, although this by no means indicates that
the dynamic PV is an exact solution. A perfectly consistent model
would have identical distributions of tracer PV and dynamic PV.
Hence the /P consistency norm will be due to numerical errors
and differences in the integration of the dynamics and the tracer
advection algorithm.

Traditionally p =2 (least squares regression) or p = 00
(maximum error norm) are used for measurements of model
error. The P error norm does not adequately capture the
detrimental effects of extreme differences on small scales, and
the maximum error norm [*° weighs these statistically rare events
more than desired. Hence we choose to consider the I* norm
(an interpolant between > and [°°) of the difference between the
dynamic and tracer PV. This provides an accurate measure of the
overall error as provided by ? but includes the effect of localized
errors provided by [°°. If we consider the distribution defined as
the pointwise difference between the dynamic and tracer PV, then
the I* norm gives a measure of the kurtosis of this distribution,
indicating the tendency of the differences between dynamics and
tracers to originate from localized regions as opposed to a global
offset.

The I* consistency error norm gives a useful metric for
comparing the relative consistency of various models, but it
does not indicate the source of these inconsistencies. A qualitative
measure related to the consistency error norms are scatter plots
such as that illustrated in Figure 2. (Zapotocny et al., 1996, show
the use of similar plots.) Each grid point in the domain has both
a tracer PV and a dynamic PV value. The horizontal axis of the
scatter plot corresponds to the value of the dynamic PV, and
the vertical axis is the tracer PV at the same grid point. Ideally
the dynamic and tracer PV should agree exactly at all points on
the grid, so the scatter plot should follow the line y = x exactly.
Deviations from the line y = x then indicate inconsistencies
between the dynamic integration and tracer advection algorithm.
While it is more difficult to ascertain temporal dependence of
inconsistencies with this type of comparison, scatter plots do
yield more information than simply calculating the error norm
at a given time. For example, as demonstrated schematically in
Figure 2 it appears that for smaller values the tracer PV is larger
than the dynamic PV, and the opposite is true for larger values
of PV. This gives far more insight into the errors in consistency
than the simple calculation of an error norm.

For the current investigation, we construct scatter plots for the
tracer PV—dynamic PV comparison for days 1, 8, 12, and 15. The
traditional PV unit PVU = 10"° Km?kg's™! is used for both
axes. This choice of time-stamps will highlight the inconsistency
that arises both from the linear flow up to day 8 (in which case the

09} A

08 tracer PV = dynamic PV *

0.7} ~*

.l
LI
06 . * 7
» 97, . ¢ dynamic PV > tracer PV

‘ot .
05 tracer PV >dynamic P\s .,

-

tracer PV

04} -
03} & ]
0.2

01% " ]

0.4 0.6
dynamic PV

0 02 0.8 1

Figure 2. A schematic rendering of a scatter plot comparing dynamic and tracer
PV (units: PVU).
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dynamics and tracer PV should agree very well) and the effects
that the nonlinear evolution of the baroclinic wave has on the
consistency for days 12 and 15.

2.2.3.  Probability density functions and contour plots
Theoretically since PV is conserved on closed isentropic surfaces
(isentropes that do not intersect the surface of the Earth), the
probability density function (pdf) describing the distribution of
PV on that surface will not change with time. This provides
another useful metric to gauge the conservation/consistency of
PV. For the evolution of the baroclinic wave considered in this
article (at least up to day 15), there is little to no exchange of PV
across the Equator. Assuming such an exchange is negligible, we
restrict our attention to the Northern Hemisphere, meaning that
a pdf constructed from either the tracer or dynamic PV for each
model should not only be the same at any instant of time, but
should not evolve with time, i.e. the dynamic and tracer PV pdf
should be the same at all times on the selected closed isentropic
surface (315 K in the Northern Hemisphere).

For the results reported in section 3, we construct a pdf for both
the dynamic and tracer PV interpolated to 315 K in the Northern
Hemisphere by binning the PV into bins of size B. For the
results discussed in section 3, the bin size is subjectively chosen as
B = 0.2 PVU. Rather than considering the temporal evolution of
the dynamic and tracer pdfs for each dynamical core, we consider
the difference in these pdfs from the original pdf of the initial
state. This indicates the departure of the distribution from what
should be a conserved shape, and makes the differences easier to
recognize. Recognizing that the distributions in the linear flow
regime are nearly identical to the initial state, we consider these
differences in the pdfs only at day 15.

