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1 Proofs of technical lemmas

We prove Theorems 2.1-2.2 in this supplementary material. Firstly, we provide

several lemmas that will be used in the proofs.
Lemma 1.1. For every € > 0, with probability 1 we have

s aV2HP(E,s)— hO(B,5)| = o(ne),
BEB,—c0<s< 00
where Hy(lk) (8,s) and h(k) (B,s), k=0,1, are defined in equations (2.2) and (2.3)

in the main text respectively.

Proof. We apply the empirical process theory to prove this result. Since the class
of indicator functions of half spaces is a VC-class, see e.g. Exercise 9 on page
151 and Exercise 14 on page 152 in van der Vaart & Wellner (1996), and thus
a Donsker class, the sets of functions Fo = {1(eg < s5,A = 1)}={Al(eg < s)}
and Fi = {1(eg > s)} are both Donsker classes. Let Fy be the closure of Fy,
k = 0,1, respectively. Then H,sk) (8,s) and h(k)(ﬁ,s) are in the convex hull of
Fi, k = 0,1, and thus belong to Donsker classes (see e.g. Theorems 2.10.2 and
2.10.3 in van der Vaart & Wellner (1996)). Hence by their Theorem 2.6.7 and
Theorem 2.14.9, it follows that for every ¢ > 0,
P< sup 2 H® (3, 5) — ¥ (8, 5)] > t) < MtVe 2,
BEB,—0<s<00

where M > 0 is a constant and V' = 2V (F) — 2 with V(F) being the index of the

VC-class F, which is 4 in this case for one-dimensional 3y, hence V' = 6. When
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Bo € R? for a fixed d, the index of the VC-class is V (F) = d+3 and the following
argument still holds. Then for any € > 0, let

Ape= sup 0P HD(B,5) = (8, 9)].

BEB,—co<s<00
Since tV < e!5 for large enough t > 0 and a fixed V' > 0, then

iO:P(]AmE -0/ >1) < Miexp{—0.5(n€t)2} < 0.

n=1 n=1

By the Borel-Cantelli lemma we have P( lim A, = O) = 1. We then have

n—o0

obtained the desired result. O
Lemma 1.2. Assume Conditions 1-8 hold, then for every e > 0 we have

sup K8 (8,5) = (8, s')| = O(n~),
|B—=p"|+]s—s"|<n—*

where h\F)(B,5), k = 0,1 and 2, are defined in equations (2.2), (2.3) and (3.1)

in the main text respectively.

Proof. Since ey =T — [y X is independent of (X, C), the joint density function
of (T, C, X) can then be decomposed as

frex(t,e,x) = feg,cx(t = oz, c,x) = f(t — Box) fo,x (¢, x)
where f is the density of ey. So
f(t = Box) = fricx(tIC = ¢, X =z) = frx(t|X = 2).
Then the joint density function of (Y, A, X)) follows
frax(y,é )
= f(y = Box)’ Fy — Box)' Pgoix WX = 2)' °Gex (y|X = 2)° fx (),

where F(-) =1 — F(-) and Goix (| X = 2) =1 — Gex (| X = 2).
For h(o)(ﬁ, s), the joint sub-density function of (Y, A =1, X) can be written
as fyax(y,1,z) = f(y — Box)Goix (1 X = z) fx(z). So

h(O)(ﬂvs) = P{l((—iﬁ < S,A — 1)}
- /X{/m flut (5= fo)o)Geyx (u+ fa|X = ) d“}fx<x> dz.
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Then for any 3,3’ € B and —oo < s < oo, by the mean value theorem, there

exists a value 8 between 3 and 3’ such that
— h w/ )|
] / { Flut (5 Bo)a) ey (u+ BalX = 2)

= flut (B — fo)x)gerx (u+ falX = 2)] (5 — B)e du}fx<x> du

<1o- 31 [ { [ Ifu+ (- mGorxlut folx =)

=t (3= oo+ BalX = )| du ol fxa) do
<cis- o1 [ {7 ufl+ ) il as
<Gl = [ lalfx(a)da

where the second inequality holds for some finite constant Cy > 1 such that
gcyx (+|X = z) < Cy uniformly, which is guaranteed by Condition 3; and the third
inequality holds by Condition 2 and the following Cauchy-Schwartz inequality

1w d 2 < [ @1 4, oo( F(u))? du
—o0 —o0 f(U) —co
(Y o)<

i+ sde= [ fwldes1< 6

—00

such that

for a constant Cy < oco. Therefore, by Condition 1 that X has a finite second

moment and thus a finite first moment, it follows that

KO8, 5) — hO(F, )| < K1|6— 7]

for a constant K7 < co.

Moreover, for any 3 € B and —oo < 5,5’ < 0o, we have
h0(8,5) = hO (5,8
({5t 6= oot + el = o) duf pe(o) d

< 03‘3 - 5l’a
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where C'3 is a constant such that f(-) < Cs, which is guaranteed by Condition 2.
Hence, for any 3,5’ € B and —oo < s,5" < 0o, it follows that

sup KO (8,5) = KO8, s)| = O(n~).
|B=B'|+|s—s'|<n~¢

For h1)(B, s), it is easy to obtain that
P{l(ep > s)|X =z} = F(s+ (6 — fo)x)Geix (s + fz| X = ).

Then for any 3,5’ € B and —0o < s < oo, by the mean value theorem, there

exists a value B between 8 and 3’ such that
KD (8,5) = D (B, )]
= | [ {P(s++ (8= Bo)a)Gpx(s + falX = 2)

— Fls+ (8 — fo)a)CGoyx(s + B2l X = 2)} fx(a) da

_ /X [=f(s+ (B — Bo)z)Geyx (s + fz|X = )

— F(s+ (8 = Bo)x)geyx (s + Bz X = 2)} (B — B fx (w) de

<184 /X [F(s + (B = Bo)) + goyx (s + Bl X = 2) el fx () de

< (CL+C)|B - B /X 2 fx («) da
= Ks|8 - |

for some constant Ko = (C1+C3)E|X| < oo, where C and Cj are defined before.
Moreover, for any 3 € B and —oo < s, s’ < 0o, by the mean value theorem, there

exists a value § between s and s’ such that

|h(1)(675) - h(l)(ﬁv 5l)|
_ ‘ J -1 +(8 = )0)Go(+ palX =)

— F(3+ (B — Bo)z)gox (5 + Bz X = ) }(s — &) fx (2) da

<|s—+| /X{f(§+ (8= Bo)x) + gox (5 + Ba| X = z) } fx(x) do
< (Cl + 03)’8 — 8/|.
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Hence, for any ¢ > 0, we have

sup WD (8,5) — hV(B, 5] = O(n™9).
|B—p'|+]s—s"|<n~¢

Finally for h(?)(8, s), by using the similar argument to that for A1) (8, s), we

can easily obtain that

W2)(3,5) = W, 9)] < (Co + ol = 8] [ () de = Kalf 5]
and

h®(B,5) — WD (B, )] < (CL+ C3)|s — §| /X 2| fx(z) dz = Ka|s — §|,
where K3 = (C1 + C3)EX? < co. Therefore, for any € > 0, we have

sup K (8,5) — KD (B, 5)| = O(n~®).
|B=B'|+|s—s'|<n~¢

Thus, we have proved Lemma 1.2. ]

Lemma 1.3. Let U, (S, s) be random variables for which there exist non-random
Borel functions uy, (B, s) such that for every e > 0,

(A1) sup U (B, 5) — un(B, s)| = o(n™Y?%¢) almost surely.
BeEB,—c0<s<o0

(A2) U,(B,s) has a bounded variation in s uniformly on B, that is,
sup/ |dU,(B,s)] = O(1) almost surely.
BeEB Js=—oc0

(A3) u, satisfies
sup  [un(B, s)| = O(1).