Finally, although all of the metrics discussed thus far provide
quantitative information with respect to the consistency of a given
dynamical core, it is important to also evaluate differences in the
fields themselves. In the interest of considering the evolution of
the PV only on isentropic surfaces that do not intersect the surface
boundary, we look at contour plots of the dynamic and tracer PV
at 315 K. Section 3 displays such a comparison only at day 15 as
the differences between tracer and dynamic PV are the most stark
at this point, although it is instructive to consider the complete
temporal evolution of both quantities on this isentrope.

3. Consistency in CAM 5.1

The versatility of CAM’s framework is displayed in the work of
Rasch et al. (2006) wherein three dynamical cores are compared,
while using the same physics package. We take a similar approach,
although we assess the consistency of each of the four dynamical
cores in CAM version 5.1 without any physics parametrizations.
Each configuration and its parameter set outlined below
represents a default which would typically be used at climate
resolutions with 100—160 km grid spacing near the Equator. We
thereby mimic realistic simulations once parametrized physics
are included. We make no attempt to match the parameters,
like the tracer and dynamics time steps or diffusion mechanisms,
from one model to another and note that these are dependent
on the numerical schemes, their stability characteristics and the
horizontal grid spacings. A detailed parameter sensitivity study,
although highly desirable, is beyond the scope of this article.

3.1.  Model descriptions

Before examining the results for each of these dynamical cores, we
first give a brief description of each. Particular emphasis is placed
on the subgrid dissipative mechanisms (filters, diffusion) that are
added to each dynamical core. We do not explore every possible
form of dissipation or mixing processes in CAM, but consider a
few key points that may illustrate differences in the consistency
of each model.

Q. J. R. Meteorol. Soc. 141: 739-751 (2015)
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3.1.1. CAM-FV

The finite volume dynamical core (CAM-FV) and its correspond-
ing tracer transport algorithm are both based on the flux-form
semi-Lagrangian scheme of Lin and Rood (1996) on the lat-
itude—longitude grid. The method is a dimensional splitting
technique that relies on the one-dimensional finite volume meth-
ods akin to the van Leer-type monotonic methods (van Leer,
1974, 1977) or the Piecewise Parabolic Method (PPM; Colella
and Woodward, 1984). The extension of this tracer advection
algorithm to the shallow-water equations was carried out in Lin
and Rood (1997) with further application to three-dimensional
hydrostatic motion introduced in Lin (2004). The vertical dis-
cretization is based upon a floating Lagrangian approach with
periodic remapping to a reference grid. In our study the flow
is allowed to freely evolve within the Lagrangian layers for ten
dynamics time steps before remapping is invoked.

Implicit diffusion is added to both the dynamics and tracer
transport through the nonlinear limiters placed on the underlying
one-dimensional finite volume methods. In addition, an explicitly
added diffusion mechanism in the form of horizontal divergence
damping is implemented in CAM-FV (Whitehead et al., 2011).
This explicit damping mechanism is present only in the dynamics;
there is no analog in the tracer transport for this model, indicating
a possible source of inconsistency. In this article, the fourth-order
horizontal divergence damping mechanism is used. A sponge
layer is used to absorb upward traveling waves near the model
top to lessen wave reflections. This is applied near the model
top in the dynamics using low-order numerics and second-order
divergence damping with an increased damping coefficient.

3.1.2. CAM-EUL

The spectral-transform Eulerian dynamical core (CAM-EUL)
utilizes an underlying quadratic Gaussian transform grid which
closely resembles a latitude—longitude mesh. The momentum
equations are formulated in vorticity-divergence form. Using
spherical harmonics, the prognostic variables are then cast into
spectral space and integrated forward in time with a three-time-
level leapfrog method. A fourth-order horizontal hyper-diffusion
term is added for stability purposes which is applied to the
relative vorticity, horizontal divergence and temperature fields.
In addition, second-order horizontal diffusion is activated near
the model top to mimic a three-layer sponge zone with a base
coefficient of 2.5 x 10° m?s™!. Additional details on the diffusion
and sponge are provided in Jablonowski and Williamson (2011).
CAM-EUL uses different methods for the advection of tracers
and the evolution of the dynamics. In particular, it employs
a monotonic semi-Lagrangian tracer advection scheme that is
dimensionally split in the horizontal and vertical directions.
Both the interpolations in the semi-Lagrangian scheme and the
monotonic constraint are sources of implicit numerical diffusion
for the tracers. In addition, the dynamical core and the tracer
advection scheme in CAM-EUL invoke a ‘mass-fixer’ to ensure
that conservation of dry air mass and tracer mass is achieved.
3.1.3. CAM-SLD

The spectral-transform dynamical core CAM-SLD is based on
a semi-Lagrangian approach in both the dynamical core and its
tracer advection algorithm, and utilizes the same Gaussian grid
as CAM-EUL. However, the semi-Lagrangian interpolations in
the tracer advection scheme are monotonic (shape-preserving)
whereas they remain unconstrained in the dynamical core. As
in CAM-EUL, CAM-SLD is not mass-conserving by design and
utilizes a mass fixer. In contrast to CAM-EUL, the tracer transport
in SLD is performed in a single three-dimensional step with no
dimensional splitting, and SLD utilizes the horizontal velocities
u and v as prognostic variables. The time integration is based on
a two-time-level semi-Lagrangian semi-implicit time-stepping
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mechanism. To damp dispersive errors inherent to the spectral-
transform spatial discretization, a fourth-order hyper-diffusion
term is included in the dynamic calculation, in addition to a
second-order diffusive three-layer sponge zone near the model
top.
3.1.4. CAM-SE

The spectral element (SE) component of CAM (Taylor and
Fournier, 2010; Taylor, 2011) is built on the cubed sphere grid
to avoid the singularities generated by a latitude—longitude grid
near the poles and increase the scalability on high performance
computing platforms (Dennis ef al., 2005, 2012). CAM-SE utilizes
the spectral element approach developed initially for the shallow-
water equations in Taylor efal. (1997) and later expanded to
the hydrostatic atmosphere (Neale et al., 2010, gives further
references). The runs in this article use a third-order polynomial
reconstruction in each element (which is fourth-order accurate).
This choice is typical for operational runs. The dynamics and
tracer transport are treated similarly in CAM-SE with the tracer
transport employing a quasi-monotone limiter (Taylor et al.,
2009) which renders the tracer advection scheme second-order
accurate. However, note that the Runge—Kutta time-stepping
schemes are slightly different in the dynamical core and the tracer
transport scheme, and that different vertical discretizations are
used. The CAM-SE dynamical core makes use of a finite-difference
schemein the vertical, whereas CAM-SE’s tracer advection scheme
utilizes a flow-following Lagrangian coordinate with periodic
vertical remapping to a reference grid as in CAM-FV. An explicit
fourth-order horizontal hyper-diffusion with identical diffusion
coefficients is added to both the dynamics and tracer advection
to maintain stability. In addition, the dynamical core applies a
second-order horizontal diffusion near the model top to damp
the reflection of upward travelling waves.

3.2. Model comparisons

Table 1 details the model configurations for each of the dynamical
cores. As noted before, the diffusion parameters and time steps
are the default values for these resolutions, individually tuned
for each dynamical core so that the climate simulations of the
full-physics model will yield realistic results. All comparisons
are done at climate-type horizontal resolutions which are T85
(triangular truncation) in case of CAM-EUL and CAM-SLD and
approximately 1° X 1° in case of CAM-FV and CAM-SE. These
resolutions correspond to horizontal grid spacings between 100
and 160km near the Equator and highlight the effects that
unresolved subgrid processes have on the consistency between
dynamics and tracers. The T85 and 1° x 1° resolutions can also
be considered ‘equivalent’ as determined via aqua-planet studies
by Williamson (2008), despite their differences in the number of
total grid points. Each model was run with 60 vertical levels (L60).
This vertical resolution halves the vertical grid spacings that are
typically used in CAM5. The hybrid coefficients for the default
30-level (L30) configuration are listed in Reed and Jablonowski
(2012) which enables other modelling groups to use an identical
set-up. We chose the higher vertical resolution over CAM5’s
standard 30 levels in order to compute vertical derivatives in the
calculation of the dynamic PV more accurately. However, we also
conducted L30 experiments (not shown) which led to identical
conclusions.