BEB,—co<s<o

Then under Conditions 1-3, for every 0 < e < 1/2, with probability 1 we have

Y

/y Un(B,5) dH) (B, ) — / un (B, s) dhl (8, 5)

=—0Q S§=—00

sup
BEB,—co<y<oo

= o(n~1/?%*e),
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Proof. By the triangle inequality and integration by parts, we have
y Yy
[ s a6~ [ wss) )
=—00 y S=—00
<[ 0B - (5.9 O 5.s)

S=—00

U (B, y) (HO (B, ) — KOG, )|
n / HO(8,5) — hO (B, 5)| [dU(B, 5)].

S§=—00

Then it is easy to see that each term on the right hand side of the above inequality
is o(n~1/2%¢) almost surely under (A1)-(A3) and Lemma 1.1. O

2 Proof of Theorem 2.1

Proof. By the first order Taylor expansion of function log(1 — z), for large n we

have
~ AZ/TL
b0 1o ¥ log(l_)}
ieg i <t H(l) (/Ba G,B,i)
dH( )
= 1—exp{—/u<t (1) B Z O( {nH (B,es4)} )}
= y U ieg,; <t

Then by the mean value theorem and the fact that e* < 1 for any z < 0, it
follows that

|Fy5(t) — F(B,1)|
[t dh (B, u)
exp{ /oo (B, >}

- exp{—/too i n? Y O(HWM(Bes)” 2)}'

n (57 1:€g,i <t
toamgBu) [t dhOBu)
s‘/ R “ —/_Oo T 2N o(HM(B,ep,)” 2)'.

—00 H,(L (ﬂ,u) 1:€g i <t

Under the condition HY' (B t) > n~¢, we have

2 Z O [3, €si)” 2) <n2.0n%) -n=0n"1+%*) = o(n_%+3€),

i€, <t
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So in order to show equation (2.9) in the main text, we only need to show

dH( ﬁ, £ dh©(B,u)
Sup{'/ o HD(Bu) _/oo WO (B,u) |

BeB,HV(B,t) > n‘a} = o(n"7%%)

(2.1)

almost surely. Now we define T}, = sup{t : 5 € B, HT(Ll)(B, t) > n~¢}, and let

(1) : n
5 Hy'(B,t), ift < Ty,
H’Igbl) (B? t) = (1) ~ ~
H(B,Ty), ift>T,.

ThenH (ﬁ,)>n_5forall,8€l3and —00 < t < oo0. Define h (,8,)
similarly as Hfz (8,t) and apply Lemma 1.3 to U,(8,u) = n*ZE{HS)(ﬁ, u)} 1
and u,(8,u) = n~22{h(V(B,u)}~!, we obtain (2.1) and thus equation (2.9) i
the main text holds.

We now show equation (2.10) in the main text. Notice that F'(t) = F(fo,t),
then under the restriction {|8 — Bo| < n=%, h(V(3,t) > n~¢}, by the mean value

theorem we obtain
|F(8,t) — F(t)]
_ dh(O) (67 U) dh(o) (BOa U)

- exp{_ /ugt (3, u) } B exp{_ /ugt 10 (o, ) H
/ dh© (B,u) / dhO) (B, u)
u<t h(l) (/87 U) u<t h(l) (/807 U)
/ d{h(o) (67 U) - h(o) (ﬁ(b U)}

u<t h(l)(@ U)

< hm(ﬁo,U) _ h(1)(5’u) o
+ /u<t< h(l)(ﬁ7u)h(l)(ﬁo7u) ) dh'™ (Bo,w)
<n° SuP{|h(O)(ﬂ(),t) _ h(o)(ﬁ,t)‘}