3.2.1. Point to point comparisons: Error norms, scatter plots and
extreme values indicated by contour plots

A plot of the normalized percentage I* error for CAM-FV, CAM-
EUL, CAM-SLD, and CAM-SE is shown in Figure 3 for the model
configurations detailed in Table 1. The initial differences between
the dynamic PV and tracer PV as indicated by the errors at day 0
(Figure 3(a)) show that the discrete algorithm for calculating

Q. J. R. Meteorol. Soc. 141: 739-751 (2015)



Potential Vorticity: Measuring Consistency

745

Table 1. Horizontal model resolutions, time steps At for both the dynamics and tracer transport and horizontal fourth-order hyperdiffusion coefficients. The
triangular truncation T85 is the highest resolved wavenumber in CAM-EUL and CAM-SLD. The CAM-SE resolution ne30np4 describes that each cubed-sphere face
is divided into 30 x 30 elements with additional 4 x 4 collocation points per element to support a third-order polynomial. CAM-FV applies fourth-order horizontal
divergence damping as explained in Whitehead et al. (2011).

Dynamical Horizontal No. of horizontal Approx. grid length Dynamics At Diffusion coefficient
core resolution grid points at Equator (km) (tracer At) (s) (x10" m*s™1)
CAM-FV 1° x 1° 181 x 360 110 180 (1800) -
CAM-EUL T85 128 x 256 156 600 ( 600) 1
CAM-SLD T35 128 x 256 156 1800 (1800) 1
CAM-SE ne30np4 6 % 30 x 30 elements 110 360 (1800) 1
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Figure 3. Evolution of the percentage of the nomalized I* norm of the difference between dynamic and tracer PV for all four dynamical cores. (a) shows the linear
flow during the first 7 days of the test case, and (b) the evolution of the consistency error during the transition from linear to nonlinear flow (days 7—-9 approximately),
and the evolution of inconsistency for the fully developed nonlinear regime (days 9—15). We consider the PV interpolated to 315K contained in the region between

30°N and 90°N. Note the difference in scale for the vertical axes.

dynamic PV seems to penalize the CAM-SE model relative to the
other three dynamical cores. CAM-SE’s initial errors are likely
due to interpolations of the output from the cubed-sphere to
the regular latitude—longitude grid (thus simplifying the discrete
computation of dynamic PV). Across all four dynamical cores, the
maximum initial inconsistency is small and less than 0.1%. Cubic
splines were used for the computation of the vertical potential
temperature gradient that is part of the PV formulation. A centred
finite-difference type method is discouraged for the computation
of the potential temperature gradient since it was found to be less
accurate.

When the flow is linear with smooth PV distributions at
the 315K isentropic level, all four dynamical cores are quite
consistent, with consistency errors well below 0.5% even up to
day 7 (Figure 3(a)). As the flow develops more fully (Figure 3(b)),
the consistency error worsens, with all four models showing
an approximately linear growth in the error until day 11.
Around days 11 and 12 though, the spectral-transform models
(CAM-EUL and CAM-SLD) demonstrate a significant departure
from consistency. As described earlier, the spectral-transform
dynamical cores are built on similar premises, so the concurrent
development of inconsistency at this point may be an indication
that the errors are linked to the spectral-transform technique
(e.g. occurrence of Gibb’s oscillations, generation of small-scale
noise or dispersion errors). The dissipative effect of the semi-
Lagrangian interpolations in CAM-SLD might have also become
more prominent after day 11 as they are triggered by small-
scale gradients in the flow field. It is worth noting that CAM-SE
outperforms the other three dynamical cores in this measurement
of consistency, even though the initial inconsistency is worse (at
day 0 due to interpolation errors). The better consistency might
be a result of CAM-SE’s relatively high-order yet local numerical
scheme.

Scatter plots analyzing the consistency of each dynamical core
atdays 1, 8, 12, and 15 are shown in Figures 4—7. One feature that
is highlighted in all four of these scatter plots is that the tracer
PV appears to be bounded by its initial range, i.e. the maximum
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Figure 4. Scatter plots of the tracer and dynamic PV (PVU) at (a,b,c,d) days
1, 8, 12 and 15 for a CAM-FV 1° x 1° L60 simulation in the region 30—90°N at
the 315 K isentropic level. Any deviations from the line y = x indicate differences
between tracer PV and dynamic PV.

tracer PV at day 1 is the same as the maximum tracer PV value at
day 15. In contrast to the tracer PV, the dynamic PV of CAM-FV,
CAM-EUL, and CAM-SLD all have values at day 15 that exceed
the initial dynamic PV values. This indicates that the integration
of the dynamic PV in these three models is not monotonic, i.e.
spurious extrema can be introduced, or physical extrema can be
enhanced beyond their physically realistic values. On the other
hand, CAM-SE does well in this aspect and appears to retain the
same maximal values of dynamic PV that are present at day 1.
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Figure 6. As Figure 4 but for CAM-SLD T85L60.

CAM-SE’s preservation of the maximum dynamic PV accounts
for some of the better consistency observed in Figure 3.

Another observation in conjunction with that noted in Figure 3
is that all four models are very consistent in the linear flow regime,
as evidenced by the top two plots in each of Figures 4—7. Once the
wave breaks and the flow develops into the nonlinear regime, the
dynamics and tracer separate as evidenced by departures from the
1:1 line (tracer PV = dynamic PV). These inconsistency errors
appear to depend on the values of the PV.

At day 12, CAM-FV has developed some spread about the
1:1 line. Moderate values of the dynamic PV (between 1.5 and
2.0 PVU) generally correspond to equal or lower values of tracer
PV. Departures from consistency in the smaller values of PV (less
than 1.5 PVU) areless significant and appear to have no preference
toward larger values of either the tracer or dynamic PV. Similar
statements can be made for the two spectral-transform dynamical
cores, where the departures from consistency are more noticeable
especially at day 15. In particular, both CAM-EUL and CAM-SLD
seem to bias toward large tracer PV for PV less than 1.5 PVU. This
same trend is apparent for the very largest PV values (greater than
3.0 PVU) for CAM-EUL. CAM-SLD does not exhibit a definitive
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bias for these largest PV values, but has dynamic PV that has
exceeded the initial maximum value of 3.4 PVU. For PV in the
moderately high range (from 2.0 to 3.0PVU), there seems to
be a bias toward larger dynamic PV (lying below the 1:1 line)
for the spectral transform models. Although the departures from
consistency are not as distinct for CAM-SE, one can see that there
is a slight tendency for larger dynamic PV for most of the PV
values, with the only significant departure from this observation
occurring at the smallest PV values near 0.2 PVU where there is
substantially larger tracer PV than dynamic PV.

In concert with Figure 3, we note that these scatter plots indi-
cate that CAM-SE is more consistent than the other three models
as indicated by how close the scatter plot at day 15 in Figure 7
is to the 1:1 line. We suggest that the different biases of each
model toward larger dynamic or tracer PV are indicative of the
different treatments each model has for the tracer and dynamic
integrations. The PV differences in CAM-EUL are most likely due
to the numerical inconsistencies between the dynamics and tracer
transport scheme. As noted previously, the dynamics are treated
via a spectral-transform method which may develop dispersive
errors that are damped out effectively in the semi-Lagrangian
tracer transport used in the same model. Such dispersive errors
may also be present in CAM-SLD despite the additional dissi-
pation provided by the (non-shape-preserving) semi-Lagrangian
interpolations in the CAM-SLD dynamical core. The dissipation
in CAM-SE (at least for the model configuration used here) is pri-
marily due to an explicit fourth-order hyper-diffusion for both the
dynamics and tracers, indicating a consistent (between dynamics
and tracers) treatment of the subgrid scales, leading to less biases
in the scatter plots. CAM-FV treats the subgrid scale in the tracer
advection algorithm via one-dimensional limiters that preserve
monotonicity in the longitudinal and latitudinal directions. The
same finite-volume approach is utilized in the dynamical core,
but the dimensional splitting can introduce unphysical over-
and undershoots more frequently for the nonlinear part of the
flow. This is likely to cause the biases observed for CAM-FV in
Figure 4.

Figure 8 shows a snapshot of the dynamical and tracer PV at
the 315K isentropic level at day 15, the same day as represented
in (d) of Figures 4—7. We note first that the tracer PV from all of
the models are qualitatively similar. For example, in the region
0-60°E, 55—80°N, all of the tracer PV plots (Figure 8(b,d, f,h))
show two distinct orange maxima (2.8—3.2 PVU). Visual exami-
nation of the plots shows that fine filaments (for example the ones
pointed out by the green arrows) are present in all simulations.