+ n%h % (o, t) sup{ [ (Bo, t) — KV (B, 1)[}
=0(n"°),

in

IN

IN

where the third inequality holds because for any u < ¢, {h()(8,u)} =1 < {hM(B,4)} ! <
nf, and the last equality holds because h(®)(By,t) < 1 and sup{|h¥)(8,t) —
&) (Bo, 1)} = O(IB — Bol), k = 0,1, by Lemma 1.2. Thus equation (2.10) in
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the main text holds. Finally, equation (2.11) in the main text can be easily ob-
tained by applying the triangle inequality to equations (2.9) and (2.10) together
with Lemma 1.1 provided that —5 —|— 3e < —¢g,ie, 0<e< 1 O

3 Proof of Theorem 2.2

Proof. Notice that

%:/mp /g—mﬁjimw

We thus have
/ tdE, g(t) —ap = / tdF, g(t) — / tdF(t)

h - {/ {1—F, st }dt—/ {1-F }dt}( 1)
_{lmﬁmwﬁ—lmeﬁ}

With g # 0, when 3 satisfies |3 — | < n™3%, we have 8 # 0 for sufficiently large
n. For any f # 0 and t € (—o00,00), one can always find a range of  such that
Gox(t+ Bz|X =x) > 0 and F(t + (8 — o)) > 0 since F(t) > 0 for all £ < 0o
under the assumption fx(z) > 0 for all —oo < x < oo and [y # 0. Therefore,
we have h(D(B,t) > 0 for all t € (—o0,00) from the following equation that is

obtained in the proof of Lemma 1.2:
WOE.0 = [P+ (8= fo))Gorx(t+ Aol X = o) fx(o) do

Moreover, since H (ﬁ, t) — h(M(B,t) almost surely as n — oo, then with n
sufficiently large, we have H (ﬂ t) > 0 almost surely for any § # 0 and t €
(—00,00). Hence T,, — oo almost surely as n — oo, where T,, = sup {t :
Hr(ll)(ﬁ,t) > n ¢ |8 — Bol < n*?’f}, as defined in equation (2.12) in the main
text.

Then at 8 = By, by the independence of ey and C — Sy X and the Markov’s
inequality, it follows that

W (B0, Tn) = P{l(eg>T,)} - P{1(C — foX >Tp,)}

Ee%
T2

IN

P{l(eg > Tn)} <
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Since H\' (BO, ) > n~¢ implies (! (Bo, n) > n~¢, together with Condition 4

that Fe3 < oo, we have T2 < Ee2{hMV) (8o, T,)} ' < O(nf), i.e., T,, < O(n/?).

This implies that T,, — oo in a rate no faster than n¢/2.

Since the Kaplan-Meier estimator F), B(t) isset to 1 for t > Ty, (3.1) becomes

/_Zt dFy 5(t) — ag / {F(t) — E,5(t)} dt — /:{1 — F(t)} dt

_ /_ {Frs(t) — F(£)) dt.

Then by Theorem 2.1, we have

£

Tn
I . _ n—35 i n"¢ n-3
sup{ [P0 - Euatola: |- ful <075} <7407 < 0(7H)

almost surely. For the second term on the right hand side of above equation,

applying the Markov’s inequality we obtain

00 [e%e] OOE2 E2
(L= FOydr< [ Pl(alz}ar< [~ 50 < 0 o)
Ty Tn

Tn

almost surely. For the third term, we have

O ~
/{%N) ()} dt = /{&5 F(t)} di
+[ {Fus(t) — F(D)} dt,

'Whel"e
_Z - ) —E& £

almost surely, and

/_Tn F(t) — B g(t)|dt < /_TnF(t)dtnL/_TnFnﬂ(t)dt

0o anA
= / F(—t)dt+/ E, 5(t) dt
E
< 4 om) = o)

almost surely, where the last inequality holds because of the Markov’s inequality

F(—t) = P{1(ep < —t)} < P{1(Jeo] > 1)} < Eiz
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and the fact f:oz" Anwg(t) dt — 0 almost surely as n — oco. Therefore,

sup{‘/_oo tdE, 5(t) —agl : |8 — Bo| < n_?’e} =o(1)

almost surely. We now have proved Theorem 2.2. O
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