CAM-SE ne30np4
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Figure 7. As Figure 4 but for CAM-SE ne30np4 L60.
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Figure 8. A snapshot at day 15 of the (a, ¢, e, g) dynamic and (b, d, f,h) tracer PV at the 315K isentropic level in the Northern Hemisphere for the four dynamical
cores to illustrate the differences in their treatment of the dynamics and tracers. The models are run with the configuration described in Table 1.

However, filaments in one simulation are not present in the same
place as the others. There is no clear distinction of the tracer PV
from one dynamical core to the next. Simulations at different
resolutions (not shown) show that the qualitative structure of the
highs and lows and filamentation are sensitive to resolution. The
similarity of the tracer PV simulations shown here substantiate
the conclusion of Williamson (2008) that we relied on in our
choice of equivalent resolutions for the four dynamical cores.

On Figure 8(a,c, e, g) are the results for the dynamical PV.
Looking again at 0—60°E and 55-80°N, there are discernible
differences in the dynamical cores. In all of the dynamical cores
there is a maximum exceeding 3.2 PVU. This maximum is not
in the tracer PV. In CAM-FV Figure 8(a), there is more small-
scale structure in this maximum than in the other dynamical
cores. At the location of the red arrow, CAM-FV and CAM-SLD
have dynamical PV values which were not present in the initial
condition and therefore are unphysical under advection. These
maxima are likely the source of the large dynamic PV values noted
in Figures 4-7.

Note also to the east of the red arrow in Figure 8(e) the obvious
appearance of rippling. Very close examination of the dynamical
PV plots show the emergence of small-scale structures that are
not present in the tracer PV. This is apparent, for example, in
between the darker and lighter blues at &~ 30°N. For this choice
of model parameters, CAM-SE has the best agreement of the four
dynamical cores between tracer PV and dynamic PV.

From these figures we start to see the breakdown of consistency
between the tracer PV and the dynamical PV. This appears at
scales that are small, and where the dissipative processes in the
model are becoming influential. The larger differences are seen in
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the dynamical PV, where the presence of small-scale structures is
amplified in the calculation of the PV. Figure 8 indicates the value
of qualitative plots of the PV, allowing the identification of the
spatial structure where inconsistencies occur. This may ultimately
provide insight into the interplay between numerical methods and
the representation of the physics of mixing in climate models.
3.3.  Probability density functions

Figure 9 shows the difference between the Northern Hemisphere
pdfs calculated at day 15 and the initial Northern Hemisphere
pdf at day 0, for the tracer and dynamic PV of the four dynamical
cores considered here. Day 15 is shown to display the effect that
the fully nonlinear flow can have on the pdfs. Prior to day 15 the
magnitude of the difference values do not exceed 0.02.

The change in the pdfs for the spectral transform dynamical
cores has considerably more isolated features (spikes in the
Figure) than in the other two dynamical cores. Prior to day 15,
the pdfs of CAM-SE and CAM-FV are similar and not as jagged
as CAM-EUL and CAM-SLD. The structure of CAM-FV begins
to diverge from CAM-SE between days 12 and 15. One feature
that all four dynamical cores have is the introduction of a higher
probability for PV (both tracer and dynamic) near a PV value of
3.2PVU. This peak at 3.2 PVU was not present at earlier times,
and developed earlier in the spectral transform dynamical cores.
In all dynamical cores the structure at PV values greater than 2.0
increases as the flow becomes nonlinear, after day 9.

For clarification of the higher values consider the features
present at 30°E and 75°N in Figure 8. This region has PV of
3.2PVU. In the dynamical PV the values are higher, and this is
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Figure 9. Difference between the Northern Hemisphere probability density functions at day 15 with the initial state for the dynamic and tracer PV at 315K for
dynamical cores (a) CAM-FV, (b) CAM-EUL, (c) CAM-SLD and (d) CAM-SE, with parameters described in Table 1. The horizontal axis is in PVU.

where the dynamical PV in CAM-FV is starting to show spatial
structure indicative of grid-scale noise. These small scales activate
the implicit dissipative mechanisms in addition to the explicit
methods in use. For these high values, the difference of the pdfs
for the tracer PV and the dynamical PV increases. This increase
is largest in CAM-SE. At day 15 and later, the very values of
PV highlighted by the red arrows in Figure 8 start to become
more prominent and suggest that the simulation has reached its
predictive end.

4. Discussion and summary

We have presented an explicit method for testing the consistency
between the representation of dynamical variables and passive
tracers in a dynamical core. This was accomplished by including
tracer advection of the PV in the baroclinic wave test case of
Jablonowski and Williamson (2006a). This demonstrates the
usefulness of PV as a diagnostic tool in evaluating the consistency
between a model’s dynamics and its tracer transport algorithm.
In the Introduction we documented the need for numerical
schemes to be consistent in their representation of transport
and mixing of mass, momentum and energy. The simulations
presented here suggest a relationship between dissipation and
consistency which we evaluated more fully using the CAM-FV
model. A configuration that has extraordinarily good consistency
is to run CAM-FV with upwind (first-order) one-dimensional
operators for the dynamics (not shown). This is extremely
dissipative, effectively damping the baroclinic wave so much
that the wave does not break until well after day 10, whereupon
the nonlinear growth is suppressed so the flow relaxes to a laminar
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state. This leads to a fundamentally different solution which is
quasi-linear, allowing the tracer advection algorithm to perform
very well. In this case the consistency of the model for any of
the possible tracer algorithms in CAM-FV is very good, but
the scheme is highly inaccurate. Throughout these simulations
this tension between dissipation, consistency and accuracy are
realized.

The results obtained here indicate that CAM-SE is the most
consistent of the four dynamical cores in CAM. Simulations are
sensitive to resolution, and hence effort should be taken to assure
that the simulations are equivalent in the sense of Williamson
(2008) before comparative conclusions are drawn. Simulations of
CAM-SE with a varied diffusion coefficient (not shown) indicate
that the consistency of CAM-SE is directly related to diffusion,
and the default resolution and diffusion coefficient reported here
maintain consistency in a balance with accuracy as good as or
better than the other schemes. In addition, we note that our
comparisons suggest that some of the differences observed by
Rasch et al. (2006) may be explained by the differences in the
sub-grid treatment between the different dynamical cores.

The results reported here are for climate resolution studies in
which climate-relevant, small-scale features of the nonlinear flow
are not fully resolved. We have focused on isentropic surfaces
which do not intersect the ground. In all four of the dynamical
cores tested here, large inconsistencies develop on isentropes
which intersect the surface, as illustrated in Figure 10 at the low-
lying 285K isentropic level at day 15. The spurious maximum
dynamic PV values (called spurious here because they are not
present in the tracer PV) which appear where the isentrope
intersects the surface (the red regions especially visible from 0 to
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Figure 10. A snapshot at day 15 of the (a,c,e,g) dynamic and (b,d, f,h) tracer PV (PVU) at the 285K isentropic level for the four dynamical cores to illustrate
the differences in their treatment of the dynamics and tracers. The models are run with the configuration described in Table 1. The white space is where the 285K

isentropic level has intersected the Earth’s surface.

160°W and 40°N) are present in all four dynamical cores. They
grow in magnitude with increased resolution (not shown). In the
simulations reported here, the value of this spurious PV is nearly
one order of magnitude larger than the maximum of the tracer PV
at the same time stamp and isentropic level. Such PV anomalies
are particularly worrisome in the region near 20°E and 75°N
where the local minimum of the tracer PV for all the dynamical
cores has become a local maximum for the dynamic PV, with
the exception of CAM-FV. In addition, significant negative PV
appears in these regions indicating a static instability, although
this is difficult to visualize as these features are too small. Such
PV anomalies near a boundary have been observed previously in
reduced models (Nakamura and Held, 1989; Garner et al., 1992;
Schneider efal., 2002) and in a full general circulation model
(Konor and Arakawa, 1997; Woolings, 2004). In each case, a
different driving mechanism for these anomalies is proposed, but
there is no consensus as to their source. Using the evaluation
technique developed here, we intend to pursue this phenomenon
in greater detail.

After the generation of large values of dynamical PV, even prior
to the intersection of the isentropic surfaces and the ground, the
consistency between the dynamic PV and the tracer PV breaks
down (Figure 8). This suggests either a numerical artifact or
physical phenomena which are not adequately represented in our
discrete model. The tracer PV develops neither the large values nor
the small-scale structure of the dynamic PV. We draw an analogue
to the atmosphere where pdfs and the correlative behaviour of PV
and tracers have been used to isolate and quantify mixing (Rood
et al., 1997, 2000). A challenge and a limit of using PV in these
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applications is that noise is amplified by the derivatives in the PV
calculation. The results here suggest that there are similar limits
even in the calculation of dynamical PV in a relatively simple
nonlinear flow. The results also suggest that in climate models
carrying a PV-like tracer for diagnostic applications is likely to
offer an advantage in determining mixing and the identification
of dynamical features.

This point is generalized by considering the importance of the
effect of small-scale nonlinear flows on the transport of chemical
trace species, specific humidity and cloud liquid water. For exam-
ple, Ovtchinnikov and Easter (2009) have argued (with respect to
cloud—aerosol interactions) that it is important to verify the con-
sistency between the evolution of the winds and the integration
of tracers via those winds. Otherwise, the unresolved and under-
resolved subgrid-scale effects, which are mimicked by the diffusive
processes in the dynamical core, will not be correctly represented
in the tracer transport scheme. Such inconsistencies have detri-
mental effects on the overall simulation quality, and affect not
just the passive tracers but also cloud schemes and other physical
parametrizations through their effect on chemical constituents.

Appendix
The Initial Tracer PV
The expressions for the velocity components, temperature and

relative vorticity for the baroclinic wave test case are given
in Jablonowski and Williamson (2006a) (their Eqs (2)—(6)
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and (12)). Here we only review the new components necessary
to analytically compute the initial tracer PV field. The definition
of the hydrostatic variant of Ertel’s potential vorticity (Hoskins
et al., 1985) on levels of constant pressure is

MU AT e
acos¢p dp\dr/, adp\d¢/, F+4 ap)|’

where a is the Earth’s radius, ¢, the relative vorticity, and A
longitude. The subscript p denotes a constant pressure level. We
initialize the tracer with the absolute value of PV (g = |PV])
to avoid negative initial PV tracer values in the Southern
Hemisphere. Note that the initial potential temperature does
not vary in A, v is zero and that dp can be expressed as pyo1.
The underlying relationship p = npy is only valid under the
special condition that the initial surface pressure p; is equal to
the constant reference pressure py = 1000 hPa which is the case
here. The symbol 1 denotes the orography-following pressure-
based hybrid coordinate (Simmons and Burridge, 1981). Using
all simplifications in Eq. (A1), the initial absolute value of the PV
tracer yields

9=8

400 b, 1) = [PVC 6, )]
Jef iyl
=0 aom \ag) "5,

To ease the reproducibility of the PV assessments we provide
the analytical expressions for the derivative terms in Eq. (A2).
All symbols and physical constants used below are defined in
Jablonowski and Williamson (2006a) and are not all repeated
here. The terms are

g—z =—up sin2(2¢>)3TjT cos'/? ny sin ny, (A3)
% N g ZnR—b:) (1 - %)”_R"/C” sinn, cos'/? 1, Y
g%’?“w“’ cos”? 1Y
— %%UI_R"/CP sin® ny cos™ /% Y
_ ;%:‘(Z)UIRWP sin® 1, cos 1y

x {—2 sin® ¢ (cos2 o+ %) + g} ,  (A4)

with ny = 0.5(n — no)m, ny = 0.252, and
1 10
Y = {—2 sin® ¢ (cos2 ¢+ 5) + a} 2ug cos®/? 1,

" 8 3 ‘2¢+2 ¥4 Q
= cos” ¢ |sin =)= —faQ.
5 3 4

In addition, the vertical gradient of the potential temperature,
a6 /9n, is given by

(A5)

forns=1>n>n,
=0.2,

TyRg (&= L) yha(Ts1/e0)

ToRy (g - é) pRa(T/g=1/cp)=1

—AT{S(m —n)tnRile

+%(m - n)sn‘Rd/CP‘l} forn, > 1.
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The derivative of the potential temperature with respect to the
latitudinal direction on a constant pressure level is given by

00 _37'[1/[0
06), 4 Ry

1
X |:2uo cos>/? nv{— 12 cos ¢ sin® ¢ <cos2 o+ 5)

1=Ra/% gin n, cos'/? 1y

+4cos¢sin7¢}
24 )
+ a2 —?smqﬁcos ¢| sin ¢~|—§

6, .
+? cos ¢sm¢}:|. (A6)

The appendix of Jablonowski and Williamson (2006a) outlines
how the initial conditions can be computed for models with
height-based or isentropic-based vertical coordinates, if needed.
This analytic tracer PV initialization is also valid for non-
hydrostatic dynamical cores that utilize the shallow-atmosphere
approximation.
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